ML20095B938

From kanterella
Jump to navigation Jump to search
TMI-1 Cycle 11 Colr
ML20095B938
Person / Time
Site: Three Mile Island Constellation icon.png
Issue date: 11/10/1995
From:
GENERAL PUBLIC UTILITIES CORP.
To:
Shared Package
ML20095B886 List:
References
NUDOCS 9512110274
Download: ML20095B938 (34)


Text

-. -.

TMI-1 Cycle 11 Core Operating Limits Report TOPICAL REPORT 101 Rev.1 BA Number 135400 TMI-1 Cycle 11 Reiced Task Force November,1995 2

APPROVALS;

)

[

Originator Oh W '

ll

$3' Cg11 Reload Task %orce Chairman

' Dale 7Xkm~

II/ 8 /9E 5

Manniger, TMI Fuel Projects Date i

// W Dirwtor, Nuclear Analysis & Fuel Date

,Q

\\ t - 40' 97

/

W tibe/9f Plant Review Group Date O

O

~

9512110274 951206 PDR ADOCK 05000289 P,

PDR

ENuclear

=cu.~r~o TME*

TR 101 TMI.1 Cycle 11 Core Operating Limits Report RIV

SUMMARY

OF CHANGE APMtOVAL DATE 1

lLCO imbalance limits for the "After 500 EFPD" burnup window were revised to W c.

";8 TI include the impact of the redesigned Cycle 11.

Oh H.,f-V>

References and figure source documents

//

were revised to reflect the reevaluation of the redesigned Cycle 11.

g,

- 1i / FIST RPS axial power imbalance limits and i

setpoints, Figures 8 and 9 were revised to show the more conservative generic values currently used by plant hardware.

The minimum boron requirements for cold shutdown were moved to Enclosure 1 and reworded consistent with their removal i

from the T.S.

d f

Itnj r-Ii I

A000003412 33

j TR 101 Rev.1 Page 1 of 32 ABSTRACT This Core Operating Limits Report (COLR) has been prepared in accordance with the requirernents of TMI-1 Technical Specification 6.9.5. The core operating limits were j

generated using the methodologies described in References 1 through 7 and were documented in References 8 through 10. "Ihe information in this COLR was reviewed for use at TMI-1 in References 11 through 14.

The Fuu Incore System (FIS) operabluty requirements contained within describe the number and location of Self-Powered Neutron Detector (SPND) strings that must be i

operable in order to monitor imbalance and quadrant tut using the FIS.

Quadrant tut limits for FIS, out-of-core detector [OCDj system and minimum incore system [ MIS] are given in Table 1.

Table 2 is discussed below with P1gure 7.

Rod position limits are provided in F1gures 1 to 3 to ensure that the safety criteria for DNBR protection, LOCA kw/ft limits, shutdown margin and ejected rod worth are met.

Imbalance limits for FIS, OCD and MIS are given in F1gures 4 to 6.

COLR Figures 1 through 6 may have three distinctly defined regions:

1.

Penniasible Region i.

2.

Restricted Region 3.

- Not Allowed Region (Operation in this region is not allowed)

(

Inadvertent operation within the Restricted Region for a period not exceeding four (4) l hours is not considered a violation of a limiting condition for operation. The limiting criteria within the Restricted Region are potential ejected rod worth and ECCS power peaking. Since the probability of these accidents is very low, especiauy in a four (4) i hour time frame, inadvertent operation within the Restricted Region for a period not exceeding four (4) hours is allowed.

l.

l COLR Figure 7 indicates the IDCA timited maximum allowable linear heat rates as a

}

function of fuel rod buruup and fuel elevation for Mark B8 and Mark B9 fuel.

l Bounding values for monitoring these Ihnits for the current cycle in tenns of fuel batch, l

cycle burnup and axial detector levels are listed in Table 2.

i l

l l

l

TR 101 i

Rev.1 Page 2 of 32 i

j COLR Figure 8 provides the Axial Power Imbalance Protective Limits (APIPL) that

]

preserve the DNBR and Centerline Fuel Melt design criteria.

j COLR Figure 9 provides the Protection System Maximum Allowable Setpoints for Axial Power Imbalance which combine.the power / flow and error-adjusted axial imbalance trip j

setpoints that ensure the APIPL of Figure 8 are not exceeded.

i Note: Figures 8 and 9 show the conservative generic limits and setpoints currently

]

installed on the plant hardware. The source documents noted on these figures contain

]

the cycle-specific values which have been verifled to be conservatively bounded by the j

generic values, j

l contains operating limits not required by TS. The com minimum D!GR 1

and the Maximum Allowable Iacal Lineer Heat Rate Limits are monitored by the Process Computer Nuclear Applications Software as part of the bases of the required i

limits and setpoints. De minimum bome volumes and concentrations for the Boric l

Acid Mix Tank (BAMT) and Reclaimed Boric Acid Storage Tanks (RBAST) are the j

bomo levels needed to achieve cold shutdown conditions thmughout the cycle using these tanks.,

i

contains the bases descriptions of the Power-to-Flow Trip Setpoint to prevent violation of DNBR criteria and the Design Nuclear Power Peaking Factors for

{

axial flux shape (fz) and hot channel nuclear enthalpy rise (N) that define the reference design peaking condition in the com.

