ML20093D298

From kanterella
Jump to navigation Jump to search
Rev 3 to Calculation, Operating Temp Limits for DG-1 & DG-2
ML20093D298
Person / Time
Site: Fort Calhoun Omaha Public Power District icon.png
Issue date: 08/15/1995
From:
OMAHA PUBLIC POWER DISTRICT
To:
Shared Package
ML20093D274 List:
References
FC05916, FC05916-R03, FC5916, FC5916-R3, NUDOCS 9510130202
Download: ML20093D298 (48)


Text

. . _ . .. . .. . . . . ~. - - .

l l

\

LIC-95-0177'

Attachment <2 .

l J

l FORT CALHOUN STATION UNIT NO. 1 i

i CALCULATION #FC05916 j

! Revision 3 l l " Operating Temperature Limits for DG-1 and DG-2" i l i

e k

4 l

l

1 i

4 9510130202 951005 PDR ADOCK 05000285 P PDR

3 r.un

. CALCULATION COVER SHEET _

,' Calculation Preparation, Review, cAtcULATON NUM8ER Calc. Page No. I I

d Approval t orm PED-OP-3.1 Form Page No.1 of 2 o 86 d 54/G

  • TOT 4tPAoEs WME o A c. = , y: B coE O uwTEDcoE O RRE PROT.

Calculation Cover Sheet 0 NON COE [l

'!

  • Short Term Cale: E YES 3 NO i

PED DEPARTMENT 367 CALCULATON TITLE VENDOR CALC. NO.

OP6AATid (- "IEY49 N Q-E LWD m A.

~~

E MYSS 90 6 1 I

u.-i wo w -2 -

==

OTHER

  • APPROVALS SIGNATURE & DATE CONRRMATON PREPARER (S)/DATE(S) REVIEWER (S)/DATE(S) REV E R(

ATE (S) l & c< b

1- > c -91. +' z s-fz. y zp, z_.

'W" UL h)8 7- 9t- <& y

  • h A /

8-7 g/,fj O*

lj 92. //~2-f&

h pl f , '92,,,

, C $ V y /l,. /lIk 0 0 8 .lQ I

/M b gf ,,l l Y V 2/dbf i l -

rA/1.r aus- d==apn<

' f/3" W' .

  • EXTERNAL ORGANIZATON O!STRIBUTON NAME & LOCATION l T NAME & LOCATION

' N

~

l V) l (v) l l

l l l l l J

I

> CO 2

v. s.. s t

. v. .

)

i CALCULATION PREPARATION, REVIEW AND APPROVAL urum M 4

FORM PED-OP-3.2 Form Page No. I of 1 CALCul.ATION NO.

~;

PRODUCTION ENGINEERING DIVISION .r--

2 j

CALCULATION REVISION SHEET TO M REY .

I NO.

1- OESCRIPTION / REASON FOR CHANGE J 6 p .9 coPO uN S seau.os, EA- A(_- 9 o - o r, 2 i

a c 2. e a se_ ^ e s- aen s s a c , so a i r)4 e A ,te e a e e vs esAA(T1

A ae b o c.s wa./T c.o nec 5-Cs p 5 s.

prov.eso a oe,o a w sr i si, e .) op tu 6 3

t be uEd. cT #~A > 8 * ( eT- /

a W M c rr p Aba O 1 97 E Nb Ar b "M eMe D I

Ai"c.M Q Q h b

  • 2. A &4 Eb4 Q i

1 9 A b8 J4r4 m/Oa(S1d /TtA.4 t =J 3"-gb ^ ^ ^ 'M tb4 A.aO A40 6e 5t *"rt== S af cas c u.a as4 O sam s- c.a.o n a 1 b ,

I o. t) o Tt vi 2 Go bAu i vuve M sa>o eoe o o aJ 10b 4

1 1 **

D D I 7- k8."O bN 6 0.4'f % \ad A m D A4

/ Ao 6"-af 4 & s c.J $s Fod a AT ^ 'o us + 3 b4TA WM PG j 0 tb

~6 a.s o A4.s h ce 64 sque.

1

c. Le_i w

]

8 3 o I 'i - l'7 Aeoeo c..m=_stw --- y ey > -

rn T 4a s.a 73.,3, yg rs.e.s .Jtvu j

M e 64 aT A s 4. A.ao P A.a M9ai . To i i a t.4- r- ru peuw AM . A

A< i .W4 sc6 sAs asotse i uJ e4 4r4 I- Tv A 6o c, e + M id s< tar TW4 447vad-S Foo t s o
  • 8: 6 > C-4A '8 4 *'* W A-A f.ASO

! f%4 L 3 ss A $ coa M Tb-* *,0 i4LJtt h4C 0 Aof44- WAee L?? ^ b W -

  • T s w #e u'rV44~, ao n,4- ah./ S e447)o J ro r%4 6AE.

i nos *.J e.sAr "n44-v VJM .

,u s.s ,.r.-> .,a oo - s e ns. .a m c. ,. m.,a

. b 18 %9 A.6- s o V64

  • a> */ h e *J Ad.N s J a4 0 a w (.

D ! D Nb - b ff.d# M b.) 6 T"4% AJ 6% ) O d"d4 7 Q-d d N hd i

k g%k 8 9 S S' *@

  • 0:4' CAF- fo A.

2.u8

  • F A sh*T1 c. O O W 'T*

AsA.  %.a O i

Ah3 s . Ae--s 4~.!T.1 t

i

, i l PED-OP '4.77 en

Calf.PAE lE 3 CALCULATION PREPARATION, REVIEW AND APPROVAL FORM PED-OP-3.2 Form Page No.1 of 1 CALCULATION NO*

PRODUCTION ENGINEERING DMSION =c - o s'i i e CALCULATION REVISION SHEET REV' NO. DESCRIPTION / REASON FOR CHANGE c ou seceu cam *s .er, .eo m ,- ur- coo -n ' v a wc ouc, Doc r%6. A8 4. VEtoc_m MG M " sAs o v- en c A L @ ,4 m a (_ o g 4 Eats , a> G EM i 2. /c . A AJ E-V C L-- 0 8:  ::A.a cw A.EA D ,ug wo rH G4 rA KC-J MO d w, i ev Ai6 e c.z _ .iu rs

  • E*5 v Ad-c . rm s
AL.C J LLDo O M 5; . s M J e4.5-c A.GUtC.so.J

\

\

)dO L' OMO . . A L.d. b) d7 .3 d W dM VC 5. 7 6,0 W A46 A7. /de-O dM ,' O/,

--> .s, c c.o .i.sv c*o L , sJ$~11. UM.G,Ot" eUA.LLdeAL-4 u s,o s o D A7s tm -y f <#.o.c. r- ame-e ry or ,f 5 , s o pcarru LE rus d aw w me s e sr 4. , 4. we we. 1 34 %

/  %

o ,

A 4 eAn,om di ,k.w l'j I k s a rer r A A % .r ro Rsrarer ne'r maer .re-rnn ft.26tntd W kt} ef /995~

}&VISL'i & v&s kb C0WCtar.T4W3 fjag-h py fpff 7'gff* fyJy;igy yg,,,s.y '

2 C4cientzw ALCO WCck k0rTrave WF044f#ned i"/t-e~f Ed- 9$ ~0S 7- Afurb To Esut&e C&ts- fin 4 en- b 6 ~2.

3 $?tvist AM6 r A.)O T2 K B44l0 d' A&vs'Sn W 2 oh FL 0338.2.

1

}

l i

i REv.1 1

PED-0P-3.27 J

CALCULATION COVER SHEET Calculation Preparation Review CALCULATON NUMBER Cak:. Page No. ~1 M and Approval p/'.og 9/f Form PED OP-3.1 Form Page No. 2 of 2 Calculation Cover Sheet FACluTY/ SYSTEM M KEYWORD o D1ES&L (, N N CALCULATIONS USED AS INPUT IN THE ANALYSIS EQUtPMENT TAGS CALC AEV.NO. DEPT S . TEM ADDED DEPT. NO.

FC 0331% A? 8 D L, - 3D dw-3-1 84-fd- 10-062 # 2 DG- 3W Jw - P-2 DG 06-I VG b G -1 f

a 1

Calc FC05916 Rev 3 Page f

1. OBJECTIVE The objective of this calculation is to determine the maximum ambient air temperature limits for operation of the Fort Calhoun Station Emergency Diesel Generators within the bounds of the 2000 hour0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> deration curve.
2. METHODS 1 Determine the KW capacity of the diesel generator without considering the effects of elevated air temperature on jacket water temperature or turbocharger intake temperature.

2 Predict the turbocharger intake tempcrature at elevated conditions.

3 Predict jacket water temperatures at elevated conditions:

i. Determine fan flow rates at elevated temperatures.

ii. Compare fan flows to required flows to maintain jacket water at 190 *F and 208'F.

4 Determine deration factors from the predicted jacket water and turbocharger temperatures.

5 Compare derated power to post LOCA demands from calculation FC03382.

3. ASSUMPTIONS 1 Ambient air pressures are considered constant.

2 The diesels are in a cold shutdown condition with thejacket water at a temperature of 125 *F prior to the start of the accident. Test results indicate that the temperature is 120

  • F at the time of start. This assumption is conservative.

3 Turbocharger inlet air temperature delta T with ambient air does not change dramatically with outside air temperature increases, ie. the outside air temperature to turbocharger intake delta T from 95'F ambient can be used to predict turbocharger intake temperature at 110* F ambient conditions.

4 The radiator fan intake is equivalent to outdoor temperature + 1 "F. This is validated by test data gathered during the last test performed on DG-2.

