ML20092B161

From kanterella
Jump to navigation Jump to search
Calculation of Byron D4 SG Tube Support Plate Differential Pressures During MSLB W/RELAP5M2
ML20092B161
Person / Time
Site: Byron, Braidwood  Constellation icon.png
Issue date: 09/04/1995
From:
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20092B143 List:
References
PSA-B-95-11, PSA-B-95-11-R, PSA-B-95-11-R00, NUDOCS 9509110319
Download: ML20092B161 (50)


Text

l Q

l 1

l l

l Calculation of Byron D4 SG Tube Support Plate Differential Pressures during MSLB with RELAP5M2 PSA-B-95-11 Revision 0 Kevin B. Ramsden Nuclear Fuel Sennees Department Downers Grove, Ilknoes Prepared by: A. = Date: 9[ f[ i Reviewed by: -/r Date: Yf,[y[

Approved by:

M [m Date: 7/ k9T (Date issued) 9509110319 950904 PDR ADOCK 05000454 P PDR

  • PSA-B-9511 Revision 0 l

Statement of Disclaimer This document was prepared by the Nuclear Fuel Services Department for use internal to the Commonwealth Edison Company. It is being made available to others upon the express understanding that neither Commonwealth Edison Company nor any of its i officers, directors, agents, or employees makes any warranty or representation or assumes any obligation, responsibility or liability with respect to the contents of this document or its accuracy or completeness.

i

)

i I

  1. i l

ll ll l

t

-a w- m. -~--....--,--mu. . - . , -  % - . --~_ --.

PSA-B-95-11 '

Rsvision 0 Abstract The purpose of this calculation is to perform and document an independent assessment of the Westinghouse calculations generated to provide structural loadings on the steam generator tube support plates during limiting transient conditions. The Main steam line break (MSLB) event from hot zero power was determined by the vendor to yield the highest differential pressures across the support plates. The vendor utilized the TRANFLO code for the initial work, and validated their results using the MULTIFLEX computer code. This assessment utilizes the RELAP5M2 computer code

- to analyze the limiting-transient and determine the peek-differential pressures seen at the most highly loaded TSP for comparison to the vendor predictions.

iil

1

' PSA-B-95-11 R: vision 0 l 1

Table of Contents

1. Introduction... . .. . . . . . . . . . . . .. . . .. . . . . . . . . . . . . . . . .....1
2. Methodology /Model Description and Assumptions.. . . .. . . . ..... .. 2 2.1 Computer Code ......... .. ..... .. . . ... .... . .. . .... . . . . . .. .........2 2.2 RELAP5M2 Model of D4 Steam Generator. ... .. . . . . . . . . . . . . . . .. 2 2.3 Initial Conditions. .. . . . . . . .... .. . . . . . . . . . . . . . . . . . . . .. . 2 2.4 Break Model.. . . ... . . . . . . .. . . . . . . ..........2 2.5 Tube Support Plate Differential Pressure Calculation. .... ..... .. .. .3 2.6 Calculation of Crossflow Resistance. . . . . .. .. .. . . . .. . .3
3. Calculations. . . . .. .. . . . . . . . .. .... . .. .... .... . .....5 3.1 Base Case. ... .. . . . . . . . . . . . . . . . . . . . ........5 3.2 Equilibrium Conditions Calculation. . . . . . . . . . . . . . . . . . . . . . . . . ...5 3.3 Sensitivity Calculations. . ... . . .... . . . . . . .... . .5 3.3.1 Separator Performance. ... .. ... . . .... .. .. .5 3.3.2 TSP Loss Coefficient . . . . . . . . . . . . . .. .....5 3.3.3 Flow Area / Inertia of Preheater Section..... . . . . . . . . . . . ........6
4. Results . . .. . . . ... .. . ..... . .7 4.1 Base Case. . . . . . . . . . . .. .. . . . . . .. ......7 4.2 HEM Comparison Calculation.. .. . . . . . . ... . .. . 7 4.3 Results of Sensitivity Cases. .. . .... . .8 4.3.1 Separator Model Sensitivity. .. . . . . . . .8 4.3.2 Effects of TSP Loss Coefficient . . .. . . . . ....8 4.3.3 Addition of Preheat Bypass Area. . . . .. . . . . .. 8
5. Conclusions / Discussion . .. .. . . . . . .15
6. References.. .. .. .. ... . . . .16 Appendix A - Microfiche Index. . .. . . .. .. .17 Appendix B RELAP5 Input Deck and Verification Sheets. . . . . . 18 iv 1 I

I

  • PSA-B-95-11 Rzvision 0 List of Tables Table 1 Results of Separator Parametric Sensitivity. ... .... . .... . ... . .. ... ....... .. 8 Table 2 Sensitivity to TSP Loss Coefficient ...... ... . . . . . . .. .. .................8 I

V i

' PSA-B-95-11 l R2 vision 0 l 1

List of Figures Figure 1 RELAPS Model Diagram .. . . .. . . ... ... . . .. ...... . ... .. ......... . ... .... ... ..... 4 Figure 2 Domo Pressure Response Base Case...... . .. . ..... .. ................9 Figure 3 Break Mass Flow Rate Base Case.. ........................................10 Figure 4 P-TSP Differential Pressure Base Case . . . . . . . . . . . .. . . . . . . . . . . . 11 Figure 5 Liquid Velocity at P-TSP Base Case. ... . . .. . . . . . . . . . . . . . . . . ... 12 Figure 6 Liquid Void Fraction at P-TSP Base Case.. . ... . . . . . . ... . . ..... . 13 Figure 7 Vapor Void Fractions at P-TSP and J-TSP... . . . . ... .. .. .... . . .. . 14 l

9 Vi

PSA-B-95-11 Revision 0

1. Introduction  !

During a main steam line break event, the rapid blowdown of the faulted steam i

generator can lead to significant loads on the tube support plates. Westinghouse has performed transient thermal hydraulic calculations on the Byron 1/Braidwood 1 Model l D4 steam generators in support of structural calculations regarding the extent of tube support plate deformation. As a result of questions that arose during licensing review of the vendor methodology, it was determined that an independent assessment of the limiting TSP differential pressures be performed in-house using the RELAP5 computer i code. This report documents the models created for this purpose and details the results obtained.

I T

t i

?

1 of 18 l

1

.- PSA-B-95-11 Rettision 0

2. Methodology /Model Description and Assumptions 2.1 Computer Code The RELAP5M2 cycle 36.05 computer code as implemented on the Comed IBM mainframe was employed for this calculation. This code has been installed and verified for use in controlled analysis. This computer code has the ability to model full non-equilibrium conditions, and employs a six equation / two fluid model. This code has been extensively tested in LOCA type calculations, and has been used for licensing ,

applications by vendors and utilities.

2.2 RELAPSM2 Model of D4 Steam Generator The model developed for use in this calculation is depicted in Figure 1. This model is based heavily on the TRANFLO input description provided by Westinghouse. The primary side of the model used a nodalization essentially identical to that used by Westinghouse. Key secondary side flowpaths have been checked to ensure that appropriate values of inertia and pressure drop information are being consistently applied. Calculations of fluid path inertia and loss coefficients of the principal flow paths for the TRANFLO model and the corresponding RELAP input are provided in Appendix B. As can be seen, the RELAP model uses consistent, and slightly conservative values.

2.3 Initial Conditions The vendor calculations indicate that the limiting case occurs at hot zero power conditions with water levels at normal values. The water level is at 487" , just below the swirl vanes in the separators. The temperature of the water and steam are uniform at 557 F, and saturation conditions are assumed. The primary system is at equilibrium conditions with the steam generator. The primary system is modeled with time dependent boundary conditions that specify the hot leg temperature to be constant at 557 F. It should be noted that setting initial conditions for the partially voided volumes required some effort, since RELAP requires specification of fluid quality, but the value needed is void fraction. Inspections of resultant void fractions, and total SG mass were helpful in adjusting the model to start at the correct liquid levels.

2.4 Break Model  !

The break is modeled using a motor valve component with an opening rate of 1 millisecond. The generator nozzle is specifically modeled to provide appropriate treatment of fluid inertia and flow limitation. The break is assumed to occur directly outside the nozzle.

2 of 18

.. PSA-B-95-11 Revision 0 2.5 Tube Support Plate Differential Pressure Calculation The calculation of tube support plate differential pressure was accomplished by subdividing the pipe component representing the upper section of the steam generator to include thin (.2 ft) volumes on either side of the support plate. The pressure difference between these volumes was then calculated via a control variable to provide the time dependent differential pressure. This method was applied on the uppermost support plate (P) since the vendor calculations indicated that this plate experienced the highest loads. This will lead to slight conservative overprediction of the differential pressures (about 0.12 psi) across the TSP since the elevation head is not being compensated out.

