ML20094P718
| ML20094P718 | |
| Person / Time | |
|---|---|
| Site: | Hope Creek |
| Issue date: | 07/27/1984 |
| From: | Farrell C, Jacqueline Thompson, Zaliznyak M GENERAL ELECTRIC CO. |
| To: | |
| Shared Package | |
| ML20094P713 | List: |
| References | |
| 170-107, NUDOCS 8408170339 | |
| Download: ML20094P718 (18) | |
Text
..
3.30'840266545 e
GEERAL ELECmlC 00frAfff
~
CLADF 10002D STRESS GI HOPE OtEEK RECIRCULATION PIPINS JULY 27,1984 1
DESIGN EMD #170-107 b
N-PREPARED BY:
C. A. FarrelI, Engineer
~
Plant Piping Analysis I REYlEWED 8Y:
N. ZalIznyak, Engineer Plant Piping Analysis I
[
s l'
APPROVED BY:
kj.'Thampson,hanager PIBnt Piping Analysis 1 DRF 221-00038-1 i
l l
I l
8408170339 840814 PDR ADOCK 0500035A G
pon l
TABLE OF CONTBf75 1.0 SACNOROUS 2.0 MNFOSE
- 3.0 DISCUS $1011 3.1 Prfeary Membrano 3.2 Prleary Membrane Plus Sending 3.3 Stresses Due to Bolt Proloed 3.4 Clamp Design Criteria 3.5 Bolt Loosening Protection 3.6 Stress Due to Constraint of Expansion from laternal Pressure 3.7 Stress Due to Constraint of Differential Thermal Expansion 3.8 Fatigue Usage i
3.9 Clamps on Elbows Appendix A Recirculation Loop 8 Results A.1 Piping Node Diagram with Clamp Locations A.2 Clamp Assembly Properties A.3 Loed Combinations A.4 ANSl7 Stress, ANSl7 Fatigue, and Preloed Stress A.5 Highest Stress and Fatigue Summary Table Appendix 8 MC Information Notice 83-80 l.
i i
l
~
e c
,----ym,,,m,,,,.,,,,,,__,,,,w,~.v,,,,,,m,w,y_m.,
,-,-y,,w.,c_,e-
,.wm,,,-%y-,---
i 1.0 SA0(WI0l#8 ASIE 111 requires that the effects of attachment la producing thermal i
stresses, stress concentration and restraints on pressure retaining members shall be taken into account In checking for comp!!ance with stress criteria. (ND-3645)
' Attachments to piping are generally categorized as Integral attachments and non-Integral attachments. Lugs and stanchions welded to tte pipe wall are examples of Integral attachments. Clamps used for attaching hangers and snubbers to the pipe by bolting are non-Integral attachments.
The design reports prepared by General Electric specifically address loce! stresses at Integral attachments (lugs) If the loads on the lug are significent. Rules for evaluating local stress at lugs have been def fded by AS8E Code cases k?.2 and N518. GE computer programs evaluate local stress at lugs in a mm. wr consistent vih these Code cases.
la November of 1983, the Nuclear Regulatory Committee Issued IE information Notice 83-80: Use of Specialized " Stiff" P!pe Clamps, (Appendix 8). The Information notice Identified three concerns with stlff pipe cimaps: excessive bolt proloed Induced stresses In the pipe, small clamp contact bearing areas that could Induce local overstress and the offact of clamp on elbow stress indices. Although no response was required from he notice, he issue was raised in question 210.53 of the Hope Creek final safety analysis report. The response to the question commiltted to evaluate the affect of stIf f clamps on the piping.
2.0 PURPOSE This analysis evaluates the stresses induced by E-System clamps attached to the recirculation piping in General Electric's scope of supply.
3.0 DISCUS $10N The Code does not have rules for the evaluation of non-Integral attachments; however, methods consistent with the Intent of the Code have been developed to address the concerns of Information Notice 83-80 and the Code.
3.1 Primary hemhrana strannan The aufstence of a pipe clamp will not affect the calculation for alnlaum wall, In f act, membrane stresses in the circumferential direction due to pressure will be less in the vicinity of the clamp than la the areas away from the clamp. The primary membrane stress is less than th,at of straight pipe due vs clamp reinforcement of effective thickness.