5 The maximum amount of emergency safeguards equipment started by SIAS is considered to be the required load for the diesels. Additional optional loads that may be desired to assist operations in accident response, such as station air compressors, I are not included in the required electrical load calculations. j 6 Although the new fans draw more air, the air flow in the room is such that the turbocharger inlet air temperature is assumed to be unaffected.

j

)

i i

, Calc FC05916 Rev 3 Page la

. 4. INPUT / REFERENCES

1 Letter from Ted Frayer to Randy Muellar, Dated 2/10/80 contained in EA-FC l l' 062 R2 Attachment 8.2-b '

2 MWO 913677 Replace Fan with Substitute Replacement Item per ECN 91-306 4 3 MWO 913676 Replace Fan with Substitute Replacement Item per ECN 91-306 4 MWO 922345 Hot Weather Testing for DG-1

5 MWO 922870 Hot Weather Testing for DG-2 i 6 Diesel Generator derating Curves from EA-FC-90-062 R2 Attachment 8.2-a 7 Fax Transmission from Young Radiator Comp. to Dan Borcyk dated 4/8/91 8 Fax Transmission from Young Radiator Comp. to Dan Borcyk dated 4/15/91 found in EA-FC-90-062 R2 Attachment 8.9a 9 FC03382 R7 Diesel Generator LOCA Loads 10 Mechanical Engineering Review Manual Seventh Edition 11 EA-FC-90-062 R2 Diesel Generator Upper Temperature Operation Limits j 12 OP-ST-DG-0002 Diesel Generator 2 Check for Oct,92 13 OP-ST-DG-0001 Diesel Generator 1 Check for Oct,92 14 Stone & Webster report 16472.8009-AV1 ' Torque Measurement on the Take-Off Shaft of Emergency Diesel Generator.. ' (Attached) j 5. CONCLUSIONS DG-1 may be operated under the following conditions and will operate within its 2000 hr
derating curve limits during post LOCA conditions.

50% Ethylene Glycol / Water coolant Mixture, Ambient air s 110*F

Turbocharger air Temp s 116*F
Jacket Water Temp. s 208'F DG-2 may be operated under the following conditions and w Jperate within its 2000 hr a deration curve limits during post LOCA conditionr c 50% Ethylene Glycol / Water coolant Mixture, 1 Ambient air s 114*F )
Turbocharger air Temp s 132*F 2

Jacket Water Temp. s 208'F i

l

<. )

l

L 4

Calc FC05916 Rev 3 Page 7 Discussion:

DG-1 Above 10l*F ambient air temperature, DG-l's jacket water temperature is expected to exceed 190*F. Per conversations with Morrison Knudsen, the 200-210 curve must then be -

~

used for determining the deration factor. This accourits for approximately 7% reduction in diesel generator derated capacity, If the present turbocharger inlet temperatures predicted for this ambient air temperature condition are used while requiring the emergency load to be maintained less than the 2000 hr rating,110*F becomes the upper ambient air temperature limit for DG-1. Per figure 2 it can be seen that the estimated load does not

exceed the Diesel Generator 2000 hr rating. In addition significant margin exists if the event is initiated from the prewarmed condition (ie. JWOT at 125*F). If the event is initiated 2 immediately following a surveillance test and the diesel is already heated up to a steady state condition, the margin is 1 KW, This has been determined to be acceptable based on the conservatism associated with calculation FC03382 and the likelihood of event initiation during this period.
EA-FC-90-062 evaluates the ambient temperature limits based on generator rating and

] cooling temperatures as well as exciter cabinet cooling limits. The results of this EAjustify d

operation at 110*F.

' Previous revisions of this calculation resulted in a limiting ambient temperature of 107*.F.

This value has been revised based on the results of hot weather testing performed on July 11,1995 at 96*F.

l One identified method for achieving a higher limiting temperature is to replace the 50%

4 Ethylene Glycol / Water mixture with treated water which result in a higher heat removal rate. I Based on existing historical information it is not expected that these measures will be required.

3 1

4 k

4 9

s- - -,- - - --. - - - - - - - - - - - - - - _ _ - _ - _ - - - - - _ - -

f

1 Calc FC05916 Rev 3 Page 8 DG-2 Due to the load reduction performed during the 1992 Refueling outage, DG-2 is in a satisfactory configuration up to 115'F with 50% Ethylene Glycol / Water Mixture as a i

coolant media. Above 105'F ambient air temperature, DG-2's jacket water temperature is -

expected to exceed 190*F. Per conversations with Morrison Knudsen, the 200-210 curve must then be used for determining the deration factor. This accounts for approximately 7%

reduction in diesel generator derated capacity. Although the jacket water temperature exceeds 190*F it remains below 208'F in this temperature range. Because the demand was reduced on this diesel generator, the derated power, even with the 7% reduction based on thejacket water temperature, exceeds the most severe accident demand load.

EA-FC-90-062 evaluates the ambient temperature limits based on generator rating and cooling temperatures as well as exciter cabinet cooling limits. The results of this EAjustify operation at 114*F based on the rating of the generator and the associated cooling limits.

~

The ambient temperature limit associated with the exciter cabinet cooling was established

) at 110*F. This limit was based on a 9'F delta with the air conditioning unit operating at a i 50% duty cycle and 89'F room temperature. Based on the analytical method used for DG-1 cooling unit, the duty cycle for VA-759B is 67.2% with an ambient temp = 114*F, Room

! Temp. = 132*F. (50%+(132-89)*0.40) [ref. 4.11, Paragraph 6.12.3.1&2] This duty cycle I

is considered adequate to maintain the exciter cabinet within the required temperature range

(80*F to 122*F). Based on these results, the temperature limit for operation of DG-2 will be established at 114*F. The tables and figures associated with DG-2 will therefore be revised in revision 2 of this calculation to reflect an ambient temperature of 114*F.

Previous revisions of this calculation resulted in a limiting ambient temperature of 110

deg F. This value was increased based on the results of hot weather testing performed July j 12,1995 e. 99'F.

~

I i

1

5 i

Calc FC05916 Rev 3 Page 9 Calculate the net KW available for each diesel generator. -

J l

Radiator filled with 50/50 Ethylene Glycol Coolant,2000 hour0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> and 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> ratings. l 2000 hour0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> Rating 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> Rating Reference -

3950 HP Rating 4150 HP 1 l

- 120 HP Radiator Fan Drive -120 HP 2,14

-20 HP Generator Cooling -20 HP

-l80 HP 50/50 EG Coolant -l80 HP 3630 HP Available Horsepower 3830 Convert KW to Generator Output 3630 Mech Horsepower 3830 l X 0.746 BHP /KW X 0.746 1

2708 KW 2857 KW 1,pg 8.2b-3 X 0.97 Gen EfTiciency X 0.97 j 2627 KW Available Generator Output 2.771 KW 1,pg 8.2b-3 4

i 1

l l

l l

i Calc FC05916 Rev 3 Page /O-l From fan flow data, predict fan flows at elevated Temperatures -i JW-3-1 (DG-1) Radiator Fan .

~

Flow = 124,24i scfm at 98.5'F (average of north quadrant readings)

Kd = (460 + 98.5)/530 = 1.0538 Flowa = (flow-2%)*Kd = 128,304 cfm Correcting back to SCFM on the following Table IB Flow %,,4 = 128,304/Kd Likewise for DG-2:

JW-3-2 (DG-2) Radiator Fan Flow = 114,121 scfm at 99.2*F (average of all inlet readings)

Kd = (460 + 99.2)/530 = 1.0551 Flow ,,,,,,, = (flow-2% J = 118,000 cfm Correcting back to SC1 Al on the following Table IB Flow,,,4;ci,, = 118,000/Kd Based on the calculated air flows (presented in table IB) and the comparison of these values with calculated required flows using Ethylene Glycol coolant (presented in figure 1) it is concluded that the cooling system should be capable of maintaining a jacket water outlet temperature (JWOT) of less that 190* F at ambient temperatures of 112*F (for DG-1) and 108'F (for DG-2) if the generators are run at rated output. In addition, radiator capacity is sufficient to maintain the JWOT below 208'F with ambient temperatures in excess of 120*F.

r i

Calc FC05916 Rev 3 Page //

Temp FI(scim) F-e (scfm) Kd Fc (cfm).

DG-1 98.5 124,241 121,756 1.0538 128,304 See Tbl 2B-1 DG 2 99.2 114,121 111,839 1.0551 118,000 See Tb! 28-2 Table 1 A l

Air Flow Correction for Test Data Corrected DG-1 Temp 1 Temp 2 Kd Air Flow ., y,,

I##'*' ' 'I (scfm, fc2) 70 70 1 128,304 118,000 75 75 1.009 127,159 116,948 80 80 1.019 125,911 115,800 85 85 1.028 124,809 114,786 90 90 1.038 123,607 113,681 95 95 1.047 122,544 112,703 100 100 1.057 121,385 111,637 102 102 1.06 121,041 111,321 104 104 1.064 120,586 110,903 106 106 1.068 120,134 110,487 108 108 1.072 119,686 110,075 110 110 1.075 119,352 109,768 112 112 1.079 118,910 109,361 114 114 1.083 118,471 108,957 124 124 1.102 116,428 107,078 Table 18 Correction for Air Flow at Elevated Temperature

Calc FC05916 Rev 3 Page /2.

