ML20093D284
| ML20093D284 | |
| Person / Time | |
|---|---|
| Site: | Fort Calhoun |
| Issue date: | 09/08/1995 |
| From: | Richard A OMAHA PUBLIC POWER DISTRICT |
| To: | |
| Shared Package | |
| ML20093D274 | List: |
| References | |
| EA-FC-90-062, EA-FC-90-062-R03, EA-FC-90-62, EA-FC-90-62-R3, NUDOCS 9510130197 | |
| Download: ML20093D284 (190) | |
Text
{{#Wiki_filter:. LIC-95-0177 FORT CALHOUN STATION UNIT NO. 1 i ENGINEERING ANALYSIS EA-FC-90-062 Revision 3 " Diesel Generator Upper Temperature Limits" i d i l 1 I t 9510130197 951005 {DR ADOCK 05000285 PDR
OFFICIAL cun PRODUCTION ENGINEERING DIVISION PED-QP-5.1 QUALITY PROCEDURE FORM R6 PAGE 1 OF 2 EA REVIEW CHECKLIST EA-FC 4 2 Rev. No. 8-EA Page No. / Total Pages Mf- @ 1 EA TITLE: b/EsBL &sfmfM WM62 E5~vretwE Imr3 ~ i QA CATEGORY: REPORT TYPE: [)(1 COE [ ] Fire Protection [ ] Revision [ ] Non COE [ ] Limited CQE (X) Analytical Report [ ] Special Does this change Does this analysis Does this change require a DBD identify any require a USAR Revision? potentially reportable Revision? conditions? [ ] YES [)<] NO [ ] YES [X] NO [ ] YES (;<] NO INITIATION: Responsible PED Department h#- Mech /ch - M7 id-Date NY/95 Responsible Department Head A vw kB / / Date P.b/l9f Preparer C/ Mgr - Station Eng./Mgr - DEN Date PED Department No. 357 Due Date ENGINEERING ANALYSIS TYPE: Electrical Equipment Qualification (EEQ) [ ] Computer Code Error Seismic Equipment Qualification (SEQ) [ ] Analysis (CCE) [] Core Reload Analysis (CRA) [ ] Nuclear Mat'l Fire Protecti'on Analysis (FPA) [ ] Accountability (NMA) [ ] Cable Separation Analysis (CSA) [ ] Operations Support Associated Circuits Analysis (ACA) [ ] Analysis (OSA) ><] Safe Shutdown Analysis (SSA) { ] USAR Justification OTHER: [ ] (USJ) [ ] Only required when independent review authorization is required. DISTRIBUTION: J Copy Copy Group Name & Location Sent (X) Group Name & Location Sent (X) 352 Supervisor - System Engineering kvWYfb6 fl*2* Y X p-a..e)
~ OFFIC!AL COPY PRODUCTION ENGINEERING DIVISION PED-QP-5.1 . QUALITY PROCEDURE FORM R6 f i PAGE E OF 2 f EA-FC-98-002 Rev. No. J EA'Page No. 2 Total Pages /92 i PREPARATION / REVIEW: J/!ff~ Preparer (s) ~ / j Signature 7 Date I / 4/ </ / / Reviewer (s) /. /' (f Da'te / i - S3.gnaturs j / '/ /v / Independent Reviewer (s) 1 Sfgnatur'e' Date ' l AFFECTED DOCUMENTS: Responsible Title . Revision Division / Dept t/SM 3&rrod
- 8. 4. I. 2 3 54;
'Th B M6 2C. 24. A Jr4/Jr7 i i t l' 4 i i l l AFFECTED SYSTEM / EQUIPMENT: System Tag No.(s) 16 h6-/. 16 -2. k-S.2A. S2 b 7CM, 7DB Al- /3]A, A/- 1338 l i I j 1
1 OFFi^g ' 'D N' PRODUCTION ENGINEERING DIVISION PED-QP-5.2 l QUALITY PROCEDURE FORM R6 PAGE 1 OF 3 1 3 Fage No. 3 EA-FC N~# N REV. No. EA REVIEW CHECKLIST YES NO N/A
- l. Does the PURPOSE section adequately and correctly state the reason: or the need to prepare the EA?
/
- 2. Does the EA adequately and correctly address the concerns as stated in the PURPOSE section?
(/
- 3. Are'the RESULTS AND CONCLUSIONS stated and reasonable and supportive of the PURPOSE and SCOPE?
s/
- 4. Were the methods used in the performance of the j
Analysis appropriately applied? 5
- 5. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly
/ applied? i
- 6. Were the INPUTS correctly selected and incorporated into the EA?
Ij . Are all INPUTS to the ANALYSIS correctly numbered and referenced such that the source document can be readily retrieved? Y
- 8. Were the ASSUMPTIONS used to prepare the EA adequately documented?
/
- 9. Have the appropriate REFERENCE and the latest revisions been identified?
/
- 10. Have the REFERENCES been appropriately applied in the
-/ preparation of the EA? t
- 11. Is.the information presented in the ANALYSIS accurate and clearly stated in a logical manner?
/ i
- 12. If manual calculations are presented in the ANALYSIS are they:
a. free from mathematical error? v/ b. appropriately documented commensurate with the scope of the analysis? v' Have the affected documents, identified on the As. PED-QP-5.1 form been' accurately marked up and included ,/ with a 10CFR50.59 evaluation (if applicable)? F N#'* I 'inAf a
i OG:CW CU" i-PRODUCTION ENGINEERING DIVISION PED-QP-5.2 i QUALITY PROCEDURE FORM R6 PAGE 2 OF 3 i. EA-FC- #-04 2-REV. No. 3 Page No. Y' YES.NO N/A
- 14. Is the EA free of unconfirmed references and assumptions?
/ )
- 15. Have all crossouts'or overstrikes been initialed and
/ dated by the Preparer / Reviewer? t
- 16. Is the EA legible and suitable for reproduction.and microfilming?
I'
- 17. Has the EA Cover Sheet been appropriately completed?
/
- 18. ~ For Revisions only, is the change identified and the reason for the change provided on the Record of Revision Sheet?
d
- 19. Does the computer run have page number ans alphanumeric j
program. number on every sheet? I
- 20. Is the listing or file. reference of the final computer' input and output provided?
- /
- 21. Is.the computer code title and version / level properly documented in the EA?
t
- 22. Is the identification number (Ref.
PED-MEI-23, Section 5.3.1) on the cover sheet as part of the EAs description? I.h i NOTE: Only applies to DEN Mechanical and Electrical /I&C i Departments. l
- 23. Are final computer runs correctly identified?
t/
- 24. Is the computer program validated and verified in accordance with NOD-QP-5?
- 25. If the computer program was developed for limited or onetime use and not validated and verified in accordance with NOD-QP-5, has a functional description of the program, identification of the code (title, revision, manufacturer), identification of the software and brief users instructions been documented in the EA?
I/
- 26. Is the modeling correct in terms of geometry input and
-initial conditions? d W- <n-- e
r.. r - PRODUCTION ENGINEERING DIVISION PED-QP-5.2 QUALITY PROCEDURE FORM R6 PAGE 3 OF 3 EA-FC 7b O M REV. No. O Page No. E YES NO N/A
- 27. If the analysis has identified a condition that may be outside the design basis of the plant, has a PED-QP-19
/ reportability evaluation been completed? g/~ NOTE: Applicable only to analysis of existing conditions. NOTE: For all "No" responses, a written comment shall be documented on Comment Form PED-QP-5.5 briefly explaining the deficiency and, as appropriate, providing a suggested resolution. COMMENTS: d / hETb8- / 9/' /?E 8$[ /dE/ / a Reviewer (s)' S a re / Date Departmeht/ Organization
.~.-. -.. - -. i PRODUCTION ENGINEERING DIVISION PED-QP-5.3 . QUALITY PROCEDURE FORM R6 PAGE 1 OF 2 S EA-FC-O REV. No.- 3 Page No. EA INDEPENDENT REVIEW CHECKLIST YES NO.N/A
- 1. Were the INPUTS correctly selected and incorporated 5
j into the EA? Y 2.-Are the ASSUMPTIONS necessary to perform the EA ~ } adequately describ'ed and reasonable and appropriately / l documented? / 3. If applicable, have the appropriate QA requirements been specified? 1/ ) '4. Are the applicable codes, standards and regulatory requirements including issue and addenda properly identified and the requirements correctly applied in / l the EA? 2 5. Is the approach used in the ANALYSIS section / appropriate for the scope of the EA? F i j
- 6. Were the methods applied in the performance of the
/ ANALYSIS appropriate? V e
- 7. Has applicable operating experience been considered 3
l (e.g. for replacement parts / components, has NPRDS, INPO, NRC, industry experience been used supporting the / application) ? v I j
- 8. Have'any interface requirements been appropriately j
l considered (e.g. between disciplines, Divisions, etc.)? V
- 9. Are the results and conclusions reasonable when compared to the purpose and scope?
F
- 10. Has the impact on Design Basis Documents and the USAR been correctly identified and considered?
U t
- 11. Have all applicable licensing commitments regarding the j
q subject EA been met? / NOTE: For all "No" responses, a written comment shall be documented on Comment Form PED-QP-5.5 briefly explaining the deficiency and, as appropriate, providing a suggested resolution. i T
I 1 r-~~ PRODUCTION ENGINEERING DIVISION PED-QP-5.3 ' QUALITY PROCEDURE FORM R6 1 PAGE 2 OF 2 EA-FC 70'O N REV. No. 3 Page No. 7 i l COMMENTS: I i ~ i s i i i l 4 i i f 4 'I h5 Yk/ / 0/7/?/ . 2 f ( / f) h /l ,./ I'ndipende'ntR'evie ~ s) / Date Department / Organization i Signature i
EA-FC-90-062 Rev 3 Page 8 Intentionally Left Blank w-
ry: 3, EA-FC-90-062 Rev 3 Page 9 Intentionally Left Blank
.Cif;:::AL Lv.~.i. EA-FC-90-062 - R3y,-3 Rev. 2 Page No. 10 eas TABLE OF CONTENTS
- Pgif, 1.0 PURPOSE 12 2.0 SCOPE 12 -
3.0 INPUTS TO THE ANALYSIS 12
4.0 REFERENCES
13 5.0 ASSUMPTIONS 13 6.0 ANALYSIS 14-7.0 RESULTS AND CONCLUSIONS 29 8.0 ATTACHMENTS 30 O e r w
CP:r!!_ COPJI Engineering Analysis Preparation EA No.: EA-FC-90-06 2 Review and Approval Form PED-QP-5.4 Page 1 of 1 EA Page No. 11 Record of Revision Rev. No. Description / Reason for Change 0 INITIAL ISSUE 1 Revised Analysis as noted with sidebars based on-Revision 2 of calculation FC03382 and latest Diesel Generator jacket water outlet gauge calibrations. 2 Revised analysis as noted with side bars based on Rav. 3 of I calculation FC03382, MR-FC-90-073 DG Exciter Cabintt Cooling, Jacket Water System Improvements and Coolant Change. f b fh//$$ WO4hkh e!S$$Ylod b* 7 CbhY l cib 920opy/e/ \\ Ah s74rs.1sur 70 cosau.cios.s (sec 7.2, pg.2s) } IN'otrt"4 Cwausiows M& Sostse%d Bf [4LWArtW fdDS9/4 Rev 3, 1 i l J I i PED-QP-5.31 Rev. 0 7/89
^ l .CTi":AL COMI EA-FC-90-062 Rev. 2 i Page No. 12 eas l REV*dr 1.0 PURPOSE j The purpose of this Engineering Analysis is to establish the maximum outdoor ambient air temperature at which diesel generators DG-1 and DG-2 can be expected to provide power to the Engineered Safety Features-(ESF) loads to assure safe reactor shutdown should a Design Basis Event requiring diesel I generator response occur. This maximum limit also assures that single l failure criteria are met. 2.0 SCOPE The scope of this Engineering Analysis is to: 2.1 Define the worst case load and load profile. 2.2 Establish the engine / generator outputs based on the outdoor ambient a temperature, diesel generator operational effects on room ambient BA temperature, results of radiator cleaning and re:;ults of engine coolant changeout. 2.3 Establish the capability of the generator / exciter to operate in the diesel generator room environment based on the exciter cooling modification, MR-FC-90-073, as well as with the cabinet doors off in the event of cooler failure. 2.4 Establish the margin available to allow operator restart of equipment to enhance shutdown, i.e. an air compressor. 2.5 Determine maximum ambient temperatures for which the DG's are operable. 110'F has been established as a goal for diesel ambient 4 . air operating limits, based on review of meteorological data for i i this area predicts that 110*F will not be exceeded as an outdoor ambient air temperature. 3.0 INPUTS TO THE ANALYSIS 3.1 Calculation number FC03382 Rev. 3, Diesel Generator LOCA Loads 3.2 Power Systems Analysis of FCS Generator Capabilities 3.3 EMD Specification Sheet.for the Generator 3.4 Diesel Generator Nameplate data 3.5 Tables from the " Standard Handbook for Electrical Engineers" 3.6 ES-87-12, FCS Weather Tower Uncertainty Calculation #FC01381, Rev. O.
.CC.k. uw.t. I I EA-FC-90-062 Rev. 2 Page No. 13 eas [I3,il 3.7 MR-FC-90-073 DG Exciter Cooling 3.8 DG-1 Testing - Airflows Before Steam Cleaning, 3/8'/91 3.9 .DG-1 Testing - Airflows After Steam Cleaning, 3/14/91 h 3.10 DG-2 Testing - Airflows Before Steam Cleaning, 2/27/91 l 3.11 DG-2 Testing - Airflows After Steam Cleaning, 3/25/91 3.12 Young Radiator Company Radiator Perfonnance Analysis l
4.0 REFERENCES
4.1 Letter dated 7/2/90 from M. J. Fleckenstein of EMD to R. F. Mehaffey 0 PPD Engine Loads Above the 2000 HR Rating 4.2 Letter dated 7/20/90 from Roland Royal of G.E. to G. P. Schwartz - G. E Static Exciter '4.3 " Data Reduction and Error Analysis for the Physical Sciences", Philip R. Bevington, McGraw-Hill,1969, p. 71-72 (See EA-FC-90-062, Rev.1) 4.4 DG-1TestingPerformed,6/25/90(SeeEA-FC-90-062,Rev.1) 4.5 DG-1TestingPerformed,6/26/90(SeeEA-FC-90-062,Rev.1) 4.6 DG-2TestingPerformed,7/16/90(SeeEA-FC-90-062,Rev.1) 3 4.7 DG-2TestingPerformed,7/17/90(SeeEA-FC-90-062,Rev.1) l 4.8 DG-1andDG-2JacketWaterOutletGaugeCalibrations(9/17/90and 10/9/90) (See EA-FC-90-062, Rev. 1) l 4.9 DG1 Testing Performed 9/25/90 (See EA-FC-90-062, Rev. 1) 4.10 MR-FC-90-073, DG Exciter Cooling Post Modification Testing 4.11 EA-FC-90-091, Rev. 0 4.12 Letter from R. L. Phelps to R. L. Jaworski and T. L. Patterson, dated 5/31/91 (Attachment 8.10) ~ 5.0 ASSUMPTIONS 5.1 The sequential loading of the diesel generator has only a secondary i effect on long term engine / generator performance because loading 4
OFFICIAL we r l EA-FC-90-062 Rev. 2 Page No. 14 eas. ; f I k: t. p is complete within approximately 60 seconds and will not be considered here. 5.2 Station Blackout analysis requires that the loss of offsite power and diesel generator onsite power must be assumed. This Design Basis Event (DBE) is outside the bounds of this EA. 5.3 Limitorque motor operated valves are not considered long term loads. Cycling time is insignificant compared to long term loads. 5.4 For radiator performance analysis, a design jacket water flow of 1100 gpm (minimum) is assumed for all cases. This flow rate is the 6 discharge capacity of the engine water pumps per EMD and has been confirmed by test during full coolant flow operation. 5.5 For radiator performance analysis, Young Radiator Company utilizes uniform air velocities measured immediately downstream of radiator core to determine required SCFM for heat removal at various temperatures. All air velocities (converted to flows) obtained during FCS diesel tests were measured at the closest convenient point downstream of the radiator core. Due to flow restrictions present in system, the actual core face velocities would not be
- uniform, but the overall radiator capability would not be i
significantly degraded. 5.6 At elevated ambient temperatures (>95'F), it is assumed that inlet air to the radiator fan is the same temperature as outdoor ambient. This assumption based on test data taken 7/17/90, per Reference 4.11, Attachment 8.11, page 9 and 10 of 15. 5.7 Instrument uncertainties from past data collection will be utilized in the turbo charger inlet air and JW analyses and heat-up rate projections and are considered conservative. See Reference 4.3 and 4.8. 6.0 ANALYSIS This analysis will establish the temperature limits at which the engine / generator can operate the worst case safety-related loads in response a 1 to a Design Basis Accident with a loss of offsite power. To accomplish this, accident loading will be compared to elevated ambient air temperature i engine performance determined by analysis of the expected DG cooling system performance and test data to project DG room temperature rise above outside i ambient air..The analysis also demonstrates that the static exciter and generator can operate at the analyzed higher temperatures.
EA-FC-90-062 Rev. 2 Page No. 15 eas 0, :D 'The-analysis is organized to: 1. Determine the Worst Case accident load and peak load on the diesel generator. 2. Define the Test Data Reduction Criteria for use in the analysis. 3. Define the Engine / Generator Power Output criteria. 4. Define the engine, exciter and Generator Derating Methodology. 5. Define Test Data Instrument uncertainty for use in this analysis. 6. Perform an Engine Derating Analysis and establish Operating Temperature Limits based on Jacket Water and Turbocharger inlet air temperature. 7. Establish Operating Temperature limits for Generator and exciter. 8. Determine margin for additional loads. 6.1 Worst Case Load and Load Profile l The Fort Calhoun Station is required to have sufficient onsite electrical generation capacity to safely shutdown the reactor and i j maintain it in a safe shutdown condition under all Design Basis Events (DBE) which could result in a loss of offsite power or requiretheassumptionofalossofoffsitepower(exceptstation blackout). In addition, single failure criteria must be met. The following discussions review the expected electrical /DG system requirements under specific DBEs to define the worst case load and load profile. 6.1.1 Worst Case Load A process of elimination is used to determine the worst case load by looking at the equipment required to respond to a DBE. This is i discussed below. 6.1.1.1 Reactor Trip and Coincident Loss of Offsite Power A reactor trip and coincident loss of offsite power where the Reactor Coolant System (RCS) and the Steam Generator secondary 'l i
EA-FC-90-062 Rev. 2 Page No. 16 eas p T, / su.. ,) system remain intact require a minimal amount of equipment for safe shutdown. The basic systems required are raw water, component-cooling water, auxiliary feedwater, charging, containment cooling, andlowpressuresafetyinjection(shutdowncooling). In addition the operators would be expected to have the instrument air system in operation. 6.1.1.2 Uncontrolled Heat Extraction i The most limiting Uncontrolled Heat Extraction case would be a main steam line break in containment which would require automatic initiation of Engineered Safety (Features.In this case the Raw Water (RW), Component Cooling CCW), Charging (CH), Auxiliary Feedwater (AFW) sequential start of FW-6, Containment Filtering and Cooling (VA) Containment Spray (CS), High Pressure Safety Injection (HPSI), and Low Pressure Safety Injection (LPSI) systems will be automatically aligned and sequentially loaded on the diesel generator. The initial loading is expected to be nearl y the same ) as a large break LOCA, however, once the RCS invente y has been restored, the HPSI and LPSI pumps will operate on minimum recirculation resulting in a reduced load to the diesel generators. 6.1.1.3 LOCA l The ESF response to a LOCA automatically aligns and loads the ESF and auxiliary systems on the diesel generator. In the small break LOCA case, the LPSI pumps are expected to be on minimum recirculation and not running at full load. In the case of a tube rupture, containment spray is not required resulting in a smaller ~ load on the diesel generator. In the large break LOCA scenario, the LPSI and HPSI pumps are expected to run at full flow until the SIRW Tank is emptied. This represents the largest load for the longest time. The large break LOCA loads will be used in all further discussions. 6.2 OG Peak Load and Load Profile The expected load is based on a large break LOCA for DG-1 2551 KW and for DG-2 is 2421 KW (calculation #FC03382 Rev. 3, Attachment A 8.1). The peak loads are expected to occur after the final loads P have automatically sequenced on the diesel and accelerated to full i speed. 6.3 . Worst Case Load Profile The large break LOCA load profile is based on loads which either reduce over time as a result of accident mitigation or receive automatic trip signals some time into the event.
EA-FC-90-062 Rev. 2 Page No.'17 L eas-ra m f l u_. v. ;) '6.3.1-Load Reduction Due to Containment Depressurization Load reduction over time occurs on the containment filtering'and cooling fans (VA-7C, VA-70, VA-3A and VA-38).- These fans are initially loaded to 100% power when the containment air / steam mixture is near 60 PSIG. As the steam in containment is condensed by the ' containment spray system and containment-filtering 'and cooling units, the containment atmospheric density is reduced causing the fans to unload. [ 6.3.2 Automatic Trip h The LPSI pumps meet the automatic trip criteria (no operator action rec uired). These pumps are tripped on RAS at which minimum safety 3 injection occurs at approximately 3740. seconds (USAR Section 1 6.2.5). l 6.3.3 Load Profile l The load profile is graphed in Attachment 8.8 for each diesel. l This load profile is based on the large break LOCA, as defined in ] Calculation FC03382 Rev. 3, Attachment 8.1 (Figure 1 and 2). { 6.4 Test Data Reduction ^ Due to the room specific configuration for each engine, testing wits used to establish the relation between outdoor ambient air and the room air temperature dependant functions of the diesel generators, i e.g., turbo charger inlet air temperature. 6.4.1 ThetestdatafromRev.Oofthisanalysis(usedinthisanalysis (See References 4.4 - 4.7)) was compiled using a thermocouple datalogger. The test data used in this analysis concerning the i exciters was obtained in the test procedures of MR-FC-90-073 discussed in the next section. The critical parameters used in this analysis are outside ambient air temperature, combustion inlet air temperature (turbocharger intake air temperature), generator inlet temperature and jacket water temperature. The analysis is i based on the following: a. Thermocouple average temperature for ambient air temperature. b. Thermocouple average temperature for turbocharger inlet temperature. c. Thermocouple for generator inlet air temperature. i s Data reduction was accomplished in two steps. First, it was 1 determined that the data required could be compiled at 15 minute 4 J d
1 EA-FC-90-062 Rev. 2 y Page No. 18 4 eas r'nr o 1 u v. f) intervals versus the datalogger 5 minute interval printout. This-was done due to the relatively slow rate of change of the observed temperatures. Second, averages were taken at each time interval where more than one thermocouple was used to measure the same temperature area. 6.4.2 The test data used for the exciter temperature discussion is based on MR-FC-90-073 and was obtained with RTD temperature detectors with
- 1'F accuracy. The following temperatures were measured:
4 Avera! eof 3centermountedexcitercabinetRTDs. a. b. Sing 1 hand-held RTD temperature detector for room ' ambient temperature. c. Weather tower or the hand-held probe was used for outdoor ambient temperatures. 6.5 Enaine/ Generator Power Outout Criteria l l 6.5.1 Engine Capability L l The deration of engine capability limit based on temperature is to ensure that the ESF loads do not result in unacceptable engine wear and potential decreased reliability of the engine. This is interpreted as the engine 2000 Hr/Yr capability rating. To quantify the engine reliability, Electro-Motive Division, General t Motors Corporation (EMD) has established output ratings for its engines based on potential engine degradation over a specified 3eriod of time. The time intervals specified are 30 minutes, 4 4 1ours, and 2000 hours. The time ratings provide a measure of' stress on the engine. Operation at the 30 minutes and 4 hour ratings should be minimized, however, the engines are expected to provide reliable performance even with brief excursions into the 30 minute and four hour rating range. EMD has developed these d ratings based on detailed knowledge of the temperature related &L engine stress caused by operation at elevated loads, and operating experience with the engines (refer to Attachment 8.7). Following an engine run that exceeds one of the interval ratings it should 4 be inspected for abnormal wear and refurbished if required to j achieve the highest possible reliability for future use. The 2000 hour rating is a guide to schedule maintenance frequency. 0)eration at the 2000 hour rating for 2000 hours would indicate t1at an inspection be performed at the end of the run. l The acceptance' criterion is based on the 2000 hour rating, the goal being not to exceed this rating which is consistent with Technical Specification 3.7. i
EA-FC-90-062 Rev. 2 Page No. 19 eas {0I 3 The published engine ratings are based on turbo charger intake provided de-rating curves (Attachment 8.2).For intake temperatures temperatures of 90*F. These are straight line curves showing intake air temperatures versus percent of full load rating. The curve used is based on jacket water outlet temperature (JWOT) of either 190'F or less, or 200*F to 210*F. For the-purposes of this analysis where test data shows JWOT above 190'F, the 200*F to 210*F curve will be used. When jacket water outlet temperature and turbocharger inlet temperatures are known while the engine is heating up during the initial stages of operation, a time versus engine / generator output - limit can be plotted for the 2000 hour engine rating. Past test-data (used in Rev. O of this analysis) gathered during the initial stages of engine operation allow a heat-up rate to be determined. From this, jacket water temperatures vs. time can be predicted for other outdoor ambient temperature. In the highly unlikely event that a large break LOCA'were to occur shortly after the engine has completed its monthly surveillance, the 30 minute rating curve would be applied to the initial LOCA loads in excess of the 2000 hour rating. This would assure operation of the ESF loads based on EMD's expectations for engine performance. 6.6 Deratina Methodoloav 6.6.1 Engine Derating The limiting parameters for engine / generator power output (in kilowatts) are jacket water temperature and turbo charger air inlet temperature. The jacket water outlet temperature (JWOT) determines what turbocharger air intake temperature de-rating curve is applicable. The percent of standard rating versus elevated inlet temperature curves (based on jacket water temperatures) are shown in Attachment 8.2. The graph shows two deratings, the upper right curve is based on a JWOT of 190*F, the lower curve on a JWOT in the range of 200*F to 210'F. In this analysis, engine / generator power output is based on the 190*F curve when JWOT is 190*F or less, and the curve of 200'F to 210*F when JWOT is above 190*F. For purposes of this analysis, 208'F will be used as the maximum JWOT, based on A cylinderheadlife(refertoAttachment8.2). lM 6.6.2 Generator and Exciter Derating 6.6.2.1 The temperature limit for the generator is determined by taking the known upper limit of the generator and reducing it by the rise between ambient outside and the generator inlet temperature. 4
EA-FC-90-062 Rev. 2 Page No. 20 eas{gs7,,; ..- ( Instrument uncertainty will be included in a conservative manner. ' ' 6.6.2.2 Modification MR-FC-90-073 installed cooling in the exciter housing. The testing done by the modification will be analyzed to determine g the adequacy of the newly installed A/C units (VA-759A, VA-7598) at outdoor ambient temperatures of 110*F. 6.7 Instrument Uncertainty This section discusses the expected uncertainties of the instrumentation used to measure the critical parameters of-ambient air into the diesel generator
- rooms, turbocharger inlet g
temperatures, generator ai' - cooling temperatures, and exciter cabinet air temperatures. 6.7.1 Outside Ambient Air Temperature Test Data Uncertainty i Ambient Air entering the room was measured using 6 thermocouples mountedattheroomairintakeandrecordedonadatalogger(this g information was not used for the exciter discussion in this revision). Each of these type J thermocouples has an uncertainty of 2.2*C or 3.96*F. The data logger has a.72*F uncertainty, however, post calibration testing indicated an uncertainty of .22'F. Using the square root of the sum of the squares method, the loop uncertainty for each thermocouple is 2 3.97'F. The use of six thermocouples to measure the ambient air temperature will result in a more accurate reading. Using the error analysis method for multiple inputs of equal uncertainty as defined in Chapter 5 of " Data Reduction and Error Analysis for the Physical Sciences", reference 4.3, the overall uncertainty of the average temperature is reduced to the individual loop uncertainty divided by the square root of the total number of channels. For the ambient air case, the uncertainty would be 2 3.97'F//6 =
- 1.62*F.
The actual outdoor ambient air temperature will be the average 3 reading minus 1.62*F, which is conservative. The outdoor ambient air temperature calculated in this manner is conservative because this temperature is used to calculate delta Ts between the outdoor i ambientandothertemperaturesgreaterthanambient(jacketwater outlet, turbo intake air, and generator intake air temperatures) 4 i which produces larger delta Ts. A larger delta T will give a larger temperature rise above ambient for the system being analyzed yielding a conservatively lower upper temperature limit for that i system. l i i i i l S b
i i l' Rev. 2 EA-FC-90-062 Page No. 21 eas r '. a. - rP 4 is ' 6.7.2 Turbocharger Intake Air Temperature Uncertainty The turbocharger intake air (combustion ' air) temperature uncertainty was determined using the same method and equipment as 1 the outside ambient air temperature. In the case of the i turbocharger air intake, nine thermocouples were used. The l expected uncertainty is
- 3.97'F//9 =
- 1.32*F.
For the purposes of engine derating due to turbocharger intake temperature, any temperature rise of the turbocharger intake over ambient will be 4 increased by 1.32*F, resulting in a conservative derating. 6.7.3 Exciter Cabinet Internal Air Temperature Uncertainty i MR-FC-90-073 installed air conditioning units on each exciter panel. Testing was performed by the modification to determine the i effects of a failed A/C unit on the ambient temperature limits of the exciters. The test used 9 platinum RTDs which were mounted l inside the exciter cabinet and connected to a datalogger. The A above measuring devices have a 1*F uncertainty'for each RTD. as Only the center 3 RTDs will be used for determining the enclosure temperature wit.h the door open because these are located in the area of the most heat sensitive components. This provides an 9 uncertainty of
- 1*F/(3 = 0.58'F.
3 6.7.4 Generator Cooling Air Inlet Temperature Uncertainty The generator cooling air inlet temperature was meosured using one thermocouple and the same datalogger as outside ambient air. The expected uncertainty is
- 3.97'F.
The 3.97'F uncertainty will be 4 subtracted from the upper generator operating temperature limit, j which is a conservative application. 6.7.5 Weather Tower Outside Ambient Temperature Uncertainty ~ The weather tower 10 meter air temperature can be used to determine the margin available to manually load additional equipment on the diesel generators. ES-87-12, Weather Tower Instrument Uncertainty Calculation FC01381 (Input 3.6), established a temperature uncertainty for the ERF computer readout of * .71*F. This uncertainty is not considered significant, the reading alone without correction can be applied. Data taken during the 6/25/90 testing confirms the adequacy of the weather tower as shown below: Time Tower Thermocouples Delta T '14:38 87*F 86*F l'F 15:30 90*F 89'F 1*F 17:40 89'F 88'F l'F i
t EA-FC-90-062 Rev. 2 i Page No. 22 eas Is a,;! C' 6.8 Basic Engine Limit and Rating Calculation Including Uncertainty with a Jacket Water Outlet Temperature Based Operating Limit The basis for the following equations is that the limits of concern vary linearly with outside ambient temperature. DG-1 Turbo Derating) Temp. = DG-1 Operat,ing Limit + ((T A. + TI 1.32) - (Ty - 1.62) DG-2 Turbo Derating) Temp. = DG-2 Operating Limit + ((T B. + 73 1.32)-(Tu - 1.62) C. Generator Outdoor Ambient Temperature Limit DG-1 = Tct - ((Tci + 3.97) - (Ty -1.62)) D. Generator Outdoor Ambient Temperature Limit DG-2 = Tct-((Tci i + 3.97) - (Ty -1.62)) g E. Exciter Outdoor Ambient Temperature Limit DG-1 = Ttt-(T3yg + 0.58 - Tus) (Door open, A/C off) F. Exciter Outdoor Ambient Temperature Limit DG-2 = Tgt - (T3yg + 0.58 - Tus) (Door open, A/C off) All variables are in *F. T - outside ambient air measured during the test ~ y T - turbocharger inlet temperature measured during the test 7 lk T - exciter temperature limit (maximum rated temperature) gt T - exciter temperature measured in the testing of MR-FC-90-073 3yg T - outside ambient temperature measured in the testing of ag MR-FC-90-073 T - generator temperature limit (maximum rated temperature) l ct T - generator inlet temperature measured in the test ai 6.9 Enaine Deratino Analysis 6.9.1 DG-1 Ambient Air Temperature Limit Based on Jacket Water Cooling System Improvements 1 As a result of temperature limitations on the diesel generators [ imposed in 1990, steps were taken during the first quarter of 1991 .to improve the heat removal capabilities of the diesel generator radiators. Access doors installed in the exhaust duct above the radiator core allowed for steam cleaning and maintenance of the radiator cooling fins. Post maintenance testing confirmed a significant improvement in air flow across/the radiator cores. See
l l EA-FC-90-062 Rev. 2 Page No. 23 eas e.ye L GV. :: Table 1, Attachment 8.9d and Attachments 8.11 through 8.14 for actual before/after air flow data. According to literature (documented in EA-90-062 Rev.1 and EA
- 091Rev.0)receivedfromMKPowerSystems,OPPD'srepresentative for EMD stationary diesel generating units, a net horsepower savings of 180 bhp can be assumed if the Ethylene Glycol engine 4
coolant is replaced by treated water. This can be converted to an J l additional 130 Kli to be applied to offset the diesel generator ,\\ deration curve. The addition of 130 KW to the rated capacity of 3 2654 yields 2784 KW available. The diesels will satisfy the post-LOCA loads if this 2784 KW power available is applied to the 2000 hr. deration curve. The combined benefits of a "near new" cleaned condition of the radiator in conjunction with efficiency savings associated with changing coolant from Ethylene Glycol to treated water result in 3 higher output capacity such that the temperature 1imit could be Oi raised. Limiting JW temperature per MFG, is 208'F. Test results shown on Attachment 8.8 show that with ambient temperature of 110*F the JW temperature is expected to be 208'F,444ee 20 minutes #t W Therefare: ig u esoo n m e' Anet4co4 s f. m r. DG-1 Operatina Limit = 110*F 1 (Based on JW temperature) See Attachment 8.8 for expected engine / generator performance at 110'F and Attachments 8.9 and 8.10 (Attachment A) for supporting analysis. I 6.9.2 Derating Description of DG-1 Based on Test for Turbo Charger Inlet Temperature and Revised DG-1 Capacity Rating The test data on DG-1 taken on 6/25/90 was used to determine room specific temperatures. The test was conducted using water as the engine coolant. Readings were taken every five minutes from thermocouples and every 10 minutes of the engine jacket water outlet panel temperature indicator. For this analysis, turbo-charger inlet air temperatures, at 10 minute intervals, were used A to establish a correlation to outside ambient temperatures as well (41 as to derive a heat-up rate profile for use in projecting turbocharger inlet temperatures at an outdoor ambient temperature of 110*F. From these projected inlet temperatures, deration factors (from. Attachment 8.2) were applied to gross available output power and compared to ESF power requirements as shown in.8. Operation at 110*F was considered an acceptable limit.