2.6 Calculation of Crossflow Resistance A review of the Westinghouse input / output for TRANFLO indicated that a crossflow resistance across the tube bundle was accounted for. An independent approach for calculating the crossflow resistance was developed based on the Zukauskus correlation as presented in Reference 2. The results of this correlation were compared to Westinghouse at the .57 second output edit, and showed comparable pressure drops. The pressure drop information calculated in this way was then converted into K-values to be added as crossflow corrections at selected junctions. This approach was used for the upper tube region ( 135-5) , downcomer entrance (100), and preheater (133) areas.

3 of 18

.. PSA-3-95-11 Revision 0

3. Calculations l 3.1 Base Case The base case performed is the full MSLB from Hot Zero Power Conditions. The water level is assumed to be at normal levels (487"). Comparisons to be performed include tube support plate (TSP) P differential pressure vs time and break flow rate. The full non-equilibrium two fluid model capability is utilized for this case. The default  ;

separator performance curves are applied.

3.2 Equilibrium Conditions Calculation This case is essentially identical to the base case with two exceptions. The equilibrium switch in the volume descriptions is set to 1 to force equilibrium temperatures between phases. The other change is to set the h flag (VCAHS) in the junction description to 2 to force the code to adopt a single momentum equation at junctions. All other input remains identical. This case tests the sensitivity of the results to the two phase fluid model used.

3.3 Sensitivity Calculations  ;

Several additional cases were run to assess the sensitivity of the base case model to variance in input parameters. ,

3.3.1 Separator Performance The first set of sensitivity runs looked at the RELAPS separator modeling of carryover /carryunder fractions. The base case used the default separator performance values (Vover=.5, Vunder=.15). Values of Vover ranging from 0.25 to 1.0 were input with default Vunder. Then Vunder was varied from the default value of 0.15 to 0.45, while holding Vover at its 0.5 default value.  ;

1 i

3.3.2 TSP Loss Coefficient i

in order to assess the appropriateness of the differential pressure modeling of the upper support plate, the loss coefficient for the P TSP were varied plus and minus 10%.

This allows the determination of whether the pressure drop is due to two-phase effects, orjust the plate frictional losses by comparing the relative change in the differential pressures from the base case.

i l

l 5 of 18 l

__..I

s.

PSA-B-95-11 l Retrision 0 1

3.3.3 Flow Area / Inertia of Preheater Section The junction flow areas of the base case preheater section ignored the bypass flow areas through the TSP for conservatism. An additional run was performed to determine l the effect of adding this area to the existing model.

6 of 18

PSA-B-95-11 Revision 0

4. Results 4.1 Base Case l l

The base case was evaluated out to 10 seconds into the blowdown to ensure that the key load causing aspects of the MSLB were included. The base case resulted in a peak pressure of 1.97 psi across the P-TSP ( Note that this includes an overprediction of approximately .12 psi, as do all the results presented). The results of the base case are depicted in Figures 2 through 7. The dome pressure is shown in Figure 2. As can be seen, the pressure drops rapidly initially and thea moderates to rates of approximately 100 psi /sec or less within .2 seconds. Break mass flow rate is shown in Figure 3. Break flow is initially all steam, with entrained liquid reaching the break at approximately .7 seconds, causing an increase in the mass flow rate. The differential pressure across the P-TSP is shown in Figure 4. This shows a peak occurs about 0.5 to 0.8 seconds followed by a rapid decay to near steady-state conditions. The liquid velocity at the P-TSP is provided in Figure 5, and the corresponding liquid void fraction is shown in Figure 6. The liquid void fraction remains relatively high throughout the '

peak dynamic load period, and review of the flow regimes predicted indicates bubbly flow persists until after the peak load occurs. Figure 7 demonstrates the vapor void fractions at the P-TSP and at the J-TSP lower down in the boiling section. As can be seen, the void fractions remain relatively close to each other throughout the blowdown.

This tends to support that the principal flow pattern is cocurrent, at least for these locations. A review of the liquid and vapor temperatures indicates that some non-equilibrium behavior is seen in the upper nodes of the model, with steam temperatures being approximately 10 degrees lower than the liquid in the early portions of the blowdown.

4.2 HEM Comparison Calculation The model used for the base case, modified as described in section 3.2 to force equilibrium, single equation momentum calculation resulted in a reduction in peak pressure drop at the P-TSP location. The peak pressure reached on this case was 1.35 psi across the P-TSP. The principal value of this case is to indicate the range of sensitivity of the differential pressure with respect to two-phase fluid flow models. This supports that the two phase calculational uncertainty is bounded in the range of .5 psi or approximately 30%.

i 7 of 18

PSA-B-95-11

    • Revisbn 0 l 4.3 Results of Sensitivity Cases 4.3.1 Separator Mndel Sensitivity The values of separator carryover and carryunder fractions were varied over a range of values to determine what impact the separator model has on the results. The values utilized and the corresponding results are displayed in Table 1. As can be seen, there is very little sensitivity to separator modelinputs. This is most likely a result of early flooding of the separator, causing the separator model to shift to "same in/same out' y behavior. The carryunder fraction is most likely insensitive due to flow reversal effects.

Case Vover Vunder Max DP at P-TSP 3 .75 .15 2.087 4 1.0 .15 2.161 5 .25 .15 1.99 6 .5 .3 1.97 7 .5 .45 1.97 Table 1 Results of Separator Parametric Sensitivity 4.3.2 Effects of TSP Loss Coefficient The loss coefficients for the P-TSP were varied by plus and minus 10%. The results are shown in Table 2. The results are as one would expect, with almost linear behavior of pressure drop with respect to loss coefficient.

Case K Max DP at P-TSP 8 1.19 2.15 9 .972 1.76 Base 1.08 1.97 Table 2 Sensitivity to TSP Loss Coefficient 4.3.3 Addition of Preheat Bypass Area This case directly added the bypass area modeled by Westinghouse to the main flow paths in the preheater section. This bypass is not modeled in the base case, since it was felt that it represented a minor impact. The effect on peak pressure across P-TSP was a very small increase to 1.974 psi, from 1.97 psi. This confirms the initial model assumption with respect to this flow path.

8 of 18

.. 1 PSA-B-95-11 1

    • Revision 0 i

l Dome Pressure Base Case f I

$m  !

l j

i 50m .

e00 I l-P 10602000 LBF/IN2!

g.00 l

<x.

200-0 0 2 4 6 8 10 12 Time (seconds)

Figuro 2 Dome Pressure Response Base Case 9 of 18

i

., 1 PSA-B-95-11 l Revision 0 P TSP Detta P Base Case 2

i 1a 16-14 1.2 i

g 1-A E l-CNTRLVAR 1 DELTPP }

3 08

!t g 06-04-02 0 --

U 2 4 6 8 10 12 42 Time (seconds)

Figure 4 P-TSP Differential Pressure Base Case i

11 of 18 ,

i

i PSA-B-05-11 Revision 0 Liquid Velocity at P. TSP 25 20 15 5

m.

E 10 - l-VELFJ 13503000 (FT/SEC)]

5

^

'P 5

l 0 [

ll 2 4 6 8 10 12 Time (seconds)

Figure 5 Liquid Velocity at P-TSP Base Case i

i l

12 of 18

a .

PSA-B-95-11

    • Rettision 0 Liquid Vold Fraction at P. TSP il 3 1 08 h

06- l-VOIDFJ 135030C3 (FT/SEC)]

i 04-WN 02 0

0 00E 00 2.00E +00 4 00E+00 6 00E *00 8 00E+00 1.00E +01 120E+01 Time (seconds)

Figure 6 Liquid Void Fraction at P-TSP Base Case 13 of 18

PSA-B-95-11 Revision 0 Vapor Vold Fraction Response 08 07-06- /

05-04^

g votDG 13503000 LBFAN2 g VotDG 10102000 LBFAPC 03-s 02 0.1 -

6 8 10 12 1 2 4 41 Time (seconds)

Figure 7 Vapor Void Fractions at P-TSP and J-TSP 14 of 18 l

l

. . . . - _ ~ . _ . - - . - . -

  • PSA-B-95-11 Revision 0 t
5. Conclusions / Discussion The peak pressure at the P-TSP has been calculated using RELAP5M2 with a model geometry comparable to that used by Westinghouse. The pressure calculated agrees fairly well with that calculated by Westinghouse (1.9 vs 1.6 psi at P-TSP). The variation between the codes can be attributed to the different constitutive models used, two-fluid by RELAP vs a drift flux formulation in TRANFLO. When a factor of two is applied to the TRANFLO results, it conservatively bounds the maximum values calculated by RELAP5M2.

