ML20098D738
| ML20098D738 | |
| Person / Time | |
|---|---|
| Site: | Perry |
| Issue date: | 03/31/1992 |
| From: | Jones G, Savoia P CENTERIOR ENERGY, GENERAL ELECTRIC CO. |
| To: | |
| Shared Package | |
| ML19303E858 | List: |
| References | |
| 23A7147, 23A7147-R, 23A7147-R00, NUDOCS 9205290316 | |
| Download: ML20098D738 (24) | |
Text
-9 (Y
lO i
i O
O
.O O
1 i
GE Nuclear Ener!)y 9205290316 920522 DR ADOCK0500gO o
l J
i 6
. l.
Supplemental Reload Licensing Repntt Reload 3, Cycle 4 F
)
t t.-
t 4
l.
I-
.,-..,.------.._....._..a.....
INFORMAT ON 01LY i
INTENT INSTRUCTION TEMPORARY CHANGE
*'*"^"' c"'"o ' No PNPP No 7310 Rev 2/92 PAP 0522 6NS15tucilON NO REV FNSTRUCTION fitLE ADMIN USE ONLY Pb6 F0001 1 Ge Oncenn Lm h ht i
J h dh6
- Wi bdC\\ttw'hM Mmh, Un,f ) Cyclt 4 cm,ats 1c,.s, ggg MA LIST EACH ATTACHED PAGE
?A. I'E I ncorp.' A h e ? u [m ^v/1 Cgf f414) hbW Bumik. ibeps c9ckOM106 hCPR pewIki b b Cge4EM] hm d
- McM, i
l M/[LL 4
L
>W# 0,1 ed.-e/l.,
- 2 /* f ?.
l.
poNurowo l eonc uro DATE.
nEcouucNoED ron APPnovAt
[
,,,,y,,y,o,,,
- 92. o 7 O SN.2 /. 9 a Ids E*
8"M 'N A
APPROV DATE APPR '-
DATE
).
[A 1
' $*b *N O$
l
^
i APPnovED DATE APPh0VE D
/
I DATE '
R O
NA NA Y
APPRONED DATE APPROVE D DATE A
L A./M Ensure an approved 10CFR50$9 Apphcab6ty Check is attached prior to sub #
.or PORC Revew or final approvalif Non-PORC-
~
INFOTiiliATION DEY PDB-F0001 Pages i
Rev,:
1 PLANT DATA BOOK EtGRY SUBHITTAL SHEET TITLE:
CORE OfERATING LIMITS REPORT FOR THE PERRY NUCl. EAR _,POVER PLANT, UNIT 1 CYCLE 4 (RELOAD 3)
PDB -
F0001_ /Rev.
1 EFFECTIVE DATE:
59:3 9,2.
HPL:
J11 TCN N/A PAGES ATFECTED:
N/4 SCOPF 0F CHANGE:
Incorporate new teel type information for Cycle 4 including MCPR limits which are fuel type dependent and delta T dependent.
REFERENC8:
PY-CEI/NRR-1104 L PY-CEI/NRR-1157 L PY-NRR/CEI-0529 L l
PREPARED BY:
J. H. Rinckel b/xb],y11. M.
M 4-27-92
~'
{
Date
/ /. /IM/
% 3,. 4 'l REVIEVED BY:
/
~~
f Date APPROVED BY:
y 4)
M
)
ll'50*?)
Hanager - SponsoriYg Group Date
~
.................................................v.......................
TAB P USE ONLY PORC HEETING NUMBER:
-d6k__
h7NN Date i
O
!- (-/AM t[
h APPROVED BY:
M
" ' ~ PPTD Q rec;or Date
~
E!FORMftil0N ONLY PDB-F0001 Pages 1
Rev.:
1 UNIT 1 CORE OPERATING LIMITS REPORT 1"DEX Specification Page INTRODUCTION AND REFERENCES 3
AVERAGE PLANAR LINEAR HEAT GEllERATION RATE 4
(CORRESPONDS TO TS 3.2.1)
Figure 3.2.1-1 Flow Dependent MAPLHGR Factor (i1APFAC )
5 g
Figure 3.2.1-2 Power Dependent MAPLHGR Factor (MAPFAC )
6 p
Figure 3.2.1-3 Deleted 7
Figure 3.2.1-4 MAPLHCR Versus Average Planar Exposure, Fuel Type BP8 SRB 176 8
Figure 3.2.1-5 MAPLHGR Versus Average Planar Exposure, Fuel Type BS301E 9
Figure 3.2.1-6 MAPLHGR Versus Average Planar Exposure, Fuel Type BS301F 10 Figure 3.2.1-7 MAPLHGR Versus Average Planar Exposure, Fuel Type GE8B-P8S0B320-9GZ-120M-150-T 11 Figure 3.2.1-8 MAPLilGR.'arsus Averarl Planar Exposure, Fuel Type GE8B-P8SQB322-7GZ-120M-150-T 12 Figure 3.2.1-9 MAPLHGR Versus Average Planar Exposure, Fuel Type GE10-P8SXB306-10GZ2-120M-150-T 13 Figure 3.2.1-10 MAPLHGR Versus Average Planar Exposure.
Fuel Type GE10-P8SXB306-11GZ3-120M-150-T 14 MINIMUM CRITICAL POVER RATIO (CORRESPONDS TO TS 3.2.2) 15 Figure 3.2.2-1 Flov Dependent MCPR Limit (MCPR )
g Fuel Types GE8X8EB, BP8X8R 16 Figure 3.2.2-2 Pover Dependent MCPR Limit (MCPR )
p Fuel Types GE8X8EB, BP8X8R 17 Figure 3.2.2-3 Flov Dependent MCPR Limit (MCPR )
g Fuel Type GE8X8NB-3 18 CTCLE 4 CORE OPERATING PERRY UNIT 1 LIMITS REPORT
i Offt.Y PDB-F0001 Page:
2 Rev.:
1 UNIT 1 CORE OPF. RATING LIMITS REPORT INDEI (Continueg Specification Page Figure 3.2.2-4 Power Dependent MCPR Limit (MCPR )
l Fuel Type GE818HB-3 E
19 LINEAR HEAT GENERATION RAir (CORRESPONDS TO TS 3.2.3) 20 I
CTCLE 4 CORE OPERATING PERRY UNIT 1 LIMITS REPORT
NORMEsiBN OPEY PDB-F0001 Page:
3 Rev.:
1 INTRODUCTION AND REFERENCES INTRODUCTION This Core Operating Limits Report for PNPP Unit 1 Cycle 4 is prepared in l
accordance with the requirements of PNPP Technical Specification 6.9.1.9.
The core operating limits presented vere developed using NRC-approved methods (Reference 2).
Results from the reload analyses for the General Electric fuel in PNPP Unit 1 for Cycle 4 are dccumented in References 3, l
4, 5 and 6.
The cycle-specific core operating limits for the following FNPP Unit 1 Technical Specifications are included in this report:
1.
Average Planar Linear Heat Generation Rate (APLHCR) Limits for each fuel / lattice type, ircluding the power and flov dependent MAPFAC curves.
(Technical Specification 3/4.2.1) 2.
Minimum Critical Pover Ratio Operating Limit including the power and flov dependent MCPR curves. (Technical Specification 3/4.2.2) 3.
Linear Heat Generation Rate (LHGR) Limit for each fuel type.
(Technical Specification 3/4.2.3)
REFERENCES 1.
J.R. Hall (USNRC) to H.D. Lyster (CEI), Amendment No. 33 to Facility Operating License No. NPF-58, September 13, 1990.
2.
" General Electric Standard Application for Reactor Fuel-GESTAR II,"
NEDE-24011-P-A-10 and NEDE-24011-P-A-10-US (US.lapplement),
April 1991.
3.
" Supplemental Reload Licensing Report for the Perry Nuclear Power Plant Unit 1, ",eload 3, Cycle 4,"
GE Document 23A7147 Rev. 0 (March, 1992).
4.
" Supplement I to the Supplemental Reload Licensing Submittal for the Perry Nuclear Power Plant Unit 1, Reload 1, Cycle 2," GE Document 23A5948AA Rev. 0 (October 1988).
5.
" Supplement 1 to the Supplemental Reload Licensing Submittal for the Perry Nuclear Power Plant Unit 1, Reload 2, Cycle 3," GE Document 23A6492AA Rev. 0 (September 1990).
6.
" Supplement 1 to the e pplemental Reload Licensing Submittal for the u
Perry Nuclear Power Pl at Unit 1, Reload 3, Cycle 4," GE Document 23A7147AA, Rev. 0 (January 1992).
l 7.
