ML20095B892
| ML20095B892 | |
| Person / Time | |
|---|---|
| Site: | Crane |
| Issue date: | 10/11/1995 |
| From: | GENERAL PUBLIC UTILITIES CORP. |
| To: | |
| Shared Package | |
| ML20095B886 | List: |
| References | |
| NUDOCS 9512110255 | |
| Download: ML20095B892 (34) | |
Text
-
j nu-1 Cyde 11 i
Core Opmates M M i
'IOP5 CAL IMPORT 191 Res. 9
]
l BA Namiber 135400 l
~
~
'!?pt!.1 Cyde 11 Itdnad Tad Phrte October,1995 i
mROVAIE; j
M
/o -/o-96 m
v rr nane 1
g gu -1
, ci D
}& Y W=
. t o/n o( 9-(
u n a n a rn,3.c.
n.
l
.eBQ n --or Director, Nedear Anatyais k Fast Date w me
/
ge g
g e
1 4
I n.
9512110255 951010 PDR ADOCK 05000289 P.
TR 101 Rev.0 Page 1 of 33
' ABSTRACT This Core Operating Limits Report (COLR) has been prepared in accordance with the requirements of TMI-1 Technical Specification 6.9.5. The core operating limits were generated using the methodologies described in References 1 through 7 and were documented in References 8 through 10..The information in this COLR was reviewed for use at TMI-1 in References 11 through 14.
The Full Incore System (FIS) operability requirements contained within describe the number and location of Self-Powered Neutron Detector (SPND) strings that must be j
4 i
operable in order to monitor imbalance and quadrant tilt using the FIS.
l Quadrant tilt limits for FIS, out-of-core detector [OCD] system and minimum incere l
. system [ MIS] are given in Table 1.
I l
Table 2 is discussed below with Figure 7.
The minimum boron volumes and concentrations for the Borated Water Storage Tank (BWST), Boric Acid Mix Tank (BAMT) and Reclaimed Boric Acid Storage Tanks (RBAST) contained in Lt.le 3 will ensure that enough boron is available to achieve cold shutdown conditions.
l Rod position limits are provided in Mgures 1 to 3 to ensure that the safety criteria for DNBR protection, LOCA kw/ft limits, shutdown margin and ejected rod worth are met.
Imbalance limits for FIS, OCD and MIS are given in Figures 4 to 6.
a j
COLR Mgures 1 through 6 may have three distinctly defined regions:
1.
Permissible Region i
2.
Res*ricted Region j
3.
.Not Allowed Region (Operation in this region is not allowed) s i
i~
Inadvertent operation within the Restricted Region for a period not exceeding four (4) hours is not considered a violation of a limiting condition for operation. The limiting criteria within the Restricted Region are potential ejected rod wortF
,d ECCS power peaking. Since the probability of these accidents is very low, espu.e.f n a four (4) i
)
hour time frame, inadvertent operation within the Restricted Region for a period not
]
exceeding four (4) hours is allowed.
4 4
TR 101 Rev.O Page 2 of 33 COLR F1gure 7 indicates the LOCA limited maximum allowable linear heat rates as a function of fuel rod burnup and fuel elevation for Mark B8 and Mark B9 fuel.
Bounding values for monitoring these limits for the current cycle in terms of fuel batch, cycle burnup and axial detector levels are listed in Table 2.
COLR Figure 8 provides the Axial Power Imbalance Protective Limits (APIPL) that preserve the DNBR and Centerline Fuel Melt design criteria.
COLR Figure 9 provides the Protection System Maximum Allowable Setpoints for Axial Power Imbalance which combine the power / flow and error-adjusted axial imbalance trip setpoints that ensure the APIPL of Figure 8 are not exceeded.
Enclosure I contains operating limits not required by TS, but monitored by the Process Computer Nuclear Applications Software as part of the bases of the required limits and setpoints. These include the core minimum DNBR and the Marimum Allowable Local Linear Heat Rate Limits. contains the bases descriptions of the Power-to-Flow Trip Setpoint to prevent violation of DNBR criteria and the Design Nuclear Power Peaking Factors for axial flux shape (F"z) and hot channel nuclear enthalpy rise (F"u) that define the reference design peaking condition in the core.
TR 101 i
Rev.O Page 3 of 33 i-TABLE OF CONTENTS j
j PAGE j
Abstract 1
References 4
4
{
I%Il Incore System (FIS) Operzbility Requiremente 5
Table ! Quadrant ' nit Limits 6
4 -
Table 2 Core Monitoring System Bounding Vv es fN 7
)
LOCA Lhnited Maximum Allowabh.. Nar <Ient Lw l
Table 3 BWST, BAMT and RBAST Minimum I'm Requirements 9
l for Cold Sbutdown Mgure ! Error Agusted Red Insestion Limits 10 1
4 Pump Operation
{
Mgure 2 Error A4usted Rod Insertion Limits 12 i
3 Panp Operation Mgure 3 Error Agusted Rod Insertion Limits 14 2 Pump Operation 4
4 Mgure 4 FullIncore System Error Agusted 16 Imbalance Limits i
Maure 5 Out-of-Core Detector System Error Agusted 19 i
Imbalance Limits Figure 6 Minimum Incore System Error A4usted Imbalance Limits 22 Mgure 7 LOCA Limited Maximum Allowable Linear Heat Rate 25 3
4 -
Mgun g Axial Power Imbalance Protective Limits 27 Mgure 9 Protection System Maximum Allowable Setpoints for Axial 23 i
Power Imbalance.
a 1
Enclosun 1 Operating Lhnits Not Required by Technical 29 Specifications t
{ DNBR-related Bases Descriptions 31 5
4 i
)
4
l,
y
+
- TR 101 l
L
. Rev. 0 Page 4 of 33
References:
1.
