ML20072T657

From kanterella
Jump to navigation Jump to search
Rev 1 to Bounding Evaluation for River Bend 1 Heatup Rate Event
ML20072T657
Person / Time
Site: River Bend Entergy icon.png
Issue date: 03/31/1991
From: Caine T, Marisa Herrera, Ranganath S
GENERAL ELECTRIC CO.
To:
Shared Package
ML20072T653 List:
References
SASR-91-16, SASR-91-16-R01, SASR-91-16-R1, NUDOCS 9104180212
Download: ML20072T657 (36)


Text

.

v s

k SASR 91 16 DRr 137 0010 March 1991 Revision 1 BOUNDING EVALUATION FOR RIVER BEND 1 HEATUP RATE EVENT Prepared by:

I.

T. A. Caine, Senior Engineer Structural Analysis Services Verified by:

r-M. L. Herrera, Senior Engineer Structural Analysis Services Reviewed by:

S. Ranganath, Manager Structural Analysis Services (4o &\\

92.!.6$25 x

GENuclearEnergy 9104180212 910404 PDR ADOCK 05000458 PDR

l IMPORTANT NOTICE REGARDING CONTENTS OF THIS REPORT PLEASE READ CAREFULLY This report was prepared by the General Electric Company.

The information contained in this report is believed by General Electric to be an accurate and true representation of the facts known, obtained or provided to General Electric at the time this report was prepared.

The only undertakings of the General Electric Company respecting information in this document are contained in the contract between the customer and the General Electric Company, as identified in the purchase order for this report, and nothing contained in this document shall be construed as changing said contract. The use of this information except as defined by said contract, or for any purpose other than that for which it is intended, is not authorized; and with respect to any such unauthorized use. neither General Electric Company nor any of the contributors to this document makes any as to the completeness, representation or warranty (express or implied) accuracy or usefulness of the information contained in this document or that such use of such information may not infringe privately owned rights; nor do they assume any responsibility for liability or damege of any kind which may result from'such use of such inforuation, 11,

4 A

i TABLE OF CONTENTS f.att 1.0 BACF.CROUND l1 1.1 Heatup Event Exceeds 100'F/hr 11 1.2 Vessel Integrity Concerns 11 2.0 FOUR CASES ANALYZED APPLY TO ENTIRE VESSEL 21 2.1 Top Head Analysis 21 2.2 Stud Analysis 22 2.3 Support Skirt Analysis 22 2.4 Feedwater Nozzle Analysis 22 3.0 HEATUP EVENT DOES NOT VIOLATE P.T CURVES 31

4.0 CONCLUSION

S: HEATUP EVENT HAS NO IMPACT ON VESSEL COMPONENTS EXCEPT STUDS 41

5.0 REFERENCES

51 APPENDICE1 A

TOP HEAD ANALYSIS A1 B

STUD ANALYSIS B1 C

SUPPORT SKIRT ANALYSIS C1 D

FEEDWATER N0ZZLE ANALYSIS D1 111 I

1

i s

I l

1.0 BACKGROUND

1.1 Heatup Event Exceeds 100'F/hr The River Bend vessel experienced a heatup of 119'T in a one hour period. November 30,1990.

This heatup rate exceeds the design basis rate of 100'F/hr frots the stress reports and pressure temperature (P T) curves.

The rate was specifically exceeded between 1630 and 1730 hours0.02 days <br />0.481 hours <br />0.00286 weeks <br />6.58265e-4 months <br /> from 213'T to 332'F.

During that time, the vessel pressure increased from 0 psig to 88 psig.

1.2 Vessel Integrity Concerns To evaluate the River Bend i vessel integrity, the magnitude of stress, the offect on fatigue usage, and the question of brittle fracture need to be addressed.

Brittle fracture is not a concern because the temperatures were nat close to the limits of the pressure. temperature curves, for this heatup event.

The vessel pressure boundary and the recirculation and steam piping are evaluated for excessive heatup stress and fatigue impact.

The 100'F/hr vessel heatup rate limit is not applicable to the fuel.

The fuel related limits are contained in the Fuel Warranty Operating 1.imits section of Amendment 6 to the Fuel Fabrication Services Contract for the River Bt.nd Nuclear Power Plant, Unit 1.

For internals, thermal stresses are small compared to stresses due to deadweight and flow (6P and vibration).

The stresses at the low flow, low temperature condition with the 119'F/hr heatup are bounded by the 100% flow, normal operating temperature condition at the end of the 100'F/hr heatup.

11,

f 9

2.0 FOUR CAEH AWAf YnD APPLY TO ENTIH VEHil, t

Four specific cases are analyzed to demonstrate the effects of the heatup event.

The results from these cases can be applied to the entire vessel.

Using the River Bend Unit 1 stress reports, the four areas used to bound the analysis include:

1.-

TOP HEAD 2.

STUD 3.

SUPPORT SKIRT 4

FEEDWATER N0ZZLE The conclusions for the top head and feedwater nozzle apply to all pressure boundary components, including the recirculation system and steam piping.

2.1 Top Head Analysis The combined thermal and pressure stress from the 119'F/hr heatup is two to four times-less than the largest calculated stresses at the top head during the heatup event.1 For example at the most severe location for the top head, the 119'F/hr heatup stress value was 7.78 Ksi compared to the more limiting calculated stress - of 35.06 Kai at end of startup.

Even though the higher temperature increased the ' thermal contribution slightly, the low pressure decreased the values significantly resulting l'

in a much lower combined heatup stress.