EA-FC-90-062 Rev. 2 Page No. 24 eas r-lu. s. 6.9.3-DG-1 Derating Based on a Hot Engine There is expected to be a period of some three hours per month when DG-1 would be at elevated temperatures af ter a monthly surveillance test. In.the event of a LOCA under these conditions, the engine would still be expected to perform its safety function, based on the 30 minute capability rating. 6.10 DG-2 Enaine Deratina Analysis 6.10.1 DG-2 Ambient Air Temperature Limit Based on Jacket Water Cooling i System Improvements See discussion in Section 6.9.1. l DG-2 Operatina Limit = 110*F (Based on JW temperature) See attachment 8.8 for expected engine / generator performance at-110*F and Attachments 8.9 and 8.10 (Attachment A) for supporting analysis. 6.10.2 Derating Description of DG-2 Based on Test for Turbo Charger Inlet Temperature and Revised DG-2 Capacity Rating DG-2 was tested on 7/16/90 and 7/17/90 to determine room.s)ecific temperatures. The test on 7/16/90 was conducted using et1ylene-glycol as the engine coolant and the test on 7/17/90 used water as the engine coolant. Re'adings were taken every five minutes of the thermocouples and every 15 minutes of the engine JWO panel temperature indicator for the test on 7/16/90 and every 10 minutes of the engine JW0 panel temperature indicator for the test on 7/17/90. For this analysis, turbo-charger inlet air temperatures from the 7/17/90 test, taken every 10 minutes, were used to i establish a correlation to outside ambient temperatures as well as to derive a heat-up rate profile for use in projecting turbocharger 1 inlet temperatures at an outdoor ambient temperature of 110*F. /_S From these projected inlet temperatures, deration factors (from.2) were applied to gross available output power and compared to ESF power requirements as shown in Attachment 8.8. Operation at 110*F was considered an acceptable limit. 6.10.3 DG-2 Derating Based on a Hot Engine There is expected to,be a period of some three hours per month when DG-2 would be at elevated temperatures after a monthly surveillance test. In the event of a LOCA under these conditions, the engine g would still be expected to perform its safety function, based on the 30 minute rating. t i
~ l 4 i EA-FC-90-062 Rev. 2 Page No. ?5 eas [ ! i.. '. '. 'f 6.11 DG-1 and DG-2 Generator Temcerature Limits 1 4 j 6.11.1 Generator Peaking Duty Temperature Rating i J _The generators' upper temperature limits can be derived from;the nameplate data of the generators which specify the rotor and stator insulation temperature rise limits. See Attachment 8.3 and the EMD Generator Characteristic Data, Attachment 8.4. The peaking stator rise limit rating is 105'C and the rotor rise limit is 70*C abeve 40*C(acommondesignnumber). From the generator data sheet,'the i load based rise at 2500 KW (which represents the peak DG loading by0 PPD)is56*Cforthestatorand50*Cfortherotorabove40'C. f The rotor is limiting which equates to a limit of. 60*C maximum A temperature (40*Cambient,plusa20*Cmarginintherotorbetween (S the 70*C limit and the 50'C load induced temperature rise). j. i The operating temperature limits would be 60*C (140'F) minus'the i room inlet to the generator inlet temperature rise and correcting for uncertainty as shown in Equation 6.8 C and D. Attachments 8.19 i-through 8.22 provide plots of the generator inlet temperature rise. Using the data in Attachment 8.22-1 to determine generator air A inlet tem erature rise a limit of 120*F can be calculated for DG-1 m i (140-(fl02.6+3.97) - (88.8 - 1.62))). Using the data from !.21-1 to determine generator inlet air temperature rise, a limit of 114*F can be calculated for DG-2 (140 - ((110 + 3.97)-(90-1.62))). Please note that when using the data, or graphs in Attachments 8.19 i' through 8.21 the data taken when the room fan is off should be used, since fans VA-52A and VA-528 are not to be in operation. l 6.11.2 This judgement is supported by the ratings of the Class H insulated j stator and Class F insulated rotor. Looking at motor insulation ratings (which can provide information on the insulation systems), Class F insulation is capable of 105'C rise above a 40'C ambient i and Class H insulation is capable of 125'C rise above a 40*C A ambient. Refer to the tables in Attachment 8.5 taken from the 8 " Standard Handbook for Electrical Engineers". 6.12 Exciter Temperature Limits Each Emergency Diesel Generator (EDG) receives field excitation via a General Electric Model 3S7930SA212A11 Static Exciter. These exciters were. part of the origin ~al EDG installation and ar'e approximately 20 years old. G.E. (Letter dated July 20, 1990,.6) has stated that the open exciter panel will have 'd no problem operating at 50*C (122*F). i
EA-FC-90-062 Rev. 2 Page No. 26 eas t i-t. 1, 6.12.1 Exciter Limit with Left Door Open, Air Conditioner Off Modification MR-FC-90-073 installed an air conditioning unit on each diesel generator exciter cabinet to provide cooling for the I components inside the cabinet. The temperature ratings for this configuration will be analyzed and discussed later. This section will develop temperature limits for each exciter with the A/C unit off and the left door open. 6.12.2 Exciter Test Data EDG test data obtained in MR-FC-90-073 will be used to ' develop exciter ambient temperature limits with the A/C unit off and the lef t door open. This will establish a set of limits for the exciter if the A/C units were to fail. 6.12.2.1 Testing Procedure T-1 for_ DG-1 from MR-FC-90-073 (5/30/91). This test ran the diesel at approximately 2500 KW throughout the A test. RTDs(9)weremountedinsidetheexcitercabinettomeasure e the internal cabinet temperature. The average of the center 3 temperatures will be used as the ambient air temperature which will be used to calculate the delta T between outside ambient and cabinet temperature..15 shows that at 15:46:05 the cabinet temperature stabilized with the left door open and the A/C unit (VA-759A)off. The average of the 3 center cabinet readings is: T3yg = 99.9 + 100.1 + 100.2 = 100.1*F 3 .The outside ambient temperature at this time was 80*F (T3 from page 9 of T-1 from MR-FC-90-073 is the weather tower thermistor). Therefore, the delta T between the outside ambient and the cabinet temperature is calculated with instrument uncertainty as follows (refertoequation6fromSection6.8): i AT = T3yg + 1*F - T m = 100.1 +.58 - 80 = 20.68'F (3 The outdoor ambient could reach 101'F (122*F - 20.68'F) and the exciter would still be expected to function with no A/C and the left door open. l 6.12.2.2 Testing Procedure T-2 for DG-2 from MR-FC-90-073 (5/15/91) 4 l This test was performed identical to the test for DG-1. Attachment 8.16 shows that at 14:57:27 the exciter cabinet temperature 4 o
EA-FC-90-062 Rev. 2 Page No. 27 i eas7,. ts. t, stabilized with the left door open and the A/C unit (VA-7598) off. The average of the 3 center cabinet readings is: Tag = 91.3 + 92.0 + 93.6 = 92.3*F 3 The outside ambient temperature at this time was 76.9'F which was measured using MT-00014 which was post-mod tested at better than 1*F uncertainty (per Attachment 8.17) and therefore will be used with no uncertainty. The delta T between the outside ambient.and the cabinet temperature is calculated with instrument uncertainty for the cabinet temperature as follows (refer to equation F from Section 6.8): AT = T3ya + 1*F - Tm = 92.3'F +. 58 - 76.9'F = 16*F (3 The outdoor ambient could reach 106*F (122'F - 16*F) and the exciter would still be expected to function with no A/C and the left door open. 6.12.3 Exciter Test Data (A/C On, Door Closed) This section will demonstrate that the VA-759A and VA-759B exciter air conditioners will maintain the internal exciter cabinet air temperature below the 122*F limit. The exciter A/C unit on each diesel generator was tested by MR-FC-90-073. The testing obtained A/C duty cycles at known temperature differentials (betweencabinetinteriorandexterior). 6.12.3.1 DG-1 Exciter A/C Test The diesel generator was run at approximately 2520 KW for 1 hour with the A/C unit (VA-759A) cooling the exciter cabinet. At the beginning of the test, the A/C unit duty cycle was approximately 56% while removing primarily the heat generated internal to the i exciter cabinet. The average internal cabinet temperature averaged around 80*F. The room ambient temperature rose from 81*F to 100'F i within 1 hour. At the end of this part of the test, the A/C unit duty cycle increased to approximately 64% to maintain a 20*F delta T between the room ambient and the internal cabinet temperature. Predicting the A/C unit duty cycle at 110'F outside' ambient is ~ accomplished a's follows: For a 20*F increase in delta T between internal cabinet and room ambient, the A/C unit duty cycle increased 8% based on a 100% duty i
.i EA-FC-90-062 Rev. 2 Page No. 28 eas i cycle. Therefore, there is a 8%/20*F = 0.40 percent increase in duty cycle per 'F increase in. delta T between room ambient and internal cabinet air temperature. At the time of the test, the outdoor ambient temperature will be assumed to be 74*F which is' conservative (actual temperature went from 74'F to 78'F during the test). An outside ambient of 110*F is an increase of 36*F over 74*F. At 0.40% per 'F this gives a 14.4% increase in duty cycle which when added to 64% cuty cycle gives a duty cycle of approximately 78%. The above does not account for the increased g A/C unit efficiency from approximately 70% to 92% at higher operating temperatures as discussed in Attachment 8.18. Since the above discussion is based on maintaining the cabinet internal temperature at 80*F with a 110*F outdoor ambient at a 78% duty cycle at reduced efficiency, it is judged that there is enough margin to assure an internal cabinet temperature of less than the required 122'F upper limit with an outdoor ambient of 110*F. 6.12.3.2 DG-2 Exciter A/C Test The analysis for the A/C unit (VA-7598) for DG-2 will be discussed different from that of DG-1 since the room ambient at the start of the A/C unit test was approximately 7'F higher than the internal cabinet temperature. The A/C unit test ran for about I hour with the A/C unit cooling the exciter cabinet at a diesel generator load i of 2540 KW. At the end of the test the A/C unit duty cycle was approximately 50%. The average internal cabinet temperature was 80*F and the room ambient was 89'F.. Therefore, the A/C unit A maintained a 9'F differential between the room ambient and the C6 internal cabinet temperature with a 50% duty cycle. From ~.18, the A/C unit efficiency was approximately 60%. Therefore, it is judged that the A/C unit would be able to maintain a 9'F differential or better between room ambient and the cabinet 4 internal temperature due to the available margin in the A/C unit by the increase in duty cycle and efficiency as temperatures rise. From Revision 1 of this analysis, it was found that there was a l 17'F delta T between the outdoor ambient and the room temperature. Therefore, the room ambient could reach 127'F with a 110'F outdoor ambient temperature. It is judged that the A/C unit would be able to maintain an A enclosure temperature of less than 122'F at an outdoor ambient of Le 110*F. i 1 k
EA-FC-90-062 Rev. 2 Page No. 29 eas REV.3 7.0 RESULTS AND CONCLUSIONS 7.1 Results .= Generator Room Engine / Radiator Exciter Max. Out. Temperature Max. Out. Cooling Max. Out. Ambient Based On Amb. Limit Liouid Amb. Limit Limit Fan Status DG-1 110'F Water 101*F No A/C 120'F VA-52A off/ Door Open 110*F A/C On A Door Closed B DG-2 110*F Water 106*F No A/C 114*F VA-528 off Door Open 110*F A/C On Door Closed 7.2 Conclusions Based on the results of this analysis, the maximum outdoor ambient air temperature for each diesel generator to carry the loads as stated in the purpose are as follows: Maximum Outdoor Ambient Temperature DG-1 110*F DG-2 110*F These limits are based on the diesel generator's anticipated jacket water outlet and turbocharger air intake temperatures based on test data, and therefore are the limiting parameters. These temperatures allow each diesel generator to operate within its 2000 hour rating for the LOCA analyzed here. Additionally, the generator and exciter cabinet (with A/C running) are not expected to see temperatures which would exceed their limits at an outdoor ambient temperature of 110*F. The VA-52A and B fans shall be "0FF" when the respective diesel is run. Through the course of the accident (LOCA) the diesel generator will unload such that the load will always be below the 2000 hour rating of the engine. The KW margin between the actual load and the 2000 hour rating is available for addition equipment starts, for the large break LOCA analyzed here. Actual margin is dependant on the pump loads and ambient air temperature. The conclusions of this EA have been superseded by calculation FC5916 Rev 3. Some of the. [ information provided in this EA were used as input for the new calculation.
l EA-FC-90-062 Rev. 2 Page No. 30 eas 8.0 LIST OF ATTACHMENTS Attachment Description 8.1 Calc. No. FC03382 Rev. 3, Diesel Generator LOCA Loads 8.2
- a. Derating Curves For EMD Diesels
- b. Letter From Ted Fryar of M-K to Randy Mueller, Dated 2/21/80
~8.3 Diesel Generator Nameplate Data 8.4 EMD Specification Sheet for the Generator 8.5 Tables From The " Standard Handbook For Electrical Engineers" 8.6 G. E. Letter, Dated 7/20/90 8.7 Letter From GM-EMD and R. F. Mehaffey, Dated 8/16/90 8.8 a. Data Sheets, Projected Performance and Deratings at 110*F Ambient, DG-1 and DG-2 b. Revised Diesel Generator Available KW/ Required KW vs. Time Plots Utilizing Calc. FC03382, Rev. 3, DG-1 and DG-2 8.9
- a. Young Radiator Company Radiator Performance Analysis b.
Telecon Between M-K Power Systems and D. G. Borcyk, Dated 4/19/91 c. Calculated Heat Inputs to Engine Coolant d. Delivered Air vs. Required Air Analysis 8.10 Letter from R. L. Phelps to R. L. Jaworski and T. L. Patterson, Dated 5/31/91 8.11 DG-1 Testing - Airflows Before Steam Cleaning, 3/8/91 8.12 DG-1 Testing - Airflows After Steam Cleaning, 3/14/91 8.13 DG-2 Testing - Airflows Before Steam Cleaning, 2/27/91 8.14 DG-2 Testing - Airflows After Steam Cleaning, 3/25/91 8.15 DG-1 Datalogger Points at 15:46:05 8.16 DG-2 Datalogger Points at 14:57:27 8.17 Telecon with Ken Beach 8.18 A/C Efficiency Data 8.19 Graph or Air Temperatures for DG-1 on 6/26/90 2 pages 8.20 Graph of Air Temperatures for DG-2 on 7/16/90 2 pages 8.21 Graph of Air Temperatures for DG-2 on 7/17/90 2 pages 8.22 Graph of Air Temperatures for DG-1 on 6/25/90 2 pages e
E A -9 0-062 EA-FC-90-062REV P 1 Rev. 2 Attachment.8.1 %e\\ l REV.3 ) 1 1 i j Calculation Number FC03382 Rev. 3 Diesel Generator LOCA Loads I 1. ? t i '.t i 1 ) i i 3 1 4 1 4 4 t i I y,.__,
- 5ES** ams E A -9 0-0(oA CALCULATION COVER SHEET Me REV E A -9 0-0 62.
Calculauori operauen..r!.vtens ^ J ana Aoorov..1 eg a2MR TOT E P = 4 ^ ~ -@l l For m PED-OP-3.1 Form Page No. 1 of 2 04 ' Case,arve l h O LIMITED COE OFIM PROT. j Calculauon Cover Sheet. ,.,,-/U"
- j eSHORT TEnM CALCs YES C NO PED DEPART M NT 1%
CECULATION TITLE i D /* s+/ Gemndev LOC,9 vfMXM CALC.=. N / 4 Lonc/s 4 a =.. a m en. m s anso m. sat== s a n e.PPROVALS - SIGNATLME & 04TE I M TION I SLFEnSEMI ogggAIMD (#) j _q,,, P=P=ouwaam > mmwncaimmsi Cac =. 6?f A7'sep'd l. f NA y' v g r \\ r/n 7 /u p l X L rri c l Aa' R v' A $ '/ dl %. 1 7/1'?]90 fjgjf'()i) y 9/eis W 3I% Nse7 Q' 90 '7,QW wf' / A.tKVd' 2 IMb - l io/z s-/So b tC 5A B f ke h CQ.k M (, l 4 Evdudt wst toado, toad Ad adman j asek 4w mu L W
- 'Y
<>4n i
- EXTERNAL ORGANIIATION DISTRIBUTICH m,
j COPY jCOPY = = a uxaYxm: ,sent unna a tocaTrou isENT 8(#1 8(#1 m_ k k hohn FC8 o n40lk rpg7 o4 6orgA sFg j j l l
.5 i cat.CULATION COVER SHEET E A -9 0-0(g2 i @j
- si.oie.
pr re. . a.v ca'cu'aTra# u = sa i m.. z and Approval g 3 gg J j Form PED-OP-3.1 Form Page No. 2 of 2 N i Coloule.on Cov.c Shees FacIL.m/sysfot #% l M i EYWaRDe f*aOr1 < 0 mh% Y i i CALcLLaTICE UBEn As IwUT i IN TM ANALYsZs N TA05 J calc./nav.no, ourf.un.e sYsTsu annen asunsn i 1 546 j 7772 E02, S.1 Jf4 D4 bI i D4 N1 i -l D4 P41 i l bd D42 i j 4 l f (. I l ( s. l j I 4 l l l.
E A -9 0-062 E 3.' . RENT 5* /ae J' Calc Preparation, Review and Approval PED-QP-3.5 Pape 1 of 2 CALCULATION NUMBER Reviewer's checklist-Calcu ations FC63384 Av. 3 .10. 1LQ. fila 1. Is Calculation Cover Sheet attached and / completed, as required,to the calculation? 7 2. Is the calculation objective stated? Was this achieved? 1y 3. Are inputs correctly selected and incor-porated into the analysis? V 4. Have inputs and/or assumptions which require confirmation at a later data, been identified on the Calculation Cover Sheet and in the calculation body? / 5. Are the applicable codes, standards, regulatory requirements, and other references including issue and addenda identified such / that they are traceable to source document? 6. Was an aapropriate calculation :wthod used? Was the )asic theory appropriate? / 7. Have assumptions been noted and justified? V 8. Are the calculations free of arithmetic errors? V 9. Is the calculation consistent with the design basis requirements? Y 10. Is the conclusion stated? 11. Is the calculation legible and suitable for microfilming? // i i i i PED-QP-3.36
E A -9 0-0 62 %d,/2ket / g6 j Calc Preparation, Review and Approval PED-QP-3.5 Pape 2 of 2 CALCULATION NUMBER Reviewer's Checklist-Calcu ations fj388A /} / E i l JLi _G , fil.A l 12. Are all blocks on the Calculation Cover ~ j Sheet addressed correctly? / 1 13. Have Forms PED-QP-3.2, 3, 4 and 5 been used and correctly completed? / 14. If the calculation has been presared to supersede another calculation, las all the j valid information been transferred in the i new calculation? / 4 l l REVIEWER COM4ENTS: 4 P 4 4$dAa/ i 2/nhi Reviewer Date 1 4 i e PED-QP-3.37 n,....
w E A -9 0-0 62-h, 3 4,, 3 Calc Preparation, Review and Approval PED-QP-3.7 Page 1 of 1 CALCULATION NUMBER Independent Reviewer's Checklist - Calculations FC $SSEA de A3 j .Yli M .N/.A [ 1. Are the calculation methods accurate and appropriate? 6 2. Are input data sufficiently detailed? 3. Are the calculetion assumptions reasonable? / 4. Has the basis for engineering judgement ) been included in the calculation, when i ) used? / 5. Is the calculation documented sufficiently j such that the analysis is understandable to someone competent in the discipline / without recourse to the Preparer 7 t/ i l 6. Have the design interface requirements / l been satisfied? / 7. Are the results reasonable and do they l resolve the calculation objective? / l 8. If an alternate calculation was used to verify the adequacy of the analysis, is it / attached to the calculation? V i 9. If qualification testing was used to verify the adequacy of the ana'ysis, has it been documented using a retrievable source, or ,/ attached to the calculation? v 10. Are calculations involving Technical i Specification values and associated margins of safety identified? / i INDEPENDENT REVIEWER COPtiENTS: 1 l h f 9}$ l IS 2 l9) 4-Indepen~ dent Mfiep r Dat'e / ~ PED-QP-3.40 n-..
ab 8 f*" %gV, 3 i E A -9 0-0 G 3 6 car.rma n 1 1ALCUI.AT10N PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED--QP-3.2 Form Pass No.1 of1 1i j PRODUCTION ENGINEERING DMSION FC03382 CALCUl.ATION REVISION SHEET i i REV. J NO. DESCRIPTION / REASON FOR CHANGE 1 0 INITIAL ISSUE i i i 1 Added VA-63A, VA-63B, VA-64A, VA-64B, and deleted VA-63 oer MR-FC-97-20. CH-1A. CH-1B, CH-1C: Chanced load from 62.2KW to 50.0KW due to section l 6.4.1 of EA-FC-90-76. 1 i EF-4se r'hanced lead from 10KW to OKW due to Tnvev+er el 4=
=== timed *n ha l powered from the batterv charcer which is already assumed at full load { in t h i er calculation. 1 { VA-80A Chanced lead from 4.36KW to OKW. l van 4= mm nis m i l y =*m v+=A enn* hydrocen removal - not recuired for initial stace of accident. J Added assumption 10 i 1 1 Added References 12,13, &l4 l CONCLUSTONS: Chanced KW loading values to reflect latest loading info. l due to MR-FC-90-53. i l Chanced KW load of SI-3A from 235.6 KW to 258.7 KW to reflect the 319' l bhp requirement or the pump anct using 945 as tne erriciency insteaa or { the previous 95%. l Chanced KW load of SI-3C from 240.6 KW to 243.3 KW and SI-3B from 235.6 KW to 243.3 KW to retlect an erraclency or.ros. h % m 411lol l Added section 3.0 to discuss SI-3A. 1 Added Attachments A & B. j Deleted Rev. O caces which were attached to Rev. 1. i l 1 j 3 Deleted Assumption #7 which assumed CH-1A, B & C to run full load. Added formula to determined KVAR. Added tables for DC-1 & 2 Power Factor Calculation. Added Load Calculations for pumps: SI-1A & B, SI-2A,B & C, SI-3A B & C, CHIA, B & C, AC-3A, B & C, AC-10A, B, C & D. VA-3A & B. NA-&C & D and FW-6. Revised load information to reflect calculation results. Added pump curves. Surf
l E A -9 0-O fo2 3i
===7 ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED-QP-3.4 Form Page No. I of 1 f?" d R A M PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No. g REF. NO. TABLE OF CONTENTS FOR CALCULATION FC03382, REV. 3 DIESEL GENERATOR LOCA LOADS CQE OBJECTIVE METHODS ASSUMPTIONS INPUTS / REFERENCES CONCLUSIONS 1.0 Load Shed Information for Diesel Generators DG-1 & DG-2 2.0 Expected Containment Fan Loading 3.0 Increased Loading on DG-1 due to SI-3A HP Increase 4.0 Sequential loads Based on Brake Horsepower Requirements 5.0 Unit Substation Transformer Losses 6.0 Diesel Generator load Powerfactor ATTACHMENTS A - Long-Term Pressure Response LOCA B - ABB Letter 0-MPS-079 C - Pump Curves SI-1A/B, SI-2A/B/C, SI-3A/B/C, AC -3A/B/C,. AC-10A/B/C/D, and FW-6 A D - Memo PED-FC-1762 E - Westinghouse Certified; Test Repots, GO 54X2-9399 HEU
- g#
E A 062 REV.34 m,.. A 1 CALCULATION PREPARATION, REVIEW AND APPROVAL FORM PED-QP-3.3 FORM Page No.1 of 5 CALCULATION NO. f PRODUCTION ENGINEERING CALCULATION
SUMMARY
SHEET Rev. No. 3 OBJEutiVE i 1 i ELECTRICAL LOADING MODEL FOR DIESEL GENERATORS The objective of this calculation is to provide a model of the expected loading of each of the emergency diesel generators-DG-1 and DG-2 which load in response to a Loss of Coolant 1 Accident (LOCA) coincident with a loss of offsite power. This j model will begin with the point in time in which the final sequenced load group has accelerated to full speed and running ) j at its expected accident load and will end at the point RAS occurs. i s i l i i 4 l 8 e PED-QP-3.30
e W REV.34 W EA -9 0-0 62 car.nWE R 9 ALCUMTION PREPARATION, REVIEW AND APPROVAL CALCUMTION NO. i t'ORM PED-GP-3.3 FORM Page No.2 of 5 M'no3ff2 PRODUCTION ENGINEERING CALCUI.ATION
SUMMARY
SHEET Rev. No. 3 METHODS The load information for equipment dead loaded on the j diesel generators will be calculated and summarized using d I the ELMS printout and the ELDL data base (See Inputs). The Load Shed Information Summary will include the load l shed status and electrical load in KW for each item i listed. The load (in KW) for each motor can be determined by: P (in KW) IRated HP1 x 0.746 KW/MP = % efficiency l The load (in KW) for each load given in KVA can be determined by: P (in KW) = [ load (in KVA)] x [ power factor] The Load Shed Information Summary for DG-1 includes 4.16KV Bus lA3 and all 480V Buses fed from 1A3. These 480V Buses are
- 1B3A, 1B3A-4A, 1B3B, 1B3C and 1B3C-4C.
Also included in the summary is any 480V MCC that is fed from one of the aforementioned 480V Buses and is not load shed. These MCC's are MCC-3Al, MCC-3A2, MCC-3B1, MCC-3C1 and MCC-3C2. l The Load Shed Information Summary for DG-2 includes ] 4.16KV Bus lA4 and all 480V Buses fed from 1A4. These l 480V Busos are
- 1B4A, 1B4B, 1B3B-4B and IS4C.
Also included in the summary is any 480V MCC that is fed from l one of the aforementioned 480V Buses and is not load shed. These MCC's are MCC 4Al, MCC-4A2, MCC-4B1, 1 MCC-4B2, MCC-4C1, MCC-4C3 and MCC-4C4. Please note that load shed means 4.16KV load shed, 480V under voltage breaker trip, ESF 480V load shed, OPLS load i shed and those control circuits which drop out as a result of loss of offsite power and require manual starting. The value (in KW) of the load for each device which is load shed or is sequentially loaded'will be placed in the " LOAD (KW)" column of the Load Shed Information Summary. Each device which is not load shed needs to be examined to determine whether it is a continuous or intermittent 4 load (such as valve cycling). i 1 m PED-QP-3.31
Ke* BEVAEV.3 E A -9 0-0 62 c== = /c 4 ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED-GP-3.3 FORM Page No. 2 of 5 M'h83R7 PRODUCTION ENGINEERING CALCULATION
SUMMARY
SHEET Rev.No. g METHODS The value (in KW) of a continuous load will be placed in the " LOAD (KW)" column while the value of a intermittent load will be placed in the " INT LOAD" column of the Load Shed Information Summary. Also included in the summary will be the cycle time (in i seconds) for any applicable valve listed. Once the Load Shed Information Summary is completed, a total will be determined for non-load shed continuous
- loads, non-load shed intermittent loads and sequential loads.
As noted in the assumptions, the inte mittent i loads are not considered part of the total long time j running load on the diesel generators. The total load on each diesel generator is equal to the sum of the total not load shed continuous load (dead load) and the total sequential load. The ' expected containment cooling fan load will be estimated based on 100% load at maximum containment pressure and 50% load during " normal" condition - no i steam / air atmosphere. It will be limited for the purpose of this calculation to a minimum long term load of 75% of motor name plate rating. Horsepower used for the sequential loads are based on the brake horsepower requirements of the driven pumps. Operating points are shown on the pump curves included in g this c'alculation. A separate table has been added to calculate the expected power factor of the diesel generator load. KVAR is based on nameplate horsepower rating. KVAR based on nameplate rating will be used for both lightly loaded and overloaded cases. KVAR will be determined by: 1/2 KVAR = KW( ( 1/pf2)-1 1 E PED-QP-3.31
%!3-E A -9 0-062 cw= m // ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. r'ORM PED-QP-3.3 FORM Page No. 3 of 5 FC O 3 38?- PRODUCTION ENGINEERING CALCULATION
SUMMARY
SHEET Rev.No. 3 ASSUMPTIONS 1. Non-load shed loads which are used intermittently -are not considered to be part of the total longer term load on the diesel generators. 2. Equipment which is used infrequently, such as welding receptacles and stress gallery disconnect'~ switch, are assumed to have no load. 3. When % efficiency or power factor information is not available, a power factor = 0.80 and a % efficiency = 0.95 will be used as typcial values for electrical equipment. 4. The diesel generator model assumes that the sequenced load group has accelerated to full speed and is running at expected load. 5. RAS is assumed to occur with minimum safeguard actuation maintaining the highest diesel loading for the maximum expected time on each diesel generator. 6. This model assumes that no manual restart of equipment such as air compressors, turbine plant cooling
- pump, and Auxiliary Building ventilation fans occurs.
7. The calculation represents the worst case in that equipment which could be running (not intermittent) is running on each safeguard train at the time of the loss of offsite power and DBA. 8. For conservatism, the battery chargers are assumed at full load. 9. SI-3A, 3B, and 3C motors are assumed at 92% efffciency since the motor nameplate states full l load amps at 340 amps. When 92% eff and.90% pf are used to calculate the above SI motor amps, 339.2 amps is obtained as follows: 300 ho x.746KW/ho 339.2 amps. = .92eff. x.90 x 1.73 x.46KV M PED-QP-3.32
o$ EV.3 g t s _ n n_ n 19 ALCULATION PREPARATION,MtdEV AhD"A/ PROVAL r'ORM PED-GP-3.3 FORM Page No. 3 of 5 CALCULA110N NO. 5C03382 PRODUCTION ENGINEERING CALCULATION
SUMMARY
SHEET Rev.No. 3 ASSUMPTIONS 10. KVAR for an induction motor will not change significantly from the nameplate value with either a lightly loaded motor or motor loaded into its service factor, see reference 16 section 6.4. 11. For the purposes of determining the load losses of-the unit substation transformers it is assumed that the dead load is equally distributed between the transformers connected to each diesel generator. Since the dead load is small when compared to the sequenced load this assumption little effect on the results. 12. Certified test reports could not be retrieved for unit substation transformers T1B-4A and T1B-4C. For i the purposes of determining the transformer losses the no load and load loss values for these transformers will be assumed to be. equal to the highest values of the other transformers. This assumption is reasonable because the variance in measured losses of the six transformers in the test report is 1% and the losses of T1B-4A & T1B-4C will be comparable. a J i PED-QP-3.32
4 E A -9 0-0 62 3 com m,3 ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED-GP-3.3 FORM Page No.4 of 5 F6%3 M PRODUCTION ENGINEERING CALCULATION
SUMMARY
SHEET Rev.No. 8 INPUTS / REFERENCES REF. 1. Sargent Lundy Electrical Load Monitoring System (ELMS) NO. Printout. 2. Electrical Load Distribution Listing (ELDL), Vol. 3, 4.16KV and 480V Buses and MCCs. 3. GHD&R Drawings 11405-E-3, 4.16KV One Line Diagram 11405-E-4, 480V One Line Diagram, Sh. 1 11405-E-5, 480V One Line Diagram, Sh. 2 11405-E-6, 480V NCC One Line Diag., Sh. 1 11405-E-7, 480V MCC One Line Diag., Sh. 2 4. GE Drawings 177B2371, 480V MCCs Elementary Drawings. 5. EEQ Manual, Section 2, Containment LOCA Response Curves. 6. USAR, Figure 14-6-6, Containment Response 7. USAR, Section 6.2.5, Time to RAS 8. USAR, Section 8.4, Emergency Power Sources 9. Stone Webster Calculation (16472.19), Confirmation of D1 and D2 Loading.
- 10. EA-FC-90-76:
Cable Tray Loading Calc / Justification
- 11. MR-FC-87-20:
Control Room Outside Air Filter Unit Replacement. j
- 12. USAR, Figure 14.16-2 Long Term Pressure Response Loss of Coolant Accident Rev.
1 (7/89) (Attachment A to this calc.).
- 13. C.E.
letter 0-MPS-90-079 from R.W. Bradshaw to R.L. Phelps dated 10/2/90 (Attachment B to this calc.).
- 14. Modification Request MR-FC-90-53, Containment Spray Header
/l ' Valve (HCV-344) Interlock. i
- 15. Modification.
Request MR-FC-84-105', Replacement of i Transformers T1B-3A,3B,3C
- 16. EPRI Power Plant Electrical Reference Series Volume 6, Motors, Copyright 1987 1
PED-QP-3.33
E A -9 0-062 REV.3. m, f $e# '4 t
= =
.ALCULATION PREPARATION, REVIEW AND APPROV4C ' CALCULATION NO. FORM PED--QP-3.3 FORM Page No. 5 of 5 4 FCDB392 PRODUCTION ENGINEERING CALCULATION
SUMMARY
SHEET Rev.No. 3 i CONCLUSIONS 1 Attached are the Load Shed Information Summaries for DG-1 and DG-2. These summaries note the load shed status for each
- device, the load in KW, the intermittent load (if applicable),
and the cycle time (in seconds) for appropriate j valves. ] To determine the loading on each diesel generator, the total sequential load and the total non-load shed continuous load are needed. The total non-load shed intermittent load will l also be found. i Reference the attached Load Shed Information Summary for DG-1 for load information on individual equipment loaded on DG-1. i The load totals for DG-1 are as follows: Total Non-Load Shed Intermittent Load: 61.3 KW. l Total Non-Load Shed Continuous Load: 302.1 KW Total Sequential Load: 2248.9 KW i Therefore, the total load which would be loaded on DG-1 as a l result of LOCA coincident with a loss of offsite power is I 302.1 KW + 2248.9 KW = 2551.0 KW After approximately 2000 seconds into the
- event, the l
ventilation fans VA-3A and VA-7C would be expected to unload by approximately 25% of rated KW or 73.6 KW and SI-3A will be 4 at 336.8 hp which is a 17.8 hp increase over the 319 hp (17.8 l hp 14.4 KW for SI-3A). This would reduce the load to = approximately 2549.1 - 73.6 + 14.4 = 2491.8 KW. 1 1 At RAS 3740 seconds into the event (minimum safety injection), SI-1A trips reducing the load by 256.1 KW. SI-3A's bhp increases to 338.8 hp which is a further 2.0 hp increase over the 336.8 hp (2.0 hp = 1.6 KW for SI-3A). These two events reduce the load a further (256.1 - 1.6)KW to 2491.8 - 254.5 = 2237.3 KW. I For the lona term loadina (based on automatic load reduction only and no operator action to reduce the load - refer to 1 OPPD calc. FC05522 for long term loading based on operator action), SI-3A will be assumed to' be at 343 hp (0 psig containment pressure) for conservatism (refer to Attachments A B). Therefore, the load will increase another (343 hp - 338.8 hp) = 4.2 hp which for SI-3A is equal to 3.4 KW. Long term KW load 2237.3 + 3.4_n 2240.7 KW. This final long = term loading is assumed to occur at 5000 seconds for conservatism (Ref. USAR Figure 14.16-2, Attachment A). m.1 PED-QP-3.34 i
E A 062REV. 31 S E V - t W, # -,.. l o IALCULATION PREPARATION, REMEW AND APPROVAL CALCULATION NO. FORM PED-OP-3.3 FORM Pass No. 5 of 5 FC033R' PRODUCTION ENGINEERING CALCULATION
SUMMARY
SHEET Rev.No. 3 CONCLUSIONS Reference the attached Load Shed Information Summary for DG-2 for load information on individual equipment loaded on DG-2. The load totals for DG-2 are as follows: Total Non-Load Shed Intermittent Load: 208.6 KW Total Non-Load Shed Continuous Load: 594 4 KW Total Sequential Load: 1826.2 KW Therefore, the total load which would be loaded on DG-2 as a result of LOCA coincident with a loss of offsite power is 594.4 KW + 1826.2 KW 2420.6 KW = After approximately 2000 seconds into the event, the ventilation fans VA-3B and VA-7D would be expected to unload by approximately 25% of rated KW or 73.6 KW and g48 p SI-3AC & 3B bhp would increase to 325 hp each (total f ggjql increase of 40.5 KW). These two events reduce the load further (73.6 KW 40.5 KW) to 2420.6 KW - 33.1 KW = 2387.5 KW, At RAS 3740 seconds into the event (minimum safety injection), SI-1B
- trips, reducing the load a further 256.1 KW to 2131.4 KW.
The calculated power factor for the diesel generators are: DG-1 0.87 pf DG-2 0.85 pf i These power factors are larger than the nameplate rating j of .80 at 2500 KW and demonstrate that the LOCA loads are expected to operate within the generator and exciter i ratings. Diesel Generator loading 'has a direct effect on diesel i generator fuel oil consumption, reference FCS Tech Spec. 2.7, and the following calculations should be reviewed 3 for affects of load changes any time this calculation is revised. FC 05393 DG Sequential loading FC 05522 DG Fuel Consumption i EA-FC-90-062 DG Operating Temperature Limits E1 PED-QP-3.34 l
R EA-90-062 g v ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED-QP-3.4 Form Page No.1 of1 MenREM PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No. g REF. NO. 1 1.0 LOAD SHED INFORMATION FOR DIESEL 2 GENERATORS DG-1 & DG-2 4 l Attached are the Load Shed Information Summaries for Diesel Generators DG-1 gnd DG-2. Each summary was developed from a Knowledgeman database which contained load information for each electrical device included in the calculation. The heading of the printout contains the page number,
- title, revision number and revision date.
The first three columns contain the source bus number, breaker number and I device tag number, respectively. The next column shows the load shed status for each tag. The column will have a "YES" for load shed loads, a "NO" for not load shed loads and a " SEQ" for sequentially loads. The fifth column (LOAD) and the sixth column (INTERMITTENT F LOAD) contain the actual value of the load in Kilowatts } (KW). If the load is continuous, the value will be located in the " LOAD" column. If the load is intermittent, the j value will be in " INTERMITTENT LOAD" column. For equipment which would~ constitute no load in an emergency situation, l such as welding receptacles, cranes and fuel handling equipment, both columns will be zero. j The next two columns contain the cycle time (in seconds) for applicable valves. If the valve fails open, the time will be in the "OPEN" column. Similarly, if the valve fails
- closed, the time will be shown in the "CLOSE" l
column. The final two columns contain the related schematic drawing number and any comments ) After all of the equipment records have been printed, the a load totals are printed on the last page. Given are the j total not load shed intermittent load, the total not load ) i i 1 ) nn i
Ptst I of 4 "Q "Ts toad SME. INFORMATICO FC. olt5Et GENERAtoa DG.I tav.
- 3. o3/r5/91 y
oO zo Bus enEAmEn TAG toad toad iNTERMIfffMT MOV / TiMt SchEHAlle nuMeEn suMcEn puMSER 5MEo (KW) loa. (KW) oPER closE cAAWins cop 9tR15 O O 5 2 2 2 1A3 1 A3 1o AC-loc 1EQ 155.800
- c. coo Il4o5-E-24 y)
=g IA3 IA3-It tis-3A no 9.o00 o.000 Iteo5-E-16 2 2 g E43 IA3 IA3-Ir fle-38 no 3.roo .. coo II4 5-E-16 2 h ~ IA3 ] A3-13 ilt-3C No r.30.
- o. coo IIso5-E-16 IA3 IA3-15 ilt-3.
YEs 225.000 o.0o0 II4o5-E-16 g 1A3 1 A3-16 Fu-6 sE0 196.roo 0.000 !!4o5-E-16 2 8O IA3 iA3 5 ac-x ns ress. coo
- o. coo neo$ E-ir g,2 sas 1A3 6 ric-a us r25. coo
- o. coo isso5 E-i6 0
2 IA3 IAs-r st-tA sto 256. 00
- c. coa
- - 5-E-ir 3
ug 33B 1A3 IA3-9 Ac-loa SEQ 155.80.
- o. coo ll4o5-E-24
.nsa tem-a st-ra sto 24o.600
- a. coo
- 4o$-E-ter O
- J B l
2 tem tem-r nce 3Ai no
- o. coo o.ooo cre4Ae66s su. orm 2
1834 tem-3 ncc-ur no o.000 0.000 oro4As56s sn. orP E 2 tem a sm-4 cu-A sto 12.600 o.000 1:4c5-E-143 g "O I as3A tem-5 ncc-343 YEs
- o. coo o.ooo ll4o5-E-4 5
~k ism ina-6 acc-me us
- o. =
neo5-E 45 Os ..a ..,A.; 9A.m n, .96. _ ,,4o5.E.,45 ~ 'imm-u iem.4A-r cA-ic ns ire.no
- a. coo n4o$-E-nu i.m.a is,A.AA.3
- o. o.
o m A.66. s.. ors -E,,-i
- o le3A-4A IS34-4A-4 s!-rc SEQ 140.60.
- o. coo II4 5-E-14r I
i.m i.... cM us
- o..
n4o5-E-tr. 1838 IB38-r ncC-301 No
- o. coo
...oo otr484392 su. 5, g Isis te38-4 Ac-3A sE0 217.800 0.000 Itses-E-144 I isse 183s-5 ncc-Jer Yts
- o. coo
- c. coo n4 5-E-45 p
A' l tem is3e-6 Mcc-383 YEs o.ooo 0.000 II4o5-E-45 y l ism inje.r 9A-tri Yts so.roo c.ooo sz-rc-as-o4-on 2 1 isse asis-s au-46A ns 123.000 0.000 neo5-t-5e P l Q sex isx-^ nec-xi ao o.oco o.cos cir4s439 su not C) F tax tex-r nce-xt no c.oco
- c. coo oro9A 555 su. irr
@ Q i.x iox-3 nc-n us o.ooo n4 5-E 45 (A w g nex iox-4 no-x-i no
- e. coo
- o. coo.
cires4392 sn. iso W d E i tax tax-5 nce-x3 YEs
- o. coo
- o. coo n eo$-E-45 O
D tax IBx-6 s!-m SEQ 254.roo
- o. con
!!4o5-E-143 ase4 eff. of 924;319tp per re-90-53 I tax tax-r NE-3 no o.ooo o.cos otr484392 sa. tot Not NonnatEY.aguales 2O N 2 2 OQ 1 \\
9T O h,
- TI Page 2 of 4 2
LOAD sHE0 thf0RMATIon FOR DIE 5EL GEkERATOR DG-1 Rev. 3, 03/25/91 r"* O 2F O O EO C C C Bus BREARER TAs LOAO LOAD l#TERMiltEh! MOV / 11ME sCHLMATIC g IN#WER SUMBER IMNSER sHE0 (KW) LOAD (su) OPER ClosE DRAW!st CDP 91ENTs d-(Tl d O O 2 2 2 Is3C lex-s CA-IA Yts 124.300 0.000 I!4cs-E-142 (M $ f 7 1.x i.x.9 E... ns 103. 00
- 0..
n 40s.E.4 s a .= g 183C-4C 18X-4C-I - MCC-3C4C-1 YEs 0.000 0.000 !!405-E-4s 2 IB3C.4C 183C-4C-2 MCC-3C4C-2 YEs 0.000 0.000 Il40s-E-4s 183C-4C 18X-4C-3 VA-FC SEQ 100.100 0.000 Il405-E-145 i x-4C i x-4C-4 AC-x sE. n r..
