ML20070P380

From kanterella
Jump to navigation Jump to search
Neutronics Design Methods & Verification
ML20070P380
Person / Time
Site: Fort Calhoun Omaha Public Power District icon.png
Issue date: 05/31/1994
From:
OMAHA PUBLIC POWER DISTRICT
To:
Shared Package
ML19304C106 List:
References
OPPD-NA-8302-NP-R04, OPPD-NA-8302-NP-R4, NUDOCS 9405110273
Download: ML20070P380 (91)


Text

. . - -- ~ -. . .. . - . - . - ..- -.- . ...

SUMMARY

OF CHANGES TO NEUTRONICS DESIGN METHODS AND VERIFICATION OPPD-NA-8302-NP Rev. 04

1. Title Page Change the revision number and date.
2. All Pages Update the revision number.
3. Pages iii-iv Update Table of Contents with new page numbers and

- Replace ABB/CE codes (ROCS, MC, HERMITE) with Studsvik codes (CASMO-3/ SIMULATE-3), ESCORE and ASAS.

- Revise Section 1.0 through 5.0 to account for new code descriptions, models and benchmarking.

4. Page v Update List of Tables.
5. Pages vi-vii Update List of Figures.
6. Page viii Update revision sheet.
7. Pages 1-2 Update Introduction section:

- Introduce use of new codes.

- Brief description of similar NRC-approved methods used by Yankee Atomic Electric Company.

- Primary objective of methodology revisions.

- Brief description of each ma,ior section. 1

- Table of key physics parameters included in i benchmark.

8. Pages 3-11 Revised Methods Description section:

- Description of new codes (ESCORE, CASMO-3, CASLIB, TABLES-3, SIMULATE-3 and ASAS).

- Description of computer models for _ fuel assemblies ,

and reflectors (CASM0-3), cross-section tables  !

(TABLES-3), neutronics depletions.(SIMULATE-3) and axial-shape analysis (ASAS), i

- Figure for new code (s) sequencing and flow chart, )

9. Pages 12-18 Revisions to Application of Physics Methods: 1

- Replace " ROCS" or "MC" with " SIMULATE-3" where l appropriate.

- Replace " hot zero power" with "HZP" where appropriate.

- Insert new method for determining MTC aad FTC.

- Insert new method for calculating reactor kinetics.

- Insert new method for determining the appropriate axial shape data.

10. Pages 19-22 Include new section describing the benchmark of the-  !

CASM0-3/ SIMULATE-3 models for Fort Calhoun Station, j

- Description of measurement data base.

- Description of comparison of predictions to ]

measurements.

- Summary of applicable tables and figures.

- Conclusion of each comparison.

- Summary of benchmark effort.

9405110273 940502 PDR- ADOCK 05000295 l P PDR  ;

7._

SUMMARY

OF CHANGES TO NEUTRONICS DESIGN METHODS AND VERIFICATION OPPD-NA-8302-NP Rey, 04

11. Page 23 Include Conclusions section describing the overall results of the benchmarking project and the ability of OPPD personnel to perform neutronics calculations used for future FCS core reload analyses.
12. Pages 24-26 Update References section to include applicable Studsvik code manuals, YAEC topicals, B&W reports for critical experiments and updated revisions to existing OPPD reload methodologies.
13. Pages 27-81 Prepared tables and figures for the LASMO-3/ SIMULATE-3 benchmark:

- ROCS-DIT predictions, SIMULATE-3 predictions and zero and full power test measurements compared for CBCs, ITCs, PCs and CEA Group Worths.

- SIMULATE-3 predictions and core follow measurements compared for at-power CBCs, radial powers in incore instrumented boxes, normalized axial power shapes and pin peaking factors, t

l~

L w * - . - *r_-

7__._______.. _ _ . . _ _ - - - . - - ---- - - --

i

This document is not to be transmitted or I reproduced without specific written l approval from Omaha Public Power District.

i 1

Omaha Public Power District 1 Nuclear Analysis Reload Core Analysis Methodology

. )

l NEUTRONICS DESIGN METHODS AND VERIFICATl0H i

4 i OPPD-NA-8302-NP l Rev. 04 1

a i

4 1

l May 1994 I

i.

J .- Copy No.

3 i

1 a

,- - - . - - . , . - - -- . - . . , .-... . - . . . - , . - . - - - ~ . - - - - . - - _ - . . - ~ . - - . . , . . , _ ~ . _ . - - _

l 1

t ABSTRACT This document is a Topical Report describing the Omaha Public Power District (0 PPD) reload core neutronics design methods for application to Fort Calhoun Station Unit No. 1, The report addresses OPPD's neutronics design methodology and its application to the calculation of specific physics parameters for reload cores. In addition, comparisons of results obtained using this methodology to results from experimental measurements and independent calculations are provided, 1

l l

OPPD-NA-8302-NP, Rev. 04 i

~ , , , . _ , . , _ , . .- . _ _ _ . . _ _ ,_ ~ - ,_ . _ _ _ _ , _ _ _ , _ . .

lASLE OF CONTENTS Sectina Pace

1.0 INTRODUCTION

..................................................... 1

2.0 DESCRIPTION

S OF PHYSICS METHODS AND MODELS ....................... 3 2.1 Desc ri pti on of Computer Prog rams . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 ESCORE ............................................. 4 2.1.2 CASLIB............................................. 4 2.1.3 CASMO-3 ............................................ 4 2.1.4 TABLES-3 ........................................... 4 2.1.5 SIMULATE-3 ......................................... 5 2.1.6 ASAS ............................................... 5 2.2 Descri pti on of Computer Model s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 CASM0-3 Fuel Assembly and Reflector Model s . . . . . . . . . 6 2.2.2 TA B L E S-3 Mo d e l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.3 SIMULATE-3 Model ........... ....................... 9 2.2.4 Axial Shape Analysis Model ......................... 10 3.0 APPLICATION OF PHYSICS METHODS ........................... ....... 12 3.1 Radi al Pea ki ng Fa cto rs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Reactivity Coefficients .................................... 12 3.3 Neut ron Ki neti cs Pa ramete rs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 Cropped CEA Data ........................................... 14 3.5 C E A Ej e c t i o n D a t a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 CEA Reactivity ............................................. 15 3.7 CEA Withdrawal Data ........................................ 16 3.8 Reactivity Insertion for Main Steam Line Break Cooldown .... 17 3.9 Asymmet ri c Steam Generator Event Data . . . . . . . . . . . . . . . . . . . . . . 18 3.10 Axi al Shape Analysi s Cal cul ati ons . . . . . . . . . . . . . . . . . . . . . . . . . . 18 I

i i

l 1

l l

l l l

l 0 PPD-NA-8302-NP, Rev. 04

.. l 11 1 I

1 1

TABLE OF CONTENTS  ;

Section Egge J l

4.0 BENCHMARK OF CASMO-3/ SIMULATE-3 MODELS .........................., 19 4.1 Cri ti cal Boron Concentrati on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Isothermal Temperature Coef fi cient . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 Power Coefficient .......................................... 21 4.4 C o n t ro l Ro d W o r t h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1

4.5 Assembly Rel ati ve Power Di stri buti ons . . . . . . . . . . . . . . . . . . . . . 21 l i

4.6 Assembly Pi n Peaki ng Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 I 4.7 Summary .................................................... 22 l

1 l

5.0 CONCLUSION

S ..... .............. ....... ...................... 23 6.0 REF E R E N C ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1

1

\

l 1

l 1

i l

l l

l OPPD-NA-8302-NP, Rev. 04 iii

LIST OF TABLES Tshlg Title Page 1-1 Reactor Physics Parameters Benchmarked Using C ASMO-3 /S I MU L AT E-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4-1 Comparison of Zero Power Critical Boron Concentrations . . . . . . . . 27 4-2 Comparison of Low Power Physics Isothermal Temperature Coefficients ........... ...................................... 28 4-3 Comparison of At-Power Isothermal Temperature Coefficients . . . 29 4-4 Comparison of Power Coefficients ............................ 30 Comparison of BOC, HZP CEA Worths 4-5 Cycle 11 ..................................................... 31 4-6 Cycle 12 ..................................................... 32 4-7 Cycle 13.....................................................33 4-8 Cycle 14 ...................................................... 34 4-9 Cycle 15 ...................................................... 35 1

I OPPD-NA-8302-NP, Rev. 04 iv

LIST OF FIGURES l i

Fiaure Iille Paqe )

i 2-1 Reactor Physics Computer Program Sequence Flow Chart . . . . . . . . . . 11 Critical Boron Concentration vs Burnup 4-1 Cycle 11.....................................................36 i 4-2 Cycle 12 ..................................................... 37 4-3 Cycle 13...................................................38 4-4 Cycle 14 ...................................................... 39 4-5 Cycle 15 ............................ ......................... 40 SIMULATE-3/CECOR Radial Power Distribution Comparison 4-6 Cycle 1101,094 MWD /MTU ...................... .............. 41 4-7 Cycle 11 0 6,990 MWD /MTU ...................................... 42 4-8 Cycle 11011,088 MWD /MTU ..................................... 43 4-9 Cycle 12 0 915 MWD /MTU ....................................... 44 4-10 Cycle 12 0 5,914 MWD /MTU ...................... .............. 45 4-11 Cycle 12 0 10,931 MWD /MTU .................................... 46 4-12 Cycle 13 0 978 MWD /MTV ....................................... 47 4-13 Cycle 13 0 7,507 MWD /MTU ...................................... 48 4-14 Cycle 13 0 14,454 MWD /MTU..................................... 49 4-15 Cycle 14 0 1,332 MWD /MTU ..................................... 50 4-16 Cycle 14 0 7,125 MWD /MTU ...................................... 51 4-17 Cycle 14 013,316 MWD /MTU ..................................... 52 4-18 Cycle 15 0 1,114 MWD /MTU ..................................... 53 SIMULATE-3/CECOR Normalized Axial Power Distribution Comparison 4-19 Cycle 11 0 1,094 MWD /MTV ..................................... 54 4-20 Cycle 110 6,990 MWD /MTV ...................................... 55 4-21 Cycle 11 0 11,088 MWD /MTU .................................... 56 4-22 Cycle 12 0 915 MWD /MTU ....................................... 57 4-23 Cycle 12 0 5,914 MWD /MTV ..................................... 58 4-24 Cycle 12 0 10,931 MWD /MTU ..................................... 59 4-25 Cycle 13 0 978 MWD /MTU ....................................... 60 4-26 Cycle 13 0 7,507 MWD /MTU ...................................... 61 l 4-27 Cycle 13 0 14,454 MWD /MTU ..................................... 62 l 1

i i

l OPPD-NA-8302-NP, Rev. 04 1 1

v i

LIST OF FIGURES (Continued)

Fiaure Title Eage 1

i 4-28 Cycle 14 @ 1,332 MWD /MTU ...................................... 63 l 4-29 Cycle 14 @ 7,125 MWD /MTU...................................... 64 4-30 Cycle 14 0 13,316 MWD /MTU ..................................... 65 4-31 Cycle 15 @ 1,114 MWD /MTU...................................... 66 Integrated Radial Peaking (Fn) vs Burnup 4-32 Cycle 11 ...................................................... 67 4-33 Cycle 12.....................................................68 4-34 Cycle 13.....................................................69 4-35 Cycle 14 ...................................................... 70 4-36 Cycle 15 ...................................................... 71 Planar Radial Peaking (Fxy) vs Burnup 4-37 Cycle 11 ..................................................... 72 4-38 Cycle 12 ..................................................... 73 4-39 Cycle 13 ..................................................... 74 4-40 Cycle 14 ...................................................... 75 4-41 Cycle 15...................................................... 76 3-D Peaking (Fn) vs Burnup 4-42 Cycle 11.....................................................77 4-43 Cycle 12.....................................................78 4-44 Cycle 13 ...................................................... 79 t

4-45 Cycle 14.....................................................80 4-46 Cycle 15.....................................................81 I

OPPD-NA-8302-NP, Rev. 04 v1.

OMAHA PUBLIC POWER DISTRICT NEUTRONICS DESIGN METHODS AND VERIFICATION Revisio.D Datt 00 September 1983 01 November 1986 02 April 1988 03 January 1993 04 May 1994 l

I l

l l

1 l

l OPPD-NA-8302-NP, Rev. 04 vii

OMAHA PUBLIC POWER DISTRICT RELOAD CORE ANALYSIS METHODOLOGY NEUTRONICS DESIGN METHODS AND VERIFICATION 1.0 LNTRODUCTION This document describes the Omaha Public Power District (OPPD) neutronics design calculation methods using the CASMO-3/ SIMULATE-3 computer code system.

Studsvik AB and Studsvik of America (SOA) developed the CASM0-3/ SIMULATE-3 computer code system which is considered a state-of-the-art core analysis modelling system throughout the nuclear industry (References 1-1 through 1-4).

Previous Fort Calhoun Station (FCS) neutronics design methods approved by the NRC were based on ABB/ Combustion Engineering (ABB/CE) topical reports. The FCS neutronics design methods described in this document are based upon a I combination of NRC-approved methods from ABB/CE topical reports and j NRC-approved Yankee Atomic Electric Company (YAEC) topical reports involving I l

the use of CASMO-3/ SIMULATE-3. YAEC previously provided the theoretical  ;

basisandvalidationoftheCASM0-3/ SIMULATE-3computercodesystemtothe  ;

NRC (References 1-5 and 1-6). These topical reports provided detailed I descriptions of the computer programs and a general methodology for performing reactor physics analyses. J l

The primary objective of this methodology report revision is to demonstrate l OPPD's ability to use the CASMO-3/ SIMULATE-3 computer code system to j accurately model the FCS reactor for the purposes of core reload design l analysis. Table 1-1 lists the reactor physics parameters used for benchmarking CASM0-3/ SIMULATE-3 predictions against plant measurement data. l 1

Section 2.0 provides a basic description of physics methods and models.

Section 3.0 details OPPD's application of these models to the FCS reactor.

Section 4.0 discusses OPPD's latest verification program that includes the cycle-by-cycle comparisons of OPPD calculated data to measured data and data from independent calculations using the CASMO-3/ SIMULATE-3 computer code system. Section 5.0 contains the overall conclusions. Section 6.0 lists the individual references.

OPPD-NA-8302-NP, Rev. 04 Page 1 of 81

- . - . . _-_ ... . - _ - . . - _ = .

TABLE 1-1 l

REACTOR PHYSICS PARAMETERS BENCHMARKED USING CASMO-3/ SIMULATE-3 e Critical Boron Concentration (Core Reactivity) e Power Coefficient

  • Isothermal Temperature Coefficient e Control Rod Worth e Assembly Power Distributions I

e Assembly Pin Peaking Factor Integrated Radial Peaking (Fn/FAh*)

Planar Radial Peaking (Fxy) 3-D Peaking (Fn)

. Integrated Radial Peaking output from SIMULATE-3 is designated as FAh.