The top head analysis (details l

in Appendix A) is typical of the reactor pressure vessel shell.

21

4 2.2 Stud Analysis The change in fatigue usage factor, due to the 119'F/hr heatup event, is determined to be an increase of 0.0005 for the studs.2 The one cycle fatigue usage factor increases from 0.0043 to 0.0048.

The detailed stud analysis is in Appendix B.

2.3 Support Skirt Analysis The point analyzed for the support skirt had the highest usage factor I

and is the most limiting location for the 119'F/hr heatup case.

Using the calculated startup temperature 3 in the support skirt region and the corresponding stresses, the 119'F/hr heatup stress was 41.9 Ksi compared to the larger, more limiting calculated stress of

$3.9 Kai at 450'F.4 Therefore, the excess heatup had an insignificant effect on the support skirt stresses.

Detailed calculations and support skirt schematic are in Appendix C.

4 2,4 Feedwater Nossie Analysis i

5 in the feedwater nozzle stress caport for the triple thermal sleeve,

the startup and shutdown cases were bounded by the feedwater heater bypass case.

One cycle of heatup and cooldown associated with feedwater l

heater bypass had a fatigue usage of 0.0000036.

A normal heacup would be less than this amount, and the incremental usage due to the 19'F exceedance of the heetup limit would be even less.

Therefore,.the 119'F/hr heatup event had an insignificant fatigue impact on nozzles such as the feedwater nozzle.

The analysis and feedwater nozzle schematic are in Appendix D.

~

a 22' I

w r

v re,-e---_

.-.e---.-.w--.

--e-.

.-em~-e---.-e

---...---.u--.

4 L O._Ilg10P EVENT DM,E NOT VIOLATE P.T Ct'RVES The thermal effects were included in the pressure temperature (P.T) curve data 6 to reflect the excessive heatup rate of 119'F/hr.

This higher temperature rate shif ts the two thermally dependent core beltline curves, the heatup/cooldovn curve (B') and core critical operation curve (C'), less than 2'r.

Figure 3.4.6.1 1 illustrates the 8 ef fective full power years 100'r/hr River Bend 1 P.T curve.

If a 2'F shift of curves B' and C' were included, it is clear that the vessel condition of 88 psig and 332'F would not violate the adjusted curves.

i l

I l

31 4

e

1600-A A' S 8'C C' 1400 e

i

.f Il f

I

'9, a

='

c. 1200 8

I O

l 4

t g.

g I

i e

ll-.f;'

I 1000 e

i

_t M

e i

A',B',C' - CORE BELTUNE p

8 l

AFTER ASSUMED 111'F N

8

[

SHIFT FROM AN INITlAL 800 WELD RT,cr OF -50'F e

[/

s O

I U

r 6

l l

W I

A - SYSTEM HYDROTEST UMIT WITH FUEL IN VESSEL

.,e 600 B - NON-NUCLEAR HEATING b

UMIT 2

C - NUCLE \\R (CORE CRITICAL)

UMIT d

400 VESSEL DISCONTINUITY m

UMITS E

st2 eso

- - CORE BELTUNE WITH 111'F SHIFT 200

[

CURVES A',B',C' ARE VAUD NOL. TUP 70Y

/

FOR S EFFV OF OPERATION CURVES A,B,C ARE VAUO FOR 2 EFPY OF OPERATION O

i i

0 100 200 300 400 500 600 MINIMUM REACTOR VESSEL METAL TEMPERATURE (*F)

RGURE 3,4.6.1-1 MINIMUM TEMPERATURE REQUIRED VS REACTOR PRE $SURE RIVER BEND - UNIT 1 3/4k-23

4 3

  • 4.0 CONCLt!tIOMEt HEATUF EVENT MAR NO TDACT ON VEEEEL CQMPONENTS EECEPT STUDS The vessel pressure boundary, and the recirculation and 6 :eam piping were

]

analyzed by four. areas top head, stud, support skirt and feedwater nozzle.

for the top head and support skirt, the stresses were scaled to the 119'F/hr heatup rate and 88 psig event, and found to be inconsequential and less

)

limiting compared to the stresses calculated for a normal startup in the River Band stress reports.

The fact that the excessive heatup occurred at very low

~

than m1 ht have pressures: leads to-a less severe stress and fatigus impact 6

occurred otherwise.

The stud fatigue usage factor increased by 0.000$, fo'r one cycle, due to the heatup event.

The feedwater nozzle condition was bounded by the analyzed feedwater heater bypass event, with insignificant fatigue impact.

6 k

41'

..~..

..m

.._,_,.~_.__._.u__._._.____.____.

a

o i

5.0 REFERENCE),

1.

"Section $21 Stress Analysis Top Head Transition", VPF 3535 452 1.

August 1976.

2.

" Stress Report 218" Bk'R.6 Section F1 Fatigue Analysis Flan 6e and Studs",

VPF 3535 852 4, Au6ust 1976.

3.

" Stress Report 218" Bk'R 6 Section T2 Support Skirt and Shroud Support",

VPF 3535 854 1, December 1975.

4.

" Stress Report 218" Bk'R.6 Section F2 Support Skirt and Shroud Support",

VPF 3535 856 1, December 1975.

5.

CE Stress Report 22A5552, Revision 1, with Data Sheets 22A5552AJ, Revision 0, "Feedwater Nozzle Safe Ends," November 1982.

6.