1
-_._s--,
,y
._,,.._----_.__,__,,-...-_-,._-,,_._,,,,m,,..n
- _,, _ _. ~.
e 3 J Pr i m " - "=aa P l us Pr l - w " d l an Etree-Equation 9 Is aimed at preventing collapse of the piping system due to i
loods that produce primary stresses. Collapse Is prevented by keeping the stresses due to pressure, deed weight, and inertia effepts of dynamic loeds to less then prescribed values. The aufstence of clamps on piping systems do not adversely affect the moment carrying capabilfty nor do they reduce the ability of the piping system to resist collapse under combined toedings that produce primary stresses.
The only concern is the loeding transmitted from the snubber through the clamp pad to the pipe. This bearing load will result in local stress in the pipe wall. These stresses are conservatively calculated using the Indice method and added to the membrane and overall bending stresses computed by equation 9 of the Code.
3.3 Strasses Due to Prafand When the clamp is Initially Installed on the piping system and the bolts are tightened, the proloed will produce stress in the pipe wall. The.
stress produced by proloed is applied one time and produces a stress of only one quarter cycle. Stresses of this type need not be included in the stress evolustions required by 2-3600. Although bolt proloods are not addressed under the Code, bolt proloods could result in damage to a pipe If a clamp was poorly designed. Calculations have been made to ensure that bolt proloads could not result in local plastic deformation of the piping.
3.4 ci - nestan criterla j
The stiff type clamps were designed to provide a high strength atta::hment for the pipe which would not slip and would fit on the smallest practical length of pipe. Clamp design of the strap type are too wide to fit In many locations and require lugs to hold them In position. The stiffness of a compact high strength clamp la Inherently greater than that of a i
strap type. General Electric specifications require that all clamps be significantly stiffer than the snubber attached to It. The stiffness requirement does not govern the design of stlf f type clamps.
3.5 Pratee+f en from i-ma f na in order for the clamp to hold its position during vibratory foods, It must grip the pipe ulth enough force to prevent sliding. The two j
mechanisms for clamp loosening are loss of tension in the bolt due to nut backing off and bolt stress relaxation. To prevent backing off of the nuts, all bolts have double nuts. The bolt material selected for the clamp is an A490 type commonly used for flange bolts. This meterial was selected because at the temperatures of concern, it is resistent to rolaustIon.
l ;
..g.
,-,.-e.,,--
,n,w--
m--gn---,-
.m-
,,-nwn-e--_
__,--,--,--__---.-_,-.-,,-,-,,--m---_---a s
u-.<-
r 1+r=== them fa PWstn+ af r-naastan fram In+arnal Praamura 3.6 Clamp laduced stresses caused by the constraint of pipe aupansion due to Internal pressure have been added to other operating E-:-2 y and and K indices for the clamp.
peak stresses by calculatin0 special Cy g
r==+ratn+ af nIf feran+tal Thermaa r===ne f na
- 3.7 1+r=== nua +a Cimap induced stresses due to differential temparatures and asterial i
expansion coefficients have been accounted for by computing special C3 and K, Indices for the clamp. The stresses have been added to other operating secondary and peak stresses.
l 3.8 FatIana Usapa The fatigue usage at each clamp location has been conservatively computed taking into consideration clamp induced stresses from pressure, temperature and snubber toedings. The clamp induced stresses were added to the stresses computed for each load set using equation 10 and 11 of 2-3650. Cumulative fatigue usage was computed by the rules of the Code.
3.9 ciamps an_Elhous Same clamps are located on or near the ends of elbows because of lack of Clamp loadings on elbows due to snubbers, laternal pressure and space.
differential expansion are similar to or less than those ca straight pipe. The major dif ference between a clamp on straight pipe and on an elbow is the couping between the pipe bending and the clamp loads due to elbow ovalization. The clamp tends to resist ovalization by stiffening the pipe wall. This local stiffening results in three effects: a slight stiffening of the elbow in bending, a slight reduction in overall elbow The bending stress and a 1ocal stress concentration at the clamp pad.
first two effects are small and can be neglected in a stress analysis.