1 i

I I

t 9

15 of 18

}

  • ' PSA-B-95-11 Rettision 0
6. References
1) TRANFLO Input Description for D4 Steam Generator
2) " Nuclear Systems l', N. Todreas and M. Kazimi,1990.

l l

1 1

16 of 18 l

.* PSA B-95-11 Revision 0 Appendix A - Microfiche Index l

Microfiche ID # of fiche Description NFSKR1 1 Base Case NFSKR2 HEM case NFSKR3 Separator Sensitivity NFSKR4 Separator Sensitivity i

NFSKR5 Separator Sensitivity  ;

NFSKR6 Separator Sensitivity NFSKR7 Separator Sensitivity 1

NFSKR8 K Sensitivity NFSKR9 K Sensitivity NFSKR0 Preheat Bypass area l

17 of 18

PSA-B-95-11 Rettision 0 Appendix B RELAP5 Input Deck and Verification Sheets I

l l

l i

i I

i t

i t

1 1

18 of 18 ,

+ .

    • Sheet 1 Summary of Principal Path Nozzle to TSP Parameters for TRANFLO D4 Model Junction Segment Area Length K UA K/A2 Hyd dia calc hyd c 23 1 129.35 1.77625 0 0.013732122 0 12.83 12.83369 2 ' ~ ~ - ~1.388 1.5 0 ~ ~ ' ~1.080691643 0 0.5025 1.329423 3

~~ T5 0 ~~~~0 0.1 ~~ ~~ ~ 0 ~ 5MS 2.52321 24 1 74.94 3.7242 0 0.049695757 0 11.02 9.76844 0 __ 12.83 12.83369

. _ . . . _ . . . ._ _ _ _2 . ._1_29 3. _51.7762_5, _ ._. _0 . 0._.013_732_122.. _. _ . . - _ . .

0.0417 15.1199 25

. . . . - . . .~. .1 179.54 .. 0. 37 . - 40 _0.002060822 0.001240902 .

28 1 70.75 3.725 0.5 0.052650177 9.98889E-05 3.92 9.491429 2 179.54 0.37 0 0.002060822 0 0.041,7 15.1199 1.625 5.629643

~ ... 30 ._ .- 1 . _24.89 . 0_.6354 _ . . . .. 0.025528325 -. 0.

37 1 24.89 6.2148 0 0.249690639 0 1.625 5.629643 2 22.01 0.25 13.9 0.011358473 0.028692918 ~

1.0729 5.293932 0 028039373 1.625 5.629643

. - . _ ....3 2

-- 4. 89.. . 0. 6_979

.. _. 0 . -- - . -.0 38 1 92.13 3.59375 0 0.039007381 0 10.82 10.83101

_ _ _ _ . _. 2.. _ 24._.89 _6 _2._14_8 _. _0_0.2.49_6_90639 ._ 0_ . . _1_._62 5_5.629643 Totals 2.182058931 0.040409108 Page 1

1 Sheet 2 {

l l

Summary of Principal Path Nozzle to TSP Parameter for RELAP5M2 Model l

Volume Area Length K UA K/A2 hyd 107 s 1.5 7. . .... 0 1.080692 0 0.5025 '  !

.1.388 .-. . . .. - .-

l 1

~ ~ ^ ' ~

-105'1 '6329 # ~ ' 7.4 5 T ' ~ ~d ~.1I7341 ~ ~~0 ~ 11.05 '

1052 ~ 98.79 7 ~ '3'. 55 T "d 0.035935 0 ~12.83 l 124 / 0.0 . 0 __. _0.041_7v

_. 171. 4 j. . 0.708 _'..___O.  ;

7 0_41.31 124-105 63.49 - 5.502 / 0.001365

/ .. 7_ . . . .

.y. g ,,

j102-10_3_ _ _ __

__ . - . . .11.49i_._0.. . . . - . . . . .( . _ , _0._86 _._ __ _0...0.006514 _ ____.

103-104 77.74 / 0 ~~

0.

~ ~

- 102 2_5. 812'1 / 14.1'5'67 7 ~ ~ ~0~ 0'.5 i8452 -~~0 ~~~T.655 - ~

.g . ~ . .

7 .. g . . ~ ~13.9~ / ' ~~ ~ d T~028693

[ _ _ [d _[,[d

[ [535 ~ ' _ ], [ 5_5 55 { 8.I566 # ~~ [ _ _0[

/ 0 , 1.08

~0_.}4_7}51

- 0 0.003737 ji35 tsp _ _ _ _

16.9996 y . . .. .m._ .e.. -p.

+ . . -. .w.-a a _- ..se' ete- ..

~_. . ...__ . _ . . . . _ _ .._.__ . _. . . _ - _

m.m.g .*e.-wb*.h4 .i..e_-=*_,.w.e..-. . e y-.e w

,,..,i._.

~w

..-a . . - e... i. ,

. - . - - . ~ . . . . . . - - . . - . _ _ . . - -. -

. .. . .._.- . - . . . _ .~. .

~. - . . _ . _ . , __ _ _ . _ _ . . . . . _

- .. . - . ... . . . ~ _ . _ - . . . . . . . - . - . . . .

~ - . . . . - . . - - .

. . . . . -~

Totals 2.055012 0.040409 Page1

Sheet 5 Summary of Separator drain Path Parameters for TRANFLO D4 Model l I

Junction ISegment Area Length K IJA KIA2 Hyd dia calc hyd 1i 129.35i 1.77625i Oi 0.013732i 01 12.83 12.83369 231 2i 1.3881 1.5j 01 1.080692l 0I 0.5025 1.329423 3i SI 0.5j OI 0.11 0I 2.45 2.52321 I l l 1 I I 74.941 3.7242i 01 0.0496961 0! 11.02 9.76844 24 11 2i 129.35 j 1.776251 01 0.013732i Oi 12.83 12.83369 l l l l

179.541 0.37 40 0.0020611 0.001241 0.0417 15.1199 25 il 2 63.49 3.725 0.5 0.058671 0.000124 11.02 8.99127 70.75 j 3.725 0.5 0.05265i 9.99E-05 3.92 9.491429 28 1 2 179.54i 0.371 Ol 0.0020611 01 0.0417 15.1199 l

l I i i I i l 14.04 13.94265 29! il 152.671 1.1146 01 0.0073011 01 2 77.74 3.78 0 0.048624 0 4.07 9.949257 30j 1i 24.89i 0.6354 1 0.0255281 Oi 1.625 5.629643 i 2) 11.49I 0.2 51 0.861 0.0217581 0.006514 j 1.1042 3.824973 31 152.671 1.11461 01 0.0073011 01 14.04 13.94265 1

j i i I I l 24.891 0.6979i I 0.0280391 0_ 1.625 5.629643 31 11 21 19.78i 2.9167 0.51 0.147457i 0.001278I 0.5417 5.018588 I i l l i

19.781 2.91671 0.5j 0.147457i 0.0012781 0.5417 5.018588 321 11 104.071 2.9167i OI 0.028026I 01 3.1026 11.51148 i 21 l l I i i l i 104.07 j 2.9167i 01 0.0280261 01 3.1026 11.51148 33i Il 27.911 0.0625 l 1.28i 0.0022391 0.0016431 0.8333 5.9614 l 21 3j 126.49 3.9635 0 0.031334 0 4.51 12.69102 126.5 3.935 0 0.031107 0 4.51 12.69152 64/34 1 2 5.7356 15.8125 0 2.756904 0 0.3442 2.702451 5.7356 15.8125 0.5 2.756904 0.015199 0.3442 2.702451 36/35 1 2 3.1184 1.1068 0 0.354926 0 0.1234 1.992665 Totals I i 7.796226 0.027377 Page 1

-~.,

.. . - . - . . - . . _ - - . . - . . ~ . . . . . - _ . .. ....-= .. . . -

~.*

Shest8 Summary of Separator Drain path Parameter for RELAP5M2 Model Area Length K UA K/A2 hyd Volume 1.388 1.5 0 1.080692 0 0.5025 107 63.49 7.45 0 0.117341 01 11.02 1051 98.79 3.55 0 0.035935 Of 12.83 1052 171.4 0.708 0 0.004131 i 0 0.0417 124 124-104 70.75 0.5 9.99E-05 124-105 63.49- 5.502 0.001365 70.75 7.45 0 0.1053 0 104 l

151.32 2.35 0 0.01553 01 14.04 103 11.49 0 0.86 0 0.006514l J102103 77.74 0 Oi 103-104 25.8121 14.1567 0 0.548452 01 1.625 102 '

22.01 01 1 0 0.0020641 J111 102 i i 111.07 0.2202 0 0.001983 -

01 0 111 111.07 0 -

0 0 01 J110-111 5.7356 0 01 111 112  !

i 5.74 2.814292 0 0.490295 0 0.3442 1121 5.74 1.001 0 0.17439I O 0.3442 1122 5.74 6.570134 0 1.1446231 0 0.3442 .