Caine, T.A., " Implementation of Regulatory Guide 1.99 Revision 2 for River Bend Station Unit 1",Rev. 1, DRF 137 0010, SASR 89 20, March 1990.

51*

i l

APPENDIK At TOP HEAD ANALYSIS

zbr/s A

won, w,

in P ps79h 72AA)3tvjbr) vnn ',,,,,

i e,._1_

wuaer

/

. b M e m m 2.e

%w SWesses s+

o ps.c a n d Ja y O

1'?l 2 nu h. 4tv.uu. Prcy Gdes

/

4

+h.c. hWo J 40 ckerL) youtt A crq Aum t.

O,4 o.79 2

l, 75~

l.37

.5 049 0.77

't I. (oCo h29 5*

O,%

08 (o

I.R 5 IMI 7

0.9G O.? ?

8 4 75 7,39 1

9

/. 39 0 95 i:

3.37

.5.55 11 2.06 t,08 Y /2 M 2.6 9./ 7 Is J. %

1.oy

)+

W. o 5*

% 17 O

N e

16 %

k Hu cst A v &Lt- -

y]@AH.h.Lif (.37.52 n') SA/-S of 52/

1 l

agosp my ech

w GENudearEnergy Engineering Calculation Sheet A

w o.t.

wi

-rhP H&?D knu. )

_,,,,, a e,.3L_

t su,a e, i

h.

'7l%

k b d.4.L O 2 iOco nLE

& paOV/1 3 O. 8 o rsi.

A'a./tb Wu.46tw af Hu J1/a2/ u,O 408/1f Of ffpsC

$ p'

/0

/ Coo

@cc M

< JFM Jo.co 07u.up w

% -y g) - J.9/ Esi rnay aho lu--

7/w HuAmaJ'.olw4

,ta)Md gcvGy Lap CTA ) = [I l9 */hr \\ l sq 4 + 82-(/00*F//tg (

P (I19)(4.26) - 5.c7 hi.

=

rcanL. hed up event shers 0,corporsk lxW witenreu

+ pressu.re gd.:,

Q7

). m Lu' + 5. 07 kg L' = 7.22 W.

bolup) se.lba/to @/M de / w Wtund 6

d4w'.A ' V f $ u4c-af df'j'eaw lN$mowAW' R$4i y ar xm sue?' haw th,

f+'

Ar A

A

~7 78 N S a tw as poo

~ Ksu M in w 4

N +he 61A44.01 N.L4<0

z/uhi A

w u,,,

u,,

.r,o (

.m,1_2. e, 3

suindt

-rn p 47A o htu 4/u dt.dma/

ChCOst.'1 go&td 4 (n@tr02<hfo a asps B.

2 s r>Liff+ co

\\

if Ob du

>02Le44--)

/ccop t

ce e -

76 pu'

0. N R kTA.

Q,,9.g,, fI9/ 254 {/WOf.)\\

a

/

Rassirg Mu skuvas Aen pae fr/t P ~ / j// 9 ' W '^) (/,(o fo,) =

}. 9 Q ks<.'

  • f

(

oo *f///t-rhe *W W aol'IIbuA b u c~"

  • y l.99Lsi-1 O.4.52. t si Q~m~

=.

n9'F/lb- = 8 4)9. ESC hi

& (.Jaa) up aed s+ress ) fdu p a tt L/ A 2.

+ieyte.:

Aue ~4hy stress of kx>o W

2~74v'*C-W %W h07/* bin *1

,Q 4]%w 4

alk.d.ad

...c..

- - =.=.

e_

A l

CBI NUCM AR COWArn MAX, ' RANGE OF OTRESS IN T E RS (T y POINT A

Sn 35m 1

l l-2 za.9 l

So.t l

2.

l

/-2.

/4.c.

l l

3

/-z l ii'. o l

4

/-2

/5.3 5

/-Z 27.7 6

/ - 2.

/71

~

/-1 25.1 l

7 1

8 1-4 l

2 3. 2.

9

- 2.

z2.9 10 2-4

2. L.9 l

ll

/ - 2.

2. 2. 2.

la

/-2.

3 r.s 13 1-z 2.3.7 Y

l4

/- z 57.1 ao. :

A-C omsists( c^ses i-enno STgsss Casa 2.

Desic.N HYrzoresr 3 - STAT.T UP (a 2.71. 2. NIN.

J. - SAFETY YALVE. '6LOWtcWu G 3o.o mN e

t 4

4 0

e....,

.g.y..g..y

[

~

~

yt+

,."; Pu

  • "J.:

6.. s a i

f 2

A r,

top HEAD TRANSiflON REGION - $TRES$65 OtlE TO 1000 PSI INTERNAL. Dd8550cc r

1 S I f* A SIGMA SIGMA TAU PART 015T FACE ORIENT POI N T DH1 THETA QA0!AL NO.

~ TSIi (65TI

( K'S'l )

(K$11 (DEO.)