j

)

i i

l

)

i l

4 4

)

s i

/

\\

TR 101 Rev.1 Page 3 of 32 TABLE OF CONTENTS FAGE Abstract i

References 4

Full Incore System (RS) Operability Requirements 5

Table 1 Quadrant Tilt Lisrits 6

Tab;0 2 Core Monitoring System Bounding Values for 7

LOCA Lisaited Maxianwa Allowable Linear Heat Rate Figure 1 Error Agusted Rod Insertion Lisaits 4 Puesp Operation 9

Figure 2 Error A4usted Rod lasartion Lisaits 3 Pussp Operation 11 Maure 3 Error Agusted Rod Insertion Lissits 2 Puesp 4 t':=_

13 Hsure 4 Fuu Incore System Error A4usted Imhana-Limits 15 Heure 5 Out-of4 ore Detector System Error A4usted Inhala-Limits 18 j

i Heure 6 Mlaiseum Incore Systems Error Agusted t=hala-Llanies 21 I

Figure 7 LOCA Linnited Maxismian Allowable Linear Heat Rate 24 Heure 8 Axial Pbwer Iaibalance Protective Lindes 26 Figure 9 Protection Systems Maxhanan ABowable Setpolnic for Amial Power 1mbalance 27 5,"

i Operating Linnits Not Required by Tachalcal i

specincations 28 DNBR-related Bases L';^'n 34 h

i 4

}

~

?

TR 101 Rev.1 Page 5 of 32 Fuu Incore System (FIS)

Operability Requirements 4

9 The Full Incore System (FIS) is operable for monitoring axial power imbalance provided the number of valid Self Powered Neutron Detector (SPND) signals in any one quadrant is not less than 75% of the total number of SPNDs in the l

quadrant.

I

)

Quadrant SPNDs 75 %

WX 85.75 64.5 XY 99.75 75.0 YZ 89.25 67.0 ZW 89.25 67.0 l

9 The Fuu Incore System (FIS) is operable for monitoring quadrant tut provided the number of vaud synunetric string individual SPND signals in any one quadrant is not less than 75% (21) of the total number of SPNDs in the quadrant 4

(28).

- Quadrant Synunstric Strings WX 7,9,32,35 i

l XY 5,23,25,28 YZ 16, 19, 47, 50 i

i i

ZW 11, 13, 39, 43 Source Doc.: B&W 86-117264400 Referred to by:

Tech. Spec. 3.5.2.4.s and 3.5.2.7.a 3

~

+w

,n.-

-.-r

Table 1 Quadrant Tilt Limits Steady State Limd Steady State Limit Mammum Limit 15% < Power s 50%

Indmated Power > 50%

Indcated Power > 15%

Fulltrore System 6.79%

3.81 %

16.8 %

(FIS)

Out-of-Core Detector 4.05%

1.96%

14.2 %

System (OCD)-

Muumum incore System 2.80%

1.90%

9.5%

(MIS) i Note:

MIS limits assume no MIS detectors exceed 60% sensitivity depletion.

t Source Doc.:

B&W 86-1235286-01 Referred to ty.

Tech Spec. 3.5.2.4 b

(1=

P, M

i TR 101 l

Rev.1 Page 7 of 32 TABLE 2 (PaSe 1 of 2)

Core Monitorint ystem Boundas. Valms for S

- - _ w,,,,

tm s. -.. > p _. -_

m_

(kW/ft)

Batches 18E.11D and 11E CMS 6 - 665 Level EFFD 8

8.9 7

18.6 6

11.2 5

11.2 4

11.2 3

11.2 2

18.6 1

8.9 Beeches 125,12C,12D and 12E CMS 6-7 7 - 278 278 - 387 387 - 433 433 - 665 Level EFFD EFFD EFFD EFFD EFFD J

8 13.2 13.2 12.9 12.4 9.9 7

15.7 15.7 15.4 14.7 11.8 l

6 16.4 16.4 16.1 15.5 12.4 5

16.3 16.3 16.0 15.5 12.4 4

16.3 16.3 16.0 15.5 12.4 3

15.7 16.1 15.8 15.5 12.4 2

14.6 15.1 14.8 14.6 11.7 l

1 12.4 12.8 12.5 12.4 9.9 J

Beech 13A CMS 6 - 58 58 - 321 321 - 665 level EFFD EFFD EF7D 8

12.8 12.8 12.8 7

15.2 15.2 15.2 6

16.2 16.2 16.2 1

5 16.1 16.1 16.1 4

16.1 16.1 16.1 f

3 15.1 15.2 15.7 2

14.0 14.0,-

14.7 1

11.8 11.8 12.4

, ~ - -,

1 TR 101 Rev.1 Page 8 of 32 TABLE 2 (Page 2 of 2)

Core Monitoring System Bounding Values for LOCA Limhed Maximian Allowable Linear Heat Rate (kW/ft) 4 Batches 13B,13C,13D and 13E CMS e - 241 241 - 375 375 - 665 Level EFFD EFFD EFFD 8

13.6 13.2 13.2 7

16.2 15.7 15.7 6

17.0 16.4 16.4 5

17.0 16.3 16.3 4

17.0 16.3 16.3 3

16.0 15.7 16.1 2

14.6 14.6 15.1 1

12.4 12.4 12.8 Baedms 13F and 13G CMS 0 - 244 244 - 665 Level EFFD EFFD 8

13.6 13.2 7

16.2 15.7 6

17.0 16.4 t

5 17.8 16.3 4

17.0 16.3 3

16.0 15.7 2

14.6 14.6 1

12.4 12.4 1

i The naam* nen linear heet rate for each CMS level, as mesasured with the NAS Thennal Hydraulic i

u Package (Display 4), should be less than the w._,:

"ng bounding value from Table 2 above.

i Source Dec.; BAW 2250, Addendum 1

b t

Figure 1 (Page 1 of 2)

Error Adjuste,d Rod insertion Limits 0 To 75 +/-10 EFPD 4 Pump Operation

.' 105.