- 0. -
naos-E-in 2
- p 5 O
MCC-3Al MCC-3Al-A01 NCV-Il03 NO 0.000 17.100 I!405-E-26 su. 3 h I MCC-ul MCC-ui-A03 aC-3C-seACE-ura no 4.500 e.0oo n 40s-E-32 su. s O z MCC-3Al MCC-3Al-804 RC-x-1 no I.490 0.000 II40s-E-32 sN. 3 N MCC-m MCC-3Al-Aza EE-4s to 0.000 0.000 n40 -E-Fs 6 g MCC-ul MCC-ul-not ains-euxi-sarl us 75.000 0.000 n40s-E-as 2 MCC-m MCC-3Al-C01 urns-ens! sar2 YEs 75.000 0.000 n 405-E-45 2oy MCC-w MCC-ul-col mins-emul-sep3 YEs 75.000 0.000 n40s-E 45 2 g MCC-3Al MCC-3Al-E01 NCV-317 RO 0.000 1.690 12 Il40s-E-29 su. 3 g MCC-3Al MCC-3Al-E02 NCV-331 NO 0.000 2.420 12 Elec5-E-29 58 3 g MCC-ul MCC-w-E 03 ila-u-Cts-rAns no 0.750 0.000 Iltos-E-75 1 ,MCC-3Al MCC-3Al-E04 nCV-13ss no 0.000 17.100 15 Il40s-E-26 20 MCC-w MCC-m -rel nCv-n4 no 0.000 1.690 12 Il40s-E-29 sN. 3 adC MCC-3Al MCC-3Al-F02 MCV-2954 NO 0.000 0.696 Il405-E-29 MCC-3A2 MCC-3A2-A02 WO-14A YEs 13.000 0.000 Il40s-E-42 Mtt-u2 MCC-3A2 A03 Ou-en YEs 34.mo 0.000 n40s-E-4s I 3 f MCC-3A2 MCC-3A2-e01 u0-34 YEs 6.700 0.000 ll405-E-37 sq. 7 f m.m m-w. 02 .-nA ns 0....
- 0. m n40s-E. u s. 2 pI3 3
m-u? MCC-u2-se uc-Zu us
- 6. m
- 0. m n40s-E-u g
gg m -3A2 MCC-3A2 00i e-4oA ns 0.9s0 0.000 n40s-E-37 su. 3 j MCC u2 MCC-w -C02 e-41A ns 0.9s0 0.000 n40s-E-37 sn. s 2 MCC. = MCC.m-Cu ..vA ns 0..s3
- 0. m n 40s-E. m s..
g u MCC-342 MCC-3A2-001 WD-sA YEs 11.000 0.000 Il40s-E-47 sN. 4 i { MCC-3A2 MCC-3A2-002 MO-6 YEs 12.600 0.000 ll405-E-37 sN. 7 C MCC w MCC-312-003 V0-Is4 no 0.000 0.953 Il40s-E-m sa. a @ Q Q m.m m. -004 ,,CV.
- 0. m 0.,9.
20 20 n40 -E.si s. 3 g g g MCC-3A2 MCC-3A2-to2 NCV-343-3 to 0.000 1.590 ts II405-E-29 su. 6 g MCC-342 MCC-3A2-E03 LCV-218-3 NO 0.000 0.497 20 t-23M6-414-353 pq MCC-3A2 MCC-3A2-E04 LCV-218-2 NO 0.000 0.696 24 !!40 -E-s! sN. 4 2 1 99 9
l 9
- U
- n
- c O>
Page 3 of 4 10A0 5HED InrDaMAllC3 FOR DIE 5Et GENERA 1C2 06-1 Rev.
- 3. 03/25/91 Q-2F O O EO C C C
l sus Bat men TAG t0A0 (OAD is1ERMIITENT MOV / TIME SCMMATIC ITI d{ mu'sEn nuMeEn suMsER SMED (Kv) LOAD (EW) OPES ClosE ORMIBG COMENT5 O O O 2 2 2 MCC-3A2 MCC-3A2-F04 VA-elA NO 0.000 0.995 02030 f/3 ~U l MCC-3A2 MCC-3A2-F05 AC-5A YE5 33.200 0.000 Il405-E-4 5 O W Z 2 MCC-3el MCC-3el-401 WELDING MCEris NO 0.000 0.000 !!405-E-93 e5ED INTEMlifEhiLY y MCC-3el MCC-3st-A2t utt01st RECEPIS to 0.000 0.000 Il405-E-93 85E0 tuTERMITIEpitY MCC-3et MCC-3el-e01 NTt3-eNKPI-GRP6 NO 75.000 0.000 Il405-E-45 MCC-3st MCC-3el-Col VA-63A no 9.330 0.000 II405-E-34 su. 9 8O -C-n i -C-mi.C03 .0-2A .5 ...,0
- 0. -
ii405-E-u g.2 MCC-381 MCC-3el-C04 VA-12A YE5 34.200 0.000 Il405-E-4 5 2 MCC-3ei MCC-3en-C2t EE-sc no 56.200 0.000 0-55-1s105 gh MCC-3er MCC-mi-00: VA-45A YE5 0.7e0 0.000 st405-E-x Sn. s g og g FT1 MCC-MI MCC-3st-002 VA-41 YE5 13.000 0.000 !!405-E-55 2 EEE MCC-3el MCC-3el-003 RC-3A-3 PACE-Nit no 4.500 0.000 Il405-E-59
- y g
MCC-se McC-mi-004 aC-u-a no 1.490 0.000 1405-E-59 2 g g MCC-ni MCC-m -E0: VA-. no 5s.900 0.000 0-44:5-220r im5fAttEs un0En Ma-rC-oi 51 g g MCC-3el MCC-3st-E04 Tle-38-ctg-TM5 50 0.750 0.000 Il405-E-75 g g MCC-3et MCC-mi-E05 u0-3A Yt1 0.950 0.000 Il405-E-35
- g
, MCC-se MCC-sen-E2t In-2A no 0.000 e.796 C-10233-E [ MCC-3el MCC-381-E2R VA-FIA NO I.400 0.000 Il405-E-48 SN. 1 ( MCC-jen MCC-sen-ran EE-en no 0.000 0.000 10r-Il04W N MCC-381 MCC-3el-F01 VA-2A YES 12.600 0.000 11405-E-35 MCC-3el MCC-381-F03 NCV-327 No 0.000 2.420 12 Il405-E-29 58. 3 MCC-3e1 MCC-3st-F04 HCV-34e NO 0.000 7.020 e2 It405-E-51 5N. 2 y% MCC-=> MCC-ni.G05 nC - m r0 0.000
- i. _
i2 ii405.E-29 5.. MCC-3e! MCC-351-62t EE-15 YES 24.000 0.000 ll405-E-319 MCC-3el MCC-3si-G2R AIA-02 NO 0.000 0.000 Il405-E-360 SN. 3 () MCC-3el MCC-3el-G3L VA-52A YES 13.200 0.000 ll405-E-45 5 i MCC-set MCC-38 -G3a ru-t no 0.000 0.000 C-10tr9-E neaMAttY Orr g ....G3. VA.. .0
- 9. _
- 0. _
0 4599 MCC-38: MCC-3st-G4L tE-22 Yt3 11.300 0.000 E-23e66-4 4-450 sonMAttY Orr e MCC-mi MCC-ist-G4a ATA-On no 6.500 0.000 ll405-E-M0 SN. 3 l h { MCC-se MCC-3si-n0 mM-050/051 no 1.180 0.000 11405-E-3' 55. 2 d MCC-3st Mtt-3ei-n02 nCv-50 no 0.000 0.497 II405-E-32 O g p h MCC-sen MCC-3et-u03 nCV-29:4 no 0.000 0.696 1405-E-5 Sm. I MCC-mi MCC-3si-n04 nCv-320 no 0.000 n.s90 12 1405-E-29 Su 3 2 g 2 2 3 ? \\
T T. Pdga 4 of 4 10A0 5HED Inf 0RMAIIDs (08 OIE5EL GENERATOS DG-1 Rev.
- 3. 03/25/95 rO O EO C C C
SU5 SaEAKEA TAG LOAD LOAD INTIRMIIIIst MOV / T!!( 5CHEMAIIC mun8Ea mun8Ea supeEn 5HED (EW) LOAD (KW) OPEN CLOSE DRAW!bG COMEbl5 q,,, m.4 30 5 2 2 2 hCC-3Cl MCC-3Cl-A01 PCV-102-1 RO 0.000 0.000 B-23866-414 370 C/3 T MCC-XI K C-K!-A05 ilt-E-CLG-F Aus NO O.750 0.000 Il405-E-75 O ,EA3 ftCC-3Cl MCC-XI-Att EE-SE NO 0.000 0.000 0-55-16805 NORMALLY OFF LINE 2 A -1 m MCC-XI IOCC-XI-A28 AWK-A00F-DISC-5W NO 0.000 0.000 !!405-E-74 80 LOAD hj MCC-3Cl K C-XI-A3L CA-4 YES 36.000 0.000 ll405-E-45 2 MCC-XI MCC-K!-A3R STRE55tnG-OIS-5W NO 0.000 0.000 Il405-E-73 no LOAD EO MCC-XI MCC-XI-A4R EE-40 NO 0.000 0.000 IDF-Ilotu ]2 MCC-K! MCC-K!-901 NTR5-8NK2-GRP4 YE5 75.000 0.000 ll405-E-45 O g MCC-3CI KC-3CI-C01 MIR5-SNK2-GRPS YES 75.000 0.000 Il405-E-4 5 T MCC-K2 KC-K2-A01 OW-414 YES 13.000 0.000 Il405.E-4 5 MCC-3C2 itCC-K2-402 VA-32A YE5 33.200 0.000 !!405-E-33 Su 7 2 MCC-X2 MCC-K2-A03 VA-434 YES 49.900 0.000 II405-E-34 5N. 3 MCC-3C2 MCC-X2-301 FW-34A YE5 8.780 0.000 Il405-E-45 l MCC-3C2 K C-X2-902 VA-24A YE5 33.200 0.000 Il405-E-33 SN 5 O Q MCC-X2 IECC-3C2-903 VA-40C YES 49.900 0.000 Il405-E-34 SN. 3 O MCC-K2 MCC-3C2-Col KV-265 NO 0.000 0.298 46 Il405-E-42 SN. 6 g MCC-K2 ftCC-K2-002 NCV-268 NO 0.000 0.497 24 Il405-E-42 SN. 5 2 MCC-3C2 ftCC-X2-Ce3 WD-10 YE5 1.870 0.000 Il405-E-47 SN. 4 MCC-3C2 MCC-X2-C04 VA-404 NO 0.000 0.000 Il405-E-49 SN. 4 MCC-X2 ftCC-X2-002 CN-44 90 25.600 0.000 II405-E-51 SN. 5 NCC-K2 IICC-3C2-003 CN-12 YE5 36.000 0.000 !!405-E-42 $N. 1 ItCC-X2 KC-X2-004 AC-134 YES 12.600 0.000 !!405-E-45 ftCC-X2 MCC-K2-E01 EE-23 NO 24.000 0.000 050734 $N. 2 MCC-3C2 MCC-3C2-E02 VA-354 YE5 49.900 0.000 !!405-E-34 $N. 1 MCC-K! IOCC-X2-E04 MD-SA YES II.000 0.000 Il405-E-45 e MCC-X2 ftCC-X2-E 3L EE-28A YES 7.200 0.000 C-4068 2 ftCC-3C2 ItCC-E2-E 3R EE-294 YES 9.600 0.000 WO-891-60 MCC-302 MCC-302-F02 WELOleG RECEPi1 YES 0.000 0.000 II405-E-64 USED luTERMITTENTLY O i o C Total Not Load Shed laterattteet Load 61.3 Total Not Load Shed Centtneous Loed a 302.1 g Total Sequentist toad
- 2244.9 O
P 2 g g Total Load on 06-1 2551.0 Ku 2 N .O 9m
O 11 O% 2 Page 3 of 7 LOAD SHED INFORMATI0m FOR OIESEL GENERATOR DE-2 tee. 3, 03/25/91 C C C Bus etEAEER TAG LOAD LGAD ImIERM!!!ENT nov / TIME SCHEMilt RuneEn numeEn NuneER 5MED (EW) LOAD (EW) OPEN CLOSE camlNG ComLuis O O o 2 2 2 mW 7, IA4 IA4-10 Tit-4A N0 4.600 0.000 !!405-E-16 2 2 g g 144 IA4-!! AC-108 SEQ 155.000 ~.000 Il405-E-24 0 g h IA4 IA4-12 AC-100 SEQ 155.300 0.000 Il405-E-24 = TY1 1A4 1A4-14 SI-It SEQ 256.100 0.000 Il405-E 23 1A4 IA4-15 TIC-4A YES 225.000 0.000 II405-E-16 2 "Tl 1A4 144-16 RC-30 YES 2866.000 0.000 Il405-E-17 0 IA4 IA4-3 CW-IC TES 981.600 0.000 Il405-E-24 Q g IA4 1A4-4 FW-5C YE5 471.200 0.000 !!405-E-Il 3 g 144 IA4-5 FW-4C YES 2744.000 0.000 Il405-E-Il E
- -IQ IA4 144-6 Fu-2C YE5 1571.000 0.000 11405-E-Il O
144 1A4-8 TIB-4C NO 7.100 0.000 ll405-E-16 2 IA4 IA4-9 Tit-4s NO t.500 0.000 !!405-E-16 E l l 1838-48 1838-48-2 FW-8C YES 103.600 0.000 Il405-E-330 0 1938-48 1838-48-3 51-3C SEQ 243.300 0.000 !!405-E-143 sse4 eff. af 92% k Q 1838-48 1838-48-4 UA-70 SEQ 98.200 0.000 I!405-E-14 5 g 1838-48 1838-40-5 CN-!C SEQ 12.600 0.000 Il405-E-143 3 g ' 1938-48 1838-48-6 NE-2 NO 0.000 0.000 0204A4668 5N. 02v NOI NonnaLLY annu!Ns O 184A IMA-1 AC-38 SEQ 209.700 0.000 ll405-E-144 IMA 1944-2 MCC-4A1 NO 0.000 0.000 0209A1045 SN. 02n 194A 1844-3 MCC-4A2 NO 0.000 0.000 020941045 Su. Otu IS4A IMA-4 FN-88 NO 103.000 0.000 ll405-E-330 194A 184A-5 CW-38 YE5 98.200 0.000 II405-E-45 IMA 194A-6 SEC. YES 0.000 0.000 !!405-E-270 2 ( INA IMA-7 MCC-4A3 YES 0.000 0.000 11405-E-45 1948 1948-1 51 38 SEQ 243.300 0.000 Il405-E-143 ese eff. of 92g '~ ' 2 IMB 1848-2 ntC-4tl NO " 0.000 0.000 012484392 SN. 73C 9 , )W [ IMS 1845-4 CA-18 YES 124.300 0.000 !!405-E-142 g' h i Ises less-5 nCC-4s2 No e.000 0.000 0124s43s2 SN. 73s Tl O l Is4e Ison-6 nCC-4s3 YE5 0.000 0.000 ll405-E-45 f\\ C l O !see Isas-a OW-46e Yt1 123.000 0.000 Il405-E-se SN. 6 Is4t 1s4C-2 nCC-4Cl NO 0.000 0.000 020sA!045 SN. 02n N h o teet is4C-3 nCC-4C2 a0 e.000 0.000 0124M3s2 Sa.124C 2 g iMC iM C-4 .CC-4C3 m . 000 e.000 .i24m m Sn. i24. g z2 .O Q
.__m .m _m cT ~1'. >= 0> Page 2 of 7 10A0 5NEO INF0anaTION FOR O!ESEL GENERATOR OG-2 Rev.
- 3. 03/25/91 h
h C C C Se5 BREAKER TAG LOAD LOAD > INTEen!TTENT MOV / T!fE SCNEMATIC hh Th NWWER BueER NuMcEt 5NED (KN) LOAO (KN) OPEN CLOSE CAANING Cope (N!5 d 6 O O 2 2 2 IS4C IB4C-5 51-28 SEQ 240.600 0.000 Il405-E-142 IB4C IB4C-6 CN-IB SEQ 12.600 0.000 Il405-E-14 3
- g IB4C 194C-7 MCC-4C4 No 0.000 0.000 012484392 SN. 1244 IS4C IB4C-8 VA-38 SEQ 196.300 0.000
!!405-E-145 MCC-4Al .MCC-4Al-A01 RC-38-5 PACE-NTR N0 4.500 0.000 ll405-E-32 SN. 5 g 9 MCC-4A1 K C-4Al-A02 EE-22 YE5 11.300 8.000 E-23066-414-450 Q OO K C-4A1 MCC-4Al-A03 ATA-01 NO 0.000 0.000 II405-E-360 SN. 3 o MCC-4Al MCC-4Al-A05 EE-4T NO 0.000 0.000 ll405-E-75 = 1 MCC-4A1 MCC-4Al-A06 BC-38-1 No I.490 0.000 !!405-E-32 SN. 1 (/3 3 MCC-4A1 ItCC-4Al-A07 EE-36 NG 0.000 3.900 157673 O IQ i m MCC-4Al MCC-4Al-901 NTA5-ONKP2-GRPF NO 75.000 0.000 !!405-E-52 SN. 9 g g MCC-4AI MCC-4Al-C01 VA-128 YES 34.200 0.000 ll405-E-45 O> MCC-4A1 KC-4Al-C02 EE.80 No 56.200 0.000 0-55-16105 H 4 MCC-4A1 MCC-4Al-C03 VA-648 90 9.000 0.000 0-4600 Q MCC-4A1 MCC-4Al-C04 E V-1041C NO O.000 0.099 !!O !!405-E-44 SN. 4 M MCC-4A1 MCC-4Al-COS NCV-151 No 0.000 0.497 Il405-E-SI su. 3
- MCC-4A1 MCC-4Al-801 VA-468 N0 58.900 0.000 3-4415-2560
!ESTALLEO NNDER nt-FC-81 51 O MCC-441 MCC-4Al-002 NO-28 YE5 2.700 0.000 !!405-E-4' MCC-4A1 MCC-4Al-003 EV-315 NO 0.000 1.490 12 II405-E-29 SN. 3 I N s f(.i.-4A1 PCC-4Al-004 KV-318 N0 0.000 1.690 12 Il405-E-29 SN. 3 L C-4A1 MCC-4Al-E01 VA-458 YES 8.510 0.000 II405-E-34 SN. 8 MCC-4A1 MCC-4Al-E02 VA-528 NO 13.200 0.000 I!405-E-54 $N. 9 g MCC-4Al MCC-4Al-E03 VA-718 N0 0.796 0.000 11405-E-48 SN. I g Q MCC-4A1 MCC-4Al-E04 ME-78 NO 0.000 0.000 11405-E-74 MCC-4A1 MCC-4Al-E05 ATA-02 NG 8.500 0.000 Il405-E-360 SN. 3 MCC-4A1 MCC-4Al-E06 NELOING RECEPT 5 NO 0.000 0.000 ll405-E-73 USED INTERRITTENTtY N ) MCC-4A1 MCC-4Al-E07 NO-38 YE5 0.950 0.000 Il405-E-35 SN. 3 MCC-4A1 MCC-4Al-F01 VA-28 YE5 12.600 0.000 Il405-E-33 SN. 1 ] o D t MCC-4A1 MCC-4Al-F02 TIB-4A-ctg-FAN 5 No 0.750 0.000 ll405-E-75 C 1 MCC-4A1 MCC-4Al-F03 NCV-2934 NO 0.000 0.696 II405-E-51 SN. I ) f g MCC-4Al MCC-4Al-F04 KV-329 ND 0.000 2.420 12 I!405-E-29 SN. 3 .O I D MCC.4A2 MCC-4A2-ASI ON-418 YE5 13.000 0.000 !!405-E-58 SN. I 2 w MCC-4A2 MCC-4A2-A03 RM-060 NO 1.490 0.000 !!405-E-39 SN. 3 'l' P 2 5 N 2 2 p .O % e-i i
l i. bP l g U 0 l %g N NU ) OC 3 m2 gg2 go OC o2 2o. = ) g
- O U
7gh BI2PHkN Y y 0W gp C o2 E g 3 O g ] M_O OgOC g =2 3% 2p 2@' 2O 1 9 / 5 2 / 3 0 3 s i Y h L v. E T e q N e p E R o T C T F F F F F I F F F F F M O O O O O e E Y Y Y Y Y T L L L L L e L L L L L l A A A A A M M M M M D A R A R R E O O O O O S N M N W N U 7 5 4 5 6 I 3 I 6 6 0 I 3 1 A IC N N. N N. N. N N n. N. n. e 6 a. n - S G $ $ 5 S $ S S 2 S s c T N 0 9 4 5 4 A I 3 3 5 0 4 3 9 5 1 5 4 4 e e 2 2 9 5 3 5 5 3 E s M M 3 6 4 1 6 0 3 E E 4 3 5 E 5 3 3 e 4 N. 4 i 9 v 4 4 3 2 7 E A - - - - - 6 l E E
- n. E
- S 5 - e N R E E 3 1 E E E 8 E E E e I D E E E E 1 5 2 2 5 5 5 2 5 5 5 E E 0 E E E uE 3 7 7 4 - 6 4 l 2 S 5 5 5 5 5 9 5 3 5 6 0 5 5 5 5 l 5 5 5 7 5 0 0 0 0 0 0 e 0 0 0 0 0 0 0 0 0 0 0 7 0 0 3 1 e 0 0 0 0 0 0 ml 0 G 4 4 4 4 l O l l l I 1 4 l I 2 l 5 l 4 0 4 7 4 4 4 F 4 4 4 4 4 1 1 4 4 4 4 4 7 4 0 4 4 O l l l I l W I C C I l I C l I I 6 l 0 l C 0 3 4 i l l l l I l I l l l l l 2 7 il l e l l l l RO TA E R E 5 E M O R I L E T C 6 / L E V R 5 O E IE M P O D RO F TR ) R E W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 0 5 0 0 0 0 0 0 0 0 0 0 s 0 T W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 9 7 0 0 0 0 0 0 e. 0 0 0 Y I ( 1 I A M D M B A 0 0 0 5 0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 e 0 7 R E O O T L F N N I I O 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 E 0 0 8 0 0 9 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 s 0 5 0 0 0 0 0 0 9 N D ) 2 0 7 0 0 3 2 0 0 3 0 3 0 0 9 9 e. 6 0 0 5 0 0 7 0 7 0 0 0 0 5 9 4 A W O K 3 0 e 0 0 0 3 0 0 4 1 6 0 0 9 9 1 3 3 0 2 0 0 e 0 0 0 0 5 5 I t 0 D L ( 3 3 1 2 4 4 2 2 3 7 7 i AO L D O A E 5 5 S 5 5 5 S 5 5 S 5 S 1 3 S 5 O N E O E 0 E E E 0 O E E O O O E E 0 E 0 O E 0 O E O 0 0 0 t t E E 0 L S Y N Y N Y Y Y R N Y V N N R Y Y n Y W N Y 8 N Y N a u u Y Y Y Y u ROO 5 s 2 D n i e 9 A r r P 0 n P F f a n E 9 t s e E E O 3 6 s t - - F G e 0 / 2 t e 3 s - A r L 1 e C r u x T u L / 6 4 2 - s u u e B s O. 3 s s e e e 2 / 5 e O s e s s A 7 2 R 4 6 2 9 e e t o e 8 4 9 5 3 n7 l 2 3 l 7 2 i e l r - - - s 5 3 3 1 2 t t I s S 4 1 1 3 4 6 I - 3 s 3 5 - - e e 5 5 r o 0 - x - P V - - - - Y e t - a a M A W W P A E A N N A O N N E A A l A E C E A E u C l E E i i F uE V A F M V E V F F V W C F N V V A V E N E V E r r T N E n N x n A A e C 4 e 1 3 3 4 5 L R 1 3 4 L R '1 3 L R 1 2 3 3 3 4 2 S L a 1 I 2 3 5 R 0 2 0 0 0 0 0 2 2 0 O 0 2 2 0 0 2 2 0 0 0 0 0 0 0 O 4 4 0 O 0 0 0 E R A A e e e e. e e e C C C C C 0 0 0 0 E E E E E E A A A A e C A A A K E A e 2 2 2 2 2 2 2 2 2 2 2 2 l 2 2 2 2 2 2 2 l 2 2 2 i t l l l 2 2 2 E M A 4 A A A A A A 4 A A A A A A A A A A A A A A A s s e e s e e e e t U 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 t 4 s s 4 4 e a 4 4 4, s D C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C CC C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M 7 fo R 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 n l t l l l 2 2 2 3 S E A A A A A A A A A A A A A A A A A A A A A A A A e e s e e e e s e U W 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 a s 4 4 4 4 4 e e p g U C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C a B C C C C C C C C C C C C C C C C P M M M M M M M M KC M M M M KM KKM M M M KM M M M M M M M KM M C C C C C C C C C C 5 l! l
- ~
l l lll
5: I
- j' 3
[ 3g. ml gOg oyg gh W g,5 N gnChd02 % @2 $o ,g C g a 2 ,O. tog T 'lCg qOa Dh 2 - aw 3A h e 7 og3, 1 T:gCh62M2Og ]r,og&b2 n e 3 t m.
- $,o' w
ChdO2 V)-g g m. 2k' m. m. A 29 k i t_ 5 .h ,,e 3. s T N t m o m, C d r t ' r r F r F F r r r r r F F F F a o a o a a o o o o a y y y y y v y y y y t t t t t t t t t t. i t t i t t t t a= n A m A A a a n n a n n n n n n mn n t R R n o o o o o o o o o n m n s n N N N N TA. I I I 3 3 I , i i i i 3 3 3 3 3 3 3 3 3 3 3 3 i 3, 5 n. n. N. 6 u u. u. u. u. n. a n n u u M u N N M. n. n. =. C e s s s - s s s s s s s s s s s s s s s s n W l G t s s s s s s s i n 2 2 2 s o a : 5 s s s s 5 s 5 s s 5 5 5 a I 5 6 6 4 E s 4 5 7 s 6 s e 7 r 7 7 e 6 6 6 s 5 s s 9 6 s. n. 2 n K 4 2 2 3 2 3 4 2 2 2 2 t 2 t 2 2 t 2 2 4 2 2 2 , 2 2 a. 4 t A - - - - 9 u t t c o t t t 3 t t. t E s t t t t. t t t E t. E t E t t t t t c t t. t t t. h 2 s 5 5 5 s 7 s s 5 - s s s s s s s s s s s s s s s
- s. 5 si s s 0 e 0 e o 0 o 0 e o 0 o o o o o o 0 o e 0 0 0 0 0 0 0 0 0 5 o
4 4 4 4 o i n1 1 l 1 4 4 o 4 o 4 t 4 4 e o c e s 4 l I 4 4 o t 4 4 4 4 4 4 4 4 4 : nnt ns c 1 s I 1 s t 3 t i n1 ninnn l 1 t i l l l l
- s t
1 1 I s l l l l l 4.- t .m t s n o h. i l 4 a T c 1 / A m = v s D t nr 2 2 t e m A m o 1 1 i im ) t W 0 0 o o o o 0 o o o o o m.c. n o o 0 o o o o o o o o o. .o oo. 4 i K 0 0 o o o c 0 o F o c o o o 0 0 o o o o c o o 2 o r ( 0 0 c. c. o. 3 o 4 o. o. o. o. 0 0 c c. c. c. o. c. s. 4 t. c. t p n e o5 o o o o 6 4 o o o o o a o o o o o e o o n 2 7 o i o c t .n a 2 1 i t o ,o i t v a mw w i t 0 r o 7 o o o o s o o o o m.c. o o 0 o o o o o 0 0 0 s 0 o. = o o 0 t o s o o o o 0 o o o o s s 9 9 o o o o 0 0 0 o 0 s o o o e )W 4 s. c. s. 6 r. c. c. 4 c. c. c. c. c. o. 0. c. c. c. 0 0 . 0 c. 0 i. c. o. = s o K 2 o o o o s o c 2 o o o o a n n 3 1 o. o o c 5 5 s o o 0. o o o = o t ( a s 8 7 7 i o t er D s s s s s s s s s 4 o a i t o i i i . o i o o o o o o o o o o o o o t t t o o o. o.. - 4 t s v v n v v v n v t n n n n n n n N N t n N v i v n n n.. 4 s m o t n s. t i r, r e e e a s s t s a s e e 4 t s. a n e t s 3 r 2 6 s t t t - 4. s c m 3, n. l e s s a c c. e o t n B B o o. n n 2 3 o - 0 a. ai s i s s e u 6 0 s o. s 9 1 - - - - i t i 1 - - - B 1 3 t s s s s - - - e e. = 2 e 5 6 e s a a s a s 6 5 0 B - a n 3 3 3 t I t s - - - y 6 9 4 s s s v e e a. - - - V v v v v y v uxm.- - - - v v au a u c F A t o c a o o a a 4. o o o r i c c c v r n c V s v a v n n v v v V n n n n u m n a m 2 e. s t r 3 4 n s n 2 s t s o o o o o o nt r s 4 s 6 7 s s n i i t s i r, 4 = e o o o o o o o o e o o o o o o o o o o o o o o o m t a n o s. D B c c c o D c o o e t t t t t t t. t a s c. c. c. p nnn t. t. t t ut s 2 2 f 2 2 2 r 2 2 t t 2 t t t t 2 2 2 2 2 i i i a t s s s s 8 8 8 0 c c nc c c t u s s e 0 8 e. e 8 8 e s os a u i e s 4 4 s 4 4 4 4 < 4 e. e 4 4 4 4 4 4 s e. s 4 a 4 4
- 4. J 4 n m c c c c c c c e c c c e c c c e c C c c c c c e c c e c c c
n n. n n n n M n a n n n n n n n n nnin n n a = m.- c c n n Knc c c t c c c c c c c c c c c c c c c c cc c c c a t 2 2 2 2 z, 2 2 2 t 2 2 r t 2 2 2 2 2 2 2 i t nc niinn t t t 4 s t s e s 9 9 e. e 8 8 e e uas e s 9 8 9 8 e c c c c
- u. u. 4 4
u e e 4 e 4 4 s 4 4 4 4 s 4 4 4 a. 4 4 e 4 4 4 4 4 4 a a s n u c c c c C c c c C e c c e c c e c c c c c e e e c e c e c c M n n n n nn n n n n n n n n n n n n n M n = =. - c m c c c c n M n n Kn c c c c c c c c c c c c c c c c c c c c c c c e c E (ljjlIl l1 l 1
s
- ,g N s= g 4 g
@N r DI~ u R N 4@ I %- { C o2 Tij O,' 2 h g y 2 g h:s C g 2O' O t" Og -g 7 =.A oh 2g oggg T h a )Q 0r T2O CQ 02 e2g o s2 C 0 M2 gg y-g 29' 2o /sr /3 o s 3 t y v r t n t w im
- o. m v
n e o nm um R o t t s i .n.i o F in.i t F c c n E n mim t y v r t t n n t t i i a a n n o o o. n n t m m t o o s s n m e o 3 I 3 s 3 4 7 3 5 4 s r s I 8 u c u s. A . 4 u. n. 3 u s s s a. u. u n n. s s 3 s. n e. o u n I s s s s s s s s s u s u s s s - s T a s s 4 a s t
- m. s
- m. r m. m.
s e s A t 2 r 4 ,5 s s 4 r s 7 7 7 t o t 1 o o r 1 5 s M u 3 s. 4 3 4 3 4 e 3 3 4 - s - 5 r t 4 4 4 r r 4 a. E a 4 - 4 4 m t E E t t t t t t t t t s.E 5 t s t s s t t E t E.
- t. t.
t. t. t c o - - - - 6 4 e ? s 5 s s, 5 s 5 s s s s s s r s r s s 5 s 8 s - s s s s s s s s s m o o c o 0 o 0 o o .o e o e o o o 0 o e o 3 o 9 s o o o o o o e o G 4 o 4 4 4 4 4 e o 4 4 4 o t c 4 o t e 2 4 1 4 4 4 4 e s 4 4 o n l 1 1 t 1 i 3 i l 1 4 o n n1 nnn1 nnt nl 1 I 3 1 1 l B 1 2 s nnnt n1 nu i s l a to T A t R t s t i o o M u t l f c n re G / t t v s s o t E n r s o a o to f la ) n t u o - o o 0 o s s o o o r 3 r o e o s a o o o o e o. 0 s o - o i s o e 0 c 0 o o c o o s 5 s 3 e c o o c o o c o 0 o c n( o. . r. . 0 o. 0 c. c. t o. c. c. 4 9 4 7 s. o. c. c. o. c. c. o. o. c. o. 0 c. fA n o o o o o e c 0 o o o o c o o o 3 i 5 o o o c o o. o o c o 0 o o M a a n t o o f L F n N 'I I o n o 0 0 0 s o .o e o o s o o o o 7 8 o e e o o o o s o =,. .o 0 E o o 0 o 3 o o s s s o o o o o o o 9 9 o 0 c o o c o H o ) o. . 0 3 3
- s. r.
s. e. c. c. c. c. c. c. c. 4 2 6
- o. r.
s. c. o. 9 o n s. s 5 A u o r 4 o o 3 4 s o s o o o nc a c c e o o o 2 0 s o o e 3 2 t ( 1 3 1 . s 4 o L o o m t s s s s s s s s s s s i s s s o u o o, o. i t o t i E t o o o o o o i o o - o.. n v i s i v nt T i n n n n n N uE noono o t s n v T v N n n a s m mm Y i u r .n mn t s t c t c r s o a c 4 s a a m t t t r c s. e 7 3 / . o G ms mm a o s s e s s s e s 4 s o 8 t s . : r e e l 3 1 3 e s e o 3 3 r 3 3 s i ne t. . e 3 3 t e r 4 l 4 s i r r. s r 1 o.
- s. r.
8 i o e. o 4 v - - - - v v r - - t m s-mm Ka len n c t n .c m v.- t c s u a s o o o p t o t c o t t a n u o v u v u u u s v s o C A h a t u r 3 5 r s t r s i r s n r s s t r 3 e s l 3 4 s, s n 3 a os,o ,o n r s .c o o o e o o o o o o o o o o o o o o o e c o o c o o o ,o t a r. r n n s s s. c. c c c c c p t s s. .c. t. t t t F F c t. s t s s i i t t r r r 2t r t r t t t r t a r 2 t t r 3 i s 3 3. 3 3 c c c c c c c t eu 4 n c c c c c c c c c c C c c c 4 w.l c c c s a 4 4 s s 4 4 4 a s 4 4 4 s 4 4 4 4 4 4 4 4 e p c c c c c e c t c c c e c c c c c C t c t mm mc c c c c c c e c n a n n mn a n n n nn n a Kc M n f n c c c c c c t c c e c c c c c n n e n n .n, 7 f o a , i, r t t r r r r t t t t t t 2 r r 2 r r r. 3 3 3 3 3 3 a.3 5 s t c x. s. c c c c c c c c c c c c c c c C C C C c = <4 c c c u s 4 4 a e 4 4 s 4 a a 4 e e 4 4 4 4 4 4 a. 4 4 a e s m s mc mcmc t c c c c c c t t c c c c c e c c c c nnmc ,m e c - M nn n n an n nn n n n n =. mt mn e a - c c c e c c c e e e c c c e e c c c c e c c r n n n n n n
Og"U M> O z Page 6 of 7 LOAD 5NEO InF0mAi!0s FOR OIE5EL GENERATOR OG-2 Rev.