Perry Huclear Pover Plant Updated Safety Analysis Report, Unit 1, Appendix 15B-Reload Safety Analysis.
CYCLE 4 CORE OPERATING PERRY UNIT 1 LIMI'fS REPORT
e E F0 E rl0 M O NI.Y PDB-F0001 Page:
3a Re".:
1 8.
R. E. Parr (GE) to M. S. Rupp (CEI), PY1C04R03 - Rotated Bundle Analysis, PY-GET/CEI-439, May 13, 1992.
9.
Fax transmittal from J. Vorthington (GE) to M. S. Rupp (CEI),
Reanalysis of GE10 Rotated Bundle, May 19, 1992, l
1 i
l l
l l
CYCLE 4 CORE OPERATING PERRY UNIT 1 TC/VAX/Page 1 of ?
LIMITS REPORT
WFORMATION OMLY
~
PDB-F0001 Page:
4 Rev.:
1 AVERACE PLANAR LINRAR IIRAT GENERATION RATE (TS 3.2.1)
All AVERAGE PLANAR LINEAR HEAT GENERATION RATES (APLHGRs) shall not exceed the result obtained from multiplying the applicable MAPLHGR values
- by the smaller of either the flov dependent MAPLHGR fa: tor (MAPFAC Figure $)2.1-2. Figure 3.2.1-1, or the pover dependent MAPLHGR f ac tor (MAPF P
These applicable MAPLHGR values are:
l.
Those for the respective fuel and lattise type as a function of the average planar exposure (as described by the NRC approved methodology described in GESTAA-II) or, 2.
When hand calculations are required, the MAPLHGR as a function of the average planar exposure for the most limiting laitice shovn in Figures 3.2.1-3 through Figure 3.2.1-10 for the applicable type of fuel.
l l
CTCLE 4 l
CORE OPERATING PERRY UNIT 1 LIMITS REPORT
--_.._.____.._....__..____.__...m.___._
k' (k
k PDB-F0001 Paget 5
Rev.:
I r,i r m en se 42 1.1 i
I.____.
1.0 I
/
i r
/
E
/
r J
K
/
O.9 1
/
.r
,J 7
/
.r U
f o.8 c
7
'l k
/
y
~~
f v
JI
/r r
i g
1 1
/
1 r
i 1
E 1
/
u i
J MAPFAC g-MIN (1.0, 0.4574 + 0.006758F)
E 0.6
/
1 1
0,5 0
20 40 60 80 100 120 CORE FLOW (% RATED), F FLOW DEPENDENT MAPLIIGR FACTOR (M APFAC r )
FIGURE 3.2.11 CYCLE 4 CORE OPERATING PERRY - UNIT 1 LIMITS REPORT
- _ - _ - _.. _ _ _.. _ _. _ _ _ _ _ _ _ _ _. -. - - - ~. _... _ -. _ - - _ _ ~ _ _ _ - - -... _.. - _ _ _ _..
f A
PDB-F0001 i
Page:
6 Rev.:
1 i
rNrr % susses4w 1.1 i
~
1.0 r
.r i
}
1 J
0.9 f
I I
f f
r A
i I
- ses J
rg
/
0.8 j
,i~
J
?
/
2 f
1 r
r
.r 0.7 -
't i
L 1
[
MAPFACp-1.0 + 0.0052 (P.100)
A J
40?o $P $ 100Fo : All core flows f
257o gP g 40Fo : Core flow F $ 50*o 0.6 -
''yLU
m i
' em I
1 m
MAPFAC p.
0.6 + 0.002 (P.40) 25 Fo { P { 40Fo : Core flow F > 50r
--~~
o 1
1i II I
I i11I i
[
03 l
0 20 40 60 80 100 120 CORE TilERA1AL POWER (% RATED), P POWER DEPENDENT A1APLHGR FACTOR (A1APFAC p) l l
1 FIG UR E 3.2.1-2 CYCLE 4 CORE OPERATING PERRY - UNIT 1 LI A11TS REPORT
,o n 5'; t* :1T 3 D i fL Y 2
'{f\\)'thb'OI%*
PDB-F0001 Page:
7 Rev.:
1 Deleted Figure 3.2.1-3 CTCLE 4 CORE OPERATING PERRY UNIT 1 LIMITS REPORT
%h7
" '' N 8 7 7" "" '"*
13.5 z 3:
EX POSU RI' M API.IIGH m
gg (GWillt)
[kWill) m We j
s Jr i
x A
N{
u.o 12.0 12.5 1.0 12.2 12.0 #
C s.o 12.7 Z
yZ d
CZ 11.5 In.o 12.9 WO o-11.0 is.o i2.9 20.o 12.6 10.5 W
PERMISSillt.E
.o 11.7 10.0
\\
REGION OF 30.o 10.M OPERATION y
.-. C 9.5 3s.o 1 o.2 aCD I
4o.o 9.s
-p:
9.0 a
W
~
Z o
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
-.c AVERAGE PLANAR EXPOSURE (GWd/t)
G t;R Ni>1e: Intennnliate M API.HGR h2, i
O MAXIMUM AVERAGE PLANAR LINEAR IIEAT hO GENERATIOc RATE [MAPLIIGR) VERSUS
'."'""'. "'" "'la t e s en" '"* 'I Y EY-
,N lancar t.iterpo
,x,,, m 43 n
Mo AVERAGE PLANAR EXPOSURE, HP8x8R 1,cewec,,aijacco,iminis ya=
7ps dO<
~~m m
TO FUEL TYPE UP8SRH176 8
.r.
c, p~.
- D m F mxm LA 7
FIGURE 3.2.1-4
{
O>u CD H
t
- c -
- 2 H$
F4
t PNrr w nm m 4...:
13.5
^ ^
EXPOSUllic MAPIIIGH
\\
13.0 (GWilft)
(kW/it) f g
i2.5 g c
g,3
, z,,
BS301E 1.0 12.4 WO 12.0
^
ZD h
5.0 12.M W#
11.5 70 d
g 8.0 13.2 1
<W 11.0 --
p<
Z 10.0 13.5
(
10.5 j
T C
1 X
A Z 10.0 20.0 12.5 4
LC O 3 A
?.5.0 9.5 35.0 f L4 9.0
_( m g
g 8.5 50.0 6.9 PERMiSSII!LE h
8.0 ---
REGION OF OPERATION
,6g 7.5 XZ 7.0 =
o p
6.5 I
6.0
- Q C,
n 0
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 74 t* O xmm
~s E5 AVERAGE PLANAR EXPOSURE (GWd/t) 36 E W,
i
~
n yos Note:
1.
Intermetliate MAPillGR g
MAXIMUM AVERAGE PLANAR LINEAR IIEAT
$ m ri ME GENERATION HATE (MAPLIIGR) VERSUS
"I"*'." "I"3".c'l lir
-*2 gg T
AVERAGE PLANAR EXPOSURE, GE8x8EB i,'ciw cn,[ij"afe"'[i oinis, 2%
O t he mmt l. '."t."'"D **'I'*
- 9 FUEL TYPE BS301E ims mg enriche<l fuel
=gL.
Hg lattins. For lattice specific p
"'"*"""'""*f*'*"4-4 FIGURE 3.2.1-5 1
~. -
hfhhj.b PDB-F0001 Page:
10 Rev.:
1 u
y z
2 em 9e y
s.v.i Je : u t
-r
=,
9 n
n 9
9 x
n m
m x
.-g~~*5 a
es n
n m
e m
n e
x e
=>
w g8
- .5
~
-,cL=Eutt c
t n
p
- .9-2 c c c x
=
n
- )
it
.#248 5;l
= u 3 @a u x c
- i 5
.E l 5
35 c.
c c.
e o
c.
9 e
=
c c
e s.
v.
c e
n x e
n e
m m
m
=
c 5.e = $. 7. > 3 N
N m
n m
Pc x
ECa.tCitt
=.
3 3 u !.c u=3 n
f Si 2251;253?
/
/
n s
e m
n t
.:t 4
C
.C z
9 9,
f n
s eW 0
g f
~
=
s 5
w d m m-y n-
-pm n
-z D
= = ?d as m
<ww n
O m>o a
Z e,..
e X
'3 G d a d
r nW x=p 5 e
1 e
<am n e
%S9 $
d N
e 2
1 :p m ei E dd a m
<"ob<f U M M
W
)
Ce p
3*
y S 3 d
~
W O
WZUU C
- d. z o
>oA
=oo 6
<~m szH w
H< C
-o<
e=$
MGE c.