88.8.142

_.ll_l_ll.

N,'iet

.ito e

..2 f

,o,

. j -

- l l l- - /

e5 4 asanoes n2.se p

es _

unst I

g_

_f,_

- - /

i e5 4 g

75 -

Nor

- -I


/-

- m

- /

amm

^

- /

~

~

/-

n-

/

3 e5 -

nEatoN

/

nEGloN

- y_

y ea 4

/

55 -

- - s.:

-V 202,.8 ~

~

j 33,4g -

45 3. og 35 ;

j

-~

5 so :

PERasequames p

.5 25 -

gg -

- p- - -'

REG 80N gg.: _ -

Y 18 - o,1u --

{h 153p i

i 5 -:-

,,,, g

~

o to as as a so so io es so too 11e las no to 1so too im iso too ano ato amo 23o 2m aso ano are ano ase an g

95 105 115 125 135 145 155 165 175 105 195 205 215 225 235 245 255 255 275 285 295 e

5 15 25 35 45 55 45 75 e5 Indicated Rod index, % Withdrawn Source Doc. B&W 86-1235288-C1 steferred to by Tech Spec 3.5.2.5.b and 3.5.2.4.e.2.

~

s Figure 1 (Page 2 of 2)

Error Adjusted Rod insertion Limits 75 +/-10 EFPD to EOC 4 Pump Operation iiiiii fu 105 "

-313,4,133 -

-- M8, M2 ggg

. g

. 7 2

._ /_

264,102_._

gg __

f 2 E2 90 i

go _

/

. -f_

gg _

m y

/

gg 4

=

gggggg 75 :

LRAT

/

- /-- 242,78-

?

p

_ /

y _:

/

/

]

p---

ggg

- 7 p

65

/

- g_

a gg gg SS --

m 7

gg d--

45 --

gy -

g y _.

36 '

p

-~

- /

4

-g 30 -

J PERRASSSLE

/

g C

25 -

f REGION

't p

i g _ _

" I g

i 15 -

y e-o 10

- 8,2.5

..r

_p 5

N 90 100110120130140150100170 ISO 190 200 210 22D 230 m 'MO 200 270 200 299 300 O 10 3 30 40 50 80 M SO 95 105 115 125 135 145 155 145 175 185 195 205 215 225 235 245 255 265 275 235 295 i

5 15 25 35 45 55 45 75 OS Indicated Rod index, % Withdrawn t

Source Doc. B&W 86-1235288-01 l

paf arre<1 in hv Tech Spec 3.5.2.5.b and 3.5.2.4.e.2.

(

l

-l Figure 2 (Page 1 of 2) i Error Adjusted Rod insertion Limits i

0 To 75 +/-10 EFPD 1

3 Pump Operation l

105 H

- -(

110 too so -

u e5.

5i.iUTDOWN l

so "

MGM

. See,77 8 81.4.77 -

264.5,77 /

LRET

- -7 70 H

/--

'I-f 0

75 H O-65 -

r 7-y so H

/

- - 242,54 g-i 55 -

gg

-- /

so -

um 7

REolon

- s-/~

~

~~~-

~-

~

RESTRebTED 45 H y-l

,g e-j 6-

?

y 35 -

?

3 - w 5

3o H

- /- 33,35 _ _

S 25 -

/

y

- 8. 35.5

+

+-

20 H - --/ 11, 1 3.5 ---

- --;u to -

REGION

k. g PERMISSIBLE

'W 15 - -

- {

f

"~O 5H 8.18 4 IIII 9

e

'I W

i s a 2e 3o a so ao 7o so so 100 sto iao iso se iso iso 17e 1eo iso ano zio 22o 23o 24o 2so 2eo 2m ass zoo 3os o 10 95 105 115 125 135 145 155 165 175 185 195 205 215 225 235 245 255 265 275 285 295 5 15 25 35 45 55 45 75 85 Indicated Rod index, % Withdrawn Source Doc. B&W 86-1235288-01 Referred to by Tech Spec 3.5.2.5.b and 3.5.2.4.e.2.

t

. w

Figure 2 (Page 2 of 2)

Error Adjusted Rod insertion Limits 75 +/-10 EFPD to EOC 3 Pump Operation ne -

105 100 -

95 gg _

.85 "

ggg,77 30 -

213.5,77 264.5,77,,-

u

"~~ ~ -

O 75 2

~

- SHUTDOWN

- /

l 70 -

I-RAARGed

/

d A

q_

252,67 N

65 -

NOT LANT ll

/.'-

e5 80 --

ALLOWED s

/-

g-

/-

_ y_.--

gg -

l p

O 2-REsTRecTED.

- /

gg 7

ap -

pgggon i

45 :

d l

}

t 3g -

..MH _nf

_.J p

202, 35.5 30 -

- p l

25 '

l

- ;, p gg t

PERRASSELE

"~

~

10 - -

5 "

U

~

~

ua 0

90 100 110 120 130 140 150 160 170 100 190 200 210 220 230 240 250 260 270 200 290 300 0 to 20 30 40 SD 00 70 SO 95 105 115 125 135 145 155 165 175 105 195 205 215 225 235 245 255 255 275 285 295 5 15 25 35 45 55 65 75 85 l

Indicated Rod index, % Withdrawn Source Doc. B&W 86-1235288-01 Referred to by Tech Spec 3.5.2.5.b and 3.5.2.4.e.2.

t

~

Figure 3 (Page.1 of 2) l Error Adjusted Rod insertion Limits 0 To 75 +/-10 EFPD-2 Pump Operation 110 -

10s "

100 "

Os -

90 Os "

80 -

O 7s -

gg 4 e

as "

i

+

go y

55 i RMRG58

~-

W s2 - 'm-p O

,, g gggy p

82.s. s2 --

-~

~

-~

-t-t-1~

[----

~'

~'

f

- 2s2,44 g'

As 4 4g 4 RES N M

- mh)

~

3s "

---p /

REGOff f

MM 3g -

. f

/

33,24

- /

C

/

- y 2s 3D

~

~

~

~ M2,23

+ i-is f

,,, e