(OEGREE1

~

(

20.49 14.99

-1.00 0.0 2

19 IN O

2 5.79 11.68 0.0 0.0 2

1.8 OUT 0

r-3 21.36 15.79

-1.00 0.0 3

0.0 IN O

e 4

4.91 12.23 0.0 0.0 3

0.0 OUT 0

5 21.21 16.24

-1.00 0.0 3

1.0 IN 0

1" h

7.21 13.A9 0.0 0.0 3

1.0 OUT 0

~

i 7

19.10 17.17

-1.00 0.0 3

3.0 IN 0

8 14.A8 17.68 0.0 0.0 3

3.0 OUT 0

9 16.3A 17.2A

-1.00 0.0 3

4.0 IN 0

10 2's.32 20.42 0.0 0.0 3

4.0 OUT 0

11 11.55 16.80

-1.00 0.0 3

5.0 IN 0

_t 2 30.A0 23.90 0.0 0.0 3

5.0 OUT 0

i 13 12.70 17.93

-1.00 0.0 4

1.0 IN O

14 29.6A 24.08 0.0 0.0 4

1.0 OUT 0

I 1

~

m b-l u

e C.

b

-Ill% J Top HEAD TRANSITION CONT.NO.

l h:0LR OATE:'9/74~CHECKEn t L ANA T 6 : N/7/R6v.

SMEET-7~0 F 52L L

_~

H.

A e

top HQA0 Taaksitt0N RFGION - STARTilP 4 271.2 O!N.

r s l5T4 A stGwa

$1GMA T All PART DIST FACE ORIENT R a 1 A t.

NO.

0 p0!NT PHI THETA

~

(xs!)

(551)

(AS!)

(<$11 WW/

(DEGREE) e

,e 1

2n.no 14.25

-1.05 0.0

?

1.R IN 0

2 7.56 12.99 n.0 0.0 2

1.8 OUT 0

3 21.n7 14.99

-1.09 0.0 3

0.0 IN 0

4 6.57 13.52 0.0

0. 0 3

0.0 OUT 0

5 20.75 15 48

-1.05 0.0 3

10 IN 0

6 9.16 15.40 0.0 0.0 3

1.0 OUT 0

7 18.14 16.30

-1.05 0.0 3

3.0 IN O

4 17.63 20.57 0.0 0.0 3

3.0 OUT 0

9 14.99 16.33

-1.05

0. 0 3

4.0 19 0

10 24.69 23.97 0.0 0.0 3

4.0 OUT 0

11 9.50 15.72

-1.05 0.0 3

5.0 IN O

12 35.06_

28.09 0.0 0.0 3

5.0 OllT 0

13 10.A4 16.89

-1.05 0.0 4

10 IN 0

_14 33.73 28.25 0.0 0.0 4

1. 0 007 0

w m

W C

m b

IUBJ: TOP HFAO TRAN$1 TION CONT.NO.

iY t O'.R 0 A T E : ~9774 ^ CHE~CWlulh80 ATE: h[7V45v.

SiiE'ET 9 of 52 L-u

-.. - - - - - - - ~ = = = = - -

If.

APPENDIX B:

STUD ANALYSIS I

i

1

/

/

OATE NUM F.E 9 sv.acr FAf4pr.

U$AM FAC7DP FDf ST@S

-55 sear i,2 e

css)

FA0!vi STwDy ST. Arc 73 57?9Erap (g r-un fg

- (su.379 e s-L rg * /0/. 70G k S-L A f=.5%317 29 fde. /ht'.SN1oSS }/V TAEiN6

~TNE 2 ATE W~ //9 iiLtz) 06/13tc/dneh'bd all fft

/ /9 Y^ r '

A Q*&

f~/00 */h e)(37 317) ku'

= ff'sto 7 2sx' lin h-Ju's den Ad' v&,

+AL C9%

')

&& u;P W&

$fy)

~

SS cy 6 9'389 + P4 VD7

~~

/02'.79 6 ):ct a

Fkrigus cycLc facM y vc mery u

- i x, c em -enia)l:

pg,

- o u> op m -ox ::D -asg

2 //9 /9 /

8 oarc sumen

$712 DS (fM)

__ e v s~ser h os A suester

& W #4Clie

%)

hjsu R5Ge- (a) ' m nuabld g m (N y M bwd ct M Sm carve R '.1-9 4,

1974,

&chbw 3, &V.1 -

ia/

in

./usclea4 W

WSfLO I,

GO f 0/W y

Al

= At O Alwp,,

= J2. 35 y "d.L ( a =/), t/u &ue -

foR

.L T

u,,,p=3hg"=

0. 00%M and

.atoaan s JtA) 04

/ I 9 f /.)vt-4h6 Uypg - lg e 0 OOV74 Tlu M su Jae/m b w d gh )

Wu / vne Et

//9 VA~

p Au

=

0.0005

CBI NUCL, EAR COMPANY

+

t.ocation 5[KSN-

- gl yAL 6run 6-25553:

L e 6Aes No'n d 5

&= 52. 0 )

= u i[e9xu G..w $

r M

f37 A2.. Heus

/4 J

0:46.7/7)

-Perce4e 6r. G4 e4@. 3 )

c

( l e -.-

c (V~r24-244-)

vh O STr42w SNEp. toss or Fscourre MPs S&[f dr.u.w) c

= ca.onN

&1 M.t2

.)

y g G G

$7ARYY hloI.7cd)

"h E $ Na Desc.a 4 v=ce reer Mg*a$$

P esceSe p ten Tser(g,u.cos)

(v,4+ess) y

'J~qs m h A S $

MAGE Gr= 44. G) h Pas Mo'=

Co " 65. G) a e 4. Occease e

d sa.e PAes Hoco Gr>'41.4) q.

a y 6:r. 6 5. 6 )He'n

% A u L h Asa

% G 2a3$ hse

& 24.6) f (a

\\

& 55.51

% ?

r pses Houz Is(7 = 2I. 7 )

V

/sv PAes G.surAs e

,3 g fg }

CHAgot etc.