The local stress concentration at the clamp pod is caused by the pad preventing the local region of elbow under it from assuming the ovalization curvature. This iocal resistance to curvature causes the stress concentration by crimplig the pipe well. 8eeding Indices C.,and and K., for elbows with clamps hcve been calculated to account for this seconBary stress concentration effect.
l i
l i
r h
3*4F 30s *
~ T 304M i
i 34F
~4tf w
i 33 3g 3
3
' 3ot i
g g
l 144d 334w 424m '
an" i
3g,o 513
2.s Jehuns a
543" 3no hEj 321' 2W 542 332' 8*
i 2F' 33 gee. W g Aug ig
! RETURN 4'
RH82 <
l goo
,,53 l
Sures.Y %
., gg, J-5 d het
$817 2B q
ses 61 o SD at
- se8) qv GO:
Lt.
i 448% SE2.
o g
g 15 gno o
"+
N o 48 y,
i, 4(,F Stiff clamp locations l
21 am cimW
- #y3th,,, san
- Ges, l
a,. p 53.
i ggg,,
n I
4o 1
II IS p r
i HOPE CREEK RECIllCULATION LOOP 8 NGDE DIAGftAM Figure A.1 l
J
._.____.._-_.m.
5 E i l i t
] ] ]
~
i s
- a. n.
3 I I I I
I.
R s
S S
8 i.
2 S. 8 e
o e.
e an a
R-x
=
- a. a.
s s.
a Em s.i l 2
s =
a a s 5
5 5-l tjg t
i 8
9 c.
9 9
o 9
9
- .i sa s g.
~
--a re :
=
=
a
=
=
=
=
=
~s n
ri l}3 j :a i
p 2 tj it; s
s s
s E
a a
e a
l 1
l G
$5 gg g
s-g 22 31 2
2 4
4 3"
!5 h h h h h, h, *h s l *.
t, I 1
s_
b_ b_
a_
b_
E l
o o
u.
l.
GI I I i
i 1
1 3
1 Ill l
,n n=1 a
a a a 3
E e
E e
e e
2 2
2_
2_ 2_ 2_ 2_
3.3 a
11:
- . ]
=
I1 E
,R 4
a a
og g a
a a
a
..A
9738948 c
i SEMRAL ELECTRIC CeMPA8F SFEC NO.
22A MV. 800.
SSILIts MATER REACTOR SYSTEMS MPARTMENT I
DePE CMEK ftEClitC B TM LenalIS CSSINATION USED Felt THE ANALYSIS es lese ARE AS FOLLOW SESless 1 PO + Wil
- OSEI LEwL S 1 PP e WT1
+ SSES i
)
LEwL C 1 PP + Wil i
LEWL D 1 PP + WTl
+ SeetTilSSEI les2
+ 1 API test
)
4 I
senteTEsos ALL uselTS AftE IN Poupes, INCHES EXCEPT peOTED 1
PEAK PftESSURE WILL DE USEO Peft LEVEL B C AIS D s e eseSTEe e e iF 900 USER ItePUT PftESSURE Feet EACH LOAD COPSIMATION, i
l 1,
1 1
i
)
J e
i i
i l
1 1
1 1
1 1
I TSble A.3 1
1 4
I I
+
v.
3789848 escarm4L ELECTRIC CaePAMf SPEC MS.
22A REV. fe.
SSILife tdATER REACTOR SYSTGtB DEPARTMENT tePE CAEEK MCIRC S SuCTices seeZZLE TO PtstP peEAR Be00E 010.
SDs 26.003 ids 28.000 To 1.201 le 9097.S Ze S49.8 B1
- 8.90 Cle 1.38 C3e 1.00 C3e 1.2S C3*e 0.80 33 e 1.08 Kle 1.10 K2e 1.10 K3e 1.10 SinESS aut to Lue see etg age Amt IsectuSED O. PalgtANY STRESM S (EeuAYless el SENWICE Cee. PRESSumE KM0lMS AND TOTAL ALLeuASLE STRESS LEVEL esp.