1123 .

5.74 10.38443 0 1.8091341 0 0.3442 1124 '

5.74 10.38443 0 1.8091341 0 0.3442 ,

1125 .

0 i 100 56.45 0.5 0 0.008857 112-100 5.7356 0 0.5 0 0.015199 I

[

l l

I  !

j l 7.345797 0.0252421 Totals l I i I i l i I i f i

l Page 1

Sheet 3 Summary of Dryer Drain Path Parameters for TRANFLO D4 Model Junction Segment Area Length K L/A K/A2 Hyd dia calc hyd 23{ Il 129.351 1.77625l Oi 0.0137321 01 12.83' 12.83369 i 2i 1.388i 1.5 01 1.0806921 01 0.5025 1.329423 i 3 SI 0.5 01 0.11 01 2.45 2.52321 I I I I 24 1 74.941 3.7242 01 0.0496961 01 11.02 9.76844 l 2 129.35! 1.77625 01 0.0137321 01 12.83 12.83369 I i I i I I I 251 1 179.54 0.37 401 0.0020611 0.0012411 0.0417' 15.1199 2 63.49 3.725 0.5 0.058671 0.000124 11.02 8.99127 26 _.

1 20.36 3.7242 0 0.182917 0 0.6767 5.091635 2 2.0211 8.1925 0.5 4.053486 0.122404 1.6042 1.604214 1

27 1 _ _ _ _ . _2.0211 8.1925___. 0.5 4.053486 0.122404 1.6042 1.604214 2 126.49 3.9635 0 0.031334 0 4.51 12.69102

'64/34 1 126.5 3.935' 0 0.031107 0 4.51 12.69152 2 5.7356 15.81f5 0 2.756904 0 0.3442 2.702451 36/35 1 5.7356 15.8125 0.5 2.756904 0.015199 0.3442 2.702451 2 3.1184 1.1068 0 0.354926 0 0.1234 1.992665 Totals b.i 15.53965 0.261371 Page 1

. _ _ _ _ . _ ~ . _ _ . . . _ _

F

    • Shoe!6 Cummary of Dryer Drain Path Parameters for RELAP5M2 Model r

Area Length K UA K/A2 hyd Volume i 1.388 1.5 0 1.080692 01 0.5025 107  :

63.49 7.45 0 0.117341 01 11.02 1051 98.79 3.55 0 0.035935 01 12.83 1052 i

0 O.0417 124 171.4 0.708 0 0.004131 i 2.0211 0.5j 0.122404  !

124 250  ;

63.49 5.5021 0.0013651 124-105 i I 250 2.02 16.5408 O! 8.188515 01 I I l 111.07 0.2202 Oi 0.001983  :

01 0 111 I 2.02 0 -

0.5j 0.0.122537I J250-111 5.7356 01 I Oi 111-112 I i i 5.74 2.814292 01 0.490295I O 0.3442 1121 5.74 1.001) 01 0.17439 OI 0.3442  !

1122 5.74 6.5701341 0 1.144623 01 0.3442 1123 5.74 10.38443I O 1.809134 01 0.3442 1124 5.74 10.38443 0 1.809134 01 0.3442 1125 I  !

i 56.45 0.5 01 0.0088571 0 100 112 100 5.73561 0 0.5I Oi 0.015199 i i i i i

I L i

I I I I ,

i i l i I i i  !

I I l

I I i f I

I i i  !

I l i I I i i I I l l I I I I  !

I i l  !

I j i i I  !

l l I I l l j 14.8650310.261504i i j i Totals l l I I i i Page 1

+.

Sheet 9 j

Summary of Principal Path through tube sheets for TRANFLO D4 Model l  !

Length K UA K/A2 Hyd dia calc hyd Junction Eimer.t Area 0.25i 01 0.0088573961 0 0.1234 5.994947 46 1 28.225!

6.44881 0.0625i 1.25i 0.0096917261 0.030057454 0.0093 2.865549 i l 2 01 0.0436827961 0 0.1234 5.960332 3 27.9 1.218751 i i i I

27.91 1.21875: 01 0.043682796i 0 0.1234 5.960332 45 1 1.1i 0.0077654221 0.016980981 0.0417 3.201296 8.0485 0.06251 1

2 27.9 1.46875i 01 0.0526433691 0 0.1234 5.960332 3

i l I 0 0.1234 5.960332  !

44 1 27.9 1.468751 0 0.0526433691 0.007765422i 0.016980981 0.0417 3.201296  !

2 8.0485 0.0625l 1.1 '

27.9 1.46875 0 0.0526433691 0 0.1234 5.960332 3 i I

0 0.1234 5.960332 l 43 1 27.91 1.46875i 0 0.0526433691 1.13 0.007939835l 0.018236495 0.0417 3.16594 l 2 7.8717I 006251 01 0.0630967741 OI 0.1234 5.960332 i 3- 27.91 1.7604I I I I l

~

1.7604I OI0.063096774 0 0.1234 5.960332 42 1 27.9 0.0625i 1.2- 0.008878093 0.024213669 0.0417 2.993978 21 7.0398 0 0.063096774l 0 0.1234 5.960332 3 27.91 1.76041 l l l 56.45 j 1.76041 0 0.03118512i 0 0.1234 8.478135 411 1 1.08 0.0036765571 0.0037372 0.0417 4.652514 j 21.16.9996D 0.0625i 56.45l 1.06041 0 0.0187847651 0 0.1234 8.478135 ,

1 3 I i I i

56.45l 1.7604l 01 0.03118512i 0 0.1234 8.478135

40) 1 1.08i 0.003676557i 0.0037372i 0.0417 4.652514 l 2 16.9996i 0.06251 56.45I 1.0604l 01 0.0187847651 0 0.1234 8.478135 i 3 I I I I ,

I '

56.45 j 1.76041 OI 0.03118512,, 0 0.1234 8.478135 391 1 1.081 0.0036765571 0.0037372 0.0417 4.652514 l 2 16.99961 0.0625i i 36.39i 4.25I O 0.1167903271 0 0.1234 6.807057 3

l i I i l l 1 '

I I I l I I I I j j j 0.79707217210.117681182 i l Totals l l l l  ;

I I I l 1 I l

Page 1

- .. . ~ . . . - . - . . . - - . . . - . .- -- -- - ~ . . . _ . -. -

Sheet 10 Summary of Tube Sheet Path Parameters for RELAPSM2 Model _

Volume Area Length K UA K/A2 hyd 100 56.45 0.5 0 0.008857 Ol 1.625 i

i J 100-121 6.4488 0 1.25 0 0.030057 0 121 27.9 2.437 0 0.087348 0 1.625 121 101 8.0485 1.1 0.016981 >

l 1011 27.9 3 0 0.107527 0 0.1234 1012 27.9 3 0 0.107527 0 0.1234 1013 27.9 3.5833 0 0.128434 0 0.1234 J12 8.0485 0 1.1 0 0.016981 0 J23 7.8717 0 1.13 0 0.018236 0 134 56.45 3.5208 0 0.06237 0 0.1234 t J101 134 7.0398 0 1.2 0 0.024214 ,

134-135 16.9149 1.08 0.003775 1351 56.45 3.5833 0 0.063477l 0 0.1234 1352 56.45 3.3733 0 0.059757 0 0.1234 l 1353 56.45 0.11 0 0.001949 0 0.1234 1354 55.25 0.11 0 0.001991 0 0.1234 e 1355 55.25 8.1566 0 0.147631 0 0.1234 jl2 16.9996 0 1.08 0 0.003737 0 J34 16.9996 0 1.08 0 0.003737 0 i

i s

f l

Totals l l l 0.776868 0.117719 I l 1 i I l i

Page1

.. 1 l

  • Sheet 4 Summary of Deck plate drain Path Parameters for TRANFLO D4 Model, N

Junction l Segment Area Length if UA K/A2 Hyd dia calc hyd .