$ p==
e m e.
e
~
Pzo Sz-x.wq e
-e 9
c.
9 o-9 c.
9 o
9 o
9 o - 9 c.
9 o
o e
e m
e
=
e s
e e
m n
n.
n (U/ASM) 31VH NOllVH3N3D IV3H HV3 Nil HVNV'1d 3DVH3AV WGIVIXVIV CYCLE 4 PERRY. UNIT 1 CORE OPERATING LIMITS REPORT l.
l-
1_
r%*r N. xxxo se,. 4 92 13.5 EXPOSU RI-M API IIGH 13.0 (GWillt)
(kW/ft)
[
(
G E88-P8SQB320-9GZ-120M-150-T oo 3,,73 T
0.2 11.78 N _~
12.0 -
l 1.0 1 I.M3 Z
f 11.5 2.0 I1.91 4y 5M
%~
3.0 12.02 I*
T 4.0 12.17 z
x, 5.0 12.32 10.5
=
O 6.0 12.44 2
2 10.0 7.0 12.56 q
Wg h
9.5 H.0 12.70 9.0 12.84 m
9.0 L
W
\\
10.0 12.97 y E N
<m 8.5 12.5 13.00 2O PERMIS51HLE 15.0 12.73 p
8.0 -
REGION OF
\\
0.0 12.10 OPERATION bW 7.5 25.0 11.4 M I
35.0 10.23 y
45.0 H.66 6.5 50.0 6.16 G
4 6.0 vg n
0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 C
CO
- ?!?
5' 5, 3$
E' 7 3 gg9 AVERAGE PLANAR EXPOSURE (GWd/t) y; y p.;
y6
-g m,
- c m r MAXIMUM AVERAGE PIANAR LINEAR IIEAT Notes:
1.
Interniettiate M APIIIGH o
C "I"i""d Y
~CO h4
'?'""' f'terp latton GENERATION RATE (MAPLIIGR) VERSUS T
lancaren o
,/
j O_4 AVERAGE PLANAE EXPOSURE, GE8x8EB I,etween adjacent points.
i.
g Hh FUEL TYPE GE8B-PESQB320-9GZ-120M-150-T 1l,, curse a(.ninxl site l,4 gg 2.
, n r
(,e u,.
I latt:ites. For I.attice specifit-P
"'g
"'"*"""'"""*""5-
[
FIGURE 3.2.1-7
i3.5;..
FlPOSURI: MA PI.IIGR 13.0 (G\\%Illi (kW/ft) 1[
GE8B-P8SQB322-7GZ-120M-150-T 0.0 12.t I 12.5 5
k O
12.0 l.0 12.09 Z%
=N 2.0 12.16 aly 11.5 y
[
% ~~
3.0 12.28 h
1.0 7
4.0 12.42 2h 5.0 12.58 g
10.5 6.0 12.67 4
(
7.0 12.75 y
LQ Q 9.5 8.0 12.83 9.0 12.92 gg 9.0 LQ t 0.0 13.02 p
I 4
8.5 I2.5 13.07 2O PERMISSIHLE I 5.0 12.79 8.0 --
REGION OF g
$ g<
OO 12.19 OPERATION GQ 7.5 25.0 11.56 3"..G 10.29 M'
45.0 8.77 6.5 50.0
'i.27 m
)
7:22 6.0 M.j O
'O 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50f*
- eTC,
)
CO g4
- -
- :c
- 6-j$Q AVERAGE PLANAR EXPOSURE (GWd/t)
- l' ; g E;
- D $ h MAXIMUM AVERAGE PLANAR LINEAR IIEAT Notes:
I.
Interinettiate MAPI.flGR
=
$$[
GENERATION RATE (MAPLIIGR) VERSUS
- " 3 ",',' ",',* ,$i""I Y
__$ b
"~
Od AVERAGE PLANAR EXPOSURE, GE8x8EB i,ci.cen,,ijacent,m;nis.
g h
FUEL TYPE GE8B-P8SQB322-7GZ-120M-150-T 2' fi,[n,"sl*i,,,i ;ng c,7tY,c<Y fuel f5 lattices. For lattice specific
,g
'"'" *" "'" "* 'e nce 5.
FIGURE 3.2.1-8
'*'"N""
I 3.5 EXI'OSUIR M Al't.IIG R I 3.0
!G\\Wl/ST1 (kWift) z G EI O-P8SXH306-I IG7.3120M-150 T 1
0.0 11.55 12.5
/
h j
i o2 n.6i k
M _~
12.0 Zw f
1.0 11.71
-N
'y 2.0 11.92 4
11.5 c
%.'.t EU 3.0 12.17
~
< [4 11.0 ll0 N
4.0 12.41 Z
\\x 5.0 12.1i1
[
10.5 2
10.0 7.0 12.99 y
(Q Q f
O 9.5 H.0 13.16 9.0 13.31 gg 9.0 Ed
]
10.0 13.34
<Z
\\
8.5 12.5 13.23 gg EQ PERMISSIBLE 15.0 12.92 Q
8.0 --
HEGION OF I
2k 20.0 12.16 OPERATION
- 54 7.5 25.0 11.44 35.0 10.14 7.0 2
45.0 M.90 6.5 51.7 5.87 UQ k
Eic; 6.0 ge:
6 O
55.9 5.5
@o e
m z
O 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 53.0
,,,O
,, e, o -z
.= m 3oQ AVERAGE PLANAR EXPOSURE (GWd/t)
? % i' "gj g ;r.
mn
- n tU r MAXIMUM AVERAGE PIANAR LINEAR IIEAT Notes:
1.
Interme liate mal'LIIGR
@$m GENERATION RATE (MAPLIIGR) VERSUS
."'"."*""i".Y
~ U 3 ""l"l o
Od AVERAGE PLANAR EXPOSURE, GE8x8ND-3
'[ '" "$'c,[',"", ions.
Q l, en I; FUEL TYPE GE10-P8SXH306-1IGZ3-120M-150T a ( o ni g isi e..r 2.
1i curvc,
,, n,,,,
, en, (},
fuct i
lattites. l'or lattice specific
"'"*"""'"""''*"'"6-FIG U R E 3.2.1-9
.a
.p t
t 13.5
[
EX POSURI: M A PI,IIGH i
13.0
[Gw.l!ST)
@ W /ft) j
\\
G E10-PSSX B306-IOGZ2-120M-1EO-T 0.J 11.21 1
12.5 0.2 11.26 Z *N
\\
1.0 11.36 l
l"
[
}1 2.0 11.56 4
w
= J 'M 11.5 i
1
.fi
\\
t M
Z.
3.0 11.81 (r
\\
4
<t:
4.0 12.08 z
x 10.5 5.0 12.35 l.
C 6.0 12.57
'l I
1 2
Z 10.0 g
GQ Q 7.0 12.80 j
O~
8.0 13.00 l
9.5 1
s i
Z 9.0 13.20 f
i LG 9.0 LQ 10.0 13.37 Z
k l
8.5 12.5 13.43 gg
[
PERMISSIHLE 35.o a 3,34
[
$Q
.~)
8.0 -
HEGION OF l
t y <p OPERATION 20.0 12.40 l
i l
KG-7.5 25.0 11.61 33.0 10.12 i
4 f
7.0 2
h 45.0 8.83 I
6.5 52.1 5.87 k
\\
m 6.0 Tg i
g CS 5.5 Q
-@ O r*
0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 ns m,%
- *o i
~m do9 AVERAGE PLANAR EXPOSURE (GWd/t)
?T ?
11 l
e es
-a i
WmF MAXIMUM AVERAGE PLANAR LINEAR IIEAT Not(s:
1.
Internictliate AIAPUIGR
__g C
l
- I " ** " "I' " **' Y E
l
- ~
GENERATION RATE (MAPLIIGR) VERSUS Isnear.anterpolation TO_4 AVERAGE PLANAR EXPOSURE, GE8x8NB-3 1,etween oilj, cent points.
o
[
- ~ f,Io*"', *;,I " ',""',",'f,fe] goci f
h FUEL TYPE GE10-P8SXB306-10GZ2-120M-150T
,$i ;
e latlices. For latti(e specific q
' " *"'" '" h ""'* "c e 6.
i i
FIGURE 3.2.1-10
^
i G
be e
PDB-F0001 Page:
15 Rev.:
1 MINIMUM CRITICAL POWER RATIO (TS 3.2.2)
The MINIMUM CRITICAL POVER RATIO (MCPR) shall be equal to or greater than the MCPR, MCPR and OLMCPR limits at the indicated core flov, THERMAL f'l POVER,dfltaT*P,ndcoreaverageexposurecomparedtotheEndofCycle a
Exposure (EOCE)** as specified in Figures 3.2.2-1 through 3.2.2-4.