I I

OPPD-NA-8302-NP, Rev 04 Page 2 of 81

I l

i l

2.0 DESCRIPTION

OF PHYSICS METHODS AND MAQfLS i

OPPD's neutronics design analysis for the FCS core using CASMO-3/ SIMULATE-3 I is based on the continuing effort to improve and enhance OPPD's capabilities 1

in performing reload design calculations. The methodology employs a similar combination of multi-group neutron spectrum calculations used in the l currently approved methodology. Use of the CASMO-3 provides cross-sections appropriately averaged over a few broad energy groups. SIMULATE-3 provides two group, two- and three-dimensional diffusion theory calculations which result in integral and differential reactivity effects and power distributions. These programs embody more advanced analytical procedures than the currently approved methods and use the fundamental nuclear data consistent with the currere :, tate-of-the-art technology.

2.1 RESfRIPTION OF COMPUTER PROGRAMS The CASM0-3/ SIMULATE-3 computer program system was developed by Studsvik AB, Nykoping, Sweden, and their American subsidiary Studsvik of America, Newton, Massachusetts. The computer program package consists of the following computer programs:

  • CASLIB e CASMO-3 e TABLES-3 e SIMULATE-3 In addition, the Electric Power Research Institute's (EPRI) ESCORE computer program was incorporated into the new methods along with the ASAS computer program jointly developed by Yankee Atomic Electric Company (YAEC) and OPPD.

OPPD-NA-8302-NP, Rev. 04 Page 3 of 81 i

2.1.1 ESCORE ESCORE (Reference 2-1) is a computer program that predicts best-estimate, steady-state fuel performance data for light water reactor fuel rods. This computer program previously received NRC approval for use in calculating fuel rod temperatures for input to design and safety analyses (Reference 2-2). OPPD uses ESCORE to calculate the fuel temperature of the average rod as a function of burnup. Output from this computer program provides the average fuel pin temperature for use in CASM0-3 and a burnup dependent fuel pin temperature for the FCS SIMULATE-3 model.

2.1.2 CASLIB CASLIB (Reference 2-3) produces a binary neutron cross-section library for input to CASMO-3 from a card-image, formatted library. This library is based mainly on data from ENDF/B-IV with an update from ENDF/B-V and other sources. Both 40- and 70-group cross-section data are available for nearly 100 materials.

2.1.3 CASM0-3 CASM0-3 (Reference 2-4) is a multi group, two-dimensional transport theory computer program. This computer program models cylindrical fuel rods of varying composition in a square pitch array. CASM0-3 can model fuel rods, fuel rods with an integral burnable absorber material, burnable absorber rods, control rods, CEA guide tubes, in-core instruments and water gaps.

CASMO-3 generates all cross-section data for SIMULATE-3. OPPD uses CASMO-3 in a single assembly format with reflective boundary conditions

and a 40-energy group cross-section library.

2.1.4 TABLES-3 TABLES-3 (Reference 2-5) is a data processing program that links l

CASMO-3 to SIMULATE-3. The program processes two group cross-sections, discontinuity factors, fission product data, in-core instrument response data, pin power reconstruction data, and kinetics data from CASMO-3. TABLES-3 reads the CASMO-3 card image files and produces a master binary cross-section library for SIMULATE-3.

OPPD-NA-8302-NP, Rev. 04 Page 4 of 81

2.1.5 SIMULATE-3 SIMULATE-3 (Reference 2-6) is a two- or three-dimensional (2-D or 3-D),

two-group coarse mesh diffusion theory reactor simulator program. The program explicitly models the baffle / reflector region, thus eliminating the need to normalize to higher-order fine mesh calculations such as PDQ. Homogenized cross-sections and discontinuity factors are applied to the coarse mesh nodal model to solve the two group diffusion equation using the QPANDA neutronics model. The QPANDA model is the spatial neutronics model used in SIMULATE-3 which solves the three-dimensional, two group neutron diffusion equation using fourth order polynomials to represent the intra-nodal flux distributions in both the fast and thermal groups. QPANDA explicitly treats group-to group coupling effects on the intra-nodal flux distributions, an important phenomenon which is ignored in conventional nodal models.

The nodal thermal hydraulic properties are calculated based on the inlet temperature, RCS pressure, coolant mass flow rate, and the heat addition along the channels.

The pin-by pin power distributions, on a 2-D or 3-D basis, are constructed from the inter- and intra-assembly information from the coarse mesh solution and the pin-wise assembly power distribution from CASM0-3.

The SIMULATE-3 program performs a macroscopic depletion. Individual uranium, plutonium and lumped fission product isotope concentrations are not computed. However, microscopic depletion of iodine, xenon, promethium and samarium is included to model typical reactor transients.

2.1.6 ASAS ASAS (Axial Shape Analyzer for SIMULATE-3, Reference 2-7) is a computer program that formats SIMULATE-3 power distribution data into axial shape data to be used as input to the setpoint analyses. ASAS processes 3-D SIMULATE-3 power distributions and writes selected information to a user output file, a Core Transient Summary (CTS) file and an Axial Transient Summary (ATS) file.

OPPD-NA-8302-NP, Rev. 04 Page 5 of 81

l

2.2 DESCRIPTION

OF CDMPUTER MODELS l 1

)

OPPD uses the reactor physics computer programs described in Sections l 2.0 and 2.1 to model the FCS reactor core. The computer codes that embody these basic physics models are maintained on the OPPD Nuclear Engineering Workstation Network ~. OPPD maintains all documentation and l quality assurance programs related to these workstation computer codes.

The following paragraphs discuss the specifics of the FCS models.

2.2.1 CASMO-3 FUEL ASSEMBLY AND REFLECTOR MODELS Each unique PWR fuel assembly type (defined by geometry, enrichment and burnable poison pins) is separately modelled in CASMO-3 using octant geometry. Enrichment zoning among fuel pins, burnable poison pins and CEA guide tubes are explicitly modelled. The water gap between assemblies in the reactor core is included in the CASM0-3 model. The spacer grids are also included. Design bases documents, such as the Updated Safety Analysis Report (USAR), reload reports, and as-built drawings provide the necessary data to develop the CASM0-3 assembly models.

Three depletion cases are needed to generate the average cross-section data for each fuel assembly type. First, the fuel assembly is depleted at hot full power (HFP), reactor average conditions. Moderator temperature, fuel temperature and soluble boron concentration are set to constant average values for the complete depletion. The average fuel temperature at HFP conditions is calculated with ESCORE (Reference 2-1). Second, the fuel assembly is depleted at a low moderator temperature corresponding to hot zero power (HZP) conditions. The fuel temperature and the soluble boron concentration, however, are kept at the constant HFP, reactor average values. In the final depletion, the l fuel assembly is again depleted at constant HFP, reactor average conditions, but with a constant soluble boron concentration higher than is usually seen in normal operation. Restart calculations are performed from the base depletion to modify parameters from the base case. Each fuel assembly type is depleted to 70 GWD/MTU assembly i average burnup using the CASMO-3 default depletion steps.

OPPD-NA-8302-NP, Rev. 04 l Page 6 of 81

l l

Branch cases are pe'eformed to calculate instantaneous effects. The instantaneous effects are individually calculated and used to create <

l the proper fuel assenbly cross-sections. The branch cases are executed I from the HFP, reactur average condition restart files at 0,1, 3, 5, 7, 10, 15, 20, 30, 40, 50, 60 and 70 GWD/MTV. Branch cases are run for off-normal moderator temperature;, fuel temperatures, soluble boron  !

concentrations, control rod insertions and shutdown cooling effects.

Cross-sections to handle cold conditions (<532 F) are also generated with temperature points at 515 F, 350 F, 210 F and 68 F. The cross-sections generated in this manner utilize off-nominal and restart cases in a similar way to the normal cross-sections. The cold cross-sections are used to calculate reactivity parameters at cold conditions.

CASMO-3 also generates top, bottom and radial reflector cross-sections.

Two radial reflectors were modelled to account for the varying distances between the core shroud and the core support barrel. The first radial reflector is a combination of the core shroud, a homogenous mixture of water and stainless steel centering plates located between the core shroud and the core support barrel, and the core support barrel. The second radial reflector consists of the stainless steel core shroud followed by about 15 centimeters (cm) of the homogenous mixture of water and stainless steel centering plates.

The top reflector extends from the top of the active fuel to the lower surface of the fuel assembly upper end fitting. The bottom reflector extends from the bottom of the active fuel to the lower surface of the core support plate. Reflector cross-sections are modelled as a function of soluble boron concentration and moderator temperature.

CASMO-3 also generates data that SIMULATE-3 uses to determine the detector reaction rates, based upon detector geometry data input.

OPPD-NA-8302-NP, Rev 04 Page 7 of 81

2.2.2 IAB1ES-3 MODEL The TABLES-3 program generates two-dimensional reactor and cycle specific cross-section tables for SIMULATE-3. Data from the following CASMO-3 card image files are combined into binary cross-section libraries for input into SIMULATE-3.

  • HFP Reactor Average Depletion + Branches Fuel Temperature Branches Moderator lemperature Branches Soluble Boron Concentration Branches Control Rod Insertion Branches Shutdown Cooling Branches
  • Law Moderator Temperature Depletion e HFP High Soluble Boron Concentration Depletion e Bottom Reflector Data e Radial Reflector Data e Top Reflector Data l

I i

OPPD-NA- 302-NP, Rev. 04 Page 8 of 81

2.2.3 SIMULATE-3 MODEL The SIMULATE-3 model divides the active fuel region into 16 axial and four radial nodes per assembly. A pseudo-assembly, consisting of reflector material, surrounds the core and is divided into one radial and 16 equal length axial nodes. Axially, the fuel is divided into a single bottom reflector node,16 nodes for the active fuel region and a single top reflector node.

Additional SIMULATE-3 model input data includes the following:

  • Full core assembly serial number map e Quarter core fuel assembly type map e Fuel assembly axial zone definition (including reflectors)

. In-core instrumentation locations Fuel temperature versus power level and burnup

=

correlation (ESCORE) e Core MW-thermal output at 100% power

. Core pressure, power density and coolant mass flow rate at 100% power conditions e Coolant inlet temperature versus power level e Input restart files e Output restart files After the cycle base model is set up, the user can specify the percent power level, rod bank positions (inches withdrawn), output and edit options and the type of calculation: depletion, xenon transient or reactivity coefficient calculation (e.g., Isothermal Temperature Coefficient, Inverse Boron Worth, Fuel Temperature Coefficient, etc.).

The FCS reactor is a base loaded facility, meaning operation at or very near rated thermal power throughout the cycle. The lead CEA bank insertion is held to a minimum. Historically, the lead CEA bank at FCS has been inserted less than 5% of the time whenever the reactor is at a OPPD-NA-8302-NP, Rev. 04 Page 9 of 81

steady power level . Reference 2-8 discusses the impact of operation with a time averaged lead bank insertion of [ ]. Typically, the operating cycle is depleted in time steps of 1 GWD/MTU except for smaller time steps at both the beginning and end of an operating cycle.

2.2.4 AXIAL SHAPE ANALYSIS MODEL The axial shape analysis consists of axial oscillation power data generated by SIMULATE-3. Axial oscillations are induced in the SIMULATE-3 model by turning off the Doppler feedback and initiating a xenon oscillation. The oscillation is initiated by inserting and withdrawing the lead bank while cycling the reactor power level. This output is fed into the ASAS computer program which processes the pin power distribution data and formats it for use in the calculation of i reactor protection system setpoints. ASAS uses the SIMULATE-3 power data along with assembly-wise excore detector view factors to get the excore detector response.

l l

1 l

l I

I OPPD-NA-8302-NP, Rev. 04 Page 10 of 81

l i

FIGURE 2-1 l REACTOR PHYSICS COMPUTER PROGRAM SEQUENCE FLOW CHART l I

CASLIB ESCORE ENDF/B-based Binary Fuel Rod Temperatures .

Cross-Section Library 1 CASMO-3 Cross Sections lf TABLES-3 Binary Library Assembly Power Distributions 3r Pin Power Distributions Reactivity Coefficients SIMULATE-3 > CEA Group Worths Boron Concentration Cycle Length, Etc.

V l

1 ASAS > Axial Shape Data l

l l

1 OPPD-NA-8302-NP, Rev. 04 l Page 11 of 81

3.0 APPLICATION OF PHYSJCS METHODS The previous section focused on the reactor physics codes and models used by 0 PPD to explicitly model the FCS reactor. In this section, calculations of the various core parameters used in the safety analysis are described. The primary core parameters considered are the integrated radial and planar radial peaking factors (FR and Fxy), the moderator temperature coefficient of reactivity, the fuel temperature or Doppler coefficient of reactivity, the neutron kinetics parameters, CEA drop data, CEA ejection data, CEA scram reactivity worth, reactivity insertion for the steam line break cooldown, radial peaking data for the asymmetric steam generator event, and axial power distributions. The methods used to develop biases and uncertainties for this document are consistent with previously submitted and NRC-approved OPPD methods.

3.1 RADIAL PEAKING FACTORS The integrated radial and planar radial peaking factors, Fn and Fxy, are calculated using the 3-D SIMULATE-3 model. Values of Fa and Fxy for both unrodded and rodded core configurations are obtained directly from the SIMULATE-3 power distribution. The SIMULATE-3 model incorporates a pin power correction to implicitly account for the peaking of the thermal flux in the CEA guide tubes (water holes). The values of Fn and Fxy in SIMULATE-3 for l I

unrodded and rodded cores are reported as core peaking edits. SIMULATE-3 calculates Fa based on the axial integration of the planar power distribution.

SIMULATE-3 also calculates Fxy for each plane to obtain the maximum core Fxy.

The measurement uncertainties using the CECOR code for the pin peaking factors are given in Reference 3-1.

The reactor physics models are used to calculate the expected values of Fa and Fxy. The actual values of Fa and Fxy used in the safety analysis are chosen I to conservatively bound those anticipated during the core life.  !

3.2 REACTIVITY COEFFICIENTS i The 3-D SIMULATE-3 model is used to calculate the moderator temperature I coefficient (MTC) and the fuel temperature coefficient (FTC). The MTC is defined as the reactivity change associated with a change in moderator inlet OPPD-NA-8302-NP, Rev. 04 Page 12 of 81 i l

l

temperature divided by the change in the averaged moderator temperature. The FTC or Doppler coefficient is defined as the reactivity change associated with a uniform change in the fuel temperature divided by the change in the averaged fuel temperature. Both the MTC and FTC calculations first must perform a reference statepoint calculation at base input conditions. The cross-sections and discontinuity factors are then evaluated at the reference conditions except for the perturbation variable which is altered by a user defined amount. A perturbation calculation is then performed, and the coefficients are evaluated based upon the following equation:

Ap = An Unit change ACH where Ap = b K,",'

K, and Kref =

reference Ke rr Kp =

perturbed Kert and ACH = PAVG - PRAVG where PAVG = Volume weighted average of the perturbed parameter PRAVG = Volume weighted average of the perturbed parameter at reference conditions i 1

l The value used for the MTC and FTC perturbations is +5 F.

The reduction in reactivity resulting from an increase in effective fuel  ;

temperature is determined by SIMULATE-3. Typically, runs are made at 160, g 130, 70 and 40 percent power to get a series of points of fuel temperature '

coefficient versus fuel temperature while holding moderator temperature and g density and nuclide concentrations constant. These points are then fitted to l a linear curve to determine the FTC at any fuel temperature.