~~~~

s4

- a. a REGON k.%

'13 10 PERhSSSBLE

_-e w

0 10 20 30 40 50 00 70 80 90 100110120130140150160170180190 200 210 220 230 240 2SD 2 tic 270 200 290 300 s is 2s 3s 4s ss as 7s as os i0s us izs 135 i4s iss iss 17s ies ies 20s 2is 22s 23s 24s ass 2ss ars aos 2es 3

Indicated Rod index, % Withdrawn Source Doc. B&W 86-1235288-01 Referred to by Tech Spec 3.5.2.5.b and 3.5.2.4.e.2.

Figure 3 (Page 2 of 2)

Error Adjusted. Rod insertion Limits 75 +/-10 EFPD to EOC 2 Pump Operation 110 -

105 -

l 100.

-~

95 -

90 -

45 4 g

30 "

O 15 4

~

~

y a 0-65 4 es 40 -

f 55 -

- - 215.8,52 -

-i e'

',d j

B

- SHUTDOWN O, 50

/

45 -

NOT IAARGed sf252,44 y

- [242,38 d-e.

40 -

ALLOWED

- g 35 4 REGION

_- --3

_./

g 30 -

-- - ' RESTRICTED L y

g-c 25 4 120,24 y

- p my 20 -

- -/

15 - -

p

-) l--

24-PERedISSBLE to 4 -

g

- 98.9

~-

J REGION

~~

'~

5i aa--

E

.Is.. i -

-s a a a a.-

y

~~

0 90 100 110 120 130 140 150 140 170 180 190 200 210 220 230 240 250 260 270 280 290 300 I l i...

a a s 0 10 20 30 40 50 60 70 80 5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 225 235 245 255 265 275 285 295 Indicated Rod index, % Withdrawn Source Doc. B&W 86-1235288-01 Referred to by Tech Spec 3.5.2.5.b and 3.5.2.4.e.2.

TR 101 Rev.1 Figure 4 (Page 1 of 3)

Fullincore System Error Adjusted imbalance Limits 0 To 75 +/-10 EFPD "o

"o i

i i

i l

I f

15,102

__a

-25.5,102 l

l RESTRCTED E

3 RESTRICTED f

g a

i*

'a T_ agGCN l

REGON I

l l

E i

l I

I l

i to.s, s2 I

5 5

l l

-3o.5, s 2

. so so. _

I l

l l

1 i

i l

A 1

3

-33.7, so 22.1, so

~ so no i

i l

I i

u i

i i

i i

i$

i l

l i

i 3

i i

i i

E g

I

. 70 To.

I M

i i

W a :

e m

E E

j 1

28 8 so

-37.s. so so 8

E W

i x

a o

a i

5 I

E 5

PERMISSISLE _.: }

E REGION

]

},

3 j

u i

S

i. ao 20 i

l..

l E

io _

. to o

1,.,, p m p.g.,p..p...;..mpm.pmg.,,p..p......p,,,p.....,p..p.,,p...

o

-5045403530252015105 0 5 10 il 20 25 30 35 40 45 50 Indicated Axial Powerimbalance, %FP Source Doc. B.&W 88-1235288-01 Referred to by Tech Spec 3.5.2.7.a and 3.5.2.4.e.3

TR 101 Rev.1 Page 16 of 32 Figure 4 (Page 2 of 3)

Full Incore System Error Adjusted imbalance Limits 75 +/-10 to 500 +/-10 EFPD I

I i

. 110 110 N

I li l

-u.4 lIl I

2, s o2 18.s,1o2 l

RESTRICTED i

RESTRICTED g

f I"

100 ---

REGION j

REGION I

E i

i l

i i

30.2, 92.

23.4,92 i

w.

l l

1 i

i.

l I

u,.

4

}

33.2,80 24.5, 80

[ a0 30 i,jl l

i I

88 i

5 ii l

i l

b l

l I

I n

n I

I l'

f k

W i

i i

i il l

j w

l l

Q.

28,so g

37.6, se l

i i

S, 8

5 i.

Q:

1 m ~.

g l

i l

l l

5 i

i i

i i

PERh48SSLE ~]

3 i

i i

i REGON l

l 20 :

m l

3 l

10 10 1

. g... g....,'

0 0 ~,

,,..,g..,g.