BAW-10179P-A, Rev. 0, " Safety Criteria and Methodology for Acceptable Cycle Reload Analyses," August 1993.
2.
BAW-10184P-A, "GDTACO, Urania-Gadolinia Thermal Analysis Code," May l 1992.
3.
BAW-19183P, " Fuel Rod Gas Pressure Criterion (FRGPC)," July 1991.
t 4.
BAW-2149-A, " Evaluation of Replacement Rods in BWFC Fuel Assemblies,"
l September 1993.
5.
IAtter from J. H. Taylor (B&W) to J. A. Norberg (NRC), " Extended Lifetime Incore Detector Error Allowances," AprH 21,1988, JHT/88-28.
I 6.
BWFC Doc. No 86-1172640-00, " Detector Lifetime Exitension Mnal Report for TM1-1," September 1988.
l 7.
BAW-10156-A, Rev.1, "LYNXT Core Transient Thermal-Hydraulic Program,"
Aufgust 1993.
8..
BAW-2250, Rev.1, "TMI-1 Cycle 11 Reload Report," September 1995.
9.
BWFC Doc. No. 51-1236516-01, "TMI-1 Cycle 11 COLR LOCA Limits," October 9, 1995.
10.
BWFC Doc. No. 51-1240294-00, "TMI-1 Cycle 11 Verification Report," October 1995.
11.
GPUN Safety Evaluation 135400-013, Rev. 0, " Tech Spec LOCA Limit Changes,"
June 28,1991.
12.
GPUN Safety Evaluation 135425-006, Rev. O, " Tech Spec 6.9.5.2 Refer'ence to BAW-19179P (TSCR 225)," May 3,1993.
13.
GPUN Safety Evaluation 135400-019, Rev.1, " Removal of Axial Power Imbalance Protective Limits and Setpoints from TS to COLR," May 8,1995.
14.
GPUN Safety Evaluation 135400-022, Rev.1, "TMI-1 Cycle 11 Reload Design,"
October 1995.
I
t i
TR 101 '
Rev.O
{
Page 5 of 33 Full Incore System (FIS)
Operability Requirements f
I 9
The Full Incore System'(FIS) is operable for monitoring axial power imbalance provided the number of valid Self Powered Neutron Detector (SPND) signals in any one quadrant is not less than 75% of the total number of SPNDs in the quadrant.
i Quadrant SPNDs 75 %
WX 85.75 64.5 XY 99.75 75.0 l
YZ 89.25 67.0 1
ZW 89.25 67.0 9
The Full Incore System (FIS) is operable for monitoring quadrant tilt provided the number of valid symmetric string individual SPND signals in any one
- quadrant is not less than 75% (21) of the total number of SPNDs in the quadrant (28).
i Quadrant Symmetric Strings WX 7,9,32,35 1
XY 5, 23, 25, 28 I
YZ 16, 19, 47, 50 ZW 11, 13, 39, 43 4
)
h Source Doc.: B&W 86-1172640 00 Referred to by:
Tech. Spec. 3.5.2.4.a and 3.5.2.7.a
i Table 1 Quadrant Tilt Limits Steady State Limit Steady State Limit Maximum Limit 15% < Power < 50%
Indicated Power > 50%
Indicated Power > 15%
Fullincore System 6.79%
3.81%
16.8%
(FIS) j Out-of-Core Detector 4.05 %
1.96 %
14.2%
System (OCD)
Minimum incore System 2.80 %
1.90 %
9.5%
(MIS)
Note:
MIS limits assume no MIS detectors exceed 60% sensitivity depletion.
Source Doc.:
B&W 86-1235288-00 Referred to by-Tech Spec. 3.5.2.4 d;E Y
., :, is 2
2:
-w--
c
,e,--
- a
- --- -.---- --- - ~
TR 101 Ren 0 i
Page 7 of 33 TABLE 2 (Page 1 of 2)
Core Moskodag Systens Bounding Values for i
LOCA Ihnhed Mashaunt 4Howable IJacar Heat Rate (kW/ft)
Batchew 16E,11D and 11E CMS 0 - 665 Level EFPD i
j 8
8.9 l
7 10.6 6
11.2 5
11.2 4
11.2 1
3 11.2 i
2 10.6 i
?
I 8.9 Batches 128,12C,12D and 12E l
CMS 0-7 7-278 278 - 387 387 - 433 433 - 665 1
Level EITD EFFD EFTD EF7D EFTD I
8 13.2 13.2 12.9 12.4 9.9 t
7 15.7 15.7 15.4 14.7 11.8 l
6 16.4 16.4 16.1 15.5 12.4 5
16.3 16.3 16.0 15.5 12.4 4
16.3 16.3 16.0 15.5 12.4 3
15.7 16.1 15.8 15.5 12.4 2
14.6 15.1 14.8 14.6 11.7 i
1 12.4 12.8 12.5 12.4 9.9 I
i i
i Batch 13A i
i I
j CMS 0 - 58 58 - 321 321-665 i
Level EFTD EFFD EF7D i
8 12.8 12.8 12.8 7
15.2 15.2 15.2
/
6 16.2 16.2 16.2 5
16.1 16.1 16.1 4
16.1 16.1
'16.1 i
3 15.1 15.2 15.7 2
14.0 14.0 14.7 1
11.8 11.8 12.4 4
TR 101 -
Rev.0 Page 8 of 33 1
TABLE 2 CPage 2 of 2)
Cost Monitoring System Bounding Values for 1
LOCA Limited Maximum Allowable Linear Heat Rate d.