- 3. 03/25/91 g
h C C C SUS BAE4KER TAG LDAD LDAO ! ATE M ITIEtt MOV / TIME SCHEMATIC h "g h puleER NUseER NupeER SNEO (KW) L040 (KW) OPEN CLOSE DeaulnG COPVESTS d O O 2 MCC-4C3 MCC-4C3-004 WELOInG RECEPi1 NO 0.000 0.000 II405-E-283 U5ED leTEmliiENTLY MCC-4C3 MCC-4C3-001 VA-1500 YES 6.700 0.000 Il405-E-275 $N. 3 MCC-4C3 N C-4C3-002 VA-158J YE5 6.700 0.000 Il405-E-275 SN. 3 MCC-4C3 MCC-4C3-003 VA-1580 YE5 6.700 0.000 Il405-E-275 su. 3 MCC-4C3 MCC-4C3-004 VA-15eL YE5 6.700 0.000 Il405-E-275 5N. 3 ~2 M MCC-4C3 MCC-4C3-005 VO-78 a0 21.100 0.000 Il405-E-269 54. I g O MCC-4C3 MCC-4C3-006 VO-58 N0 4.550 0.000 !!405-E-264 su. I MCC-4C3 MCC-4C3-E01 VA-15aF YES 6.700 0.000 Il405-E-275 5H. 3 MCC-4C 3 K C-4C3-E02 VA-150N YES 6.700 0.000 ll405-E-275 Su. 3 (/) MCC-4C3 MCC-4C3-E03 VA-150P YE5 6.700 0.000 ll405-E-275 SN. 3 O IQ M MCC4C3 MCC-4C3-E04 LO-130 NO 15.000 0.000 ll405-E-254 SN. 3 M g MCC-4C3 MCC-4C3-E05 CF-78 YE5 1.490 0.000 ll405-E-342 Sn. t Q g MCC-4C3 MCC-4C3-E06 WELDING RECEPT 5 NO 0.000 0.000 Il405-E-200 USED IRTERM!iTENTLY H g g MCC-4C3 MCC-4C3-F01 F=-30C YES 0.497 0.000 Il405-E-262 SN. t Q MCC-4C3 KC4C3-F02 NCV-Il50C NO 0.000 0.000 II405-E-252 SN. I NOMALLY OFF M MCC-4C3 MCC-4C3-F04 ST-34 YES 50.000 0.000 ll405-E-259 SN. 3 w e MCC-4C4 MCC-4C4-A01 CW-20 R0 2.330 0.000 Il405-E-267 $N. 3 MCC-4C4 NCC-4C4-A02 CW-7 YES 0.995 0.000 ll405-E-260 SN. I MCC-4C4 K C-4C4-A03 EP-39 NO 11.300 0.000 Il405-E-311 N MCC-4C4 MCC-4C4-001 CW-20 NO 2.330 0.000 ll405-E-267 SN. 3 MCC-4C4 MCC-4C4-002 CW-2F NO 2.330 0.000 ll405-E-267 SN. 3 MCC-4C4 MCC-4C4-903 ilt-48 30 11.300 0.000 17702371 5N. 17 eh}p =C-4C4 MCC-4C4-Coi CW-i40 a
- 0. m
- 4. m u405-E-2 SN. 3 MCC4C4 K C-4C4-C02 Cv-i40 NO
- 0. m 4.m n405-E-fu SN. 3 g
e MCC-4C4 MCC4 C4-CO3 CW-ier .0
- 0. m 4.m ii405-E-2 SN. 3 p
MCC-4C4 leCC-4C4-C04 KV-1905C 30 6.066 0.000 ll405-E-266 su. I NO MALLY OFF O ( MCC-4C4 MCC-4C4-001 5W-20 YES 1.990 0.000 ll405-E-269 SN. 3 O MCC-4C4 MCC-4C4-003 NELBlWG RECEPis no 0.000 0.000 II405-E-299 USEO ltTE m!TTENTLY 6 i MCC-4C4 MCC-4C4-004 CW-48 NO 0.000 4.360 ll40$-E-268 SM 1 { MCC-4C4 MCC-4C4-005 V0-20 NO 0.000 6.700 ll405-E-264 5N. 3 O g K C-4C4 MCC.4C4-006 F,.60 .0 0.000
- 4. 60 n405.E-340 SN. 3 o
MCC-4C4 KC-4C4-007 AC-120 YES !.490 0.000 Il405-E-334 SN. 3 3 w MCC-4C4 MCC-4C4-DA6 VA-It5 NO 3.930 0.000 0-4092 M 2o 8 2 2 m.
oD~.W a m2uI4OIO+N s j bh
- O4 1
,3 p{C 2 3 P = 2g yO h8<N f
- s o2 5 tog
- g
, g 2P " E " e U0O C l Q2 g NsO ggu,g l 3 C 2 m $. gP 59 29 I 9 1 /52/3 0 3 5 1 u v. f e e r t o C I 3 3 N... 8 N C S 5 5 G i N 6 6 4 A I 6 6 6 A W 2 2 2 L A M e E E E C D 2 S 5 5 5 0 0 0 G 4 4 4 O I l I I I I RO TA E R E S E M O W I L E T C G / L E v R S o E E M P I O D RO F TN ) s E W 0 0 0 D R 0 0 0 I ( 0 0 0 6 T AM lmD 0 0 0 8 A 0 R F lE O 2 O L u N I I w D 0 0 0 r E 0 0 0 H D ) 5 A W 0 0 0 4 3 i. O R 8 0 0 4 4 ~~' D L ( m 9 2 ~ A 5 8 0 1 .i 1 0 D A E 0 N o O o d 1 S n N n e ~' o d t e ~ o t L ee s t u t s i e R m a E r t G W 8 e t A T t 5 t e s 0 a o N 9 0 C l C d 1 5 S e 1 I d d o y e e t r c W W b h u C C $ s 1 s 4 o d d 1 a e t o o n 2 3 4 t t e R 0 0 0 m E R E E E t t g MFG 4 4 4 n s S t o e e E R N C C C B BI 4 4 4 l l l i. a a a C C C t t t C C C o o o t. M M M T T T 1 F f o R 4 4 4 7 S E C C C U B 4 4 4 e S M g u - C C C e h - C C C r M M M l
E A -9 0-062 gg m gg M.CULATION PREPARATION, REVIE"! AND APPROVAL CALCULATION NO. FORM PED-QP-3.4 Form Page No.1 of 1 fdO33A2 PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No. 3 REF. i NO. f 2.0 EXPECTED CONTAINMENT FAN LOADING The expected percentage (%) of nameplate loading for the containment ventilation fans VA-3A, VA-3B, VA-7C, and VA-7D is a function of atmospheric density within containment. The loading is expected to follow the containment pressure. 2 profile. The graph on the next page shows the expected containment profile (two cases are shown) and an expected time load curve. The curve loading extremes are bounded by I full load at maximum DBA pressure and 50% load at normal pre-DBA environmental conditions. For the purposes of this calculation, the minimum post-DBA load will be assumed to 1 be 75% for conservatism. i Fan curves are available from the vendors test report, Joy Manufacturing Performance an Sound Level Test of Joy j Axivane
- Fans, 07/24/70.
This document can be retrieved 1 from the DBD database, WIP 61095. Quality of the document is too poor to be reproduced and included in this calculation. The curves show that motor nameplate horsepower exceeds the maximum fan required bhp. Therefore, this calculation uses the motor nameplate for conservatism. i e i i l 1 I q.. ni
QTCOPY E A -9 0-0 62 REV.3 29 V 95 S c" cas,m a m __- - CALCULATION PREPARATION, REVIEW AND APPROVAL MM NE FORM PCJ-3.4 Form Pass No.1 of1 FC 6438f" PRODUCTION ENGINEERING DMS!ON CALCULATION SHEET Rev.No. S8 REF. NO. ESTIMATED CONTAINNENT COOLING ohs /M FAN # LOAD AS A FUNCTION gjgj1^ oF con m w =T PRESSURE 60 -l mas j (su.a. sI) j - 100 l I' i 50 - 4 4 /' am ed cone =4n==nt Motor - 90 t Pressure Load j l s from USAR j Fig. 14.16-6 S 40 - l i l l g l - 80
- l 8
o = w l i 6 30 e. g u 5 s 5 1 - 70 l i S I l g 20 j u i l co.. _. /F 60 i 10 Pressure EEQ Manual Sec. 2 l (USAR Fig. 6.2-7) O I I l 1-1-11 I l- -l 50 l 100 204 300 400 1000 7400 3000 4000 Time, seconds i
REV.3 E A -9 0-062 ,=e@' q.n cucru m 30 as ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED-QP-3.4 Form Page No.1 of 1 5/'n q2RP PRODUCTION ENGINEERING DIVISION CALCULATION SHEET Rev.No. O REF. 3.0 INCREASED LOADING ON DG-1 DUE TO SI-3A HP INCREASE Due to. MR-FC-90-53, the SI-3A containment spray pump will require an additional bhp due to the one pump, one header configuration (refer to Attachment B). Looking at the marked up USAR Figure 14.16-2 (Attachment A), at 0 seconds into the
- LOCA, containment pressure is expected to be approximately 55 psig (60 psig will be used as the 0 second pressure for conservatism).
At 2000 seconds into the LOCA, containment pressure is expected to be approximately 17.5 psig. At 3740 seconds into the LOCA, containment pressure is expected to be approximately 10.6 psig. From Attachment B-6, and using linear interpolation, the following is obtained: Approximate Seconds into Containment bhp required Equivalent KW Accident Pressure (Dsic) from SI-3A at 92% eff. 0 60 319 258.7 2000 17.5 336.8 273.1 3740 10.6 338.8 274.7 l 5000 0.0 343.0 278.1 l 1 Similar to the situation with SI-3A, the containment spray pumps SI-3B and SI-3C will require additional bhp over the motor nameplate rating with two pump and two header operation and with the contianment pressure of 0 psig. From Attachment D-1 a following values are obtained: i l Approximate Seconds into Containment bhp required Equivalent KW Accident Pressure (osia) from SI-3/B/C at 92% eff. 0 60 295 239.2 5000 0.0 325 263.5 4 For conservatism, nameplate value of 300 hp will be used at time equal 0 sec. and maximum horsepower (325 hn) reqired at 2000 seconds. REY.1 l I
R! E A -9 0-062 g (3 CENGE E O l q,tq. _CULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED-CP-3.4 Form Page No.1 of1 WDR9R? i PRODUCTION ENGINEERING DMSION 8 CALCULATION SHEET Rev.No. 1 REF.- 4.0 SEQUENTIAL LOADS BASED ON BRAKE HORSEPOWER REQUIREMENTS plotted on the vendor pump curves to Operating points are determine the sequential load at worst case DBA j i conditions. The pump curves and bases for each operating point is included as Attachment C. The postulated " worst case" DBA condition for a diesel 2 t generator is a depressurized large break LOCA with loss of j offsite power and fallure of the redundant diesel i generator. l I The calculated KW values have been incorporated into the ) load shed information tables for DG1 and DG2. l Low Pressure SI Pumos SI-1A (DG-1) & SI-1B (DG-21 i Nameplate Horsepower 300 Service factor 1.15 j Efficiency 90% Power factor 0.88 Assume all four loop injection valves open prior to redundant diesel failure. Operating LPSI pumps will be in worst
- case, 309 hp as determineo by CE per telecon with B.
'VanSant of OPPD. 256.1 KW KW = 309 HP x 0.746 KW/HP = .90 Hioh Pressure SI Pumos SI-2A, SI-2B, SI-2C j Nameplate Horsepower 300 Service factor 1.15 l Efficiency 93% f Power factor 0.89 i .i Assume all eight injection valves open prior to the l redundant diesel failure. SI-2A and SI-2C on DG-1 will not go to runout becasse there are two pumps on one header. Pump operating point has not been confirmed by CE. Therefore this calculation is based on the worst condition which is same bhp as SI-2B. ? IIEV1
REV.3 E A -9 0-062 kram32. E. \\ .LCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED-OP-3.4 Form Page No.1 of I f?%9897 PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No. 8 REF. SI-2B on DG-2 will go to runout. Based on pump curve the maximum brake horsepower is 300 HP. 240.6 KW KW = 300 HP x 0.746 KW/HP = 0.93 Containment Sorav Pumos SI-3A. SI-3B. SI-3C Nameplate Horsepower 300 Service factor 1.15 Efficiency 92% Power factor 0.90 SI-3A (DG-1), see Section 3.0 of this calculation. SI-3B and SI-3C (DG-2), operating with two headers available will have a combined flow of 4400 GPM assumed equally distributed from pump curves using recire flow of 2200 GPM the pumps require 300 HP. KW = 300 HP x 0.746 KW/HP 243.3 KW = 0.92 Charcina Pumos CH-1A (DG-1). CH-1B & CH-1C (DG-2) Nameplate Horsepower 75 Service factor 1.15 Efficiency 89% Power factor 0.82 Charging pumps are positive displacement pumps. Using a conservative discharge pressare of 200 psig the required power is 15 horsepower. i KW = 15 HP x 0.746 KW/HP 12.6 KW = O.89 Note: If RCS pressur.e were assumed
- higher, the horsepower requirements for the LPSI would drop compensating for increase in charging requirements.
REV 3 E A -9 0-062 1 MM curam 33 ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED-QP-3.4 Form Page No.1 of 1 W DRS@? PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No. 3 REF. NO. CCW Pumos AC-3A (DG-1), 3B (DG-2), and 3C (DG-1) Nameplate Horsepower 250 Service factor Efficiency 92.5% Power factor 0.86 Based on 2 CCW pump operation, loss of instrument air and loss of B power. Reference S&W calculation 17321.01-PM-33 Rev. 1 run CL1A0.WR3. AC-3A & 3C (DG-1) KW = 270 x 0.746 KW/Hg 217.8 KW = 0.925 Based on 1 CCW pump operation loss of instrument air and loss of A power. Reference S&W calculation 17321.01-PM-33 Rev. 1 run CL1AB.WR1. AC-3B (DG-2) KW = 260 x 0.746 KW/HP 209.7 KW = 0.925 Raw Water Pumos AC-10k, AC-10B, AC-10C and AC-10D Nameplate Horsepower 200 i Service factor i Efficiency 91% Power factor 0.87 AC-10A and 10C operating with 3 CCW heat exchangers, l i minimum river water elevation, loss of B power. j Reference S&W calculation 17321.01-PM-41 Rev. O. t AC-10A and 10C (DG-1) l KW = 190 HP x 0.746 KW/HP 155.8 KW = 0.91 l AC-10B and 10D operating with 3 CCW heat exchanges, minimum river water elevation, loss of A power. Reference S&W calculation 17321.01-PM-41 Rev. O. 3 IEU i
E A -9 0-062 W ** RE\\l. ~4 CALL FAGE N0. ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED-QP-3.4 Form Page No.1 of1 4 i PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No. REF. AC-10B and 10D (DG-2) NO. KW = 190 HP x 0.746 KW/HP. = 155.8 KW 0.91 i Containment Vent Fans VA-.3A, 3B, 7C and 7D ( See Section 2.0 of this calculation for determination of l operating horsepower. l VA-3A/B VA-7C/D Nameplate Horsepower 250 125 Service factor Efficiency 95% 93.2% Power factor 0.88 0.88 i VA-3A (DG-1) l KW = 250 HP x 0.746 KW/HP 196.3 KW = 0.95 VA-7C (DG-1) KW = 125 HP x 0.746 KW/HP 100.1 KW = O.93.2 ~1 VA-3B (DG-2) KW = 250 HP x 0.746 KW/HP 196.3 KW = 0.95 VA-7D (DG-2) KW = 125 HP x 0.746 KW/HP 100.1 KW = 0.93.2 i 6 IEV1
1 ~ I E A -9 0-062 REk'..=3 ss i, ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED -QP-3.4 Form Page No.1 of 1 FC 0338 z. PRODUCTION ENGINEERING DMSION 4 i CALCULATION SHEET. Rev.No. o v REF. NO. Auxiliary Feedwater Pump FW-6 (DG-1) Nameplate Horsepower 250 Service factor Efficiency 91% Power factor 0.87 FW-6 operates at 254 GPM at a TDH of 2403 feet, reference j calculation 17321.01-PM-9 Rev. 2, from the pump curve the expected power required is 240 HP. 1 KW = 240 HP x 0.746 KW/HP 196.7 KW = 0.91 t } l 4 i e i ilEV1
E A -9 0-062 REV.3 I W-9 m q, r E PAllE E N .00LAT10N PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED-QP-3.4 Form Page No.1 of 1 MLO33/t C PRODUCTION ENGINEERING DIVISION Rev.No. ? CALCULATION SHEET REF. NO. 5.0 UNIT SUBSTATION TRANSFORMER LOSSES losses will be estimated based on the vendors Transformer of no load and full load losses. factory test dataestimated as the sum of the no load loss will be Lossesthe ratio of the square of the current to the square plus of the full load current as follows: 2 2 Total Losses = No load losses + [ Current /FLA ]* full load losses FLA for 1000 KVA, 4.16 KV transformer = 138.8 amps From the Westinghouse test data from MR-FC-84-105 E, (cartridge
- 1552, frames 841 through 847)
Attachment the following no load / full load losses are taken No f Load Loss Load Loss Transformer Serial # ( KW i ( KW ) T1B-3A DAV36530201 2.7 7.7 T1B-3B DAV36530202 2.6 7.7 T1B-3C' DA36530401 2.6 7.7 T1B-4A DA36530301* 2.7 7.7 T1B-4B DA36530203 2.6 7.7 T1B-4C DA36530302* 2.7 7.7
- Test data not available, use highest value of similar transformer current through each transformer will be estimated as The sum of the currents of each ESF pump connected to the the particular transformer plus one-third of the diesel Transformer amps are estimated generator dead load amps.
as follows: i Dead Load Amps for DG-1 302.1 KW = 52 Amps -(4.16 KV)(.80)(3)1/2 T1B-3A LOAD AMPS (DG-1) Dead Load I = 1/3 x 51 = 17A REY.1
E A -9 0-062 g a4 REV. 3 -
== m 3 ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED-GP-3.4 Form Page No.1 of 1 n 98M PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No. g REF. NO. SI-2A 37.5A I= 240.6 KW = (4.16 KV)(.89)(3) SI-2C I= 240.6 KW = 37.5A (4.16 KV)(.89)(3)*'d CH-1A 2.1A I= 12.6 KW = (4.16KV)(.82)(3)*'d VA-3A 31.0A I= 196.3 KW = (4.16KV)(.88)(3) i Total 125.1 l T1B-38 LOAD AMPS (DG-1) i Dead Load I= 1/3
- 51 17A
= AC-3A 35.1A I= 217.8 KW = (4.16KV)(.86)(3) i Total 52.1 Amps j T1B-3C LOAD AMPS (DG-1) Dead Load I= 1/3
- 51 17A
= I i l IEV.1 i
REV.3 E A -9 0-062 WgNe CV cacru m b ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED-QP-3.4 Form Page No.1 of1 5dnW'A7 PRODUCTION ENGINEERING DMSION o CALCULATION SHEET Rev.No. O REF. NO. SI-3A 39.9A I= 258.7 KW = (4.16KV)(.90)(3)*'d AC-3C I= 217.8 Kw = 35.1A (4.16KV)(.86)(3)*'" VA-7C I= 98.2 KW = 15.5A (4.16KV)(.88)(3)* Total 107.5A The equipment load and no load loss are combined together and results in the total loss for each transformer. 2 I R Losses for Transformer T1B-3A 2 2.7 + (125.11 x 7.7 = 9.0 (138)' 2 I R Losses for Transformer T1B-3B i 2.6 + (52'.11 2 x 7.7 = 3.7 138' 2 I R Losses for Transformer T1B-3C 2,_6,+ (107.5)2 x 7.7 = 7.3 138' f REV1
E A -9 0-062 R
- 1. 3 ef.g
..r -. qe 39 I F ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. i FORM PED-CP-3.4 Form Page No.1 of1 EM2JR1 PRODUCTION ENGINEERING DMSION i CALCULATION SHEET Rev.No. 7 i REF. NO. Total Dead Load for DG-1 T1B-3A 9.0 KW T1B-3B 3.7 KW T1B-3C 7.3 KW 20.0 KW Loss values for T1B-3A,3B,3C have been entered into the 4 Load Shed Information Summaries for DG1, section 1.0 of l the calculation Dead Load Amps for DG-2 594.9 = 103 Amps (4.16KV)(.80)(3) TIB-4A Load Amps (DG-2) 1/3 x 103 34A i Dead Load I = = AC-3B 33.8A I= 209.7 = (4.16KV)(.86)(3)*'d Total. 67.8A T1B-4B Load Amps (DG-2) 4 Dead Load I= 1/3 x 103 34A = SI-3C 37.6A I= 243.6 KW.._ = l (4.16KV)(.90)(3)*'d SI-3B i I= 243.6 KW' = 37.6A (4.16KV)(.90)(3)*'d 4 e
9 n7 E A -9 0-062 R&.3
== = gg .LCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED-QP-3.4 Form Page No.1 of 1 f f D'B847-PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No. J l REF.. NO. i CH-1C 2.1A j I= 12.6 KW.._ = (4.16KV)(.82)(3) l VA-7D 15.5A 1 I= 98.2 KW.. = i (4.16KV)(.88)(3) Total 926.8A T1B-4C Load Amps (DG-2) l Dead Load I= 1/3 x 102 34A = SI-2B I= 240.6 KW _._ 37.5A (4.16KV)(.89)(3) J VA-3B 1 I= 196.3 KW.._ 31.0A = (4.16KV)(.88)(3) CH-1B I= 12.6 KW-._ = 2.1A ) (4.16KV)(.82)(3) Total 104.6A 4 i The equivalent load and dead amps are added together and results in the total load for each transformer. 2 I R Losses for Transformer T1B-4A 4 2 2.7 + (67.81 x 7.7 = 4.6 1 (1.38) 1 e E i e-
O o ~ 1 en_on_ nap FV 2 cumm l ALCULATION PREPARATI0#, REVIEW iN6 APPROVAL CALCULATION NO. FORM PED-QP-3.4 Form Page No.1 of1 t'enRSR7 PRODUCTION ENGINEERING DIVISION CALCULATION SHEET Rev.No. 3 REF. NO. 2 I R Losses for Transformer T1B-4B 2.6 + (126.81 2 x 7.7 = 9.1 (138)d 2 I R Losses for Transformer T1B-4C 2 2.7 + (104.61 x 7.7 = 7.1 (138)d Total Dead Load for DG-2 T1B-4A 4.6 W T1B-4B 9.1 W T1B-4C 7.1 W 20.8 W Loss values for T1B-4A,4B,4C have been entered into the Load Shed Information Summaries for DG21, section 1.0 of the calculation e
RE% 3 E A -9 0-062 .a s - # # meanj$ \\g W ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED-QP-3.4 Form Page No.1 of 1 f60338E PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No. 3 REF. NO. 6.O DETERMINE DG LOAD POWER FACTOR Load KWs are tabulated in Section 1.0. KVAR is determined from nameplate horsepower and power factor. The calculated KVAR will not change significantly for lightly loaded or motors operating in the service factor range. KVAR determined by: KW KVAR KVA KVA = ]Di pf KVA2 = KW2 + KVAR2 i therefore: i KVAR = KW(1/pf2 _ 13 1/2 i i i f 4 IEVJ l i
/ E A -9 0-062 M' g ,,, 43 "ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. / . ORM PED-QP-3.4 Form Page No.1 of1 FL/Y&3R2 PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No. 8 i REF. I NO. I j DG-1 LOAD POWER FACTOR 1 i NAMEPLATE LOAD LDAR H .F.E E EY.8E Dead Load 302.1 0.80 302.1 226.6 AC-10C 164.0 0.87 155.8 92.9 FW-6 205.0 0.91 196.7 93.4 i SI-1A 248.7 0.88 256.1 134.2 AC-10A 164.0 0.87 155.8 92.9 SI-2A 240.6 0.89 240.6 123.3 CH-1A 62.9 0.82 12.6 43.9 VA-3A 196.3 0.88 196.3 106.0 SI-2C 240.6 0.89 240.6 123.3 i AC-3A 201.6 0.86 217.8 119.6 SI-3A 243.3 0.90 258.7 117.8 VA-7C 100.1 0.88 100.1 53.0 AC-3C 201.6 0.86 217.8 119.6 2551.0 1446.5 COS (TAN-1(WAR /W) ) LOAD POWER FACTOR = COS(TAN-1(1446.5/2551.0]) = .87 = I av.1 4 i
E A -9 0-0 62 n10 h..fcyss calc PAGE MO. _m ALCULATION PREPARGIbl0MMEVf#idd5 APPROVAL""' M CALCul.ATION NO. FORM PED-QP-3.4 Form Page No.1 of 1 F~(' OSSS$ ?-. PRODUCTION ENGINEERING DIVISION CALCULATION SHEET Rev.No. 3 REF. No. DG-2 LOAD POWER FACTOR NAMEPLATE LOAD LOAD KW PF KW KVAR DEAD LOAD 594.4 0.80 594.4 445.8 AC-10B 164.0 0.87 155.8 92.9 AC-10D 164.0 0.87 155.8 92.9 SI-1B 248.7 0.88 256.1 134.2 SI-3C 243.3 0.90 243.3 117.8 VA-7D 100.2 0.88 100.1 53.0 CH-1C 62.9 0.82 12.6 43.9 AC-3B 201.6 0.86 209.7 119.6 SI-3B 243.3 0.90 243.3 117.8 SI-2B 240.6 0.89 240.6 123.3 CH-1B 62.9 0.82 12.6 43.9 VA-3B 196.3 0.88 196.1 106.0 2420.6 1491.1 COS(TAN-1[KVAR/KW]) LOAD POWER FACTOR = COS(TAN-1(1491.1/2420.6)) = .85 = REY.1
b5 usrcon. REY.3 4 j E A -9 0-0 62 M g r$ 23:2, a... pg j ATTAC1 DENT A I f i i i i i i i i 1 i 1 50 - i J i 40 i l x .l i 1 i l 2 i orr i i ro.s 10 i l l O 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 i .rne ) i Thne(seconds) i l i Imag-TennPressure Response OmahaPutdicPowerDistrict Pigmo Imss of Coolant Accident Fort Calboan Staden-Unit No. I 14.16-2
'Y m. ti. * ( i .E A -9 0-0 6 2 RJ,.Jg9 ,.co 3 3 n,,,,, f 3 ' gg;;,V (-. ATTACHMENT B-1 A.BB "g i i 1 j i October 2, 1990 e=NPS-90-079 { Mr. R. L. Phelps Daaha Publis Power District 7W/IP-1 i 444 South leth street Mall Omaha, Nebraska 68102-2247 j i t i l sehjects Analysie of the Ft. calheum Seateiament Spray i j System 1 i Referenees (A) CE Letter 0=Nys-90-078, Same subject, R. l t W. stadshav te R. L. Phelpe -(OPPD) dated 9} September 29, 1990 (3) OPPD containment Spray em Analysis, l CE Calculation 6024SS 5 CAM-001 (C) CE Istter OpFD-90-OS4, Some Sub$est. D. i N. Sente11 to W. O. Weber (OPPD) dated August is, 1990 (D) oPPD telecopy dated September 30, 1990 Enclosures (1) Centainment Sprey F1ee Rate for the 5 i containment Spray Needer case *1 Eeader. 1 Esat Exchanger, 1 Pump" with one sprey { Nessie Missing l
Dear Mr. Phaips:
Osabustion Engineering has Provided an analysie of the flee rates in the contaisement sprey system at the Port Calhoun-i station under various poet assident oseditions using essa-built
- p eenfiguration data.
Eigh Ceafidense resulte of 1 i that ysis sere provided in Referense (A. The purpose of this letter is to provide additieraal informa) tion about the 1 mothed used to ettata these resultslaamat sprey Reader, and the effect of the miss spray asessie in the S conta other raised du previons phone senw.rsatieng. i These Are provided'as h1 confidense information having been
- r' reviewed kr a qualified fewer.
Final Osality Aseerense of j all aanlyses is espeeted to be osapletea my osteher 12, isso. 1 A85 Combuseon Engineering Nuoiser Power e r ..-4-.,
._.W l msTcow i E A -9 0-0 6 2 REV. 3 rCo2282, a.v. <3 ATTACHMENT B-2 i; j Mr. R.1,. Phelps Page 2 1. One Fiamp/one Meader Hydraulie Analysis i Reference (A) stammarised the results of a eneM/ene header 1 ] and one pump /two needer hydraulie analysis. Tae method used to arrive at these results and the additional results of Emelosure caleulation(1) are identical to that employed in the C-E 4 of eentainment spray flow rate maaed upon i "referenee-desi " plant eenfiguration data. That i ealculatten, Re erance (B), is a recorded caleulation in asserdance with the combustion inner i Assuranes i Procedure Manual QAN=101 and was to O by i Referanam ( As asference j ahtained us n)g the "as-built"( illustrates, the values data are sensistent wit the values obtained in Referense (3) using the areferenee h design" input data. The results shown in both Referenes (h and Ensleeure (1 were saleulated with each of the three)contairunent spra I l minimum recireulation line isolated. This assumpt 8 i a these analyses is a signifisent differsmos from the j aurrent system alignment. j The results shown in Referense (h) for the #as= built" ant eenfiguration were devel for the purpose of evalua { the performance of the ivument sprey with to j the servise faster allowanes of the meter. fare, the estive was to determine both the lowest and the highest y ues of espeeted flow rate Dy defea4= the two esses i ylew(1) and Flow (3). results given in heference (A) are for the & containment spra Meader. The 3 containment spray i Meader siffers from the A due tot asasia, 'and (2) the presence of too addi
- 1) a missing agrey valves.
Tne i results for the a containment Spray Eseder flow rates for the ease of *1 Eseder, Beat ,1
- are in I
Encleeure (1 et letter. amt of of I differences the esisting senditions of the headers is that j the 3 header has a slightly larger flow rate. Ensiesere (1D andientes that espected pusy meter performanes i will be with m the range of a e EEF with seOSideration i for the eenvies fester o the pump (300 M aal SEP plus 1.134 eastice faster 1 t siving 345 MP). Ensiesure l (1) assumes that tha three G M o. Einisen 1 resireulation manual valves are elemet. With 1 these valves spee show results whink are uneeseptabl with seepest to the meter servise faster limit and. y high ly les with sospect to.the sentainment overpressues. en. Diseussions with the motor wender, General i estrie Co. have indiented that the pump aster saa seatinessely,for up to se days at the 348 389 servies limit. I l I l 4 \\
~gh, TU { h FC03382, Rev. N 1 2 A 062 xerxcaxrur n-3 l REV. 3 i 1 ar. m. z.. =al,s r pa,e a f 2. Containannt Transient Analysis when evaluattag the containment Spray flow rate with respect t to the Containment Smild I values shown in Enclosure poet assident desien pressure the
- 1) flow.must he ce.. e ted to aseount for the effectiveness of Se flow rate through the j
losation with the missing measle meanst he eredited due to j the lack of dispersies and these nessies which are bisoked by existing ventilation dust work emanet he credites as well. TheresultsabeweinEnclosure(1)kthrespecttothecritaria sham sorrested for the i aheve issues have been reviewed w forpoetaccidentsentainmentdesi i i have been fesad to be meseptable. gn pressure protection and Se asseptamos critaria for containment peak pressure protestien is a fenotion of j heth spray flew rate and SERNT temperature. As a. hounding i miniumm, an atomised spray flow rate of at least seas gym at a sIRNT temperature of less than 117 degrees F will he i i required to malatain containment pressure less than 60 peig during the oserse of a design has&s ZeC&. 2. SIRNT Level Sensitivity j i c-E has evaluated the effects of ma* h SERNT 1evel en the
wi
fisw rate values tabulated in Easlesure (1). The i conclusion is that the SIRNT 1evel would have to he greater. than 10 feet aheve the surrent minimum technisah specification operating limit betere the estahinshed anximum l flow rate limit of 3200 gym emoeeded. Oppo will verify j this to be aeseptable by rev as-huilt SIRNT drawings. 4. System orifice Zastallation C-E performed an ialtial review of the feasibility of inse ting an erifies in the pipins 1 to the & and.3 i osata sprey headers. This was to the eensainment spray aster from ' M _ M servies i i faster lead limit la case where one lied two headers. puolininary evaluations esasi t erifice would moed to provide a 99 of 347 resulting in a 47 ys1,4 seassure drop at 1500 _ Omalitative evaluations ansioste that it is tensible toSeveral__.;e the ortfice without indusing envitation. issues would mood to ha addressed however, to fully evaamate the atr of j this appro,ach. Les117, oriftee eis seation, and stress would have to be i addressed. Additional 1 the pipe bF the i
- 1ewladmeedforeessou5&havetobe prior.te implementaties.
? i l l l
- E^~ cn-vu voc
- p...
43 REV.3 i g A9 rco3382, Rev. t ATTAcaMENT B-4 i j Mr. R. L. Ptwips Page 4 t '5. Dump negradaties Evaluation C*E evaluated the eeneminammt sprey pump test data provided in amferenes (D). Se data for the la questien vsre i to the analysis assumptions were found to fall w1 the 84 degradation assumpties. l s. Spray Nessle perferaanse l An evaluation was morformed to identi the attest.of Easlesure 1 en the essestad neeste ornames. Of I particular(es)osers was the suposted let size that is I determined by nessie fiev and diff j csaversations with the moosle annefacturer indicated that en expoeted drop sise for the flow would be on the esser of 1400 stereos. s of Easlesure (1) h e C=3 containment Transiest code CONTRhMS does met spesifically address spray 1 sloe in the thessal hydraulio calculatt.eas of the post sentainment atmosphere. S e analysis 1,s driven i pr1==f=ied as a=11y by the y thermal officioney which is i spesif of the stoma/ air mass entie in the esatainment. Se effisieasy model within the mode is based en a spray mean diameter of 1980 missoas and a maammevative (low) tall height of 20 feet. M ile spray i flow rate does not a strong effest sa the everall i theauna effi sise does. camL studies have
- however, O
et is ehtained La shown,ise sentainment tail l full s ( f height La essoas of 90 feet) for drop the range of 500 to 4000 mierens. yet this ressen, the expoeted drop of 1800 miersas is satistasteer from a themmal hydra perspective. I l v. n 2 puses, One sender ayeenalie avaluatima i S e case of three operating to supply one header with l flew was na seek a ease would zosait 12 hoth diesel generators operated, a header isolation valve ed to eyes, and all three started. 21s eenfiguraties may have team a======= the system was to be l h e ' La some mammer to address one two header j esse. sesulting head and flew tiens theat system housvar,ith hiper system ow sete and pymy work are such that ingrove the everall w 2 assess three pumps. A seafigursues was yeed the a--r -ign* ealestaties as ema_e$_the l des basisesaflgsretions. 36 further analysis of waas .e==f en vos eessaeted in eesport ee this sseest mer is l At assessary. 1 3 l
1 E A -9 0-062 50
- q. -:g 03?'if,.
g (/. 3 FC03382,Rev.[h ~
- i....
x,,xcoxx,,,_3 l M@ged 5 1 i Mr. R. L. Phelps 4 Page S ' 1. If you have questions regarding this analysis or if we oma he of assistance, please de not hesitate to call as at.(303) 385-5443 or Mr. Freak Ferrarmosis at (303) 388= i 3853. l i sia.oreir, enamourzos is.3x::mzno, zue i .'. $) jg/f JLi-f- Riehard W. Bradshaw j Manager, Plant systems l Distributient L Belthaus (OFFD) m Weber (OFFD) l L. Philpot Jct F. Ferraracone )(CE) D. Santa 11 (CE) l l l t l f l l
igsTCCW 4 E A -9 0-0 62 REV.3
- rcen2, a... /s
~ c.. ATTACEMENT B-6 l h! f eq) q '. i i i l ENClaSURE (1) 1 CHEPS*90-079 j OWNTADREENT SPRAY FI4W EATES fear the 5 ccertADetENT SPRAY NEADER CASE '1 EE& DER,1 EEAT EIOR%NSER,1 FUNF" W2TE ONE 2 ]- SPRAY NOSELE MISSING 'l con *2inmaat Flow (3 i Pressurs Flow (1) M) MELL
- Et421, amit 4 &
M i 0/0 3040 2175 337 343 1 l 15 / 38 3900 3040 336 337 30 / 70 3740 3890 330 336 i es / 10s 3sso 3740 Sie 330 i i 60 / 140 3380 3560 315 319 i i EllI31 (1) Assenes low SIRNT isvol and degraded pump performance of l 30 to minimi== expoetes flew rate. 1 i (a) Assumes sinteen teeknical spesification level in the Szmuf ame===*=a1 pump pertemmanes to ma**=4=e esposted flew rate. I t i l ~ ... ?. e I e \\ I
EA-FC-90-062 Rev.3 Page 52 PAGE INTENTIONALLY LEFT BLANK i f I
1 EA-FC-90-062 Rev.3 l Page 53 PAGE INTENTIONALLY LEFT BLANK G i f a
EA-FC-90-062 Rev.3 Page 54 PAGE INTENTIONALLY LEFT BLANK O o
EA-FC-90-062 Rev.3 Page 55 PAGE INTENTIONALLY LEFT BLANK h
i EA-FC-90-062 Rev. 3 Page 56 PAGE INTENTIONALLY LEFT BLANK I l
EA-FC-90-062 Rev. 3 Page 57 PAGE INTENTIONALLY LEFT BLANK t l 3 I 1 l 1
uppb6fRU, w a -9.0-062 8. L. c. t =n w r.u 4 01 4 i3 <f '~ i -.K , \\ l I .========Wund e ] 2 l _. _ _ g r%". ~,i =; _ j g,, i n , L, ,c
- =
r_
==p
- .: t.C r -
M u n n CD - } p 4 -= = _ :r j
- Q
---t i (',
- f
^ - -. -- w .h (j ?w l g-9 , p Z-GC
- _^ _^
r n , N I ' C. 1 J ) M. 3 O "..'..'. _.- ^'^ - ^^ 10 o .n = _,:jf. \\ w -wa g
- -1 t-
{.1J " "." g 7" -. - - "" N t . 4 .l O _w i - l g .,C o i i = ^ l 1., ' =- l .f*- { .-- z "-- H x: i '. _.-?_ : _.. -? E ^ - __._._=:-. :. g l _ ", " ' ? [ _ 'l ^^ ^^ ,j { _} 7_ _.- ~ _-_--__-1 g l-( r ^^ t l _m... . 7_
- .,. ;C i
C T ' '- t s t.*.* D* .'e T .r ..."l== n-- 3, g __'=._ .a____ ^p. ' - - y. 4_ l _._ ^ _ g *,y,, l .-z-p. l j p_;;;:- r : _: w . -..~ C. j;-- Z -__...4 i c====
- .=
_
= - r-52i-i,- l ~ l c"." :_ 22". l l O_' - : 0 = _--' 7 _~ I 5. ; i.7 --'1 ' ' K ^-.. - L u 2. p . u, ~~r.= .. _. --- ::. 2 b z, q5 l 1.; _c 4 ---m _ m.w. _., t .3 . _ _.. u. _._ i I i&? - - -...) - -q:- ;. ~- '~-;'%:,. M ;., ~ l ..-= _ m n.- - t i a., -y_ ..... _ l f 1
- .anTM m n,,,%y 8
f h-ggg l Arr%esr C-/ v m ~ 1 ~ i,..---,-,.,. - -. _ -.. -. - _
game-r M c A 062 ,..,* Q,. ,..........,.... l ...l..........i..,....... .s.,,,... - _ _.,. u..... ..e.._ _. .... o.,. . o,_........_.... _ _..... _.... ...I. .. = _ _.
- a.......,.........
..s..... A 1.. .i g, .d.f '.*... .l... ... w.. I'.. . n. a p,. u. i. O...._... ,. 1 W*. A,.... ....N... .....l.....-.. ...,(e,............ F... .~ .L.......e;w. tr..&. .- (3 Ij s . 18
- p
~6. .........f . (pa u. l 1 t t l e .+ :; l N. 6,. g.
- C'"
...,. ~... ..y.... .i. g ... e. .4-I 4, . = =. ,,... -..,.................t.. U9 i e 6 ......... l....q t s. = d- ... r......s . / 2..
- /_
3 L.. ~\\ 1 + 4 ...e.. ./ .......I. .. i... ..4.. .4 ......................,...i( 1 . f%... v .g.. -.. i .u.,... v). e j, w. g .s.. ...t........ .g. .i. . _k.... d. e. ,a......... p. f,. ..... t. . t. e u L.,,.............,........ ,........a.... .l.