,,x.,,g,,,.g.,.,-.

g.,,,g.,

,g,

,g.,

,g.

,g,...g

..;;,.g

,43

.so.4s ao.ss.3o.2s.ao.is.io.s o s to is ao as so ss a 4s so i

Indicated Axial Power imbalance, %FP Source Doc: S&W 88-1235288 01 Referred to by Tech Spec 3.5.2.7.a and 3.5.2.4.e.3 i

1 I

7 9

0 RS

=

5 t

2 3

0 0

0 0

eo o

o o

0 f u U_:.:

e i. :. N

- - : : I ::- : : 5:

:: 5.
: EE i ::
.E:_

r r c 5

r 0

e e R

d D 4

g ES RE 5

t o o.

dT o c iR 4

p b.

0 i

OIC N

y.B T

o t &

3 E

5 u

D o

3 J

E oW c

i 3 r

h8 n0 P

7 o

3 r

E 5

l o

6 d

o R R 3

2 S-2 3

4 p

c5 E

1 M

5

,2 0

r i

e2 a2 GL 0

2 l

AA F

u S

8

,1 I

c3 t 0 OS 0

1 i

0 f d Fg 9

5 32 e

o, NB 2

2 l

t u

5 8 d1 L

j e ul u 5

E 8

A-

. o, r

l r

sI e 2 -

1 0

x0 i

5t n

.7 0e 1

i o,

y 8 g #o h 31ol" mm5 5S II

$ 'Q 0dc4 a

a l

5 o (P o

an P

+ir

.o

/ mea d

o0 3

w 1

bSg e5 o

e 1

.5 r

9 6

0ayl 4

m

,4 Eas3 2

t i

o 1

b5 0

6 Fnteo 1

a o.

I Pcemf e

2 3

a0 D

3 l

2 L

)

n o

i c2 2

m 5

o e

1 R

2 4

i 3

4 eE t

g 2 'mS s

%0 u

2

,5 9

T m

7 l1 8

R F3

,9 0

oI t

5 o

P N C u

5 T

4 0

E 0

o D

u 4

,o 5

o 0

~:::.

"::_':ii:

5:N !:::i.; : ii

.i:

. i.:

5 5

7 9

1 0

a 0

0 0

1 2

0 PRT 0

0 0

aeR g y e,

1 i0 1

1 7

o f

32 i

ll il Ij l

lIll1ll!

'lllil('i 1Il(ll lI!!<l l

i, l

{

l1 il l

iJ1

TR 101 Figure 5 (Page 1 of 3)

Rev.1 Pase is g az Out-of-Core Detector System Error Adjusted imbalance Limits J

0 To 75 +/-10 EFPD j

19.4,102 9.2,102 tio -

e i

i i

i i

i

~

i l

too --

RESTRCTED RESTRCTED

~ 100 g

REGION MomN 3

l 15.1,92

~_ 90

[

24.3,92 M

a.

u.

so

' 27.5,80 g

16.5,80 11

! 7o 70

\\

E x

E M

m i

E m :

.32.3,90 Q.

23.0,80

~ 50 50 3

5

[

m O

i PERMISSSLE 3

[

REGION j

E:

20 ^

_ to g

i Io -

io

',.. p. ; p m.

o o

................................................."mm 50 40 35 25 20 15 10 5 0 5 10 15 20 25 30 35 do 45 50 indicated Axial Power Imbalance, %FP Soterce Doc. B&W 86-1235288-01 Referred to by fech Spec 3.5.2.7 and 3.5.2.4.e.3

RS I

n o'

M N

1 eo o

o o

0 n

f u 0

o e

r i -

r c 5

i _:~: _

~:~:_

- _ : 3 5h

i??:

[: :. : :

- : i $: -:f _::

re e 0

m d D 4

3 R

t o 5

2 R E' o

b.c ES 4

,0 2

0 m

7 2

GTR y 8 5

3 0

,2 4

O C I

T%

,0 N T 5

m 8

eW 0

9 E

I 3

2 D

c E

h8 n0 r

6 S-d O

2 r

p c5 P

i 7 ou i

1 r

E e2 a2 E

R R 5 r t c3 1

t 5

0 M

9,

4 32 e

GI F

Aoi I

1 8

d1 OI S

/

dfg 5 8 5

S 1

A-NI

' 0,

1j B

0uCu 2 -

2 0

71 x1 0 L

r a

a E

so i

e Tt r l

5

~

d P

o ee5 n

d 3

o0

] =* g *" ] $ o h. i g o=

.1 a

5 D (P 1

I 2

e5 0mt a 5

w e

0 r

1 i

+ beg 4

1 2

/ ace Im0

,7 i t

e l

1 1 ao2

\\

.3 b1 a

\\

0 i 0nr o 5

2 l

cSf a2 Eey 0

7 F Ls) n 1

1 3

c2 9

,8 5

Pie t

e 2

,0 9

Dm m 3

2 8

2 R

%0

,9 0

lnE i

F3 5

gS t

P 0

aT s

5 rR 0

mC 4

T E

4 D

5 5

0

.. :3 55

- i,

- : :f : -:

_::::?i:

o 1

2 0

a M

2 M

N s

1 i

g,% "

P o

00 a

a e

1 j

1 l

9 o

f 32

,i l

ij ;

'l i,!