(kW/ft) i Batches 135,13C,13D and 13E j
CMS 0 - 241 241 - 375 375 - 665 14 vel Ef?D EFFD EFPD i
8 13.6 13.2 13.2 7
16.2 15.7 15.7 i
6 17.0 16.4 16.4 5
17.0 16.3 16.3 4
17.0 16.3 16.3
~
3 16.0 15.7 16.1 1
2 14.6 14.6 15.1 1
12.4 12.4 12.8
)
Batches 13F and 13G j
CMS 0-244 244 - 665 Level EFPD Ef?D 1
8 13.6 13.2 4
7 16.2 15.7 3
6 17.0 16.4 l
5 17.0 16.3 4
17.0 16.3 3
16.0 15.7 2
14.6 14.6
]
1 12.4 12.4 a
\\
The maximum linear beat rate for each CMS level, as measured with the NAS nermal Hydraulic l
Package (Display 4), should be less than the corresponding bounding value frees Table 2 above.
Source Doc. B&W 51-123651640 i
TR 101 ~
1 Rev.0 j.
Page 9 of 33 e
TABLE 3.
j BWST, BAMT and RBAST
{
Minimum Boron Requirements for Cold Shutdown i
4 k
I 1.
The minimum boron requirement for the BAMT and RBASTs is the equivalent of at least 1052 ft.3 of 8,700 ppm boron.
4 5
I i
4 2.
The minimum boron requirement for the BWST is the j
equivalent of at least 38,604 gallons of 2,500 ppm boron.
i i
NOTE: The basis for the above BWST minimum boron requirement is to achieve cold shutdown conditions enh.
l This requirement is bounded by the BWST ECCS requirement of T.S. 3.3.1.1.a.
l 4
d i
n 4
i l
. I
. ~.
Figure 1 (Page 1 of 2)
Error Adjusted Rod insertion Limits 0 To 75 +/-10 EFPD 4 Pump Operation 110.
l 300,192 105 80.8,102 m
me,ie2 7 I
/
95 :
nwtGm 90 N
282,95
/
% s
/
85 g
g 3
~
/
242,78 h 75 f--
nog j
/
y Mj-AU. OWED r
RESTRICTED f
f 3
e5 4--
REGION REGION y
E
- ~.
/
/
- I
/
/
o b
y 48 202,48 g
j 33,48 i
e i
y
{
.2
-D M -
.E 25 l MMSSIKE 20 =_
l REGION i b 15 f g yyq 10 j- 0,13.8 gym 5
g**
2 0 10 20 30 40 50 90 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 200 270 200 200 300 -
g 5 15 25 35 45 55 65 75 85 95 105115125135145155165'175185195 205 215 225 235 245 255 285 275 2B5 205 i
indicated Rod index, % Withdrawn Source Doc. B&W 86-1235288-00 8teferred to by Tech Spec 3.5.2.5.b and 3.5.2.4.e.2.
i
,I N5 33
- 0 3g : 2.ww 00 k
. 35 9
02 925 2
0 Y', 0 02 0
1, 25 a
7 4l
- i' 6
02 li'2l 7
m 25 8 8
E 02 l
7, L
0 7
/
2 BN 25
's 5
4 SO 02 f
2 5
SG 25 g
ER E 4
g RR 402 E
25
/
2 3
P 02
. 01,
[
3 25 4
8 2
/
4 22 2
1 25 7
2 2
1 0
02 2
1 s
j f
25 0 n
t
/
g 02 w
i 0
m
/
D 25 E
9 a
i s
01 r
T L
'p C N 7
91 5 d
O I
8 h
nC
/
RI 01 T G
)
t 8
2 i
oOn S E 1 5 W
7 t
f ER i
/
f 01 ore o R
7
/
1 5 i
e 6
2 ot
/
01 st a 01 5 x
r en 5
e giDe y
01 5
d
\\
p
/
15 adP 4
n P oFO j
01 i
4 8
r 1 5 d
/,
4 RE p N
(
3 s
01 o
1 d0 m W
0 3
R OIN
/
2 1 5 ee1 u DG T 2
1 2
/
01 d
r t 1 5 e
e.
T M
us/P 2
HML U
B
/
gu+4 1
t 4
l 01 a
15 c
2 ij5 S
/
1 Fd7 e
0 5
i W
01 d
A
/
3 0
n 1
5 9
d r
I o
0 n
r 9
a 5
r 8
0 b.
E 8
0 5
0 5 7
0 2
D 7
8 5
85 EN 6
2 3 TWO 0
5 I
9 O OG 5
3 c NLE 5
2 e OS 1 p LR A
5 S
4 6
0 8h 4
Wc 5
e 3
. 3
& T 0
l-
"l. 2 c o 5
By l
2
, 0
.b s.