Table 2A-1 DG-1 AIR FLOW MEASUREMENTS Tested October 13,1992 Standard Velocity, Measured / Standard Flow, Calculated / Temperature, Measured

"' 9 1 2 3 4 5 6 7 8 9 Velocdy SCFM Tmp 6" Vel 2550 2775 2245 2320 2020 2665 2685 2655 2505 2491 scfm 2833.3 3083.3 2494.4 2577.8 2244.4 2961.1 2983.3 2950 2783.3I 24910.862 Temp 140 139 139 138 135 136 136 136 138 137 18" Vel 2920 3320 2450 2650 1900 2880 2880 3180 3060 2804 scfm 3244.4 3688.9 2722.2 2944.4 2111.1 3200 3200 3533.3 3399.97 28044.164 Temp 137 132 138 137 137 132 133 128 130 134 30" Vel 2790 2965 2295 2450 1770 2415 2470 2965 2/55 2542 scfm 3100 3294.4 2550 2722.2 1966.6 2683.3 2744.4 3294.4 3061.08 25416.413 Temp 125 127 132 133 134 127 132 120 120 128 42" Vel 2550 2785 2300 2570 1390 2465 2640 2980 2487 2463 scfm 2833.3 3094.4 2555.5 2855.5 1544.4 2738.9 2933.3 3311.1 2763.31 24629.754 Temp 121 124 128 127 125 120 125 118 114 122 54" Vel 1830 1780 1865 2600 1755 2050 1952 2411 1692 2026 scfm 2033.3 1977.8 2405.5 2888.9 1950 2277.8 2168.9 2678.9 1879.98 20260.909 Temp 118 117 122 118 119 115 116 110 110 116

- Average Temp 128 Total Flow 123262.1 Table 2A-2 DG-2 AIR FLOW MEASUREMENTS Tested October 28,1992 Standard Velocity, Measured / Standard Flow, Calculated / Temperature, Measured 2 3 4 5 6

"' ^*9

' 1 7 8 9 Velocity SCFM Tmp j 6" Vel 2660 2480 2380 2720 1190 2660 2400 2550 2640 2409 scfm 2955.5 2755.5 2644.4 3022.2 1322.2 2955.5 2666.6 2833.3 2933.3 24088.648 Temp 127 126 127 129 130 128 122 125 130 127 18" Vel 2650 2645 2410 2470 1050 2370 2700 3000 2550 2427 scfm 2944.4 2938.9 2677.8 2744.4 1166.7 2633.3 3000 3333.3 2833.31 24271.98 Temp 126 119 123 126 127 124 116 118 128 123 30" Vel 2860 2960 2590 2460 1050 2340 2380 2630 2480 2417 scfm 3177.7 3288.9 2877.7 2733.3 1166.7 2600 2644.4 2922.2 2755.53 24166.425 Temp 110 114 120 118 120 122 113 115 112 116 42" Vel 2597 3000 2575 2350 1110 2130 2100 2130 2350 2260 scfm 2885.5 3333.3 2861.1 2611.1 1233.3 2366.6 2333.3 2366.6 2611.09 22601.996 Temp 105 106 112 109 110 110 105 105 105 107 f; 54" Vel 2350 2440 2240 2060 1120 2000 1990 2300 2250 2083 scfm 2611.1 2711.1 2488.9 2288.9 1244.4 2222.2 2211.1 2555.5 2499.98 20833.125 Temp 99 98 100 102 105 103 100 100 102 101 Average Temp 115 Total Flow 115962.17 t

Page 1

Calc FC05916 Rev 3 Page d Table 281 DG-1 AIR FLOW MEASUREMENTS Tested July 10,1995 Standard Velocity, Measured / Standard Flow, Calculated / Temperature, Measured 1 2 3 4 5 6 7 8 9 9 flow SCFM Tmp 6" Vel 1618 2050 2096 2215 1555 1867 2032 2479 1738 1961 scfm 1798 2278 2329 2461 1728 2074 2258 2754 1931.11 19611.111 Temp 161.8 159.7 161.9 157.2 154.3 163 161.5 163.3 161 160 18" Vel 2392 2795 2465 2500 1722 2567 2691 2701 2616 2494 scfm 2658 3106 2739 2778 1913 2852 2990 3001 2906.67 24943.333 Temp 164.3 162.9 165.5 160.5 156.7 166.2 167.1 167.3 161.6 164 30" Vel 2828 2769 2673 2665 2290 2483 2513 2779 2991 2666 i scfm 3142 3077 2970 2961 2544 2759 2792 3088 3323.33 26656.667 i Temp 165.5 163.9 167.2 162.9 160.2 167.3 168.3 166.9 162.8 165 l 42" Vel 2838 2994 2855 2600 2311 2620 2733 2990 2992 2770 )

scfm 3153 3327 3172 2889 2568 2911 3037 3322 3324.44 27703.333 Temp 170.2 166.8 168.1 163.4 161.3 168.3 167.9 168.5 166.6 167 54" Vel 2598 2807 2866 2287 1967 2576 2583 2497 2613 2533 scfm 2887 3119 3184 2541 2186 2862 2870 2774 2903.33 25326,667 Temp 172.1 170 169.3 167 158.9 167.4 170.6 172.2 170.8 169 Average Temp 165 Flow (scfm)= Vel *50/45 Total Flow (sefm) 124241.11 Table 2B-2 DG-2 AIR FLOW MEASUREMENTS Tested July 11,1995 ,

Standard Velocity, Measured / Standard Flow Calculated / Temperature, Measured l

AVG Total Avg l 0

, flow SCFM Tmp 6" Vel 2113 2179 1910 1930 939 1891 2210 2175 2146 1944

! scfm 2348 2421 2122 2144 1043 2101 2456 2417 2384.44 19436.667 Temp 161 159.6 156.5 159.1 155.6 163 162.9 166 165.7 161 1 18" Vel 2480 2290 2190 2037 917 2270 2753 2795 2506 2249 scfm 2756 2544 2433 2263 1019 2522 3059 3106 2784.44 22486.667 Temp 162.4 161.6 158.3 161.3 157.8 167.4 168.2 169.6 167.2 164 30" Vel 2683 2621 2475 2395 1327 2481 2541 2717 2754 2444 l scfm 2981 2912 2750 2661 1474 2757 2823 3019 3060 24437.778 i Temp 164.5 163.6 159.7 162.5 159.7 169.2 169.5 171.2 167.2 165 42" Vel 2604 2785 2712 2312 1330 2115 2345 2670 2333 2356 l scfm 2893 3094 3013 2569 1478 2350 2606 2967 2592.22 23562.222 i Temp 168.5 165 161.7 162.8 161.4 169.6 170.6 173 172.1 167 l 54" Vel 2580 2507 2400 2633 1845 2525 2331 2417 2540 2420 scfm 2867 2786 2667 2926 2050 2806 2590 2686 2822.22 24197.778 j Temp 168.5 167.2 162.9 162.1 162 170.5 173.4 g 173.5 173.2 168

, Average Temp 165 Flow (scfm)= Vel *50/45 Total Flow (sefm) 114121.11 I

Calc FC05916 Rev 3 Page //

Radiator Fan Air Flow vs. Air Temp 145000 -

/

135000 --

/ j 125000 --

/ /

e U

/ /

. 115000 -- [

t -

. / - f c <- -

< / [

Q 105000 -

j J /

/ f A 95000 --

X 85000-- p # p #

r #

7 75000 l

100 102 104 106 108 110 112 114 116 118 120 122 124 Fan inlet Air Temp (Ambient) l c AFR, Water Coolant @ 190 F t AFR, Water Coolant @ 208 --+-DG-1 Air Flow (scfm) i -*-AFR, EG Coolant @ 190 F -*- AFR, EG Coolant @ 208 -*-DG-2 Air Flow (scfm)

AFR - Air Flow Required s

l Figure 1 Radiator Fan Air Flow vs. Air Temperature

Calc FC05916 Rev 3 Page /f The following pages show Tables 3 thru 8 and Figures 2 to 5. The tables show the results of the calculations used to determine the derating of the diesel generators. Tables 3 and 5 and figures 3 and 5 also show the demand power required during accident conditions as determined in calculation

)

FC03382. . Tables 7 and 8 are a tabulation of selected data taken from the test documentation. A- q discussion of the calculations is provided below. Figures 2 thru 5 are graphical presentations of the calculation results.

l l

Instrument uncertainty Post test calibration was conducted on equipment used in gathering data 'for the July,1995 testing.

The results of these calibrations showed that the instrumentation used for temperature measurement

. during the testing were in error. Jacket water temperature readings used in the evaluation of this data (see tables 7 and 8) were adjusted to account for the instrument error. All other instrumentation was found to be accurate. No additional error corrections were made based on this information.

1 ILGd Turbo Inlet Temperature This temperature is based on the ambient air temperature. The differential temperature is determined using data from the July 11,1995 testing. The test results indicate that the initial inlet temperature is l'F above the outside temperature and increases to 5'F above over the first 50 minutes. The remainder of the test the 5"F differential was maintained. The temperatures between zero and fifty minutes were linearly interpolated.

JW Outlet Temperature This temperature is based on the ambient air temperature. The differential temperature is determined using data fmm the July 11,1995 testing. The test results indicate that the initial inlet teinperature is 120*F (125'F used, see assumption 3.2) and increases to 89'F above -

ambient over the first 10 minutes. The remainder of the test the 89"F differential was maintained. The temperatures between zero and 10 minutes were linearly interpolated. ]

Initial KW (2000 Hr)

The initial KW available is 2627 KW as previously calculated.

Initial KW (4 Hr)

The initial KW available is 2771KW as previously calculated.

Derate Factor

, The derating factor is determined based on the Turbocharger inlet temperature and the

engine coolant outlet temperature. (see Derating Curve attached)

! Demand KW I The demand KW value was taken from calculation FC03382 Rev 8 Margin j Margin is the derated KW available from the diesel minus the demand value.

e "OK" If margin is less than zero this column will indicate " exceeds Avail". For a margin of zero or greater "OK" will be indicated.

i

' .__ . - ,s, ,.

I Calc FC05916 Rev 3 Page /6 D.G-l Turbo Inlet Temperature This temperature is based on the ambient air temperature. The differential temperature is

~

determined using data from the July 12,1995 testing. The test results indicate that the initial inlet temperature is 2*F above the outside temperature and increases to 16* F above over the first 60 minutes. The remainder of the test the 16*F differential was maintained. The temperatures between zero and 60 minutes were linearly interpolated.

JW Outlet Temperature This temperature is based on the ambient air temperature. The differential temperature is determined using data from the July 12,1995 testing. The test results indicate that the initial inlet temperature is 120*F (125*F used, see assumption 3.b) and increases to 85'F above ambient over the first 30 minutes. The remainder of the test the temperature varied with load. Under the conditions of the emergency scenario the differential temperature would be less than 85*F due to the reduction ofload. A differential temperature of 85*F will be used in this calculation to be conservative. The temperatures between zero and 30 minutes were linearly interpolated.

Initial KW The initial KW available is 2627 KW as previously calculated.

Derate Factor The derating factor is determined based on the Turbocharger inlet temperature and the engine coolant outlet temperature. (see Derating Curve attached)

Demand KW The demand KW value was taken from calculation FC03382 Rev 8.