NOTE:
MCPR limits are fuel type dependent and delta T dependent. The MCPR and MCPR limits are applicable for all core average r
expotures,nomEnalratedfeedvatertemperature(420'F),andall core flows less than or equal to 105% core flov.
For planned reduction of rated feedvater temperature from rated feedvater temperature (420'F), increase the appropriate MCPR and MCPR g
E limits by the following offset:
FV Temperature ***
GE8X8EB, BP8X8R GE8X8NB-3 (Fig. 3.2.2-1, (Fig. 3.2.2-3, 3.2.2-2) 3.2.2-4) 420 to 370'F 0.0 0.0 420 to 320*F 0.01 0.0 420 to 250'T 0.02 0.0 based on Rotated OLMCPR, operating limit MCPR, (Bundle Analysis) l GE8B-P8SQB301-5GZ-120M-150-T 1.19 TUI GE8B-P8SQB301-7GZ-120M-150-T 1.20 GE8B-P8SQB320-9GZ-120M-150-T 1.21 GE88-P8SQB322 7GZ-120M-150-T 1.21 GE10-P8SQB306-10GZ2-120M-150-T 1.21 GE10-P8SQB306-11GZ3-120M-150-T 1.23 There are a total of 19 safety / relief valves, the two lovest setpoint valves are assumed to be out of-servi in the transient analyses.
This delta T refers to the planned reduction of rated feedvater temperature from nominal rated feedvater temperature (420*F), such as prolonged removal of feedvater heater (s) from service.
End of Cycle Exposure (EOCE) is defir.e as 1) the core average exposures at which there is no longer sufficient reactivity to achieve RATED THERMAL POVER with rated core flow, all ccntrol rods withdravn, all feedvater heaters in service and equilibrium Xenon, or 2) as specified by the fuel vendor.
Partial feedvater heating to 320'F during the cycle with final feedvater temperature reduction to 250*F after ALL RODS OUT at end of cycle.
CTCLE 4 l
CORE OPERATING PERRY UNIT 1 TC/VAX/Page 2 of 2 LIMIT
- REPORT l
- - - - = - -
1
,J PDB-F0001 Page:
16 rNrr sa s n an s 92 Rev.:
1 1.8 iiiiiiiii,,ii,,,,iiii.,,ii,,,,ii,,,,i,,,,,,,
IIIIIIIiiIi1IIII11IIIIil II1l [ l1IIIIIi,i1Iii; AtCPH,. (1.8134 - 0.0069.s80
- l1.0 + 0.0032 (40 nj i
for 1.
F ( 40%
g 1
s
,)
1.7
/
g i
e
'l n
s L
I L
/
PERMISSIBLE i
r REGION OF
' t m
1.6 OPERATION t
i
' l L
1.
I
'l I
A1CPH, - M AX (1.18,1.8134 0.006948F) :
t*
for 1.5
\\
p y 4og y
N r
r 5
C
\\
r 2
\\
/
' t a
1.4 --
\\
/
'k B
w r
i L
r'
' k i
o 1.3 t
RATED OPERATING
\\
LIMIT MCPR - 1.18 ;
L L
' t IE i
El II l
1.2
'k II s
1i i
mi iI II l
1.15
'l l
0 20 40 60 80 100 120 CORE FLOW (% RATED), F l
FLOW DEPENDENT MCPR LIMIT (MCPR )
l g
FUEL TYPE GE8X8EB, BP8X8R FIGURE 3.2.21 CYCLE 4 (See Note on page 15)
CORE OPERATING PERRY UNIT 1 LIMITS REPORT
I.5 h, c.
.a 6
OMlH: PDil.00001 l'a ge 17 FNIT % em Rn sw itev.
I 2.3 i+}i i,.iii, d-
.- l -
i,4 e
i T+!
- i
-iii it e
x i i 4
- riiiii r
i i' i,,ii A1CPitp 2.1 + 0.0033(40 P) i "5
for 25% < P (40%: Core flow > 50% N 2.2
'i i
! !.l[1i
[i 3
, i i idt
~ ~
,t 4 i
i 4
t
' i i
ill! !!i! !
!! i I
i >
i j i'th4M.
l- -Nd % ! I il I
'[E 4Mf !!i[
' I I
r
- i g!!i;!ll1 4:-l,,:;; f4-Al C P L,, = 1.
,.0133p0 l')
i:
.~
^
4 i.i 4:
for 25% < P <.0%: Core flow (50%
i
' 1
,!%! !i l#'
1 2.0 --
e'
~
.~
-~
.l {1.
u.
.!i i i iii i
11,
i i1 1 4
1 1 4
o
.p ! t a
j! !i
' - ' !a il i
t i &..'
- ;n i
_O l
l !
lj
' i T
i
' !g PERMISSilit.E 4 i 'Il i Li ! ! i > !
4 1 : iie i 1 1
, 1 1
,, 1 i l L W, ! l
!l
! li j
, i IIEGION OF i;
g,g _
OPEllATION
+i i
1 i i,.
i, i.i i i >
g j. _i, 4 i
i !,, i 1,
i,,
i!
+
- ii
+ 1 j
4
>~. i,,,'
i
,i.
~
~
3y MCPR,. 1.18 [1.21 + 0.004170 P)l W r
I c,
l+
for 40% < P < 70%; All core flows m.1 1
y emme s
i....
i i
1
,,, i i
+i,
.. i e i i si.
iii,i,!
3.,,
,i!!,,,,,
U l6 p-m,
i 4
,,,+-.
1 1
- 14,i i
1 i
t i i i i',>
. i is ii 1
i
. i '
,i!i!
- , i i
- f t! i!
iii!
!i'i N i Xi I
i i
!i i i
i i
' i i
i !i i i i i,
i i e i e iii Ni i,
i i +
a j,,
i
, i i e i
i g
.Xi !
.ii.
i e
i i
i X
- iiii.
1 i'
!i i i
[
' i e i
'Mit ji i
iie ! i e ii i
i i i i.
Ii i i
! ' ' i! I i '
i li i i
! I ii!
i i i
! i t < I i
Ii i i !
I i
!i 7
i i
!ii!e
!l!
I i i i i i ii,, ii
<i i
g i
i i
i i
1 i
t t i
I iii i,
i i +
! i i
I I i I I'
i I
!l
!t i I Q!
I it i
3 i
i NCi
- i
!il 4 i i i Ii t
i
! i ML i
ii i!
i i i i
i l'
i
!'i' I
1'3 7
,e
! !3r 7ei t
i i
+ t i '
MCPR 1.18 [1.0 + 0.005[100 P)] r#
'N
=
i
,g.
l j i ii for 70% < P < 100%; All core flows
!i i x!
!!i>
i!
~
1 *2 -
'i'*'
Ii i!ia i
!e i i !
i i i ! !
I t i+i
! ++ >
i T i i I
i I ! t i,
!}
I
t }I t
iIiIi!
!i!
ii j'
t I ! !!i i !
t i t_
i!
t i
+<ii i i
3 <
i e i
!I fit II
! !8 ! I i
!!itiii I
! !!t
! i i
! Ii'!I
' 4 I i i i. i i
i i1 i i I
.}
ii I i.
1 6
i*1 i !
i
! ! i 8 I*
'il f ! t i l.
8 i i
t
- l !
! ! I ! ! ' i 8
!!Iii!!+*
i i i ;
i i
! I
',l
.' ! i !
!! Ii*ii i
1.. i i i 4 i i i.
i ie i e i
.i..!
e i
'ii ! ! I
' I i !!i
, e j il i i
,i!
e i e i i i j I e
ia iijiii j ! i ie i 9 i
i a
! ll
.i i i ii I jt +ii!a ! i j iia i i 0
20 40 60 80 100 120 CORE THERMAL POWER (% RATED), P 1
POWER DEPENDENT MCPR LIMIT (MCPR p)
FUEL TYPE GE8X8EB, HP8X8R FIGURE 3.2.2-2 CYCLE 4 (See Note on page 15)
CORE OPERATING PERRY - UNIT 1 LIMITS REPORT
4
._t.......
,t a
OM18: PDB F0001 Page : 18 n,Pr No 92 2 rey- : 1 1.8 1
,1, 1,11 1 11,ii,1 1 _ t, 4
i
!!i I!