5 ot 2, 'T, 0 D d 1
1 0'
M 5
ee r
cr 0
r e
=:.5 i
ii
- {
i i
5 -
uf 5
0 O 5 0 oe a5 m5 "5 ye"5 a52 2 SR 0 5 0
9 3 8 7 5
1 1 1 g3OAnjE o$i$2uS
~
Figure 2 (Page 1 of 2)
Error Adjusted Rod Insertion Limits L
0 To 75 +/-10 EFPD 3 Pump Operation 110 1
105 -
E 95 _
90 s
85 MTDOWN 80 MARGW 388.77 0
75 LRET
-D 81.4,77 264.5,77 i i
/
II
/
n.
i sY 252,67
}
=
65 g
80
/
242,54 g
55 7
-~
AU. OWED
/
/'
s
[
50 i REGION
/
RESTRICTED g
/
REGION
/
45
.q;y 8
l f
=
d
-- Y 80 35 :
/
33,36
~
.9
.?
/
NLMA
~
s 25 r
p 20 ;
/ 11, 1 3.5
~
gg:
15 l h
PERRASSEBLE 10 Epm REGION
, ?,,,
5 -i 8.18 4 C**'
..f.....f......
O 0 10 20 30 40 ' SO 90 70 80 90 100 110 120 130 140 150 100 170 180 190 200 210 220 230 240 250 200 270 3 0 200 300 t.e 5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 225 235 245 255 285 275 285 235 Indicated Rod index, % Withdrawn Source Doc. B&W 86-1235288-00 Referred to by Tech Spec 3.5.2.5.b and 3.5.2.4.e.2.
i' i-y*
,w S 0
0 35 9 02 9
7 25 7,
0 02 g
025 7 02 7
25 8
/
02 0
7
/
7 l
, 25 5 02
/
L i
E I
5
, 25 4
BN
/
I
, 02 SO I
. 4 7
r25 I
4, f
ME 1
. 25 S
3 G
. 02 I
5 3
2l 5
8 5
RR 1
2 2l 5,
/
3, E
. 2
. 02 P
l
. 25 s
2
/
2 4
0 1
t 2
/
2 02 i
1 m
/
25 0 n
Y 02
/
w i
0 L
7 25 7,
9 a
/
nC 6
01 r
)
9 D
1 5 d
2 oOn 3
8 h 1
E y
f t E o
/
i 01 t
2 T
8 i
or C N 1 5 W
i O
eot 7
I 7
RI 01 2 st a TG 7
15 r
SE 6
enD e ER 01 ad P p
\\ '/
gI R
81 5 x
5 e
P oFO
/
01 5
d N
RE p W
/
1 5
(
4 n
d 0 m ON j
01 i
2 415 d
DGT y
ee1 u TRN 3
01 o
/
r t /
3 R
us P
UAI 2
L 1 5 gu+3 HM 2
/
S 01 d
e.
j5 21 5 e
iFd7 I
1 t
4 01 a
2 A
/
.l r1 I
1 5 c
5 r
0 i
/
01 d
3 o
0 n
r 1 5 d
I r
9 n
E 09 a
5 b.
8 0
0 5
0 5 8
7 2
0 8
7 85 5
2 3 6
D 0
5 EN 0
3 c TWIO 5
2 e 5
0 1 p MOG 5
- S LE 5
6 LR 4
8h 0
A Wc 4
5 e
3 0
& T 3
By 52 b
T, 2
. 0 c o 9
5 ot 1
f 1
D d t. 1
. 0 0
ee r
5 r
cr r
0 e
uf E
~
?
_~
s s
oe 0 5 5 0 5 0 5 0 5 0 0 5 0 5
,5 0
- 0 SR 1 0 9 9 8 8 7 7 6 0 8 4 4 3 3 2 1
1 1 6l0
%f.%YENgE E
. Figure 3 (Page 1 of 2)
Error Adjusted Rod insertion Limits 0 To 75 +/-10 EFPD 2 Pump Operation 110 -
105 :
100 95 30 85 u
O 75 _
70 3
e5 :
E*l m
~~
See,s2 55 mutom us.3, s2 50 4--
N
/
82.5,62 iii f
p j
45 2s2,44 g
V 3
"i
\\
[
t I eI
/
NOT N
/'
242,38 /
j y
j 35 y
20 =g m
,,,g,n,,,
Reonn
,e
/
"E P
33,24 Y
~
20
/
202,23 l
99, g
~~,
~~~
15 10 g
PER N gg{
N 5:-
g, g,g e.* _ l t 1 1 iiI I I
.go, 0
a 0 10 20 30 40 SD 00 70 80 90 100110120130140180100170180190 200 210 220 230 240 2!B 200 270 30 200 300 S.
5 -15 25 35 45 55 65 75 85 95 105115125135145155165175185195 205 215 225 235 245 255 265 2F5 205 295 g
)
Indicated Rod index, % Withdrawn Source Doc. B&W 86-1235288-00 Referred to by Tech Spec 3.5.2.5.b and 3.5.2.4.e.2.
e y
w a--
+--
w-e-w-ee m
--,.w-r
-.-- ++
-e-
-ter--t-r-w+
Figure 3 (Page 2 of 2)
Error Adjusted Rod insertion Limits 75 +/-10 EFPD to EOC i
2 Pump Operation 110 105 100 95
- I
.5 O
75 -
4.
1 y
V 85 4
E 300,52 55 O
215.8,52 iii 50 -
SHUTDOWN JD f 265.3,52 ---
g p
4 NOT d252,'44
.g gggy p
m.owEo 40 35 REGION
\\
242,38
)
RESTRICTED
/
V E
REGION
/
3 25 -
120,24 }
/
(
~W 8
-~
/
15 l
/
i j Eh
- * * =
10 2- 0,1.3 N8 E
e "e 5 ;
98.9 REGION
a
. j...j...]..