Margin Margin is the derated KW available from the diesel minus the demand value.

"OK" If margin is less than zero this column will indicate " exceeds Avail". For a margin of zero 2

or greater "OK" will be indicated.

n l

)

Calc FC05916 Rev 3 Page).Z i

l DG-1 Derating Calculation j Outside Air Temp 110 l Radiator Inlet Temp 111 -

i Time JW Outlet KW Initial KW Initial Derate Derated Derate KW Demand

'E" " *

(min) ," p Temp (4Hr) (2000 Hr) Factor KW(4 Hr) (2000 Hr) KW O 112 125 2,771 2,627 100.00 % 2,771 2,627 2,439 188 OK l 4.17 112 156 2,771 2,627 100.00 % 2,771 2.627 2,439 188 OK 10 113 199 2,771 2,627 93.75 % 2,598 2,463 2,427 36 OK 20 -114 199 2,771 2,627 93.51 % 2,591 2,456 2,400 56 OK 33.33 115 199 2,771 2,627 93.18% 2,582 2,448 2,372 76 OK 40 116 199 2,771 2,627 92.91 % 2,575 2,440 2,361 79 OK 50 116 199 2,771 2,627 92.91 % 2,575 2,440 2,349 92 OK 62.50 116 199 2,771 2,627 92.91 % 2,575 2,440 2,349 92 OK t 70 116 199 2.771 2,627 92.91 % 2,575 2,440 2,349 92 OK

! 90 116 199 2,771 2,627 92.91 % 2,575 2,440 2,349 92 OK i 120 116 199 2,771 2,627 92,91 % 2,575 2,440 2,349 92 OK

all temperatures in dog F.
Table 3 j DG-1 Derating Calculation

, Temp /Derating/ Demand vs. Time i

Inlet 20 0 r Derate KW Temp rating)

84 90 173 2,627 100.00 % 2,627 j 86 92 175 2,627 100.00 % 2,627 -

88 94 177 2,627 100.00 % 2,627 90 96 179 2,627 100.00 % 2,627 92 98 181 2,627 100.00 % 2,627 94 100 183 2,627 100.00 % 2,627 96 102 185 2,627 100.00 % 2,627 I 98 104 187 2,627 100.00 % 2,627 i 100.9 106.9 189.9 2,627 100.00 % 2,627 l 101 107 190 2,627 95.36 % 2,505 1

103 109 192 2,627 94.82 % 2,491 104 110 193 2,627 94.55 % 2,483

{ 106 112 195 2,627 94.00 % 2,469

107 113 196 2,627 93.73 % 2,462
110 116 199 2,627 92.91 % 2,440 112 118 201 2,627 92.36 % 2,426 all temperatures in dog F.

Table 4 DG-1 Derating Calculation

  • Temp /Derating/ Demand vs. Ambient Temp.

~

i.

  • j Ccle FC05916 Rev 3 Page}_8k 4

4

! DG-2 Derating Calculation Outside Air Temp 114 Radiator inlet Temp 116 In et KW Intial Derate KW K

". Margin Results Temp 0 116 125 2,627 99.72 % 2,619 2,145 474 OK 4.17 117 134 2,627 99.41 % 2,611 2,145 466 OK 10 119 147 2,627 98.99 % 2.600 2,135 465 OK

. 20 121 169 2.6.27 98.27 % 2,581 2,110 472 OK 33.33 125 199 2,627 90.58 % 2,379 2,086 293 OK 40 126 199 2,627 90.12 % 2,367 2,078 289 OK a

50 129 199 2,627 89.42 % 2,349 2,068 '0. OK 62.50 132 199 2,627 88.55 % 2,326 2,068 258 OK

70 132 199 2,627 88.55 % 2,326 2,068 258 OK l

90 132 199 2,627 88.55 % 2,326 2,06u 258 OK 120 132 199 2,627 88.55 % 2,326 2,068 Y,8 OK j all temperatures in deg F.

Table 5 DG-2 Derating Calculation Temp /Derating/ Demand vs. Time Inlet KW Initial Derate KW Temp 50 108 175 2,627 100.00 % 2,627 94 112 179 2,627 100.00 % 2,627 i 96 114 181 2,627 100.00 % 2,627 97 115 182 2,627 100.00 % 2,627 98 116 183 2,627 99.72 % 2,619 100 118 185 2,627 99.15 % 2,604 5

102 120 187 2,627 98.58 % 2,590 104.9 122.9 189.9 2,627 97.76 % 2,568 105 123 190 2,627 91.00 % 2,390 106 124 191 2,627 90.73 % 2,383 107 125 192 2,627 90 45% 2,376 108 126 193 2,627 90.18 % 2,369 110 128 195 2,627 89.64 % 2,355 112 130 197 2,627 89.09% 2,340 114 132 199 2,627 88.55 % 2,326 116 134 201 2,627 88.00 % 2,312 all temperatures in deg F.

Table 6 DG-2 Derating Calculation Temp /Derating/ Demand vs. Ambient Temp.

Calc FC05916 Rtv 3 Page / 9 DG-1 Test Data from 7-10-95 Time 16:53 17.02 17:36 18.07 18:26 18:53 19:15 minutes 0:09 0:43 1:14 1:33 2:00 2:22 KW 2510 2450 2200 2200 2500 2500 2500 Air Temp (air) 96.9 97 97.8 97.4 96.7 94.8 Inlet 1 99.7 101 103.3 103.4 102.9 103.2 Inlet 2 99 101.1 100.8 102 102.2 101.2 Inlet 3 99.3 99.4 99.5 101 101.7 102.7 Inist 4 104.5 108.5 109.5 102.5 117.2 100.7 Inlet 5 102.5 102.8 105.4 102.2 101.7 101.2 Inlet 6 100.3 100.2 99.1 100.5 100 102.6 inlet 7 102.8 103.3 110.7 108.7 104.1 108.6 Inlet 8 100.5 102 101 102.5 101.1 103.2 i inlet 9 99.5 99.3 99.3 99.9 99.3 104 Average Average (aia) 100.9 102.0 103.2 102.5 103.4 103.0 102.5 DT, (aia-air) 4.0 5.0 5.4 5.1 6.7 8.2 5.7 JWIn" 173 177 175 170 177 178 175.0 JW Out (Jwo)* 185 189 186 180 189 190 186.5 DT,(jwo-air) 88.1 92 88.2 82.6 92.3 95.2 89.73 1

  • Recorded Va ue +3 due to instrument error

" Recorded Value -1 due to instrument error Table 7 Tabulation of Test Data

, DG-1 l l

DG-2 Test Data from 7-11-95 Time 16:22 16:30 16:40 16:51 17:05 17:21 17:33 17:49 18:01 18:20 minutes 0 0:14 0 30. 0:42 0:58 1:10 1:29 KVV 2356 2250 2237 2334 2037 2533 2516 Air Temp (air) 99.4 99.4 99.4 99.4 99.5 99.7 E't.3 99.8 99.5 98.4 inlet 1 97.1 103.2 106.6 107.6 109.3 112.1 117.8 110.8 113.0 117.8 Inlet 2 100 2 107.1 109.3 108.1 109.5 108.7 112.3 111.2 111.1 112.1 Inlet 3 102.1 103.5 109.6 109.7 113 109.1 116.8 112.8 113.2 114.9 inlet 4 99.5 103.4 105.2 106.5 110.2 111.7 113.9 115.7 115 112.5 Inlet 5 98.4 101.3 109.5 106.1 108.5 112.6 112.8 111.9 112.1 112.8 Inlet 6 98.4 101.7 103.7 106.1 108.5 110.6 116.7 111 111.7 113.6 Inlet 7 100.4 105.7 108.9 111.5 113 115.6 117.3 117.8 113.9 109.5 Inlet 8 98.8 101.9 103.9 105.2 111 109.7 112.0 113.1 110.6 110.1 Inlet 9 98.4 101.1 104.1 105.2 108 107.6 110 119.8 110.4 114.2 Average (aia) 99.3 103.2 106.8 107.3 110.1 110.9 114.5 113.8 112.4 113.1

. DT, (aia-air) -0.1 3.8 7.4 7.9 10.6 11.2 15.2 14.0 12.9 14.7 JWin" 172 172 172 172 172 170 168 168 168 178 JW Out (Jwo)* 175 179 180 185 185 182 181 181 181 193 DT.Uwo air) 75.6 79.6 80.6 85.6 85.5 82.3 81.7 81.2 81.5 94.6

  • Recorded Va ue +3 due to instrument error
    • Recorded Value -2 due to instrument error Table 8 Tabulation of Test Data DG-2

\

N b%Se  :

63 1

9 v0 5

) Re2e U

I g

a c P l

a C

0 7

l

= ,'

W 0 K 6 d

n a

m e

D

0 5

)

p )

t l

em I i

me T 0

0 0

Tt 2

(

. n s e W 2 vi b K t r

em e  : 0 n wA t

a r

e

4 d

e d a

=

r D

i c o i PoF c F l

1 g G

D

- e D

_2

- 7 As e h

et t n toM u

i C

D I

A t

0 n s F 1 i o pg .

1

(

)

l r

A 0 i 3 T e

n n y e lp d p0 I u1 s 1 4

(

t ofo

_W r r e e K wtu d

e o p ra t

a e p e

r D

e dv em i

0 ot r r 2 po l do l

iwtuo 1

- t Gen l

D, mi b 2

8 a 3 m 3

0 u e J 0 1 C Fi m

\ d x

a n

a m

N 6 1

9 5 p 0 u t

a o

t n

C=

Fsn ----

l a

o -

0 o io--

C ta s 0 0 0 0 0 0 0 0 0 0 0 l 0 5 0 5 0 5 0 5 0 5 0 o lug 8, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, c l c er 2 2 2 2 ly a 2 2 2 2 2 2 2 c G

r e e n P e  :

ly e j} 5*

0 3e, ht t o

E N

Cale FC05916 Rev 3 Page 2/

DG-1 OUTPUT POWER RATLNG (110 Deg. F Maximum Ambient Limit)

WEATHER TOWER TDIP. IN DEG. F (Nat'l Weather Service may be used if weather tower numavmRahle) 98 99 100 101 102 103 104 105 106 107 108 109 110 2,650 2.650 L600 2000 hr Rating T 2,600 vs.