- l. J..,.
i ...f t .s, [g.g, ...==.=..l.58.......e - a. 0 ... = =.., .*J.. e. t l... ./ 3 .. l ..........l.. s.... =.. e*. g
- i W J.,,.
...f s. .l......,.b......l... 167 ..l....i. i ,I. a..- g t.... .l. -.l......, L,..., w
- 1..
..............pl
- . 4 y
,i.,.. ...-....l,.....W. ............i.... ..44f. .r..
- l.....
3... ,4 .,,/.,,,.. N ....g- ..,.f g.. ..g C.,\\ i .. e.l p . g. : ...J . ~.. ......s..4...... 1. \\..).. - .......J., .t.. ......e.. >i.. ....c......, ..,s b.s s \\..... ,3 g. g. a. ....I.'.o. s.. ....... ~. g .,. \\,g).4.,.. 9.. .6.... .......6 ..e 3.. ..m. f 6, c... ..\\...,.......,...L..............t......*... ..p ...r... e...e.....s .l....... 4 m.. a f.... ...,.1., L w f...... ... ~.... 1 . s. -4 .. \\... A...,o *n... f *. T,T.. L.; .. -.... 4...... . e.
- t.... i......
I.. ...1... g.f. "j'.. s. _....l.....,................................l. . Y'- .... I;nl '.I g* ......,.w...*..... J. s. t,. ..t . ! ' ~1 __ u t ........ ~.......A,.,e...,..Z'.Y'. 6... i =. ___...e. $....... e,. J. .r j ........ -. b...e ......u............................ y..-...
- t. C' e.
.g. ..,%.,, fO., y O .f. I........f.~- ......,,.w .e.gt.6. 42.*...... t e.,T .o, . g. . j I I y l. .,. l. a l. e.,..f., 1 .....,..g...,,,4.. f,.'.I. ...l. ..s .,l ..i .f. 3..... .......l...,.... -.... t ...,..<7,, ,,. g 3......7,,,,.... .g. .I..I. d.,.P..W ...i... ....f.... .,...I......... T*V.". . f.. r t +.. p- .f ... p w. k...
- t...........lI.
.... ; e i ~,e ,s m e.. ~... .........f. .U .........e
- f...
...f..
- 76........ 1.,.,4
......L. ...). .g. ~ ..p..... ... g .s.. .f .............g...... .....,p..- ....,9.., ........t) 4 ....2.. .t ..} g.- .. p. ,.....,p...H........ j .......t .........,...1,,,,..64..t.. ...g .....J,.........*"... .......a......,.7.l........ s.. ......,........ _e. 6.... ,.f.,.......,.,.3,...... e............A. .......l.,,,. ....t l. .........l Q 5 ..T..,... ....t. ..,l... !. ,,,.I.......... .g..... .,......t.Le.. l - i. .1 ...t. _.3, 9:.... .i..... ~..... -.........
- 1.. g...
.... n. n.. .......t6,,.... g,. ..3 q ..t.,....n ...-~ 4. [,. .d .,A. ,,.....j. l u, .1 f. .l... ...,............... l. s,.. .J.. ..._.l.... .~..o 4. 1, g i.. t. .,... ~ . 4, , s,. ..l.......,...................,... i.. t......-....... t, g .... 1 n .j p t..... ..l . l..,,. u., l_... .. f ..._l ....I.,., g ..,.n......,........... .,..,..~..l _.....I. ...,-..1.,. .}... p 4 y, 1_...... t. ...t. c _ _.........,s ,.e. i. . 1.......... l V, _...f. \\. .t.,.,.. l.. 2 ... t. ..s
- l.. _..
. /. .l.
- 1........
....i......,. ~.....,t......?. .... -.... ~ .f. e, .......l. u. g 1 ...t ..............k ..g .t ,.r-._... r. ..3 g.,. ...t......... .J... i ~. i,. t.. n... r (,, .r... 4.,.... _..,.... ~....
- s.........
... 1 ..t Q. o. ... a.\\ ......I ,.g ...,.11' ..9... t=3 ,. \\ I 1 v ,4 ..........at.%..,..,...... i \\ ... ~... r I.,.. r ..t *...*.'.**..*. ~.. '.. '... - * .l......,...... g
- s......
. _..... _....f'.......'.... i ...i. ii r .........) V. b) ..u. O...............'-i .......~....... I..............n...... r.... ..r..t..........i....... -..., _ - . t..... 1 i n. .t .m ,.. a. P.1 ..i. ...._ l ..s
- u. s.... _
..s > n,., . !.....i .A..,... _... ,._ o. ~... i r, .i ..,,....f..._.. _., _. e,, ) .,e i L. sj..... rm - h. u.. ..- :......~...- z. L..:..:.,:. 2.pt i.. -. s.. r _. ? G i. t.s .._.....L. N O... ..U.., S.. '.' 'd. (. .i. .,a.
- n.,o.,q;.=. '.
y g,.,.,.,
j i _ h4 N *b k8b drrowtw a-3 ~ m'. g K 'ft 'N'" *"'M"r m 4 t< ! j.:... * ;t M..l*'.? 4 .~,.... E y3 t......" - 'A D . ' * " =.. d br-U y r, .h.
- v. Ul '
3 ., t l Y'.,M...M, c .t c.: r.g. . ; \\.". alm}"'. 5 t
- ,y,,,
4 ~- 1 .r-
- 4..
e r, sa __ m q", u, w 3(. .,,..o. ;., ~ ' 4, ,a ts r> 7.. .2.. . -y - e ...g, l E
- f*3..*-,,- 3 4
4 1 w .L.1 d- { l +- j g g -l. g. ,i = 4
- t. '
.3 M 3Mf tf -[. I i,
- ,. i ' 4 ' y,
,e .c. u 4 ~ c..:.1.4, 11.L. : ;..- :k,, *.-,' t 2 !) ei -{
- i'
...i : o.' i p. p - 1 .is i;-. r".., j {. *o . #_ *- ( d y',... g 4 W. J 1 ..a ~1 y. z wa.. s g j 1gf.I .@,h 3 3 ~ yw,: w-.- ' - -[ T b k,,) * ~ ~$' i d j T - r'. J) JRA.. 'i> 4O' q' ee . ; 1 l *. -. ',...r: .,. l@; i.a i.J g -g; y , a.:(, p,- ~ + Q,. I -+ 1 4 q. y, y q.g** p- - T-p i. @ e ta sI =J gl + i u - l ll U {. N
- b W n=If(
'c ,fl Q \\
- '*qff..p.'c 3 y g pg-3 jn; m'""l
- .-%Q~ *-t -g g
& {, g, 4 ; 3 cQ 4 j .r
- ),,
.T. h. U -- b " ~ '~ I ~ y t. ..o ,c.
- j. l.c y
n< 9 j; z .c -4.. bd., j t ...._ + - ..o -r ps ! i.,I W i e 7 ,4 t 1 ',m i t i I l t "I i. y as
t-I i j_
--,q-- P. '- I G -.- _.3' ,._ { .~ l { 4 4 ,lT) 1 5 g 'k. 4' - " =*<h* f, g s 4 i i l I gd q a 1 i 4- - ~r
- _._._4.. -- - j. - -
O 4, .( L. . [. ) 4 I % __ r,g .4
- i le t
Eo g --- -~ T A. a-m }. g Q l 3 J i ._._L-_.._.., a O _.'.:.m r
- r... w+ o-4 ti.
i 6 gom s.b h ,p -fq p.-.g g. 4 g j y a ," o #A.__eed._q.4z .h a w ,s g v i -~.E-d m- 'M. L 'a..pa 2 I.' - r-- . l' g6.ii % ~, [. C j I,t". g. c ,q.p. C, ~~'."[."** V..7 l I~ '%M b C Oc l C. . 4-m ~ * - ~ 4.,g. 7 ..~:-{- e?O .l ~. [... - '.l - l'3 N-I r-i a u -. ~ ~ t .q.
- t.)
g s.'=v.,
- \\.
>a v. _3.....i . j. - - 9 a. g
- - ~)' ;.%y 1
c..~ TJ. l =pM.. - ', c. w, ... L.L.- 1 .l.e ". ' i I g. L,,a yt y-a w r p.. R. e d* - :z.p' ]"1 ' '-H .c L
- .D
,.t.y,... r.: .*: 1 1"- .. u ,.]: ,W i. g .r cu i::c. H3 g i: im -hp '. Md h.- 3 T; i?j I;'i$$O M h ".,3 [ i 4.M" < ES'..swe n m en 1w. + .7'II 8: '@ ..10 it w
- .4.c.
+, v .. m... ' :: 4..' ~d,a : SE ,~J M.- M .d I E. G8 0 t p..l. ] g .a n.. i A* ~ n s pan, ~IT I W T'5~ e.i h. T.1'i .u M yjs V d M i ! bn 'M E - x 9 ww m v s u w. w . c. ~ 9IN k 8 4 h M d. liNY.d$ E t,*f ^. l %. MW5. R iO AMVM WW'NM W W W m -w m e enM M. 2 de +f$w.h. mmsO @ m@MN . M.. e.. F 5 ]'. A U.,d.T. 1 F E W D ug.. .1 e . c.. m... .m %s. g . e.r-- , q:...., -t. iA.-- t. . 3 d, _ E'"I 4; M ',' gN r
- 9 L '". H ' %
l -. 'C ' T rJ* 1 4 l'.
- l. &,p' b
.. i. e ob Q gr p. y; ,8.. . i.. C, e. lQ., ;N .. J,' l i*,., .mI.4 n'
- e e,
. p. Mp -g i . y=" P c.7 a e p-- - ,1g3 .y p m i G, u,,1 i d ' r*. b.. j. a
- m. m,
"a M 4- '. -- g' - m: - ' 7; u f..i
- ' 1.,
i s 'N tT 'o d "" ' ', ~ d[l - .: J.!: a)_ W-I o i. ,,w en_ m 3 ,o ..}R. o i, o . f.
- N.*-
1 N 'd i .% i. .s* 13H.. HI OV3 N *1Y ^ A % 6 i l l
u A Arrwe~r c-4 gA y/g* c. ' mx m e.Ws -eWM *,'f:* 9 *; .w: pk.y,:.+f.p j,.,4 @:.2y'i; 3 y
- r.,.
g. '5/ I' t(...:1$ p*.:"I'fr'QW I,.' 3.c,, ?JS K71...w, n.,p Z. l UG M W f24-p- . 1 4 J ':~j d t" 'h. A .Mp ' i-1 '. 3 v r... 4 U:- in..D.PM@$ d.I1. ;Ll c14d,hj,; L 7' I WM,'e ET Md M,5. a . 2, ",5 gM,.i i '/.. --.;A, e,g I 1_... v.< u-r wn-. ---o. , f.;.. y 'grg*y,, 4rae g. 4s'u thre
- i.
. e. g. i n ,. 3 l a '+p .'w v .t A m. wy ,r ". ?" '"E- = . v. @ ,m :.1 g..L.> M., I s.~ _, J.: - ) q y-. - , -A t. -1 g y ,,,, j g.;, y ./ z y;.......l. 3 3 - 1 ry! -- : L. t t- "
- ).,w
.-..' %.: g8 p :y..,c j"- L.4 - [9..'.4 i . :q:s:. ,p p, . 3 f .+: -
- v...r-
- s. %
1. 9.,.. rr 5 y<. i 1 p- _,: a 4 'g .,q( [. i 1;9 ,q e,. s t a i-r s.4 it. it p. T "', ' c' }- g . (., yi y ig 3 %t E ^ -}- m - -].f g...L.. % {. p,4.{,f.-Q: m @ j,'. opo. u ..,.u.' y
- t..
p.... /...t. v. g, fg ,l _ >.. t p.. - E-. g.--[~[hm, *, $g,:- i ,y c_ m i L.- e m er_ c -, m r; v - l . t 1 l> ~
- g.5, f*l.
s. 01 p l 9 p., --q --m y ,t.g 4 i ..kQ.'
- a.. -
-1 ~~Y ] g g s.- i o g / ma s #, =q r a 4 r e .w . u. w ;.,.. 7.., o. ~ - ; . --r --- - -- - u . =. .r e g ; o g .t0 3 N .U i L '2'l tr f .V s.1. 1 ,1, Q /:'. $< i L.['.a-- . 1 yl.'..1 -., i -
- ff
\\ .-4 n-" ,w 6-.._.-: { L.--.- i e h hk [1 I ~ h l ..l. :.-}+-- - l - * -{ ~r i mw n o,g. Y f, &. d.,. Q o i .L - - o j i ( t 2 +1_m k.L" l.,_.m.j.L L--y,r-,p,,' 7 i 'i to j .- { .f Id t l ' t. . e.r to 9 . g h: ip i;.n9.r@Z j. 7-*m= +-p r 4.-- !Ms;i' m z W.n,a <. S ' g -h u- .--a o 2 J.<. q r " h i~T J1 0 Z.Z. 4 I i % :~p. . I 4. i. .t V - - 8 =- KiQ.g.y.,.p..;. n L . 'MN.a.. - 6 -i 41.E a Hg. 4 1.:1s i,. M - b E Y2 7[?,'5 e o. jF 1 ~ '2811 3...' 'f i' pJ M M - ' ..,.p-}? ' m Ta'i --e i._, L__p-4._ h a. u J A y. fg gd.c:, - '. 3 : ' b - .:.: f: G. C *'i!. n }-..?:?+/. f.y,.. e.- ,. ?
- y.~
..1;;1 : - t*7. -' -N. '-N l.{.y4, jl 1 O 6 -Hry t i ., 4
- z..
i i - o ) b k'b.-N M,I M.5 t . [', ;. }g.M %-4 0 j
- y..-
i m,, 6. A..w.-F.' t + m %- w:Nt,: m %.. Q. n. 7 <t e e J.C
- 1.. u.
e m.. . m. 4 ~ L. : u.; sci,fi{,.....,C. t L i -{ p. W '. '1 1 a,4 - - I h. '....'.. "..J:.,.l,, -- L.-l. b- ~.,, t
- s
.t 1 O-1, fr i. J.. g ...,,C.4. ; a o;. . q ,T [:* . f.,, b
- i s.
'ND y* u. 'T "; ) - ~ ~ ' j y ',i $ "i (3'- 1 .,e 'g f' .e' e
- 0.,.
,.%-':. Yn. d.. :, c..w.u,. e.m.s... 4.~,n4.,...tm- .2n, 1 Y %- n4=
- .t m
- 3. 3,
y 3 ,.6 1 f 4
- 6. =
. y.*e, '*p- ,g 2.h.hi f +, *1 5]7.* 3 ~ :" { ' .. h* h,',iM _d '6 ,,5.,1[' &
- k'. *. ' f.
l 'I$/ .d 5 -f ,N. j ,5 L ,y M ,.IU'# t 1.7gU % t '. O, 'I,A. !!M '.- ", O' N *. I' ' ' '. - >f** - W~' I 4 ')", 'b. I **r : O a ',,j. - L W I i_ [ . ch k; o . - - + - - .i',:" b -' A,.,.ob YT 'l. ' .h.
- hh.i '
':.l ; :..I,,. .wLrv,vL,- . - + - - t r w.n ..z, w m k..;.
- w
..:. _2D .. ~ n m'Y.!m i i I,,n v,.. t ...I b e,,n,,,,, m.g. o n. ita gist g' LU .; ua Q ;.,. o 4i }> i 7 u, = i a r.. y :,.
- 7...;
o I .. d M !i,1.- __.'._ a 4._-___.- i f,.-' t.,. :. - y~ i o o o e so.a O o 5> Q Q g i. i nr.,n u m' %. 9 19 q q g ,f s. i 6 av
3 nl.EGBd
- a o amme
.a y p Q s f07Al. HEAD !.yEET .g e, 'O' O . sin ? 4 ~. '.. ,~. 1 g g g h j snictmcY. PER CENT 0
- N e
y. 3 e e o e o o o o o o y C %e i D m T 1 s .,,...._..,.._.... _.. _. m 2, g .... i, .... i. l...........I. i l .g... .m.. ..~ h .................g.............. n.o. o.g... .c. . ~... w p..... ...- l. i y s g ,9. 1'...... . g..... l....... .g..
- l..
..g.. q ......t.......... n....Aggy- %. s._. g .....t.. g ... _.. _............4 ....t....... r Pn / I 9 w n.. r. -i,.,...... \\ ....i~ l.. ... "9?.. .,.,................. ~.... A, .I m,,,. m,....y ...e 1, ~.. = ,........I.,...., 4 .....I.T............. u ~ "..
- r. n * "7
.......==.! .i 4 4, ......g.... w. __...........w._~_.-._...l._..-...-. g ., t. g. p 9 as a z
- 1..
\\ ,,4 Jo \\. u. sM ,a C., k u L* .O, O r 1_._... I a. T'......,..._.........__...g. - 1... _ ....... - _.. _....-1 ...a_ Q .......... _... 1.. -.g._.... . }......g..... , = e e 2,,, 1 "'t g 1
- C sui 4
1... .f....... -._1_ .v, ....... 1......... _... - - W s5 i .1.. g l .......,_.........t....t--._..____. ...w h vs _. g
- w.....
g a. l_....... ppv5'"*,(... 1% 1 l n._. D g e .. ~.... _......... .......... 5 % gg I i ..).**1.ar. .a ...f3. J. .r .JG.... J p_ _.-. I --..e.m._a._--a..._. .m.. ""*W".".*m8l. g- _...._ /.ah n. _J I.--. . g j_1 f4 Lw.. eq E. M .,r q,.,
- h.. _l.l.__._
~. -_. _. _.-../.._ ..I. .t g a=. ..,gm-. - */.- 4.-.....,_. g pn. .e. ... _ T." _e T'".~. ~.t -. _ g l - _ f* .3r.'*. i 1 aa i f +._- W .f'. ~. w W 3. 0 .4... _ _.ame, i =lly (. m____ m.. 9 j ____.L i p 5 t . _u-. l p... o._ aW o...- p. 4 g-.-.4...- m_ ~ -._ g j - p_. m g g .. Q 3 e um. -. - - p 1 g j , no m r m w 3 I E _. - _. A.. g I
- h m.m.
g .. ee L. -., _ ,e# j _o._.. g, ..- w 1 -4. 4.8 --- I. i \\ m .. M~ g. f s..... _.,.. k. -. p,,r f.-y 3 n e p-4 = p ,I. g ag
- e. _._....
<g ,t ~,y ... - w = .... g.d m. . D M,y 3 9 ._=.=.j._._.. p'j. y c, 33._._ .8, e _. g i u ...c g ..._m_._.. r _.__.__.1... .... ~... m _. _. _ _.... _. s...... __.._....
- r.,, r
_ _. _ _.t. 1 . =..... _.. _t -. t.=.. .. _.. _. _... _.. _ _...._ x.., - 7 9'0-0'6-V3 7 ' l. assok _b-5 - amod 1m e--- ,-w._m.
" ' ' ~ ' ' " ' --.w_,_ bf7. - @ '@N ffd w ".. ;.f;. 4rr e e # G 6 9 34 m-wy ~ 446 o ..LI2J to II g { MIMOd1S*)H 33VW v.- -l e ..v; }' e r = i=_=4_: -- gi ' )./ J, ..i
== :~ =~ - t= :. :1= =__a_-
- =.n_1c;
. " = ::wu:;
- ,
- rm:.= ]=: = = =..= 1 =
2: = lj=: an n r. = l u-- :=f= n :. =. = - : = u. _ c - ~ - " - - =1=
-=
.1 -4 ( --- j.F. n '=:- "t = = ru-- = i 2 2 "-
- ..== 2 u.:
- . f :..r.p=
y' d l -:}.:::n:. :-- =].: :: =
== =::. ~ = __. : l ___.2=r:=.:.- r--
==J s ung:: 2:22: = r=- 4.
- - 1
.- i n-ri-m.:= rt: "::b=...x ;= 2 -l .1:m : - f.. :....:u:n. : n :n ; l r- .... -==r= : _... a._ + .( I .e. +- " r!=.- :E.n==s= aujr: - r-N { k.:.
- _ t,.; c::: u.:u:
'.. : :=..: u: a
- =
- -.__ _ : =_
N l ~ w:r :.gn::::M: : rr i ={..g :=_h-3==- ~-: - l
- 4. '
( ---r-- ::. =-
- ~ -
=.
3'.I~ =trfu.:- 20 t
a .:=.=h=.. n;::n; an2=. n+ =_. 20. t u_n_.j. _,. r-nn .=__0_. -- :- =
- r
- j7 ut.
n r e. :. -=. a:=..: .a t..=.=.u. n.!.... _
- ==_=.n _.=. _. _ _
j 6:=.. : =_.=.. u.. a. mu .._. 74. =_ -...,i-__. _6 g C., .; 2 "s-*=.__..F..=.r..=.... _, _ ._...w _g.._. j W &"J =. *. : =_....r. :. :"2 =.. =._y 1'._.6 f )jg 1 -_!.- .v _{ .,ip,::g2gi Eg,] 3.g,_;y gg g .7 -={g{ g 4 u 2 Ws 9= [4g3;. y . _-.T r ={= ~ ~ ~ ~ - ~ j ...J*==
b:. n.:r-
- r: :=
- - = :::= _.. _ =.
- Fi. : =. r - 1
- _=--
-:= j ,,e ._: __ r;= =..,1.=..._..m_'.__.__...-.}=.__..___t-
- u.--
__ 4 _ 5 N -_- .. _.ut=: N =:'.=. ;". :._;:.
- - c.__.:.1...=L.._. -
i _ -f.._ _. _ _ 6_~ t;-~_ * ._.a..__ = _. - _ _- ...[=.__. _:.2_: n=.-_._Lt.=.. M......r.. \\ =. t. :_.._ _ r_ O m'
- h. _
_: L. =.: ~ . =.. _. Q ~ - * = :u. ::n.;_;.is.=:n.;- mjrr. /.._: ;q ;;;;;j C-3.=z !=T= : c.- = 7_=:*= i s g ___g=_. C= ,3; g__,__,_ =.;, = ,e __,._r _. _z _.._:=__='.=__._. _ _...:
- ..:,... - n.= _
_..O........._
- 't ;, _
en .__-'.._.:~_. . : e* '.. Q .. s. r.. n _f._,.. _ _ _ . w 2... 4. __.....__..= r ~r =_.. / _.. _...___.t_ 3 m- = .=. -_:. ;. i ;. _. : u _ =! _. 7.. zu b cc::. ) i. ,. _ _ :.*c. s_:' c. _ _2_:. p gi C. _ . N......C.. :,/.. '~ ;:.=. _. _: r " __ ;=.~_C_ r. ,o l .. :=
- =..
_;7Cgg.,: -f.};[.5 hg I',, =] k Y!J. J} f 55@ 1, n; 3- .c3;r .= ...... I. : p.,; = :. rk. . ___ _=- =- --r t g Z .. ?} :... .7. te..:
- =. _ ;. =._
g ....c.
- ._. } g=..
1.u -- > p _. __.___-._ 7, .-3 A i ..:.u: c ._.. i_ _:. : _.--. _=_.; c.t._.__.- -. e.- _ - - +.., -m_ _.r : r_. 1.. :: ;... - i ___s... u,
- y.,i
.._7.. .E >ca-
- t. r '. t : -. j z.
. ; ; ;.c .~.c.:.. 9.~,=. - - - : }5. - = t ( r t. : - -l
- 'r
- u - ; ;; =-:- -. -
)-- -.
- .i
.rc:. y .-- m = : - ~ .:n.. . :,:r. : .s ..c : = x.:. !'. : ;- r ;:- : O - 1. ;;n 'M > m =,.r.:n., - - N' 2.,-_----3,_ !':):. i d * -
- n
.-.. '. L.:. :.. _ u_..,.c
- - k,--,,... *........_~.:. _ _.: - _ _.=:t o J e
_..t_. . _g . _.... g-,:. -~ ~ ~ ~ - 1 4_ %. ~ .s. oy ,} s, ..n c 1
- s a
i.{. idr ". :q..: .._.i. _ _ j. h. l i :.T_ . l =.-,_ ___.=_r_. E"". m 7. p g h*s y '. ..I. "; j :..
- .p_
. :,0 :,::_.. - gr ..,.... ij ; d......gr.. =
- n.
. x:e .u:= =.. : l.i: u. :- i = _ _., r. =- um =_,._= _ _. = c ::; & a 2 :.g . 3. _- o
- .; j}..,. 7. _,.g U
.. g... z e,, 2
- ..;, j ;;;;
..\\. ;c. n_.;n.._u..: p.....
- t.., _.
..,. _. _ _. ___y__._.._. f s g .-..g. p.-, f . L.
- . ' - =
p. j l'.I..-. _i h..h [1' k.... b.., d!.. .: f.-3. 3_.Y..[., ' J' 5..:. _l.'[.. h.,[ C. _,. i 3 C .'_~ C., _.,__t w g_,. (r, k =
- J ::i;,: f.7 3 r ;' i g. ; = --.;._-
d;-; m ~-1'.T ~ =j...[.;N*... ...3::'.C. 20 = 1 C.;;;;:1 r;.:- = r:- [ I { .: 1 :.. J 71 :- . :.;,j. h!_T .J. o > s .._.. : g.. p. :;t.. '. +.2~.7. 2..;.. 2_2 ; ;r. 2. __:. :.;;. -._ g ;.. _ -,., _. ", . - - -.g- . _"' : C ;~ '. ; { ;* 2;.-'*C.. g.. l. ., _._.... 1 g-., ..... ~...,... _.... _...._..._.i... .4.... . _ _. -;;;,- *f.7;.. .7_. ; _ -, -_ g / ....J. T.**: *T ;*J. ::. :..-; g . j,_ _i-2 .,i.. g. m,
- p.__ ;;_ _-
- ;;.h......,.... :.;;; ;;,, _;,.,..,
...J_ _. {.. ,._..i.__...!..:._'.'. w ...-.t.. [* ..p..
- u
. j..,. a.,.. :. ' -~ . : e.,- m[ =.:....-,.-- _. 7, e_.,. M.n. . p.: ;.p,,, u_. : :, ;. .g. .j 'j. N :;::;: n. : j :;-- 'l .j .Il. p ~f: -g' ' I ll ' _ ~ ' ~;!T;-~ ~I I l' I~ 9;p% 1 1
- s
.i. l ,s i i .i. 81 ( .l t. o o
- 6 6
6 o e o o .*] 6 o 0 Q '4 y-O 1N33 E3J ' ADN3Cl Ld 5 j[R y -i t-l [ ) { j j o g Q 1U.thi OV3H 'lV103 s e o w 8 f_ S i 3 1 saw ese.. e. 1 4} t 1j en i h
}l-- -.N^ = H.. .. e.ru.y1 --w --Tr 'T f,p t-).4 f=3f' " N ~t 'E 6. F_ v 1 $ ~- -*^ - ,i m:g. - a,,,,., y %d 9 g 2 - .u --.r + .v- - ,m-2 u -o,.. m ._q w_- ___1 1 1 1.a L ..,1 .m - u.- . ~~. _, _ ~- A- ",w-Y n.) 3 1 g -y.= , ~--, . +: = ,m-t J i D -23 r I __= n - ~,-; i 1. w r<n --M , m m. 1.s., ._L
- m. -.
i n ,,_.m p r / w- ~ ~ -. _a- .-.r. e i - _r g m 2,. _- - m 'r i...oamw r.. 4 w. e - -g_ v. ..f. 4.s g-w_~ p*p - g1 - h-.! f* *_ __ w,_ s - i e a- [ [._7 v ~m. = _ 1 :.+., -
- =
~ I ~ rim 1 m _n , 3. 2_9 " 4.; e cr._ p_Ifk,. w L.<: - -.s n_ r-, = x:
- m. u w. 7
-r- -. e .- t.m. r t{Ty - _ m . q;..w u.:.n s-- s
- rw
+; - = 2 --s. --.~ ~ - g .. v. _y. w .. w :... g ..4.. .' _ 1 g 3 LN D 9 _G-t r n; D -S ~~~ 'r. - 4U [i ~ - 4-Q _q M*G 74- ~ ~ g 5,th;_m ~~
- ~J
~- -e g g'q-?' PU** ^ "i- -s.,.... g 'L- =_. - p M j. h5 S ~ ' m-w
- 9."e'A J g y %-
__i ..[ g4 y .h.---_~-- w4M: .m._- ; _.4 - + "'9 & 1. e . '.u kr
- .mL-
.y^ .a W4I.-
- g-
,), n m _g,-
- -1~_,
1o. __ j .7 f ,-.r. -- + , = * *, ,_ _ \\ 9, w- - ..gn .u _, 5 *** ., ^ I ~ +..J$A m I - w _.~....a..& ~~~~ ^w - ^ -~ _,= _- ++ ty t. _..<..N'- .'~~ -. ~--..- --w.a -f 5 w.- ,,,,i~] j g g. 43,.., n. .:-___---r1.=-___.-._.- ~ m -2 m a__: ,,/ g + g 1, p r,, -- i.f L. 6.(I ' h u...-. _6 ) y _nh.,u. 4- _ _.s_ t y H, W - --- . - -*,-.,." ~ ~ ~ ~ ~ ~ ~ ^ .. i e.. .J a,, mt:rH ,,b =n . _ ;.m 9 9 J w--= - ^.. ,4 sul La M_ 1 5 1 S u-'. ~;;-. m,.n.r_ - n <__...a-- ., s,9 ~ ~~ e,, i.,a r ,-S n;p / .-r*.' -{ .~I f +w sv 2 e
==q gM
- d.-
.,4,,,,., f1 ei> d -.c--+ I . - -W- -u e.e - I -{ .o.- r-f,.a-q g 1 g _42- -' 8 9 .A,} J.- _,7 t - -.d..M _i s M4 M 3 -- ... w..._.4. _ __ ee..4 m...-- ~. ....y"**-"_
- a. m a...._.%.n,4f..-
,_A- ...e. 1 pr+.de..-+.,.%... p. ' = = = = --. _ e. 5 e,:-- u r* P_===. t -- I...l..,.I.........,_..---.- 1 e +. 9]s - n-- . ~ _i.... .~ i ....t....... -.. - y , j .4.~. s -.. --- 'c 9 3 ^_ ,,. g W g, - =.r,.a.e..e _l 3 /1 _a _p-- ...7-:._.-- .. n,. 0 ..y.- I g-9 m -v __ L - - t*.*. L. . 94 -, e--,- 6,.6 g g-- -~ -s m e.N _4 - + ,;7L l d, _ _ - - ~~ ^
- O u,
_-y.~~.-.- g 4 . ~_1 ~ m ,,, t ...r-7 ,m,. . ~1* * ~ ~ --,7_ ._,... m. n_.r.-. .m . m. _.. . -.... ~.... -... ~. - --.. -.
- r. w..a.. w.... :m._
=-... a .-.. m- &-..: = n.,.a..:.=_-.n. 2c =...r.n _.: c.=.=: N.,..= rm _.,...: -.' r ~ _... - _.. _...---.i........... n., m..,.. A. s w-..... .s 2 9 0-07 p ggg&novr-c-7 n- - _ _^^...-- .p ~
d 1 1 i ~ 0EST Wf g.. ' r.wme,e ~ A -90 062 b ~ i .J. fcQ..t ... _.,w. _ _ =. S a % n .9~ R W 3. ~.<" 3 s t e .=r ghm awk, v-@m a ,r' u.-
- m...:n m:ia.i.:4.. J+,
neu.apk.,. g;a,. _y y.i. 3 l .c ~
- .. ;c.zy r..
[k >,1.h & F W -$E5@Eh$Q. f"i.- i 9 D . drj.-7 $ " plI 4h ier@.siresin r= mgg.dk - %...
- im 1
"3.y., [...t". 7- : i i 1 % HWDWT+R ";;.Tn= k, v w l.n? ^
- b. a. w.q, n-.:o.
qc. e i
- m:
e. h.2--. 4., ,..n..:.-. ; _t. 1 3 n =.. .p ) da -!:i ....i
- t.51.. '.!. U
.,.. p:." ...t _w.. . q:.. .w " - - -.li.=.fi' mij:Q ;"'".T"".. xmj t %fIIihiH'Muf.: u ~; s s er % : y:$s* ' nih---~i I 3h
- .r j" "o -
u. u;,p.:..:,:n el.. ) :;.r. j u l ,1.. :::. . i (; . e n - g. -- -- 4 s .os o 2 *:. :* * ...:t: g
- t. j ".. i _.J.~ ? -
,",a ..4..,..,,. ] ,6
- ;;l,m
. "F..- l.- ~ ~4 ":
- a.
.,[ ?-l ;; j : ;. ,J- [ t.. i ,s A* l' ~ '.t:. i W;. r:.Fi.:g9::::rj.:.. .....u:.... 3 ~ . f. -. i....~,,. 3 q..;r-- J -. r; -r~...:- 3 1 ~~~- ..u. ..; _ f. l
- f..i '"'i.
". { - ,. I*. j e M g i g .j!!;:. . :j ; f I :.; I
- i i'
(- ....l ' *' j.Q y) .l ) 4-.. ..;.p.J., h g' I ...h.. i 3 t!. ftllI' :: 4; ,3 ,i l igi'- -';If;t'. -l >].
- 6. ; ll',t:. [
.I L L
- r. l I
- ,.,.fa j.
e .4..l . l.. .c 4 .,I,,.., 1 1 ,7--_ -.m ~*:t*:**
- -'.o*.
tt e.M:-*j~*: ;:!:.g ~ , :iL, e.i J ) g ~.. Q x
- c
....... ;. !~- 't .t' l g" 1 :. ' : .i.. 88 4 .T.., g ,i
- P....-
h.,.. g u:: . @]: w
- Fh.m
- .9.:..;:.::...Gpigyg.7t.:.-
4-
- u..
.r. h 4"4 1t u". n.. n i ~ yg gy '" t n :i.! g 2
- t p w
-").7- ) i i _... a...a.. u.u.iv e = _t.. e_ ru..:.:.n.n.. :. y..:. =.. i m.-- %s
- iW:l,.u: a: fii: :isp: ! !=.urg ;g::nig"- y...gy
.. a. a.... : 1 a. f '.-......,:, a w ~ .n ; m.n.. t b.,: j
- ci
. :."r-. :. n.
- ;u rl.C..
- n.m. _i;..
..,. u..
- .m -.ni a.
U,. :u b.. r ... j n...i:,.- ,. l.
- u.. r.
y:g,.9 10 "!.;f b' ":,.*.;l. l t.:jh' 1,..,
- . gtl'.-. j"
!'r: d; b((lf. ' iL{H"t"M ul:g{r t .t m." ? f:*
- i*-
? ** eul.o 7 i.. J. e. o.".rl:m'.. :. i, :..
- nu r
t; .~;. 3 e .o :nL..:....
- - numaumn:. :.:t b..g.. !*::..tu: 4'U"M -
- ].- -:r-
-T. T . :ur /i"hi.!H-i i..i@ !' :Wi!. ][T.1.iiiii Y:, 3 rIa.'ITE.ire.n.n:nl.2 f., (:Hil.n :;.;-]8 I n y 3 ) D ki h l~4 NIN:#E ! ,:,th"IrH iiju...H..:f..!.:.,,s.
- 1
- r Diii%
- U: ijh @ d l.!ir 1
) lE ijr ip,l; fitI @i~"{-"p
- ."~~t"A Q
I j l f,, [ Ph ifs !!ii i Uli it ir! Dirt im WMl ll!i n..pi :..!{li:l tip 4' .!J!.!!.!.I..i.i!T. !..!.U. 4fH.it:n t:ir..i:p!r!.i:e. ygeE: 1 i .i = ti" 97 :" I -- ;r-n n - 3, g INN!' S IS5 YE!il$IIiENI l$.I[ifi~i i !l[ { f. fi i I-j I bbbDN.N N MId 1M".fik: j l i , gp A ..".. m,, i.ui.r;p.ia.!.m,.=,. w. j. tq t nu.,;.w-... s .. n..
a j
f j,, ?!M30Mi21 !!!!PW:: 5:i. .r
- ili 9 "I
l J yt.if.. .. :U ..:. t ;.. ; g - e: t ~. :p.[..r w- .L..j.,;. .,..,:~. +..
- E j
L..F j - ~ } .s. g';, 5 ; . **~ i I I!T4 f *: " ar g 7,-" - o "I '." m.-
- $.!; N*!! P
$ P.;- i i;M' a ]I{ I- -l-l l i 4 ( M' se :ci n ;l"i!.. i -: ; -n.: '.
- cl;,.
.. ::.:. a... t ;:
- -~.
- ;~
1 ! i s in.:.? :hli! * ~TT.f.;,:,,. : '1.. H W-4 4-- ..; IL i s: : p..y s ,tu : - g /
- H M
L.-'........ t900 hl1C M& R44-fd f 41 Vnf, A-l 4 l l takewr-c-8
-36' U-%mpn "y!. p : g_; .g.._;t, rgggigtiE= i I m _ i = = r+ n f 1: n: _ji:li: ag;.- . M W ip.i w i F m 7 - l P;. r- ~ ,;.g. m e_dh M....".,:~' 7'., . ~j.~I~ -41 i ' " "I l ~
- ir
..n n. i n
- g
.... I... ,i 3 4.;. g F ' O.F"H.i!.iF{!!A:# "J" i:.ir u -i ,) t. }4gn'- 4 ' " "+. !]!}ati ii!!fy !!litii iN4hi:3
- =rii : ' i :!:
l; J L
- g. n.i.
m p: i.u_!.f i y.:rtia:4.:r..
- 'i'p!._.: F ""r
- - u n
D !!' :!:i :!! te ti l.!"
- !S hui 5
] T... - y l a B ,!? ; 1 - l P m ..iH:. liiin ii:'i d,i :[;jy h j! lh ' 2m ~ 5 h"!: [1~, s 4 1
- =
Inei. L. O !!:i!s: nr 1 e p;m-l 3 uniu: oct.n.i.n:t:: O itjjj ii !! ' :i{n i h
- 9rt:
1.;i.'iif fT n c-
- 2:
y q b !!f!! g it;i s w 5 ' ~ 4 A ... h b h . E j Z li ib* iiI.i[i "Of 1 l - n l ..l fik 5f g d - Z I: I IN! bl8Iilik!!ff!i.I E ! "I ? "!!.:I. I:.:I
- e
- g 0
71 t ..g.] .... ~ i lii u !!iiiiiii ; -t)
- n..:
m l.! MNliI a:.. 22. (g i .4 pc l i!!!OPivafvEiili:ltii D .iii li t'll ' i: l l
- n-MV
- l"ti..
o i t p
- !ih!!
