ML20098B538

From kanterella
Jump to navigation Jump to search
Slide Presentation Entitled, Hydrogen Source Term for BWR Degraded Core Accidents
ML20098B538
Person / Time
Site: River Bend Entergy icon.png
Issue date: 06/29/1983
From: George Thomas
ELECTRIC POWER RESEARCH INSTITUTE
To:
Shared Package
ML20093C471 List:
References
NUDOCS 8409260147
Download: ML20098B538 (42)


Text

__ - _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

l-i

, HYDROGEN SOURCE TERM FOR BWR DEGRADED COPI ACCIDENTS

. i i

. 1 BY GARRY R. THOMAS NUCLEAR SAFETY ANALYSIS CENTER NUCLEAR POWER DIVISION ELECTRIC POWER RESEARCH 15STITUTE PALO ALTO, CALIFORNIA; USA i

PRESENTATION TO U.S. NUCLEAR REGULATORY COMMISSION 3ETHESDA, MARYLAND i

29 Juts 1983 k

8409260147 840910 PDR ADOCK 05000458

G PDR
  1. D

= * = = = = = . . , , ,_ .g.

O O

e t .

l I

9

. DEGRADED CORE PHENOMENA a

C

(

O

+

4 e em h a

?

+5 I

4 0

t i

2

~

CORE DEGRADATION WITH INSUFFICIENT COOLING

..e DEGRADED CORE ACCIDENTS GENERALLY INVOLVE DECAY HEATING OF CORE DUE TO SUSTAINED INADEQUATE CORE COOLING e CORE DEGRADATION PROGRESSION CHARACTERIZED BY:

e RELATIVELY SLOW INITIAL HEATUP RATES WITH

~

. STEAM COOLING e LATER DOMINANCE OF ZIRCALOY OXIDATION EXOTHERMIC ENERGY RELEASE

'e RATE LIMITS FROM LOCAL STEAM OR. STEAM / HYDROGEN CONDITIONS s HIGHDEGREEOFNONC0HEREiiCYI0FCOREDAMAGE e SPATIAL DISTRIBUTION e DAMAGE SEVERITY e RELATIVELY SMALL SYSTEM RESPONSES REQUIRED TO ADEQUATELY SUPPLY SUFFICIENT COOLANT SUPPLIES / HEAT SINKS FOR:

'i '

e PREVENTING CORE DAMAGE DUE TO OVERHEATING e INTERRUPTING CORE HEATUP/ DEGRADATION , PROCESS Q

5 GRT 6/83 i

)

. 80 .. .

gNRCCladdingOxidationCriterion=75%

3 ------__ - _ - _ _ _ _

70 "

3 Approximate Range in Cere-Wide Cladding Oxidatien j -

Fraction in Unmitigated Degraded Core Accident

  • s ,-

J

'! 60 -

3 l 2 5 8 j  ; 50 , -

.i g t -

8 e

$ 40 , ,

j j' -3 /

.;  ; .i e '

3 o

4 . . .

I -/~

j 5 30 ./ , ,

t  ? / '/ -

i l

.3 I l . l ~ ,-

s u l .ili

ll i  ! i i 2 --

y/- lf ., //'//

.i l l'

.i ll / .

  • a

, /

/

/

/

/

/ / ll .

~/ /

/

10 I a .

f ,' j /

l l ,

/ / I

/

l 0 ._

! l 2000F-to l3500'Fto I

Time 1 Core Max < 2000 'F ,-3500 'F (Zry 5200 'F (UO 2 h > 5200 'F Temp Melt)

, l Melt) l g . _ .

Top I

Water 4

] Level of ,~ 3/4 Un._~ 9/10 Un- _ ,

- v Core covered covered i e" O i Geccetry Essentially Intact -Local Dis--Generali::ed Sjcr Slumping /EF'l 5::::-

. tortion anc Slumping Head Failure slumpine Beginning t

JY 1

27 June /W3 1

1,_ ._ . _ . . _ . _ . . _ _ _ _ _ _ _ . _ . _ . _ _ _ - ... -

1 1

1

(

BWR CORE HEATUP CODE 9

MODELING BASIS

.I

[

l 1

i .

I 1

i

-i l

.l. -.