!!i
'Ii' i
iiiii!I I6 I !iI!!I i i i !!
4 MCPRf. (1.8134 0.006948F) * (1.0 + 0.0032 (40 F))
for F < 40%
il iiI!'
iiii!
i!
- i'i!ii*
ii i i lili i i i i ! !i 7
!1
!ii t
T I i!t iI,P" i!i
!!;e i s.
I I i i.
_iir i i1 i
1!
!' j l
ll ii i
ii i
k, '
,/.
i 1
I iY PERMISSIBLE f
REGION OF i
l g.,
j OPERATION 1.6, g
g, i
li
\\
~~
1 1
_Il 1,
, TIII i
h-- MCPR,- MAX (1.21,1.8134 0.006948F)
.\\
for i
l.a,
- 1, p y 40%
5 Tii i
F i
ti l I
c t
r i
y 1
J e
J d
1 F
15 E
i i
1 g '4 ~
(
L i
tE t
i 11 I
E
' k 1
5 r
i T
Y J_--
1 1.3
\\
RATED OPERATING
\\
1.lMIT MCPR - 1.21 i
L
!J
\\
B i
r J'
'L.
I' l.2 1.15 l
l 0
20 40 60 80 100 120 CORE FLOW (% RATED), F FLOW DEPENDENT MCPR LIMIT (MCPR )
g FUEL TYPE: GE8 x 8NB - 3 FIGURE 3.2.2-3 CYCLE 4 (See Note on page 15)
CORE OPERATING PERRY - UNIT 1 LIMITS REPORT l
$!I _ ~..s. ' t { #l E Eani uf bi m: m
.1 a
O M 18: PDH f0001 Page. 19 rser No m9 Rev.
I 2.3
,!i 1i 1
!4
_ i.Ii I
i!
i
'i!
I' i7 i
.1
>i e
il I
II i
1
?!Ii iii 1i l
i MCPR, = 2.1 + 0.0033(40 P)
M q!
i
- FOR 25%g Pf 40%; Core flow > 3C% C 2,2 _
J iii; i1 11 1
i dl.t! :
l'
.N ;'
'4 il-
.. ! ! __. 4 L
! t
.1
- 'i
' ii
!i
- i If11!
111 iii li
_.i.
i liII i!
i
!i!1I i
- 'i+1 i
! i t i t i
> t,4
,Ii I.[T 2.1
". 't.
3.'
t i l
.i i
1 4
,i, l'
MCPR,- 185 + 0.0133(40. P)
((j k'il ill ll FOR 25%s Ps40%: core flows $50%
431.
wy 2 -
7 1
!i 1
1 1
. 31 _ <ii
' Q>_,__ M 1 a 1 t !
i i
ii i
i
!i !
i i i i
i
,4 i
i 1.1 i
i; i i, i
l!i
!!!b i
l I -
l i
! I' l'!
1,g 44 ei i
Y t
i j!
T L_.J.
PEhMISSt r11.E i'
!! N I
li l
l ^l M
l REGION OF j
j ll{,,
l 4
i r
ii i
C.*'E RATION 1
r i;i 1.8 --
1 i
i
~~
i i
I i
i! i! !I1iIiiii
!I !
,y'L
!!l!'i i I6 !!!
i !!
I MCPR, = 1.21 l1.21 + 0.004(70 P)]
j l
ay--+-4 l
FOR 40%< Pg70%: All core flows
-.t-y i f:
i i
i it i
i i
3J I I
I 1
1I I
I I
U 1.6 -
i
% ! i.I i
i I
Vi i
i i
X l X i
ii 1
1 ;
i i ;w i
>!r 13 i
i 2
mm it i
i i
i i i I!
'~4 1.4
-l
.i
%Fr
'i 1A TIPL i.
1.3, It I i X
i i;
i i
x i
I If1 II i
I C i
i Ni MCPR, = 1.21 [1.0 + 0.005(100 P)] 2 ix 1
1.2 -
FOR 70%< Pfl00%; All core flows l
i 3
i l
i ii i!
l
.i i
1.1 -
i I
I i
r i
i 1.0 0
20 40 60 80 100 120 CORE TilERMAL POWER (% RATED), P POWER DEPENDENT MCPR LIMIT (MCPR p)
FUEL TYPE: GE8 x 8NB - 3 l
l FIGURE 3.2.2 4 CYCLE 4 (See Note on page 15)
CORE OPERATING PERRY UNIT 1 LIMITS REPORT
-. --- - -.. - -.. -. -. = -
5 i'
INF09mTIM OhLY E
PDB-F0001 Page:
20 - LAST Re i. :
1 LINEA 2 HEAT GENERATION RATE (TS 3.2.3)
The LINEch '! EAT GENERATION RATE (LHGR) shall not exceeds a.
13.4 kv/ft for the following fuel types:
Deleted rnnSRB176 (BP8X8R) i 2t for the following fuel types:
21B-PASOB301-7G2-120M-150-1 (BS301E) (GE8X8EB)
- E83-P8SQB301-5G2-120M-150-T (BS301F) (GE8X8EB)
"E85-P8 SOB 320-9G1-120M-150-T (GE8X8EB)
")E-P8509322-7GZ-120M-150-T (GE8X8EB) 1 s
5.
s8B-08SXB306-10GZ2-120K 150-T (CE8X8NB-3) 6 b(8B-PSSX3306-11GZ3-120M-150-T(GE8X8NB-3) i l
l l
l CTCLE 4 l
CORE OPERATIFr l
PERRY UNIT 1 LIMITS P.EPORT
Supplemental Reload Licensing Report t
i f-Reload 3, Cycle 4 l
l:
L l
I I
l i
i
O Ih)
GE Nuclear Energy O
23A7147 v5 ceme 4+ve Revision L S"' Jose ca 95c5 Class !
March 1992 0
23A7147, Rev, O Supplemental Reload Licensing Report O
ror Perry Nuclear Power Plant Unit 1 Reload 3 Cycle 4 O
O O
Approved r
Approved Manager P. J. Savola, Manager Fuel Lic sing Reload Nuclear Engineering O
l LO LO L
0:
Perry I nom Relottd 3 Rev u Important Notice Regarding O'
Contents of This Report Please Read Carefully O
The only undertakings of the General Electric Company (GE) respecting information in this document are contained in the contract between Cleveland Electric illuminating Company (CEI)
-O_
and GE, and nothing contained in this document shall be construed as changing the contract, The use of this information by anyone other than CEI for any purpose other than that for which it is intended, is not authorized; and with respect to any unauthorized use, GE mak:3 no representation or warranty, and assumes no liability as to the completeness, accuracy or usefulness of the
- O information contained in this document.
'O.
~O*
O
'O
,O Page 2 OL
0_
Perry 1-2 m 7i47 Reload 3 en o Acknowledgment 10 The engineering and reload licensing analyses which form the technical basis of this Supple-
= mental Reload Licensing Report, were performed by P. A. Hahn and J. L. Casillas of the Fuel En-O Sincering Section. The Supplemental Reload Licensing Report was prepared by P. A. Lambert and verified by J. L Embley of Regulatory and Analysis Services.
.O
!O I-8
!O.
i l
i;O-l l
p O
O
'O l.
Page 3 Ql
O-Perry 1 mvi47 Ikhad 3 kw o The basis for this report is < eneral Electric Standard Application for Reactor Fuel.
NEDE-240ll-P A-10, April 1991; and the U. S. Supplement, NEDE-240ll-P-A 10 US, April 1991.
O l.
Plant unique items Appendix A:
Analysis Conditions O-Appendix '
Basis For Analysis of Loss-of-feedwater lleating Event Appendix C:
Analyzed Operating Domain Appendix D:
Transient Analyses 2.
Reload Fuel ilundles
.O Ogl T pt C3clLimaded Numtgr 3
Irradiated GF.88.P8SQB301-7GZ-120M 150 T (BS3IE)(GE8x8EB) 2 136 GE8B P8 SOB 301-5GZ 120M-150-T(BS301F)(GE8x8EB) 2 135 GE8B P8 SOB 320 9GZ.120M 150-T(GE8x8EB) 3 104 GE8B-P8 SOB 322-7GZ-120M 150-T (GE8x8EB) 3 168 New GE10-P8SXB306-ilGZ3-120M 150-T(GE8x8NB 3) 4 68 G E 10-P8SX B306-10G Z2-120M-150-T (G E8x8 NB-3) 4 13 6 Total 748 3.