129.351 1.77625l 01 0.0137321 Oi 12.83 12.83369 23l li 21 1.3881 1.51 01 1.080692l 01 0.5025 1.329423 l

3I 5 0.51 Oi 0.11 01 2.45 2.52321 i

l I I i i

74.94I 3.72421 Oi 0.0496961 Ol 11.02 9.76844 24I 1 129.351 1.77625 j 01 0.0137321 01 12.83 12.83369 2l I I I I I II 179.54 0.371 40l 0.0020611 0.0012411 0.0417 15.1199 25 2 63.49 3.725 0.5 0.058671 0.000124 11.02 8.99127 70.75i 3.725 0.5I 0.05265i 9.99E-05i 3.92 9.491429 28i 1 21 179.541 0.37 01 0.0020611 01 0.0417' 15.1199 l I I i i i 152.671 1.1146 Oi 0.0073011 01 14.04 13.94265 29 1I 77.74' 3.78 0 0.048624 j 0 4.07 9.949257 21 T ~1

~152.67 1.1771 Oi 0.0077091 0 14.04 13.94265 62i 1l 2i 7.29l 0.06251 1.7i 0.008573i 0.0319881 0.1667 3.046717 I

104.07l 2.9167 j 01 0.0280261 Oi 3.1026 11.51148 I 3I I l 1 I i I I 3.1026 11.51148

33) il 104.071 2.916-' 01 0.0280261 Oi 27.91i 0.0625T 1.28 0.002239 0.001643' O.8333 5.9614 1 2 3.9635 0 0.031334 0 4.51 12.69102

__I 3 126.49 126.5 3.935' O^ 0.031107 0 4.51 12.69152 64/34 1 2 ~ 5.7356 15.81251 0 2.756904 0 0.3442 2.702451 <

0.3442 2.702451 Il~UN 15.8125~ 0.5 2.756904 0.015199

~

36/35 0 0.1234 1.992665 3.1184 1.1068 0 0.354926

______._______2 7.434969 0.050295

~

Tolais i Page1

Shest7 Summary of Deck plate Drain Parameters for RELAP5M2 Model f j

Length K UA KIA2 hyd Volume Area 1.51 0 1.080692 0 0.5025 107, 1.388 1

0 . 0.117341 0 11.02 1051 63.49 7.45 .

12.83 3.55 01 0.035935 0 1052l 98.79 i

I 0 0.004131 0 0.0417 124i 171.4 0.708 9.99E-05 l 70.75 0.5  :

124 104 ,

I 63.49 5.502 0.001365 124-105 I 7.45 0 0.1053 0 104 70.75 0 0.01553 0 14.04 103) 151.32 2.35 i 11.49 ' 29

. 1.77 0.634465 0.013407 J103-110 0 77.74 0 103-104 0 0.127457 0 0 110 111.07 14.1567.

0 0.001983I 01 0 1111 111.07 0.2202 0 0 0 Of J110-111 111.07 0t 0 111 112 5.7356 0 0.490295 0 0.3442 1121 5.74 2.814292 t 0 0.17439 0 0.3442 1122 5.74 1.001 0 0.3442  :

5.74 6.570134 0 1.144623 1123: 0.3442 01 1.809134 0 1124) 5.74 10.38443 1 0 1.809134 0 0.3442 1125) 5.74 10.38443 0.5 0 0.008857 Of 100 56.45 5.7356 0 0.5 0 0.015199 112-100 I

l i

j l I I I I 5

I

! Totals i I l 7.55926710.030071) l I i l i I i

1 Page1 i

i

l

.. l l

-STAND ALONE STEAM GENERATOR MODEL FOR D4 SG

  • 110T STANDBY NONEQUiLIBRIUM MODELS USED
  • flilS DECK IS BASED ON WESTINGliOUSE TRANFLOW D4
  • MODEL USED FOR TUBE SUPPORT PLATE DP CALCULATION *
  • This model contains more detail in dome area

....ec.ee........,....s.ee.e....e.e...ee.e......e.e TIIIS DATA IS CONTAINED IN NFSkr.RELAP5M2.CNTL(basene)

  • includes Iwo more small nodes at upper tsp
  • models upper dome with explicit W volumes
  • Includes .2 fl slabs for P-TSP dp calc
  • includes crossflow resistances

..........e................................>.......

100 NEW TRANSNT 102 BRITISil BRITISil 105

  • ---TIME STEP CARDS END DTMIN DTMAX OlrTMIN MAJ RSTRT ,

201 2.5 1.D-7 0.0005 3 5 4000 2500 202 4.0 1.D-7 0.001 3 10 4000 2500 203 10.5 1.D 7 0.001 3 20 4000 2500 ,

  • - - MINOR ED!T VARIABLES
  • VARIABLE CODE PARAMETER LOCATION 301 VELFJ 135030000 *veloc 302 VOIDFJ 135030000
  • void fract 303 RilOFJ 135030000
  • density 304 ChTRLVAR 1
  • comp dp 305 MFLOWJ 300000000
  • Break flow 306 P 105020000
  • dome pressure 307 VOIDG 135030000
  • void frac 308 VOIDG 101020000 *SG WATER MASS
  • i TRIP INPUT DATA

' VARIABLE TRIP CARDS

  • VARIABLE PARAM RELATION VARIABLE PARAM CONS LATCli 501 TIME O GE NULL 0 10.0 L

$02 TIME O GE NULL 0 .001 L

I 503 TIME O GE NULL 0 100. L e -----... . --..-----

e

e. j
  • TRIPIDENTIFIER ,
  • l \
  • Sol => PROBLEM STOP ! j e
  • TRIP STOP ADVANCEMENT CARD l
  • TRP NO.

600 501 eseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

  • IlYDRODYNAMIC COMPONENTS
  • PRIMARY SIDE MODEL l )
  • PLENUMS AND TUBES MODELLED EXPLICITLY l
  • IiOT LEG AND COLD LEG REPRESENTED BY TDVSl e_ ._

e e ....- .-.---

0420(XX) INPLEN TMDPVOL e

FLOWA L VOL AZI INCL DZ ROUGli IIYD FE 0420101 0.0 5.2183 147.64 0.0 0.0 0.00.00.000 '

0420101 0 0 5.2183 5000. 0.0 0.0 0.00.00.000 e

EDT 0420200 3 e

  • TIMS PRESS TEMP .

0420201 0.0 2250 00 557.(XX) 0420202 1.0E6 2250.00 557.000 ,

047(XXX) OUTPLEN TMDPVOL e

FLOWA L VOL AZI INCL DZ ROUGil llYD FE ,

0470101 0.0 5.2183 147.64 0.0 0.0 0.00.00.000 f 0470101 0.0 5.2181 5000. 0.0 0.0 0.00.00.000 e

EDT 0470200 3 e

  • TIME PRESS TEMP 0470201 0.0 2206.77 557.

0470202 1.0E6 2206.77 557.

l l

l

1510000 TUDES PIPE l 1

  • NV l 1510001 21 FLOWA NV 1510101 11.0088 21
  • LENGTil NV  ;

1510301 .5625 1 1510302 2.5 2 1510303 3.0 3 1510304 3.5833 8 1510305 3.445 10 1510306 3.5833 14 1510307 1.5 19 1510308 1.0 20 1510309 .5625 21 VOLUhiE NV 1510401 0.0 21

  • INCLINE ANGLE NV 1510601 90.0 8 1510602 90.0 9 1510603 -90.0 10 1510604 -90.0 21 ELEV CNG NV

'510701 1.7525 1

'510702 2.5 2

'510703 3.0 3

  • 510704 3.5833 8
  • 510705 3.445 9
  • 510706 3.445 10
  • 510707 -3.5833 14
  • 510708 1.5 19

'510709 -1.0 20

'510710 .5625 21 ROUGli HYD DIA NV 1510801 0.0 .0553333 21 FE NV 1511001 00 21 VCAllS NJ 1511101 10000 9 1511102 00000 10 ISIi103 20000 20

  • 11.AG P T DUhiMY DUhfMY DUhthfY NV 1511201 3 2250.0 557.0 0.0 0. O. 21

FLAG =1 => (LBM/SEC) 1511300 I

  • LFLOW VFLOW INTERFACE FLOW NJ 1511301 9763.12 0.0 0.0 20

. - - - - - - - - = = - = - -

1500000 JUNCT TMDPJUN FROM TO AREA 150010104200(X)00151000000 1.0 FLAG 1500200 1 TIME LFLOW VFLOW INTFLOW 1500201 0.0 9763,12 0.0 0.0 1500202 1.0E6 9763.12 0.0 0.0

. . . . - . . . . . . - - - . - . . ~ . . . . - - - - . . - - = . . . - - .