Easte'2/8"BW/2/4 l/ssseL I 783 I N I i OLN- '

.-r 9 o gf

_ g;5, y[4

= ;c,mo gag g

c.,,

i

6 CSI NUCLE AR COMPANY y

5 ?,

FATIGUE USAGE FACTORS FOR STUDS p,

4 6

S is calculated as follows:

alt E

= 1/2(K ){# m ~ Umin Salt T

T p

where, 4

g

=

Stress Concentration factor = 4.0 i

modulus of tilasticity used in the f atigue curve in E

=

e the code (Fig. I-9-4).

8 E

=, 30 x 10 psi c

m dulus of elasticity at the temperature involved, psi E

=

T (From Table I-6-0 of the Code) values and Using the above equation, as applicable, the Salt i

the associated partial usage factors are calculated on the I

following page.

1 l

9 tt' '

~ ^ ' "

'~^ "

  • ~ ' " " ~ '

2/6'SW6G F ". e' W P o...

..r.

e-a ' IO. g iz ner

^.jl

~

f

( wI 5, ' N*'

1 T

E Er ay y

n

'[

FATisos g

Aw AdFgro c

a cpsr 6=sr) (KSC 6esI) (xsr)

=

Cvcur Cvcas Cvces 3

N gn_m io")

xice-

~

g _

EE20 % GTARnkO SOD SO 29.0 10/206 O

210 285 I20.5l I f

h 2eao To /srdew#c 70 27.9 (o7;7 o

/36 go S

.m5 Y IST $ouruP l-loi.D To

% tsr eaaresp Ba. ease l0 b.0 Sl T 0

k 5403 {28.023

~

$ 2nn eocrop t-huaro 70 29R 55~ S. 24.6 (o 2. 2 goo (23 _o4]

p 2nn Boa. rop Reanse 3 e n e atru P /-foty To 70 2%9 (oS C 4I.4i 48 42m I23.o29 l I San Boa.ruo Pau

reim Pass Hai.o 7a W Pass Reumsa TO 299 fo5 G 44.6 42' GooC l23.o2; y

b HrDaores,- $LeAx Cascx Pan-onv 180 8 56 (o4.8% fo2403 5 7lO' 4m O

~

io E%ss OF Fan wa 6

il;i Pgmps-gees gamesnt

$gg g7gg g5ogg gg gg g,jg 39 9

~

l$

"_ >Hortbusa) To /sr 426 2845 67. J 24-x4 R2 l200 (20. loo Onecer 1-lom

MCQ n

10 299 52.:o: 14.3 7fo 1800 /23,os9 l

4{y isr oneocr ecannse m zo n oneocr ido a j

h Rim hA63 l-lOLD To 7o 22Ws4a ar7

/

> /o' a o

a g j $ 4 "; g L T "z ' ; ;,

5= o,9 M Q

?

+ F12am Fua. L <1.+ o e Tru Cove (en 5,Come)

~

03

7-B APPENDIX l Fig.10.4 A. a

(

e.

eg a

1 11

..e n

"m

'n i

i I

i I

i

', y

_...q.

=

-, II E

L..

i

!i J

M '

i i

[p 4

j i

i

]

i

\\

b f

i e

h:~

l

  • =,

i

]

y g

__q, i

z 3

i

!i c

G

'y r x.

1

'l

'. I

'm__

.f

!I 1

1 2

/;I

[

W

. u E

\\ l

/

u Wxs n

a.

r. E I..

i 2

-,=

===r..

.r.

r i

4g y~jw r

khbb.....Z E vi; I

,f Zk z

W 8

g CC

  • m-g
  • gj W

/

il I

I j

h

  • g, xt-r /

x w i

i

(;

z

$ $ r'

.< 9 D

9

'n r o

sh e

m z

.ui

-g nr f )

0

/

w o

j e

Dl 1

r m

w I

W

,l o

J r

k l

/./

l M

E i

O Du

=

=

=

-t "ll

[ f W

  • i

! IJ "til S

  • I l 1 i/ /

I i

//

i k

'll}

N- -

~'

,H+-

y.;...

g g

+

l I

O l

Q J

g

  • [i i

y 2r i

i i

w

  • f+

B I'

  • Il J

I.' I I ;i I'

I

(

i x

'.n '..,i ' f.

j

$8 l

c.

. Ill i l I

}

'I 1

9 Zw

!sw S do S107VA 161 d

4 APPENDIX C:

SUPPORT SKIRT ANALYSIS

C

~u..

su.ict SCPPOLT SLI R_T

, z89 /9 i 1

e, z s ser

'/

&SWt WO n& r ten C & 100'F)

OAtd CLt I. D. OLin

.L & 9'm c 7, Fo!L THC LKA770^) (2.i&)

u)/ 7H TNG Wl(4M3T USA 6e

.QtcTOL.,

S-2.(loc 6 foOntO1) ~/59.S N S-2 c uo f,avi.2 m h).

-559yi fg%

a

+s0

- 5594:

}lhlt.rcorresW@

f u]6^- 332 'r.g 4A.L Tu o

7%

everk-

-+o 0-49a2M Q-S

~Y 532 9 5394 I - 139 3N -559 91 - 0~33-u p,

W o-I co *F 4 50 - 332*F E

l d' z = 35217. I f

E

D GEniudearEnergy Engineering Calculation Sheet c77LE' 0

muse pn

- z/ m,'/4 i su fier su PPnFT SV 1 e_T

rir _2. or _2_

- h h m ) u_o rc_ts 0% cac&a#h_)

TaMngbo.u.