Reference Core Loading Pattern Nominal previous cycle cm average exposure at end of cycle:
16,740 18,453 Minimum previous cycle core average exposure at end of cycle from cold shutdown considerations:
16,340 18,012 O
Assumed reload cycle core average exposure at beginning of cycle:
11,799 13,006 Assumed reload cycle core average exposure at end of cycle:
21,699 23,919
!O Core loading pattern:
Figure !
Page 4
!O i
I l
~.
0 Perry I wm Reload 3 Rev o -
4.
Cgjcelated Core Effective Muitiplication and Control System Worth No Voids, 20 C-0-
Beginning oi Cyr!e K Uncontr> nled 1.128 Fully controlled 0.958 0-Strongest control rod out 0.989 R, Maximum increase in cold core reactivity with exposure into cycle, AK 0.001 0
5.
Standby Liquid Control System Shutdown Capability Boron Shutdown Margin (AK)
(Enm)
(20*C. Xenon Free)
- g 660 0.029 6.
Reload Unique GETAE AOO Analysis initial Condition Parameters
- Fuel -
' Peakine Factors Bundle Power-Bundle Flow Inituu O
Design Local Radial 6stl Rdanor (MWt)
(1.000 lb/At)
MCPR Exposure: BOC4 to EOC4 Increased core flow /Feedwater temperature 420*F GE8x8NB-3 1.20 1.58 1.40 1.000-7.369
! !6.5 1.21
- O GE8x8ED 1.20 1.48 1.40 1.051 6.925 120.3 1.17 Exposure
- BOC4 to EOC4 Increased core flow /Feedwater temperature reduct.on to 250* F l
GE8x8NB-3 1.20-1.64 1.40 1.000 7.620 114.6 1.20
- O GE8x8EB 1.20 1.53 1.40 1.051 7.140 118.6 1.18 Exposure
- BOC4. to EOC4 Increased core flow /Feedwater temperature reduc on to 320* F GE8x8NB 3 1.20-1.61 1.40 1.000 7.523 115.3 1.20
!O GE8x8EB 1.20 1.51
!.40 1.051 7.048 119.3
-1.18 l
l Exposure: BOC4 to EOC4 Increased c re flow /Feedwater temperature reduction to 370*F-(
GESx8NB-3 1.20
? 61 -
1.40 1.000 -
7.517 115.5 1.19 O-GE8x8EB 1.20 1.50 1.40 1.051 7.024 119.5 1.17 Page$
0
0-
. Perry 1-23a7:47
- Beload 3 Rev o 7.
. Selected Margin improvement Options
- O Recirculation pump trip:
Yes Rod withdrawallimi:;r:
Yes Thermal powei monitor:
Yes O-hicasured scram time:
No Exposure dependent limits:
No Exposare points analyzed:
1 (EOC) l O
8.
Operating Flexibility Options (S.5.2) i Single-loop operation:
h.,
Load line limit:
No Extended load line limit:
No
~
hiaximum enended load line limit:
No increased core flow at end of cyct"-
Yes increased f',w throughout the cycle:
Yes Flow point t -,eed:
105Fc
~0 Feedwater temperature reduction throughout the cycle:
Yes Final feed ater temperature reduction:
Yes Temperature redection:
50
- F,100
- F,170
- F -
ARTS Program:
No
,O hiaximum extended operating domain:
Yes hiain steam isolation valve out of service:
No Recircuhtion pump trip out of semce:
No Turbine bypass out of senice:
No 4
O-Page 6
- O-a,--
m
01
_ Perry I wm Beload 3 Rev o 9.
Core wide AOO Analysis Results Methods used: GEMINI and GFXL-PLUS
'O Unggrrected ACPR Flux Q/A Event (c'c Nill {)
(c NilR) GE8sSNI}l2 GE8x8 Ell Eigun e
Exposure range: 110C4 to EOC4 Increased core flow /Feedwater temperature 420* F 0-Load rejection 401 113 0.14 0.10 2
without bypass Feedwater controller 2S9 112 0.11 0 09 3
failure (143%)
O Pressure regulator -
146 105 0.07 0.05 4
failure downscale Loss of 100'F 0.10 0.10 feedwater heating iO Exposure: llOC4 to EOC4 Incrr.s d core flow /Feedwater temperature reduction to 250*F Feedwater controller 280 117 0.13 0.12 5
failure (143%)
Pressure regulator 148
!,6 0.07 0.06 6
,O failure downscale Exposure: llOC4 to EOC4 Increased core flow /Feedwater temperature reduction to 320'F l.
Feedwater controller 292 116 0.12 0.11 7
failure (143%)
'O
^
Exposure: IlOC4 to EOC4 Increased core flow /Feedwater temperature reduction to 370*F Feedwater controller 293
!!4 0.12 0.10 8
failure (143%)
'O 10.
Imcal Rod Withdrawal Error (With Limiting Instrument Failure) AOO Summary The generic bounding BWR/6 rod withdrawal error (RWE) is analyzed in l
lO NEDE-240ll-P-A-9-US and GESSAR II Appendix 15B is applied; the resulting ACPR is
-0.11. The generic RWE ACPR was verified to be applicable to the new fuel design. The original generic analysis in GESSAR II was not applicable for control cell core operation; however, it was subsequently shown to be applicable for cor. trol cell core operation and GESSAR II was revised to reflect this application in Resision 21.
O
'See Appendix B.
Page ?
O f
-r, n
O-Perry 1 23^7147 Rdvad 3 -
Rev o 1 1.-
Cycle MCPR Values
- i Safety limit: 1.07 O~
single loop ope. ration safety limic i.08 Exposure range: BOC4 to EOC4
'O Non pressuritaljo.n events GES<8 Nil-3 ILE8xf; Ell Rod withdrawal error 1.18 1.18 O
Loss of 100* F feedwater heating 1.17 1.17 (Bounding from 420* F feedwater temperature condition) l'ressurization e>ents
- O Option ^
GE8x8 Nil 3 fif8s8E!Il Exposure range: 110C4 to EOC4 increased core flow /Feedwater temperature 420*F Load rejection without bypass 1.21 1.18 Feedwar-r controller failure 1.19 1.16 Pressure regulator failure downscale 1.15 1.13 Exposure: 110C4 to EOC4 Increased core flow /Feedwater temperature reduction to 250*F
.O h.edwater controller failure 1.21 1.20 Pressure regulator failure downscale 1.15 1.14 Exposure: HOC 4 to EOC4 Increased core flow /Feedwater temperature reduction to 320*F O
Feedwater controller failure 1.21 1.19 Exposure: llOC4 to EOC4 Increased core flow /Feedwater temp;.ature reduction to 370*F Feedwater controller failure 1.20 1.18
,o
'
- GEMINI ODYN adjustment factors are p:rfded in the letter frorn J. S. Charnley (GE) to M. W.
Hodges (NRC), GEAf/NI ODYN Adjmenc+ ibctorsfor Sil'R/6, dated July 6,1987. The MCPR limit does not change because of channd ; maw. Channel bow is reflected in the monitoring of the LO -
core.
Page 8
,O
O-Perry 1 -
3 47:47 Beload 3 nev o
- 12. Overpressurization Analysis Summary Pa Pv O.
Event (psic)
(psig)
Plant Respon';e
1241 1 72 Figure 9
'O
- 13. Loading Frror Results Loading error results are not applicable fot BWR/6 plants. NRC apptoval of the non-applicability of Loading Errors to BWR/6 plants is documented in Section S.2.2.3.7 of O
- NEDE 24011-P-A-10-US.
- 14. Contic! Rod Drop Analysis Results O
Banked Position Withdrawal Sequence is utilized at the Perry Nuclear Power Plant Unit 1; therefore,-the bounding control rod drop analysis (CRDA) described in NEDE 240ll-P A-10-US is applied. NRC approval of the bo :nding analysis is given in the letter to J. S. Charr. ley (GE), Acceptance for Referencing of Licensing Topical Report
- O NEDE-240ll, Revhion 6, Amen 6nent 9 "GESTA R-il General Electric Standard Applicaricn for Reactor Fuel," January 25,1985.
- 15. Stability Analysis Results O
GE SIL-380 recommendations have been included in the Perry Nuclear Power Plant Unit 1 operating procedures and/or Technical Specifications and, therefore, the stabi'.:ty analysis is not required. NRC approval for deletion of a cycle-specific stability analysis is documented
- O in Amendment 8 to NEDE-240ll-P-A-US. In addition, the Perry Nuclear Power Plant Unit I recognizes the issuance of NRC Bulletin No. 88-07, Suppb"
.3t 1, Power Oscillations in
-Boiling Water Reactors (BWRs), and will continue to comply with the recommendations contained hereia.