1590000 JUNCT SNGLJUN

  • FROM TO AREA FJ JNF FJUNR VCAHS 1590101 151010000 047000000 9.823il5 0.0 0.0 20000 FLAG LFLOW VFLOW INTFLOW 1590201 1 9763.12 0.0 0.0

. . . - - - . - - - - - - - = = = = = = = = - - -

  • SECONDARY SIDE MODEL l
  • 90% .10% FEED FLOW SPLIT l
  • BOUND CNDS REPRESENTED BY TIME DEPENDENT',
  • JUNCTIONS AND TME DEPENDENT VOLUMES l 9020000 MNFEED TMDPVOL FLOWA FLOWL VOL AZI INCL DZ ROUGH HYD FE 9020101 0 0 31.1533 147.64 0.0 0.0 0.00.00.000 9020101 0.0 31.1533 5000. 0.0 0 0 0.0 0.0 0000
  • EDT 9020200 003 TIME PRESS TEMP 9020201 0.0 1200.0 435.0 9020202 1.0E6 1200.0 435.0

. . . . - . - - . . . . . - - . . = = = = = - = = = = , = = = = = =

3020000 FLJUN TMDPJUN

l 1

FROM TO AIUN 3020101 902000000 132000030 1.0 FLAG 3020200 I TIME LFLOW VFLOW INT FLOW 3020201 0.0 0. 0.0 0.0 3020202 1.0E6 0. 0.0 0.0 '

1000000 RISER BRANCli NJ FLAG i

10(XXX)1 3 1

  • FLOWA FLOWL VOL AZlINCL DZ ROUGH HYD FE l 1000101 56.45 0.0 28.22 0.0 90. 4999.00015 .I234 00 ,

FLAG P X 1000200 2 1119.15 0.00 1000200 1 557.0 0.00

  • FROM TO AJUN FJUN FJUNR VCAllS 1001101 112010000 100000000 5.7356 .50 .50 00000
  • add crossflow resistance i 1001101 112010000 10000(XX)0 5.7356 41.1 41.1 00000 1002101 100010000 121000000 6.4488 1.25. 1.25 10000 f 1003101 100010000 131000000 6.1798 1.28 1.28 10000 LFLOW VFLOW INT FLOW l001201 0.0 0.0 0.0 1002201 0.0 0.0 0.0 i l

1003201 00 0.0 0,0 i

1210000 RISERI BRANCll ,

NJ FLAG  !

1210001 2 1

  • FLOWA FLOWL VOL AZIINCL DZ ROUGH HYD FE 1210101 27.9 0.0 68.01 0.0 90. 2.437 .00015 .1234 00 FLAG P X 1210200 2 1118.67 0 00 1210200 1 557.0 0.00 FROM TO AJUN FJUN FJUNR VCAllS 1211101 1310(XXXX) 1210(XXXX) 2.7297 .38 0.34 00000 1212101 12101(XX10 101000000 8.0485 1.1 1.1 10000 LFLOW VFLOW INT FLOW 1211201 0.0 0.0 0.0 1212201 0.0 0.0 0.0 1 I

i

o*

1310000 RISER 2 BRANCli NJ FLAG 1310001 0 1 FLOWA FLOWL VOL AZIINCL DZ ROUGli liYD FE 1310101 28.225 0.0 26.46 0.0 90. 0.937 .00015 0.1234 00

  • FLAG P X 1310200 2 1118 67 0.00 1310200 1 557.00 0.00
  • FROM TO AJUN FJUN FJUNR VCAllS
  • LFLOW VFLOW INT FLOW 1320000 RISER 3 BRANCil NJ FLAG 1320001 2 1 FLOWA FLOWL VOL AZIINCL DZ ROUGil IIYD FE 1320101 27.9 0.0 40.11 0.0 90. 1.437 .00015 0.1234 00
  • FLAG P X 1320200 2 1118.67 0.00 1320200 1 557.00 0.00 FROM TO AJUN FJUN FJUNR VCAllS 1321101 132000000 131010000 0.7975 1.80 1.80 10000 1322101 132010000 133000000 4.42 6.18 6.18 10000 LFLOW VFLOW INT FLOW l321201 0.0 0.0 0.0 1322201 0.0 0.0 0.0

..---. -== .=======

. - - - - - - = . - - - - = = - - = = =

1340000 UPRSR BRANCli

  • NJ FLAG 1340001 3 1 FLOWA FLOWL VOL AZIINCL DZ ROUGli HYD FE 1340101 56.45 0.0 198.75 0.0 90. 3.52 .00015 0.1234 00 FLAG P X 1340200 2 1114,68 0.00 1340200 1 557.00 0.00 FROM TO AJUN FJUN FJUNR VCAHS 1341101 101010000 134000000 7.0398 1.20 1.20 10000 1342101 133010000 134000000 7.0398 1.2 1.2 10000 1343101 134010000 135000000 16.9149 1.08 1.08 10000
  • LFLOW VFLOW INT FLOW 1341201 0.0 0.0 0.0 1342201 0.0 0.0 0.0 1343201 0.0 0.0 0.0 1010000 EOIL2 5 P!PE NV 1010001 3
  • FLOWA NV 1010101 27.9 3
  • JAREA NJ 1010201 8.0485 1 1010202 7.8717 2 LENGT11 NV 1010301 3.0 2 1010302 3.5833 3 n

VOLUME NV 1010401 0.0 3

  • INCLINE ANGLE NV 1010601 90.0 3 ELEV CNG NV 1010701 3.0 2 1010702 3.5833 3 ROUGli IND DIA NV 1010801 .00015 0.1234 3 FJUNF FJUNR NJ 1010901 1.1 1.1 1 1010902 1.13 1.13 2
  • FE NV 1011001 00 3 VCAllS NJ 1011101 10000 2 FLAG P X DUMMY DUMMY DUMMY NV 1011201 2 1117.80 .0 0. O. O. 1 1011202 2 1116.85 .0 0. O. O. 2 1011203 2 1115.81 .0 0. O. O. 3 1011201 1 557.00 .0 0. O. O. I 1011202 1 557.00 .0 0. O. O. 2 1011203 1 557.00 .0 0. O. O. 3 FLAG =0 => (LBM/SEC) 1011300 1

.=

l LFLOW VFLOW INTERFACE FLOW NJ 1011301 0.0 0.0 0.0 2

.se-snammamasamma.m.mmaamasas ssmamsman 1330000 PRIIEAT PIPE NV 1330001 5

  • FLOWA NV 1330101 26.3462 3 1330101 27.9 5 JAREA NJ 1330201 4 2478 1 1330202 4.2478 2 1330203 4.2478 3 1330204 7.0398 4
  • add bypass area to flow path
  • 1330201 4.9938 1
  • l330202 4.9938 2
  • 1330203 4.9938 3
  • 1330204 7.0398 4
  • LENGTil NV 1330301 1.5 4 1330302 3.5833 5 1330302 3.6463 5 VOLUME NV 1330401 0.0 5 INCLINE ANGLE NV 1330601 90.0 5
  • ELEV CNG NV 1330701 1.5 4 1330702 3.5833 5 1330702 3.6463 5
  • ROUGli IlYD DIA NV 133080I .00015 0.1234 5 FJUNF FJUNR NJ 1330901 9.16 9.16 1 1330902 5.92 5.92 2 1330903 5.48 5.48 3 1330904 1.2 1.2 4
  • add crossilow resistance of 11 to first 3 junctions 1330901 20.16 20.16 1 1330902 16.92 16.92 2 1330903 16.48 16.48 3 1330904 1.2 1.2 4

FE NV 1331001 00 5 VCAllS NJ 1331101 10000 4 FLAG P X DUMMY DUMMY DUMMY NV 1331201 2 1118.04 .0 0. O. O. I 1331202 2 1117.56 .0 0. O. O. 2 1331203 2 1117.09 .0 0. O. O. 3 1331204 2 1116.62 .0 0. O. O. 4 1331205 2 1115.81 .0 0. O. O. 5 1331201 1 557.00 .0 0. O. O. I 1331202 1 557.00 .0 0. O. O. 2 1331203 1 557.00 .0 0. O. O. 3 1331204 1 557.00 .0 0. O. O. 4 1331205 1 557.00 .0 0. O. O. 5 FLAG 4 => (Limi/SEC) 1331300 I

  • LFLOW VFLOW INTERFACE FLOW NJ 1331301 0.0 0.0 0.0 4

........---...-----------c.---.-==--=======

1350300 UPRISER PIPE NV 1350001 5 FLOWA NV 1350101 56.45 3 1350102 55.25 5 JAREA NJ l350201 16.9996 1 1350202 55 25 2 1350203 16.9996 3 1350204 55.25 4 LENGTH NV 1350301 3.5833 1 1350302 3.5733 2 1350303 .01 4 1350302 3.3733 2 1350303 .I1 4 1350302 3.1733 2 1350303 .21 4

  • l350302 2.9733 2
  • 1350303 .31 4 1350304 8.1566 5 VOLUME NV

1350401 0.0 5 INCLINE ANGLE NV 1350601 90.0 5

  • 1350701 3.5833 2
  • I350702 8.I666 3 ROUGli IIYD DIA NV 1350801.00015 0.1234 5
  • FJUNF FJUNR NJ 1350901 1.08 1.08 1 1350902 .0 .0 2 1350903 1.08 1.08 3 1350904 .0 .0 4
  • test sensitivity ofloss coeff
  • 1350903 .972 .972 3
  • FE NV 1351001 00 5 VCAllS NJ 1351101 100001 1351102 10000 2 1351103 10000 3 1351104 10000 4 FLAG P X DUh1MY DUMMY DUMMY NV 1351201 2 Ii13.55 .0 0. O. O. I 1351202 2 1112.42 .0 0. O. O. 2 1351203 2 1110.59 .0 0. O. O. 3 1351203 2 1110.59 1.0 0. O. O. 3 1351201 1 557.00 .0 0. O, O. I 1351202 1 557.00 .0 0. O. O. 2 1351203 1 557.00 .0 0. O. O. 5
  • 1351203 1 557.00 1.0 0. O. O. 3 FLAG 4 => (LBM/SEC) 1351300 1 LFLOW VFLOW INTERFACE FLOW NJ 1351301 0.0 00 0.0 4

.--.....-.m..___=_============.-.