STIIESS TestStese STRESS STMSS STftESS NATIS SES8Sfs 1
7298.
SSI.
~
9788.
29013.
0.390 LEWL S 1
9963.
SSI.
- 11843, 28596.
0.407 r
LEWL C 1
9883.
207.
- 9370, 34315.
0.273 LEWL D 1
9863.
1943.
18486.
38128.
0.484 S. PftiftARY PLUS MCepeAftY (EeuAT 101 1 13 47409.
80025.
C. SECeeAftv STRESS IRANet (EOUATISM 12) 1 13 976.
90025.
0.020 S. PettetA PLUS MCS ENC TM EMP (EcuAT 13) 8 13 36200.
80025.
0.724 E. Clamp Preload Stress 9411.
19064.
0.494 F. Cumulative Fatigue usage Factor 0.047 1.0 0.047 l
Table A.4.1
978S843 SPEC NO.
29A IEEV. 800.
OEWitAL ELECTRIC CSW ANY SOGLIGES teATER ftEACTOR SYSTDtB DEPARTptENT teSPE CaEEE ItECIRC S SUCT BON 9004.~tE TJ PUMP leEAR NSOE 090.
SS. 29.002 ids 25.000 Ta 1.201 8=
SOS 7.S Z.
449.3 St a 3.90 Cle 1.38 C2= 1.00 C3 1.25 C3*e 0.00 S2 a 1.00 Kle 1.10 K2= 1.10 K3e 1.80 ST9tESS DUE TO LUS See ele.
SSIO Aftf INCLUDEO A. PRiftARY STRESSES (EOUATices el SENW S M OSIS.
PMSSURE SEMOING AND TOTAL ALLOMASLE STMSS
=
LEVEL 18 0.
STitESS 700t88000 STM SS STftESS STMSS RATIO SES 8088 1
7288.
SSI.
10197.
28013.
O.407 LEWL S S
SIS 3.
SSI.
12084.
24598.
0.422 LEWL C 1
S183.
207.
S370.
34318.
0.273 LEVt. S S
SIS 3.
1943.
19788.
38128.
0.818 e
S. PRiftARY PLUS MCODEndutY (EOUAT 109 I IS 47409.
Sects.
C. MCesetAftv STstESS RAseSE (EOUATf006 129 I IS 579.
80025.
0.020
,80025.
0.724 9411.
19064.
0.494 E. Clamp Preloed Stress 0.047 1.0 0.047 F. Cumulative Fatigue Usage Factor
~
Table A.4.2
9739648 GEMAAL ELECTRIC CESEPANT SPEC MB.
22A REW. 800.
SSILite tdATER REACTOR SYSTEMS DEPARTMENT BWPE CAEEK RECInc S PUMP OISCN To stNR RTM TEE MEAR MSOE 044.
D 28.068 89= 25.160 T 1.430 ge 30433,3 3 745.6 33 e S.Se Cle 1.84 Cte 7.92 C3e 1.19 C3's 0.50 SS e 2.71 Kle 3.20 K2e 1.80 K3s 1.70 STRESS SWE TO LUS S4S 94L. 352 AftE INCLUDE 0 O. PERIMAdIV STRESSES (EeUATION S)
SEsIVICE Cepe. PftESSURE MNDI NG ANO TOTAL ALLERdABLE STRESS LEVEL 88 5.
STitESS ToftsteN STRESS STRESS STRESS RATIO DESIGet 1
7447.
1893.
10241.
20013.
0.409 LEWL S I
- 7804, 1883.
10588.
2SGSS.
0.371 LEWL C 3
7804 SSO.
S6SS.
34318.
O.232 LEWL D 1
7604.
2771.
14367.
36326.
O.377 i
S. PftiftANY PLUS SECOISAftY (E00AT 103 1 13 50838.
- Sects, C. SEteBSAftY STRESS RANDE (EOUATIO90 12112 13 2744.
50029.
0.005
- 9. PRiftA PLUS SECO EMC TN EMP (EOUAT 133 8 13 41370.
80028.
0.827 I
7200.
19064.