0 1
4
- The MSIV closure (flux scram) analysis is performed using GEMINI methods at the 102% power 10-level to account for the power level uncertainties specified in Regulatory Guide I A9. The analysis was performed with 13 highest setpoint safety valves operational.
Page 9
.O-
1 O
Perry 1
- .ss7:47 ItrimU rev o 16.
loss-of-coolant Accident Results O
LOCA method used:
SAFE /REFLOOD (see the Perry Nuclear Power Plant Unit 1 Updated Safety Analysis Report. as amended) llundle Type: GE10 P8SNP,306-1IG7J-12051 150-T (GE8x8 Nil-3)
O Average Planar Exposure N1 API.IIG R (kw/fti __.
(GWd/ST)
(GWd/ nit)
Niost I.imiting Least Limiti_ng 0.0 0.0 11.55 12.43 0.2 0.2 11.61 12.47 O
{
l.0 1.I 11.71 12.58 1.0 2.2 11.92 1.1.72 3.0 33 12.I7 12.88 4.0 4.4 12.41 13.04 5.0 5.5 12.01 13.20 6.0 6.6 12.81 13.33 7.0 7.7 12.99 13.41 8.0 S.8 13.16 13.50 0
9.0 9.9 13.31 13.56 10.0 11.0 13.34 13.43 12.f 13.8 13.23 13.4 0 15.0 16.5 12.92 13.07
.O 20.0 22.0 12.16
- 2.40 25.0 27.6 11.44 11.76 35.0 38.6 10.14 10.40 l
lO 45.0 49.6 8.90 9.15 f l.7 57.o 5.87 6.03 51.9 57.2 5.95 The peak clad temperature (>CT) is s2149'F at 111 eroosures; the local oxidation (fraction) is
,O i
50.061 at all exposures The NIAPLI-lGR multiplier for single-loop operation (SLO) is 0.80.
l0 Page 10 lO
.O-Perry I m vi47 jieload 3 nev o 16.
lass-of cooht Accident Results (continued)
O Ilundle Type: GE10 P8SXil306-10GZ2-120L150-T (GE8x8 Nil 3)
Average Planar Exnosure M A PLHG R.f kw!ft)
'O (owd/sT)
(owd/M.D Most Limiting
- i. east Limiting 0.0 0.0 11.21 12.35 0.2 0.2 11.26 12.45 1.0 1.1 11.36 12.62 2.0 2.2 11.56 12.75 3.0 3.3 11.81 12.85 4.0 4.4 12.08 12.95 5.0 5.5 12.35 13.06 0
6.0 6.6 12.57 13.17 7.0 7.7 12.80 13.28 8.0 8.8 13.00 13.38 9.0 9.9 13.20 13.46
~O 10.0 11.0 13.37 13.52 l
12.5 13.8 13.45 13 52 l
15.0 16.5 13.14 13.20 20 0 22.0 12.40 12.57 O
25.')
27.6 i1.61 11.04 35.0 38.6 10.12 10.57 45.0 49.6 S.83 9.29 52.1 57.4 5.87 5.96 n"
52.3 57,6 5.89 l
i l
The Peak Clad Temperature (PCT) is s2129'F at all exposures; the Local Oxidation (Fraction) is 50.05S at all exposures. The MAPLIIG R multiplier for single-loop operation (SLO) is 0.80.
lO Page li lO
O Perry I am Brioad 3 n ev a 0
-@ 8:@ 8_@ 8 8 TG @S @
50
@(A1860 E C D;O WE WC 8[i @
58 SS
@JCJ83 EE 830585 GEE 5 o
@emecoemseccomes@
5' Y
Y
@Q E
O OO Y 0+0 8
@6edeeam@We@tfa@1 gig D E D G 0 0 Q O G E G gig @ 0 DiO GiO 48 1
1 e
sWefeeafem 4 s-N-@$0+bbkbibbbbbbbbbbb$$bb$$bbb@
o 4 C - sic E,Q 0 0 CG E C DJ OG @@ [ YG EiG 0,0 8 0 0,0 08 CG Y
4 38 - W D Y D W D W @ Y D % @ D D Y D I.l?) @ % $ D W W W E C 3 W E Y
$!~ kb b$ b+$ bbb+bbbIh!$hb bbbb b$ $$ $$ $$
32-EiC EiG 0,D SG E G OG G EiG gig GG dig GE CG 33_.. s7c gg ge gg g+g @@@@ g3 @3 gg g@3@ ge gg gTg 3363 O
g
!!Z$$bbbbb$$$bbEkb$!$bbb+$$$b$bb$$
':MMMME+8MEGM8+sMs+8M88b48+
fl- * ! M M E+8 M E+8 M M M M M 84 H E E ! "
o
@ E O D 0 E E D+G E @ Q S @A@ CiG @A@cend20 16 E0CEGEDCG@
L 1
1 A
A 14 l
l
- MMMMMME+ ems 388845
- M M M E+8E88+E M M M
- i l @' @ @ Cr@ Gi@ @id D E Cid E @ @
4
-tij @@ f@ @@ @@ @@ @
ll
{ llI i lllI l ll
!O i 3 5 7 91113151719212325272931 3 35373941434547495153555759 l
FUEL TYPE I
A = GE88-P8508301-5GZ-120M-150-T D = GE8B-P8SQB320-9GZ-120M-150-T B = GE88-PSSQB301-7GZ-120M-150-T E - GE10-P8SXB306-10GZ2-120M-150-T C = GE8B-P8508322-7GZ-120M-150-T F = GE10-P8SXB306-11GZ3-120M-150-T IO Figure 1 Reference Core Loading Pattern Page 12 0
O Perry 1 mnc Reload 3 ne,.,
l 0-
,,e o re
,esat rt;m.,s,>
i i
2se ejra..E ( AT r a
} {'gr pqy i
- s,ft,y v v
3CCSE INLET IL s i
i 1
O Ak l
l 4.;H u 's m.
y g.,
O i
\\
N
/
~
s
\\
l N
\\
\\
O
- y
,.j, - e r. 2
-u fid (ECDOS)
Tid (E:005)
\\ ' h 'o TEgnRm /
O Ogtsi$h;a1tiFP"f P*U
\\!
mem
.O c.
m 1
E i I,,,,
M_
,O
-w.
a..
ti4 (u:acs) viw (x: Des)
- O Figure 2.
Plant Response to Load Rejection without Bypass
- O (ICF/FMT 420* F)
Page 13
- O-
m "O
Perry I num Reinad 3 nn 1
l O
- f(fE SWA'E <at rLti Iv
( FM S$ pist(p$t)
- ;TpWrwY l
1 y vqvt rtev a
b FC
-wa.
4
' l.
l.5 I
im e
- '". Lam I
2 p
f
\\ f j
I
/
4 kA j
\\
me
\\,-
O i
4
\\.
i
- : : : : e d
\\.
t s
=O
=.
?!s'. (K00*$)
f M (2C0c8)
L( INC H-4(T-SEP-5KR T)-
t vb '
T NI TY 1L Q
jj 5t A4 LOW C<
ACilVITY ie del {P'?
,3 J^ 1M v,
=
i O
, k[
I
.m-t
'*
- 3 3
,2
/
e
- \\
k
=...
=.'/,
.O m,,
-i....
r * <x w es) u,mmes)
-O Figure 3.
Plant Response to Feedwater Controller Failere
'O (ICF/F%T 420'F)
Page 14 -
O
O Perry i uuu-ihJnad 3 un o o
i W DO!'orrm i 1D B Q M "lM W ')
,,l
!mm M M*
m " ' '" <
,,,, [
I o
/
l
!,...,M,,
iw i
\\ N Ni i
\\ \\
w_,
,\\
/\\
(
k J
\\=
4.
i o
.e
.v.
e : e : -
- ,,e e:
f ( (WOm) fid (EC3CS) 1Vil0 tL liarMr. SED.5k1tt)
{
7, rhkmLv 1
RAM f6VI a rir i
1.nft fivifv m,
f 7 _N, -,
o i.i.-
-m 3,
O i
"a e
$a io.
-t % e 3.e fid (RM)
Tid (EC3c5)
O Figure 4.
Plant Response to Pressure Regulator Failure Downscale o
(ICF/F%T 420'F)
Page 15 O
CIQ k 21\\"'147 Reload 3 nev v 1'dr f:** %a i
1 %(}ETv vaa.v. q;v(PSI)
- L m tSS *iSE
- a 447 "La j Sit r
1 i
I $$N '$ b5' d
.x,-
. llM j' k ky i
l k
I O
!{
l
'a ' -
~Ml
\\
N'
,,, g - s 7 k!