..,......,...,.,..r--i-i 3
0 10 20 30 40 50 80 70' 80 90 100 110 120 130 140 150 100 170 100 190 200 210 220 230 240 250 200 270 250 298 300 W
5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 225 235 245 255 265 275 205 295 Indicated Rod index, % Withdrawn t
Source Doc. B&W 86-1235288-00 Referred to by Tech Spec 3.5.2.5.b and 3.5.2.4.e.2.
1 k
. TR 101 Rev.0 Page 16 of 33 Figure 4 (Page 1 of 3)
Ful! Incore System i
Error Adjusted imbalance Limits O To 75 +/-10 EFPD "o
no i
i i
i i
5
-25.6,102 15,102 E
RESTRICTED f
(
RESTRCTED ion T RE060N REClON l
E i
E
/
-30.6,92
'20.9,92 i
M _
a E
E
__ 33.7,80 alt 22.1,80
- so go I
11 i
.W o
To 70 _
.c i
S 1
W i
M L
so
-37.9,50 28.3, 50 3,
m Of
-[
~ #
o i
i
_ h 5
PERMISSIBLE 5
3 3
REGION g
i i
5 E
i 5
5 20 _
_ 20 to :
- to o -
- o
-50 45 40 35 30 20 15 10 -5 0 5 10 15 20 25 30 35 40 45 50 Indicated Axial Power imbalance, %FP Source Doc. B&W 86-1235288 00 Referred to by Tech Spec 3.5.2.7.a and 3.5.2.4.e.3
J
\\,
RS 1
1 a
g 0
0 0
o 0
0 4
7 3
t 0
1 1
eo g
0 f u e
ii$::.: }:::: :35
- ~:
E:
r r
T::::.
2:::
r c 5
ee 0
d D
4 R
t o
5 o
RE ES b.c
-4 uT 0
R l
y B OC T&
3 N
T 5
eW P
7 E
c 3-R R 7
E 3
D I
j h8 n0 6
E M
,6 3
E S-d 2
GI 3
f g
r p1 i
e2 c5 OS
,2 3
2 r
5 S
0 5
t 0 L
0
,2
,2 g
7o c3 a2 NI 0
5 B
8 5r 3 2 e
E 9
1
+A F
58 d1 3
/
2 -
A-2 0i 8
5 d Fg i
0 1
1j u 7 0 x 0 t
u a
5 8 3
- o r m. 3 0 u
Wk 0W 1
$ u1 0ul i
r l
a 3
sie a
l 5
t t n
P oe n
dc4 d
o0 5
3 w
0iro (P 5
e5 0 mea 2
r
+bSg 1
4 0
i
.e m
/ay e 1
l 1
3 b5 8j 1 as2 t
a
,5 0n eo a 0
'1 l
2 1
g c
Eemf 0
n 2
3 c 2 F
5
)
L
,e l
2 2
Pi 3
4 3
R
%0
,8
,4 l
RE Dm 2
ES F3
,8 8
9 lG T i
R t
PRT 5
0 2
I P
5 OC s
aeR g
0 N T e.v 40 E
1 00 D
1 4
7 1
5 o
f 5
0 2: :: [ _::: !:::
5i$ :: :
- E !: 3 ::3:.
i,5 :
3 3
0 7
3 8
n g
1 a
0 0
0 0
0 o
!illIll!l:
l1 j
I
c-TR 101 Rw. 0 '
Pa8e 18 of 33 i
~ F!gure 4 (Page 3 of 3)
Full incore System Error Adjusted imbalance Limits 500 +/-10 EFPD to EOC Ho Ho 5 g
g g
i g
d 27.0,102 19.4,102 3
RESTRICTCO i
RESTRICTED f
I" 100 T REOloh RECdON 1
I 21.4. 92 5
j
-30.1, 92 H.
H 3
Q.
u-
-33.2,80 24.5,80
- 80 11 i
.2i O
M _
- M uJ H
u
- H 2
Q.
27.9,50 50.
-37.5,50 3
i w
i i
M E
40 --:
3 H
~
5 REGION
- 3 5
E PERMSSBLE
}
}
5 20 !
! 20 10 ~.
10 0
O nn on,
,u, on on in, no no n..
n.
on nn on, nn on n,
no in, n..
.n.