'h

'i j _.

t s

.i . _ --

O l

1 o

. . . . . _ . ... .. ..a .. - . - - - --- - --

t i

4 1

STEAM DOME

. / / , i

~

  • /

I,/

/ 1

_ ( STEAM I i 4 l

. . . . ......L..... . . . . . .

- -- ~

N

-  !',,,,,ydPERPLkNUM j

~i r - e ECCS-

[M c ==r "3 0 0 t

1 i . . . . , ,' -l l W l I

i.* l ( -

4 8

=:

FEECWATEF 65d'll l' l

$ i lf

$: =

d r

m), p k

=

5 a,  : 5 . -

{ t.

., "T"t.' o. -

~ s.

ws 4' s 0

u d o s

- - - ~-

j r, _

{a./i w a .. s - , s. s v i

w MODEL BOUNCARY n , 1 s y," A y< g a E

a E

s o m a.

- E

. LCWER PLENUM

', E i

i 4 k I

.1 i CRD 1 ,

4 I -

4 BWR CORE HEATUP MODEL i

i, 1

.- -m. .. . .-.

i ,

, . (

t, i CHANNEL ^

BYPASS CMNNEL "

j. -

, y ,' m. ,

t I SHROUD

~ '- -

l~ FUEL CHANNEL s'-' f CHANNEL CONTROL WALL

/ W WALL ROD

(gCLAD . >

f

i '

(

8 J l s

i 1

j s <

L- TUEL pygt RCD ROD TYPICAL. j[

AXIAL . I NODE b@ +Q e i

l '

STEM i

f _

l l

> b O ., ,0*

I

'l j *

, ty .

,/

~~s' O

y

~ w 2

] '

') y g #

'4ATER , y-i e a

~

i' -

i LOWER PLENUM BWR CORE HEATUP CODE CORE MODELING I

. 1 1 -

l 1

i i 1

Corner Rods Side Reds

- (4/Bundl e) (24/ Bundle)

[OlOOOO@010' OOOOOO!O

\ ___ ,

D 6'@ O.O @__O_

O FO O O O O OIO c,,,,,3 ,,,,

(34/sunete) l OOOOOOM

OOOOOOOO I O O O O rgit o o!o oo o o o;O o OO[efdOOIO OOO O Oi I'l';&,1

@iO O O O O Ol@ @00 ~

0 0'@

.010_O_O_O O OlO OO!O_

, Centrol eQ O @ O O @ OlO,j_(*010 0 0 0 0 07 0,>

Slade 1( l l )

  • OlO @ OO @ 010" 'OlO @ O O OOICf OlO O O O O OlO OlO O O O O OlO
O l O O O O O Ol@ OlOOOO0010 doO[elOOOO OlooOr,]ool0 ~

OIOOO140OO OIO O[eTOOOO

01000000@ . O!O OOO OO O i 010000000 01000000
pOeOOeOO, pO eOO eOl0_O, FOUR 8UNDLE FUEL WCOULE O ~a" o -m x, h Tit RCCS BWR CORE HEATUP CODE UNIT CELL CONTAINING 4 FUEL BUNDLES

', AND 1 CONTROL R0D BLADE

.i .-

I._. .

o e TOPviEW e

  • DODODODODO a 00TQ000000000 i

a"

00000000D0000000D0

~ OOODODODODODOOnnGDOD i 44 ,, DODuuCDuuGDODODLluGDuuO a ., -

DODCDODODODODODORODODO

.= ,, 0000D0D00E0000D0D0D000

=

= "-

QOOOODODQDCDQDODQDODonOO DODODuuGDODODODODuuCOGDODO

=

=

" DODODOPODQDCOODODODODODODO D000D000D00000D0D000000000

= ~

"- OGOOOTOD OCT QDODi nrTQRnnO Dnn GD Q

=

" DODODuoODOD iODODODODODODOI

= D0000000D 'Q]GDODODODODODOl*.

u" D00000000 uO3LTOODODDDUOuL.NU n" ~ DnnODQOOOCDOCI9J]CD00000D0D0 L vol' DO^OODuufDEDODODODODODuoODO

'a ,, _R00000D00000D0000000000000 i.