1020000 SEP SEPARATR NJ FLAG 1020001 3 I II.OWA FLOWL VOL AZIINCL DZ ROUGH IND FE 1020101 0.0 14.1567 365.4148 0.0 90. 14.1567.00015 1.625 00 Fl.AG P UF UG VG

1020200 2 1107.31.227 1020200 2 1107.31 1.0 1020200 1 557.00 1.0

  • 1020200 1 557.00 .3494 1020200 1 557.00 .03 j
  • 1020200 1 557.00 .015 )
  • FROM TO AJUN FJUN FJUNR VCAHS VFLIM 1021101 102010000 103000000 22.01 13.9 13.90 10000 1022101 102000000 111000000 19.78 0.5 0.5 00000 1023101 135010000 102000000 24.8873 0.5 1.0 10000
  • rearrange losses 1021101 102010000 103000000 11.49 0.86 0.86 10000 1022101 102000000 111000000 19.72 1.0 1.0 00000 1023101 135010000 102000000 22.01 13.9 13.9 10(X)0
  • add crossflow resistance term 1023101 13501(XX)0 102(XX)000 22.01 18 12 18.12 10000
  • sensitivity values of vover/vunder
  • 1021101 102010000 103000000 11.49 0 86 0.86 100(X) .25
  • 1022101 102(XXXXX) 111000000 19.78 1.0 1.0 (XX)00 .15
  • 1023101 135010000 102000000 22.01 13.9 13.9 10000 LFLOW VFLOW INT FLOW 1021201 0.0 0.0 0.0 1022201 0.0 0.0 0.0 1023201 0.0 0.0 0.0

.-.-.....-..-....-=====--m...--

1030000 DOME BRANCil

  • NJ FLAG 1030001 2 1 FLOWA FLOWL VOL AZIINCL DZ ROUGH HYD FE 1030101 I23 051 5. 0.0 0.0 90. 5. 000151.625 (X) 1030101 123.051 5. 0.0 0.0 90. 5. .00015 0.0 00 1030101 151.32 0. 356.23 0.0 90. 2.35415 .00015 14.04 00 FLAG P UF UG VG 1030200 2 1107.31 1.0 1030200 1 557.00 1.0 FROM TO AJUN FJUN FJUNR VCAllS VFLIM 1031101 10XXX)000 110010(XX) 7.29 1.77 1,77 10(X)0 1032101 103010000 104000000 77.74 0. O. 100(X)
  • 1033101 1030(XXXX) 110010000 19.78 0.5 0.5 10(X10 LFLOW VFLOW INT FLOW 1031201 0.0 0.0 0.0 1032201 0.0 0.0 0.0
  • 1033201 0.0 0.0 0.0

. . . . . - - - - - - - . - - - - , - - . . . - - - = = - _ - _ - _ . .

104(XXX) UDC SNGLVOL FLOWA FLOWL VOL AZIINCL DZ ROUGH HYD FE

1040101 70.75 0.0 527.08 00 0. 0.0 0.00015 4.07 00 e

  • FLAG P X 1040200 001 557. 1.0 e.........-. -. .-... - ..-.. ....-

2500000 DRYERDRN SNGLVOL e

  • FLOWA FLOWL VOL AZ1 INCL DZ ROUGli liYD FE 2500101 2.02 16.5108 0.0 0.0 -90. -16.5108 0.00015 0.0 00 e
  • FLAG P X 2500200 001 557 .025 eeeeeeeeeeee 1240000 DRYER BRANCil e
  • NJ FLAG 1240001 3 I e

FLOWA FLOWL VOL AZIINCL DZ ROUGli IIYD FE 1240101 171.4 0. 121.41 0.0 00. 0.0 .00015.0417 00 e

  • FLAG P UF UG VG 1240200 1 557.00 1.0 e
  • FROM TO AJUN FJUN FJUNR VCAliS VFLIM 1241101 104010000 124000000 70.75 .5 .5 10000 1242101 124010000 105000000 63.49 5.502 5.502 10000 1243101 250000000 124000000 2.0211 0.5 0.5 10000 e
  • LFLOW VFLOW INT FLOW 1241201 0.0 0.0 0.0 1242201 0.0 0.0 00 1243201 0.0 0.0 0.0 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 1050000 dome PIPE e
  • NV 1050001 2 e
  • FLOWA NV 1050101 63.49 1 1050102 98.79 2 JAREA NJ 1050201 74.94 1 e

e

  • LENGT11 NV 1050301 0. 2 e
  • VOLUME NV 1050401 473.0 1 1050402 350.7 2 e

I

l

  • INCLINE ANGLE NV 1050601 00.0 1 1050602 90.0 2

, }

j

  • ROUGli HYD DIA NV 105080I.00015 II.02 1 1050802 .00015 12.83 2
  • FJUNF F]UNR NJ 1050901 .0 00 I
  • FE NV 1051001 00 2
  • VCAllS NJ 1051101 100001
  • FLAG P X DUMMY DUMMY DUMMY NV 1051201 1 557.00 1.0 0. O. O. 2
  • FLAG =0 => (LBM/SEC) 1051300 I
  • LFLOW VFLOW INTERFACE FLOW NJ 1051301 0.0 0.0 0.0 1

. .. . . --.....-=... -=======-

1060000 nonJe SNGLJUN

  • FROM TO AREA FJUNF FJUNR VCAHS 1060101 105010000 107000000 1.388 0.0 0.0 10100
  • FLAG LFLOW VFLOW INT FLOW l060201 1 0.0 0.0 0.0 107000() nonje SNGLVOL
  • FLOWA FLOWL VOL AZIINCL DZ ROUGli HYD FE 1070101 1.388 1.5 0.0 0.090. 1.5 00015 0.5025 00
  • FLAG P X 1070200 002 1106. 1.0 1070200 001 557. 1.0

...........----..........-===---====--

3000(XX) BREAK VALVE

  • FROM TO AJUN 3000101 107010000 900000000 1.388 0.0 0.0 00100
  • TIME LFLOW VFLOW !brIFLOW 3000201 1 0.0 0.0 0.0

l

.. l l

3000300 MTRVLV 3000301 502 503 1000. 0.0

  • 3000301 502 503 2.0 0.0

.-, -. ..=. -..-..- .--

9000000 break TMDPVOL

. i

  • FLOWA FLOWL VOL AZ1 INCL DZ ROUGH HYD FE 9000101 0.0 31.1533 147.64 0.0 0.0 0.00.00.000 9000101 5.0 0.0 9999. 0.00.0 0.00.00.000 EDT 9000200 002
  • TIME PRESS X 9000201 0.0 14.7 1.0 9000202 1.0E6 14.7 1.0

. . . . . . . . - -.------=--========_--==== -

1I10000 UDCI BRANCH

  • NJ FLAG 1110001 3 1 FLOWA FLOWL VOL AZ1 INCL DZ ROUGH HYD FE Ii10101 111.07 13.76 0.0 0.0 -90. 13.76 0.00015 0.0 0) ii10101 111.07 .2192 0.0 0.0 90. .2192 0.00015 0.0 0) 1110101 111.07 .2202 0.0 0.0 -90. .2202 0.00015 0.0 0)
  • FLAG P X 1110200 2 1107.0 0.0 1110200 1 557.0 1.0 1110200 1 557.0 0.0
  • FROM TO AJUN FJUN FJUNR VCAliS IIi1101 111010000 1I2000000 5.7356 1.15 1.28 20000 1111101 111010000 112000000 5.7356 0.0 0.00 20000 1112101 111J00000110000000 5.7356 0.0 0.0 20000 1112101 111000000 110000000 111.07 0.0 0.0 20000 1113101 250010000 111000000 2.02 0.5 0.5 20000
  • LFLOW VFLOW INT FLOW 1111201 0.0 00 0.0 1112201 00 0.0 0.0 1113201 0.0 00 0.0