4 ( AmbientTemp ;

3 2,550 2,550 2 2,505 g 1500  % 2,500

n.  %

5 -'-"-----

2,45 g ,,,,,

Demand vs. Time ~  %  %,2,450 g 2,439

  • 2,440 L400 '

2,400 l ~~ .

.R _

2,350

...* *=

2.u,

____ . 2,350 L300 2,300 0 5 10 15 20 25 30 35 40 45 50 55 60 Tune into Event (min)

Ethylene Glycol Coolant Note: DG-1 can be considered operable with ambient temperatures less than or equal to 110 deg F. Operation above the  %

2000 hr rating will be evaluated by System Engineering for impact on maintenance scheduling.

Figure 3 4 m

s ms T 63 .

1 9 v 2 e2 5

0 R e 0 C g a

2 1

F c P l

a C

0 0

1 n

0 8

).

t p

a em d me i

c c

i T As e Tt ~ et

. n 0 h un s e 6 t i 4 vi b r oM t

n m em i e

d a p wA t

lor E

PoF 2- g GD D 4 1

e

% im T As Cd Oo L c t- a s

o pon ta l

I

(

lyde

- ps p a u b, s

0 oF 4 t .

r g e e wd o4 p1 ei d f i

voeo W

r purt l

l a i re mp

- 2 m-Gt e W

K A 0 2

Dr o 2

8 d 3

, o t

u de 3 o 0 t t

  • C ne a

r

  • Fi N D e

d n

a a 6 m 91 u 5

b m

0 mi x _

C a _

t n Fs m .

l a n a o o o Co iua pu t

t 0 l l

0 0 0 0 0 0 0 0 0 0 0 0 0 o c

c st 5 0 5 0 5 0 5 0 5 0 5 0 5 l

6 6 5, 5, 4, 4, 3, 3, 2, 2, 1, l 0, ly a e c n 2 2' 2 2 2 2 2 2 2 2 2 2' 2 G r e m e

n P re e  : ui 6 ly t e

o e q

ht f8aE I E Nr _

i,lll  !(,! :ll,

Calc FC05916 Rev 3 Page 23 DG-2 OUTPUT POWER RATLNG (114 Deg. F Maximum Ambient LimiO MTATHER TOWER TDIP. IN DEG. F (Nat'l Weather Service naay be used if weather tower unavaitalde) 90 92 94  % 98 100 102 104 106 108 110 112 114 2,650 2,650 2,627 2,600 2,600 2,550

/g 2,568 2,550

/

k /

w 2,500 r 2000 hr Rating 3 2,500 vs.

2.m *'# ~"

h Ambient Temp ;

2,400 2,400 2,390

$ 2,350  % 2.350 C  % .

W 2,300 2,326 2,300 A

2,250 cc

( DemaIx1 vs. Time ) 2,250

=

g 2,200

\ 2,200 ee 2.150 ,, . . . ,

,,"* 2,150 2,145 **=. .,,,

2,100 - *** -

,,,_ g 2,100

"***= ==.. .... ....,,

2,050 2,050 0 5 10 15 20 25 30 35 40 45 50 55 60 Tune into Event (mia)

Ethylene Glycol Coolant Note: DG-2 can be cx>nsidered operable with ambient temperatures less than or equal to 114 deg F. Operation above the 2000 hr rating will be evaluated by System Engineering for impact on maintenance scheduling.

Figure 5 6

G

- ~~

%-OS%Ito r 6 2-EA-FC-90-062 P y~

~~

plE5EL. GEMERAFR NOM Rev. 2 Attacnment 8.2a-2

-9 c.tARNES f.NQtNE TIMptRATung l SWTTCH NOMINAL 8enen 1 Metus 1 0%  ;

stTmes,- 208' F.

ET3 ! I I Itte r.

  • ET3 or 213* F. 2APF*

ET5 2 I

ETI I b Het sastas stana SC. NC. 3. 1 l

ITE' -Nos engine 4aarut MD. LD.

ITK'2 - Het easias assaews SC. MC. 5.,,

er -

DMG b $b 0Y

  • D @

100 Engine Coota Tempenture _

99 T T Umit of 190 des F l

" k k /

" \ \ /

/\ N / .

7 x xr j

y 94

/

Engine Coolant Temp U: nit x x =

i T of 200 to 210 der F g j

, \\

90

\

\

. \,

87 86 I

85 90 95 100 105 110  !!5 120 125 130 135 140 145 i Air intake Temperature der F (Tuttocharger talet Air)

Rating at Elevsted Temscrsture (4)

For EMD 8445%

. . . . m. j . .,

.j.,,.

YM

~'

h f p k"- l i .

i 2ans eour m. no.a. a. , %,33,, l

- Teh 414.e361010

  • Easyuna: 427 43s31 mamar Twx: me. 75. e7. v.% m.u.

i reinem <s%ma l7 s

TRANSMrTTO:

FAcalMILE TRANSMISSION FAX NO M 2. -4 M -M'/6 4

NAug DA o BWY K

.Tm>-

1 i COMPANY oM A HA PdBL1c ki.oEJt- CfTY O M A l4 A STATE- zip l

! NUMBER OF PAGES BENG TRANSMITTED, .NCLUDING THIS COVER -

4

! ...ME.dy .c.o da * .. rdU20.. p.fr./m.. - . . ...' _-.' ..- ...-

..teo t.,4wt i Nt atu .' 7A ndfl..O>l.. -- 6~A 5..A A " A TA A Jl G/M. 2.QA.*}; ...

' . AL7j.nal.'.:..ll.6,k&.$1.-- . .. . ..-. . . . ._..:. . .,.

. o.Q j  % . . .

AANest$ /*Act dAtk.'.: ./Of.1 ,

} ..gA m,nyne '.7VB' M M47E : /.2 23 ' '

_ ... ~ . w . --.'..-.. .

j

. ., F---.y.y.j& &, . . -- 'fi'*--- ~ & & & -.. - - - - . . . _ . . .-.... -

. ". I_ *A nt:0=. fke.P P!i_.' _. ttu(a..."" P . M "8 V "*

tm sP.sM.,. -

1

__iM 2L .j.-. _7 MZZ _...w 4f._-. - 752-.'..u.. 624_____...'--.

t . . . . . . . . - .

...-. ./.0.8... . . . .-.AL9.Z!L- -. .' . 44:7. - . . eo ?. .

^

....  : /. , 4. 2 . - - _ ... ... . _ . - ...... _

. /L.3-- . .. __. 9.QikS. . .B. .'.~.. .'._,Af . .

.$4.2..-.......t..IS.1...... .

i '.._ '..JJ.8l ! ... 912.1.9__...- $1.. .

' *%.- --. .l 7A....

~

l ..J.23 lA4),93.3.i 47 . .-. 43A.. A' O.Q. -. . _. -.' . _ .. . . :. .

_...'. 421!L......' .//3.d_34J.. ._-.T7A. - 14Ri-_... 22%R_.......--

/Sh '

l.24GC9.9 .i.29 f.L$$~ '-. ...- - . 2% e_-_- . ... .._ - . . . . . _ . .

.. . _.B.8 .._..._.131.' 22_4 . .1. AC

. 1344.._--._.h.J.0_.-.._...- --

-.T.H.G.14.'$Eb%M!dk..b5..@ 6oht;ex..i.g p. ras}/y dkufe./ ./s _2..oa .

\ ... . . . i 9. heTUA C .Q sdab.. ps.s1gy<....wJua' .h Je v* 1..na. ta.am..-Ph.

..d.eiws/

....___my:t.nrike.hebe._St4[ka-" g' AOm .

m . r.AS/ta- A,.pdekasa. .M b,3. . 4 e ea c M n.

' ..~Cnc ..sj.s% ' nr 11.iki.v.<a.a. .Ama:...a.u.E.e . a%), .L..s.l .

au.. 4o._ba l

__-. Co.\Yawy y& .faid.i.m- kkn. .m -4<.r.d.h.C.4n.a. c.u.x.v.<.,:yi,l .(eyya4

.._.9*t'd.

\

ek, J.OJo.w_ MW'. ?.. /W4 .' . l.6

  • pu%4.,.Zo s oea Ec.M.; r;o

. i

.. .1L*.pi.bls.r..'/J.L.un..MM, 2. 2.Q. Iw A.-J..d *pt.hd J 22,:oa.o scEM

,. TRANSMISSION FROM:

l l

NAME ION I \ b l- C'" TITLE-j E. WI O tExiwaren. rn O CENTERVILLE. IA

41MN1013 901 968 3617 516 866 8834 ,,_,,,,,,,a) l rnau un w - env * *m. oei

Fr O ? 9 Us r f.- L.

P 96-E4 'iD *Y e _

2821Four MileMona.

Teleptione- 414 430-1010

  • Easyt w m= maw TWX: 910 271.ZNT e Toisse 2634N :-' ~~ '

i AMATINQXMt(7 Teletex: 4164lg4013

. . . ~

~

FACSIMILE TRANSMISSION ~

' c.c TRANSMIT TO: FAX NO. M .*l*3b~S M -

l NAME DM 60 R C'1 K TITLE

~"~~ " ' ' - '

I COMPANY C M A H A Ff_Mu r D&w:R CITY _ o M M N 97ATF M7me" #

l NUMBER OF PAGES BEING TRANSMITTED. INCLUDING THIS COVER I $ 5

. .... _ . -pst*' _ _

. . _. . . . __. . ... ._ v-.an- - : 4

.t4..E..stT . c.o Ao 14.c.. /. 9 7 o. .R,

.. a. . . . . _ . . . . . . . . . . #.ws---c.:

.p y ,

cace 497 ..E-c.o i w.,._Te rt P 'J.W.. ' '..'.bl.M.Ef,.__l lo.Q.G PM .., A. 4 ~t :. pv s.

81 7'l.TVpf. *. ...j.d. 6.. 7. ' . . ....__. __.. .__.... _ .. .