0000000D0D00000000000000 T

i4 CTOOOROD i ri OOOJODOQGDODO i

D00000D L000D00C000U00 so " T

!OODQDODODODODOD 0D000

=, 10D0000000D000D t_.ODOC

, =,, OODODODODODODODODO

o. I I I ODODODuuCDuu n,l1li1 l1 l

l D0D0D00000 iIIIIIIIi1 9 : ; ; ;R 83333 2 :: A R R A R a a s a s.: : : :: a===naanaa: : : : : -

S CE ANGE MCN TCa u 3 w EawEo: ATE aAuct uCNiToame sysTEu naus a  ;

TCTAL PENE* RATIONS FCR NUC1. EAR IM$TRUutNTS 43 BWR/6 CORE MAP SHOWING RADIAL ARRANGEMENT OF BilR

' CORE HEATU? CODE UNIT CELLS i

I

l l- ._ .

764 Bundle Core Half Core Map - Typical for 2nd Fuel Cycle (

(numbers in bundles re: resent different enrichment or exposure) so 2Ts 121: 14 lii n la 14 Trl s i sjTT a 3 Yis lIIIIIII[II'sTsT2[ sis j sIj, ITj s l41212 ' 2sis TT s i sj I I s Il21. s ig s i 2 '

ss l2.sgsIDsi 2l2] 2I tit .

ns s'

212[sia slal4lal41:14l:y41 14 3141: 14 214 sl41 sis sist:12 ,4 j

22 21s1 2-[s 2 spi s s l 2 f_I[TQ ds-[U si2 slDT2pT2pi 2121s 21s alsis 4 1 s , 4 l :, i 4 :

1 s

sim b 41s 4 l 2. 4 Isi s l s ls ta ls 212

'28 21sI23}U21:12 s i s i s i s 9: 12 212!2121sl2 I

ts :l 2 l s 121.T Ti s1g1sp i s lsk):

T4 4 s i s314l asl lhiIsl4l s;s!sisjajsj2l2 4143 21 s llT sT 1s t 2 l 2 : ja 2g2 2l sis 8 2 3 'ys sa l s l 2 l.s l 2121 s l 2 : 2j 14 -

s.21s sis slstsls: s ,l41s l 2 ggt2l:

l 2 l 24 a s Is isie ls ls l: 13 2Tsi2l 2'sisis TfTl2': 's 2's12;shl~2T2I2' 12 - 2 DI2Ts'l (

12 l s 2!s sls s!sisl4 4 s i s 's sI 2 .s'2 sl21sl to -

Os -

_2,}127sJ212 il s fl 2 sl2:2lN2(2 sl2l2 os --

od -

g 2

slystag22sj 212 2 212 21si21sjJs sls12 421sgrisj21s gsisisl2lsl2 sl2 2 i , ,

u ii sl 212121212 ( 21 : 12 l21212 01 Os 05 07 09 11 12 1s 17 is 21 222s27 3 s1 ss X 27 3 41 43 46 47 el si ss ss s7 sg als]ll Quarter Core Map showing Unit Cells and Their Core-Wide Grouping Unit Cell 1 sl8 l s18 sl' sls 214 : 12 sl2 s ls 214 sla s14 sis 214 sl2 sl2 Unit Cell 2 213 sis s_Q sis sit sls 2 s2 414 sl4 14 sie 214 2ls ls 2.2 Unit Cell 3 sis at :21s l: si s 212 s12 si:

21s sl4lsl4 314 als als als 212 Unit Cell 4 sls alsj212l21s 213 2Is 212 sl2 a l4 314: 314is14 sls als 2is 2{2 Unit Cell 5 3 2 21sja s : 212 2 2 2 5 2 ,,2]

2 2 l4e s :sls s Is S

, Is 2is b Unit Cell 6 *l' 212 4l4 8l21s121sl2l s sis s 2is!21sl2l:sis l2 Unit Cell 7 212 s l 2 : 2 l 212 l 2 8 s i s ; s, 212 2 l s ir i s l21 s l st a 8 2 -

Unit Cell 8 sl s st2lsl2 si 21 21:1212 2' 2 l:

TYPICAL 764 FUEL BUNDLE, 231-INCH RPV SWR /6 CORE MAP SHOWING RADIAL ARRG'T OF BWR CORE HEATUP . CODE UNIT CELLS l

Radial Power Shape--

Function of Position I

Core Axial Power Shape-- ,

C For All Unit Cells i L Unit  !

Cell (4 bundles)

I ,

I I

s l

I l

I i I

l 3 I'

. _ - 1 i .

