ML20064L905
| ML20064L905 | |
| Person / Time | |
|---|---|
| Issue date: | 07/31/1982 |
| From: | Snell W Office of Nuclear Reactor Regulation |
| To: | |
| References | |
| NUREG-0917, NUREG-917, NUDOCS 8208260068 | |
| Download: ML20064L905 (145) | |
Text
_
NUREG-0917 Nuclear Regulatory Commission Staff Computer Programs for Use with Meteorological Data l
1 U.S. Nuclear Regulatory Commission 1
l Office of Nuclear Reactor Regulation l
l W. Snell fa arcoy 8
' 7, 5
- a g
j i
l R NU EG PR 0917 R
NOTICE Availability of Reference Materials Cited in NRC Publications Most documents cited in N RC publications will be available from one of the following sources:
- 1. The NRC Public Document Room,1717 H Street, N.W.
Washington, DC 20555
- 2. The NRC/GPO Sales Program. U.S. Nuclear Regulatory Commission, Washington, DC 20555
- 3. The National Technical Information Service, Springfield, VA 22161 Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.
Referenced documents available for inspection and copying for a fee from the NRC Public Docu-ment Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices:
Licensee Event Reports; vendor reports and correspondence; Commission papers;and applicant and licensee documents and correspondence.
The following documents in the NUREG series are available for purchase from the NRC/GPO Sales Procram: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.
Documentt available from the National Technical information Service include NUREG series reports and technical reports prepared by otner federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.
Documents available from public and special technical libraries include all open literature items, such as books. journal and periodical articles, and transactions. Federal Register notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.
Documents such as theses, dissertations, foreign reports and translations,and non-NRC conference proceedings are available for purchase f rom the organization sponsoring the publication cited.
Single copies of NRC draf t reports are available free upon written request to the Division of Tech-nical Information and Document Control, U.S. Nuclear Regulatory Commission. Washington, DC l
20555.
Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public, Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards institute 1430 Broadway, New York, NY 10018.
a
- men,
,_m i
l t
l l
Nuclear Regulatory Commission l
Staff Computer Programs for l
Use with Meteorological Data Manuscript Completed: June 1982 Date Published: July 1982 l
l W. Snell Division of Systems integration Office of Nuclear Reactor Regulation l
U.S. Nuclear Regulatory Commission Washington, D.C. 20555 j.. ~,,
l E 'i, c a. ( h l
5 L..
I
~ ' '.. '. '.. '
l l
i 1
l ABSTRACT The Nuclear Regulatory Commission (NRC) receives hour-by-hour meteorological i
data on magnetic tape in a format specified in. Regulatory Guide 1.70, Revision 2,
" Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants" (September 1975).
The purpose of this report was to document the computer programs that are used by the NRC meteorology staff to examine, assess and utilize these hourly values of meteorological data.
A description of each of the programs is given along with the input requirements, discussion of output, subroutine flow chart, a description of each subroutine, sample output and a program listing.
l
(
i i
L l
l i
i i
r iii
TABLE OF CONTENTS PELe
- 1. 0 Introduction...................................................
1
- 2. 0 Background.....................................................
2 2.1 Blank Data Fields.........................................
2 2.2 Erroneous Data............................................
2 3.0 Program DATE (Checks for sequencial data set by date)..........
3 3.1 Description of Program....................................
3 3.2 Input Cards...............................................
3 3.3 Discussion of Output......................................
3 3.4 Implementation............................................
.3 3.5 Subroutine Flow Chart.....................................
3 i
3.6 Subroutine Descriptions...................................
3
- 3. 7 Sample Output................................
4 4.0 Program JFREQ (Computes joint frequency distribution of wind speed, wind direction and atmospheric stability)...............
8 l
4.1 Description of Program....................................
8 4.2 Input Cards...............................................
8 4.3 Discussion of Output......................................
9 4.4 Implementation............................................
9 4.5 Subroutine Flow Chart.....................................
10 4.6 Subroutine Descriptions...................................
10 4.7 Sample Output.............................................
12 i
5.0 Program MISS (Calculates missing data statistics)..............
24 5.1 Description of Program....................................
24
- 5. 2 Input Cards...............................................
24 5.3 Discussion of Output......................................
24 5.4 Implementation............................................
24
- 5. 5 Subroutine Flow Chart.....................................
24 5.6 Subroutine Descriptions...................................
24 5.7 Sample Output.............................................
26 t
l 6.0 Program PRECP (Calculates precipitation statistics)............