H, y4: 11 .m. <g i aitii: y
- jh.h'Y'h. l I:~.h,,'
Alf1m0 8004 /T l i i
Fdf.)2382. Eev 3 U .REV. 31 DATE: March 21, 1991 PED-FC-91-1762 FROM: B. J. Van Sant 4 TO: R. F. Mehaffey
SUBJECT:
Motor Horsepower Estimate for SI-3B and C pump operation i Per your request, DEN-Mechanical has performed an informal calculation to determine the motor horsepower requriements for the containment spray pumps. We have analyzed the performance of the B and C pumps operating through two j heat exchangers and two spray headers. l The results of the analysis show the pumps to supply 2650 GPM each at 0 psig in containment. At 60 psig the pumps will suppyh 2125 GPM each. The motor horsepower per pump is 325 and 295, respectively, i' The analysis assumed the SIRWT was at Technical Specification minimum. This j is conservative since the level will drop during the accident. The analysis also assumed nominal pump performance. This is also conservative since the actual pump performance is slightly degraded. i Although the analysis was informal, it has been checked. The analysis was based on resistance values derived in the Combustion Engineering's (C-E) calculation for Spray Pump performance. Those resistance values were used to develop system curves for the two header, two pump hydraulic model. The head curves for the two pumps were combined, and the intersection with the system curves for 0 psig and 60 psig containment pressure were plotted. C-E is perfoming a design basis calculation to verify the values given here. DEN-Electrical will be notified of any changes at that time. If you have any questions, contact Jon Ressler at extension 2426. B. J. Van Sant Supervisor - Mechanical Engineering i Production Engineering c: R. L. Phelps J. L. Skiles R. E. Lewis R. G. Eurich R. P. Clemens J. S. Ressler ~ PED Library ......i
1 i k!Mk[Nh 6 W CERTIFIEDiTRAN3FORMERiTEST"REPORTe FC.844 3 ) J
- .f 3
g:.. r.' ENERAL ER: 54X2*9399 SHOP ORDER: D AV3053 MH29446MCC,,,ggg i STOMER: OMANA PPO PORCHASER'S ORDER NUMSER: MN29399MKC i g.J-PHt.5E 40 NEATI COOLANT-AIR SUW/PHA$E POLARITY b3 b E~f l,/ 3l WINDING LOW VOLTAGE tkNDING HIGN VOLTAGE 100C AVA e I ; '. iOOO AVA ] ',f
- 160 VOLT 5 DELTA 46G VC DEL A 7........................................a.....................4.0.
$ TAPS: 4360 4260 4160 4055 3950 9 j E[.'NESISTAhCES,LOSSE$r IMPE0ANCEp Aho REGULATION CORRECTED TO 100 DEGREE C. fg'.lRE515fAhCES, EACITING CURRENTi LO3555 AND IMPEGANCES ARE BASED ON N0AMAL j vs. RATINGS bNLESS OTHERw1SE STATED. LOSSES AND REGULATICN ARE 6A$ED JN dATTMETr.R ) K*,'. M E A S U R E M E N T 3. j FOR THREE-PHASE TRANSFORMER 3e THE AESISTANCis ARE'THE sum OF l i
- THE THREE PMA5ES-1h SERIES.
) i iI
- RESISTANCE 5 IN :
AT 100% NATED
- 04160 70
.40 i { 't, 3 OHMS VOLTAGE 1000 KVA .h SERIAL
- TEST : Y IN01NG
% E X C I'. I N G : NO LOA 0
- 6C40 s.355 :
i
- f. s NuM6ER
- DATE :
H.V. L.V.
- CURRENT
- 60$$ WATT: =ATTS
- AIMP :
j 2;DAv.530101 110185 .59 05 .00591 0.5968 25o5 77o7 d.00 : i f0AVjs530/01 1107. .57d52 .00591 0.5477 26o9 7661 4.so : JOAV3653C 11078 .58350 .00590 9.5 19 2550 76ed 6.99 : ' 0AV36530 .,J 111343 .576 3 .00595
- 0. H 00 2o19 7703
.75 : l i
- . 0 A V 3oS 30401 i
' I 111385 .57: % .0054/ 0.ud. 2047 7702 . 71 : g.........................'.................................................. )
- )
l i TCTAL
- 4. J, 5 2 I,
P AVERA3E .c036 2 2010 10)!! Iq GUARANT'8 : M1h 3. ^ \\ !j k i t 4 0 ;. a e11. ~ j( W PCaER FACTOR 1001 E r. !T E5' - AVERAGE 1.188 0.11e l 1 3.] !. E Ti.e tA>l#- TTST JF T R A h !. r *' i l ! M AVERAGE RISE IN DEGREE C., C0' '. T / W ,wcTDC ! hESERIALNC. DAV36530101 w1TH.i I
- 0.
F 60A06' .$ r '. 0. i : j QNV WIN 01hG 3v50 VOLTS 14o..'A* Lv .s0 c.80 vr it ..d AMP 5
- uhTIL CONSTANT TEMPER ATURE mA4 R i.CHE)
L" m1h01NG RISE l
- i. '
8Y RE51STAhC8 l [ IRON LCAD j LOAD RISE RISE Gb4A TOTAL J
- EMP t 9 1001 26.0 40.2 60
$5.1 j f 1331 13.9 55.0 00 o2.4 ,,,,,,,$ M,k, ;... jl 0 ATE 11/14/o5 APP 00Vi; e 't i 0.i..' PAGE 1 0F r
- w t. 5
!f h ', i lun v.. j $?, { i g .e - 4 g
- L l
_\\
l 0 C ....................r-,........ ~.... 9ACH . "iES~rCODY" 1NsutAT10Ns Test i 3;$, APP 61ED POTENTIAL TEST (v0LTAGE 1$ APPLIED BET =EEN EACM w!NDING AND ALL OTHER l 3.4R e!NDINGS CONNECTED TO CORE AND GROUND) y f p o_,,0 w 6-E-
- RATED TEST VOLTA?,E : OwRATION OF RO3M l
w!NDING : VOLTS : APPLIED TEST i $? L TEV 3 i 5 M.V.
- 04160 12 AV 60 SECONOS :
!F L.V. 2 50 4 EV 60 SECON0s : A.TrA w E 4 j 1;.IN00CEO POTENTIAL TEST: Ta0 TIMES RATED VOLTAGE ACROSS THE FULL wonwanw ai 4 ..150 MEATI FOR 7200 CYCLES. E A -9 0-062 lp..............................................................................'a St. RIAL 0203 A J401 TEST RESULT ADDED. gf ! g.............................................................................. lh1 N E R aiW Y CERTIFY THAT THIS 15 A TRUE REPORT BASED ON FACTORY TESTS MADE Tdi AMARICAN STANDARDS 4 g;. ACCORD ANCE d1Td THE LATEST TR ANSFONMER TEST CODE C57 0F j.3 A550CIAT10NJ AND THAT EACH TRANSF0ANER.1Tn3T000 THE As0VE IN506AT10N TESTS. 'i[ DATA 11/1 /d5 APP 7.GvF.J df...,,, < '40 E 2 0F 3 PAGES !.i pl l h lI h '~ ji 1J s' m, 1 l d n j k l. ~ h ll ,f-4. s ! y i ' 4. 5 l fe 4 l I 'i ' i I ), s.k $e ![{! s' 4 s. )
d ) i l i i 1 v.. I CERT l'80 TR ANSF04ME A4Td87' AEPCAT- ' " '4,.,FC;8 0 4 ,.._.. :p : - GENERAL'0ADEA: 54X2-9399 & HOP OADER: D Av3653 HN29446HKc FCD3387 I JCdSTOMER: OMANA PPD PdACHASER'S ORDER NUPJER: MN29399MAC KEV 3 l l?J-PHAdi o0 NEATI C00.AhT-AIA SUS /PNA$E POLARITT ATTgj.).E 3 j g'sk SINDING HIGH VOLTAGE dINDING Low VOLTAGE .l J 1000 KVA "2 l ##b1000 KVA !.936160v0LTaDELTA 4dC v0LTS DELTA R&. 3 4 E A -9 0-0 6 e e.4+3 i @T'APsa 4360 4200 41ou
- 055 3950
} as$. Ir4PUL5E TEST q-g4LQ OSCILLOGuM p
- C-
!'l hiiE RI AL anAVE duSMING MORII.0NT A6 Kv/CM VERTICAL KV l NUMBER TfPE $mEEP OEFLECTION .M hT.ESTio MICR05dC/CH (CM) clg g}
- f..
0,A v 3 o 5 30101 RdE M1 5 9.10 1.700 15 47 1 I 2 m Aw! n1 10 i Cw H1 1 14.2C 1.700 30.94 3 ^ Ca H1 1 14.40 1.700 30.94 } E' Fat H1 5 18.20 1.700 30.94 5 i o
- j. [.
FwI n1 10 ! I
- r. '
- i Lii-awe H2 5
9.10 1.700 15 47 7
- ,4 4
4" f Ad1 H2 10 l C. H2 1 16.iG 1.700 30.i4 i '1 5 - 0' Cd Md 1 ti.2C 1.700 30.9* 10 f !! 'J F.E Hi 5 12 4C 1.70s 30.i. 11 ); lJ t-FwI H2 10 12 L g 45 RdE H3 5 v.10 1.700 15.A7 13 j (J-AWI H3 10 E. Cm H3 1 18,20 1.700 30.9-is i CW H3 1 13.20 1.700 30.9. to l l FdE H3 5 1!.20 1.700 30.96 .17 15 ] s': FdI H3 10 o !n 7, ReE X0eir2,3 5 7.10 .550 5.01 1r Ca X0,1,2,3 1 15.20 .550 10.01 20 I l Cn X0,1,4,3 1 14.20 .550 10.01 21 FmE XDris2s3 5 18.20 .550 10.01 22 CHCPPEG mAVEr Aw a REDUCED WAJEr Fn
- FU'L SAVER Ia CuRAENT, Ea votra j
J.*Ce a ....c h t.f. d.............. i 2 0 ATE 1 u is u5 AP,. m 34 P '. 3 E 3 0F 3 PAGES W' l ) '.? l A h' l l 6 l 1r f
%-&0 M REV.3 EA-FC-90-062 Rev. 2 %.2 E A -9 0-062 di i A. Derating Curves For EMD Diesels B. Letter From Ted Fryar of M-K to Randy Mueller, Dated 2/21/80 1 4 4 9 1 1 4 I l
- -.-. =.. -... - i l-REkqp-95 ) E A -9 0-062 s EA-FC-90-062 g / 3 ') Rev. # 3 {.2a 1 i ) P R 14 4 i ( i i i i i i l Derating Curves for EMD Diesels i i it 1 3 i 1 6 4 l i i i l l i i i e d 1 i 4 f i-i i 1 I
95STCOPY k 062 dg.2a-1 uonnisoN-KNUD8EN COMPANY,INC. - E A -9 0-062 SERT.. I6 O".'" m g I*LECOPY DATE: Auoust t'. 1888 COMPANY: ~ Alic.nTION: 8.!MENCE: TEi.ECOPY NilMBER: THIS 15 PAGE 10F 2 H FROM: _. _ IF YOU DO NOT RECEIVE ALL PAGES LISTED, PLEASE CALL 00R WORD PROCESSING DEPT., (919)S77-2720, EXT. 212. Attached is a data snest that shows the engine jac4et l water alara set 9 208'F and shutdown 9 215'F. Long [ entration 8 temperatures over 208'F may reduce the lif e f of the. cylinder heads.. NOTE: FOR WATER TEMPERATURE IN EXCESS OF 190'F REQUIRES POWER DERATION PER CURVE (200 to 210'F) WITH AMS!!NT AIR (COMBUSTION A!R) TERP{RATURES ABOYE 80'F. i i i I / t i - w now u23::r.o cs:n::. t -: 64. M t - l etIt IM' sterTr .i Tt.
".y. EA-FC-90-b62 plE5F.L GEMERATOR PW M Rev. # b l C,d R.VES tcqp Attachment,8.2a-2 E A -9 0-062 ename muutun imrew womun i .i.... o,.. l 8E N 88 ETS I __ l 208' F. l Igle F. ]E[/3 ETS l or 213* F. 203' F. ITS 2 l ITS I :.- Hot engine state SC. HC. 5. 1 ETS - Hot engine alarm MD. LD. } ETS 2 - Hot engine dutdown SC. HC. 5.,, i l Tk. D/(,qp omakm. is epiE# % w'S*'uW 100 { 99 Engine Coolant Temperature Limit of 190 des F \\ / 98 X / 97 L 5 96 / \\ \\r 9, .f 94 J Engine Coolant Temp Limit
- I 93 L
fn \\ \\ 91 \\ 1 A K< 89 88 s 87 86 \\ 85 j 85 90 95 100 105 110 115 120 125 130 135 140 145 ~ Air intake Temperature - deg F Rating at Elevated Tems.rsture (*F) For EMD 0455%
- i. ;, a:t n: 1:. -.:nktsM U :
- iA. ?! t"..
4-1949 E A -9 0-062 REY.3 J EA-FC-9f-062 Rev. 4 h.2b 4,.. Letter From Ted Fryar of M-K to Randy Mueller, Dated 2/21/80 l ) ~ i i 4 i 2 i 1 1 I i i
cf.EATOIS CF ELECT;iCAL PCWiA SUPPLY SYSTEMS f* ..._JtOWER SYSTEMS e DRW#:M REEL #
- G QA C0NST. REC.
M E 'n E r D 7.E L EjlD3 RCF4 February 21, 1980 C N/A INITIAL:
- Omaha Public Power District Fort Calhoun Nuclear Plant Fort Calhoun, Neb.
g.g p p ggy, i A" Attention: Mr.RndvMumig Referen P.O. f46079 Reg. #9133 PSD IWO 5256 Gentlemen: Supplementing my letter dated January 22, 1980 I am pleased to enclose the data sheets prepared from the information we had to rate your stand-i by Diesel Generators. The ratings with a 50/50 solution of water and ethylene glycol'in the engine jacket water cooling system are: KW Ratinos 90cF 1000F 1100F Continuous (*) 2402 KW 2330 KW 2257 KW 2000 HRS / YEAR 2654 KW 2583 KW 2510 KW 4 HRS / YEAR 2800 KW 2727 KW 2654 KW 1/2 HR/ YEAR 2853 KW 2781 KW 2709 KW (*) This rating is to DEMA standards and therefore may be operated at a 10% overload for two (2) hours in a twenty four (24) hour peroid. If we may be of further service by working with you to increase the capacity of the generator sets, please let me know. Thank you for the oppurtunity to work with Omaha Public Power District. Very truly yours, POWER SYSTEMS A MORRISON-KNUDSEN DIVISION D W 3 ,x < _.fn y t _ d Fryar I
- e Manager Technic'al Services TF
- wp Mr. Wayne Steele - OPPD - Purchasing Dept.
cc: Harry Falter, PSD, Eng. Dept. Rao Kattoju, PSD Eng. Dept. Milton Sharpe, PSD, Sales Dept.
EDOIVEft Og'SYSTEMN 2319'1N10% OF Af0RRISON.KNUDSEN COMPANY INC .i P. O. BOX 1028
- ROCKY MOUNT, NORTH CAROLINA 27801 EA-R oC a R8V3 krr V. 2 h - 2.
ALL 645 TURBOCHARGED ENGINES - (900 RPM)- s EMERGENCY STAN08Y DUTY 1 These ratings apply to Emergency Standby Applications ONLY. 2000 Hr/Yr 200 Hr/Yr 4 Hr/Yr 1/2 Hr/Yr 20-645E4 3950 BHP 4100 BHP 4150 BHP 4225 BHP I 16-645E4 3320 BHP 3420 BHP 3485 BHP 3520 BHP s 12-645E4 2425 BHP 2500 BHP 2525 BHP 2574 BHP The above ratings are not cumulative and are not sucject to overload. e e 1/76
M 'EC- @-# 2 f.ec powen syrsass omeou i A77 T.2b-3 \\ Diesel Generator System Rating: Engine Derating Factors Radiator Fan Drive 80HP .Gener Cooling Fan 20HP 50/50 b.. col Solution j in Cooling Water 180HP 280HP { Engine Air Intake Ambient 90 F None Derate for 100 F 100 HP Derate for 110 F 200 HP 0 ) Engine Ratings 9 90 F or below 1 Continuous 2000 HR 4 Hour 1/2 HR Engine 3600 3950 4150 4225 Deratings - 280 280 280 280 3320 3670 3570 3945 ) BHP /KW x.746 x.746 x.746 x.746 2476 KW 2737 2887 2942 Gen eff. x.97 x.97 x.97 x.97 2402 KW 2554 2800 2553 0 Engine Ratings 9100 F Continuous 2000 HR 4 Hour 1/2 HR Engine. 3600 BHP 3950 4150 4225 Deratings 380 BHP 380 380 380 W BHP W M 3845 x.746 x.746 x.746 x.746 ~2767 XW W ~2ETE M Gen eff. x.97 x.97 x.97 x.97 M KW ~2337 ~T/77 M Engine Ratings 9 1109F Continuous 2000 HR 4 Hour 1/2 HR Engine 3600 BHP 3950 4150 4225 Deratings 480 BHP 480 480 480 3T M BHP M M 374T x.746 x.746 x.746 x.746 M KW M M 2793 Gen eff. x.97 x.97 x.97 x.97 ~7237 M '76TT 'Tl67 4
EA -fC-90-o& L gsv] 4 17 s' 2b - y Note: at 10% above the rated load for 2 hours in any 24 hour perio ratings do not have an overload factor. The other 1 Generator Ratings @ 110*F air intalrs 'emperature or below: Continuous 2600 KW 2000 HR 2860 KW Glycol Solution: Diesel Engine Generator System Ratings at OPPD (Fort Calh Amount 9 Air Intake 90 F 100 F 110 F 0 0 0 to Diesel Engine Continuous 2402 KW 2330 KW 2257 KW 2000 HR 2654 kW 2583 KW 2510 KW 4 HR 2800 KW 2727 KW 2654 KW 1/2 HR 2853 KW 2781 KW 2709 KW O e S D
mwm sysras omscu \\ 8WO 5256 OPPD ORDER 460.e Eh FC-90-os z. Acc drT 7. 2b-f Engine Data: Manufacturer Electro Motive Division of General Model Motors Corp. Serial Nos. 20-645E4, 2 cycle Engine Speed 70C11052 and 70C11016 900 RPM 3 Continious Rating 3600 BHP 9 90 F and less than 7200 ft { altitude Speed Control Woodward UG-8 Gov. Part No. 8520-205 t Serial Nos. 975804, 975805 Generator Data: Manufacturer Electro Motive Division, General Model Motors Corp. Serial Nos. A2002 Generator Speed 70C11024 and 70C11066 Voltage 900 RPh 4160 volt Continuious Rating 2000 Hour Rating 3250 KVA/2600 kW 4 Power Factor 3575 KVA/2860 XW i Air Cooled .8 Ratings given 3 MeghanicalBlower 85 C Stator and 60 C Rotor max 0 temperature Radiator Data: Manufacturer Model Young Radiator Company Serial Nos. 0242007 HC1310 Fan and Gear Box YM6312 and YM6313 Manufacturer Model Western Gear Corp. Serial Nos. BSV-117 Ratio 3004 and 3003 1.5 : 1 Service HP 104 Generator Exciter Manufacturer Regulator Model General Electric Co. Static 35793058212A11' Current Forcing Deyice AC Regulation Device 3S7932YA DC Regulation Device 3S7932MA196Al 3S7932MA197Al
wn-9e-on an fA 7T C 2.h-4 f' j il l'. l f f f ! i i l l a !; ia i li!! i 11 - _. 'i.. 'i -!,.;.i 1 I m di c :l !! f i i .i,I,, U.u i a.s _i . g!! li F l t '81. _g :.1w 1 he i i .., i t l.'. 8 l, t i i j b y.1 'iinl!.. J_ ;- I U h@--- "u 02-.- i .!l ni j l ,I.m 7 ;g
- i i; g i
E H l d q
- m
.i i l -g 2 t .t.r.---- .sma
- -1 l l
,I 'i s -! $W.,..m! l 1 l ti ' p;;--- i ' sw .x
- m I
i i,n1 i h, H !djp. t.. ---l j ! l7 [J 1 ]. ~ i 1 a. ju mm,
- i>>,8 a
iil1_l ild fif' [q w 'f7'l,' i. s-3 alf [ . 's q q, l YNi
- e.:.4 e!.II !If ih#
.D I nu a 4-im i I i4;!, n... n ",, --,!.,. .' ! ;,:-A.;, ; ; $v;--_! p -.,
- ar-..-d.
i un = r ~.1d 4 -H i I i ,.; ' I' L uh;!'. - 1:II ' i j. ! I ! II l '1 ' 11
- 1.
I lI;' a i g*-,;j 3 [ .-2 j 'ij - .u. Ii i 1 i p, ij I j1 J. i i MG-. a,y ge-.p r !DC ~l L i ,1 * - l s 'i 2
- -..-.-i' i.-j i
[ = _ _,, t b
- m!
i 'l
- q, l
,i e% i
- -l i
hI f! j ! 1 -l t - ly l I i =~ Il pie.-- l _j' igp _r ; i i I ! J3T El
- h i
,, !] -{ H.I H i i.,- h Ti I ',, i - 1.t i$l! it i i I I il, it y< i h il l n.[-
- a:
t . 1: 'T ' ~- i i .i> i-{ I-l ' e, jh i 1
- g
.I q :I s3 l 1 8 v
- ; 37j
%r- .i. . wii Iv..! 11.I.i i ' e- .' t '[j *u.!.l.. -s . i.... l l g. i !'il ... ti IfElllII,;gl? Si is. jg:m l,. u! i. e{ s
a.--aem s.--ei dad--. an eM.+ M ha +.-.m s--er--a+wm -F sp. mum.aiA.e.K ch-hM.A.-EmA-m7-Ed++# 4 -m ee am a-s.i m wmm e s.a a p.eu.- wsw-m_- -m.u a _..c,,,_ O t f 6 4 8 e j f 8 4 i 4 6 k. b g 4 e e 6 j 0 a 1 I p e i e i i ) l g j i 3 g i j r i e ) w' i I I I I i f i j s4 I i i i i p N d I I g a i 1 0 I t 4 1 ( l I I i W 5 e e f' O N O f 0 e I i 4 v. e d I g. I i f J i ! o k e e, e,, g, i .h h I l I $ I I i j p g g . t , i 4 i , e i, 1 8 0 I I 6 I l. ( M 6 e. i i i # 4 f , t, i j
== 6 i j 3 g i i t * ' i i i i 8
- i
} e p e e 7 i g e / g ki 4 i e i i a lf g 3 4
- 3 i
e p, i i t ; i,- s PJ 4. i , i ! h 5 8 I f l i f f , e l l e j, j,, N f i i 6 i e i e + i i e 3 i. i a, i ! 3 t W e i, i, ! I 3 ' ! ' 6 j I e e e A 4 4 e i a , i I ' \\/ f i ' l ,' l . i i i i e =g i 6 i t I e s t 5 i i ( j 8 4 e I 4 e e 1 0 i e 4 1 ) g, g I I 4 e i & t e 0 0 g 4 I e t j 6 d I e 4 i ) I e e g O i 6 1 3 . 6 e i e b j 4 i r i i e i i f I e
- 6 i
2 6 i a l ^g e 6 e a I e 1 i i r e fo h l l 0 f f i j fb e t l 1 i 8 i I t' 0 i i i 1. a e 4
- \\
g / . u e e g Y e i o f j I im e f K i I h k l e i I l t I? r r 1
84-FC-99-66 E 6/2 LOADING SUWARY 4fT Z 2b-7 (Botn Diese' ' 3rt) ~ 5 : tiP TIME SEC H.P. START PULL IN PRIOR LOADI TOTAL LOAD ON UNIi i rI.".AL LOAD NO XW KW ON UNIT XWI START KW# PULL di G i ON UNIT 1 10 750 900 1500 0 900 1500 560 2 13 1350 1620 2700 560 21E3 3260 1567 3 18 750 900 1500 1567 2467 3067 2127 4 30 450 540 900 2127 2667 3027 2463 0 9 1 I 1 h 1 J t i
EA-R-9H&2. fl&V3 47f T.Jh y LOADING SEQUENCE BOTH OIESELS START ASSUMPTIONS FOR LOAD MODEL CALCULATIONS Acceleration time for each motor is 2.5 seconds. For the purpose of K.W. calculation each H.P. is~ con-sidered equal to one KVA. Thus, 750 H.P. MOT = 750 KVA Load. Start Power Factor = 0.2 Start in Rush Current = 6 times rated current Start KW = 6 x KVA x 0.2 = (1.2 x KVA) K.W. Pull in KW = 2 x Rated KVA = (2 x KVA) K.W. LOAD BLOCK #1 750 H.P. = 750 KVA. Start KW = 1.2 x 750 = 900 KW Pull in KW = 2 x 750 = 1500 KW Load on Unit at End of Step #1 = 750 H.P. = 750 x 0.746 = 560 KW. LQAD BLOCK #2 1350 H.P. Start KW = 1350 x 1.2 = 1620 KW Pull in KW = 350 x 2 = 2700 KW Load on Unit at Start of #2 = 1620 + 560 = 2180 KW Load on Unit at Pull In of #2 = 2700 + 560 = 3260 KW Load at End of Step #2 = 560 + 1350 x.746 = 1567 KW LOAD BLOCK #3 ----- 750 H.P. (Same as Step #1) Start KW = 900 KW Pull In KW = 1500 KW Load on Unit at Start of Step #3 = 1567 + 900 = 2467 KW Load on Unit at Pull In of Step #3 = 1567 + 1500 = 3067 KW Load at End of Step #3 = 1567 + 75 x.746 = 2127 KW i LOAD BLOCK #4 --------------- 450 H.P. Start KW = 450 x 1.2 = 540 KW 4 Pull in KW = 450 x 2 = 900 KW i Load on Unit at Start of Step #4 = 2127 + 540 = 2567 KW i Load on Unit at " Pull In" of Step #4 = 2127 + 900 = 3027 KW Load on Unit at End of Step #4 = 2127 + 450 x.746 = 2463 KW 9 l
E4-FC-90-o&z % ) .A W f. M -!Q E I 3 3
- _. e
- 1
- . a$a un,.
MM .l e v w n dui 4 4 .. t - A 9 J'; r: !I a p,;, ri ils i t i !! r O M
- l' I ld 3 3 d'"II 3
- 8(+
q{. l, (i ii l '4 t r I: j 'i l ! llh'j!,, ~ t
- !l l
o 2. t- / H j.
- d...... ;Ai-U' 3 4
j u, I I Ir Q l 4 '. i e i I1 1 It !!l t' t-tt 8 l i i 11 1: 11 ll l /l h ")3 .c '.!j .')
- {
7 q 9- ---g s, i li l a I C' h 1 ' i i Il II ,ii 4 l l' .l e ti n i .!j _I.} 1 I' ~l 1. I i I l J..
- Jl p_
g i I L' .a L-i e t i I I ........i... i s-- s. i 3 l n i n...a x !! r; lg if 8 .n le n n 3 3' ja a. ,a i! j i'! ii ,i m 4 ..l 's 1 i .u a .............7 i I III '\\ K 1l l "! g8 .N ' t; t! t i ! i.a !!! !! 'l .i f' h' 'N b' l !k IIA 6 - t-~ ! Vi nq i N [lI H ~I \\ :H \\ "-l .'li ll l! ti i ll; f.]1, c u r 'o (1 1, { " y! l. H i.., 1 i i ai ilt !! li -'a= i-t u E T Tl
- l
? p('W ]um ~ I 3 + t I l ~ Ifb :N 1;c \\ 9 l
- 1-l
) Il n 9 !: s j l g
- i.
T j l' l' t l' I IEN.! ? ,o,.n,u., s. .i .. t e ~
- 5III lllo a 4
8 I i 2 -.a I !!!.: j i ^ ,i i i i r s ~ \\ ~ + ~ .a
-e-en-Fc-90-ocz,2&/3 dir 6;.?o -// a e 4 s e e i e l. e i - r i I I e t i e i e e p, j i ^ I I f I ! ' i f a 4 i i 6 e t s 1 i en O Q 11 8 8'un e I f l , a y 6 .h F t 3 N I At ) ( g g 'f ' V i i r 4 t 6 0 I I i l I t i i I e f ! I e 3 e t i e e i i g e i i e , i i i
- O i
i 3 i, i I i g, e A g , i ,, w F e J i.. j r g, i t t i r * ' t
- 2 i
3 i g i . i -%2 rdtV J 4rr 7. 2A-4 _ SEQUENCE OF LOADING - ONE DIESEL STARTING Assumptions for making Load Model Calculations are the same -as in the previous case. LOAD BLOCK #1 480 H.P. Start KW = 480 x 1.2 = 576 KW Pull in KW = 480 x 2 = 960 KW I l Load on Unit at Start of Step #1 = 576 KW Load on Unit at Pull in of Step #1 i 960 KW Load on Unit at End of Step #1 = 480 x.746 = 358 KW 4 LOAD BLOCK #2 .1225 H.P. 4 i Start KW = 1225 x 1.2 = 1470 KW Pull in KW = 1225 x 2 = 2450 KW Load on Unit at Start of ' Step #2 = 358 + 1470 = 1828 KW Load on Unit at Pull in of Step #2 = 358 + 2450 = 2808 KW Load on Unit at End of Step #2 = 350 + 1225 x 0.746 = 1264 KW LOAD BLOCK #3 --------------- 1050 H.P. Start KW = 1050 x 1.2 = 1260 kW I Pull in KW = 1050 x 2 = 2100 KW Load on Unit at Start of Step #3 = 1264 + 1260 = 2524 KW Load on Unit at Pull In of Step #3 = 1264 +2100 = 3364 KW Load on Unit at End of Step #3 = 1264 + 1050 x.746 = 2047 KW l LOAD BLOCK #4 -------------- 47.5 H.P. Start KW = 475 x 1.2 = 570 KW Pull in KW = 475 x 2 = 950 kW ) Load on Unit at Start of Step #4 = 2047 + 570 = 2617 KW Load on Unit at Pull in of Step #4 = 2047 + 950 = 2997 KW Load on Unit at End of Step #4 = 2047 x.746 = 2401 LOAOING
SUMMARY
(ONE OIESEL ONLY START) iTEP TIME SEC H.P. START PULL IN PRIOR LOA 0 TOTAL LOAD ON UNIT FI'NAL LOA 0 NO i KW KW ON UNIT KW START KW PULL IN KW ON UNIT KW i 1 10 a80-576 960 0 576 960 358 4 2 13 1225 1470 2450 358 1828 2808 1264 4 3 18 1050 1260 2100 1264 2524 3364 2047 4 30 475 570 950 2047 2617 2997 2401
E A -9 0-062 nr f4-. 9 q, c T oime l' REV.31 [h$js 82.3-r s 4 Diesel Generator Nameplate Data 1 l l. i I i l i I t l I' i 1 } l e 9 _,,._,,.,,m..------ ~* ~ ~ * ' ' * ' * ' " " ' ' ' ' ~
Q 9 0- 062 EA-FC-90-062 ATTACHMENT 8.3-1 @ REV.3 DIESEL GENERATOR NAMEPLATE DATA p"' ' g (DataApplicableforBothGenerators) q-t9-96 Model Number............................................................A-20-C2 Serial Number....................................................... 70-C1-1034 Continuous Ratino: Vo1ts................................................................ 2400/4160 Current (Amps)..........................................................782/452 KVA....................................................................... 3250 Frequency (Hz).............................................................. 60 Phase........................................................................ 3 Power Factor............................................................... 0.8 RPM........................................................................ 900 TemperatureRise(*C): Stator-Therm.............................................................. 85 Rotor-Res................................................................. 60 i KVA Peaking.....................................................3575, 2000Hr/Yr Temperature Rise Peaking ('C): Stator-Therm............................................................. 105 Rotor-Res................................................................. 70 Rotation..........................................................CCW 0 BRG END Insulation Class: Stator......................................................................H Rotor.......................................................................F Excitation Vo1ts........................................................... 144 j Excitation Amps..................................................:......... 100 i Phase Sequence........................................................... 1,3,2 NOTE: The above information was obtained from actual nameplate by RSK on July 2, 1990.
M4*" E A -9 0-062- . mm j_ gf, 3 EA-FC-90-062 Rev.E3
- .4 l
i ~ f 4 L i i 1 l EMD Specification Sheet Generator e J 4 i i 4 i 4 l ) a d i I i i 3 s .i - h i e i l i ) a a i
_ -. ~. t%tt 16412, to7 AK -Od ArrMHksor 1.5 Pt, la } GENERATING UNIT ' Section 2 (Ae/V- @# 06 ?-- (?SV'3 Arrw&c-r % +'-/ GENERATOR CHARACTERIhmCS 60 Cvcle' 50 Cvele TYPE OF SERVICE Peaking Base Lead Peaking Base Lead MODEL A 20 A 20 A 20 A 20 RATING - KW 2750 2560 2300 2100 KVA 3440 3125 2875 2625 P.F. 0.8 0.8 0.8 0.8 ARMATURE CURRENT-AMPERES Wye 477 434 399 365 Delta 826 751 691 632 Stator Temperature Rise 'C. 70.0 56.0 47.0 39.0 TERMINAL VOLTAGE Wye 4160 4160 4160 4160 Delta 2400 2400 2400 2400 SPEED RPM 900 900 750 750 REACTANCES - PER UNIT @ RATED KVA BASE Direct Axis Synchronous,Xe 1.76 1.60. 1.267 1.159 Quadrature Axis Synchronous Xe 1.06 0.963 0.760 0.695 Direct Axis Transient,Xa' O.462 0.420 0.277 0.253 Direct Axis Subtransient,Xo" 0.298 0.271 0.1775 0.1625 Negative Sequence,X2 0.2325 0.211 0.225 0.2055 Zero Sequence, X. 0.117 0.106 0.1077 0.0995 TIME CONSTANTS - SECONDS @ 75*C. Direct Axis Transient Open Citcuit,Teo' 4.340 4.340 4.340 4.340 Direct Axis Subtransient Short Circuit,To" 0.017 0.017 0.018 0.018 Direct Axis Transient Short Circuit, To' O.654 0.654 0.620 0.620 SHORT CIRCUlT RATIO 0.62 0.68 1.04 1.14 BALANCED T.I.F. 14 14 10 10 ~ REGULATION AT RATED LOAD - PER CENT 43.1 40.65 35.67 27.26 SYNCHRONIZING COEFFICIENT KW/ RADIAN Full toad 5870 5660 6240 5960 No Load 3250 3250 3780 3780 FIELD DATA Resistance at 75*C.(Ohms) 1.292 1.292 1.292 1.292 Excitation At No Load, Rated Voltage (Amps) 39.2 39.2 55.0 55.0 Excitation At Rated Load and Voltage (Amps) 105.1 97.6,7 130.22 120.79 Field Temperature Rise
- C.
60.0 50.0 91.0 80.0 EFFICIENCY RATED KVA AND P.F. 97.21 97.26 96.50 96.54 TOTAL WEIGHT - POUNDS 18,100 18,100 18,100 18,100 Stator 9,000-9,000 9,000 - 9,000 Rotor 8,100 8,100 8,100 8,100 End Housing and Bearing 1,000 1,000 1,000 1,000 WR2 Ib. ft.2 I2,830 12,830 12,830 12,830 TYPICAL CHARACTERISTIC CURVE,See Section 2 Page il Page 12 Page 13 Page 14 POWER UNIT CAPABILITY CURVE, See' Section 2 Page IS Page 15 Page 16 Page 16 9 v
. E A -9 0-062 .W Q-$' 9 EA-FC-90-062 Rev.d~b.5 4 Tables From the " Standard. Handbook for Electrical Engineers" i A i i i D 4 9 d a -~<r m
Charact:ri tics of Polyph'.,se InductlIn Motors 20-45 t The temperature rise for motors operating at any other ambient temperature To than 40*C shall not exceed the values, Q4C OL-( For items, a, b, e, f, i: Temperature rise = 0.9 (T. - T.) For items c d, g, h: Temperature rise = 0.965 (T3 - T.) UU where T., the hot-spot temperature is given by the following table: Items a All other' N Class andf items A Il5'C 105*C B 140*C 130*C F 165*C 155'C II 180*C Preferred values of ambient temperature above 40*C are 50 C,65'C,90 C,115 C. TABLE 20-7. Temperature Rise for Single-Phase and Polyphase induction Motors Class ofinsulation system A B F H Integral horsepower All motors with 1.15 service factor or higher 70*C 90*C ll5'C Totally-enclosed fan-cooled motors 60*C 80*C 105'C 125'C Totally-enclosed non-ventilated motors 65'C 85'C 110*C 135*C Motors with encapstdated windings,1.0 service factor 65*C 85*C 110*C > All other motors 60*C 80*C 105*C 125*C Fractional horsepower 8 Open motors with 1.15 service factor or higher 70*C 90*C ll5*C Totally-enclosed non-ventilated and fan-cooled 65'C 85'C 110*C 135*C 3 Any motor in frame smaller than 42 frame 65*C 85*C 110*C 135'C All other open motors 60*C 80*C 105'C 125'C NOTE: Based on ambient temperature of 40*C,3300-ft altitude. Temperature determined by the resistance method. The time ratings for single-phase and polyphase induction motors shall be 5,15,30,60 - 6 min,.and continuous. All short-time ratings are based upon a load test which shall commence when the windings and parts of the motor are within 5'C of the ambient temperature. l
- 80. Service Factor. General-purpose fractional and integral-horsepower motors are given a " service factor," which allows the motor to deliver greater than rated horsepower, l
without damaging its insulation system. The motor is operated at rated voltage and frequency. The standard service factors are 1.4 for motors rated %o to % hp; 1.35 for % to % i 92 l j 1800 rprn ffj-84 ./ 72 V 0 76 514 72 V ' i 68 1 5 10 50 10 0 500 Horsepower rating Fig. 20-41. Typical full 'oad efliciencies of Design B squirrel-cage motors.
c A -9 0-062 a%2ri-90062 REV. 5 1 .= Rev. 6 '.6 .n G. E. Letter, Dated 7/20/90 I i 0, i i i i- ? I l l 0 ~ l . ~.