Onq i I

Nde o I I ^

Axial l Direc-I tion  !

l 1.0 l P/ P,y,  ;

i 13 P/P

Distance Frem Centerline n

Radial Direction i .

?

AXIAL AND RADIAL PEAKING FACTORS i-

' ' ' - - - ' ' ~

i .

Unit Cell 4 Unit Cell 3 Unit Cell 2 Unit Cell I Image p __ qimarje____) p _ _Im,agep __ _ q . . _ _ _ _ Image.r - 7 P--i r - -- 1 I H I '1 ! A I! H (l! A i H  !  ! A l l 11 l'Il A' l L.__.lj'L__J cJ ._ ._ _i J (l! L _ L __1 c _.ll l L _._ _I c =,t a L ._ _.I [ L_ -- _.J

, _= r r.= --

l  ! 881 - - l F - ll'r- 1 - - -M l J- ~ 1 l_-_-gr__0q g l F-A.J l -~ ~l lI l C I l A ld' C I

_ _( l ll i c_J

- I A IlI I C i l

L . _ _J L __ J L _ _J _ _ _l _ ? _l L ^_J L _ .J L _ _1 1

(

Unit Cell 4 Unit Cell 3 . linitCc1T2 o Unit Cell 1 I '

A4

~ '

H A H 2 2 11 A 4 2h! - Il A

increasing __ ,

J m p 2 t core radius -

h A . C A a C( i; A- ,

CMI 20 A , C

  • ' ,' /s As '

l I  !

mirror image transtt.of L[T'~l  ! , 21.'

d2lmuthal radiant energy

+H l l A ll - hot hundle i l A - average bundle

' [_ _ _ . b _ __ j C - cold bundle r _ .x i x>

, r- lfr- -I ,

1 A I)I C l i

L _ _J L __ J Unit Cell 2 Image

' SCllD1ATIC 0F BWR CORE IIEATilP CODE llNIT CELL ARRANSEf1ENT TO ACC0llNT F0it RADIATION BETWEEN ADJOINING BUNDLES AND UNil CELLS I

i, -

3: .

3:

li- ~

i

.I BWR CORE HEATUP MODEL -

i . -

,, o GROSS CORE MODEL

e UP TO EIGHT FOUR-BUNDLE UNIT CELLS

!: e CORE BOTTOM INLET FLOW HYDRAULICALLY SPLIT

' BETWEEN FUEL BUNDLES AND BYPASS

{

e TOTAL LIQUID INVENTORY MASS & ENERGY BOOKKEEPING e BUNDLE LEVEL CALCULATIONS BASED ON MAN 0 METRIC

.- BALANCE WITHIN CHANNELS - ONE BYPASS LEVEL l'

e MASS & ENERGY BOOKKEEPING Oii VAPOR 8 HYDROGEN IN DRIED OUT PORTION OF.EACH FOUR-BUNDLE UNIT CELL

e FUEL RODS AND CHANNEL WILLS HEATUP FROM NUCLEAR I  ;

ENERGY AND OXIDATION (STEAi AND HYDROGEN LIMITED)

I e CONTROL BLADE HEATUP INVOLVES THERMAL RADIATION BETWEEN BUNDLES AND CONTROL BLADES 1

j e TOP CORE SPRAY INTO UPPER PLENUM j j -

CCFL FLOW INTO FUEL BUNDLES l

'l BYPASS FILLING WITH ORIFICED FUEL BUNDLE

{

BOTTOM INFLOW i

4' _

- GRT 6/83 i

.l _

4 l

- -. _ . , . - ~ . - . . . . . . . -

. o

(

BWa CORE HEATUP CODE

~

CODEFEAT0RES i

G

.--h e

e 6

e 9

e i

e J

e 1

s t

'i 1

e

  1. 0

~

BWR CORE HEATUP MODEL (CONT'D) .

e STRUCTURES OUTSIDE CORE e SIMPLIFIED AB0VE CORE STRUCTURE (STEAM SEDARATOR/

DRYER) - HEATED BY VAPOR & HYDROGEN FROM CORE e THERMALRADIATIONMODELIEGOFSHROUDANDRPV WALL e DOWNCOMER LEVEL CALCULATION BASED Ofi RPV MAti0 METRIC BALANCE AND CONSISTENT WITH TOTAL RPV INVENTORY GRT 6/83 4

1 .

i i

1 i . _

F l

(

.i -

HYDROGEN SOURCE TERM -

CALCULATIONS i

e SCOPING STUDY OF H 2 PRODUCTION RATES COMPLETED 6

e HYDROGEN PRODUCTION DURING HEATUP LIMITED BY STEAM SUPPLY / PRESENCE OF HYDROGEN

(

l e PROGRESSING DEGRADED CORE ACCIDENT (N0 ATTEMPT AT .