l il{I4

il\\

i

,l IIlii

!,{ll)i il

!l1ii

1 1

RS M

7 0

1 m

0 5

1 2

0 0

0 eo o

0 0

f u e

7:

~

3i:j r

r c 5

g 52:

5:

~; 5 3: :$ ::

r e e 0

R d D 4

3 RE 5

2 ES t o

,0 2

o 7

2 l

G T b.c 4

I R 4

0 50

,2 O C

,0 N

y B 3

8 T

T,&

5 i

0 9

E 2

D eW E

c I

3 r

6 d

r O

h8 n0 r

2 i

ou S

1 P

r i

p c5 E

1 r

t e2 a2 R R l

8 6

AAoF c3 E M

[

,1 t 0 5

i 32 e

GI dfg 5 8 d1 OS 0 i HjCu S

1 I

e u 5

N S r

2 8

A-r so e 2 0 x0 E

5t r 71 L

1 i

l 5

0ee5 a

a n

0d d

P D (P i

+

e 3

o0 5

w my 8~j $ 0 E5M a0 Wm6 OI u $ '1

/mt a beg e5

' 1 6

1 3

',6 1

0a ce 2

r t

l 4

1 Eao3 i

1 m0

\\

.e 0

1 2

6 Fnr o

.3 b5 a

PcSf ey 3 l

1 a2 D Ls) 5 0

n 1

9

,A t

c2 2

i e

,e 2

,0 M lmE.

t R.-

m m 5

A 8

i 3

0

%0 m

aS F3 nT s

rR 5

uC P

d 4

T 0

ED 4

5 m

5 0

_:::_::i:_

E 5:::

.h:

. :: ': :}::j:: g t

1 o

1 2

s o

m S

7 0

0 o

o o

1 o

0 PRT aeR ge.i r

1 1 0 2

1 0

o f

3 2

l;l il l1;

.iil.llIili4 I

jll1

.I;

!I 1l

RS eo 0

0 o

0 H

1 a

4 7

1 1

f u 0

9 0

1 e

0 0

0 r

r c 5

- _. _ - ;E:h: f-5:

_ [: -

~:

i_:;

ree 0

d D 4

o 5

t R

o b.c 4

2 RE 0

9 ES y B

,1 GT R

2 l

I T &

3 5

4 2

I OC 5

N eW n,

0 T

I 3

,7 1

c E

h8 n0 g

O

,8 D

6 y

O S-d-

9 I

E 2

p1 c5 2

r i

1 r

e2 n

c3 a2 P

7 I

o E

3 2 e

R R

/

,2 r

t 0 E

1 I

M 5

5 8 5

GIM

[

n AniiF 8

d1

  1. 0 S

2 0

A-

,n O S dig I

2

-0 Tjmu 71 x1 NI 0

B u

l 5

L o sur i

n a

a E

e nd P

i 7t 3

o0 i

~

5em6 n

i di(

+

n 5

w

]_.0~3 $ o E53,n wNc ON I "

.n n

mcP i

i I

/

2 e5 i

a o

r i

1 4

1 i

0 brg i

.e m0

\\

aee i

n 7l El 3

b1 j

,8 i

aS1 5

i Fny a

i i

1 l

Pcsf o

l i

0 a2 g

iI 1

1 0

2 n

n 4

3 l

Det c2 i

,6

,2 e3 5

0 8

9

,e 2

im)

L 3

0 m

%0 i

,7 R

i 5

RE F3 i

0 ES t

i 5

i P

i cT s

i 4

i KR 0

i WC T

n E

45 i

D i

5 i

0

~:_:-l: ~.. _.: : E$E.5: :5j :::: E: :

}E::!:

0 1

0 2

4 S

0 o

H 7

a s

1 i

0 o

o 0

i 0

g Pa ge, 2

1 o

f 32 il

ii

{;

RS 1

=

=

1 70 9

0 eo 0

0 0

0 a

f u e

~

r r c 5

_:il ji i

i i ::

i:!_i:

r 0

ee R

d D 4

j RE 5

i t o o

2 ES b.c i

4 i

9 oT IiR 0

i

,1 2

oI y B n

C i

5 4

2 uT T &

3 s

0

,7 1

E 5

eW i

n 8

,8 D

E c

I 3

0 9

h8 n0 S-d-

i 2

r 6

n 7r 2

o 1

- i 5r M i

p c5 i

P 1

n e2 E

/

7 c3 a2 i

R R

[

,2 i

+ AiF t 0 5

E 32 e

n

/

ni 5 8 d1 i

GM 1

dig I S 0 i 1j umu 5

u O S 2

8 A-n N B 0 su e

.2 1

r 0

71 x0 i

L i

n E

Ttem6 a

a l

5 i

odi(

n u

d P

n 5in 3

o0 i

0mcP n

a 5

w i

1 g 3 $ O,,,

~i g

=

OI a # 'o 0

o 2

e5 i

brg r

i 1

n 4 aee i

1 i

,1 i

/

l e.

m0 n

1

,3 aS2 u

1 3

b5 i

i 0 i 0ny o 1

1 a

i 2

csf n

Eet l

2 1

a0 i

5 e3 F L n

n Pim)

,9 i

1 c2 2

5 i

7

,e i

0 9

Dm 3

,7

,1 2

n l

R

%0 i

5 3

,E i

n t

F3 i

0 0

.S 5

i nT s

.R P

n I

0 i

.T 4

n C

i E

4 i

D i

5 s

i n

50

l,: i ljE iE.:

i ::

_i_:

0 1

=

m m

7 0

0 n

9 1

0 0

0 o

P T

g%,R a

e 1

10 2

1 2

o f

32

l i

'1:

-1

'},

i RS 1

2 3

1 1

eo 0

0 0

0 5

g 7

9 0

1 0

g 0

0 0

0 f u e

r r c 5

_3::

EE:

E_

E_:-

E ::

E::}::

e e 0

i:

r E_

d D 4

R t o 5

RE o c 2

ES 4

6 y B

,3 2

lGT b.