1 The physics models are used to calculate the expected values of the MTC and  !

l FTC throughout the cycle. The actual values of the MTC and FTC used in the j safety analysis are chosen to conservatively bound expected values of these l parameters. The measurements of the MTC made during the operation of the reactor include uncertainties to assure that the actual MTC does not exceed the values used in the safety analysis.

OPPD-NA-8302-NP, Rev. 04 Page 13 of 81 l

3.3 NEUTRON KINETICS PARAMETERS The data required for point kinetics parameters are generated in SIMULATE-3 by performing spatial integrals over the fueled portion of the 3-D model.

Cross sections derived in this manner preserve the core-averaged group-wise reaction rates, leakage rates, and eigenvalue when substituted into the two group point-reactor diffusion equations. The adjoint flux is used as a weighting function in the definition of the kinetics data.

3.4 DROPPED CEA DATA The neutronics data unique to the dropped CEA analysis are the values of Fa following the drop of a CEA and the reactivity worth of the dropped CEA. The values of Fn increase due to a large azimuthal tilt caused by the drop of a CEA and occur on the side of the core opposite the dropped CEA. The distortion factor is defined as the ratio of the assembly Fa at a given power level and time in core life containing a dropped CEA to the same assembly FR without a dropped CEA.

The distortion factor and dropped CEA reactivity worth are calculated using the 3-D SIMULATE-3 model. The 3-D Fa distortion factor is calculated for a g specific CEA insertion and power level. The " post-drop" value of Fn, using the 3-D Fa distortion factor, is calculated by multiplying the " pre-drop" value of Fa for the particular CEA insertion and power level by the 3-D Fa distortion factor. The 3-D SIMULATE-3 " post-drop" power distributions are g calculated with fuel temperature and moderator temperature feedback. The calculations assume that the core average Axial Shape Index (AS.O is being controlled within the " constant ASI" limits in accordance with !.he FCS g Operating Manual .

3.5 CEA EJECTION DATA l The neutronics data unique to the CEA ejection analysis are values for the pre-ejected and post-ejected radial peaking factors and the reactivity worth of the ejected CEA. The maximum post-ejection radial peaking factor and maximum ejected CEA reactivity worths are calculated for the maximum CEA insertion allowed by the PDIL at HFP and HZP. The neutronics parameters are calculated using HFP and HZP 3-D SIMULATE-3 models. The post-ejection radial l OPPD-NA-8302-NP, Rev. 04 Page 14 of 81

peaking factor, the 3-D peaking factor (Fg) and the ejected CEA reactivity -

worth are obtained directly from SIMULATE-3 calculations. SIMULATE-3 post-ejection power distributions are calculated without moderator or fuel temperature feedback.

3.6 [fA_RfACTIVITY The CEA reactivity calculations performed in the reload core safety analyses are the calculation of the total reactivity of CEAs inserted into the core during a reactor trip (CEA scram reactivity), the generation of the scram reactivity curves, and the calculation of required shutdown margin.

The CEA scram reactivity worth at HZP is calculated by obtaining the net worth for all CEAs between the HZP PDIL CEA position and the fully inserted positic;1, and subtracting the worth of the highest worth stuck CEA. These calculations are done using the 3-D SIMULATE-3 model. The HZP CEA scram reactivity for the CEA ejection transient is calculated in a similar fashion, l

except that the worths of the ejected and highest worth stuck CEAs are subtracted from the net worth. .

4 The scram CEA worth at HFP is calculated by obtaining the HFP net worth for all CEAs between the HFP PDIL CEA position and the fully inserted position, subtracting the worth of the highest worth stuck CEA and subtracting the moderator void collapse allowance. The thermal hydraulic axial gradient i reduction ellowance and the loss of worth between HFP and HZP are also i subtracted from the HFP net worth for the scram CEA worth to be used in all l 1

transients except the four pump loss of flow event and the main steam line l break accident. These are not applied to the four pump loss of flow scram l CEA worth because the closest approach to the SAFDL during the four pump loss l of flow event occurs prior to significant CEA insertion. These allowances l are not applied to the main steam line break (MSLB) incident HFP CEA scram  !

worth because the HFP MSLB reactivity insertion curves implicitly account for i these effects.

The axial thermal hydraulic reactivity effects for HFP to HZP transients are accounted for by measuring the change in reactivity resulting from collapsing a 3-D distributed moderator temperature to a 3-D flat moderator temperature l profile. This is done by setting the power in a SIMULATE-3 case to HZP from l OPPD-NA-8302-NP, Rev. 04 Page 15 of 81

a HFP input file and allowing only fuel temperature to feedback. In the next case, the core average moderator temperature from the HFP case is input to the HZP case as the inlet temperature and the fuel temperature are frozen, i only allowing the moderator density and temperature to feedback. The bounding values at Beginning-of-Cycle (BOC) and End-of-Cycle (EOC) are used for calculation of scram worths for transient analyses.

The generation of the scram reactivity curves uses the methodology discussed in Reference 3-2. l The calculation of the required shutdown margin is only performed at HZP since the shutdown margin at power is controlled by the PDIL. The available HZP shutdown margin is equivalent to the HZP CEA scram reactivity.

3.7 CEA WITHDRAWAL DATA l The reactor core physics data unique to the CEA withdrawal analysis is the maximum differential CEA worth. This is the maximum amount of reactivity at any time in core life that can be added to the core per inch of CEA motion.

[

] This calculation produces a more conservative estimate of the expected maximum differential worth than previous methods.

This maximum differential worth is then combined with the maximum CEA withdrawal rate of 46 inches / minute to arrive at the maximum reactivity insertion rate.

I l

OPPD-NA-8302-NP, Rev. 04 Page 16 of 81

3.8 REACTIVITY INSERTION FOR MAIN STEAM LINE BREAK C00LDOWN The reactor core physics data unique to the main steam line break accident analysis is the reactivity insertion due to the cooldown of the moderator.

There are two sources of this reactivity insertion. The first is the positive reactivity insertion due to the increasing density of the moderator as the cooldown progresses. The second is the reactivity _ insertion due to the FTC as the effective fuel temperature changes.

Reactivity insertions due to increases in the moderator density and FTC changes are both calculated using a full core SIMULATE-3 model . The axial leakage or buckling is adjusted such that the MTC calculated by the SIMULATE-3 model corresponds to the most negative Technical Specification limit. The reactivity insertion calculations are performed with all CEAs except the most reactive CEA inserted in the core.

The moderator density reactivity insertion curve for the HZP main steam line g break case is calculated by successively lowering the inlet temperature of the SIMULATE-3 model from 532 F and allowing only moderator temperature g feedback in the model. The calculations typically result in a curve of reactivity insertion versus moderator temperature from a HZP temperature of g 532 F to 212 F.

The Doppler reactivity insertion for the HZP case bounds the value of the reactivity insertion calculated by SIMULATE-3 for the FTC. The fuel temperature feedback in the model allows the production of a curve of Doppler reactivity as a function of fuel temperature. All zero power calculations are performed assuming there is no decay heat and no credit is taken for local voiding in the region of the stuck CEA.

The moderator density reactivity insertion curve for the full power case is calculated by decreasing the power level and core average average coolant temperature from full power to the HZP inlet temperature and then successively lowering the inlet temperature as in the HZP case. Only moderator temperature feedback is used in the SIMULATE-3 model.

Since the moderator reactivity insertion curve corresponds to an MTC that is i at the Technical Specification limit, no additional uncertainty is added to ,

this curve.

OPPD-NA-8302-NP, Rev. 04 ,

Page 17 of 81

3.9 ASYMMETRIC STEAM GENERATOR EVENT DATA l The reactor core physics data unique to the asymmetric steam generator event

[ ] For the range of temperatures considered, the intra-assembly peaking does not vary as the inlet temperature is changed. [

]

[

]

3.10 AXIAL SHAPE ANALYSIS CALCULATIONS The ASAS data input to the setpoint analysis includes axial power distribution, power-to-fuel design limits, axial shape, rod bank insertion, excore detector response, FZ , Fn and the location of the Fz and Fn peaks.

Uncertainties for these parameters are applied in the calculation of setpoints consistent with Reference 3-3, except for the Fn uncertainty which is applied consistent to the methods described in Reference 3-4.

A description of the SIMULATE-3 code is presented in section 2.1.5. The use of a single physics model (i.e., SIMULATE-3) for the generation of the power-to-fuel design limit simplifies the analysis and results in a more detailed modelling of axial transients.

l l

OPPD-NA-8302-NP, Rev 04  !

Page 18 of 81 l

4.0 BENCHMARK Of CASMO-3/ SIMULATE-3 MODELS OPPD has performed extensive benchmarking of the CASMO-3/ SIMULATE-3 neutronics models used in the reload core analyses. The measured data base consists of data from the five most recent low power physics startup tests (Cycles 11,12,13,14 and 15) and from normal operations during the four most recently completed operating cycles (Cycles 11,12,13,14), as well as from the current operating cycle (Cycle 15) at FCS.

For the critical boron concentrations, isothermal temperature coefficients and control rod worths, 95/95 probability / confidence limits were calculated.

The probability / confidence limits were applied to the indicated CASMO-3/ SIMULATE-3 results such that there is a 95 percent probability with a 95 percent confidence that the calculated values will conservatively bound the measured (i .e. , "true") values. For the assembly pin peaking factors, biases for the SIMULATE-3 predictions were established to duplicate the MC predictions that are consistent with previously NRC-approved OPPD methods.

The results of the previous OPPD verification efforts were reported in References 4-1 through 4-4.

4.1 CRITICAL BORON CONCENTRATION SIMULATE-3 Critical Boron Concentration (CBC) predictions were compared to low power physics startup test measurements (zera power) and full power operating measurements. The zero power startup test measurements were taken during the five most recent operating cycle startups (Cycles 11 through 15) under well controlled conditions without significant thermal and xenon feedbacks. Both unrodded and rodded configurations are represented in the zero power startup test measurement data base. The full power measurement data were collected during the four most recently completed operating cycles (Cycles 11 through 14) and part of the current operating cycle (Cycle 15).

Table 4-1 summarizes the comparison of the zero power SIMULATE-3 CBC predictions with the low power physics CBC measuremni.s. Zero power startup predictions from rs0CS are also included to povide an additional comparison.

The BOC, HZP SIMULATE-3 CBC predictions, both unrodded and rodded, compare favorably with the corresponding zero power startup CBC measurements.

Figures 4-1 through 4-5 provide comparisons of the HFP SIMULATE-3 CBC predictions with the CBC at power measurements. The CBC measured data were l

OPPD-NA-8302-NP, Rev. 04 Page 19 of 81

adjusted for control rod insertions and deviations from full power, equilibrium conditions. The HFP SIMULATE-3 CBC predictions show excellent agreement with the CBC rundown measurements.

In an effort to demonstrate OPPD's ability to predict boron concentrations for shutdown margin requirements at cold conditions (68 F to 532 F) with CASMO-3/ SIMULATE-3, the Babcock & Wilcox (B&W) cold critical experiments from References 4-5and4-6weremodelledby0PPDwithCASM0-3/ SIMULATE-3. OPPD's SIMULATE-3 prediction of eK rf is consistent between the Fort Calhoun Station model at HZP and the results from the B&W reports. These results are also consistent with the work performed by Studsvik (Reference 4-7). Thus, the conclusion from these comparisons is that OPPD can adequately and conservatively determine the minimum boron concentrations for shutdown margin using SIMULATE-3.

4.2 ISOTHERMAL TEMPERATURE COEFFICIENT SIMULATE-3 Isothermal Temperature Coefficient (ITC) predictions were compared to low power physics startup test measurements (zero pcwer) and at power operating measurements. The zero power startup test measurements were taken during the five most recent operating cycle startups (Cycles 11 through 15).

The at power measurement data were collected during the four most recently completed operating cycles (Cycles 11 through 14) and part of the current operating cycle (Cycle 15).

Table 4-2 summarizes the comparison of the zero power SIMULATE-3 ITC predictions with the low power physics ITC measurements. Zero power startup predictions from ROCS are also included to provide an additional comparison.

The BOC, HZP SIMULATE-3 ITC predictions compare favorably with the zero power startup ITC measurements.

Table 4-3 provides a comparison of the at power SIMULATE-3 ITC predictions with the ITC measurements. The at power measurements were taken during each  !

of the at power MTC test programs required by Technical Specifications. )

At power ITC predictions from ROCS are also included as an additional I compari son . The at power SIMULATE-3 ITC predictions show good agreement with the ITC at power measurements.

OPPD-NA-8302-NP, Rev. 04 Page 20 of 81

4.3 EQWER COEFFICIENT SIMULATE-3 Power Coefficient (PC) predictions were compared to at power measurements collected during the four most recent operating cycles (Cycles 11 through 14) and a portion of the current operating cycle (Cycle 15).

Table 4-4 summarizes the comparison of the at power SIMULATE-3 PC predictions l with the at-power PC measurements. The at power PC measurements were taken  !

during each of the at power MTC test programs required by Technical Specifications. At power PC predictions from ROCS are also included to provide an additional comparison. The at power SIMULATE-3 PC predictions  ;

compare favorably with the at power PC measured data.

4.4 CONTROL RQQ_ WORTH SIMULATE-3 Control Element Assembly (CEA) group worth predictions were compared to measurements from low power physics tests since Cycle 11. Tables 4-5 through 4-9 summarize the comparison of the low power physics startup test SIMULAfE-3 predictions with the zero power startup test measurements.

Low power physics CEA worth predictions from ROCS are also included as an additional comparison. The low power physics startup test SIMULATE-3 CEA Worth predictions show excellent agreement with the zero power startup test CEA worth measurements.

4.5 ASSEMBLY RELATIVE POWER DISTRIBUTIONS SIMULATE-3 predictions for assembly power distributions, both radially and axially, were compared to core follow data starting with Cycle 11. Figures 4-6 through 4-18 summarize the comparison between the axially integrated CECOR assembly relative power density (RPD) measurements with the SIMULATE-3 assembly RPD predictions at nominal power levels for BOC, Middle-Of-Cycle (MOC), and EOC conditions. These figures show comparisons for only the assemblies containing in-core instruments. Limiting the comparison to the assembly locations containing in-core instruments provides the most direct comparison to actual assembly powers and limits the amount of ROCS-based information. By doing so, the comparison between the SIMULATE-3 predictions and CECOR measurements in only in-core instrumented locations represents a more accurate benchmark of the SIMULATE-3 FCS model. The comparisons show OPPD-NA-8302-NP, Rev. 04 Page 21 of 81

good agreement between the CECOR RPD measurements and SIMULATE-3 RPD predictions.

I Figures 4-19 through 4-31 summarize the comparison between the normalized CECOR axial power distribution measurements with the SIMULATE-3 axial power distribution predictions at nominal power levels for B0C, MOC and E0:'

conoitions. The comparisons show consistent agreement between the CECOR axial power measurements and SIMULATE-3 axial power predictions.

4.6 ASSEMBLY PIN PEAKING FACTORS SIMULATE-3 predictions for integrated radial peaking factors (Fn), planar radial peaking factors (Fxy) and 3-D peaking factors (Fg) were compared to CECOR pin peaking factors from core follow data starting with Cycle 11.