.------mo.m====------==--=====

Il00(xx) UDC SNGLVOL

  • FLOWA FLOWL VOL AZ1 INCL DZ ROUGH HYD FE 00 I100101 111.07 13.5408 0.0 0.0 90. 13.5408 0.0 0.0 00 1100101 111.07 14.1567 0.0 0.0 90. 14.1567 0.0 0.0
  • FLAG P X 1100200 002 1106. 0.22 1100200 001 557. 1.0

.=

  • 1100200 001 557. 0.3494 1100200 001 557, 0.03
  • 1100200 001 557. 0.015

. - - . - . ---------=========.-==

1120000 LDCl 3 PIPE NV 1120001 5 FLOWA NV 1120101 6.99203 5 1120101 5.74 5

  • LENGTli NV 1120301 2.814292 I I120302 1.0 2 1120302 1.001 2 1120303 6.570134 3 1120304 10.384433 5
  • VOLUh1E NV i120401 0.0 $

INCLINE ANGLE NV II20601 -90.0 5

  • ELEV CNG NV i120701 2.814292 I i120702 -1.0 2 1120703 -6.570134 3 1120704 -10.384433 5 ROUGli IlYD DIA NV 1120801 0.0 .4067 5 1120801 0.00015 .3442 5 FE NV 1121001 00 5
  • VCAHS NJ l121101 20000 4
  • FLAG P X DUNihiY DUhthiY DUhihiY NV 1121201 1 557.00 1.0 0. O. O. 2 1121202 1 557.00 .629 0. O. O. 3 1121202 1 557.00 .07 0. O. O. 3 1121203 1 557.00 0.0 0. O. O. 5 1121201 1 557.00 0.0 0. O. O. 2 1121202 1 557.00 0.0 0. O. O. 3 1121203 1 557.00 0.0 0. O. O. 5
  • FLAG =0 => (LBhi/SEC) 1121300 I I

l l

}

e.

  • LFLOW VFLOW INTERFACE FLOW NJ l121301 0.0 0.0 0.0 4 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
  • -IIEAT STRUCTURE lbPUT 5
  • GENERAL DATA
  • Nif NP GEO SS LEFT COORD, 11511000 21 11 2 1 0.02766665

'MESif FLAGS

  • LOCATION FLG FORMAT FLAG 11511100 0 2 e.......----......---...--....
  • MESII DATA
  • MESif INTERVAL INT #

11511101.000358335 10 e.---..---.-m=.--==--

  • COMPOSITION DATA
  • COMP. # INT #

11511201 1 10 e-....-.-..-===--.

  • llEAT DISTRIBUTION DATA SOURCE INT #

11511301 0.0 10

. ......- - -. ~.- m.. -.....

  • lNITI AL TEMPERATURE DATA
  • TEMP. INT #

11511401 557.0 11

  • LEFT BC CARDS DVL INC TYPE SURF CYLllT STRUCT #

11511501 151010000 00001 0 447.65 1 11511502 151020000 0000 1 0 1989.54 2 11511503 151030000 10000 1 0 2387.45 4 11511504 151050000 10000 1 0 2851.67 8 11511505 151090000 10000 1 0 2741.59 10 11511506 151110000 10000 1 0 2851.67 14 11511507 151150000 10000 1 0 1193.72 19 II511508 151200000 00001 0 795.82 20 11511509 151210000 00001 0 447.65 21 e.--.-.--.......---------====-- --

  • RIGIIT BC CARDS
  • BVR INC TYPE SURF CYL IIT STRUCT #

0 505.62 l 11511601 100010000 0 1 1 11511602 121010000 00001 0 2247.22 2 l 11511603 101010000 10000 1 0 2696.66 4 11511604 101030000 00001 0 3221.02 5 l

i i1511605 134010000 00001 0 3221.02 6 11511606 135010000 10000 1 0 3221.02 8  ;

11511607 135050000 00001 0 3096.67 10 I1511608 135020000 -10000 1 0 3221.02 12 l 11511609 134010000 00001 0 3221.02 13

)

11511610 133050000 00001 0 3221.02 14 11511611 133040000 -10000 1 0 1348.33 18

o.

11511612 132010000 0000 1 0 1348.33 19 11511613 131010000 0 1 0 898.89 20 11511614 100010000 0 1 0 505.62 2I

. . . . - . . - - - - . - = - . . . - - - - - - - -

  • SOURCE D ATA
  • SOURCE MULT LDil RDH STRUCT #

11511701 0 0.0 0.0 0.0 2I

  • LEIT BOUNDARY CARDS
  • Clif HYDIAM IIED CifN LEN STRUCT #

11511801 0 0.0 0.0 0.0 2i e---.--.---.--.-.----.

  • RIGliT DOUNDARY CAPES
  • CIIF IIYDIAM IIED CHN LEN STRUCT #

11511901 0 0.0 0.0 0.0 21 eeesesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

  • --IIEAT STRUCTURE TiiERMAL PROPERTY DATA e
  • COMPOSITION TYPE AND DATA FORMAT
  • MATERI AL TYPE FLAG FLAG 20100100 TBilFCTN I 1
  • INCONEL e.....---...-------..----.=

e e

  • TilERMAL CONDUCTIVITY DATA (BTU /SEC-FT/DEG F) AND VOLUMETRIC HEAT l
  • CAPACITY DATA (BTU /FT**3-DEG F) VERSUS TEMPERATURE FOR ABOVE l
  • COMPOSITION j e . ..

e e

e . -...- - ..- . . .... - - - - - =..

  • lNCONEL 600 T11ERMAL CONDUCTIVITY DATA TEMPERATURE THERMAL CONDUCTIVITY 20100101 70.0 2.3843E43 20100102 200.0 2.5232E-03 20100103 400.0 2.8009E-03 20100104 600.0 3.0787E-03 20100105 800 0 3.3565E-03 20100106 1000.0 3.6574E-03 20100107 1200.0 3.9815E-03 r

20100108 1400.0 4.3056E-03 20100109 1600.0 4.6296E-03 e-...-==.-==------===-

  • lNCONEL 600 VOLUMETRIC HEAT CAPACITY DATA
  • TEMPERATURE  !! EAT CAPACITY 20100151 70.0 55 6831 20100152 200.0 55.5227 -

20100153 400.0 55.2607 20100154 600.0 54.9895 20100155 800.0 54.7069 20100156 1000 0 54.3982 20100157 1200.0 54 0907 1

l l

20100158 1400.0 53.7516 20100159 1600.0 53.4205 t I

20100160 1800.0 53.0796

  • - CONTROL SYSTEM FOR MEASURING SG LEVEL  ;
  • NOTE: TIIE FOLIDWING CONTROL SYSTEM IS TO WORK IN BRITSH l
  • UNITS ( LBM, LBF, IT, S, P=LDF/SQiN). IN RELAP5 l '
  • TIIE QUANTITIES STORED IN ARRAYS ARE IN SI UNITS. l
  • TIIEREFORE, CONVERSIONS FROM St TO BRITISH UNITS l MUST BE MADE. l

- CONTROL VARIABLE CARD TYPE 20500000 999 ,

  • CONTROL COMPONENT CARDS COMPUTE PRESSURE DIFFERENCE NAME TYPE SCALE (PSI /PA) INIT FLAG 20500100 DELTPP SUM 1.45003E-04 0.0 1
  • A0 Al VAR VOL A2 VAR VOL 20500101 0.0 1.0, P,135040000 1.0, P,135030000
  • NAME TYPE SCALE (PSI /PA)INIT FLAG 20500200 DELTPN SUM 1.45003E-04 0.0 1 A0 Al VAR VOL A2 VAR VOL 20500201 0.0 1.0, P,135030000 1.0, P,135010000 NAME TYPE SCALE (PSI /PA)INIT FLAG 20500300 DELTPN SUM 1.45003E.04 0.0 1 A0 Al VAR VOL A2 VAR VOL 20500301 0.0 1.0, P,101020000 1.0, P,101010000 NAME TYPE SCALE (PSI /PA)INIT FLAG

. i l

NAME TYPE SCALE (PSI /PA)lNIT FLAG j 20500400 DELTPP SUM 1.45003 E-04 0.0 1 )

  • A0 Al VAR VOL A2 VAR VOL I 20500401 0.0.l.0, P,135030000 1.0, P,135020000 )

20500402 -12.127, R110,135030000 -5.3517 RHO,135020000

............................ + ..................................

  • END OF INPUT DECK - PROBLEM END l

- - -- . - -