50 -45 40 35 30 25 -20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 Indicated Axial Power Imbalance, %FP Source Doc. B&W 88-1235288-00 Referred to by Tech Spec 3.5.2.7.a and 3.5.2.4.e.3 e
ll
- i!l' i;
5 RS 1
1 eo 0
0 1
30 a
o m
N 0
0 a
s 9
0 f u e
~:.5i
!Ed: -
r r
i E:-
E:
r c 5
- :::: EE$ bE ee 0
u d D 4
3 R
n o
.2 RE t
o 5
u ES b.c n
,3 2
7 2
GT 4
4 I
R 0
u 5
y B
' 0
,5 OIC n
,3 N
T &
3 8
T e
5 u
0 9
E cW I
3 i
f' 2
D E
h8 n0 u
7 i
r 6
O S-d n
r 2
p 1 i
i 1 i ou e2 c5 u
P 9
r t c3 a
i R R 5
t 0 i
E 2
,4 i A o-F 3 2 e
58 d1 i
E n
O M
1 i
dfg 8
5 i
GI 0
Tj-uCu I
S 2 i 0
A-i O S 2
n NI o
r 7 0 x0 i
B s o e 1
a u
L 5
i E
7t r i
n a
d i
5ee5 l
u d
P 3
o0 s
+
D(
/mteP I
n 5
w i
a 1
5 i
cEgh $ o WU 3 0 u
O.N1 $ ua 9 i 2
0 beg
(
1 e
u 4
r n
,2 a ce 1
.e 0
\\
i El t i
1 0
ao1 u
3 m
F n
1 2
nr o b5 i
PcSf u
a n
Dey l
2 a 0 s
i 3
n i
1 Ls) 2 i
8 t
c ie 5
u
,e
,5 m
n 2
im 3
3 8
R 0
u 0
RE
,0 ES t
n GT s
F3 5
R 5
n 0
OI pRT I
P i
N eR i
C 4
T u
E s.v 0
e 1
n D
5 i
10 0 4
1 9
n 5
i o
0
- Ei:
- E:
~: - E
~
E
- E:
E
- E:
r 33 0
1 2
0 0
0 o
N 4
s 100 1
I i')
TR 101 Rev.O l
Figure 5 (Pcge 2 cf 3) pas 20 or 33 Out-of-Core Detector System Error Adjusted imbalance Limits 75 +/-10 To 500 +/-10 EFPD i
110 i
i i
i i
i E
-19.1,102 12.7,102 3
1 5-RESTRICTED RESTRICTED 100 I
I 100
\\
REGION i
g REGION 17* '2
=-;
-u.0, n a
n.
f
-27.2,80 f
19.0,80 8
E f
II s
a a
r
}
i
~
W i
30
_ to
~
g i
80
-32.0,50 a
22.9,50
_ so E
5 i
40 _
g
_ 40 5
o E
i PERMSSBLE 3
~
REGON l }
f 5
5 5m
=
i i
10 _
_ 10
)
i i
0 ~
~ 0 un ini un u i un un iin iisi us; un ini un un un si i un un usi ini u,,
/
-so.45 40 35 30 25 20 10 -s o s to 15 20 25 30 35 40 45 50 Indicated Axial Power Imbalance, %FP Source Doc. B&W 86-1235288 00 Referred to by Tech Spec 3.5.2.7 and 3.5.2.4.e.3 l
TR 101 Rev.O Figure 5 (Pcge 3 cf 3)
Page 21 or 33 Out-of-Core Detector System Error Adjusted imbalance Limits After 500 +/-10 EFPD
'S ia i
i i
i i
i i
-20.9,102 13.6,102 3
h-RESTRETED I
l RESTRICTED 100 100
\\
REGION i
REG 40N i
(
i
-24.0,92 r
90 I
1 i
-27.2,80 19.0,80 i
i 11 n ~
.ti -
- 70 i
I O
1 i
=
M E
So-[~ -32.0,50 g
22.8,50
- 50 b
i 5
a.
g a
o l
5 "
g PERMISSELE ~j
~
REGON 8
e 5
2.
c
- M 10 10 0
o!i 0
u si iisi ini ini iiii iiii iiii siis iii.
iisi sui iiii iiii sin sin nii iiii iiii
/ 45 35 25 15 5 0 5 10 15 20 25 30 35 40 45 50 Indicated Axial Power Imbalance, %FP Source Doc. B&W 86-1235288 00 Referred to by Tech Spec 3.5.2.7 and 3.5.2.4.e.3
RS t
1 eo 0
o 4
8 s
o o
0 t
a o
1 0
0 o
f u e
r
[-
r T c 5
E[
i ::.
Ei.
5[_
- !$ 55$ :.:: :i:
j :.
oe 0
d D 4
R o o 5
i RE t
b.c i
2 ES i
0 i
.9 4
4 i
C T 1
R y B n
2 0E i
5 4
2 N
T &
3 i
0
,7 ET 1
5 eW n
I 3
i 8
,8 D
c 0
9 I
E h8 n0 i
r 6
2 S-d n
1 r
2 p 1 i
7 I
o e2 c5 n
M 2
i P
i E
/
,2 r
c3 a
1 I
AniF 5
t 0 i
R R
[
i 3 2 e
i
- 0 58 d1 i
E 0
i GIM 2
dig Tjmu 8
5 u
I S
O S 2
0 A-u n
1 N B o
r i
su e 7 0 x0 i
L a
7t d
i 5em6 i
i, E
n a
.5 l
P i
di 3
o0 i
+ i n (P i
/mc a n
5 w
i 5E}3 oA O% gnrE Qh' ul H-n i
Ji 1
o 2
e5 i
0 br g i
4 r
i
\\
aee 1
i
.e 0
7l El i
3 m
i
,8 F aS1 u
ny o b5 1
i 1
l Pcsf a
i 1
1 2
l Det i
0 l
2 i
4 3
e3 a 0 i
,6
,2 i
n i
Lm) 2 i
ce i
2 8
9 i
5 i
0 0
3 i
m i
,7 R
i 5
R E i
0 i
F 3 i
0 E S t
i GT s
R 5
I P
OE pRT 4
N T aeR 0
n E
g i
e.v 4
i D
1 200 5
2 1
5 i
5E$ i: : _
Ei;
- !$ EE$ : :: [ i:: j: _
ro 0
33 0
t 0
o o
4 s
s g
1 1
o o
0 1
0 0
j1 l1!;!
I l11
!ii1!!lll ij, I!