I CORE RECOVERING)DOES NOT RESULT IN MAXIMUM H2 RATE PRODUCTION s-- -

s PROBABLE MAXIMUM H2 RATE PRODUCT.IO10CCURS IN EARLY PHASE OF RECOVERING-OF CORE (ECCS INJECTION) STARTING FROM ALREADY ADVANCED HEATUP (PORTIONS OF CORE AT OR ABOUT ZIRCALOY MELT CONDITIONS) j e ABSOLUTE H2 PRODUCTION RATE PEAKS IN CORE WILL BE }

SOMEh"dAT MUTED WHEN H 2 FLOWS REACH DRYWELL/WETWELL

(

i  !

l GRT 6/83 3

-) .- >

i i

f

. .l

. . _ . - . . . .c . . ... .. ,

IlVDIV)6EN SOURCE 1ERM CALCULAll0NS .

T SCOPING SIUDY KSULTS ESULTS .

ACCIDENT CONDlil0NS CORE FLOW 162 PRODUCTION ('8"/3 ge)

START OF CORE START OF CORE RADIAT10N PEAK SUSI.41T a f M . l I

UNC0VCRING (SEC) KCOVCRY (SEC) (LDn/SEC) t PRESSUE (Ain) MODEL RtM 7200

-- 0 '0.5 1 .5 ($10 nin.)

1 '2 IULL 7200

-- 0 'O.5 j l 2 '2 UNIT CELL '

-. 0 '0.66 1.5 ('15 nin.)

3 '40 filLL 7200 7200 10,000 8 (CRD) '0.8 '0.6 ($10 nin.) .

i q $40 IULL 7200 10,000 90 (RCIC) 'l.5 (<1 nin) 1 .8 ('10 nin.)

5 '40 rULL I 10,000 $1.35 '0.6 (* 7 nin.)

6 90 UNIT CELL 7200 660(gDRE)

PRAY l

e i i f*

t I

2 i .

s e

.g 1

1,

'T J  !

1 I i

.e e*$D 4

. . . , l. . . . . - --

6 e

6 g 9

m.

5 W

e ew  %

5 O

ee 4

I em e

1 l

.._ . .- .. _. . . .- . 1 1

i ,

a e

~

1 -

! 3.::::

l

  • . si t e. t ..n4  % ,. .

.! 'FE55U'C=0.J MPA I '3.4c00 NI"

~

t

\

! 3.:::0 4 k

2.s ::

\

. \

,. , \

, 2.2:0: \i ~

I

[w. -

1

.: \

l 1

1 W

w

.e:::

  • i I
1. 4:00 -

t

\y

.:::: \ -

NN  :

xI

.f 8 8000

\ A t '

i N l 1

N' O.20:0 1:n.:3 seco,cc :ggg, go g ggg g, g3 ,

flRC.SEC:h:5 I' MINIMUM IMS PM43[ ([y[L i

t

~

4 L

t

0 o I k 3:30.::

31 EAM t !MITl hG [ i l , ,

rr.a.or sw. < =r n j T MAX /

/

/

2 ::.:n /

/

r

/

22:3.:: _

.z. .,

ll: 1 ::.:n s -

w .

c D

e c .- ~

6 w 1n::.::

/

2:::.:: /

i

- - - - 80s. :: , 5 a . .

1 ::.:: s:::.:n  :::: :n 13::1. ::

TIMt.SEC:hCS MArtMUM :tRO*!NS itsPgaATURE

,.1 t e 9

i 9

e

f- , ,

i c.2sta

  • \*

. $1 ERM t IMIT) NG ,

  • 8 f$$U8 f.0. ; =PA 1 8.2200 1 TCH2R P C.2000 I

0.12 0.16C:

l 0.1400

?

o i

'i s -

I O.12CO  !

l' i

!0.le:e I i l il8 '

I es e q

3 C.Ct:0 'I -

2.08:0 - '

c. e s t.

l,' l I

f '\\

0.C200 ' t t.23:0 #

?ccc. to set:.en ces. :: gs:g:, :: .

f!M(.SI :h:$

MTCRC:(N GENEARfjgN RRig 4

e e

i c

,6CC.CO*C

\

S1 E AP, t IMITjNG #

PP ESSUF E = 0. ; MPR -

353.t000

,/

/ 1

/ d t

300.CCC: /

I 250.C ::

E -

c.e::o

! e -

t 15:.:::o /

l i

I.