0.378 E. Clamp Preload Stress F. CuSulative Fatigue Usage Factor 0.111 1.0 0.111 1
\\
l i
Table A.4.3
e73SS40 i
i
- ELECTRIC OINFANY SPEC NB.
RSA DEV. NO.
i SetLINS WATER REACTea SYSTEMS DEPARTNENT j
I M CAEEK RECIflC B PlatP OISCM TO RHR RTN TEE MAR NDDE 000.
q S
D SS.000 SD= 29.140 Te 1.410 le 10434.9 Ze 748,8 i
31 e 8.50 Cle 1.29 Cte 1.00 C3e 1.19 C3's 0.80 j
33 e 1.00 Kle 1.10 Kas 1.10 K3 1.30 i
i STMSS SM To LUS Sm OSO.
SSG A M INCLUDED 1
I A. PetIMAHV STMSSES (EcuATION SS I
l SEfEWICE Cem. PftESSURE SENDING AND TOTAL ALLOW 3 ALE STRESS LEVEL NS.
STRESS TORSION STitESS STMSS STMSS ftATIS i
i l
DESIO90 1
7447.
Sta.
10368.
25013.
O.414 LEWL B 1
7404.
413.
10724 28598.
O.378 1
LEWL C 1
7404.
140.
7944.
34318.
O.232
{
LEWL D 1
7404.
1438.
18427.
34124.
0.410 I
1
- 5. PRiftAftY PLUS SECONDAftY (EcuAT 10) 1 13 48439.
50029.
S. SECONRAftV STRESS IRANGE lEcuATION 82) I la ISSO.
Sects.
0.038 S. PftlftA PLUS SECO EXC TN EMP (EcuAT 13) S 13 38174.
Sects.
0.723 t
t l
E. Clamp Preload Stress 7200.
19054.
0.378 F. Cumulative Fatigue Usage Factor 0.045 1.0 0.045 i
l i
j t
i 1
i Table A.4.4
.i I
i i
9725843 SEM RAL ELECTRIC COMPANY SPEC MO.
RSA REV. 095.
SSILite MATER REACTOR SYSTEMS OEPARTIENT j
3 BEFE CMEK RECISC S PtstP OISCH TO RHR RTM TEE IEAR MODE 081.
SBs 98.000 SD. 25.900 To 1.410 te 10438.9 Ze 748.4 Bt e S.90 C1= 1.29 Cte 1.00 C3e 1.19 C3's 0.00 B3 e 3.00 Kle 1.30 Kas 1.30 K3e 1.10 STMSS OUE TS LUS S!S Get.
337 ARE INCLUDE 0 A. PRiftARY STRESSES (EeuATleN SI 4
i SERVICE cers. PRESSURE SENDI $8B AND TOTAL ALLOWASLE STMSS 1
LEVEL NO.
STRESS TORSION STitESS STRESS STRESS RATl43 4
SESIS89 1
7447.
971.
9878.
25013.
0.387 i
LEWL S 1
780d.
971.
10039.
RSSSS.
0.391 i
LEWL C 1
- 7804, 133.
7937.
34315.
O.231 LEWL D 1
- 7604, 1330.
18209.
38124.
0.401 i
I j
S. PRIftAftY PLUS SEcceeDARY REOMAT 103 1 13 47118.
Sects.
C. SE000eARY STRESS RANDE (EcuATION 123 1 13 1900.
50029.
0.030
- 3. PftIfth PLUS SECO ENC TH EMP (EcuAT 133 8 13 36422.
60029.
0.728 8930.
1901:4.
U.468 l
E. Clasp Preload Stress 9
i F. Cumulative Fatigue Usage Factor 0.048 1.0 0.048 l
l 4
l
'I
(
1 I
i f
Table A.4.5 4
i i
i
}
j
I i
-f 97S9643 i
i SEMa4L ELECTRIC CWANY SPEC MS.
22A IIEV. BW.
SSELite WATER REACTOR SYSTEMS DEPARTMENT l
ISPE CREEK RECIRC B RMR RTM TEE 70 ftPV MSZZLES MEAR NDDE 105.