I
RS 1
t 0
m 1
3 4
5 7
0 0
0 0
0 eo 0
0 o
0 f u e
r r c 5
3_~:
- : : - 5}5 E; : -
i::: !E
~E 5-
- :i _ g 4 j :
ree 0
u d D 4
i RE n
R to o 5
i 2
ES b.c n
0 o
.9 4
GT 1
I R
y B 2
OI n
C 3
5 4
T&
2 N
e 5
i T
cW i
0
,7 1
E 3
8
,8 D
n E
I h8 n0 i
2 r
0 9
6 S-d n
e2 c5 u
P 1
I 7r 2
p1 o
i 5
M r
n E
7 I
c3 a
2 5
t 0 i
R R
+/AiF
[
,2 3 2 e
GI 1
E M ni 58 d1 i
I S
0 i 1
dig 8
5 jmu 0
A-n OS 2
2 u
1 i
NIB 0 sur 7 0 x 0 u
L e
a i
n E
Ttem6 n
a l
5
-o d
u di P
n 3
o0 5 i n (P u
0 5}cm 8 O g%E 1 gay
=
O2 l'
$ '0 0mc 5
w a
n o
2 e
u 5
3
+brg 4
r n
/aee 1
.e 0
l I
l 3
m u
\\ 1 1 aS2 n
1 1
a
,3 l
0ny o b5 n
)
csf o
l 2
g 1
1 l
Eet a 0 n
5 0
n o
2 F
e3 Pim)
L 2
1
,9 c
2 5
u e
0-7 9
Dm 3
,7
,1 2
n R
0 i
5 8
RE i
0 0
ES t
i n
P s
GT s
F 35 i
4 R
0I pRT C
n 4
N T aeR 0
n E
ge.v o
D 1
45 i
200 n,
3 1
5 o
0 i;:
- : : _ I}i 55; 5: _: : !E E i-
-i _i f:
r 3
3
.4 5
0 1
m 3
0 0
0 7
9 1
0 0
0 00 J
l
)
lI11l l;
)1Ilcl l;
!iI'll!
o a
E 8
8 8
8 a
8 8
C e
>>>>>iiiiliiiii>>>>
aB 6.
>>>>i>>>>
>ii>>>>>> -
iiii iiii iii >iii
>iii>>I i
iii>>>>>>
> >ii>>ii
>iiiiii ee o
G.
LE 2
m m oO a
m ca tr -
h m
gH
-m o
xm
=
o*n Hp k
E g
5 m
.O O
Eh O
"r CD us ?
- a. k E
Q a
o w
o E
o
^
W
,E u
a in $
li' u
@m
'N'-
u m
> > s~ to3 oj 2-aci g
- o. &
- S
- 3 c ex s
m c N5 Si h 25 cn C 3 s
S.L 4.
b t.n ~(D 3 m
o n 'o o Q.
as o.
E i
P 3
o
+
u
- E =
i Indicated % of Rated Power Each Div. = 1% FP y 3 8, to na
.N m
a c-A E
o _na e (D w
3 E
m As CD W p
tr 3 T1 3M O mM gO (n %
m
.=*
g &
ty ce c.a
- s O y g-m y
en o
Q, o
2 n-m-
o
$. x s m
T*
zh 6
$N g
E go a
O "t
its16sisi 116: 11isi sittiasis sisa6siis aiti64414 4es#6ssis taisisssi s6sistasi istianiss iainaisia sasstesis tae tee 3
3 8
8 8
8 a
8 8
3 O
O
Figure 7 (Page 1 of 2)
LOCA Limited Maximum Allowable Linear Heat Rate Mark-B8 Fuel 19 18 8-ft
\\.,
17 t
g 6-ft 16 i
e 10-ft 2-ft
\\..
.15 tr X
s 14 2
13 ze.
n yoo s,
12 w"
(60000,11.6) 11 O
10000 20000 30000 40000 50000 60000 l
Bumup, mwd /mtU l
Source Doc. B&W 51-1234870-02 Note: Ebr each 1000 Nd/mtu in excess of l
Referred to by Tech Spec. 3.5.2.8 40,000 Mwt1/mtu, the linear heat rate t
shall be reduced linearly by 0.075 FM/ft.
l
Figure 7 (Page 2 of 2)
LOCA Limited Maximum Allowable Linear Heat Rate Mark-B9 Fuel 19 18 (39000,18) 4-ft s s.1p 17 4,8,10-ft 16 c
2-ft h
.15 a:
1
.a 14 13
{fN (57000,12.6) 12 g '., g 2,
O 11 O
10000 20000 30000 40000 50000 60000 Bumup, mwd /mtU Source Doc. B&W 51-1234870-02 Note: Ebr each 1000 MVmtu in excess of Referred to by Tech Spec 3.5.2.8 40,000 mvmeu, the linear heat rate shall be r M_vwl linearly by 0.075 KW/ft.