Figures 4-32 through 4-36 summarize the comparison between CECOR maximum Fn measurements and SIMULATE-3 peak Fa predictions. Figures 4-37 through 4-41 summarize the comparison between CECOR maximum Fxy measurements and SIMULATE-3 peak Fxy predictions. Figures 4-42 through 4-46 summarize the comparison between CECOR maximum Fg measurements and SIMULATE-3 peak Fn predictions. The SIMULATE-3 predictions were based upon full power operations, while the CECOR measurements include nominal full power data as well as off-nominal power level pin peaking values. All CECOR measurement data included a component for tilt. Peaking factor spikes from the CECOR measured data occur during power reductions and are considered normal. The comparisons show good agreement between the CECOR maximum pin power measurements and SIMULATE-3 maximum pin power predictions.

4.7 S1!MMARY OPPD continues to maintain an ongoing neutronics methodology verification program. Verification of program segments include information consisting of zero power startup physics testing predictions, reactor at power testing analyses and core follow efforts. The results of this verification program for previous cycles demonstrate the ability of OPPD personnel to use the CASM0-3/ SIMULATE-3 neutronics methods described in this document.

OPPD-NA-8302-NP, Rev. 04 Page 22 of 81

5.0 CONCLUSION

S Omaha Public Power District (OPPD) has performed extensive benchmarking to incorporate the CASMO-3/ SIMULATE-3 computer code system into neutronics design methods for Fort Calhoun Station Unit No. 1. This effort consisted of comparisons of core physics predictions to measurements from previous Fort Calhoun Station operating cycles. The results of this benchmark program for previous operating cycles demonstrate the ability of OPPD to use the CASMO-3/ SIMULATE-3 neutronics methods described in this document.

OPPD has continually demonstrated its ability to perform core neutronics calculations for reload core analysis as documented in References 5-1 through 5-4. Based upon the analyses and results contained in this document, as well as OPPD's current ability to perform neutronics reload analyses, OPPD l 1

concludes that the methodology using CASM0-3/ SIMULATE-3 computer code system i applies to all steady-state reactor physics calculations. The accuracy of this methodology is sufficient for use in licensing applications, reload design depletion analyses, reactor physics safety analyses, startup physics predictions, core physics databooks, and reactor protection system and monitoring system setpoint upgrades.

l l

OPPD-NA-8302-NP, Rev. 04 Page 23 of 81

e REFERENCES Section 1.0 References 1-1 M. Edenius, A. Ahlin, B. H. Forssen, "CASMO-3, A fuel Assembly Burnup Program, User's Manual, Version 4.4," STUDSVIK/NFA - 89/3, Studsvik Energiteknik AB, Sweden, November 1989.

1-2 M. Edenius, C. Gragg, "CASLIB User's Manual, Version 1.3," STUDSVIK/NFA

- 89/13, Studsvik Energiteknik AB, Sweden, November 1989.

1-3 K. S. Smith, J. A. Umbarger, D. M. Ver Pl'nck, " TABLES-3, Library Preparation Code for SIMULATE-3, User's Manual, Version 3.0,"

STUDSVIK/SOA - 89/05, Studsvik of America, Inc., November 1989.

1-4 K. S. Smith, J. A. Umbarger, D. M. Ver Planck, " SIMULATE-3, Advanced Three-Dimensional Two-Group Reactor Analysis Code, User's Manual, Version 3.0," STUDSVIK/SOA - 89/03, Studsvik of America, Inc., November 1989.

1-5 "CASMO-3G Validation", YAEC-1363-A, Yankee Atomic Electric Company, April 1988.

1-6 " SIMULATE-3 Validation and Verification", YAEC-1659-A, Yankee Atomic Electric Company, September 1988.

Section 2.0 References 2-1 "ESCORE: The EPRI Steady-State Core Reload Evaluator Code; General Description," EPRI NP-5100-A, May 1990.

2-2 Letter, USNRC to C. R, Lehmann (PP&L), " Acceptance for Referencing of Licensing Topical Report EPRI-NP-5100, ESCORE - The EPRI Steady-State Core Reload Evaluation Code: General Description," May 23, 1990. l 2-3 M. Edenius, C. Gragg, "CASLIB User's Manual, Version 1.3," STUDSVIK/NFA

-89/13,StudsvikEnergiteknikAB, Sweden, November 1989. j 2-4 M. Edenius, A. Ahlin, B. H. Forssen, "CASMO-3, A Fuel Assembly Burnup Program, User's Manual, Version 4.4," STUDSVIK/NFA - 89/3, Studsvik Energiteknik AB, Sweden, November 1989.

OPPD-NA-8302-NP, Rev. 04 Page 24 of 81

2-5 K. S. Smith, J. A. Umbarger, D. M. Ver Planck, " TABLES-3, Library Preparation Code for SIMULATE-3, User's Manual, Version 3.0,"

STUDSVIK/SOA - 89/05, Studsvik of America, Inc., November 1989, 2-6 K. S. Smith, J. A. Umbarger, D. M. Ver Planck, " SIMULATE-3, Advanced Three-Dimensional Two-Group Reactor Analysis Code, User's Manual, Version 3.0," STUDSVIK/SOA - 89/03, Studsvik of America, Inc., November 1989.

2-7 Theoretical Manual and User's Manual for Axial Shape Analyzer for SIMULATE-3 (ASAS), April 19, 1994, 2-8 CENPD-199-P, Revision 1-P-A, "CE Setpoint Methodology," January 1986.

Sertion 3.0 References 3-1 CENPD-153, Revision 1-P-A, " INCA /CECOR Power Peaking Uncertainty," May, 1980.

3-2 CENPD-199-P, Revision 1-P-A, "CE Setpoint Methodology," January 1986.

3-3 " Statistical Combination of Uncertainties," CEN-257(0)-P-A, Parts 1, 2, and 3, November 1983, including Supplement 1-P, August 1985.

3-4 Maine Yankee SER on YAEC-1110. " Maine Yankee Reactor Protection System Setpoint Methodology," dated May 27, 1977.

Seclign 4.0 References 4-1 CEN-242-(0)-P, OPPD Responses to NRC Questions on Fort Calhoun Cycle 8, February 18, 1983.

4-2 " Reload Core Analysis Methodology, Neutronics Design Methods and Verification," OPPD-NA-8302-P-A, Rev. 01, 4-3 " Reload Core Analysis Methodology, Neutronics Design Methods and Veri fication," OPPD-NA-8302-P-A, Rev. 02.

4-4 " Reload Core Analysis Methodology, Neutronics Design Methods and Verification," OPPD-NA-8302-P-A, Rev. 03.

4-5 Report BAW-1810, "Urania Gadolinia: Nuclear Model Development and Critical Experiment Benchmark," Prepared by Babcock & Wilcox for U.S.

D.O.E. Under Contract DE-AC02-78ET34212, April, 1984.

OPPD-NA-8302-NP, Rev. 04 .

Page 25 of 81 l

4-6 Report BAW-3647-3, "Phy;ics Verification Program," Prepared by Babcock and Wilcox for U.S. A.E.C. Under Contract AT(30-1)-3647, March, 1967.

4-7 " SIMULATE-3 Pin Power Reconstruction: Benchmarking Against the B&W Critical Experiments," Kord S. Smith (Studsvik of America, Inc.),

Transactions of the American Nuclear Society, Volume 56, TANSA0 56 1-628 (1988), June 12-16, 1988.

Section 5.0 References 5-1 CEN-242-(0)-P, OPPD Responses to NRC Questions on Fort Calhoun Cycle 8, February 18, 1983.

5-2 " Reload Core Analysis Methodology, Neutronics Design Methods and Verification," OPPD-NA-8302-P-A, Rev. 01.

5-3 " Reload Core Analysis Methodology, Neutronics Design Methods and Veri ficati on," OPPD-NA-8302-P-A, Rev. 02.

5-4 " Reload Core Analysis Methodology, Neutronics Design Methods and Veri fication," OPPD-NA-8302-P-A, Rev. 03.

l i

l OPPD-NA-8302-NP, Rev. 04 Page 26 of 81 l

l

TABLE 4-1 COMPARISON OF ZERO POWER CRITICAL BORON CONCENTRATIONS (BOC, NO XENON)

(ppm)

CEA 3-D 3-D (SIMULATE-3

[y.cle P_osition Measured RQCS-Qll SIMULATE-3 - Measuredl 11 ARO 1502 1501 -1 11 Group-4 ARI 1421 1424 +3 11 Group-2 ARI 1399 1398 -1 11 Group-A ARI 1303 1299 -4 12 ARO 1507 1514 +7 12 Group-4 ARI 1445 1446 +1 12 Group-2 ARI 1422 1427 +5 12 Group-A ARI 1336 1331 -5 13 ARO 1568 1572 +4 13 Group-4 ARI 1524 1524 0 13 Group-1 ARI 1483 1478 -5 13 Group-A ARI 1385 1385 0 14 ARO 1182 1179 -3 14 Group-4 ARI 1113 1115 +2 ,

14 Group-B ARI 1009 1001 -8 15 ARO 1411 1392 -19 I 15 Group-4 ARI 1366 1347 -19 15 Group-B ARI 1227 1202 -25 i

l OPPD-NA-8302-NP, Rev 04 Page 27 of 81

TABLE 4-2 COMPARISON OF LOW POWER PHYSICS ISOTHERMAL TEMPERATURE COEFFICIENTS (x 10-4 Ap/ F)

Cyrlg Mejlsttd 3-D ROCS-DIT 3-D SIMULATE-3 11 0.20 0.20 12 0.24 0.23 13 0.32 0.30 14 -0.09 -0.02 15 0.10 0.14 OPPD-NA-8302-NP, Rev 04 Page 28 of 81

TABLE 4-3 COMPARISON OF AT-POWER CALCULATED AND MEASURED ISOTHERMAL TEMPERATURE COEFFICIENTS (x 10-4 Ap/ F)

BOC Percent 3D 3D

[y_cle Power CBC (ppm) Measured ROCS-DIT SIM11 LATE-3 11 93 1073 -0.43 -0.50 12 93 1050 -0.53 -0.55 13 94 1113 -0.51 -0.48 14 90 768 -0.87 -0.81 15 95 948 -0.81 -0.69 E0C Percent 3D 3D

[y_cle Eower CBC (nom) Measured ROCS-DIT SIMULATE-3 11 95 301 -1.62 -1.72 12 95 309 -1.79 -1.74 13 95 325 -1.69 -1.65 14 94 319 -1.76 -1.78 NOTE: Full Rated Power = 1500 MWt OPPD-NA-8302-NP, Rev. 04 Page 29 of 81

l TABLE 4-4 COMPARISON OF CALCULATED AND MEASURED POWER COEFFICIENTS (x 10-4 Ap/% Power)

Burnup Percent 3D 3D Cyfle IMWD/lula Power CBC (onm) Measured ROCS-DIT SIMULATE-3 11 433 93 1073 -0.95 -0.98 11 9765 95 301 -1.52 -1.38 12 425 93 1050 -1.42 -1.00 12 9691 95 309 -1.63 -1.41 13 373 94 1113 -1.26 -1.00 13 10694 95 325 -1.51 -1.41 14 355 90 768 -1.55 -1.16 14 10559 93 319 -1.77 -1.52 15 340 95 948 -1.57 -1.02 NOTE: Full Rated Power = 1500 MWt OPPD-NA-8302-NP, Rev 04 Page 30 of 81 l

TABLE 4-5 COMPARISON OF CYCLE 11 BOC, HZP CEA WORTHS

(%AP )

Grqup Pgsnured 1-jl_BJLCl-RIT 3-D SIMULATE-3 A 1.96 1.99 B 1.28 1.36 4 0.76 0.76 3 0.46 0.50 2 0.97 0.99 1 0.58 0.65 Total 6.01 6.25 OPPD-NA-8302-NP, Rev 04 Page 31 of 81

TABLE 4-6 COMPARIS0N OF CYCLE 12 BOC, HZP CEA WORTHS

(%AP)

Group Measured 3-D ROCS-DIT 3-D SIMULATE-3 A 1.92 1.80 B 1.52 1.45 4 0.61 0.66 3 0.56 0.65 2 0.80 0.83 1 0.63 0.71 Total 6.04 6.10 l

l 1

i I

OPPD-NA-8302-NP, Rev. 04 Page 32 of 81 i

l l

.1 1

1 TABLE 4-7 l l

COMPARISON OF CYCLE 13 BOC, HZP CEA WORTHS l

(%At) 4 l Group Measured 3-D ROCS-DIT 3-D SIMULATE-3 A 1.80 1.81 l B 1.56 1.53 4 0.45 0.46 l 3 0.73 0.79 2 1.12 1.08 l 1 0.81 0.89 Total 6.47 6.56  ;

l i

i 4

l 1

i 1

1 l

l 1

l 1

'1 OPPD-NA-8302-NP, Rev. 04 Page 33 of 81

I l

TABLE 4-9 COMPARISON OF CYCLE 15 BOC, HZP CEA WORTHS

(%AP)

Grtgtm Mealu_ rad 3-D ROCS-DIT 3-D SIMULATE-3 A 1.51 1.55 l l

B 1.60 1.76 1 4+3 0.99 1.08 I 2+1 1.57 1.65 l Total 5.67 6.04 l l

1 I

l l

OPPD-NA-8302-NP, Rev. 04 Page 35 of 81

i Figure 4-1 Cycle 11 Critical Boron Concentration vs Burnup 12m _ .

1100 i

?;' ^

1000  ;

-. , S!MULATE-3

%  : y e MEASURED msE -

\

'$ d> S 0

w a m7co 700 _

Y 3

+, .E !

91 o U

s

- N Q Sc 9

h A S 400 _

300 _ -

y\,

2"

- N  %

[

~

0 iiii iiii iiii iiie iiii iiii iiii iii* iiii iiii iiii ie i iiii ii 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 Cycle 11 Burnup (GWD/MTU)

Figure 4-2 Cycle 12 Critical Boron Concentration vs Burnup 1200 _ i i i 1100i SMULATE-3 e MEASURED y b g a 900 _

mE$

> a _~ .

%$8 800 _ -

g 5 700 g .

0 5

==

8 .:  %*\

400 : w 300

Y 3 200 _

~

100 i ii iiii iiii iiii i i i i- iiii iiii iiii iiii e iii iii.

0.0 1.0 2.0 3.0 4.0' 5.0 6.0 7.0 8.0 9.0 10.0 11.(

Cycle 12 Burnup (GWD/MTU)

Figure 4-3 Cycle 13 Critical Boron Concentration vs Burnup 1300 _ -

l l l 1200 ,

S!MULATE-3 1100 _, g . e MEASURED -

1000 - ,

g  : -

,jga-

= i 900 : -

E$8 2

\ *.

E  !

oo g - 700

-. 3

$ :o

@c 600 _

E 500 " '

a:  :

s 300 _ .

t .

203 _ .

=

! (

E N (  :

0 i.i. >>>> .. . i1 .. .... .... >i., . .. .... >>i. >> . .... .. . iii. ...i 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 l

l Cycle 13 Burnup (GWD/MTU) l l

Figure 4-4 Cycle 14 Critical Boron Concentration vs Burnup 900  !  !  !

f 1 . -

S!MULATE-3 800 _ . 2 .. y m _.

e MEASURED

-g Pg g

Q 700 _

,s 3 -

hE gia 600 -

a ma

  • u,${k \ Ig c : . -

N 500 _

% ,5 g

  • xe c

ca N ks.

o -

A* .