EA-FC-90-062 E A -9 0-062 aev.23 gCOPl -( a, aq.6-1 -s - REV. 3,.: . m i.. : ;; :.. ,. : :,. i - - .1:
- i s'::::1 July 20. 1990 i
RDR e98/28 i Mr. G. P. Schwartz Acting Manager - Electrical /IEC Engineering omaha Public Power District 444 South 16th Street Hall i j Omaha, Nebraska 68182-2247 l I
SUBJECT:
GE Static Exciter 3S793eSA212A11
REFERENCE:
G.P. Schwartz Letter PED-FC-90-2415 to R.D. Royal Dated July 16. 1990 i
Dear Mr. Schwartz:
1 GE Nuclear Energy has forwarded Omaha Public Power District's (OPPD) request per the referenced letter to the appropriate GE Business Operation. GE Drive System, Sales, Virginia, technically responsible for the subject static exciter. following: GE Drive System after review of OPPD's request offers the The subject Exciter System was originally manufactured and o shipped by the Wayneboro. Virginia Plant 20 years aoo. This business moved to Sales, Virginia le years ago. No technical data folder is available for this exciter in the o files. It is most likely the esciter was a special application for this o diesel generator vendor, i The excitar panel supplied by GE was placed in an enclosure along o with other support equipment to comprise the Emergency Diesel Generator (EDG) vendor's total systas. Because of the aforementioned. GE cannot provide OPPD with a cost quotation as requested irr the referenced letter, since we have no technical data upon which to base an investigation. However, it is our opinion the open a 50 degrees C ambient temperature.emetter panel as originally supplie GE recommands OPPD contet the EDG vendor and obtain heat 'run total system to get tr.e appropriate answers they seek.
8estcow E A -9 0-062 jg;f;L3.32 EA-FC-90-062 49' REV.3 1 2-i { If you 1. ave additional questions or comments, please advise. l Sincerely, f \\ . VI \\ i \\ R. D. Roya1 l Hanager Electrical /Isrc Services Nuclear Services Department Central Territory RDR/ MAS ec P. Vovk - OPPD D. Brager - GE J l
1 l E A -9 0-0 62 ) A F "k'I g Rev. e EA-FC-90-062 -.7 REVr 3 s.. 1 i l I l Letter From GM-EMD and R. F. Mehaffey, Dated 8/16/90 j l l i l 1 l l l i 1 i i
EA-FC-90 062 E A,,o n.,n g '9 7U V V, Rev. E-73.7-1 r, E [l, y RECORD OF TELEPHONE COMMUNICA1 EA-FC-90-062 and M.R. No.: CID 900617/01 File No.: PED-FC-90-2481 Date: 8/16/90 Time: 3:00 o.m. Telephone No.: (708) 387-5818 Party Calling: M. J. Fleckenstein EMD (Company Name) Party Answering: R. F. Mehaffev OPPD (Company Name)
Subject:
F reency Diesel C;;;rators at FCS Telecen Summary: (IncludingDecisionsandCommitments) I called Marty to discuss in more detail why EMD judged that operation of OPPD's Emergency Diesel Generators above the 2000 hr. KW output rating was acceptable. Marty stated that these ratings were developed in and came into effect in 1966 in response to requests for information about the output capabilities of these engines in emergency applications. The ratings were based on a knowledge and i review of temperature within the engine and at the cylinder head. This is j supported by experience with the engine. i 2 l l Action Reouired: i None 1 Distribution: e J l i e 1 c,_
E A -9 0-062 7 R&# 3 JI EA-FC-90-062 Rev. t 3 ,.8 A. Data Sheets, Projected Performance and Deratings at 110'F Ambient, DG-1 and DG-2 B. Revised Diesel Generator Available KW/ Required KW vs. Time Plots Utilizing Calc. FC03382, Rev. 3, DG-1 and DG-2 t o 0 4
E A -9 0-062-REV. 31 i EA-FC-90-062 i 9 18 Atta ment 8.8a 4.. i 1 Data Sheets, Projected Performance and Deratings at 110'F Ambient, DG-1 and.DG-2 c i 1 i i i o e J J f
DG-1 DERATING AT 110 F AMBIENT Time Outdoor Turbo AT AS5umed Predicted Derate Derate Reg'd Start Ambient Inlet Turbo JW at 110*F Turbo at 110*F Power (KW) Load (KW) (1) (2) (3) (4) (5) (6) (7) (8) 0.0 86 91 8 125 118 100 2784 2551 10 88 93 8 174 118 99 2756 2531 20 87 94 10 208 120 92.2 2567 2512 30 88 97 12 208 122 91.2 2539 2492 40 88 98 13 208 123 91 2533 2492 g h-50 89 98 12 208 122 91.2 2539 2492 A 2:., 60 89 99 13 208 (9) 123 91 2533 2237 y l 4 70 89 100 14 208 124 90.5 2520 2237 o 9 l 90 89 100 14 208 124 90.3 2514 2237 ,j o 120 89 101 15 208 125 90.2 2511 2237 Q N \\ ,5 1. Measured outdoor ambient temperature obtained during diesel test run (6-25-90). h 2. Measured turbocharger air inlet temperature etstained dirring diesel test run (6-25-90) fan unit VA-52A in *0ff" position. Q 3. si Turbo - (Turino inlet air temp + 1.32*F) - (Measured outdoor audilent - 1.624) See Sections 6.7.1 and 6.7.2 fcr explanation. 4. Illstorical heet - up rate with MET walves fully open approximately 15 ninetes into diesel run. Att. 8.9. (Itadiator vender anticipateal heat removal > m rei capabilities of unit) luplies that Jif temperatures should be lower than this at 110*F ambient. Jif outlet gauge for DG-1 has a 2*F uncertainty r+ ro > (lleference 4.8) that was not applied to this value for this reason. 5. Predicted turbo inlet temperatures at 110*F = 110T + af turbo (3). This includes uncertainties as defined in (3) abore. g (< ' n n 6. Deration. chart. Attaciment 8.2 determined these values. {F& 7. Deration percent applied to gross available KW of 2784 KIf (2654 Inf + 130 Inf (see Section 6.9.2). to Q o 8. LOCA load profile based on calculation FC03382 Rev. 3. ._3 6 9. At 3740 seconds into a LOCA event, load on the diesel generator dreps signifIcantly. As less heat is generated by the engine, Jif tesuperatures allt m decline preportionately, but are shoun constant in this example.
s W /W DG-2 DERATING AT 110*F AMBIENT bf/-95 Outdoor Turbo AT Assumed Predicted Derate Derate Req'd Time Ambient Inlet Turbo JW at 110 Turbo at 110*F
- s Power (KW) 1.oad (KW)
(1) (2) (3) .(4) (5) (6) (7) (8) 0.0 89 97 11 128 121 98.5 2742 2421 10 89 100 14 164 124 97.2 2706 2410 20 89 103 17 208 127 90 2506 2399 30 89 105 19 208 129 89.2 2483 2388 40 90 106 19 208 129 89.2 2483 2388 50 90 109 22 208 132 88.5 2464 2388 m N 60 90 110 23 208(9) 133 88.2 2455 2131 1 70 90 109 22 208 132 88.5 2464 2131 4 N O -k* 90 90 110 23 208 133 88.2 2455 2131 1 O 120 90 113 26 208 136 87.5 2436 2131 y N l a 1. Measured outdaar ambient tagerature obtained daring diesel test run (7-17-90). 2. Measured turtocharger air inlet temperature obtained during diesel test run (7-17-90) fan unit VA-525 in *0ff* position. 3. ai Turbo - (Turbo inlet air tg + 1.32*F) - (Heesured outdoor ambient - 1.62*F) See Sections 6.7.1 and 6.7.2 for explanation. 4. Olistorical heat - up rate alth ANDT valves fully open appromhmately 15 minutes into diesel run. Att. 8.9. (Radiator Vendor anticipated heat removal > m rn capabilities of unit) luplies that Jif temperature should be louer than this at 110*F ambient. JIf outlet gauge for DG-2 has a 1*F uncertainty c' Q > (Ileference 4.8) that was not applied to this value for this reason. o,. n 5. Predicted turbo inlet temperatures at Il0*F - 110*F + ai tutto (3). This includes uncertainties as defined in (3) above. nLn 6. Deration chart. Attaciument 8.2. determined these valves.
- ITE, 7.
Deration percent applied to gross available KW of 2784 KW (2654 KW + 130 KV (see Section 6.9.2). Q j) 8. LOCA load proflie based on calculation FC03382 Rev. 3. r c3 9. At 3740 seconds into a LOCA event, load on the diesel generator drops significantly. As less heat is generated by the engine Jif temperatures util decline preportionately. but are shoun constant in this example. m 7 N
W@ 7-/f E A -9 0-062 R&,. 3 ! EA-FC-90-062 i Rev. F3 i.8b s Revised Diesel Generator Available KW/ Required KW vs. Time Plots Utilizing Calc. No. FC03382, Rev. 3, DG-1 and DG-2 l \\ e 4 4 4 e b O -~
- S' va i E A -9 0-062 Rev..F3
-.8b ;*' 9-If' %-) \\ oAD PRvFtLE REV. 3 D6-i ^* w 2 -*- DG-1 Lo t D. ?- a9@ vs Ti AE M.'ut/ r:n '+,0 _n._ y Moe I f I. d(e O C u 4% o ^ x J5W O d400 l 'b k J e J300 j t 4 i I atoo i 4 boeo ) . T..$ g 0 8 Fu c,artG \\
BESTCOPY E A -9 0-062 Rev..e'3 . Attachment 8.8b-2 o .pg_g LOAp PI2oP'LE Ts-v $(, 1 AVAlLA6uE. -I)64ATEC 4 REV.31 >w w 2. u,a naa.aso vs A " TIM C A*>o D. 'n AMV"'d' HaoNM \\ g aso.: i i \\ \\ .5bo ; \\x _N l NA -W.' pene 3 J3oo sono I 4 to o 9006 h 1 ggc 130 'O 70 -3 0 0 f~(CtURG 2
E A -9 0-062 3 r'in
- REV.3 EA-rC-90-o62 Rev. M
..9 A. Young Radiator Company Radiator Performance Analysis B.. Telecon Between M-K Power Systems and D. G. Borcyk, Dated 4/19/91 C. Calculated Heat Inputs to Engine Coolant D. Delivered Air vs. Required Air Analysis e b
i l E A -9 0-0 6 2 q-l9-95 ~ EA-FC-90-062 Rev. M i REV.3.9a 1; i J i ii 1 i 1 Young Radiator Company Radiator Performance Analysis ') i 4 'i f l i 4 - l w 4. p 5 r a 4 I ~ i t I k J u r~ -w
kev.,. 3 M"' i con gCl-Y '.9a-L - - - < ~l 2 25 Four Mlle Aosd, Radne. WienummwS340*L , 4 Teleptiofte' 414 639-1010 e Easyunkt6:rf:53537 u TWX' 910 271-2397
- Telese26:4435 - ~
~ E A -9 0-062 R EV.T ' ***' =... mm ~ ~- FACSIMILE TRANSMISSION c.c. TRANSMIT TO: FAX NO. D.
- S3b " MM t
NAME DM BoKC4K TITLE ' ~" COMPANY CMAHA PoMu s. P6wsR CITY a m A M A' STATE N~ Z[ I - " x x ;p. i NUMBER OF PAGES BEING TRANSMnTED, INCLUDING THIS COVER .am 4- .s .r. s+1. ano
- .n ;to, 9 7 a 5 L/
.......g % g - i 2., R, w CDtot AM*i)....F-L.tM.i._TC Vt f' *.LkJ. ;...N.O.T. -Qs20.0..G P/6.) E. W. -. t:~.. - 1 l At TI.TuPE.,*..~.l.d 0... 7. h ~_...... NAP '.2WG DG0G77/2.wa.m.i ~ t. .....Si+PM704.Ef]C1bi Ag?EA ' /A.[..{: wah. ..s_......... ......as??n+nr25.,_ mpst~. o .. Y' - H A.T. E AL.~.. ..S.ps. .s w n w. vs w ...._C. paw.s w.,ep nrcarme.e.: MT% i .... I AlR..] H. 5 c.g.
- 14. sW i k E_UEk.-... M A = M w...
' '~'.e n g' ~ .1.o 3..'.... 4, 4. -5.7.. '. -., 9......_. 7. 2.7...
- 1. r.2........ '..
... I o 8
- 8 I, o.91.
A3......... *TJ.I..... ;.._ . I3.o.._.2 '.i.l 3 ' 86,.3.% *.4.. 6..'..., _. '...R.Z i '......... ' J. A.. f._... '. f t.. [..... b ---,._-l.l. h .h. h 2.. lee M.. w ,. -. h....h......... '~w i s ._12 3 ' ... i 1, W. m.'..6f.n 9 %.... I, F....'. d M l I i i. 9 j .s >.........(. .w .: r. g*.I .... ~ ~ - 8 t 7 y. ....__.7..4, 7.. i i
- c. P a
._..._..a...... _.4.. j w ........ J... ! ....e.... .o.... .......s_...... ..r_. - ~ a.,. 4 s i ......u. W .. i. a... p.........._.... 4 .c V I
- *.14 a a,,
aw l. ly I . v. . z.... .......a.
- t. p.i:' p'. m
\\.......... -.. ...........)..-.. .. +. 3 '.4 i TRANSMISSION FROM: . -rcc i ' P. TOM IILL TITLE NAME
- 55,~.'.QW h RACiNE. W1 OtExinGron.TN D CENTERVILLE. IA 414 639 1013 901-968 3617 515 456-8634 DATE~ M. iib.I TIME 2
yw / w. FORM NO. 3613 REV. 6/89 W esise is, st u % 'l
E A -9 0-062 Mq 95 i EA-FC-90-062 REV. 3 i Rn. 2 ..9a-2 i ~ Young's Model Parameters Achievable for FC Units Parameters Airflow (SCFM) 93,000 101,774 DG-1 101-531 DG-2 See Table III and.9d Coolant Flow (gpm) Water 1,100 1096 minimum observed Heat Rejection (BTU / min) 120,970 123,536 DG-1 See Attachment 8.9c 118,780 DG-2 See Attachment 8.9c Coolant Temp to 208 208 acceptable for emergencies Radiator ('F) Air Temp to 115'F 110*F maximum Radiator (*F) The higher achievable air flow will result in lower DG water jacket outlet temperatures. The lower ambient air temperature to the radiator (110*F) will also result in lower DG water jacket outlet temperatures. The lower DG water jacket outlet temperature would be offset slightly by the 2.1% increased heat rejection of DG-1. Therefore it can be concluded from the Young Radiator analysis model and actual test parameters that 208'F DG water jacket temperature can be achieved with 110'F ambient outside air temperature. J l i 4 e
I -E A -9 0-0 62. ' W $93 R&'. 3 EA-FC-90-062 Rev. 2 3.9b Telecon Between M-K Power Systems and D. G. Borcyk, Dated 4/19/91 i I 3 4 l ) i l i I l l 4 J 1
_ _ ~ _ _ _ d i EA-FC-90-062 E A -9 0-09 g;cQn,3,,,.1 @l(h ] - R.5 4 i REV.3 RECORD OF TELEPHONE COP 910NICATION i M.R. NO. 91-004 FILE NO. PED-FC-91-1808 1 DATE: 4/19/91 TIME: 1400 TELEPHONE NO. (919) 977-2720 j PARTY CALLING: Dan Borevk' OPPD (NAME) (COMPANY) PARTY ANSWERING: Weslev Batchelor MK Power Systems (NAME) (COMPANY) j
SUBJECT:
Diesel Generator Heat Re.iection Rate j l TELECON
SUMMARY
(Including Decisions & Consnents) Dan called Wes Batchelor to pursue Rich Ronning's concern of whether or not the 33 Btu / MIN./ BHP heat rate used in the Young Radiator heat transfer analysis included heat input from the lube oil cooler. Wes confirmed that this number includes all engine related heat loads (including l L. O. Cooler) and is the number used for sizing radiators. ACTION REOUIRED: None i 4 DISTRIBUTION: ~ c: R. R. Ronning ] PED Library 4
E A -9 0-062 i EA-FC-90-062 REY. 3 10;cifnt 8.9c 4 4 1 Calculated Heat Inputs to Engine Coolant J W 1 h k i f i I 3 i 1 i 1 i i i d i
t s-n. -:,v - v o c BEST COPY Rev. E 7) E A -9 0-af, ytecnment 8.9c-1 i e q.,q.qS rE PAGE N0. CALCULATION PREPARATION, REVIEW AND APPROVAL CALCULADON NO. FORM PED-QP-3.4 Form Page No.1 of1 i FC PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No. REF; NO' 4 .ZY.7- / d4LdulA75p #f47' /^/PL/7' A/70 9/&/NE Qt?L.4W7 /^/ 7?ti' EVE ^/f V A 2%,4 OfWC33rd7" A)/TN A- /O(d cf tV906/TE',4WJOt, h6-/ /.5 A 04Ch?7) 7~O' f.SS/ NW. s4MACW/M47E2 Y 2000 $dt;;04DS (33MNu773) N70 7?M' Er'EN7"', 7? & 4 0 A;O / S sfEOUCff) 7"b 24 9/, 8 kW. l A.%t/MiM6 A Col.D STARG AWO //f/4'd.D F7A" 7X575 f40d 7-/4-90
- 7-/7-70)
OBTAiWED F/2cM D/EdEl l ~/7t'E' &/'6sA/E /.S 3774.L. p.hMs' +1sy'6 gj,o FL*f/def PW/S dWn#C M/OP, kF7Et /J H/C/f, A "J759DY-37n~ 77 i d b M D / 7's 0 4 RA sl+CdEr N#7'59C QJ74 E7"' 7E*/H/T/Cf!7/ME /S A 77k/^/fD. 47~~ /C4S, 5?90 S&".?OdLtS /W7D 7PC E' YEA /7'
- fMC
/ 0A:P /5 Fu^t'rNGC iTD;L'/ cap 7D j s i 2232 3 KH. ) 7'D 4WALYi[ 7X 4cWG - 75tPM HCM' KGHoV47 04&htf/L - /77CC W 7h%" P/ESEL GEN'E%'A129/L siAD/A'IM 0704.M//1 $YS*1"Ef1,, h/H)LE $ 774 L. /*t41sv 7 A' s q / M 6 l CCM SE/Eyk1~7.5i+1, 7?YC ZA 9/. 8 Kn/ LCAP A//t L. dE" usco sv rx
- fotenac, esi.cutx77av.
l l }/6"M /A/A/7 4 a } E49). 6 Ku) dEMEsTATOW d.G+D 4 0. 9 ") CatWEA41M EFF/CAEWY 1 2.5 4 8. 9 k'u) i 4 0.74& KN 76 B M P
- Ccw yses/ w i
JMS.5 BNP t 80 7/F FW RAD /47DT E4W PRIVE W i 35'z 3.S AWP
- 6. Z.
+ Po HP R3< GEMer#7M COOud FM SS45.3 BNP s
EA-FC-90-062 h -g.q5R&*,$h t 8.9c-2 E A -9 0-062 CALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. i FORM PEIM2P-3.4 Form Page No.1 of1 I FC i PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No. il 1 REF. 3S43. S ,8HP NO* t zoo MP M84nay' AssociMec asrs owic+noa S 3743.S BMP fvM GM-EMP 20-645'E+ UN /75, Ed6x/C 4477N6 i G //o *f Fat 2000 HK/yA' META TION /S g$, Z l J9so BNP > '3743. S /SMP, 04,. NS#r ctwrcsurtp 70 cocuwr af Eggidt jzq[p, l /S 33 672//Mut sBHP i 3'?43.S NP Brzi/mus-tw ,e v /2 3. S3 l.- arz//miJ =- f$flW$1 hhl'h7D$ DWhf SW hY bYk$ Pblb i ~70 M Epici~ f.APECr62> /MY MEMOVAL CA44/5/U YI65 LV 004 KAP / mot. 77W,4M42y.WS jd7 ERMINED /TE' OP/AO A7A F M
- 7~
nfM/Ck' 3 /A/4E7~ hk / 7"EM/*fnat72/AE5 70 pt4/a raid t/,46KE7' AM'7E7E 1E~A//*f,E4 fume 5 Af* cve NL CMJ 206 *F /%t EM6NC i - W M4YVFAl'12/RERJ #fcoMi*tEsVDM7 OMS.
- 8. 2 l
/MPti15 7o" 7NC AN4t.yS/$ 4verf 4S MLot U
- i DVceidG Cbo&r -
//, 0 i a;ccMr f&OJ AMY - /A90 GfM 80~' AMX CootAHf 7EMP' - 206 *f ('J2o.,r W Ed6sv'd) ./20,9?O B72//ntid A /WAf / M P a r f.'4 7 E s Y N01E
- TH/3 htFA7' Nfur RAff M43 P&9'/VCP FAVM A /it[V/ous GEdDt4' 7OT La1D. /WC/frasep
<:'OAP/qc oy' ' Pth-/ N1s CAf/JEP ry/S l A/uM6EK 7D 60 tf Af' l'. / 7 e
EA-FC-90-062 Re v.e-2-3 gg,, 31 E a -9 - @2<. 3 Attachmer}t 8.9c-3 Nq-gq-q $ 04C,PAE N0. i CALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED-4P-3.4 Form Page No.1 of1 FC PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No. I REF. Xy-Z 61LCJJLATED //6+r/dPt/r /670 61/GHE C00LAWr N0. ~ 4rr. ~PG - 2 ////Y/att. (PE4K) LDAD /4 TP'r EVGA/r of O' ' /1 LOCA Co/dC/PGy'r wYH 4 /_ o s s o f Offs /ff ' \\ /bdCAL /5 242.0. 6' Ka). Mr zooo Sfcoups, 77k-f 0,4p /3 REpucfD 70 2367. S Ma). Mr i%96, b 3740 SEcoqD$ /4To rNE EYew i~, La4-D M VPs i 75 2/3). 4 MW. i l As .airN 4;% - /, TNr tos:p er zoco sEcc4Ar i (Z387. $**fu) JJxt-BC 4/ SED /v' 77M- ~~ /~ cicoin'6 o C4t c ut.,+76/. ~~ //rsr ix/Pij7" ' _T._ 1 238 ? S .6) G6v'6?iWTOR 40+D ... :- - N ~ 8%
- - e. 9 9
&ewcMA' rote EfficJcdcy
- ~T 244/. 3 MO
. o. 744 K2 ro 8//F acwycgwa - - - ~ ' 1 3t99.+- pHP t 80 H7 F04 ffk p/A 70ff H+J R T/ M ' ~ ~~ 337'7.4-BH7 ~~ ~ ~ t 20 HP %c GrdExkrott acoui/S fad ~ ~ ' i 3591.4 BMP . _. ~ Y 20 0 //P DB47?oy' Assoc /k' REP M/rN ce764riod 3694.4 BMP 0 //O
- f
~~ ' ' ~ ~ ' ~ ~ ~ ' " ~ ~ ~ ~ ~ ~ ~ i .sgsro see > ssg,. +,. : on NfM' cow 7*7!Su7Ep 70 Cec &Awr 3y Ove.v'C ~~' /S 33 372//mn.! - 3//P ~~ ~ ~ ~ ~ 359?. 4 9 Nort: 1His Mustsen /S /. 6% X 3 Lcss 199,j 7Nc Mfluf //8, 280 B12/,//nid S4WL/ED ro youdd fCK- .,,3,3, nal J
E A -9 0-0,2. 7, g', g a 1 RE/ 3 EA-FC-90-062 i Rev.J $
- .9d i
s $ e 4 i 4 i i 1 i <I. 1 i ,1 Delivered Air vs. Required Air Analysis
- i. -
3-j 1 I i i-I i 4 i if. l I i ? f s I i I 4 i 2 !I-i f e-f
E A -9 0-0 62 3 EA-FC-90-062 .S Rev. M RW.3J Attachmqnt 8.9d-1 ATTACHMENT 8.9 A comparison of before and after cleaning air flows, adjusted to a standard. i temperature of 70'F showed a marked improvement for DG-2 and a lesser improvement 1 for DG-1. See Table 1 below for comparison. Table 1 AIR FLOW COMPARISON BEFORE AND AFTER CLEANING RADIATORS o FORT CALHOUN STATION EMERGENCY DIESEL GENERATORS Outdoor Ambient Measured Corrected Diesel Status Temo CFM Air Flow, SCFM at 70*F DG-1 Dirty 59 101,356 99,271 DG-1 Clean 33 109,448 101,774* DG-1
- Clean, 58 - 70 104,852 103,711 Temporary Air Deflector in i
Stack DG-2 Dirty 36 100,799 94,310 DG-2 2nd Cleaning 73 100,972 101,531*
- This comparison also reveals that both units are essentially performing the same, i.e., measured flows are nearly equal.
Radiator fan' output at test conditions was adjusted to a standard condition of 70*F to determine base SCFM delivered by the unit. Temperature correction factors were then applied to account for decreased air density at elevated temperature and compared to required flows to maintain jacket water temperatures at or below 208'F. As can be seen from Attachment 8.9d-2 and 8.9d-3, the radiator vendor predicts that the FCS diesel generator radiator configuration is adequate for operation at up to 114*F ambient temperature for DG-1 and 117'F for DG-2.
BEST COPY "*" ~~ "
- a E'! 3T' Attachment 8.N2 J
E A -9 0-062 emo. CALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. FORM PED-QP-3.4 Form Page No.1 of1 FC PRODUCTION ENGINEERING DMS10N CALCULATION SHEET Rev.No. 1 REF. FbM JitS-/ JJ/r// A/R FL.oi<> S OBTAidCD AreR NO. 199D/47b9 CLEAMING ('3 - /4 - 1/ }, Ftoul AD JL/Z 72.L ~ 7D S 7A* s /D4f@ 7EMFTRA M/fE '?O ' f /0/, 774 SCnY). = + 4+ Ki $rme 80NI #N '0(D OCFM NCQ '# 1 /06 . 9.56 9S, ZG0 64, /oI /07 . 935-95,/S9 6 S, cda /Of 933 94, 955 $G,0 7 l /09 . 932 94,8 53 ! *7,"/? 5 //O 930 94,6S0 66,297 /// . 9Z8 94,44(, f 9, 4GL- //: 927 94,344 90,S/9 //3 .92 5 94, /4 / 9/, 63'l
- // 9
. 924 94,039 92,S?G //S 9z2 93, 836 94,/&c //b 12 0 93,43t %, 44 i? Y Ftosa Coggcc1CD FOK TEM /4ff41uRC 4 %- f2.0NS A/ 7?//S Col.uMM AYPRC.SEN7" YAid6 RAD /Ani' 00MPAd y '.s CAtct/L M E P JtEO'O Ftcm iW~ rakt0 /-* 7En1PEC417/t?ES s NCATASED Ey Z.l % (su W f%i-tm.sMsocw) sep coem erep,rac /wv' e evs nca. ml
o^ R&,. 3 ne-FC-90-062 EA
- v. 2;3 a e...9g3 Calf.PE NO.
CALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO. I FORM PED-QP-3.4 Form Page No.1 of 1 FC PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No. REF! FCM P6 -2.'., A)/m Artt flow 6874/JED kF7ER NQl RAPvA 70< CEAA//46 (3-zS-11),FLotJ A PJu57ED 7~0 S 7A" MPAMD 77MPE/fA ru/if CF ?O' f * /0/, S8/ SCfrH ~1'~,e C,, SCFnt lh IVGWED
- SCf*M /i'EO 'D' m
/06 . ?36 9S'08c? 80, 874 /07 .93b"' 94,9?8 bl 9Zlo i /06 . 933 94, 7?T 82 *774 / /09 . 9% 94,4 73 63 044-i //0 . 93 0 94,470 84i 11f /// .926 94,'247 O & 902 //E .427 94, /t.& 87,o63 //3 . 9E C 95, 1&2 80,./Z2- //4 .iH 93, 8 & l 89,333 //s .9tz 93, &>SS 90iSS9-i //s .920 9.5, 4 s 5 1/, 790 l // 7 .9/9 93,SS3 42,18T t/s .31 7 75,/7 o 74, z.0 5 n h ow cox'/Ecr@ fot 7EinP67 r'uer st floh)$ N 77//S COL UMA/ }1fPierSENT' youd6 sq-iptA T'OR C&nPAsy^fi CALC ul A Ti"P C60'D i'20as AT yngt005 /^267 7FA'EMA7uiPt:., DECRfASED gy ,/, 6 7 (SEE #.0M fox LgPL4v'dM/ ) /Wo Coppi:TED fcn /007 ' ca :/.4nosi, i
l l E A -9 0-062. N. !^;' cit *2.10 Obolst 1 i i i 1 e l Letter From R. L. Phelps to R. L. Jaworski and T. L. Patterson, Dated 5/31/91 i ) I l 3 i 1 ]
EA-FC-90-062 E A -9 0-0 62 Re v.._v3 E i DATE: May 31, 1991 PED-FC-91-1877 FROM: R. L. Phelps TO: R. L. Jaworski T. L. Pattcrson 1
SUBJECT:
Fort Calhoun Station Emergency Diesel Generator Ambient Air Limits
REFERENCES:
1. Engineering Analysis FC-90-062 Rev. 1 " Diesel Generator Upper Temperature Operating Limits" i 2. Engineering Analysis FC-90-091 Rev. O " Improving the Performance of the Emergency Diesel Generator Jacket Water i Cooling System" The purpose of this memo is to provide high confidence level results of the changes made to the DG cooling systems to raise the ambient air temperature limit. The recent installations of local air conditioning units.on the exciter cabinets will allow operation of the exciter at 110'F ambient conditions. The ambient air temperature limitations on the engine, previously l established in EA-90-062 Rev. 1 (Ref. 1) are 103'F for DG-1 and 100'F for DG-2 to ensure that the 2000 hr. deration curve was not exceeded. The engine ambient air temperature limits are increased to 110*F based upon 4 reduction of mechanical load and improved heat transfer associated with changing coolant to treated water together with benefits achieved by cleaning I the radiators on both diesels. Specific details regarding the actions taken to increase the ambient air temperature limitation on DG-1 and DG-2 is provided in attachment "A" to this memorandum. I i Based on the information that DEN has obtained from MK Power Systems, Young i + Radiator, Station Engineering and Stone & Webster Engineering, DEN concludes, with a high degree of confidence, that the diesel generators will not be limited by jacket water or turbo charger temperatures at ambient temperatures 4 below 110'F if treated water is used in the Jacket Water system. While this is a high confidence level conclusion, EA-90-062 Rev. 1 must be revised, reviewed and independently reviewed per the requirements of QP-5 " Engineering Analysis Preparation, Review, and Approval" to fully document this conclusion. Although an elevated ambient air condition test is not required due to the i documented test data recorded in EA-90-062 Rev. 1 and EA-90-091 Rev. O, it would lend further credibility to the engineering analysis and ensure that it withstood regulatory scrutiny. Warm weather testing is strongly recommended by DEN to validate the revision to EA-90-062 Rev. 1. Recommended maintenance and construction activities associated with the near and long term operation of the diesels are provided in Attachment "B". 4s-sto-
E A -9 0 _062 R;'c;Sg 62 g ij y Attachment,,8.10-2 cMPU REV.3 PED-FC-91-1877 Page 2 As previously committed in the DG Temperature Improvements Project, DEN Mechanical expects to formally complete the revision to EA-90-062 and publish it no later than June 15, 1991. In the interim, this memo is considered as support for establishment of diesel generator operability at or below 110'F, if. treated water is used in the Jacket Water system.- If ethylene gycol is used as a cooling medium, the ambient temperature limit will not increase above the previously established values of 100*F for DG-2 and 103*F for DG-1. '. j n J'-j.t R. L. Phelps Manager - Design Engineering Nuclear Production Engineering Division JLS/KAM/sf Attachments c: S. K. Gambhir J. W. Chase J. T. O'Connor T. G. Therkildsen D. R. Trausch D. K. Haas D. G. Borcyk D. G. Flegle R. R. Ronning PED Library \\ l
a-,us,s-u s+sh.1- = e EA-FC-90-062 E A -9 0-0 6 2 Rev._vs.10-3 m REV.3 ATTACHMENT "A" DETAILS OF ACTIONS TAKE BY DEN-MECHANICAL TO INCREASE DG-1 AND DG-2 AMBIENT AIR TEMPERATURE Effect of Coolant Chanae on Jacket Water Temperature EA-90-091 Rev. O concluded that there was no improvement',in lowering jacket a 4 water temperature by replacing 50/50 Glycol coolant medium with a treated water medium. OPPD DEN has since obtained Young Radiator data relating to performance of different coolants. The conclusion in EA-90-091 Rev. O is.in conflict with anticipated jacket water temperature performance normally 3 expected in this type of equipment. Young Radiator has performed calculations which indicate that the coolant temperature will be maintained at 208'F (using treated water as a coolant) with a design heat input of 120,970 BTV/ MIN, a j coolant flow of 1100 gpm, and with cooling air entering the radiator at 115'F at a flow rate of 104,852 CFM (93,000 scfm, standard conditions). Because 1 water has a higher specific heat (C ) (1.0 BTU /lb *F) than 50/50 Glycol (.85 BTU /lb'F)andalowerdensityand$iscositythanEthyleneGlycol,ahigher temperature limit of 115'F vs. (EA-90-091 Rev. 0) 100*F and 103'F should have been predicted due to improved heat transfer and reduced pumping requirements. l Test data collected in EA-90-062 Rev. I was reevaluated by DEN and it has been con.cluded that the test data collected during operating runs on DG-1 confirms i there is a substantial reduction in jacket water temperature when treated i water is utilized as a coolant medium. In reevaluation of the test data, data points collected during the first 30 minutes of a diesel run were excluded to ensure that the diesel had reached a steady state condition. Table 1 summarizes the reevaluation of this test data. i Table ! COMPARISON OF JACKET WATER TEMPERATURES TO AMBIENT AIR TEMPERATURES I DG-1 Test Ambient Jacket Water AT Jacket Water Coolant Coolant Egg Air Temo 'F Temo 'F to Ambient Air Flow Medium j 7/26/89 89 199 110 Not Avail Glycol 8/23/89 81 - 84 194 110 - 114 Not Avail Glycol 8/26/89 70 184 114 Not Avail Glycol 6/25/90 89 188 98 1150 Water These tests were conducted at identical diesel generator power levels under i elevated ambient ~ air temperature conditions. It is apparent in the first three tests that the data is repeatable for AT in the Glycol coolant contiguration and that a substantial improvement should have been noted in lowering jacket water temperature when water was utilized as a cooling medium, i i l
E A -9 0-062 0;"@ 62.10-4 g y-@ REV. 3, ATTACHMENT "A" (Continued) EA-90-062 Rev..I compares the results of diesel generator DG-2 tests performeo before and after coolant replacement. This data is summarized in Table II. Table 11 COMPARISON OF JACKET WATER TEMPERATURES TO AMBIENT AIR TEMPERATURES DG-2 Test. Ambient Jacket Water AT Jacket Water Coolant Coolant pitg Air Temo *F Temo *F to Ambient Air Flow Medium 7/16/90 87 192 105 1096 Glycol 7/17/90 89.5 194 105 975 Water 9/6/90 89 195 106 Water During testing of DG-2 on July 17, 1990, the coolant flow fluctuated repeatedly and was considerably below its expected value of >1100 gpm. DEN suspects that the coolant system may not have been adequately vented following the coolant change, an AMOT valve did not perform as designed during this j test, or the flowmeter malfunctioned. As no jacket water flow data is available for subsequent DG-2 tests conducted at elevated ambient air temperatures, this problem may have persisted. It should also be noted that the radiator for DG-1 was not as severely fouled as the radiator for DG-2, and that the fouling factor for DG-2 could have been the dominant element in DG-2's reduced heat transfer capability. Removal of Debris from Diesel Radiators l DEN has evaluated the benefits of the cleaning that was performed by Fort i Calhoun Station maintenance on air flows through the diesel generator radiators. To aid in this evaluation, Station Engineering performed extensive testing of air flows in the diesel radiator exhaust ductwork and supplied DEN with the results. Using raw data, there was no apparent measurable improvement in air flow, however, in order to compare fan flows taken under varying air temperature conditions, the delivered air flow must be corrected to indicate the air flow that would be delivered if the inlet air was at a temperature of 70*F. This correction is required because fan output is a function of air density, i.e., less fan SCFM output occurs at higher temperatures. Table III sumarizes the data collected from testing performed before and after cleaning the radiators on diesel generators DG-1 and DG-2. I 1
EA-FC-90-062 E A -9 0-062 Rev # 3 l.10-5 ) 94-4 6 ~ l REV.31 ATTACHMENT "A" (Continued) Table III AIR FLOW COMPARISON BEFORE AND AFTER CLEANING RADIATORS FORT CALHOUN STATION EMERGENCY DIESEL GENERATORS 1 Measured Corrected Diesel Status Temo JM Air Flow, SCFM DG-1 Dirty 59 101,356 99,271 DG-1 Clean 33 109,448 101,774 DG-1 Clean, Air 58 - 70 104,852 103,711 Deflector in Stack DG-2 Dirty 36 100,799 94,310 DG-2 2nd Cleaning 73 100,972 101,531 i With the corrected air flows comparing fan performance at identical operating _onditions, the air flow was dramatically improved through DG-2 and reasonably improved through DG-1 after radiator fin cleaning. EA-90-091 Rev. O concludes that a l'F gain in ambient allowable temperature corresponds to each 1000 SCFM of additional air. This infers that an additional 2'F ambient allowable is gained by cleaning DG-1 and a 7'F gain was t j achieved on DG-2. This is a very rough correlation, but supports the predicted jacket water temperatures supplied by Young Radiator. The difference in air flows correlates well to the measured difference in jacket i water temperature and ambient air temperatures shown in Table I and Table II. t DG-2 showed a 7'F higher AT than DG-1, because of loss of air flow and combined with reduction of heat transfer surface area because of fouling. Efficiency Savinos Resultino From Coolant Chance According to literature (documented in EA-90-062 Rev. 1 and EA-90-091 Rev. 0) i received from MK Power Systems, OPPD's representative for EMD stationary j diesel generating units, a net horsepower savings of 180 bhp can be assumed if the Ethylene Glycol engine coolant is replaced by treated water. This can be converted to an additional 130 KWe to be applied to offset the diesel generator deration curve. The addition of 130 KWe to the rated capacity of 2654 yields 2784 KWe available. In a trial run performed by the DEN Electrical Group with the computer program used to graph attachments 8-6-3 and 8-10-1 of EA-90-091 Rev. O, the diesels will satisfy the post-LOCA loads if this 2784 KWe power available is applied to the 2000 hr. deration curve. This computer program utilizes t.he assumptions of EA-90-062 Rev. 1 that the demand occurs only while~the diesel is,in a cold standby condition and not immediately following a planned surveillance test run of the diesel operating considerations. d
a EA 90-062 ex-Fc-90-os2 Rev."T 3 q,g,qf.10-6 R &,. 3 ATTACHMENT "A" (Continued) Although it is satisfactory to operate the diesels at elevated jacket water temperatures when required to meet emergency demands, it is not recommended that this be done for normal surveillance testing. The jacket water temperature alarm sounds at 200*F, with diesel trip occurring at 208'F. This places the operator in the position of operating equipment in an alarmed 4 condition, which may not be desirable. i l l
EA-FC-90-062 ga-g0-062 Ree. n.10-7 gr # ^ qq-99 4 : " RE\\' 3 ATTACHMENT "B" RECOMMENDED MAINTENANCE AND CONSTRUCTION ACTIVITIES FOR DG-1 AND DG-2 DEN Mechanical also recommends that these maintenance and construction activities be performed as scheduled: 1. Replace the AMOT valve thermostatic elements to ensure reliability at elevated jacket water temperatures. 2. Replace the radiator cooling fans with units designed for higher output at the differential pressures observed. 3. Upgrade the instrumentation associated with the diesel generator jacket water cooling system (MR-FC-90-005). 4. Establish a Preventive Maintenance Procedure for cleaning the finned surface of the radiators. 5. Change coolant back to 50/50 Glycol to prevent freeze damage after October 15 each year and run treated water from May 15 through October 15 of each year. Until other improvements in cooling air flow can be implemented, the coolant should be changed to treated water in May and returned to 50/50 Glycol in October of every year. ( 4 e 9
E h 062 q-jQ-99 EA-FC-90-062 'Rev.,,-E3 R & *. H.11 DG-1 Testing - Airflows Before Steam Cleaning, 3/8/91 I l 9
...-. - -..-.-- -. _. -.. ~.. - _...- - --_-. ~ _ ~ -._.. . _. _.~___, REVe 3 l 59v s l Calculeted flew totes j Oc-1 setore Steam Cleanine, 3-9-91. 25 Degree Pitch J T7~
- nr ygy : <gg yg6M
% M]f WP 11 21 31 41 .. 51 61 Tl 81 91 KFN= 253T.75 SCFm 2T42.22 SCFN= 2600 R SCFm 2400.89 SCFM= 1T67.79 KFN= 2055.54 $CFN= 2211.11 KFN= 2364.6T KF#= N33.33 temp.= 134.9 i toep.= 134.5 teap.= 136.5 j temp.= 136.4 . Temp.= 133.0 Tag.= 136.2 teap.= 135. Temp.= 135.9 temp.= 13e j F y7 f"T " ~ ~ W:, m; ';wy M
- V'lVM L M grym anwFT 12 22 32 42 52 62 T2 82 SCFN=
2727.78 . SCFM= 2961.11 SCFD 25T4.44 SCFM= 2267.78 l SCFD 1842.22 SCFN= 2220 SCFN= 22T2.22 SCFN= 2483. SCFN= 25 N.67 temp.= 127.3 l teep.= 130.1 temp.= 133.5 i teep.= 134.T i temp.= 135.8 temp.= 135.8 og.= 131.5 temp.= 130.1 temp.= 120 y - f $ g3 { x, >[%. . g,;. 13 23 33 43 l 53 63 T3 E3 95 SCFM= M20 SCFM= 2603.33 SCFN= 2441.11 SCFm 2298.09 SCFD 1T96.67 2144.44 SCFM= 2117. SCFD 2640.8p SCFm N14.67 fesp.= 121.2 temp.= IM temp.= 131.2 toep.= 129 temp.= 133.T temp.= 134 temp.= 12T. Tony.= 125.3 temp.= 119 I i i < W y-M J "'7p p w p og gjf"] l; '~*]i '"q: y'""yt' g p - , y, g .r ISCFNs 14 f 24 34 i 44 54 64 M m SCFM= 2478.89 [ SCFM= 2561.11 SCFN= 2335.54 i SCFS 2367.78 sSCFm 1464.6T SCFN= 2033.33 SCFM= 2122.2 SCfn= 24TT. SCFD 2112.22 p temp.= 116.4 p temp.= 123.4 temp.= 125.6 * ' fesp.= 122.4 teap.= 121.9 temp.= 12T.T temp.= 120. Temp.= 121.1 Temp.= 119 F \\ =w~ype wyntw. n-g ~rny; 3 *- ~p l lj 15 [ 25 35 45 SS 65 T5 e5 95 SCFN= 11TT.79 SCFN= 2010 FN= 1 SCFD 1946.44 KFle= 1552.22 O 1748,99 i SCFM= 2534.6T i SCFM= 2161.11 i SCFS 2022.22 tesp.= 111.5 I temp.= 114.2 - temp.= 113.1 resp.= 115.4 l Temp.= 115.T f og.= 116.5 temp.= 114.5 temp.= 114.2 temp.= 115 I wv3mv smyym _ myn +
- % v - nr vi
.:rm 3 ~ total Calculated flow mete = 191354 SCFM D Jo m re fD D ' w.p weh r2c " r (o M %a ? Ey[ : ~, bm p y enda e 57* F T,/e / ) ^ T G7' F rg = l P.. 2
E A -9 0-062 P-W -I'l-4.5 EA-FC-90-062 Rev. h 3 Attachmen 8.12 1 DG-1 Testing - Airflows After Steam Cleaning, 3/14/91 e 1 e a
.Y3 R E N 3 ' g,* '. nk 7-Ms \\ ~, es-1 After Seems tienntme, 3-M 91, with 5 d.sree pitch ~~~W-V I calculeted Fle.s antes s' t 8 18 a 31 41 51 61 M M M mm. m55.