300.C000 i

~

SS.CCCC -

.l . .

l C.C *C '#

l 78f*8* 8C 8088.to 1 000. to cco, gg flMt.Stt:NO!

CunnULAt!YE MICROGEN GENERAT]CN

] .-

t 4

/

I

9 4 m.* . . . . . . .

iI O 4

5  !

1 t

s

.4 e

4 h

1

.s ne '

RUN 3 -

i.

?

.4

.)

f Y

=

, e e

4

    • h 9

a

- N e 6

t i

)

s I -

n 4

i i.

I 4

) .

l.

9

+ = - = = . . . -. . , .e_

9 -

l 1

) ..

.l ,

'i* )

,. 4.cccc q .

F 5 IERM LIP ITE]

'.j;

, . 81! ESSURE =

WI. MIN 4.th?A

- 3.5Ccc l l .

.4 I

i

.) .

I 3.CCoc o

1

- 2.50C0 i e

J C w

1 >=

y ~

I j i.CCcc

' ,s u.

y . _ ..

1.SCcc

~

i 1.c000 x

-1 N 1

\

.a 2

N N j c.becc - A

. c.cccc -

,3

'j 1c00. 9 C CC.

TIME.h M OS .

11000, i 9!h!"Us. TWO PHASE LEVEL

'l -- -.. . . _

  • d
  • i d

a

,o _y e , me e

  • l

(

. .: li

. y

(

- l

' 32Co. I 6 \

l .. .

/ I i i

.)

$ REAM LD ITED / I I I 30C0. -

/

TCMAX 2 co.

/ t

(

- 2ECC.

.4 -

J 1-

'i  !

,e

. . z. 2200. v

> I

.J

$ ~

y 2* C.

'i ui ^ ~

- . c

' 3 1200.

- a +

e

' i l =  ! .

' ' I -- -

! I .6CC.

a r L.,

i .

14 C O. -

i a '

1200.

l CCC. .

' /

f.

.- _e00. (

' l i SCO.

I; /, .

1 4

3 4gg,

  • 1000. 9000. 13000,

.j TIME.h M OS i  !* MSXIMUM CLECCING TEMPE9c7U.qE q

I -

'1 i

-l- .

t 9

my y?+- ee-r+ 1o--=a+ .ve* **W-rt' t "

t...

l, . .. .

i .

I

I l I -

S F E AM, L D ITED

-l 0.2800 enE55uRE=s.iars i-TI:H2R l

0.2400 1

~

l f I I i 0.2000 ,

l c - -

, t z

, c ,

4 s;  ;

y - -

00.ie00 5- b .

s. -

r 1

c c .

L:: a o

J I

,I p.1200 I '

, P l l

) '

l l 0.C8:0 -

I I

'l

' ~'

I f  !{f l. ., . .

l l

i 0.0400 .

kkfb P 1

D.0000 ~ J  !' e 7000. 9000. 7 y gg, g;gg3 4 30]:.

~1 HTORCGEN GE N E 2. A i ! O N R;iE l

t I

8 ~ e i 4

~

we *ge N -. _

j. -

-(

i

, 450. .

l l

' S"E A." L D ITED l Pl!ESShRE=4.1p?A g- (

. c o. res2 i ,

l ,

g J

350. . -

f

, [

300. /.

'~

i I

i 8

! ' i Q 250.

e "

C .

e c -

J l

2 2t1

  • I I

' I i 150. l

/

I {

j . .

. /

i 50.

_h _ . _. . _ _ _ _ - - . . ._ . g , j .

20 c 0. 9ccc*

11ME.h b iOS ' 3 FC-I I CUMMULAT!vE STCRCC.Es GENE =.Ri!Ch

'I .