. E 400 ~ '.

0 c3 N,,

N.,,

  • N 300 [

200 _

N$

100 N O i>ii i>i, ,ii, ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, ,,,,

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 Cycle 14 Burnup (GWD/MTU)

t Figure 4-5 Cycle 15 Boron Concentration vs Exposure (GWD/MTU) 1100

I I

1000 _

_** - SIMULATE-3

, .m4 ,

900 _ \ . MEASURED 3

~

\

E^ goo : h AT5 ro $ S 700 _

N g

, $ .E 5 o%D 600 _ 3 E

.s s 5m _ ,

c O'  :

a c - t 9 400 0 b 300 _

200 b ' ,

100 _

~

0 >ii iiii. iiii iiii iii ie ii i ii iiie iiii iiii iiii e i > <iisj iiii 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 Cycle 15 Burnup (GWD/MTU)

Figure 4-6 SIMULATE-3/CECOR Radial Power Comparison Cycle 11 at 1,094 MWD /MTU,99.4% Power,973 ppm Axially Integrated u se - Assembly Number - Detector Number C.CCCC - CECOR RPD D.DDDD - Absoluto Difference E EEEE - Percent Difference i e 3 4 3 6 7 s 9 to 11 12 13 l

14 15 16 Il ik 2 19 N 21 22 23 24 1 1.1796 0.4726 0.0224 -0.0516 1.8990 -10.918 2$ .% 6 J/ 48 5 29 JJ 4 Il L' 3 M 34 35 1.3816 1.2127 1.0176 1.2520

- 0.0216 0.0503 - 0 0536 0.0240

-1.5634 4.1478 -52673 1.9169 36 17 38 39 40 41 42 43 44 4h 46 4/ 10 48 0.4862

-0 0242 43 so , si . .,3 u a ss 7  % 37 su sa

-4 9774 1.1871 0.9217 1.0415 w 0.0239 0.0123 0.0935 os ii 2.0133 1.3345 8.9774 0.3829 52 11 tis be 16 b6 66 15 t/ 08 14 W 70 13 11 /2 12 - 0.0219 0.9863 0,9928 0 8254 0.9090 1.0170 0.9866 -5.7195

/3 0 0037 -0.0288 0.0876 0.0240 -0.0540 0.0034 i4 0 3751 - 2.9009 10.613 2.6403 - 5.3097 0.3446

/b /b // /8 20 /v su 19 31 62 18 BJ 64 Sb 0.0677 0.9135 0.9889

.x, - 0.0017 0.0205 -0.0079 si

-0.1757 2.2441 - 0.7989 sa 2i a su se a n a s ss s sa 2s 1.1810 1.2325

-0.0350 - 0.0865

- 2.9636 - 7.0183 39 #00 101 102 26 Id3 104 25 105 106 24 10/ 108 2J 109 1.2376 0.9996 1.2288 1.3892 0.0384 - 0.0356 0.0342 - 0.0302 3.1028 - 3.5614 2.7832 - 2.1739 11u 28 11l 112 113 164 27 115 116 III 118 119 1 23 0.4456 1.2001

- 0.0246 0.0129

- 5 5206 1.0749 121 122 123 124 126 12b 14/ 128 129 l

l ou ui u2 u3 l i

SIMULATE Case values: Absolute Difforuces:

Average = 1.0004 Average - -0.0009 RMS Error = 4.0948 Standard Deviation = 0.0417 l Maximum Value = 1.3600 at Detector 6 Maximum Value = 0.0935 at Detector 7 {

Minimum Value = 0.3610 at Detoctor 11 Minimum Value = -0.0865 at Detector 21 CECOR Case Values: Percentage Differences: _!

Average = 1.0013 Average = -0.5501  ;

Standard Deviaton = 0.2718 Standard Deviation = 4 6982 Maximum Valuo = 1.3892 at Detector 23 Maximum Value = 10 6130 at Detector 15 Minimum Value = 0.3829 at Detector 11 Minimum Value = -10.9183 at Detector 1  :

OPPD-NA-8302-NP, Rev. 04 )

Page 41 of 81 l 1

Figure 4-7 l SIMULATE-3/CECOR Radial Power Comparison '

Cycle 11 at 6,990 MWD /MTU,99.5% Power,532 ppm l Axlally integrated  ;

AA bd - Assembly Number - Detector Number '

C.CCCC - CECOR RPD D DDDD - Absolute Difference E.EEEE - Percent Difference i e 3 4 3 6 / 4 9 10 18 12 la 14 lb 16 1/ 18 2 19 20 21 22 23 24 1 1.1608 0.4858 0.0322 - 0.0478 2.7739 - 9.8394 lb 26 6 21 26 b 29 30 4 31 54 3 LS SA 35 1.3259 1.1358 1.0277 1.1759 0.0241 0.0652 - 0.0587 0.0331 1.8176 5.7404 - 5.7118 2.8149 36 3/ 3M 39 du 41 42 4'l 44 45 46 41 lu 48 05365

-0.0295 49 w a si s2 u  :>4 o .,$ / w si sa 39

-54986 1.1654 0.9382 1.0401 nO 0.0336 -0.0002 0.0749 si si 2.8831 -0.0213 7.2012 0.4401 82 1/ n3 .4 to os no Ib 67 un 34 os /0 i3 ri u 12 - 0.0261 1.0356 1.0065 0.8548 0.9286 1.0244 1.0309 - 5.9305

<3 0.0054 - 0.0365 0.0622 0.0094 - 0.0554 0.0101 e4 0.5214 - 3.6264 7.2766 1.0123 - 5.4080 0.9797

/b /b // /6 20 le ep) 19 88 t12 18 83 64 tib 0.9567 0.9349 0.9813 48 -0.0057 0.0031 - 0.0163 a

- 0.5958 0.3316 -1.6611 w 22 w w n 92 u ,4 *> + si va a 1.1332 1.1907 0.0038 - 0.0547 0.3353 -4.5939 W iou 101 102 26 10J 134 26 10h lab 24 131 10h 23 109 1.1669 1.0157 1.1638 1.3365 0.0421 -0 0467 0.0372 0.0135 3f078 -4.5978 3.1964 1.0101 110 28 111 112 11) 114 2/ lib 116 117 118 120 0.4578 1.1766

-0 0198 0.0224 (l19

-4.3250 1.9038 121 122 123 124 12S 126 12/ 128 129 i

130 131 132 133

-l l

SIMUL. ATE Case Values: Absolute Differences: ,

Averaoe = 0.9965 Average = 0.0027 RMS Grror = 3.7418 Standard Deviation = 0.0380 '

Maximum Value = 1.3500 at Detector 6 Maximum Value = 0.0749 at Detector 7 Minimum Value = 0.4140 at Detector 11 Minimum Value = -0.0587 at Detector 4 CECOR Case Values: Percentage Differences:

Average = 0.9938 Average = -0.3001 Standard Deviation = 0.2426 Standard Deviation = 4.2780 Maximum Value = 1.3365 at Detector 23 Maximum Value = 7.2766 at Detector 15 Minimum Value = 0.4401 at Detector 11 Minimum Value = -9.8394 at Detector 1 OPPD-NA-8302-NP, Rev, 04 4 Page 42 of 81 i

.i

l l

Figure 4-8 SIMULATE-3/CECOR Radial Power Comparison Cycle 11 at 11,088 MWD /MTU,99.3% Power,189 ppm Axially Integrated AA bts - Assembly Number - Detector Number C.CCCC - CECOR HPD D.DDDD - Absolute Difference E EEEE - Percent Difference i 2 3 4 S 6 / 8 9 10 11 12 13 14 15 16 17 18 2 19 20 21 22 23 24 1 1.1470 0.5027 0.0310 - 0.0517 2.7027 -10.284 6 lb b ll 48 5 29 30 4 31 .U 3 33 $4 35 1.3193 1.1026 1.0269 1.1346 0.0217 0.0674 - 0.0549 0.0414 1.6448 6.1128 - 5.3462 3.6489 3h 37 36 J9 40 41 42 43 44 45 46 4/ 10 46 0.5778

-0.0398 49 .,a 9 si s2 53 s4 a as /

  • si ss 59

-6 8882 1.1445 0.9528 1.0424 m 0.0385 - 0.0048 0.0686 ei is 3 3639 - 0.5038 6.5810 0.4811 t.2 17 e o4 is a 6e is ei su 14 69 .'O 13 ti /2 12 - 0.0311 1.0572 1.0057 0.8730 0.9428 1.0217 1.0504 - 6.4644 73 0.0038 - 0.0327 0.0550 0.0052 - 0.0487 0.0116 i4 0.3594 - 3.2515 6.3001 0.5516 -4.7666 1.1043

/5 le II /8 20 19 80 19 St 32 18 B3 tM 85 OS$97 0.9506 0.9746 so -0.0007 - 0.0026 - 0.0126 ei

-0.0737 - 0.2735 -1.2928 ,

u6 22 a9 40 11 92 33 34 SS  % 91 au 21 1.1151 1.1686 0.0129 - 0.0416 1.1568 -3.5598 99 100 101 102 26 10J 104 25 105 106 24 107 106 23 109 1.1262 1.0159 1.1215 1.3324 0.0498 - 0.0439 0.0485 0 0096 ,

4.4220 ~ 4.3213 4.3246 0.7205 110 28 111 112 113 114 27 115 116 111 118 119 120 0.4722 1.1543

- 0.0212 0.0297

-4.4896 2.5730 121 122 123 124 1 25 126 12 7 128 129 130 131 132 133 SIMULATE Case Values: Absolute Differences:

Average = 0.9954 Average = 0.0039 RMS Error = 3.7334 Standard Deviation = 0.0378 Maximum Value = 1.3420 at Detector 23 Maximum Value = 0.0686 at Detector 7 Minimum Value = 0,4500 at Detector 11 Minimum Value = -0.0549 at Detector 4 CECOR Case Values: Percentage Differences:

Average = 0 9916 Average = -0.2125 Standard Deviation = 0,2267 Standard Devetion = 4.3568 )

Maximum Value = 1.3324 at Detector 23 Maximum Value = 6 5810 at Detector 7 1 Minimum Value = 0.4722 at Detector 28 Minimum Value = -10.2845 at Detector 1 l l

OPPD-NA-8302-NP, Rev. 04 1 Page 43 of 81 l

l

Figure 4-9 SIMULATE-3/CECOR Radial Power Comparison Cycle 12 at 915 MWD /MTU,99.5% Power,1,002 ppm Axlally integrated AA sis - Assembly Number - Detector Number C.CCCC - CECOR RPD D.DDDD - Absolute Difference E EEEE - Percent Difference 1 2 3 4 5 6 / S 9 10 11 12 13 '

14 15 16 11 18 2 19 20 21 22 23 24 1 1.1818 0.3816

-0.0098 - 0.0226

-0.8292 ~5.9224

/b /6 6 2/ 28 b 29 30 4 31 12 3 il 34 36 1.3719 1.3027 0.9781 1.2920

- 0.0399 -0.0277 0.0139 - 0.0190

- 2.9084 -2.1264 1.4211 ~ 1.4706 Jti 3/ 38 39 40 41 42 43 44 46 46 47 10 46 0.4414

- 0.0154 4* su e di s.2 w w a ,5 i w si sa s9

- 3.4889 1.1771 0 9235 1.1622 so - 0.0031 0.0595 0.0246 6 11 *

-0.2634 6.4429 2.1339 0.2864 62 17 o.s u 16 ob a ib 67 6a 14 69 to 13 ri r2 12 0.0116 0.9321 0.9611 0.9602 0.9529 0 9565 0.9228 4.0503 73 - 0.0241 0.0309 0.0268 0 0301 0.0355 - 0.0158 i4

-2.5856 3.2151 2.7911 3.1588 3.7114 -1.7122 lb 76 II ?B 20 /d O 19 31 da le 63 04  %

1.1742 0.9440 1.1581 86 0.0058 0.0430 0 0139 ai 0.4939 4.5551 1.2002

% 22 as W 91 92 93 94 s A 97  !#6 21 1.1360 1.1310

- 0.0270 - 0.0210

- 2.3768 -1.8568

  1. 9 100 101 102 26 103 104 26 105 106 24 101 108 23 109 1.2891 0.9828 1.2760 1.3749

- 0.0151 0.0092 - 0.0010 - 0.0429

-1.1714 0 9361 - 0.0784 - 3.1202 110 .6 til 11't 183 114 27 11b lib 117 118 119 120 0.3674 1.1827

- 0.0074 -0.0087

-2.0141 -0.7356 121 122 123 124 125 1?b 121 148 129 130 131 142 133 i

SIMULATE Case Values: Absolute Differences:

Averaos = 1.0073 Average = 0.0002 .'

RMS Error = 2.5535 Standard Deviation = 0.0260 Maximum Value = 1.3320 at Detector 6 Maximum Value = 0.0595 at Detector 8 Minimum Value = 0.2980 at Detector 11 Minimum Value = -0.0429 at Detector 23 CECOR Case Values. Percentage Differences:

Average = 1.0072 Average = 0.0518 Stancard Deviation = 0.3019 Standard Deviation = 2.9007 Maximum Value = 1.3749 at Detector 23 Maximum Value = 6.4429 at Detector 8 Minimum Value = 0.2864 at Detector 11 Minimum Value = -5.9224 at Detector 1 OPPD-NA-8302-NP, Rev. 04 Page 44 of 81

Figure 4-10 SIMULATE-3/CECOR Radial Power Comparison Cycle 12 at 5,914 MWD /MTU,99.7% Power,614 ppm Axially Integrated AA su - Assembly Number - Detector Number C.CCCC - CECOR RPD D.DDDD - Absoluto Ddforonco E.EEEE - Porcont Difference i 2 a a

> u i a s so is i2 rs 14 i t> 16 il to 2 19 /0 /1 22 23 24 1 1.1828 0 3855

- 0.0008 -0.0055

-0 0676 - 1.4267 i a a 6 2r za 6 29 m 4 n u a u 34 as 1.3696 1.2462 OM39 1.2325

-0.0316 -0 0262 0.0241 - 0.0145

- 2.3072 -2.1024 E.5003 -1.1765 3h 1/ 38 3W 40 41 4.t 43 44 des 4b 4/ 10 48 0.4760 l

-0 0050 44 so w si s2 s s4 a su 7 ,e sz so s9 l

- 1.0504 1.1743 0.9030 1.1226 '

w 0.0077 0.0470 0.0074 ni ti 0.6557 5 2049 06592 0.3279 n2 v 63 64 16 65 66 is (,/ e,s 14 w ru i3 ii 72 12 0.0171 l 09922 0.9502 0.9324 0 9291 0.9514 0.9831 5.2150 ;

ia - 0.0192 0.0378 0.0206 0.0209 0.0366 - 0.0101 i4

-1.9351 3.9781 2.2094 2.2495 3.8470 - 1.0274

/s is n ca 2a 79 ao is si a2 is 53 tw  %

1.1157 0.9210 1.1044 m, 0.0083 0.0320 0,0116 3r 0.7439 3 4745 1.0503 bb 22 89 +> s1 92 43 34 9S idi g/ 38 21 1.1351 1.1390