=
mm..T
== 2rm.
=== Zus.n = = = isss.3s xa* mes.w 2m. g to.p.= le fe.y.= 10T.1 Ts.p.= 107. re.p.= 105.8 feep.= 105.1 Temp.= 109.8 f.mp.= ler.1 te.p.= les.3 to.p.= 107.4 mes. 2 22 42 52 Y sema 3658.89 'stn> 3515.33 sess> 2011.11 scen= 26 M.4T screw ten scn> 2483.33 FM= 2795. SCF#= 2653. 2005. Ft 82 j temp.= 94 te.p.= 90.3 fe.p.= 97.2 fe.p.= 97.4 remy.= leT.3 temp.= 105.6 5%= 9T. 1eep.= 91. Temp.= 96.7 g.r l 13 21 33 43 53 63 T3 85 93 wra= 2:55.w sem= mm.44=== mT. k xm= ials.n=== 2ne.w an* 25rr. 2rn. me.n te.,.= r,.= M.T se.,.= ve.i re = to.= ,4 re.p.= 9e.3 e. w. remy.= or. v= n.5 g gj j 14 24 44 i senk 2465. scrak 286e.89 sene= 2M6. 64 M e4 94 N ~h i 2464.44 SCm= 1717. SCRM 2195.M SCFle= BF2. Strum 2735.35 2585.54 = re.= t.= ,e = m to.p.= .2 re.= n.4 re.p.= ,e = n. le.p.. m., .5 i i ng; 2=, l .r 35 n 75 45 55 65 75 as 95 Ob l SCn> M11.11 stn> 2595.33 sCn> 2122.22 scFN= 2190 SCm= 1477. SCFa= 1994.44 2146. stres= 2181.11 195T.78 ( Temp.= Te.p.= %C Feny.= 4( 8 temp.= 6F.8 temp.= 65.5 te.p.= M.0 Temp.= temp.= 4T.3 temp.= 44.9 Q IN g j istti Calculated Fla.s Rete = e sens
- =ese 1e.pwetwo la suet =
1 ar.sgo.oresee s N 5'9 9 l C
- A ',
$SE ?E Z j m ~ ~ .e. 2 i t e
y 062@@p f p.FC.90 062 Rev-
- ch*c"t a 13 REV.3 DG-2 Testing - Airflows Before Steam Cleaning, 2/27/91 4
) ) ) i f l 1 3 i l l ( .1
.__..._.m .-...-_m ..____._m ._.m. R e' ~2 e J 25 eegree Pitch setore steam Cleerstro, screeri on U // Calcut.ted Flow meten wR s -- CI:1 k f$ Cam. i'm
- e' m,..
279T.73 scrs= 2T22.22 SCfD 2260 SCFue 2382.22 scen= 1782.2 SCfD 2481.11 SCFM= 2642.22 ErM= 2TF2.22 FM= 24TT.78 fesp.= 122.4 fesp.= 120.3 fesp.= 11T.1 temp.= 121.1 temp.= 120.1 T emp. = ffF temp.= 109.5 femp.= 115 femp.= 120.5 r 82 22 32 42 52 62 T2 82 92 =.__ N SCTN= 279T.FS SCFF 2966.67 SCfst= 2544.89 SCfm= 2465.56 sCfD 19T2.22 sCFN= 2275.56 $CFD 2950 SCfWe 2TTT.78 FM= 2481.11 l temp.= 108.1 temp.= 116.6 temp.= 112.4 tesp.= 11T.1 temp.= 11T.6 Temp.= 112 temp.= 168.5 leg.= 106.6 fesp.= 135 = - =. E. g.m 13 23 33 43 53 63 73 85 95 scen= 2800 SCfD 2F91.11 2T30 sCta= 217T.78 str> 875.5 scrs= 2255.56 sCFM= 2416.67 SCFM. 2485.33 SCFM= 2282.22 leep.= 95 temp.= 112 temp.= 106.7 temp.= 107 teap.= 190 Teap.= 110.F teep.= 93.2 resp.= 108.5 tesp.= 89.F I4 24 34 44 4 64 T4 M 94 SCfD 2531.11 strgia 2616.44 sceM= 2499.11 scres= 23FE.89 stfm M1.111 sCtN= 1900 m 1864.44 SCfsto 202T.FS SCFD 1944.44 l teg. = 93.5 fesp.= 99.5 temp.= 92.3 toup.= 96.5 teap.= 96.5 Temp.= 99.9 tesp.= 86.F temp.= f3.t resp.= 46 N IS 25 35 45 55 65 F5 85 95 g '. l sefst= 195T.78 SCfge= 2295.56 scree. 1973.33 stret= 1984.44 stree. 863.335 sctm 1881.11 e> 1894.44 stres= 2f2T.Fs scr> 2066.67 to.p.= st ie p.= a9.7 fe.p.= a5.4 Iesp.= 92.3 fesp.= 92.4 fe.,.= v2.s is.p.= e6.3 iesp.= 86.4 ie p.= as.6 O i gl 1 ..t., C.,_t et f, 8.t. ,99 m8m e =.n ; a?: R 8, -E aC cn:. Y k ~ 8 ts rate 2 t i i
L E A -9 0-0 62 k EA-FC-90-062 i N q4t Rev.,2-3 l ' Attachment 8.14 i REY. 3 > 2 DG-2 Testing - Airflows After Steam Cleaning, 3/25/91 O -r- .*-vw me - - = r 1
. _ _ _ _.-__ _ __.._ _ _ _ _ _..__.. _.___.._ _ _ _ _ _._ _. -. _...... _.._.. _ - ~ w.' REV.3 j I \\ Catestated Flees totes 34-2, 3-25-91, Af ter fin strolstenire eeuf Steen Cleenleg _7._ 7 2581.11 SCRe= 20ST.M SCless 2475. SCne= 259T.75 2264. SCfWe 2796. Strs= 23M.67 Sctsk 2597.75 senk 26t1.11 esp.= 155 Temp.= 155 fesp.= IM temp.= 154 temp.= 154 Temp.= 1 Temp.= 153 1es,.= 154 Temp.= 15 6 12 22 32 42 52 62 82 92 2 Mt.11 senen 2T16.6F 2342.22 scree = 2388. scree = 1 stfn= 2164.47 strek 25FT. scne= 2758.SP sCNe= 2654.44 i emp.= 153 Temp.= 154 Tes,.= 155 Temp.= 153 Temp.= 154 temp.= 1% fesp.= 151 1emy.= 152 temp.= 155 i l B 23 33 43 53 63 73 35 95 scnk 2545. serve = 2B23.33 M97.78 scrok 2445.54 strek 11e2.22 sent= 2258.89 serie= 2231. sene= 2437. 2481.11 ?W.-
- O im-U2 insp.=
en semp.= ni resp.= temp = 154 Temp.= 1 temp.= 151 Temp.= 14F ~ ) to 24 34 44 54 64 34 94 N l sCfM= 2440 stR> 2745. stMk 2585.33 sene. 2324. strek 1961.11 SCnes 2008.09 refes= 1984. stak 1s04.44 212T. D ,} temp.= 345 Temp.= 1.,.= 151 1.,. = M 1emy.= resp.= 153 Temp.= 1 resp.= 14e any.= 145 g 15 25 35 45 55 e5 75 35 95 i nk 2018. sensa 2273. 2004 sCfeb 19FT. 916. sCfet= 1594.09 sent. 175T. strek 1925. fees 1866.6 ij esp.= 1 Temp.= 143 esp.= M temp.= M3 temp.= temp.= 148 Temp.= M5 Temp.= 146 esp.= M3 5 ,a ie .t , '3 1 stet telcutetest Flear Rete = l 100FF2lsCfle aversee respeestisr, in euct = 1 15e. L T. ,3 ggg r+ < i m. m O O r_ s. g g .m .L ~ 9.
.E A -9 0-062 99 'W 0;ff$ 62 ggf.3.15 ,v i 1 t DG-1 Datalogger Points at 15:46:05 i I l { 8 l 1 i e l' 4 e 1 i i l ) I i
- gg
.END JCAN GROUP 1 30 MAY 91 15:30836 E A -9 0-0 62 ATTACHMENT 8.15-1 EE0!N 3CAN GROUS 1 30 MW 9 ". 15:31:30 EA-FC-90-062, DG CAB TEMP 3 ~ ~ .,060.3 { c 41 A1 TOP LEFT 103.31 DEG F RB i Rb3 .. C 42 A2 CNT G FT 100. 40 DEG F C 43 A3 BOT GFT 98.856 DEG F C 44 B1 TOP CENT 104.83 DEG F e 45 B2 MID CEHT 100.65 DEG F C 46 B3 BOT CENT 96.235 DEG F _C 47 C1 TOP RHT 103,06 DEG F C 48 C2 CNT RHT 100.3S DEG F i C 49 C3 BTM RHT 98,474 DEG F C 50 AUG. TEMP. 100.69 DEG F i .Etc 3CAN GROUP 1 30 MAY 91 15:31: 37 1EGIN SCAN GROUP 1 30 MAY 91 15t36131 j DG CAB TEMP 5 1 tC 41 ni TOP LEFT 103.26 DEG F .C 42 A2 CHT GFT 100.86 DEG F
- C 43 A3 80T LEFT 100.28 DEG F 1
7.C 84 B1 TOP CENT 103.86 DEG F l i C 45 B2 MID CENT 100.60 DEG F .c 46*B3 BOT CENT 97.301 DEG F 4 ~ C 47 C1 TOP RHT 102.71 DEG F .C 48 C2 CNT RHT 100.56 DEG F .C 49 C3 BTM RHT 99.465 DEG F i i _C 50 AUG. TEMP, 100.99 DEG F f
- END 3CAN GROUP 1 30 MAY 91 15:36138 i
) M H SCAN GROUP 1 30 MAY 91 15:41:32 36 CAS TEfFS 'C 41 A1 TOP LEFT 102,44 DEG F
- C 42 22 CNT LEFT 99.575 DEG F
.C 43 A3 BOT LEFT 98,715 DEG F .C a4 Ri TDP CENT 103.89 DEG F 4 4 6 22 MID CENT 99.727 DEG F .C..r,.6 B3 BUT CENT 97.169 DEG F c7 C1 TOP RHT 101.14 DEG F .- 43 C2 CNT RHT 99.966 DEG F .C e C3 BTM RHT 99.063 DEG F j .C 53 AUG. TEMP. 100.10 DEG F .3iK 3 :AN EROUP 1 30 MAY 91 15:41:39
- ss=..=i.liiCAN GROUP 1 30 MAY 91 15:46*05
.3G Cas TEfrS j
- 51 mi TDo LEFT 103.28 DEG F 4
G A2 CW LE=T 99.943 DEG F
- G A3 BC~ LE=T 99.063 DEG F 4
.s s. iiti TD: CENT 103. 72 DEG F -5 B2 MC CENT 100.87 DEG F 4 2 -6 E3liCl ENT 97.50S DEG F C C1 TU: RHT 101.54 DEG F
- 4
'2. CE RHT 100.23 DEG F
- .:9 :ii D RHT
- 99. 497 DEG F 5
- 9 GM.
100.54 DEG F r.5".;c GliiOU: 1 30 MAY 91 15:46:12 $'l - --- D:e ~r:7)? 1 30 MAY 91 15:46:33 = .:-=e:
E A -9 0-062 EA-FC-90-062 Rev. A S Attachment,8.16-R'S REV.3 DG-2 Datalogger Points at 14:57:27 i f 4 l ) 4 4 s e i 4 2-. .__,.3 . ~ - ,,-.o ---a
- ~ ~ ~ ~ ~ ~ ~ ' ~ ~ END 3CAN GROUP.1 "5 MAY Si 14:512587 i E A -9 0-062 j 411,cssty1 3.13_, ~ =GIH 3CAN GROUP 1 15 MaY 51 1.at52:11 EA-FC-90 062 '.=DG CAB TEMPS -( 9-9 0 n... \\ l E m i C 41.A1 TOP LEFT 95/389 DEG 7 l mcu _b.Ju 42 A2 CNT Lar-91,379 DEG F fissv - T; 43 A3 80T LEFT 91.379 DEG F -/f4 4 44 B1 TOP CENT 95.193 DEG F s i C 45 B2 MID CENT 21.868 DEG F
- C -46 33 BOT ' CENT 92.129 DEG F j
.'C 47 C1 TDP RHT 96.842 DEG F 2 -48 C2 CNT RHT 91 286 DEG F 4 i 2 49 C3 BTM RHT 91.488 DEG F f 59 AUG. TEMP. 93.118 DEG F I 3END 3CAN GROUP 1 15 MAY 91 14: 52:16 I f i BEGIN 5CAN GROUP 1 115 MAY 91 14257 12 { G CAB TEMR5 l A1 TOP ' -* i 945n19 DEG T j 42 A2 CNT =ri 91.225 DEG F ) -43 A3 30T. !ar i i&1.543 DEG T l -447R1 TDP IENT -94.355.DEG F -45_32'MID. CENT 31.57.2 DEG4 -46.33 BOT TENT
- 1 a*8 DEG F
-47 T1 TOP -RHT .95.748.~DEG F i -48'C2 CNT RHT 73.428 DEG F i -49.C3 BTM RHT S1.'781 DEG -F i ~58 AUG.' TEMP. 91874 DEG 7 ~ FEND SCAN GROUP 1 .15 MAY 91.14857*17I ,.5iBEGIN '5CAN @t0UP i _15 MAY 91, 14e57827.
- DG CAB TEMP 5 V
i CC '-.41-A170P.EEFT 94.338 DEG F 2 A2 CNT.La:r i 91,382 DEG F I %C -43. A3 BDT.EEFT .91. 488 DEG F l ~C 4 B1 TOP CENT -94.-944 DEG F i IC 45 N MID IENT .92.E11 DEG F i IC --46.~B3 JOT _ CENT 91.747 DEG F ~.- C -47 C1 TDP 'RHT SS. 594 DEG F CC -48_C2 CNT RNT SL TJ3 DEG F '"'C -49 "C31TM RHT .91.~T38 DEG 7 i i .2CC "50 AUG. TEMP, 91 983 DEG F l SCAN'UROUP 1 .15 ftAY 91 14:57832J l p .M NT Gr [ GEEEGIN 5CAN GROUP.1 .15 MAY 21 15881:58' ..DG CAB TEMP 5 g iC A1 TOP LIFT 95 185 DEG 'F ~C A2 CNT.EEFT S2.328 DEG F C -43 A3 307 1. EFT .92M3 DEG F c "C -44 31 TOP' CENT ~55.896"DEG'F 3 _C 45 32 MID CENT S2.281 DEG F
- I,
4 i ..C -46.33 30T' CENT .91. 689 DEG F i C -47.C1 TOP -RHT 95.539 DEG F -l
- C -48 C2 CNT WHT
.53J555"DEG'F CC 49 C3 BTM RHT d1.898 DEU:F ~C 58 AUG. TEMP. M38 DIG F i, ;- j -"END.5CAN GRDUP 1
- 15%Y_91 15:328 i
] .J EBEGIN.5CAN ~-UPOUPt.1
- -15WY-Jlgi 215:32
E A -9 0-062 EA-FC-90-062 Rev.,2 3.17 & '_ T-/9-9 S I REV.3 Telecon with Ken Beach
ATTACHMENT 8.17-1 {,lg q) {}--()(> (( EA-FC-90-062 l f RECORD OF TELEPHONE COMMUNICATION Q 75 E. A. NO. 90-062 FILE NO. PED-FC.91-4035?.i?\\./ lt DATE: 6-10-91 TIME: 2:00 9.m. TELEPHONE NO. x 6735 PARTY CALLING: P. F. Vovk OPPD (NAME) (COMPANY) PARTY ANSWERING: K. Beach OPPD (NAME) (COMPANY)
SUBJECT:
_ Uncertainty of Test Eouioment Used in Post-Calibration of MR-FC-90-073 TELECON
SUMMARY
(Including Decisions and Commitments) The post-mod calibration of test instruments used in T-1 and T-2 of MR-FC-90-073 was a function check of the equipment. The devices used to perform this check have uncertainties of better than
- l'F (MT-00027,.00001, 08201).
ACTION RE0VIRED Use for revision 2 of EA-FC-90-062. DISTRIBUTION PED Library
ATTACHMENT E.17- ~ BEST MW EA-FC-90-062 E A -9 0-0 62 ggw ksG4 houutu be.rie N TEST OF TEMPRA.4wac Descas t REV.3 2G-I m, uso .a Aecan rmee ron. mis Test ts t I'F . b n. P3 4 ~ -2. MT-IoIo1 4 MT-IonOR w ~) 1 iaa Pr 32.0 32.1 A.M 4 ..,J , m. - i t ci: 73.0 ~13. 2. a%ime k 6-(, 4 l i i Q) MT-00014 <. L. A s cwww s 4 i "T-o8'2c1 71.4*F i '4 3. 2.% Et H s e l rv-om i a,,..., ti.9*F f '42 o % fr W. , [ &N* l i i t k n 3 f' i l 2ef 2, 1
sesrcopy EA 062 DE.";s'.id. "-3 W ed 'D--a Rics buius Fv~cvi a Test T m e m v a e h as u,., .~ o c. -. s re-sr. REV*3 A e c p+ +~c. A.- tus t..+ i, 2f*F. MT-ooo i5 F LuWs DNm LOGGER. y HW:At R0:5 bsa) j M T-sewes, so ves, se* ts, sevn, s.yt t, se+ 2.s, so s, s. vat., r*4ar i et eet'FS" w elkeat M. =*24s.>7.(MSCE BEG N SCAN GRCP 1 29 MAY 91 it110802 DG CAB TEMP 5 0 41 Ai TOP LEFT 32.310 DEG F C 42 42 CNT LEFT 31.611 DEG F O 43 A3 B0T LEFT 32.20 DEG F C 44 91 TOP CENT 32.472 DEG F C 45 B2 MID CENT 31.901 DEG F '6 B3 BOT CENT 32.094 DEG F C 47 Ci TOP RHT 32.009 DEG F C 48 C2 CNT RNT 32.106 DEG F C 49 C3 STM RHT 32.289 DEG F ^ C 50 AUG. TEMP. 32.110 DEG F EH.n 3CAH GROUP 1 29 MAY 91 15s 20s 09 5-Si-9' b s a:E:. s:HG_E 3Cw 29 May 9.:. 15:20:10 .) M T - f o t o 2, w A. Pa.k. j (12'r).cser. 32.3 i ans. w, w iv. h3.**)he=T 73 D (at. . g o. . A 4. s. 9 : l$ i . 5) M T-ooop+ Las coutsvsus As mane. mad t mt.ornei. .~T I. 'f* F H 5. Z'4 R. H n m v.e ew 2.e.cunw
- 71. 5+* F d
4 2 o 7. R,H. 6 9L @ e> t.J \\. TOTc' e my
....m. __m.m__....... emu s.u BESTCOPY ATTACHMENT 8.17 4 E A -9 0-062 EA-FC-90-062 m n... L nr y._9.,y 2 R ica Rooin - N cria Test er Tew,cuTvas % ces DG-#t Test. RtiV. 3 4 O ses. .u A centrases v ws -rest is
- l' :.
J ) WT-oocn5 7 4 vM.E hu Lusen. 4 Hy C4 R.Tb's.(%) VT-Sot'en 50toi, 5 4f f, 50%r7, toesi, 5eui, seyas, se*(24,,5++4s f see Pt. PEO N ICAN GROUF 1 Os JUN 91 .1:47!55 D3 CA9 TEMP 3 C 41 A1 TOP LEFT 32.198 DEG F C 42 A2 CNT LEFT 31.734 DEG F C 43 43 BOT LEFT 32.216 DEG it C 44 B1 TOP CENT
- 32. 434 DE:3 F 2
C 45 E2 MID CENT 31.906 DEii F C 46 B3 BOT CENT 32.101 DE:3 F C 47 C1 TOP RHT 31.561 DE3 F C 43 C2 CNT RHT 32.101 DE3 F C 49 C3 STM RHT 32,295 DE) F C 50 AUG. TEMP,
- 32. 061 DE 3 F END 3CAN GROUP 1 06 JUN 91 L1:44 s 03 ITO5 PED SINGLE 3C4N 06 JUN Si 11: 44 04 EEGIN 3CAN GROUP 1 87 JUN 91 12:52:3~~
DG CAB TEMP 5 A s s e u r w a r-e m s.7,ee**t. C 41 A1 TOP LEFT
- 73. 019 DEG F C
42 A2 CNT LEFT 72.855 DEG F C 43 A3 BOT LEET 73,462 DE G F y C 44 Bi TOP CENT 73.766 DEG F T C 45 92 MID CENT
- 73. 256 DEG F @,g4 C
46 B3 BOT CENT ?3.322 DE3 F C 47 Ca TOP RHT
- 73. 277 DEG F C
48 C2 CNT RHT
- 73. 428 DE3 F C
49 C3 BTM RHT
- 73. 799 DE3 F C
50 AUG. TEMP.
- 73. 354 DE 3 F END SCAN GROUP a 87 JUN 91 12: S2: 46 STOPPED SINGLE 3CAN 07 JUN 91 12:52: 47 6-6, 6 9 f t
95 E A -9 0-062 i EA-FC-90-062 Rev.43
- .18 R&'.3 A/C Efficiency Data i
1 i l 1 f I l i I )
-. _.~- 1 ._z. m =.x . E COPY ATTACHMENT 8.18-1 E A -9 0-g poei.u er na s.xi,en=n.iw m.mo an ee . Z. I-EA-fC-90-062 way a g, -. w l f "cusua PP D " Md L,EWl M CWe&T D_ .-e 4 e e. A l REV.3 J j 1 i ? j l The purpose of this memo is to help explain why air conditionur capacity is reduced as enclosure tasape rature is. reduced, und to provide Marketing with a " rule-of-thumb" se to the extent of tho i. reduction. i As you know. McLean Midwest air conditioners are normally rated at i 125 r ambient and itS F enciumure return air temperatures. Typically, this condition imposes the highest load on the air. conditioner. The basic rulv tu ressembe r is that any re d.n e t i e ri in the return ai r j teenavature will e n u m., a c riqgtion in the emumeite or tlw air l conditioner, This tw because s reduction in the return Air temperature requires a reduc tion in the evaporator coil temperaturn, which in turn requires u l lower auction pressuro in the refrigeration system. A lower muction i pressure, in turn, reduces the density of Lse muction gas beinig pumped i by the compressor. Since the pumping capa::ity of the compressor is fixed by volume, this reduction in muetion gas density means that the coaspressor is pumping less weight of refrignemnt, With a corrouponding i loss in air conditioning capacit.y. I The less of sapscity with a reduction in suction pressure (or eneleaure return air temperature) is extre.ely rapid. For best capacity performance and operating officiency, it is important that the air conditioner operate at the highest suction pressure possible. A decrease in the ambians temperature will seult in un increase i s. air conditioner, capacity, due to the reduction of the head pressure, i However, this capacity increase is small compared to the loss ot' capacity due to the decramme in the auction pressure. For this i roamon. the not result-o f veriuc i tw both tne naibt.nt t e mrer ra t u re atut the enclosure return mir temonruture by t h a. m.- anunt sa n reduction in hir enhdi t i ott i n e e n ts n e s t y, I k i ' 4000 83rs menue ewin Dewe.m Pan siamnwevis SSee. f!;: :o t. n.eori. tvies *0-0 03. a Ast ec st SCO OW.
~ lr+ ATTACHMENT 8.18 2 EA4%.062 E A -9 0-062 l e. k 9F ,f. McLean Hidwest Engineering St.andaro REN 3 - Rag. Std. No.: 10-3000-t7 ] i 0 UNTT cDAdTTY WULTIPT.TTT, iAAAE CAPACITY RATED AT 125/1251 f
- 1.00 1EDW j
I l f 0.W7 0.98 1W08 l O.Wu 0.W3 0.us 0.W3 115* i 0.96 0.v0 0.uS 0.80 0.75 1108 I 4 0.97 0.92 0.87 0.52 0.77 0.7% 0.57 1068 Re turn-l Air 0.W8 0.W3 0.sg 0.83 0.78 0.73 0 5W U.63 0.68 100* Temp. j (* F) i J.95 0.90' O.W6 U.80 0.75 0.70 0.65 0.60 "0.55 0.50 { W6' l l 0.W7 0.32~ 0.77 0.72 0.67 .052 0.57 0.52 U.47 0.4% WO" l i i 0.78 0473 0.68 0.53 0.68 0.53 0.48 0.43 0.38 0.33 W58 l 0.70 0.66 0.60 0.65 0.60 0.46 0.40 0.36 0.30 0.r5 808 } e l 805 8 55 908 96W 100# 10SV 1108 1158 1308 1M6W Ambient Temperature t
- Fi l
To determine est.imated cooling c apacity, multipi.y catalog 3ANPLE: ambient cooling capacity By the f actor corre spending to aosuni and return air temperature condition s. f 90* F with catalog capacity of 800J RTU/hr operating at A unit return air temperature and 100*F ambient will have an estimated cooling capacity of:
- 000 STU/hr x 0.G7 = 5300 BT1/hr en e e e
=
'9-lC(-95 i M E A 062 l l i EA-FC-90-062 Rev. Y2p !1.19 l~ t REV. 3 4 i. a Graph or Air Temperatures for DG-1 on 6/26/90 (2 pages) l i E
EA-FC-90-062 DG-1 (6-26-90) MWO OP-ST-DG-0001 ATTAC Q,80}9 swE -- g Fon: exh(assumed) O19:45, of f 600:01 h 15 m 110 -} g h=* 108 - i a ,.i-1--R --EF-O EL, ,G O Vf ', ' W ,,A - - +,,N 106 -i 'W l 104 / 'A'.15 4 ---a + 102 N 100 - O u. ^ C O ~ / N 3 x n' 92 90 - O s 88 - 86 - 84 82 - 80 - 78 ,) i i i i i i i i i ,19:45 20:15 20:45 21:15 21:45 22:15 22:45 23:15 23:45 00:15 00:45 01:15 01:45 Time O Front Cab. @ 3' t Front Cab. @ 8' o Outside Ambient Tmp A Gen. Intake Air
EA-FC-90-062 E A -9 0-062 u w. y,y 4 19-2 .wr ( i-19-95 U h ,m FILE:DIESQ* This is f -1 (6-26 90) outside cabinet front 3' 8' Logger Point 49 Ilme Logger Point 42 Logger Point 46 Outside Ambient Generator Intake 19:45 95.0 95.0 94 94.0 20:00 98.0 100.0 95.0 20:15 101.0 103.0 96.0 20:30 103.0 103.0 95.0 20:45 103.0 105.0 95.0 21:00 106.0 105.0 90 95.0 21:15 107.0 107.0 94.0 21:30 106.0 105.0 95.0 21:45 107.0 105.0 95.0 22:00 107.0 106.0 95.0 72:15 107.0 106.0 92.0 22:30 107.0 104.0 93.0 22:45 107.0 103.0 91.0 23:00 1%.0 102.0 92.0 23:15 107.0 105.0 93.0 23:30 105.0 103.0 94.0-23:45 107.0 105.0 95.0 24:00 109.3 105.5 97.3 00:15 102.3 102.0 97.2 00:30 98.9 100.3 98.2 00:45 99.3 99.0 95.9 01:00 98.I 99.I 95.9 01:15 95.1 96.7 92.4 01:30 98.1 98.3 94.3 01:45 95.6 98.7 78 93.1 1
E A -9 0-0.62 s REv' E ,q-es 4 EA-FC-90-062 Attachme)nt8.20 i Rev.2 i REV.3 1 I 4 4 i i i } Graph of Air Tem'eratures for DG-2 on 7/16/90 (2 pages) p 1 1. 4 1 t l 2 4 A l i i m I s d i i l l i ) 1. l' i i l 4 h
EA-FC-90-062 DG-2 (7-16-90) MWO 90 217gA -9 0-0 6 2 atTacuaEar 8 20-1 pgf, y Fon:of f@l 330.sup@l 717,e x h@l 830,of f @l 935 , cts tq-110 - \\ \\ j 108 - h / \\ / NJ 106 - A a a-a O 7 u 104 - f ,M N-102 - K ,E ,A f 100 - 1] ,B-B O +- g 98 - +x A O' g N p3-C & a 96 - / 94 - O r 92 - ~ JAv v v v v f 88 - 0 0 0 +' 86 w c.gg. 84 y y i i i i i i i i 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17iOO 17:30 18:00 18:30 19:00 19:30 20:00 Time O Front Cob. @ 3' i Front Cob. @ 8' O Air Inloke to Room a Gen. Intake Air
A d q N e 7 I .O \\ N-I Nb 8.n = uu I w< eW ' 4& e l ....b y M h o a: I O l 4 uJ '. 3. : 3 s 8 8 8 3_ 3_ 3_ 8 8_ 3_ 8 8_ 8_ 8 8 8 8 3 3 ~ 8_ 8_ 8 8_ 8_ 8_ e e e e e 5 28: u e 'i u' e: $GEEEEE82EEEEEEEEE8E8EEEEEE -E*: 4_. 6 M B <._.C_ G m O e 1 1 S *l
- 2 4
u : 8 a l*************************** ~ k 0 : 2 2 8 2 E 3 3 3 8 3 3 2 8 R $ $ $ $ 3 2 8_ 8 8_ 8 8_ 5 8 3 4 5 : -m O. ~. u. 8 a A a G 55 !R080R082R082RC82RC82R082808 gj gjdsssssssssssssssssssssssss#
I: lT 94*q_m_33 i. E A 062 l . mm. - 8 iEi.y ? l EA-FC-90-062' Rev. 7 5 i.21 i 4 t RW. 3 1 j. i ? 1 s a Graph of Air Temperatures for DG-2 on 7/17/90 (2 pages) t -1 i 4 f i 1 3 3 1 1 i i i e e
t b i mg. de :'. os ) ez h $W F O ,_ s a ~ uJ aC ] .1 / O / m d <3 [ 5 O O [] 3 + Io O O O "" M 6 to ,me
- 4 O
@1 -l _O O! s O C Q 4-g l g f j O 0 w / e e O / ~o y _C 4 a 0 e k A 0 O p.gl a o D -yj- _o e cn .5 1 f-L b
- s. \\-s N,,
U l o l c N 's,[ ~y m .3 4 Y ~ J2 i / i (N 3 'N / o-N Y f o O O O g f ( o O o m ~5 .bp O U~ N u l C '5 l O O ' D I O.. O i i I i l i i l l I T e e-O- O e e v m o e e N O m O O O O O c4 ci Cn 01 CD m 0 J ut aantoJedtual
~ 'Y o. NC u d ! api' F*' e c d 4 es= ~ vu - w< is <w M w<- = n, 4 O I O l at. l.L5 P T .2l=*****coccoco****
- $8082888228228838
=,,: 28: ' 3 i. .: 233888E88888888E8 ~ -U S. :. 88 % .4 b W. t%4: a o. -s e 8 5 s ooooooooooooooooo e : a**A2 6' A A J i a J J J J J A a 8
- 88 222222222222
-4 5: "El 4 l 8 a :ooooooooooooooooo ? 4I$$$$$$$5555$555$$ = 4 5 mg: g ~. 8 a Mb Sa l82R082R082R082R08 ~. 55555555555555555 y i
$ 0-062 9-EA-FC-90-062 Rev. 2-3.22 , cs a J. e Graph of Air Temperatures for DG-1 on 6/25/90 (2 pages) D ) l 1 1 i f 1
EA-FC-90-062 A m u nt 8.22-1 N DG-1(6-25-90) MWO 90 2171 N6? 3 e y, s g,fq - 9,3 Fon:of f @l4:38 supply 017:05.exh @)7:41 '08 ~ ~ ~ -... _.. 3' O' 106 l C laJ 104 - 1.02 - [ 100 - f u C ] 98 - 5 96 - o tf 94 - ? 92 - 90 - 86 I 84 3 I i I i 3 14:15 14:45 15:15 15:45 16:15 16:45 17:15 17:45 18:15 Time O Froni Cob. @ 3' i front Cab. @ 8' O Infoke Air to Room A Gen. Infoke-Air
EA-FC-90-062 ATTACHMENT 8e22-2 ER-90-062 p gp gm-,s. FILE: DIE 5[L .} 1his is for DG-1 (6-25-90) outside cabinet front Average ..It* 3' 8' Outside Ascient Logger Point 49 Time Lo9ger Point 42 Logger Point 46 Points 14 19 Generator intake 14:15 84.2 86.5 85.9 86.0 14:30 85.1 87.4 85.8 87.0 14:45 86.7 87.5 87.9 89.3 15:00 86.8 87.3 86.7 93.1 15:15 87.5 88.3 87.5 97.3 15:30 88.4 89.3 88.6 98.2 15:45 88.5 90.2 88.3 100.3 16:00 89.0 90.2 89.1 100.3 16:15 89.5 90.7 89.9 101.7 16:30 90.4 91.3 89.0 102.6 16:45 89.8 90.8 88.8 102.6 17:00 90.8 92.2 89.1 101.2 17:15 93.9 94.7 89.6 94.7 17:30 93.8 %.1 89.2~ 95.4 17:45 103.4 105.5 88.1 99.1 18:00 105.4 106.6 88.2 100.5 18:15 105.4 104.9 88.8 99.8 a 4 -. -}}