'....'... < m

! _...Dansx as&Asess ' M.S.*.l:fC_ ...___.!ar.11**-awi.Wu l

.._..___.. u S &?

i

. C,,,_" ... _n-.... ... ..- _ _.a s 77 M.+ n r o ,_ ~:.

w ~* app

-HA.T.En..~. . .... ... .%ps. . . n s m w : n rr n a. C J...

ppww.,egw : ..W n ..-_. . .. AmerMwee.. - W _ mAM .;:3ARLTOs --- %ds. ;.

. ._.?. . AlR 1 N. y cy9,q. 1 u&.p7 _

3 _ . . _ .

i

. . . A.c 3..*. ... .. 74, 4-5.7.~. ' . _, 3.S. ..

.7.2.7.......-

. P. 2'.2. ....

. ... I o l, ct .. m . . _ . . . .

. ... e.._ .. .o..__... s.

i, i.,.iB* 8ds.3.% " ,s6

.27 ~ l i

' J. . 6,5~ . , . . . . . . .. H

  • 3 'I./ 24 L B7fi .'\

1, . ..] .I. f> * . . 4. . > M. .. . .

.  %, ,, I) _fa C.. _ _ .

! ._.f 23 * ... $. , 2 4.. o . .e..S.r.]..l .. I. T. _M.D ... ls 3. 5'~._....

.. ..1

, *. . , Q_

  • 1

.. . . 3 l

. ..:;- :c,;,.

... ......;.............. .. .l.......... . . .

g ,v. ;

r W

.. .. . . . . _ _ ..... Wl

' diK4__hDW.

,; - F

..r..........._. ...' . ..._. ._ .. . . i . . .q_u. . ..._ 4="l

- ~~ .. ,i

..._.._.....s......

5

... ........ _ .... ... ..; .. _... s e; e . ,,, .?.? )

231*

. .. . .. _ . .. ..._.......i....._.. . . . . _ _ . . .

......u....... ' . d@75 .

.... v.It;- : i

, __'$r .~ ,.

i 8 *

~g, - t

.

  • e e .'Af *l
  • ma: . .

.... .. . . . . _ _ . . . . _ . . ,u. _ .

....- n. . .g I

zw .,.

. . . . _ _ . . . . . _ _ . . . . ........  ; . .y V . ,.,' 1.

........v....___ . .. .. ......

. 97,.

TRANSMISSION FROM:

~I I L l Ek NAME I M TITLE h RACINE. W1 3 LEX)NGTON. TN b CENTERVILLE. IA 414 639 1013 901-966 3617 515 856-8634 a # -. -..

.a .s.

..

  • h (,,""O M MO

t' C 2 e, ),$

% 27 a

2825 Four Mde Aces. Aaane. Neoonaan nee Teleenone: 414.ess.1010 e Easyung. sp.cagg Twx: sto n1.saw . Te c es uas Telefam 414 43s.1013 l

i FACSIMILE. TRANSMISSION C.C' TRAN8MIT TO: FAX NO. M ~2 - S ~46 - M4 4s 34us DAO BoncYk _ mu-j COMPANY OM A M A PUBLtd Fa'.d E NL CITY- DM A M A . STATE d zip _

l NUMBER OF PAGE8 BEING TRANSMITTED. INCLUDING THIS COVER A

. . . _ . _ _.... . . . . . . . . . .. ...... . ...... . - =

! .. BE4.T.4.L.o/s.o. ; .McCo. 214 ' .

. -. . . . . .- -. - :- i . . .: . .._.l..... [....

l ctwa AuT F 1.e 4.TOfA LJAL . ' . . . /1.QG:.h /%d.. J.9.Q .*. E. .... ! ... . . . ..

A t.s.ir;u a r.r ..>.o.5.li. M . !. .. . :. ... !. . . . .. '

l . . . .

i i

Rmiot' ;FAcs. A2eA...i.1eL./..N. . _AAn.. nae uwsm : 12.2K.$

g..

r- . ?.4. ,.wA r.ir. .... M ..... .. .._- .. ..... . ..}* g M:.aics... . . . . . . . . . . . ~  :

.. . . .,,. p_. . . p g m g m ....-  ; Q-. .- -. .. 4%lFC. .. . .

. .c . . . . - .

%wa.. sem Iwn n.....t*kenr.u..eu..,....'_EsidhJhy......... .: . . . .

. . ~

1 .. ....J.d_'E.... le/J A 2......a.4 s ..... ... 1.48 . .

..../.,1 C . .._ .. ._! ..

. . . . . . JAB.. .. . had2'4. ....'< *12, . , . _ .JA.'1 1. ... _. .' . .. ..L t 1. .__ . . . . . . . . . . .. . . . . .

t

. . ., JL,3.. .

!20,J.'/.'f. .....SN . .. ... . . lis.3..__. . .. 2.Sc . . . . . - ..' '

i '

.......... . // 9 131./.22G..... ff.....- .J2f5_. . . . 4 . 2.4. a .. . . . . . . . . . . . . .

./.. . . .... L.% & St. LJ.fa . . . -..... . .'.139%. . .. .. . . . 3,.'.t.m'~. . . . . . ... ,

......_.. a/A73 A 44.s4.y - '

m. ..................... _ ..... ...... .

, . . . . . . J.4.3......94>'3.tol. ..S V.... 9/4;.. t. 75.. . . . . . _.' . . . . . . .. \

... ja.b '.....).U.L 2$6. ...A.4*f. ..... .. SRT....... . . . . J 1. 0. . . . . . .. .. . . . . . . .

j

. . . . .... /l 'b ...J/2 .*f.Him.___. 75....__. . .._Lein.*f . ... 2 10 . .

. .. . . _ . U. $ . 1 2 2 4 1 t . .. . , 3 .1 ..... . .. lJ h 3 . ... ... 2 A.7. . . . . .. . . . . . . . . . ..

.... . y. 2:.S. . / 3.4. , 9/ 2. ' .. .JJ .'! . .. . 12 8 5 .

.$,o S... .. .-.... _'  ;

f

.' .I 4

. . . . . . . . . . . . . . . . . .. i

! 'TdANSMISSION FROM: -

) NAME IOM IILLM k TITLE RACINE. WI LEXINGTON. TN C CENTERVILLE. (A 414 639 1013 901 968 3617 515 356 6634 FORM No. Sets nev.ese DATE /O / Tius -

$.4

/LA-

^

wlF _ FM N Lt R o'*

  • A ^ 55 TSE$oub?"

M k TSG em _ _

I M_ _ M CERTIMCATE OF CALIBRATION AND TESTING U E 1 _

6 M ,

h)

.j .[

TSI Model 8350 Description VELOCICALC PORTABLE AIR VELOCITY METER TSI Serial No. 982 Calibration Standard WIND TUNNEL CALIBRATION SYSTEM, SERIAL NO. 141

% <4 CALfBRATION VERIFICATION RESULTS

(

Calibration Imtrument Percent Diference as a i 'A Standard output Dsference Percen of Tolerance

?

... hs.$ -10% 0 - 100 %

hl Std Ft/ Min Std Ft/ Min

  • j fljpp' [
12-p 4 iglhh 1 35.7 65.2 150.4 35.0 69.0 159.5

-1.9 5.9 K

(g r 6.1

  • x t< t F ff 1 325.0 332.2 2.2 *

.. # 648.9 664.8 2.5 *

[I 997.6 1021.3 2.4

  • g

'

  • yr 1477.2 1519.2 2.8 -
  • t j ft 2514.0 2559.8 1.8 *
  • kl, ,p.y 4483.6 4499.2 0.3 l

1 l

M 6993.2 7035.7 0.6

  • gy y t 8205.9 8164.2 -0.5 ** F j .

l

' Indicated Tanperature at 32*F 32 3 140*F 140 6

% g* Standard Conditions :2.3% ofreading :2pm (30-$00).

) l

} ' Qp ? Ambient Temperature: 21. l *C 10pm (500 2000). 30pm (2000-6000), F syQ Baromeme Pressure: 760.0 mmHg 100pm (6000-10000) ' yl l Cd~ l L TSIIncorporated does hereby cernfy that all matenals, components, and workmanhip used in the manufacture of

' this eqsapment are un srnct accordance mth the applicable spectfcanou agreed upon bv TSI and the customer

.t and mth allpublished specspeanons. Allperformance and acceptance tests requsted under thss contract were i

u

. ," successt' llv conducted accordsng to requsred specspcanou. Furthermore. all test and cahbranon data supphed 7(fg bv T51'ha.t been obrasned unng stansards whose accuracses are traceable to the Nanonal lunture of Standards an 0

.i:

i l g; 'E Technoioyfrom as denve accepted values ofphysscal constants.tNIST) or has been venped mth respect to sn j Q}!ls, j Applicable NIST Test Report Report Number- Date Date Last Verified

'A M DC voltage 100061 7-30-92 7-30-92 Barometric Pressure

[N,# P-8077

+ ...

1 -

4 Temperature 19-35'c 213426 5-13-87 5-26-92

' P' 4 3-19-80 10-19-91 0*C 246369 9-13-90 9-24-91 s

60*C 216642

y .
j Pressure 040J/34FB2:001-2 10-23-85 9-13-90 9-24-91 1-16-92 f _9 Velocity: (Gage Blocks) 738/231633-84 6-25-84 10-23-91 y

i,

l*-> 4 (Frequency) 84071101 7-11-84 A r 6-11-92 K4* C l y),i,. } Dewpoint 248330 6-10-91 11-21-91 *,g 9 h
j. g hg' Oct 16, 1992 ~

! b' Cihb?ated by

~

' ~

Cajibration Date p TSI Incorporated Mailing Address: P.O. Box 64394 St. Paul. MN 55164 USA

., J Industrial Test Instruments Group Shipping Address: 500 Cardigan Road St. Paul, MN 55126 USA  ;, ,

t

, } Phone
(800) 876-9874 or (612) 490 2888 Fax: (612) 490-2874 , t:

b

\

-. - .- .. . . - . - - - - - ~ . _ _ - . - - . - . . _ -

f*C 06 /G

/2 Pa:-7 Report No. 16472.8009-AV1 CQE APRIL 1992 Nuclear Safety Related t

I I TORQUE MEASUREMENT ON THE

, TAKE-OFF SHAFT OF j EMERGENCY DIESEL GENERATOR EDG-4 FORT CALHOUN NUCLEAR STATION i

i. -

4: .