I 8

l e O_

, i 1

e i

RljN 4 -

.I.

t t

1 l

9 em h 4

I

.6 4

't,

.l  %

e t

9 eh i -

t

  • i 9

I e

i i

1

.. .. e. -

-= - - .- -+= .. -. . --

e e

- 3.0 ::

letL RA !afftN.CM:

PPE5597t = 4. l MPE L'M i h .

3.4 :: -

l \ \

3.:::. ,;

\

2. :::

I e

\ -

z -

g. .

w s

2.22:0 tas.

1.t ::

I .

\ .

1.4:0:

l s I 4

I l

n. : -

\ /

N v

/

  • 0,80:

. 10:8.80 0000. CD 11000.C0 13000.CO

, 11Mt.St *4:3 f; MIN! MUM TWC FMRSC LEVEL t

l -

1 i

i i

.. . . . . . = . . . . . . _..

e- ,

.~.e. . . . . ..

1 0 .

t

+ .

. . l t

5 28:C.20 ,

~

{

' f~  %  %

RLL RAC !AT!( N+ CRC (

a PfE55UP E = 4.1MPA 24:3.00 .

.=,a4 y

. , i n::. ::

.(

200:. C: I it* .

E.

.m 5 ::::.::

w a *

- e g --

ii
:.::

c

. w I ,

w

  • i 1:C0. CC 4

I i sc::. c:

ecc. ce j Sc:. cc ,

'lI /

.. ecc. c3

, 7000.00 secc. co ecc. co  ::cc.co

. TIME.5tC3hCS MRr!PUM Cla:D!NG TEMPE*ATung

't .

4 I.

3

) i 1

1

. . . . - . e - e ems. . .-.e. .+e .- == w

O $

i 4

0.3600 e_, se,,et,, v.r.,

P E55UPE.g.I npa I *IR C.3:::

' I

~

a. 2 e..a.a ,

]l l

  • C. 2 4 0 f ll .

I c. ::: l 8 ' '

E I ~

2 i$ .

j c.li:: I d! l d

( Il t til i

.ir:: f ll\)f,4h;-h, ,

' V' I l C. f:: __

> l 't Ulbl i

i 0.Co*D .

/ ii i

2.0000 -

IEEE* C0 11000.3: 33::g, gg

IIRC.SLCCNCS M10M*3[n Gghts,gt;gg pqrg i

1 -

t

. e 4

1

. . (

t10.::::

ALL MAC IRf!! N. R:

4:3.0000 " ' " * ' ' ' -'e /

. TCH2

/

550. ::: _

5::.:::: >

g 450.0000 '

4 .::::

c350.C:::

r l

/ .

c \

2::.::::

z 250.::::

2::.000:

10.::::

/

1 :.::::

50.0:::

/ ,

0. :::

1:::.:: 3 00.::  :::: .:: :3:::.::

. 11RE.StCCNCS COMmutAf!vt HT:P:CEN G(ht?A!!:h

' e.

ti e s

0 I

9 9

k' i

k &

-- **~.oem.. ..,e .. . ,

e e

h I .

6 RUN 5

. e 4 O

G e

O h

- a .

m O

e.> h

== m .

I e

  • * ~ te s e o me 4 S
  • P - 6, e 4

0 f

1 9

  • e t

e e

le e

i l

t

~

i

.I -

i .

ett ma0!Iftch.**1C 3.0000 '

, {PPI15UME f.gMP9

\MUllN 3.40C3

\

/ .

\ / 1 t \

2.8*CJ

\ . -

  • ~y .

= ,

W

.: 2.secc .'

I -

E \ /

.. 0..

\ /

/

\

\ /

i i.<c::

A / I l

\ g

/ i

! 3.cCoc

s N,(,

e O.4000 i 1000.CC 8000.30 9CC0. to 10'000. CP 11003.20 12000.CS .13C00.C0 tint.st::mes j MINIMUM TNC PMRst LEVfL 4

i i .

I I

-1 a

a e t

i -

i .

I t

g .

j -

2.: .:o.. '

  • - . All,RRDI LTICN.RCIC k PRl;$$URE .A.lMPP 72 0. :: **"
  • I - --

v 2003 C: '

i ~

i 1200. C I

. - l JE*:.

i 3 -

a W

is .