,3'euld btco m Mu A

4/ 9 09.5 gw G@br) =

1. R G2 x

0t Y

4

+'T e

g b-CHICAGO BRIDGE & IRON COMPANY

..s Location Oak B~k r-FIGURE 10 NODES CHECKED FOR NONDUCTILE FAILURE v

4 a

~J s,s 199 4

(

1

o.

3

'a6f

}

a 360 s

3 ra!

i

,.y a 9g

  • 5'N 1* L
g. _

Y 1 Y

\\

en J J19 5,

un T

a

'$k fg IVO m <g

. 5-t i

blf

$ t Ub M7 6

\\

  • c 12
  • n I

<-a-yg..

na-m.m e ne:::

...e e..a

-,, C -l

'",$C gn4 (0/75

-A TABLE 2 NORMAL AND UPSET i

y TEMPERATURE FLOW TIMES CllECKED (EVENT)

MIN.

REGION B REGION C FOR STRESS TRANSIENT TIME s

l

  • F
  • F j$

I m

0.00 100 100 30 l

0.01 100 100 30 i

  • 60.00 200 100 30 x

m

  • 240.00 500 400 30 START UP x (2) 1
  • 271.20 552 450 30 (3)
  • 331.20 552 450 30 x

x TURBINE 331.21 544 544 30 x

361.20 528 528 100 361.21 528 528 100 ROLL or (4)

R$ ak 361.22 528 528 30 x

  • 444.60 350 250 30 wa x

^

D GENERATOR

  • S64.60 552 450 30 TURBINE x
  • 624.60 552 450 30 x

$$ 1f TRIP 624.61 544 544 330 654.60 528 528 100 (10)

R x

S.S.

(12) 654.70 528 528 100

~

C Q

uw E

5 o

a h

684.70 544 544 30 y

REDUCTION

  • 699.70 552 494 30 o
  • 712.90 552 450 30 a

TO 0%

(13) o 6

IiOT STANDBY

  • 713.00 552 450 30 5

o e

(14) 5 few inches below the o

t 1

the Region B temperature extends a i

Z

^

At these times, ro

[

baffle plate 16 cards were punched at two times between the last two g

y (2)

Indicates type

[3 time t>oints (240 and 271.2) shown, i

ra D

l

      • esq '

e i

CHICAGO BRIDGE & IRON COMPANY Osk Betiek E.,;e,ua, gg J

i M M M M

'af 'sC M M M MMMM MM MM MMMMM M 'af>M M M M

< <i< < << < < < 4.<

< < <:< <ic < < <<

=<<<<

JIW.JlW 4.

W W lw W l J J A W 14.J w W W wWW Wl J W.sww

c. :. s. l c. a. a c s c.lc
4. s s. m. c lc c 'io a. o

}

wW

. 2 s a :o m c..:

i.

.m :e le. e.,:s e. =. c.ie. c.ic. e. e e. m.

r c=

c c

e

e. :..a e.

... c.

. e... m.

l i

i I rr rr rr rr rrrz zzrE rr r r,r r r. r r r.r b

Q o o

eO ccc oo o

qoc o o

4. c..o.

o 6

o O.

o.

o. i. o. c.

c.

N 8

M o

D' oCo c

e e

o eoc l

i e

l w

0. o C.

0 c

o c'c o C. Q r

o o e

oo com I

c. o. '.o.I z

c 200 o

p.

l e.I

.i r

t' c

000 0

o O

C CQt

{

f i

i I

e m e.M i.

4

. ao

.....a=m o.

5 o c m o t c C C W m-Qn N og e C&

c e C C, 4 N eo k i y. ' N. N. @.

N.

. O. @ T. >T.

NM O

N O!== Ft m

.4

.1

~! r*

  • C C

f*

Wl MNe 8

c.

C-l e 0

w =.e

    • 9

.e l y 0 4 m

M z

N i

NiN.=.

=

i 6 l l

ill m N'm. %,de x

f m 4. m O m e..

. =

la

.T

. Ib..

piH H m Da d'= N e4 s = A 4 mwmeme QO...n.

e O n e-m,e N H n..%. 9 e. e t e.ig. m e c hp M hm m

,N a b

A c

eni qq 4

yemv..m I

e>n r v) 41 W N'r= M D. Q l ee ( C M m m 1 8. I mwM M

e.

a a

e 4

a

  • ~ i c

T I

i l st' d

%i N'

  • NM l

a l

M

=

(

l I

iil I

w I

i 4 Me4 i

i e

44..

4.

w

.4

.....eem O.

e a tt N1Pvm.me N mtwee 4 otit c to a va

  • pr. Q 4 (Pi m m e

4 4 th.e P=== = f* Q ".

tt. 9. ' N N; N

e P m pi e V1 = ti tt 1#1m 4{==. %.

.e e v p. Q elm. -.

I m e m e m W.s r= Q e

w e

P sel d;

P N 4 m es_m.s44*

M z

Q 4lNe N N.== pe r @ m en

== & e Ci I.us l lVl gM i l a'G m lg l

>=

=

L

'*!T T

? T T

'in mkh p.

. m...

5 er j

<g CC teEC 9 0 09 k k.em -ec CecQCCee C.

'.F. D. i. N. y a.

m.1 O. m C. M. ' A N

a E

0 W

i w m,

=

n.

I to C O

e

=. c 4 e o

e N

8 6

h m

d seh M,

o m

= c.m e.