0 p

I R O C 3

5 1

T )&

N 1

5 0

,9 9

T eV E

I 3

8

,0 D

c h8 n0 0

E 9

6 2

r S-d

-2 r

i p

c5 g

o 1

e2 1

c3 a2 P

f

,6 i

AAni 3

M E

r t 0 R R 7

5 iF e

3 28 d1 E

GIM 1

dig 0

f 5 8 5

I S 2 ;

t A-O S e

f jmu 2

u 0

NI B

r r

0 71 x1 a

a L

su i

l 5

E 5t e

n 0em6 d

P 5

w 0di(

3 o0 c

n mcP 2

e5 38 g $ o E5 w

Weuc. O>'1

$ '1

+

I a

1

/-

o r

1 br g 4

m0 3

9 i 0aee 1

i e

l 3

b1

,4 EaS3 5

1,

Fny o a

1 0

Pcsf 1

2 l

1 a2 D

e3 n

4

,4 et 0

c2

,3 9

Lm) 5 1

2 7

8 i

,e

,9 R

0 m

3

%0 5

t p E i

0 ES t

F3 mC cT s

5 P

R 4

I 0

T E

5 g

D 4

50

[.E: :

EE:

b:}b: :-
::: E E::} ::i 0

1 2

3 5

6 7

0 0

1 9

1 1

0 0

0 0

0 0

0 0

P,a T a

R g y e,

1 i0 2

1 3

o f

32 i

1

\\i

'I 1

1

,l 11,-jl\\

i,

4 Figure 7.(Page 1 of 2)

LOCA Limited Maximum Allowable Linear Heat Rate Mark-B8 Fuel 19 18 (32000,18) 8-n 17

~

4.n I

6-n 16 10-n 2-n

.15 e

.'.Jc 14 13 1gg

y w-o 12 s

P, r

9" (60000.11.6) i i

e i

i 11 0

10000 20000 30000 40000 50000 60000 Bumup, mwd /mtU Source Doc. B&W 51-1234870-0 6 tbte: sur each 1000 n*i/n tu in excess or f,0 ??"., M*3('"t",",Y..linoar yx2at rate Referred to by Tech Spec. 3.5.2.8

a Figure 7 (Page 2 of 2)

LOCA Limited Maximum Allowable Linear Heat Rate Mark-89 Fuel 19 (39000.18) 18 4-ft s s.10-ft 17 4.8.10-ft 5-R 16 l

24

. 15 cr I

_s 14 13 it N '

I $.--

(57000.12.6) w-g 12 m.

!L l

0 i

i i

i i

33 0

10000 20000 30000 40000 50000 60000 Bumup, mwd /mtU Source Doc. B&W 51-1234870-06 Note: For each 1000 Md/mtu in exmss of 40,0 0 %,*mtu, tie lin ar trat rate Referred to by Tech Spec 3.5.2.8 stull le reduced linearly by 0.075 KW/ft.

f TR 101 nev. i Figure 8 page 26 or 32 AXIAL POWER IMBALANCE PROTECTIVE LIMITS Thermal Power Level, %

- - 120 37.8,112.0 43.8.112.0 i

ACCEPTABLE 4 PUNP 100 4

OPERATION 43.8,88.3 Q

37.8, 88.3 ACCEPTABLE 53 2,80.4 58.5, 80.4 g

3 AND 4 PutB8 OPERATION

-43A,62.0 h

37A,62.0

~~

58.5,57.8 53.0,57.8 ACCEPTABLE 2,3 AND 4 PUhP OPERATION 1

4o

-58.5,30.4 53A,30.4 i

, _ 20 l

I I

I I

I I

I I

l l

l l

l l

1

-80 70 50

-40 30 10 0

10 20 30 40 50 60 70 80 Axial Power Imbalance, %

EXPECTED MINIMUM C1JBVE REACTOR COOLANT FLOW Obtw) 1 139.8 x 10E + 6

~

2 104.5 x 10E + 6 Source Doc. BWNT 86-1234922-01 3

68.8 x 10E + 6

P TR 101 Rev.1 Figure 9 Page 27 of 3.

PROTECTION SYSTEM MAXIMUM ALLOWABLE SETPOINTS FOR AXIAL POWER IMBALANCE i

Thermal Power Level, %

120

-30.0,100.0 24.5,108.0 ACCEPTABLE i4PUW 100 j OPERATION j

i mi = 1.900 m

1.854 l

30.0,80.6 24.5,80.6 j

m

,! ACCEPTABLE i

3 AND 4 PUW

)

50.0,70.0 j OPERAT W 45.0,70.0

! 30.0,53.1 24.5, 53.1 l

jACCEPTABLE l

l 2,3 AND 4 PUW

-50.0,42.6 j OPERATION j

45.0,42.6 i

i i

i i

-50.0,15.1 l

M l

45.0, 15.1

$ ::i A

A in e

S

M 4

l, u

u

=

a :

n g;

i I

Im

a ;
; m,
70 50

-40

-30

-20 10 0

10 20 30 40 50 60 70 80 Axial Power imbalance, %

4 Source Doc. SWNT 86-i234922-01

i 4

1 l

1 I

TR 101 Rev.1 Page 28 of 32 i

e i

i 4

i 4

i-4 F

t 1

l 4

i 4

s.