-0 0201 - 0.0230

- 1.7708 - 2.0193 49 100 101 102 to 103 104 2s 10S 106 24 101 108 23 ffra 1 2313 0.9716 1.2177 1.3830

- 0.0133 0.0164 0 0023 - 0.0450

-1.0802 1.6879 0.1889 - 3.2538 110 1'B til 112 113 114 2/ 115 t ih 11 7 116 119 120 0.3735 1.1805 0.0055 0.0015 1.4726 0.1271 121 122 123 124 125 1.!6 127 128 129 130 131 132 133 SIMULATE Caso Values: Absolute Differences:

Avorage = 0 9992 Avorago = 0.0029 RMS Error = 2.2294 Standard Deviation = 0.0225 Maximum Value = 1.3380 at Detector 6 Maximum Valoo = 0.0470 at Detector 8 Minimum Valuo = 0.3450 at Detector 11 Minimum Valuo = -0.0450 at Detector 23 CECOR Caso Valoos: Porcentage Differences:

Avorage = 0 9963 Avorago = 0 5731 Standard Deviation = 0.2855 Standard Deviation = 2.3539 Maximum Valuo = 1.3830 at Detector 23 Maximum Valuo = 5.2150 at Dotoctor 11 Minimum Valuo = 0 3279 at Detector 11 Minimum Value = -3.2538 at Detector 23 OPPD-NA-8302-NP, Rev. 04 Page 45 of 81 1

]

l I

I Figure 4-11 SIMULATE-3/CECOR Radial Power Comparison Cycle 12 at 10,931 MWD /MTU,99.7% Power,200 ppm Axlally Integrated AA bu - Assembly Number - Detector Number C.CCCC - CECOR RPD D DDDD - Absolute Difference E.EEEE - Percent Difference i 2 3 4 s 6 / 8 9 10 11 12 13 14 15 16 Il 18 2 19 du 21 22 23 24 1 i Faded 0.3956 Detector 0.0054 Level 1.3650 lb 26 6 2/ 25 b 29 30 4 31 ,12 3 33 34 3h 1.3509 1.2069 0.9595 1.1906

- 0.0189 -0.0269 0.0255 - 0 0116

- 1,3991 -2.2289 2.6576 - 0.9743 '

Jh $/ JM 39 40 41 42 43 44 45 46 4/ 10 48 0.5153

- 0.0003 49 w 9 31 32 s3 s4 e >s 7  % si sa sa

- 0.0582 1.1695 0.9049 1.1052 80 0.0055 0.0381 - 0.0022 ei it 0.4703 4.2104 - 0 1991 0.3705 62 si o .,4 se 63  % is e/ os 14 su /0 i3 is n i2 0.0225 Failed 09466 0.9289 0.9290 0.9470 1.0276 6.0729 73 Detector 0.0384 0.0161 0.0140 0.0380 - 0.0096 i4 Level 4.0566 1.7332 1.5070 4.0127 - 0.9342

/s rs it en 2a <a s0 19 si s2 is e tw as 1.0827 0.9212 1.0729

% 0.0063 0.0248 0.0091 3/

0.5819 2.6921 0.8482 36 24 39 A) 91 92 J3 94 54 As d/ de 21 1.1289 1.1366

- 0.0159 - 0.0236

-1.4085 - 2.0764 39 100 101 102 26 103 104 26 1!)b 10ti 24 107 108 23 10W 1.1891 09676 1.1757 1.3663

- 0.0111 0 0174 0.0033 -0.0343

-0.9335 1.7983 0.2807 - 2.5104 110 28 111 112 113 114 2/ 115 lib 117 113 tif 120 0.3860 1.1714 0.0150 0.0036 3 8860 0.3073 121 122 123 124 l't b 126 127 128 129 130 131 132 133 SIMULATE Case Values: Absolute Differences:

Average = 0.9875 Average = 0.0049 RMS Error = 2.0336 Standard Deviation = 0.0201 Maximum Value = 1.3320 at Detector 6 Maximum Value = 0.0384 at Detector 16 Minimum Value = 0.3930 at Detector 11 Minimum Value = -0.0343 at Detector 23 CECOR Case Values: Percentage Differences:

Average = 0.9826 Average = 0.9138 Standard Deviation = 0.2800 Standard Deviation = 2.2711 Maximum Value = 1.3663 at Detector 23 Maximum Value = 6.0729 at Detector 11 Minimum Value = 0.3705 at Detector 11 Minimum Value = -2.5104 at Detector 23 OPPD-NA-8302-NP, Rev4 04 Page 46 of 81

i i

Figure 4-12 SIMULATE-3/CECOR Radial Power Comparison Cycle 13 at 978 MWD /MTU,99.7% Power,1,061 ppm Axially integrated AA tits - Assembly Number - Detector Number C.CCCC - CECOR RPD D.DDDD - Absolute Difference E.EEEE - Porcent Differenco i a 3 4

$ b i 8 9 to Ii 12 IJ 14 lb 16 17 18 2 tie 20 'l l 22 2J e4 1 Failed 0.3652 Detector - 0.0052 Levol -1.4239

/b /6 6 ti J8 5 29 30 4 $1 32 3 Li J4 .ib 1.1608 1.1376 1.0889 1.1227

-0.0058 -0.0266 0.0151 -0 0117

-0.4997 -2.3383 1.3867 - 1.0421 16 li 36 39 40 41 42 4J 44 4$ 46 di 10 43 0.2979

- 0.0059 4, se v si 32 33 .,4 a w i w si w sa

-1.9805 1.2618 1.0109 1.3272 30 0.0012 0.0221 0.0558 os it 0.0951 2.1862 42043 0.3267 62 si e u4 16 o  % is si os 34 ot, iu 13 ii /2 12 0.0037 0 9529 1.0818 1.0224 1.0199 1.0830 Failed -1.1325

<3 - 0.0159 0.0222 0.0096 0 0131 0.0210 Detector i4

-1.6686 2.0521 0.9390 1.2844 1.0391 Level

<> io ti la ao <a ao tw ai a2 ta ws u as 1.2223 1 0134 1.2074 m, -0.0103 0,0196 0.006G si

-0.8427 1.9341 0.5466 4 22 W *) di 32 93 94 m

  • dl 98 21 0.9248 0.9277

-0.0108 - 0.0137

-1.1678 -1.4768 99 100 101 102 26 lu3 104 25 10b 106 24 107 108 23 tus 1.1170 1.0888 1.0909 1.1599

- 0.0060 0.0152 0.0201 - 0.0049

-0.5372 1.3960 1.8425 - 0.4224 110 2B 111 112 113 114 27 116 116 ill 118 119 12u 0.3580 1.2695 0.0020 - 0.0065 0.5587 -0.5120 121 122 123 124 126 126 127 125 129 1.50 131 132 133 SIMULATE Caso Values: Absolute Differencos:

Avorago = 0.9898 Avorage = 0.0037 RMS Error = 1.7337 Standard Deviation = 0.0173 Maximum Valuo = 1.3330 at Detector 7 Maximum Value = 0.0558 at Detector 7 Minimum Value = 0.2920 at Detector 10 Minimum Valuo = -0.0266 at Detector 5 CECOR Case Values: Percentage Differences:

Average = 0.9861 Avorago = 02046 Standard Deviation = 0.3058 Standard Doviation = 1.6162 Maximum Value = 1.3272 at Detector 7 Maximum Value = 4.2043 at Detoctor 7 Minimum Valuo = 0.2979 at Detector 10 Minimum Value = -2.3383 at Detector 5 OPPD-NA-8302-NP, Rev. 04 Page 47 Of 81

i i

Figure 4-13 I SIMULATE-3/CECOR Radial Power Comparison Cycle 13 at 7,507 MWD /MTU,70.2% Power,629 ppm Axially Integrated AA ua - Assembly Number - Detector Number C.CCCC - CECOR RPD D.DDDD - Absolute Difference l E.EEEE - Percent Difference 1 2 3 4 i

5 6 / 3 s 10 11 12 13 14 is is si is 2 i9 zu el 22 ea a 1 Failed 0.3876 Detector 0.0114 Level 2.9412 4$ 26 6 Ji JB 5 z9 30 4 31 32 3 M 34 35 1.1403 1.0665 1.0456 1.0547 0,0157 -0.0125 0.0114 0.0003 1.3768 -1.1721 1.0903 0.0284 30 37 38 19 40 41 42 43 44 45 46 4/ 10 48 0.3356 0.0024 a su e a s2 sa 34 a 25 7  % si so sv 0.7151 1.2448 1.0040 1.3413 w 0.0022 0.0020 0.0127 ,,1 to 0.1767 0.1992 0.9468 0.3795 62 17 o u $6 % ,,6 15 u na 14 w to o ti 72 12 - 0.0005 1.0133 1.0422 1.0158 1.0152 1.0473 Failed -0.1318 73 - 0.0123 0.0148 -0.0108 -0.0092 0.0097 Dotector i4

-1.2138 1.4201 -1.0632 - 0.9062 0.9262 Level

/5 lb Ti Ib 20 /9 60 19 si d2 16 G3 tM 65 1.1626 1.0123 1.1499 us -0.0226 -00063 - 0.0089 a

-1.9439 - 0.6223 - 0.7740 9tl 22 39 Au di 32 JJ 94 M Jh 9/ 9ts 21 Failed 0.9486 Detector - 0.0056 Level -0.5903 49 100 tot 102 26 103 104 25 10$ luti 24 10/ 106 23 109 1.0559 1.0551 1.0353 Failed

-0.0009 0.0019 0.0187 Detector

-0.0852 0.1801 1.8062 Level 110 28 111 112 113 114 2/ tib 11b 117 168 119 120 0.3816 1.2551 0 0174 -0.0031 4.5597 - 0.6454 121 122 123 124 125 126 127 128 129 1J0 131 112 133 SIMULATE Case Values: Absolute Differences:

Average = 0 9672 Averag; = 0.0010 RMS Error = 1.0970 Standard Deviation = 0.0112 Maximum Value = 1.3540 at Detector 7 Maximum Value = 0.0187 at Detector 24 Minimum Value = 0 3380 at Detector 10 Minimum Value = -0.0226 at Detector 20 CECOR Case Values: Percentage Differences:

Average = 0.9663 Average = 0.3008 Standard Deviation = 0.2959 Standard Deviation = 1.4500 Maximum Value = 1.3413 at Detector 7 Maximum Value = 4.5597 at Detector 28 Minimum Value = 0.3356 at Detector 10 Minirr.um Value = -1.9439 at Detector 20 OPPD-NA-8302-NP, Rev. 04 Page 48 of 81

I 1

1 Figure 4-14 l

SIMULATE-3/CECOR Radial Power Comparison Cycle 13 at 14,454 MWD /MTU,99.5% Power,6 ppm Axially Integrated u os - Assembly Number - Detector Number C CCCC - CECOR RPD D.DDDD - Absolute Difference E.EEEE - Porcent DiMerence 1 2 3 4 l

1 3 6 / 6 $ 10 11 i2 13 l l

l 14 l$ th t/ 18 2 19 20 21 22 L 24 1 Failed 04349 ,

Detector 0.0171 1 Level 3.9319

/$ 16 b 2/ .'b b 29 50 4 il 32 3 0 34 JS 1.1210 1.0244 1.0215 1.0170 0.0150 -00064 0 0095 0.0020 1.3381 - 0.6248 0.9300 0.1967 Sts )/ $U 39 40 4: 42 4.6 44 45 46 41 13 48 0.3914 0.0106 49 so 9 si s2 sa 34 a ss < se si sa sv 2.7082 1.2036 1.0020 1.2968 no 0.0034 0.0030 0.0272 ut ti 0.2825 0.2994 2.0975 0,4520

.2 i/ u e4 16 e  % is 67 os i4 sa <0 t3 n 72 t2 0.0020 1.0540 1.0177 1.0152 1.0181 1.0198 Fasted OA425 r3 - 0.0060 0,0133 -0.0102 -0.0121 0.0112 Detector i4

- 0.5693 1.3069 -1.0047 -1.1885 1.0983 Level to u /v w u '

is is 20 is si 82 is iu as 1.1166 1.0208 1.1029 so -0.0236 - 0 0148 - 0.0089 st

-2.1136 - 1.4498 - 0.8070 a n ws n 31 a a +4 as m at su 2s Failed 0.9616 Detoctor 0.0034 1 Level 03536 99 100 106 i32 26 103 104 2$ 106 106 24 101 tus 23 109 -

1.0201 1.0308 0.9967 Failed

-0.0011 0 0002 0.0213 Detector

-0.1078 0 0194 2.1371 Lovel 110 23 til 112 113 114 2/ 11b l i f, til tid 119 120 0.4294 1.2193 0 0226 -0.0123 5 2632 -1.0088 421 122 123 124 125 126 121 128 129 130 136 132 133 SIMULATE Case Values: Absolute Differences:

Average = 0.9606 Average = 0.0028 '

RMS Error = 1.3073 Standard Deviation = 0.0131 )

Maximum Value = 1.3240 at Detector 7 Maximum Value = 0.0272 at Detector 7 Minimum Value = 0.4020 at Detector 10 Minimum Value = -0.0236 at Detector 20 i CECOR Case Values: Porcentage Differencesi Average = 0.9578 Averago = 0.5638 Standard Deviation = 0.2641 Standard Doviation = 1.7360 ,

Maximum Value = 1.2968 at Detector 7 Maximum Value = 5 2632 at Detector 28 i Minimum Value = 0.3914 at Detector 10 Minimum Value = -2.1136 at Detector 20 i OPPD-NA-8302-NP, Rev. 04 j Page 49 of 81-

Figure 4-15 SIMULATE-3 CECOR Radial Power Comparison Cycle 14 at 1,332 MWD /MTU,99.6% Power,780 ppm Axially Integrated AA Bu - Assembly Number - Detector Number C.CCCC - CECOR RPD D.DDDD - Absolute Differonco E.EEEE - Porcont Difference i 2 3 4 5 4 / 4 9 10 11 12 13 14 14 lb tl 18 2 19 /u 11 42 2.1 24 1 0.9749 0.2065 0.0261 0.0045 2.6772 2.1792 25 /b 6 ll 28 h 29 30 4 11 32 3 JJ M 35 1.1592 1.3022 1.2534 1.2476

- 0.0242 -0.0282 0.0136 0.0204

-2.0876 - 2.1656 1.0850 1.6351 lb 31 38 39 40 41 42 43 44 45 46 4/ 10 46 0.3314

-0 0034 49 w 9 st 32 .3 u a ss i w si sa sv

~ 1.0259 1.0263 1.2505 1.5311 w -0 0033 0.0425 0.0029 6i it

- 0.3215 3.3986 0.1894 0.3999 n2 it sa n4 to s6 us is 67 na i4 t.9 to u is r2 12 - 0.0009 )

0.9531 1.2711 1.2880 1.2864 1.2682 Failed -0.2251 J 73 -0.0171 0.0109 0.0080 0.0096 0 0118 Detector e4 i