! PREPARED .

. . P--

~

FOR I.' , ', -

' s ' ,

OMAHA PUBLIC POWER DISTRICT .. Y' ,.

i

, l 1

~ ..

! , ~? g. i

.". n, ' *

..~.

1 STONE & WEBSTER ENGINEERING CORPORATION ADVANCED MEASUREMENT & DIAGNOSTIC SERVICES

BOSTON, MASSACHUSETTS -

1 l

sc vb1/G x. 2.

Rcpert N3. 16472.8009-AV1 FC S5 00 CQE

  • Apr. 1992 l

Nuclear Safety Related l TORQUE MEASUREMENTS ON TIE TAKE-OFF SHAFT OF EMERGENCY DIESEL GENERATOR EDG-4 FORT CALHOUN NUCLEAR STATION PREPARED FOR OMAHA PUBLIC POWER DISTRICT Prepared by: Date: #//7/92 E. Bercel Senior Vibration Engineer Approved'by: h Date: Y-/7AZ

. Hall Senior Consulting Engineer f-4 STONE & WEBSTER ADVANCED SYSTEMS DEVELOPMENT SERVICES ADVANCED htEASUREMENT AND DIAGNOSTIC SERVICES GROUP a didston of STONE & WEBSTER ENGINEERING CORPORATION BOSTON, MASSACITUSETTS (617) 589 1505

ROport ND. 16472.8009-AY1 I'l? 2+3 /

pngo i l TABLE OF CONTENTS Section Title Page h

Summary 1 i

i 1.0 Objectives. 2 2.0 Calibration and Measurement Procedures 2 i

3.0 Test Results 3 4.0 Conclusions 4 i APPENDIX 5 1

Table 1 System Calibration Data l Table 2 Take-off Shaft Torque and Power vs Fan Blade Pitch Figure 1 Torque measurement Block Diagram Figure 2 System Calibration Block Diagram Figure 3 System Calibration Data Plot l Figure 4 Take-off Shaft Power vs Fan Blade Pitch Plot t

9 1

t 4

0 i

Ec oshu dL J F4 8%> J E

' rop 0rt No. 16472.8009-AY1 p393 .g.

i l soxxaar l

h On Marcn 16-and 18 1992, field measurements were performed to determine the power requirement of the' cooling fan at various blade pitch settings. The power is delivered to the fan by a-take-off shaft through a gear reducer. One end of the take-off shaft.is' coupled to the free end of the crankshaft of the Emergency Diesel Generator, the other end is coupled to a gear reducer. The Diesel engine is a General Motors Model 20-645-E4.

The. generator is rated at 3250 kVA.

The take-off shaft was instrumented using strain gages to serve as a torque transducer. Using radio telemetry, the torque signal was transmitted to a data acquisition system. Prior to the 1 tests, the entire measuring system was calibrated and to end by applying known torque inputs to the shaft and recording the

. output of the data acquisition system.

Tests were performed at 500 rpm and 900 rpm engine speeds and at four blade pitch settings ranging from 12 to 26 degrees. In each test, the data acquisition system recorded the torque measurements and using the known rotational speed of the take-off shaft computed the engine power delivered to the fan drive. The results obtained show good repeatability and are reliable. This is a factual report to present the test results.

9 l

' s - byhv t- 2.

& 33 RCpart N3. 16472.8009-AV1 pngo 2 1.0 OBJECTIVES The objective of the tests was to determine the engine power required to drive the fan at various blade pitch settings representing corresponding air flow rates.

2.0 CALIBRATION AND MEASUREMENT PROCEDURES The take-off shaft was instrumented with mental-foil strain gages arranged on the shaft in a manner to provide an output proportional to torsional strain and to be unaffected by bending or axial forces.

The following instrumentation was used in the tests:

Description Make & Model M&TE No. Calibration Due Date Strain Gages Micro-Measurement CEA-06-187UV-350, Strain Amplifier Vishay 2310 AMS02 10/02/92 Force Transducer HBM USB-500 LCOO9 04/30/93 Radio Transmitter PMD T-20/T-201 TELO7 CBU Radio Receiver. Ark R-102BD TELO2 CBU LP Filter Rockland 432' FLT05 07/18/92 A/D Board Metrabyte DAS16F DAS27 05/09/92 Digital Computer Compaq 386/20 COM11 NCR l

The torque measurement system is. illustrated in Figure 1. An FM/FM radio transmitter equipped with strain gage conditioning circuitry was' mounted on the take-off shaft and connected to the strain sensors. The transmitted radio signal was captured and demodulated in a receiver. The receiver provided a voltage output proportional to the torsional strain in the shaft. That output was connected to a data acquisition card in a portable computer for quantitative measurement. A spectrum analyzer and an oscilloscope were used for monitoring the quality of the received signal and that of the receiver output respectively.

Both functions were qualitative. On command from the keyboard, the data acquisition was performed at a set sampling rate to obtain a desired number of data samples. The data collection parameters were preset in the data acquisition software to 2 samples /sec and 36 samples total for the static calibration and .

10 samples /sec and 310 samples total for the fan test.

The torque measuring system was calibrated end to end, treating the instrumented shaft, the telemetry and data acquisition equipment as one system. The coupling between the take-off shaft and the gear reducer driving the fan was broken, and a rigid i

r %7M n 2-

. RGpart No. 16472.8009-AV1 EbbkY M ,

pago 3 lever arm was attached to'the coupling flange of the take-off shaft. The torque input to the shaft was applied by suspending dead weight from the end of the lever arm. The distance from the centerline of the shaft to the point of weight attachment, measured to reflect to effective moment arm, was 42.0". A precision force transducer was used as a link between the lever arm and the suspended dead weight and served to provide a -

precision measurement of the applied force. Figure 2 is a .

schematic illustration of the calibration set-up.

TheLoutput of the force measuring system was connected to a data acquisition channel. The force measuring system was also calibrated end-to-end. The calibration was performed using the precision' shunt method to' simulate'i'nput to the transducer and recording the output of the data acquisition system. The torque was applied in four increments up to 720 lb-ft, which was the

-anticipated torque range of the test. The actual maximum torque seen in the subsequent tests was 880 lb-ft. Both increasing and decreasing loads were applied. The output of the telemetry-based torque measuring system and that of the force measuring system were recorded simultaneously at'each load. The calibration procedure was performed twice. At the completion of the calibration, the data acquisition software combined the two sets of results to compute the input-output relationship of the torque '

measuring system. The calibration data are given in Table 1 and have been plotted in Figure 3.

Before each test, the pitch of the fan blades was adjusted to the desired angle and before the engine was started up a set of zero torque readings were recorded. The engine was brought up to 500 rpm'and then to 900 rpm and torque readings were taken. At each speed two to four sets of torque readings were taken. Taking the zero readings and the known engine. speed into account, the torque i

and power flowing through the take-off shaft were determined for each set of data. Tests were performed at blade pitch settings of 12, 18, 22 and 26 degrees.

4 1

3.0 TEST RESULTS i

The results of the torque measurements and the shaft power data j '

computed from them have been summarized in Table 2. Ir. Figure 4 the shaft power data have been plotted against blade pitch for both engine speeds.

l l

I

f-c.CQ 1/C r. t.-

A? ]5 R0 pert No. 16472'8009-AV1

. pago 4

4.0 CONCLUSION

S The objective of determining the engine power required to drive the fan at various blade settings has been successfully accomplished. The results obtained show good repeatability and are reliable.

e i

f 1

f L Uff/C A2-ft,07 36 RCp3rt No. 16472.8009-AV1

~

pago 5 e

i 1

4 4

4 APPENDIX J

d l

s 6

9 k

Nfi9/6 2 2.

RGpart No. 16472.8009-AV1 4 g)7 l

TABLE 1 l

CALIBRATION DATA FOR TAKE-OFF SHAFT TORQUE MEASUREMENTS l EMERGENCY DIESEL GENERATOR EG4, FORT CALHOUN NUCLEAR STATION MARCH 16, 1992 APPLIED MEASURED TELEMETRY BEST FIT ERROR ERROR FORCE TORQUE COUNT TORQUE Re. BFT PER CENT lbs lb-ft ### lb-ft lb-ft FS.

0.02 0.06 2 0 -0 -0.0 51.69 180.90 465 179 -2 -0.2 103.39 361.88 926 358 -4 -0.6 154.89 542.11 1383 535 -8 -1.1 205.56 719.46 1852 716 -3 -0.4 154.93 542.24 1399 541 -1 -0.2 103.45 362.08 952 368 6 0.8 4 51.72 181.02 476 183 2- 0.3 0.01- 0.04 -2 -1 -1 -0.2 1 -0.02 -0.06 0 -1 -1 -0.1 l 51.48 180.16 453 175 -5 -0.8 l 102.14 357.49 908 351 -7 -0.9 153.87 538.54 1382 534 -4 -0.6-205.57 719.49 1869 723 3 0.5 l

,153.88 538.58 1415 547 8 1.2

' l 102.14 357.50 942 364 6 0.9 50.68 177.36 466 180 2 0.3

-0.01 -0.04 2 -0 -0 -0.0

          • Best Fit CNTS/lb-ft 2.583 *****

THE 'BEST FIT' TORQUE WAS CALCULATED FROM THE TELEMETRY COUNTS j

' AND THE COUNTS / TORQUE VALUE OBTAINED FROM THE 'LEAST SQUARE' FITTING OF THE CALIBRATION DATA POINTS.