Operating Limits Not Required by Technical Specifications

^

1 eI s

1 1

I 4

l l

l l

TR 101 Rev.1 Page 29 of 32 1.

Core Minimum DNBR Oneratine Limit l

(

Reference:

BAW-2250)

The core minimum DNBR value as measured with the NAS Th Hydraulic Package (Dispiar 3 or 4) should not be less than 2.02 (102% ICDNBR).

2.

Marimum Allowable Local L1=nr Hamt Rata Limits

(

Reference:

T.S. 2.1 Bases)

The maximum allowable local linear heat rate limit is the minimu LHR that will cause centerline fuel melt in the rod. This limit is t basis for the imbalance portions of the Axial Power Imbalance Protective Limits and Setpoints in Figures 8 and 9 of the COLR, respectively. The limit is fuel design-specific; the value for the most limiting fuel design in the current core is used for monitoring as given below:

i j

o BWFC Mark-B8/B8V LHR to mek = 20.5 kW/ft i

l i

3.

Minimum Boron N::ded for Cold Shutdown i

(

Reference:

51-1240408-00)

The minimum boron levels needed in the BAMT and RBASTs o

to achieve cold shutdown conditions throughout the cycle is the equivalent of at least 1052 ft.' of 8,700 ppm boron.

~, _. -

m

j TR 101 Rev.1 Page 30 of 32 i

i 1

i l

1 1

i DNBR-Related Bases Descriptions 4

i l

l i

1 s.

I j

1-l i

i 4

e 4

i 1

1 l

l l

i 4

, ~-

TR 101 i

Rev.1

)

Page 31 of 32 l

1.

Power-to-Flow Trip Setnoints j

The nuclear overpower trip setpoint based on RCS flow (power / flow or nux/now trip) for the current cycle is 1.08. This setpoint applies I

to four, three-and two-pump operation as described in T.S. Table i

2.3-1 and Figure 9 of the COLR.

)

The power /now trip, in combination with the avial power imbalance j

trip, provides steady-state DNB protection for the Axial Power Imbalance Protective Limit (Figure 8). A reactor trip is initiated

!]

when the core power, axial power peaking and reactor coolant now i

conditions indicate an approach to the DNBR limit. The power /now i

trip also provides transient protection for loss of reactor coolant flow l

events, such as loss of one RC pump from a four RC pump operating condition.

e Power level and reactor flow rate combinations for four, three-and l

two-pump operating conditions are as follows:

i 1.

Trip would occur when four reactor coolant pumps are i

operating if power level is 108 percent and flow rate is 100 i

percent, or. power level is 100 percent and flow rate is 92.5 j

l percent.

I 2.

Trip would occur when three reactor coolant pumps are operating if power level is 80.6 percent and now rate is 74.7 percent or power level is 75 percent and flow rate is'69.4 j

percent.

t i

3.

Trip would occur when one reactor coolant pump is operating in each loop (total of two pumps operating) if power level is 3

i 53.1 percent and flow rate is 49.2 percent or power level is 49 i

percent and now rr.te is 45.3 percent.

The power level trip and associated reactor power / axial power imbalance boundaries are reduced by the power-to-flow ratio as a percent (108 percent) for each one percent flow reduction.

i i

1 TR 101 Rev.1 Page 32 of 32 i

2.

Desien Nuclear Power Peakina Factors

(

Reference:

T.S. 2.1 Bases) 1 j

The design nuclear power peaking factors given below define the reference design peaking condition in the core for operation at the maximum overpower. These peaking factors serve as the basis for the pressure / temperature core protection safety limits and the power-to-flow limit that prevent cladding failure due to DNB overheating.

i e

Nuclear Enthalov Rise Hot Channel Fador (Ra<llal-Local Peaking Factor). F"in d

1.71 i

Fan

=

i Avial Flux Shane Peakina Fador. Fz i

e N

1.65 (cosine)

F

=

Z 4

Total Nuclear Power Peaking Factor. F, i

e I

F, = F ni x Fz NF, = 2.82 9'

]

-rw

.4 Nuclear memorandum subject:

TMI-I Cycle 11 Core Operating Dee:

November 13,1995 Report Topical Rpt.101, Rev. I From:

J. S. Wetmore Loccion:

OSF-2, TMI Manager, TMI Regulatory Affairs C311-95-1480 File 95055 To:

J. Knubel - Director, TMI M. A. Nelson - Manager, Nuclear Safety L. L. Ritter - Administrator, Plant Operations (6 copies) 4 M. J. Ross - Director, O/M, TMI P. S. Walsh - Plant Engineering Director i

Attached is your key-controlled copy of TMI-1 Cycle 11 Core Operating Limits i

Report, Topical Rpt.101, Rev. I to the Technical Specifications. Please keep this with your Technical Specifications until you receive your controlled distribution copy

)

from Debbie Marshbank.

W r

R J. S. Wetmore Extension 8501 xm D. J. Distel Attachment 4

i s

4 i