-1.7941 0.8575 0.6211 0.7463 0.9304 Level  :

lb /6 // /8 20 /9 do 19 el 82 to >3J ew 65 1,1133 1.2527 1.1011 <

. 0.00G7 0.0373 0.0189 si l

06018 2.9776 1.7165 ss 22 n9 +> n u n 34 as x v se 21 0.7367 0.7480 0 0103 - 0.0010 1.3981 - 0.1337 19 lih3 101 102 db 103 104 25 IOS tub 24 10/ 108 23 t old 1.2616 1.2595 1.2634 Failed 0.0124 0.0085 0.0096 Detector 0.9829 0 6749 0.7599 Lovel 110 28 ill 112 113 114 27 115 116 11/ 118 119 IKt 0.2053 1.0086 0.0067 - 0.0056 l 3.2635 -0.5552 l 121 122 123 124 12h 126 121 128 129 j l

l 130 131 132 L33 SIMUt ATE Caso Values: Absolute Differences:

Average = 1.0337 Average = 0.0068 RMS Error = 1.7010 Standard Deviation = 0.0159 Maximum Valuo = 1.5340 at Detector 7 Maximum Value = 0.0425 at Detector 8 Minimum Value = 0.2110 at Detocior 1 Minimum Valuo = -0.0282 at Detector 5 CECOR Caso Values: Porcontage Differences:

Avorago = 1.0269 Averago = 0.7072 Standard Deviation = 0.3686 Standard Deviation = 1.5162 Maximum Value = 1.5311 at Detector 7 Maximum Value = 3.3986 at Detoctor 8 Minimum Value = 0.2053 at Detector 28 Minimum Value = -2.1656 at Detecto 5 OPPD-NA-8302-NP, Rev. 04 Page 50 of 81

1 l

l I

Figure 4-16 l SIMULATE-3/CECOR Radial Power Comparison Cycle 14 at 7,125 MWD /MTU,99.8% Power,603 ppm ,

Axlally Integrated i u sa - Assembly Number - Detector Number )

C.CCCC - CECOR RPD l D DDDD - Absolute Difference E EEEE - Percent Difference i 2 s 4

's 4 / 3 e 10 11 12 13 l

14 ts 16 17 16 2 19 N (1 72 23 24 l 1

0.9865 0.2091 0.0115 0.0079 1.1657 3.7781 i

.b 26 6 dl 28 6 29 30 4 31 32 3 il 34 35 l 1.1069 1.2525 1.2530 1 2137

! 0.0019 -0.0205 0.0130 0.0163

- 0.1716 -1S367 1.0375 1.3430 46 Il 16 H 40 41 42 4.3 44 45 46 41 10 48 0 3298 0.0042 4. su a si s2 u u a .4 i .s si sa sw 1.2735 1.0060 1.1971 1.5621 na 0.0060 0 0259 - 0 0331 ei ii 0.5964 2.1636 - 2.1189 0.3949 '

I na it ua w is e nu is or e4 14 w ev 13 it 72 12 0.0031 O9041 1.2649 1.2327 1.2391 1.2749 Failed 0.7850 l 1.$ - 0 0061 0.0071 -0.0077 -0.0141 - 0.0029 Detector i4 I

- 0 6747 0.5613 -0 6246 -1.1379 - 0.2275 Level

]

i 52 u d4 e ,5 , sn st so s9 2.4204 1.0116 1.1238 1 4540 w 0.0144 0.0182 - 0 0290 ei it 1.4235 1 6195 -1 9945 0.4640 se it u3 e4 is w, no is of so i4 m iv is o /2 12 0.0100 0.9577 1.2063 1.1606 1.1675 1.2130 Failed 2.1552

<3 - 0.0037 0.0067 -0.0166 -0.0235 0.0000 Detector z.

- 0.3863 0.5554 -1.4303 - 2.0128 0.0000 Level

?d /b // /b 20 79 60 19 31 d2 in n3 64 6b 1.0407 1.1330 1.0419 sn 0.0123 0 0000 0.0111 nr 1.1819 0.7061 1.0654 3S <.. dw W 91 82 33 14 sh 3b s/ 96 21 0 8080 0.8282 0.0200 - 0.0002 2.4752 - 0.0241 9 IJJ 101 102 2h 103 i s4 25 10d 106 24 107 ive 23 I led 1.1746 1.1964 1.1747 Failed 0.0094 0.0066 0.0093 Detector 08003 0.5516 0.7917 Level 150 2h 111 112 113 114 27 11s lib 117 118 119 120 0.2386 0.9965 0.0134 0 0055 5 6161 0.5519 l t' l 122 l t' 3 124 1/b 126 li7 12h it9 130 131 132 133 SIMULATE Case Values: Absolute Differences.

Average = 0 9927 Averaoe = 0.0047 RMS Crror = 1.3738 Standard Deviation = 0.0132 Maximum Value = 14250 at Detector 7 Maximum Value = 0 0200 at Detector 22 l MinimJm Value = 0.2520 at Detector 28 Minimum Value = -0.0290 at Detector 7 CECOR Case Values: Percentage Differences; Average = 0.9881 Average = 0.8866 Standard Deviation = 0.3159 Standard Deviation = 1.7143 Maimum Value r 1.4540 at Detector 7 Maximum Value = 5.6161 at Detector 28 L 8. linimum Value = 0.2386 at Detector 28 Minimum Value = -2.0128 at Detector 14 OPPD-NA-8302-NP, Rev. 04 Page 52 of 81

Figure 4-18 SIMULATE-3/CECOR Radial Power Comparison l Cycle 15 at 1,114 MWD /MTU,99.9% Power,945 ppm i Axially integrated l AA Hts - Assembly Number - Detector Number C.CCCC - CECOR RPD D.DDDD - Absolute Difference E.EEEE - Percent Difference i 2 3 4 1 5 6 / s d 10 11 12 13 to 14 16 1/ 18 2 19 20 21 22 23 24 1 1.0747 0.1502 0.0133 0.0068 1.2376 4.5273 26 26 6 21 28 6 .'W 30 4 J1 J.: 3 D 34 35 1.1249 Failed 1.4057 1.1945

- 0.0099 Detector 0.0073 -0.0045

- 0.8801 Level 0.5193 - 0.3767 36 3/ 38 19 40 41 42 4J 44 46 4h 41 10 46 0.2755

- 0.0015 49 w 9 a se u u a e / 2, sz se sv

- 0 5445 1.1348 1.1619 1.1439 so 0.0142 0.0451 -0.0259 si in 1.2513 3.8816 - 2.2642 0.4018 c.2 ir 63 ,>4 is os e.o is or ,,a 14 s 70 o n 72 i2 0.0032 1.1153 1.3762 1.2053 Failed 1.4061 Failed 0.7964 o -0 0163 0.0288 0.0087 Detector - 0.0001 Detector i4

-1.4615 2.0927 0.7218 Level - 0.0071 Level (b 76 I/ ib 20 /W e6u 19 al d2 to 53 h4 65 'i 1.3003 1.1777 1.3107

  • 0.0267 0.0303 0.01 63 si 2 0534 2.5728 1.2436 r.a 22 w 4o 9 42 o 34 ss so 9/ su 2i 0.8047 0.8294 0.0153 - 0.0084 1.9013 -1.0128 19 100 101 102 26 10J 104 P5 lus 106 24 10/ 106 23 109 1.1863 1.4124 1.1932 Failed 0.0027 0.0006 - 0.0032 Detector 0.2276 0.0425 - 0.2682 Level 110 28 111 112 113 114 27 115 lib 11/ 118 119 120 0.1465 1.0869 0 0105 0.0001 7.1672 0.0092 121 122 123 124 126 126 12/ 128 129 I SU 131 132 133 SIMULATE Case Values: Absolute Differences:

Average = 1.0325 Average = 0.0067 RMS Error - 1.6850 Standard Deviation = 0.0158 Maximum Value = 1.4130 at Detector 4 Maximum Value = 0.0451 at Detector 8 Minimum Value = 0.1570 at Detector 28 Minimum Value = -0 0259 at Detector 7 CECOR Case Values: Percentage Differences:

Average = 1.0258 Averag( = 0.9763 Standard Deviation = 0.3945 Standard Deviation = 2.0703 Maximum Value = 1.4124 at Detector 25 Maximum Value = 7.1672 at Detector 28 Minimum Value = 0.1465 at Detector 28 Minimum Value = ~2.2642 at Detector 7 OPPD-NA-8302-NP, Rev. 04 Page 53 of 81

Figure 4-19 Cycle 11 Axial Power Distribution Comparison 1,094 MWD /MTU,99.4% Power, 973 ppm 1.30 ,

1.20 SIMULATE-3 -

- - - ! - - -.J_- "- - A - -- CECOR 1.10  % -

3,00

/ r 0.90  %

\

0.80 '

D 0.70 0.00 / '

O 50 ./

0.40 RMS EriROR = 4.76%

0.30 -

STANDARD DEVIATION = 4.91%

0.20 0.10 l 0 00 c 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 f

j Percent of Core Height (%)

t i OPPD-NA-8302-NP, Rev '04 '

Page .54 of 81

_ . _ _ _ _ _ _ _ _ . _ _ _ ___ _ _ _ _ __. - - _ -. -- . -. .~ .

~

Figure 4-20 ,

Cycle 11 Axial Power Distribution Comparison j 6,990 MWD!MTU,99.5% Power,532 ppm  !

Relative Power 1 I i 120 SIMULATE-3 -

--- CECOR ..

1.10 _

~-

_;z -

- ~~--u __ -- - u- .

' 'N  :,

0.90

/

/ \[g '

/ g '

O.80 /-- '

N

  • 0.70 g 0 60 I i

L 0.50 .

f 0.40 l RMS ERROR = 5.73 %

O.30  !

STANDARD DEVIATION = 5.92% l 020 ,

i f 0.10 '

O.00 ,

0 5 10 15 20 25 30 35 40 45 50 55 60 65 - 70 75 80- 85 90- 95 100 Percent of Core Height (%)

OPPD-NA-8302-NP, Rev. 04 Page 55 of 81

-s - .w, - ,e m- - y , ,e..m 4 r4- m ..:~. --

Figure 4-21 Cycle 11 Axial Power Distribution Comparison 11,088 MWD /MTU,99.3% Power,189 ppm Relatve Power 1 30 l I  !

u0 .

SIMULATE --- CECOR 1.10 jr_._ '

,/ ~~~_ ~ _

- _ _ . - - ~ ~ ~ ~ .

'N 0.90

/l s'  %

\

1 0 e0 0.70 0 6c 0 50 0.4c RMS ERROR = 4.66 %

0 30 STANDARD DEVIATION = 4.81%

0 20 0.10 0.00 , ,

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Percent of Core Height (%)

OPPD-NA-8302-NP, Rev. 04 Page 56 of 81

L Figure 4-22 Cycle 12 Axial Power Distribution Comparison 915 MWD /MTU,99.5% Power,1002. ppm ,

Relative Power 1.30  ;  ; 9 1.20 SIMULATE-3 -

,__.b m- ----~' --- CECOR 1.10 p/ -

i 0.% / m\ 3

\,

0.80 +-

/

0.70 \~

\

0.60

\.-

O 50 0.40 RMS ERROR = 5.11%  ;

0.30 STANDARD DEVIATION = 5.27%

0 20 0.10 0.00 g , i i 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Percent of Core Height (%)

i OPPD-NA-8302-NP, Rev. 04 Page 57 of 81

- -- ,m n -m ,---a v , , - . -

Figure 4-23 Cycle 12 Axial Power Distribution Comparison 5,914 MWD /MTU,99.7% Power,614 ppm Re!ative Power 1 30  :

1 J i 1.20 SIMULATE-3 -

--- CECOR 1 10 --- m - = = _ -

- - - = -x 0.90 ,

/  %

\

0.80 / \

\

0.70 0.60 0.50 0.40 RMS ERROR = 5.42%

0.30 STANDARD DEVIATION = 5.60%

0.20 --

0.10 0.00 , ,

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Percent of Core Height (%)

OPPD-NA-8302-NP, Rev. 04 Page 58 of 81

_ . _ _ _ _ _ _ _ _ _ _ . _ . _ _ ^ _ _____m _. -_a - _____ _ _ _ %.m--t

t Figure 4-24 Cycle 12 Axial Power Distribution Comparison 10,931 MWD /MTU,99.7% Power,200 ppm Relative Power 1.30 ,  ;  ; ,

i 120 SIMULATE-3 -

--- CECOR ,

O

,yL- W~ " _ - ___ - - -- ~~-

1 00 s p/  %

0.90 7

's \%

/' N 0.80 \

0.70 0.60

  • 0.50 0.40 +

RMS ERROR = 4.47%

0.30 STANDARD DEVIATION = 4.61% l 0 20 0.10 0.00 O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 L

Percent of Core Height (%)

1

)

OPPD-NA-8302-NP, Rev. 04 Page 59 of 81

_ ___ _ _ _ _ _ _ _ _ - _ _ . _ . . . . _ . . . - ~ . __ . . . __J

Figure 4-25 Cycle 13 Axial Power Distribution Comparison 978 MWD /MTU,99.7% Power,1061 ppm Relative Power

' '30 I I i 1.20 SIMULATE-3 -

_ ____ w- ~,_,

--- CECOR s g \

\

0.90 )  %

g-

\

0.80 g

N

/ \

0 70

/

0.60

/

0.50 0.40 RMS ERROR = 5.65%

0.30 STANDARD DEVIATION = 5.83%

0.20 0.10 0.00 , ,

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Percent of Core Height (%)

OPPD-NA-8302-NP, Rev. 04 Page 60 of 81

0 0

3 d1 E 5 T . 9 AR _.

N N

U O _.

L

, M CE .

S C _

\s% 0 9

' 5 8

0 8

n o _

i s _ 5 7

r _

a p 0 7

m o 5 C 6 n -

_ i o  %

5 2

0 6 )

4 0

t '

3 5 ( .

u 5 5 t h v 6

2- r 4

b i

t P_ _

=

N O

I

=

5 5 ig H

e e

e R 8 P o

,f 1

ei s _

T A

I 0

5 C

r o N 1

r V 2 uD '

_ E f o 0 3

6 D 8 e g

R t i

F r

e _ O R

D R

A i 5 4 n e

c r

A Pa N

g R e w E D P D o S N A

, 0 4 P P

P M R

T S O l

' 5 i

a - 3 x

A ~

~ 0 3

3 -

1

- 5 2

l e -

c y

0 2

C

5 1

/ 0 1

5 r

e w

p /

o P 0 e .

v 0 0 0 0 0 0 0 0 0 0 0 0 0 ti 3 2 1 0 9 8 7 6 5 4 3 2 1 la t 1 1 1 0 0 O 0 0 0 0 0 0 e

R

~d ,

Figure 4-27 Cycle 13 Axial Power Distribution Comparison 14,454 MWD /MTU,99.5% Power,6 ppm 1 30 ,

3,_,g SIMULATE-3

-~~ CECOR 1.10 6"- =i m % ' % %,m

=

, .00 f,y, Nl - - , _ ____ --- ~ l sq l

N 0.90 / Nl N\

0.80 ---

\

0.70 0.60 0.50 0.40 RMS ERROR = 4.52%

0.30 STANDARD DEVIATION =: 4.64 %

0.20 0.10 0.00 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Percent of Core Height (%)

OPPD-NA-8302-NP, Rev. 04 Page 62 of 81

0 0

1 _

3 ,

- \

i E b\ 5 9

T \ _

A R L g\

U O * \

t MC E 0

9 I

S C

\

\

l

- \ \ 5 8

0 _

8 n

o N i

s 5 7

r  %

a

  • p 11 0 7

m -g o 5 Cm p 6

np 0 o0 8 1  %

8 5

6 )

4 0

i t 7, r

~ 2 4  %

(

ue - 6 6 5

t hg v e

8 b wo =

N

= 5 ie R 8 1

2- ri P t %

N O H e P

,f 4 I T 0 r N o ei 9 s6 A l

5 o -

r I

V C 2 3 uD9 g U, E

D f

o 0 6 3 e i r T R 5 t n 8 g O D 4 e -

a F

eM / R R A

c r

A P N

D R e wW oM .