4 m 29.908 ids 19.730 To 1.134 le 4056.5 Ze 368.8 31 e S.90 Cle 1.82 Cte 1.90 C3 1.40 C3*e 0.50 B2 e 1.01 Kle 1.00 Kas 1.00 K3e 1.00 i
i i
STRESS DUE To LUS See 19L_ E2 ARE INCLUDED
+
j A. Palf4AftY STRESSES (EeuATISM 93 4
I SENWIM Cdpe.
PftESSURE SEMORMS AND TOTAL ALLOWASLE STRESS LEWEL 90 0.
STMSS TORSION STRESS STitESS STRESS ftATie l
8411.
29013.
O.334 DESteN 1
7274 335.
i LEWL B 1
7824.
336.
8700.
RSSSS.
0.306 LEWL C 1
7424 113.
7737.
34315.
O.228 LEWL 0 1
7624.
- 2038, 18898.
34124.
0.417 S. PRIftAftY PLUS SECONDAftY (EeuAT 103 1 13 56538.
90029.
I I
C. SE000e AftY STRESS StANSE (EOUATION 123 1 13 1898.
50029.
0.034 I
l B. PftIftA PLUS SECS ENC TM EMP (EcuAT 131 5 IS 36703.
90025.
0.734 E. Clag Preload Stress 15064.
19064.
0.790 i
F. CuSulative Fatigue Usage Factor 0.114 1.0 0.114
~
l l
i i
i I
i t
Table A.4.6 4
8788883 i
l l
etMAAL ELECTRIC CeMPANY SPEC Ice.
RSA ftEV. NO.
DetLIses te4TER REACTOR SYSTEMS MPARTMENT l
SePE CAEEK MCIRC B ftHR RTN TEE TO RPV NOZZLES NEAR MODE 108.
GDe RI.SSS BOs is.730 To 1.134 le 40SS.S Ze 368.8 i
B1 = 0.50 Ct 1.82 C2= 1.50 C3 1.40 C3's 0.50 Se a 1.03 Kle 1.00 K2= 1.00 K3e 1.00 STRESS OUE TO LUS See 108.
BB1S AM INCLUDED i
O. PWlftARY STRESSES (E00ATION St SERWICE CENS.
PflESSUM MNDItes AND TOTAL ALLOWASLE STitESS LEVEL 00 0.
STRESS TORSION STitESS STRESS STRESS ftAT IO DESISet 1
7274.
336.
~
S034.
20013.
O.321 LEWL S I
7624.
336.
SSS3.
2SSSS.
0.293 LEWL C 1
7624.
143.
7737.
34315.
O.225
}
i LEWL D 1
7624.
2038.
19994.
38128.
0.384 I
- 3. PettetARY PLUS SEcoseARY (EOUAT 103 1 la SSSSS.
Sects.
- c. SECoseARv STRESS RAmSE <E0uaTBon 12) 33 iSSS.
50025.
0.034 l
S. PettetA PLUS SECO EXC TH EMP (E00AT 133 S 13 3S703.
50028.
0.734 i
E. Clamp Preload Stress 15064.
19064 0.790 I'
F. Cumulative Fatigue Usage Factor 0.114 1.0 0.114 i
I a
1 i
4 i
l i
TSble A.4.7 i
g.
1 crees 4>
1 I
SPEC 900.
RSA REV. 8W.
anrmenas ELECTRIC OEDFA88Y SetLltet teATER REACTOR SYSTEMS DEPAftTIENT i
4...............
lWPE CRES RECIAC B Reet RTM TEE TO RPV NSZZLES 8eEAR NGOE SOS.
D 31.988 ids 18.730 Te 1.134 le 4086.5 2 384.8 i
j 33 m e.Se Cle 1.24 Ct* 1.50 C3e 1.18 C3's 0.50 j
33 e 3.08 Kle 1.00 K3e 1.00 K3s 1.00 1
)-
STM DUE To LUS See 208.
ant 4 ARE INCLuoto l
l A. PRiftAftY STRESSES (EeuATISIG St SERVICE CeBS.
PRESSURE SEMOlleS AND TOTAL ALL8m m E STftESS LEVEL seg.