I T

Il 1.o 2

e a

+

n Q+

i N S

M b

oeoc t4C0 0000 c e o o k c o e 00 0 c c b 0-0 o b Co C! c C. 9 909e

. W c o n o,o c c o o,o. g-a

t e o 4' e w w 4 4 *q c c c O 9 c c.ol o c' o c o C e.C C O' c.4
          • H

+

a ecQC

. m e

1g e 4 w 4.S;4 4 % 4 4 4 4 4 4 4 4 e ae 4 w444 y

J it I il I t' t 1: e m m)m m m m m m m 41 1

I se e it i

l:

l' i

e i e il i i memmmm mmmnem rl emmmmme G Q C C 4 c C Q c o o 9 Q.g O O O O C 9 C o C C 9'e e N OQC x

v=NghmmNeCPW9mQmmW w

e*Pece a w - N O W N 5{M e e q Q m e Q = m

= m b** "'" "* NI, T' O,89) M,V) W 4 d '4 g

x h

rQ me=NNf g

M fi't,M Vi,4 ] 4

= * ' '

  • k 8.ea#48

.e 9.

es. O 4 ey aO 39 j%5%T 218" BWR-6 VESSEL Jpc 9M o.ru o.,r a I

ca.e m

e" 9

    • F2 9/74 10174 s

i 3, T TABLE 12 (continued) i 0

El.

Tiene S-R S-Z S-T S-RZ S-RT S-ZT E

I eo Vm j

3 THERMAL met 48 t BE6mtF 84K_

STRESSES FoR ST AR T UP AT 271. 2 M i tJU T E S 3

923F.

~6495 o.

c.

O.

Mob

  • PEAK 13403 -27 f.~2 6.

9555 557A.

6.

o.

D.

M su

  • P t' Ai g

t 7903-27A.2 c.

-26501.

14442.

O.

O.

d.

M*u* PEAK g

~js903-271 2

-55W43.

745.

43M.

O.

o.

M*H* PEAK 240e3-271.2

-38928.

-346..

-3643

-3671.

D.

O.

M*0*PLAK I

m 2t903 57172

-303 7

m 6.

-16272.

-7987 o.

O.

6.

M*B*PLAK 2

O.

-15.597

-9872.

b.

O.

O.

HeH+PFAK 404d3-271.2 O.

-lo96.

-3686.

O.

d.

B.

tfoli+ PE AK l

_39903-2781 l

0.

'3170.

-10797 o.

O.

O.

Mii B + P E AK 36403-271.2 i:

~3:203-271.1

-1390.

-9638.

-12325

-3464 o.

o.

M e.f*1>t AK 31103-271.2 t

da, 52sa3-271. 2

-t403.

-7673

-13423

-32tt.

o.

o.

Men *Pt4K

?-

)2 60303-271 1 2157

.5,fS7

-14394.

3552.

d.

c.

i4*o*PLAK j

e o

65303-211 2

-339I.

-54s7

-17545

-4313.

o.

o.

Me of PtJK 3"

67#03-271 2.

-5851.

-6358.

-15127

-6099 o.

o.

M*o* PEAK y

7243-271.2 8.

-7515

-10476.

o.

O.

o.

Men 1 PEAK 4; 2.

130D3-271.I 0

ay14L.

537 o.

o.

o.

H+nePEAK s$ 3 c.

304S6.

29327 o.

o.

D.

M*U+ PEAK d.

39162.

27632.

D.

a.

o.

M* B+ PE AK 1

19003-274.2

_28703 _271.2.___

49_9 3521 Sitt.

-1326 O.

o.

M*S*PLAK 197a3-271. 2 g

=

c.

23014 6510.

o.

O.

O.

Heu*PLAK r-39303-271 1 c.

I1724 6523 6

8 o.

MeBePtAK 3,

40003-278 2 o.

-1892.

89I1 O.

O.

o.

M*6* PEAR g

o.

6411.

V47.

d.

o.

D.

M*H+ PEAK o

36003-278 2.

Sa')o3-2Ff.2 264 Joab.

375 11o38.

o.

o.

M*B+PLAK o

j 309o3-271.2.

E

.53503-271 2.

779.

5137 1849.

2004.

o.

o.

M*H+ PEAK 6

lA563-27s.2

-3959

-saios.

~7 24 r.

-4629 o.

o.

Men PtAK

[

S 65703-212 2 E Li t.

2DE*.

-211 E.

3639 a.

o.

M *u* YL AK s.

6 s 2 a 3 - z 1 v. 2.

Jess.

4234 224r.

4a94.

o.

a.

M*o*PtAn 5;

1_

7 O

2"

~

O a

O h

e g

a I

4 i

D2 no l

..(.

I APPENDIX D:

FEEDWATER NOZZLE ANALYSIS e

f G S

" 0 GENuclearEnergy Engineering Calculation Sheet 3N

/

NUMBER DATE NO SHEET OF SUBJECT "A-BY 00

'~Ck Q W A M d f S &

Q, ~2 2 A s 5 5 2. A W M 2 MST.n. A T, M

  • b~b~ s n Q d W {Ioc>) O b.A.L Jg &_ @ q g FC Ms (PFHG n FH8),

IhLabX LM

~

15 5*c= b T a

).5 J A D'

-- d i J. - ; i i m 4 @

NA 2s 3, M

O =.i072.2.,

0%

s.u=~T M3A 3sr Af H o h a.,_L %, M Le

= 31. s-As.d a~.L.