_ E S

D N

A 0

4 P D P

P M T P2 3

- R S O l 3, 5 i

a1 3 x _

A _l 0 3

4 1

5 e p 2

l p

c y 0 2

C //

/. 5 1

/ 0 1

/

/

5 r

e /

w o

P 0 e g v 0 0 0 0 0 0 0 0 0 0 0 0 0 it 3 2 1 o, 9 8 7 6 -

5 4, 3 2 1 0 la '- 1 1 3 0 0 0 0 0 0 0 0 0 0 e

R

Figure 4-29 Cycle 14 Axial Power Distribution Comparison 7,125 MWD /MTU,99.8% Power,603 ppm Relative Power

' 30 l 1 I l

1.20 SIMULATE --- CECOR 1,10 -,.

--w___,,,_--

0 90 N

0 80 , .[ \

/' l 0 70 -

0.60 0.50 0 40 RMS ERROR = 4.18%

0.30 STANDARD DEVIATION = 4.32%

0.20 0.10 0.00 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Percent of Core Height (%)

OPPD-NA-8302-NP, Rev. 04 Page 64 of 81

Figure 4-30 l Cycle 14 Axial Power Distribution Comparison 13,316 MWD /MTU,99.7% Power,58 ppm Relative Power 1.30 1.20 SIMULATE-3 -

--- CECOR 1.10 w -

N~~. J. - r -'s - h-J

, 00 / ~__~__ _

/

~--- -

s' N

/  %

0.90 \

\ l o.80 \

0.70 0.60 0 50 i

O.40 RMS ERROR = 3.74%

]

o.30 STANDARD DEVIATION = 3.83%

0 20 -

0.10 0.00 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Percent of Core Height (%)

OPPD-NA-8302-NP, Rev. 04 Page 65 of 81

Figure 4-31 Cycle 15 Axial Power Distribution Comparison 1,114 MWD /MTU,99.9% Power,945 ppm Relatwe Power 1.30  ;  ;  ;

1 20 SIMULATE -- ~ ~ - M ' ,,,L _ _ _  ;

I --- CECOR 1.10 ,e .

~w ,, j 3 go / s'l ~~%l%, ,

0.90 # ,

/ \

/l \

0.80

/

j/- h-\

0.70 /-

0.60

'\

0.50

/

0.40 RMS ERROR = 8.15%

0.30 '

STANDARD DEVIATION = 8.42%

0.20 0.10 0.00  ;

O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Percent of Core Height (%)

OPPD-NA-8302-NP, Rev. 04 Page 66 of 81

Figure 4-32 Cycle 11 'ntegrated Radial Peaking ( Fa ) vs. Burnup 1.90 _ i i i SIMULATE-3 1.85 _ CECOR

-i 1

1.80 q 6 3 1

1.7b f  ;

g _

D  :

3 1.70

(--

.t E

u

__= - . - -

i

, _g; g .

l , -- ,

$ di"i",_ ~

___._-- 9-'~ ' i -

(l 5

e 1.65 - i y C

y _m 1.60 _

1.55 _

1.50 i . ii ii1 1 i iiii;iiii ii i i

iiii ii i i i i i iii iiii iiii i ii i

ii - i ii'i 0.0 1.0 2.0 .3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 Cycle-11 Burnup (GWD/MTU)

OPPD-NA-8302-NP, Rev. 04 Page 67 of 81

- _. . - . _ _ = _ _ . - - - _ -- ._ . . _ _ _ . .. =_ _

Figure 4-33 Cycle 12 Integrated Radial Peaking ( F p ) vs. Burnup 1.90 _ '

]

1.85 - StMUI. ATE-3

CECOR l.80 _ i c

u.

o -

j 1.75 3 8

E ce 1.70 _

s

_ lE E

  • i t_._.-%

9 1.65 j. N .

1 l

I 1 1 4 i 1.60 _

j i l.55

)

i 1.50 i i ' ' ' ' ' '

iiiii i i i i iiii >i1 i

ii +4 iii ii

ii''

O.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 Cycle-12 Burnup (GWD/MTU)

OPPD-NA-8302-NP, Rev. 04 Page 68 of 81

Figure 4-34 l Cycle 13 Integrated Radial Peaking ( Fa ) vs. Burnup 1.90 _

1.85 - SIMULATE-3 I CECOR 1.80 _

E 2 -

g 1.75 _

2 -

o I i e

1.70 1

y t o -

I o

6o 1.65 -  !

C s I

a

, -; g -

-E- =

I *%_ 3

,#- . i s 5-

[A ~

1.55 _ ,  ;- 7 -- -

1.50 i iii i i i iiii iiii i>>> iiii >>>i iii. .>>> >iii iiii iiii iiii iiii >>>i O.0 1.0 2.0 3.0 4.0 5.0 6.0 7.c 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 Cycle-13 Burnup (GWD/MTU)

OPPD-NA-8302-NP, Rev. 04 Page 69 of 81

Figure 4-35 Cycle 14 Integrated Radial Peaking ( Fa ) vs. Burnup 1.90 _  ;

i' l.85 _ SIMULATE-3 CECOR 1.80 _

S v

~

.$ I

!,'fy r'

~_

1  ;

= -

-L_

% e _~7- -% I V

/ f

/  : _

i li 1.65

~

.! n 5 5 ,

_{gl1Y 1.60 _

l.55 _

l.50 iie ' iiii iiii s i 'ii' '' ' ' ' '

'l'l' '

O.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 Cycle-14 Burnup (GWD/MTU)

OPPD-NA-8302-NP, Rev. 04 Page 70 of 81

Figure 4-36 Cycle 15 Integrated Radial Peaking ( Fa ) vs. Burnup 1.90 _ j

~

1.85 - SIMULATE-3

-- -CECOR 1.80

- - - -~ - - - - -

E i

? 1h 1.75 i D 1, B 1.70 cr _% ,. . f I _: #

0 6

c) 1.65 -

c 1.60 .

A 1.55 _

l.50 iiii iiii in. iiii is i iiii iiii iiii v i i i iis i iiii iiii ii.i ,iii i,ii 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 Cycle-15 Burnup (GWD/MTU)

OPPD-NA-8302-NP, Rev. 04 Page 71 of 81

Figure 4-37 i

Cycle 11 Planar Radial Peaking ( FXY) VS. BurnUp 1.90 _

SIMU1 ATE-3 j 1.85 y CECOR f,'h

1 i

1.80 _'

y _

S -

i g

^

1.75 _

1  : _

f -

_ JLJ i+ N ._

j 1.70 "-~ J L._- _ _ _ _ - - _.

- c '-- - -_ #

a _

-s t - _ - -

g .

_o p_a

a. -

j -

1.60 _

1,55 1

1.50 jiiii iiii >iii iiii i iii iiii iii iiii i>>< iii> iiii i>ii iii, iiii 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 Cycle-11 Burnup (GWD/MTU)

OPPD-NA-8302-NP, Rev. 04  ;

Page 72.of: 81-  :

Figure 4-38 Cycle 12 Planar Radial Peaking ( F XY) VS. Burnup 1.90 _ l l

1.85 - S!MULATE-3 CECOR 1.80

-3 x -

S 1.75 ii ;i

.P

= Ti _ _-

l-fo -

1___

g 1.70 _ _

____.__ j i_ . ,%

u -

O ] ~

8 1.65 -

, t--

o E- _

1.60 _

1.55 _

i  !

1.50 i i ii iit i iiii i..i iiii <iii iiiijiiiil 1 i i i iiiij iii 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 Cycle-12 Burnup (GWD/MTU)

OPPD-NA-8302-NP, Rev. 04 Page 73 of 81

!;! , :1 ' i[ ' ~  ! [ L 0

5 1

i

%- i i

i i.

0 4

1 3-i E

T .

AR i

L O i 0 .

U MEC i 3

1 S C p

i i

u 4 > 0 n

r - _ >

2 1

u i B i 0 i

1 i 1 S

i V

i i

i 0 0

) i 1 Y

F X \w-A j-i i 0 )

U

( 1 i 9 T i M g i

/

D 4 i

n i 0 i 8 W

G 0

(

k p v 9 a i i

u n

e R 8 1 3

- e _

i 0 B u

r P

,f 4

e P g~ i 7

3 N o

r l i 1

- 2 74 i

u g

i a i i 0 le c

y 0

3 8 e g d C -

A Pa AN F

_ i 6 N a _ i D

R  ! -

P P

r 3g*

> 0 O a i 5 n

i

= i l

a -.

i 0 _

P i 4

_ i 3 _'

i 1 i 0

> 3 l

e i c

y ___-

i i 0 i 2 C -  !

i i i

i 0 1

f, i

i i

L,^_ i 0

__-_ - : _ _ _: - _~-_ - jj_ ___ 0 0 5 0 5 0 5 0 5 0 9 8 8 7 7 6 6 5 5 1 1- 1 1 1 1' 1 1 1 hu. ocE2 Zo Ee 82

Figure 4-40 Cycle 14 Planar Radial Peaking ( Fxy) vs. Burnup 1.90 _ i

=

l.85 - s i

SMULATE-3 3 CECOR 4

s 1.80 ~  !!

it u.

d--m p 1.75 _

l [ f

- ~

-J_ j u

Ef i -

i ==4 rii pi ' i o 1.70 e =

~~~ is ,

15  :  ! =!/' N' o _!r

'I

$ IL . /7 8 1.65 b[

2  :

3 1.60 _

l.55 _

l.50 iiii iii- ' ' ' ' ' ' '

O.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 Cycle-14 Burnup (GWD/MTU)

OPPD-NA-8302-NP, Rev. 04 Page 75 of 81

Figure 4-41 l

Cycle 15 Planar Radial Peaking ( Fxy) vs. Burnup 1.90 _

1.85 _ SIMULATE-3 CECOR 1.80 g 9

\

s 1.75 -  %*

o .

~

5  : ~

E 8 -

S 1.70 -

.9 5

e _

y 1.65 _

E  :

l.60 _

1.55 1

1 >>>> >>>> ' >>>> >>>> >>>> iiii iiii 1.50 iiiii >>>> >>>> iii> ii>> iiii ii iiii 0.0 1.0 2.0 3.0 4.0 5.0 60 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 Cycle-15 Burnup (GWD/MTU)

OPPD-NA-8302-NP, Rev. 04 Page 76 of 81

Figure 4-42 Cycle 11 3-D Peaking ( Fo ) vs. Burnup 2.30 aa ,

4 t 2.2.5 S!MULATE-3 7.

! CECOR 2.20 _i k

2.15 jg j d \

2.10 __

f .

9 2.05 _ n c_

g

u.  : n- -

v _ sg _

2.00 _ i_ E ' f-32

-4 !

a=

o m -

1.95 -

=- g;

~

'j-2 _.

%;f ,

$ 1'90

- - i A E ~ -- J-

/- -I il . A AM= gf }?'M '%_

'N h OL - i 1.85 _- ,. -

a

_f vg3 g

g --%W- V iii

.--w' l-.-

i  !

3

'm

~

1.80 _

-'i,f=bi 1.75 I 1.70 _

~

1.65 iiii iiii iiii iiii iie i 1 .ii iiii iiii iiii iiii iiii iiii iiii iii1 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 -;

Cycle-11 Burnuo (GWD/MTU)

OPPD-NA-8302-NP, Rev. 04 Page 77 of.81

Figure 4-43 Cycle 12 3-D Peaking ( Fo ) vs. Burnup 2.30 _-

l } { ,

t 2.25 q}' SIMULATE-3 2

- - CECOR  !

2.20 _

2.15 i

2 2.10 r i

e

- 2.05 _ , , .i 2

- _1 ai Il e

o 2.00 _ i E

_G _ s' ~ ~

a

$  : H g 1.95 _ -

____ y S 1 90 i \ ^

i

. s I~~

1.85 s i,: ::

i l - ~ f =) = ~ '--. I

  1. E-t
1.80 _ N N
t 1.75 _  !
i 1.70 _
r

_ 5 1.65 i ' ' ' i ' ' ' i i i i i ii 9

" El 1.90 _ l

!g 1.85 1 (= _

T 'sM.

-a i

i

=

E

~

g

= ,

i

,i- -

-- f _

N -]~ ,

1.70 _ j y i 5 1.65 iiii iiii i i.i iiii >>>> ii>> >>>> >>>> iii iii. ii'> >>>i iiii '>ii ii i

. 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0-Cycle-13 Burnup (GWD/MTU) '

OPPD-NA-8302-NP, Rev. 04 I-Page 79 of 81

Figure 4-45 Cycle 14 3-D Peaking ( Fo ) vs. Burnup 2.30 a i j j l 3=

g i 2.25 j SIMULATE-3 2.20 :- CECOR i =.

I i s 2.15 _ g

_ =  ;

2 10 - -

E I' ~ h 9 2.05 j 7;~~7 g ,

S  :

fi f

=

,=, 3 i

? 2.00 _t9 f._g s_ i 5

g 1.95

$ =-

h' ~

A Mb $

9 s._ !s =-~2 a a 1.90

--' ~

"'#ii Y~=a = . _ i g

h -:.___

1.85 g -Q 1.80 l.75 _

1.70 _g

~

l.65 ii4 + iiai iiii iiii iii iiii iii> *ia i iiii iiii ' 'it i 'i iii't i'i' O.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 Cycle-14 Burnup (GWD/MTU)

OPPD-NA-8302-NP, Rev. 04 Page 80 of 81

Figure 4-46 Cycle 15 3-D Peaking ( Fo ) vs. Burnup 2.30 4 i i  ; i i

?

2.25  : I S!MULATE-3

I CECOR 2.20 _ i i

[

I l  ! l l 2.15 s a

4 f.

2.10 T ,

g 2: L ~

2.05 - j v ys _ -(

.0 i4 nM.N= swi 2 1.95 g ~;

o a A 1.90

[ j

-H 1.85 y 1

H 1.80 _

1.75 ,

a 1.70 y 3

1.65 i iiii iii iiii i +i ii'i *' i i+

is i1 - i is ' i i iiiijiiii;i<iiiit 5 iie iiii i

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 Cycle-15 Burnup (GWD/MTU)

OPPD-NA-8302-NP, Rev. 04 Page 81 of 81

___ _ _-- . _ _ - .__ _ _ _ - _ _ _ - _ _ _ _ _ - _ _ _ _ _ - _ _ _