STfbESS TORSIOpe STftESS STftESS STstESS RATIO SESleet 1
7274.
. Sto.
4481.
19013.
0.334 LEWL S 1
- 7624, 350.
Sell.
24S98.
0.308 LEWL C 1
7824.
78.
7701.
34318.
0.224 i
LEWL 0 1
7824 1998.
13367.
34128.
0.380 i
I
~
- 3. PRaptAftY PLUS SECONDAftY (EeuAT 109 1 13 48218.
30025.
C. SEceseAftY STftESS HAgeSE SEcuATION 12) 1 13 2134.
300ES.
0.043
- 3. PftlftA PLUS SEce D C TN D P EEOUAT 131 5 13 31682.
30035.
0.837 7200.
19064 0.378 E. Clamp Preload Stress F. Cumulative Fatigue Usage Factor 0.039 1.0 0.039
~
l l
l l
Table A.4.8 l
1 e
- e 9798443 aramm4L ELECTRIC COMPANY SPEC 800.
22A REV. MS.
SSSLlas WATER REACTest SYSTEMS DEPARTIENT 9WPE CAEEK MCI AC S IIHR RTM TEE 70 ltPV MOZZLES 90 EAR MSOE SOS.
SS. 21.888 ids 18.730 To 1.134 le 4086.5 2 368.8 B1 e 0.90 Cle 1.24 C2 1.90 C3e 1.18 C3*e 0.80 SS = 1.01 Kle 1.00 K2= 1.00 K3e 1.00 j
STRESS DME TO LUS See RSL MIS ARE 19eCLUDED A. PRiftAAV STRESSES (EeuAfices SI SEIIVICE Cepe. PetESSURE SENDIIES AND TOTAL ALLSWASLE STMSS LEVEL NO.
STMSS TORS 80se STitESS STMSS STMSS RATIS SEstest 1
7274 301.
SSSS.
28013.
0.342 LEWL S 1
- 7624, 301.
8805.
ISSSS.
O.311 LEWL C 1
7624.
71.
7685.
34315.
O.224 L2WL 3 1
7624.
1478.
13182.
38123.
0.344 i
S. PRiftARY PLUS SE - *Y (EOUAT 101 1 13 44882.
90025.
C. SEceleANY STRESS e m (EeMAfleet 123 1 13 1804.
90025.
0.038 i
S. PRiftA PLUS 9ECS ENC TM EMP (EcuAT 131 5 13 38848.
90025.
S.837 i
i E. Clamp Prulotd Stress 7200.
19064.
U.37ts F. Cumulative Fatigue Usage Factor 0.039 1.0 0.039 l
l t
i i
Table A.4.9 i
A.5 Highest Clamp Induced Stress and Fctigue Hope Creek Recircul tion Loop 8 e
Ratio hwenW Identification of Locatian item Allowable
""8 I
Evolunted (1)
/
ter Limits of Nighest Stress Points j
Primary Stress Eg. 9 < 1.55m 10366 25013 0.414 1
588. Discharge Riser aos W Cendttien Primary Stress Eg, 9 <1.85m & 1.55y 12064 28596 0.422 1
5810. Section Riser Servici Level 8 Primary Stress Eq. 9 <2.255m & 1.8Sy 9370 34315 0.273 1
5810. Section Riser Servid Level C Primary Stress 19758 38128 O.518 1
5810. Section Riser 3
Sf 3g Primary plus Secondary 5813. Recirc Needer Eg.10 < 3.05m 55535 50025 1.110 582. Discharge Elbow Secondary Stresses 2744 50025 0.055 Eg.12 <3.05m Primarydthout Dles I+n ' i-582.. Discharge Elbow Stress 41370 50025 0.827 Espensten Eg. 13 s3.05m 5813. Rectre Needer I
0 O.114 1.0 0.114 (1) All equettans used are from A$fE ESPV Code. Sec. III - NS-3650.
(3) Egn. 10 triggers fatigue usage calculattens estag les cycle fatigue mathed. Since fatigue usage is (2) See Table A.3 within alleunble. the higher rette,is acceptable.
4 i
l
.