DEVIATION OF THE MEASURED TORQUE FROM THE 'BEST FIT' TORQUE.

i e

9 h

l

... ._ . . _ _ . _ _ - - - --- - - - - - - -- ~-

i ROport'NO. 16472.8009-AV1 fdOf9/6 22 ,

. . /4 dE7 i

{ TABLE 2

' TAKE-OFF SHAFT POWER MEASUREMENTS EMERGENCY DIESEL GENERATOR EDG4 FORT CALHOUN NUCLEAR POWER STATION 4

MARCH 18-19, 1992

500 rpm 900 rpm FAN BLADE DRIVE DRIVE FAN BLADE DRIVE DRIVE PITCH TORQUE POWER PITCH TORQUE POWER deg. lb-ft hp deg. lb-ft hp 12 114 10.8 12 342 58.6 12 114 10.8 12 343 58.8 12 12 342 58.7 18 194 18.4 18 578 99.1 18 194 18.4 18 578 99.1 18 193 18.4 18 575 98.6 18 18 575 98.6  !

22 243 23.1 (22 22 235 697 119. l 22.3 *

/ 22 697 119.4 22 236 23.4 22 696 119.2 22 \s2_2 692 118.6;

, 26 306 29.1 26 872 149.5 26 308 29.3 26 880 26 150.9 316 30.1 26 873 149.6 26 26 869 26 148.9 26 881 151.0 9

< f(0.i$/6 oC ?-.

Pt sa p o r-t No. 16472. COO 9-AV3 .

/

! N .

4

StBCARRIER FV .

lj ECEIVER

. tti j l l l i ///

i a i j $ ' ' ' MGilN , SPECTRW ARYZER J 0 1 L0f-PASS FILTER TAKE-0FF DEM00llATED SIGK SHAFT 1

DATA OSCILLOSCOPE

ACQUISITION SYSis l

s DATA . '

j MISITim - h----------------~'-----!'

i

'. SRAE .*'

...~..,....'

i i n n f

DIGITAL I  !

PRI M CC N ER l 4 1 ,

i .

' . l l

INSTRUMENTATION SCHEMATIC

Figure 1

A h Of'/)69 22 R as p a r- t No. 104~72.8O09-AV2 #27 @

YD 4
ANN 4

g SIIDRRIER

RECEIVER tie .

i ,,

I I

///

.' STRAIN SD50R5 4 i a TRANumat HCTRW AM.YZER

<" 0 i LN-PASS fILIIR j (#DQll J

j d i

i MTA

'; ACOVISITION SYSIBl i

. .- MTA .

i  ! ACQUISITION i

. SOFTWARE .*

l .........' ,

l  :

STRAIN i AE.lfIER i DIGITAL CORITER ~

i CALIBRAT10N SET-UP f

d Figure 2

)

1

x FORT CALHOUN NU~ CLEAR STATION EDG4 TEST 4 0

TAKE-OFF SHAFT TORQUE CAllBRATION

)

700 -

tn 600 - b N

500 - 0 8

?

e 400 - $

hi 3

@ 300 -

R 200 -

100 -

71 r

0 C -

N m

1 L

~100 i I- i i i i i i e i i i i i i i

- 0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 (Thousands)

A/D COUNT

, s y O TQM + TQC

2 FORT CALHOUN NUCLEAR STATION EDG4 TEST 4 o

TAKE-OFF SHAFT POWER OUTPUT 1 160 6 2

150 - -; 0 140 -

a _

130 - 4 N

120 -

110 - O y

100 - >

o. j
  1. 90 -
  • i 80 -

g

$ 70 -

60 : .

50 -

40 -

) 30 -

E-20 -

C-10 -G-o , , , , ' ' di D

. ' 8 8 ,

12 14 16 18 20 22 PITCH, deg. N 0 500 rpm + 900 rpm

&"-- w - _ _ _ - _ - _ _ _ . _ - - _ _ _ _ - - _ _ _ - - . - - . - - - - - _ _ . . _ - - _ . _ _ - _ -

f'(_054/4 RE/3 P4 V3 FC03382 Rev 8 DG-1 Load vs Time for a LBLOCA 2440 _

2420-2400-1 2380-t 2360-

. 0 0 0 2340-2320-2300 kkkkkkkNNN~kla- - - -

Time in Seconds kk$

e m DG-1 Load vs Time for a LBLOCA Time Fan Coolers Creditied i into Containment VA-3A&VA-7C SI-3A DG 1 Total Event Pressure Load Load Base DG-1 Sec. psig KW KW Load Load KW

O 56.3 284.0 260.9 1893.8 2438.6 , I 250 56.3 284.0 260.9 1893.8 2438.6 500 53.3 273.9 260.9 1893.8 2428.6 750 51.0 266.2 264.3 1893.8 2424.3 1000 45.0 246.1 268.4 1893.8 2408.3 1 1250 41.5 234.3 269.2 1893.8 2397.3 1500 38.0 222.6 270.4 1893.8 2386.8
1750 35.5 214.2 271.3 1893.8 2379.3 l 2000 33.0 205.8 271.9 1893.8 2371.5 i 2250 31.0 199.1 272.3 1893.8 2365.2 l 2500 29.0 272.6 192.4 1893.8 2358.8 2750 27.5 187.3 272.6 1893.8 2353.8 3000 26.0 182.3 272.6 1893.8 2348.7 3250 26.0 182.3 272.6 1893.8 2348.7 3500 26.0 182.3 272.6 1893.8 2348.7 l 3750 26.0 182.3 272.6 1893.8 2348.7 4000 26.0 182.3 272.6 1893.8 2348.7

\

1

8/14/95 7
37 AM Page1 VNTFANCR.XLS Composite-DG1 I

x a ~ . - - - - - - - - - - - - - _ - _ _ - - - _ _ _ _ . - _ _ . _ - -

ftar9t& ge/3

/6 WFC03382 Rev. 8 DG-2 Load vs Time for a LBLOCA 2160.0 2140.0

, 2120.0 2100.0 5 200.0 2060,0 2040.0 -

2020.0 Time in Seconde DG-2 Load vs Time for a LBLOCA Time Fan Coolers Creditied into Containment DG-2 Total Spray VA-3A&VA-7C Total l Event (sec) Pressure Base Pump Load Load DG-2 I psig Load KW KW Load KW l 0 56.3 1380 481.4 284.0 2145.4 250 56.3 1380 481.4 284.0 2145.4 500 53.3 1380 483.8 273.9 2137.8 750 51.0 1380 485.7 266 2 2131.9 1000 45.0- 1380 490.6 240.1 2116.7 1250 41.5 1380 493.4 234.3 2107.8 1500 38 0 1380 496.2 222.6 2098.9 1750 35.5 1380 498.2 214.2 2092.5 i l

2000 33.0 1380 500.3 205.8 2086.1 2250 31.0 1380 501.9 199.1 2081.0 2500 29.0 1380 503.5 192.4 2075.9 2750 27.5 1380 505.5 187.3 2072.9 3000 26.0 1380 505.9 182.3 2068.3 3250 26.0 1380 505.9 182.3 2068.3 3500 26.0 1380 505.9 182.3 2068.3 3750 26.0 1380 505.9 182.3 2068.3 4000 26.0 1380 505.9 182.3 2068.3 8/14/95 7:37 AM Page1 VNTFANCR.XLS Composite-DG2

~

Delg Calc Preparation, Review and Approval #9 PED-QP-3.5 Page 1 of 2 CALCULATION NUMBER Reviewer's Checklist-Calculations F&oS9/4 av 3 YES NQ, N/A

1. Is Calculation Cover Sheet attached and /

completed, as required,to the calculation?

2. Is the calculation objective stated? Was /

this achieved?

1

3. Are inputs correctly selected and incor-porated into the analysis?

/-

i

4. Have inputs and/or assumptions which require confirmation at a later data, been identified
on the Calculation Cover Sheet and in the j calculation body? /

! 5. Are the applicable codes, standards, 1 regulatory requirements, and other references including issue and addenda identified such j 2 that they are traceable to source document? '

l a

2

6. Was an a3propriate calculation method used? 7
Was the 3asic theory appropriate?
7. Have assumptions been noted and justified?  !

i

8. Are the calculations free of arithmetic /

errors?

9. Is the calculation consistent with the [ _
design basis requirements?

I

10. Is the conclusion stated?
11. Is the calculation legible and suitable for microfilming?

[

l PED-QP-3.36 Rev. 3

M Yl/

Calc Preparation, Review and Approval IE PED-QP-3.5 Page 2 of 2 CALCULATION NUMBER Reviewer's Checklist-Calculations fCOS9M 26 0

. YES M N/A

12. Are all blocks on the Calculation Cover Sheet addressed correctly? [
13. Have Forms PED-QP-3.2, 3, 4 and 5 been used [

and correctly completed?

14. If the calculation has been prepared to supersede another calculation, has all the valid information been transferred in the new calculation? [

, 15. If the calculation determines that an existing or preexisting condition may be outside the design basis of the plant, are the results of a reportability evaluation f performed in accordance with PED-QP-19 /

attached?

d REVIEWER COPMENTS:

l 1

4

- 108- /f5 Re'VT6ter

/ Date PED-QP-3.37 Rev. 3

Calc Preparation, Review and Approval Page 1 of I CALCULATION NUMBER 7l I PED-QP-3.7 Independent Reviewer's Checklist - Calculations ROS% Rtv 3 YES JLO. N/A

1. Are the calculation methods accurate and appropriate?

[

2. Are input data sufficiently detailed?
3. Are the calculation assumptions reasonable?
4. Has the basis for engineering judgement /

been included in the calculation, when /

used?

l 5. Is the calculation documented sufficiently such that the analysis is understandable to someone competent in the discipline [ I without recourse to the Preparer?  !

6. Have the design interface requirements been satisfied? I
7. Are the results reasonable and do they

,' resolve the calculation objective?

8. If an alternate calculation was used to verify the adequacy of the analysis, is it attached to e calculation?

/ l I

, PA171f W AMffA If qualification testing was used to verify '

9.

the adequacy of the analysis, has it been l documented using a retrievable source, or y attached to the calculation?

10. Are calculations involving Technical Specification values and associated margins

. of safety identified? V fd f P f'S. L76] MW8 INDEPENDENT REVIEWER C0tWENTS:

w / Of "/5 W Independeg Reviewe(/ Date l

1 PED-QP-3.40 l Rev. 3 l d