Je 1400. : ._ ~

3 c .

c w

w I 12:3. C i 2000.00 9::. :: '-

,';  ! \

$ 20. C0 ,

/

_ . .4:C. C0 s

i 1:23.00 0000.: 9000.30 1c000. 00 11:00.00 12:00.c3  ::::. :

TIME.SECONC$

MAXTMUM CLACDING TEMPERATURE l

1 .

4 i "4 si l

+9 1, .

e

, .- , ,_ , ..,--..-.-..,,n-, -----,v.m - ~~-e -~ - - ~ ~ v *'~ ' '" ~~"

. . . . . . . . . . . . . . .. g 1

C O.10:3 ALI.RROI ITICN.MCIC 8.8500 -, ,; g,; ,p,--

TCn2R 0.8cco g i>

1

, 0.55C0 C.50:a C.45:0 a 0.4c::

i U i

- 0 n.35: if E

E  !

~ y C.3 **

- Y 4 ar C.:500 i f 1 C.200:  !

' O.35C

, C.t:::

, S.0SCO /

1 i

i

s. coco #

1:00.20 8000. C: s;::. :o  ::: .== t3:00.::  ::C.eo i3:::. ::

. f!MC.SECONOS q I MTCR*0EW CEhEA4f1:N PATE I, -

l -; .

+

l j . .

I

5I. .

450.0000 All,RADI IT!ch.RCIC PRI:55URE i4) MPR

(

.co. ceco teu2 350.C0 0

, 300.C
00 I a

250.0003 p . .

G c

o o  ;.

a

2c
.c
:o --

Ist.:cco -

1 3CC.c:00 5c.::::

4 ....c.0000 - -

f f 1300. c0 acco.co secc.co gogog 'c0 110c0.00 320c0.00 33cco.cc 7!MC,SEC:WC5 i

CUMMULATIVE MTCACGEN GENERATICM I i I l 1 -

1 -

l I

l i .

l

t e.

. . = = . . . . . .

J e

e h

O RUN 6'-

e G

ene m

0 a

e 9Slp h 9

i e

b O

I e

. .e j i

I l

e h \

  • 1 I ,

l 9

e l

i ig.

I r

TIME VERSUS MAX. CLAD TEMPERATURE TEST 5B: SATURATED CORE SPRAY . . .

g

.g g g i .

2000

i. .

1500 -

n g .

~

e  :  :

, # 1000 -

500 -

l .

~l , , ,  ! , , , , I , , , , l , .

o 7000 8000 G000 10000 TIME AFTER SCRAM (SF.CONDS) l 4 .

J

- . . , - - - . , . - n -

y _ . _ .-g- ,- -.~y.. ,-e.,, . . - . .y ,. . --- , y ,w%-,,. -

. . s i

4

SUMMARY

e DETAILED BWR CORE HEATUP CODE DEVELOPED PRODUCTION RATES COMPLETED e SCOPING STUDY OF H2 e. PEAK CORE PRODUCTION RATES (g 1.5 tsM/SEC)

OCCUR FOR SHORT PERIODS (4-1 MIN) AT INITIATION OF ECCS OPEPATION e SUSTAINED CORE PRODUCTION. RATES. (( 10 MINUTES)

FOR ALL CASES RANGE OVER 0.5-0.8 tsM/sec e THESERATESAREATCORE-ACIUALPEAKRATESTO TO DRYWELL/WETWELL WILL BE LOWER (MUTED) AS A RESULT OF PRIMARY SYSTEM THERMAL HYDPAULICS .

t

' GRT 6/83 g

"a

-,v ,--- - , - - . , - ,

1 t

TIME VERSUS TOTAL MASS OF HYDROGEN AND SENERATION RATE ' '

TEST 58: SATURATED CORE SPRAY .

500 . . . . . . . . .

.I

. _I I i .

- TOTAL MASS ~

400-x RATE 0.S 0 w .

M 300 - -.

0.80 o m -

w v3 . . . tn

< . s I

e x

i 200 - -- -

. 0.40 ~w p .

a H o - -

r . , s . C 100 - -

D.20

= .

. ,2 .

'I ' ' ' ' I - *- ' ' ' ' - ' ' I ' '

O

. 7000 8000 0000 10000  ;

TIME AFTER SCRAM (SECONDS)

I ,

4

.a I

1

~ "

, i l

l f

_. _ _ _ _ , _ _ _ . _ . . - _ - _ , . _ , _ . _ - . . . . . , _ . . , _ _ . ~ . , . - - - -.