TR 101 R:v. O Page 27 of 33 Figure 8 AXIAL POWER IMBALANCE PROTECTIVE LIMITS Thermal Power Level, %
-- 120
-44.7,112.0 @
45.0,112.0 ACCEPTABLE 4 PUMP OPERATION
-- 100
. 44.7, 89.7 45.0,89.7
-74.3, 88.8 ACCEPTABLE 75.0, 88.4 3 AND 4 PUMP i
OPERATION
- 80
^
4., 62.3 8 0,623
-74.3,66.5 75.0,66.1
-- 60 ACCEPTABLE 2,3 AND 4 PUMP OPERATION
/
e
- 40
-74.3. 39.1 75.0, 38.7
-- 20 l
l l
l l
l l
l l
l l
l l
l l
l d 70 50 30 10 0 10 20 30 40 50 60 70 80 Axial Power imbalance, %
. 7 EXPECTED MINIMUM CURVE REACTOR COOLANT FLOW (IbMr) 1 139.8 x 10E + 6 2
104.5 x 10E + 6 Source Doc. BWNT 86-1234922-01 3
68.8 x 10E + 6
TR 101 Rev.O Page 28 cf 33 l
Figure 9 PROTECTION SYSTEM MAXIMUM ALLOWABLE SETPOINTS FOR AXIAL POWER IMBALANCE Thermal Power Level, %
120
-34.0,108.0 34.0, 108.0
- ACCEPTABLE i
! 4 PUMP j
mi = 1.0396 m2 = -1.0248 i-34.0, 80.6 34.0, 80.6 i
1 41.8,79.1 l ACCEPTABLE 80
)
- 3AND4FUMP j OPERATION j
l i
i 60 i
i-34.0, 53.1 34.0, 53.1 i
4 1.8. 51.7 62.5, 51.3
! ACCEPTABLE j
i 2,3 AND 4 PUMP
! OPERATION 40 i
1 l
-61.8,24.2 i
j 62.5,23.8 i
20 i
oi io o
e 6i IN d
si i
- is si si
!E E
5 P!I I
I I
I Ie i
I I
I I
I I
I I 70 50 30 10 0 10 20 30 40 50 60 70 80 Axial Power imbalance, %
Source Doc. BWNT 86-1234922-01
TR 101 Rev.O Page 29 of 33 l
i l
Operating Limits Not Required by Technical Specifications j
d i
4 4
i
(
e l
i h
/
1 5
a 3
i TR 101 Rev.0 i
)
Page 30 of 33 i-1
)
i 1.
Core Minier.am DNBR Operatine Limit l
(
Reference:
BAW-2187).
l The core minimum DNBR value as measured with the NAS Thermal Hydraulic Package (Display 1 or 4) should not be less than 2.02 l
(102% ICDNBR).
i 4
l 2.
Maximum Allowable Local Linear Heat Rate Limits
(
Reference:
T.S. 2.1 Bases)
The maximum allowable local linear heat rate limit is the minimum i
LHR that will cause centerline fuel melt in the rod. This limit is the l
basis for the imbalance portions of the Axial Power Imbalance J
Protective Limits and Setpoints in Figures 8 and 9 of the COLR, I
respectively. The limit is fuel design-specific; the value for the most limiting fuel design in the current core is used for monitoring as given below:
~
)
d BWFC Mark-B8/B8V l
LHR to melt = 20.5 kW/ft l
4 1
4 v
m w
,--e--
4 TR 101 i
Rev. 0.
Page 31 of 33 1
i i
DNBR-Related Bases Descrig tions l
I i
1 i
t i
l E
f i
1 G
n
TR 101 i
Rev.0 Page 32 of 33 1.
Power-to-Flow Trip Setpoints The nuclear overpower trip setpoint based on RCS flow (power / flow
]
or flux / flow trip) for the current cycle is 1.08. This setpoint applies to l
four, three-and two-pump operation as described in T.S. Table 2.3-1 l
and Figure 9 of the COLR.
1 The power / flow trip, in combination with the axial power imbalance l
trip, provides steady-state DNB protection for the Axial Power Imbalance Protective Limit (Figure 8). A reactor trip is initiated i
when the core power, axial power peaking and reactor coolant flow l
conditions indicate an approach to the DNBR limit. The power / flow trip also provides transient protection for loss of reactor coolant flow events, such as loss of one RC pump from a four RC pump operating condition.
i
{
Power level and reactor flow rate combinations for four, three-and j
l two-pump operating conditions are as follows:
l 1.
Trip would occur when four reactor coolant pumps are operating if power level is 108 percent und flow rate is 100 percent, or power level is 100 percent and flow rate is 92.5 l
percent.
2.
Trip would occur when three reactor coolant pumps are j
operating if power level is 80.6 percent and flow rate is 74.7 percent or power level is 75 percent and flow rate is 69.4 percent.
~
3.
Trip would occur when one reactor coolant pump is operating in each loop (total of two pumps operating) if power level is 53.1 percent and flow rate is 49.2 percent or power level is 49 percent and flow rate is 45.3 percent.
i The power level trip and associated reactor power / axial power imbalance boundaries are reduced by the power-to-flow ratio as a j
percent (1.08 percent) for each one percent flow reduction.
\\
TR 101 Rev.O Page 33 of 33 4
2.
Design Nuclear Power Peaking Factors i
(
Reference:
T.S. 2.1 Bases) 1 The design nuclear power peaking factors given below define the reference design peaking condition in the core for operation at the i
maximum overpower. These peaking factors serve as the basis for the pressure / temperature core protection safety limits and the power-to-flow limit that prevent cladding failure due to DNB overheating.
t Nuclear Enthalov Rise Hot Channel Factor (Radial-Local l
Peaking Factori.'FN AH N
F E*7I AH i
N Axial Flux Shape Peaking Factor. F z j
N l-F z = 1.65 (cosine) 4 N
Total Nuclear Power Peaking Factor. F q l
FN pNAH x F z N
=
q l
F", = 2.82 l
..,,