3 l i3
_A
't x o
l 2
~
we
\\l
. _ _j gC t ; ! : 'F2 5
L.
one.
4o m.
e.
ee.
m.
O tid (stem)
T.4 (10006)
MdNYMY
!'{n{M'FD[EP**')
I s!Y??
A? GMR o
- \\
a
\\
f i
L-Hf-
\\
E a-6,<e 6; Q.
j
/
0 i
r _.
l i
k "O
5
/,A a
-u
[ s\\'
tid (st:m) tid (um)
,O Figure 5, Plant Response to feedwater Controller Failure
- o (ICF/FMTR to 250'F)
Page 16 O
s O
I'erry i nMic heload 3 P e,
'O-
.. u :. c.
i,
- ms.,som >
2 a ti :Jra:: 44i rtux r
s y vA rLC-v
= *'"
.mm me s
i
!N i
I O
- \\
\\
i.... W, 8 l
.Ik
]
, Ns
+
i I,
N \\
O E
\\
t
%v s 3
s
\\
\\
w 't i
ts
- O
- =a
' d.
'22 2*
^2 a'
2'
'i '
a*
Tid (Ecacs) fid (ECJ4n) 1L iW4-GU-SEP.Sx11T) 1velb CTiviTY
'O SW C D' 'R$HY'F'v
} T B f M W" " #
^
'C" y
I m
..-,O 3
V A
N l
x
\\
\\
~. ~. u.
L L
a.
n.
,e e ti4 <xcoes) 74 (sr.coes) 9 Figure 6.
Plant Response to Pressure Regulator Failure Downscale (ICF/FMT11 to 250'F)
! O l
t i
Page !?
o L
O Perry I
- wn:
Ikload 3 rus >
0-
>.e m o.u i
7:
iy
- an sp :t <*r rwe l
2 s. 8e, m ss ia p m )
vet ru%
He n: N<
g rs s Rg O
il
- 5.... L.J:(A)g%
e i
I R%'
O i
i! j 'x p/ '
'n 1
1
..~ -. - - - - - -
\\ld
.O 4.
fld (MCX6) itE (103C5) i p e, wr.stp.s m )
- q ' A ivin O
!' r -Br!'Pbov srw crivin 0*
- ? J!!!!P, i
.'y
=
\\
)
X i
^
l"" W%)/
O s,:: 2 I
E
(
E
,1 \\,
f
-u h
- n ' 2 2
u...
?!d (ECMS)
Tid (20005)
O Figure 7.
Plant Response to Feedwater Controller Failure O
(ICF/FMTR to 320*F)
Page 18 O
O Perry 1 mw Reload 3 g,,:,
O t
/_ /l. MOM'.o r i
iWR QM R$m ax v5 mm N-in g;tg a
..,1 l
\\
i
'a.
lO
, x);
f.
i 2
s__
--d f-
=
l n ' "
wq y
(
4 i
i
\\%
a.
e (s'
s
~
lO
=.r P
\\
. J s,
m,,.,..,
\\.
I s
a.
O 1 4 m:>cs) 1, ac.cs)
I l
l j'N@W M*i M?35P*U jj& gMI?m kY 9
- o
\\
A G
_A
'a.
..J
,j g
2 O
3 5
1 N
3.,
I' I
I O
j 2,i 2
-i....
TM (ECOCS) 14 (WCoc5)
.O Figure 8.
Plant Response to Feedwater Controller Failure O
(ICF/FWTR to 370*F)
Page 19 0
~.
O Perry 1
- wnt Reload 3 gev o i
O e
l hAd r4((447rwx jh[; $,}l] M l
1
- st NET ri 5 3g g
gg, n,
I
\\
O k.
.,L j
a_ u' m
\\
5 1
N s
O N-g.
\\
we in :
\\
x 0
\\,
,4,
- = '
=
,u, fed (umi fit (scoes) jfIM'ybh
' "%3*C'E m
~"~S'" S*"')
O w
.h !MN dr A
2 r Y
A
=
X f '"
'O
?
e E
l E..,
\\
U, ~~
~.
10
-.= s,
ns.
vid (um) tiu (scoes) l lO L
i Figure 9.
Plant Response to MSIV Closure, Flux Scram i10 Pagt 20
- O
O Perry 1 2347:42 Reload 3 nev. o Appendix A O.
Analysis Conditions O
To reflect actual plant parameters accurately, the values shown in Table A-1 were used this cycle to reDect the bounding conditions.
Table A 1 O
Analysis Value f FW 7 emc.)
_ Parameter 420*F 250*F 320*F 370*F
.O Thermal power, MWt 3579 3579 3579 3579 Dome pressure, psig 1028 1008 1015 1019 Steam flow. Mlb/hr 15.70 12.58 13.58 14.42 Turbine pressure, psig 976 974 975 975
-O Core How, Mlb/hr 109.2 109.2 109.2 109.2 Reactor pressure, psia 1056 1056 1056 1056 L
Inlet enthalpy, Btu /lb 528.8 512.4 518:2-523.1 Non-fuel power fraction 0.038 0.038 0.038 7 138 LO No. of dual mode Safety / Relief Valves 17*
17*
17*
17*
l Relief mode lowest setpoint, psig 1143' 1143' 1143*
1143*
{
Safety mode lowest setpoint, psig 1177 1177 1177 1177 lO i
O 1
l
- There are a total of 19 valves; the 2 lowest serpoint safety / relief valves are assumed to be lO out-of-sen ice in the transient analyses.
rgc21 IO -
O.-
Perry 1;
- mm twoad 3 ace o
- Appendix 11 O
liasis for Analysis of Loss-of-feedwater lleating Event
'O_
The loss of-feedwater heating event was analyzed using the BWR Simulator Code (Reference B 1). The use of this code is permitted in GESTAR ll (Reference B-2). Thu transient plots, neutron flux and heat uux values normally reported in Section 10 are not an output of the BWR Simulator code; therefore, these items are not included in this document.
0-The transient analysis inputs normally reported in Section 6 of the licensing submittal are internally calculated in the BWR Simulator Code and in ODYN.
-O References B1 Steady-State Nuclear Methodt, NEL2-30130-P-A and NEDO-30130-A, April 1985.
B2 General Electric Standant Application for Reactor Fuel, NEDE-24011-P-A-9, September 1988.
O iO
- O o.-
- O-t Page 22
- O
~. -
~O z Perry I num
}kload 3 Rev 9 Appendix C O
Analyzed Operating Domain O.
The core-wide abnormal operational occurrence (AOO) analysis results reported in Section 9 are the most limiting values over the entire allowable operating range. This range covers the following opera.ng options:
O-1.
Standard 100cc power / flow map;
. 2.
End of-cycle power coastdown;
'O.
3.
MEOD with 1007o power flow range from 75Fe to 105G of ra:ed; and 4.
Partial feedwater heating to 320*F during the cycle with final feedwater temperature reduction to 2*C'F after AllRods Out at end of cycle.
O Limiting events and conditions analyzed are based on Reference C 1 and the USAR analytical results. The Reload 3/ Cycle 4 analyses were performed assuming all four turbine control valves in a full are mode of operation. This is conservative for partial are configuration.
L-O The single loop operation (SLO) analysis was reverified for the standard power / flow map with normal feedwater temperature.
iO R derences C General Electric Standard Applicationfor Reactor Fuel, NEDE-240l 1-P A 10 US, April 1991.
O i
1 0
Page 23 0
t
O O
O O
O O
O O
O O
i I
Perry I Rtleitd 3 nem 5,.-2 Appendix D Transient Analyses 8
The turbine trip without bypass (TTNBP) analysis AOO is a pressure increase event normauy checked on a cycle by cycle basis to determine if this AOO could potentiauy establish the cycle MCPR operating lineit.
The Perry turbine cor. trol vahe.i will be operated in the ful! are rnade throughout Cycle 4.
The load rejecticn witi.out bypan (LRNBP) is always more limiting in this mode of operation; therefore, the TTNBP wiu not be limiting for Cycle 4 and was not ana! ped.
1he load rejection without bypass (LRNBP) AOO was run for the standard case only since it has been shown to be more limiting than the feedwater temperature reduction cases in previous reload analyses.
6 Page 24 (Fmay h ?,
- 5Cer.,.=
=-
c N
gw
.~
w.
s M
i
'