M p.=,,r 3 4 9 r4 i p 6 s muj 4 1/2. r399 = o.coomu rwa _ _ h m. % m m, s &

M J qax 4 a~.z w nv/u m q a n A 4 th

-,_ u c u.,o-a y.

r w a m._

i

\\

LJQ 672.

GENERAL @ ELECTRIC 22Asssz m e.o. as MV I NUCLAAM ENERGY OtVlWON *

=^

STetss PotAtis P+O+f

+/9 4/3

+3a 444 ~

.\\ \\

[

rio 37o 374 354 t

36,(,

ya O.

358 342

/93 * /d7

(

ag\\-

/d a "" 14 2 12.4 337 134 325 307 3ll 2.91

,n 287 LG7 27/

25l 7

[

2.55g 238

\\,

t 235 \\

22.7 2aa aza 4

W

^

-~

r GENERAL @ ELECTRIC -

22A55sa

== 26 R8V NUCLaAR ENERGY DMNON TPANSIENT SELECTION TABLE EVDIT NO.

TRANSTINT SELICTION CRITERIA 1

Bolt Up Insignificant 2

Design Hydrotest Less Severe than Event 18 3

Startup Less Severs than Event 9 4

Turbine Roll Analyzed 5

Daily Reduction 75%

Less Severe than Event 6 6

Weekly Reduction 50%

Analyzed 7

Rod Pattern Change Less Severe than Event 6 8

Turbine Trip Analyzed 9

Partial Feedwater Bypass Analyzed 10 Turbine Generator Trip Analyzed

  • 11 All other Scrams Same as Event 10

~

12 Normal Operation Analyzed.

13 Reduction to.0%

Less Severe than Event 9 14 Hot Standby Analyzed 15 Shutdown Less Severe than Event 14 16 Shutdown Less Severe than Evant 14 17 SutJews Less Severs hsw Evt.nt i 18 Unbolt Insignificant li Refueling Insignificant 2.o Loss of Feedwater Pumps Less Severe than Events 4 & 14 El

% hLVe S*wdown Apeedm dtH S W *s Eve *+ 10 -li ee 9

  • a

7, 6 o o l

GENERAL @ ELECTRIC 22 Ass st.

= = so I

wuctun awine awmew -

aw w.

EVEAJ7" 9

/DEAli ZED PA RTIA L FEEDWA TER NORMAL HEA TCR 8 YPA S S OPERA TIChj

/00 %

552*r I

/AlSIDE VE SS El_

_' /00 L 420*f 420 *F

u Lo

_k 6 r.

/TC

/A/ SIDE 266 *f N0ZZLE se Js.o rime (nui.)

o l

/. S

' 3/.5 L

l~

l TEMP 1

flow 9

e

_y

' ^ ' '

=... -.

\\

GE.NERAL@ ELECTRIC 22A555z in a 96 woes. san aNaROY INVtsCN,

may l Coa /.daSd,96,/

Fatigue.

Usage Elemeid Matenal facter-IG8 Carbon.

o.

/GE C

O.

228 C

.4079C

  • Max. carboit. low cycle behmd steeve.(

2zg C

. costa

.fa hg ae. usege.

235 Stainless Steel

. 0994+

Ma. Hi-cycts fa hgue us o9e

%227 C

.00172

-for carbort.

  • 0. oG & (sA. 9s) 255 Ss

.co4sy

.., u,,,,,4,qgg.,.,,,,

23s C

.0071e

,,o 2 '71 SS

. 03llG 25/

C

.01053 287 SS

.01754-247 C-

. olI8

(

3ll Ss

.co2+G

    • Max. SS low cyde. Gigue 241 C

.ot 00L usage. Hi-cyde fahgue 325 ss 066/7 u s cy e.fo,

s s e o. (ss. 9s.)

307 C

.001eZ 340 SS

.os4/G 327

^C 00571 3S8

-SS 80122n*

342 C

.00845-3G&

SS

.54422 346 C

.01405 374 33

. 71 3 5+

C

. olG 4G 3 10 SS

.445 370 C

.02842 4/9 C

.48372.

l 413 C

.40528 l

~ '

444 C

.08601 L

433 C

.o1730 i

.-GEN ER AL@ ELECTRIC 22xsss2 m e.o..zai i

NUCLfAA ENE AQY DIVIS40N R8V suo e n 1 } nijy iis si;4 Al uiil m f $ 3-uvu m

~

Ti' f a l.

iiAAG4s

0. @ 7 3 >

f 4 4~ % i 4 vi

%Al.T m'.

^ 1. '. ' i +'

"'. n=51 -

4 T i 1.

TlSt$

(*5I)

f. Y C I.
  • 5 f.YC',i$

'%a.e TR O.27 w; 6.7n 132.AA 53'.

13i.

t..m w%

o.&>

g-HS k.70 103.?a 11 %.

%7.

0.53->>

\\..

wa 23.0 w% n.e>

71.a1 461a.

ta,

n. nt>c p 3 TT 1.Sn

.? d 4 33.0 62.53 7%A.

10.

'O.qn127

=:

.i a A 1.5

. )

F -t

  • 3 3. t) 31.50 27H349 272 n.finow7 TT 37.5 FdA 1.5 29.94 3749?O.

10.

0.01n0 3

... TR 30.10.

l-FwA 1.6 24.20

>10.***

SA344 n.0 L

5U9.1:. GE.NE4 AL ELECT A LC.aiUCL E AA 0 t v 15 inn CHNT. W.

AY:

OaTE:

/

CWECKEO:

OATE:

diV.

Swi:T sia

..