29 6.1 Description of Program....................................
29 6.2 Input Cards...............................................
29 6.3 Discussion of Output......................................
29 l
6.4 Implementation............................................
29 6.5 Subroutine Flow Chart.................
29 6.6 Subroutine Descriptions...................................
30 l
6.7 Sample Output.........
31
- 7. 0 Program PRINT (Creates listing of data)........................
36 7.1 Description of Program...............
36 l
7.2 Input Cards..............................................
36 7.3 Discussion of Output......................................
36 7.4 Implementation............................................
36
- 7. 5 Subroutine Flow Chart.....................................
37 7.6 Subroutine Descriptions...................................
37 7.7 Sample Output.........................................
38 v
Table of Contents (continued)
Pag _e 8.0 Program QA (Checks-data set for invalid data values)...........
45 8.1 Description of Program....................................
45 8.2 Input Cards...............................................
45 8.3 Discussion-of Output......................................
46 8.4 Implementation............................................
46 8.5 Subroutine Flow Chart.....................................
47 8.6 Subroutine Descriptions...................................
47 8.7 Sample Output.............................................
51 j
9.0 Program STABQ (Calculates atmospheric stability statistics)....
60 9.1 Description of Program....................................
60 9.2 Input Cards...............................................
60 9.3 Discussion of Output......................................
60 9.4 Implementation............................................
60 9.5 Subroutine Flow Chart.....................................
60 9.6 Subroutine Descriptions...................................
60 a
9.7 Sample Output.............................................
62 9
10.0 Program TDP (Calculate temperature and dew point statistics)...
67 10.1 Description of Program....................................
67 10.2 Input Cards...............................................
67 10.3 Discussion of Output......................................
67 10.4 Implementation............................................
67 10.5 Subroutine Flow Chart.....................................
68 10.6 Subroutine Descriptions...................................
68-10.7 Sample Output.............................................
70 APPENDIX A NRC Standard Format for Meteorological Data APPENDIX B Program Listing of DATE APPENDIX C Program Listing of JFREQ APPENDIX D Program Listing of MISS APPENDIX E Program Listing of PRECP APPENDIX F Program Listing of PRINT APPENDIX G Program Listing of QA i
APPENDIX H Program Listing of STABQ APPENDIX I Program Listing TDP vi t
1
- 1. 0 INTRODUCTION Regulatory Guide 1.70, Revision 2, " Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants" (September 1975), recommended that, if possible, hour-by-hour meteorological data should be provided to the Nuclear Regulatory Commission (NRC) on magnetic tape.
The purpose for this submission was to increase the NRC meteorology staff's ability to independently evaluate the environmental and safety related consequences of routine and accidental releases at nuclear power facilities.
To avoid confusion and delays by the staff in the interpretation of meterological data submitted, a letter was sent on April 22, 1977 to all power reactor licensees and applicants with applica-tions for a license to operate or construct a power reactor.
This letter contained the details of a standardized format for submittal of hourly meteor-ological data on magnetic tape to the NRC.
Subsequent to this letter, the NRC meteorology staff developed a number of computer programs to review and utilize the meteorological data submitted in this Standard Format.
These programs are routinely used by the staff to examine and assess the quality of the data submitted as well as to convert the data to formats that are compatible as input to other NRC computer programs.
Programs DATE, MISS, PRINT, QA and STABQ are used to examine the quality and validity of the applicant's hourly meteorological data.
Program JFREQ is used to calculate a joint frequency distribution of wind speed, wind direction and atmospheric stability that can be used in the NRC meteorological computer programs X0QD0Q (based on R.G. 1.111) and PAVAN (based on R.G. 1.145) for routine and accidental release meteorological analyses, respectively.
These analyses, in turn, are used to assure that the radiological consequences of normal operation meet the As Low As Reasonably Achievable guidelines of 10 CFR 50, Appendix I, and that the radiological consequences of accidents conform to the provisions of 10 CFR 100, 10 CFR 51, and the Statement of Interim Policy on Nuclear Power Plant Accident Considerations Under the National Environmental Policy Act of 1969@ 45 FR 40101.
Program PRECP is used to assess the quality of the applicants precipitation data prior to its use in the NRC CRAC computer code, a code which is used to assess the accident risk associated with the operation of nuclear power facilities.
Program TDP is used to provide meteorological information to the hydrologic engineers to aid in their ultimate heat sink analysis.
A complete description of each of these programs is provided in this NUREG.
Included with each code is a description of what it does, the input requirements to run it, a description of each subroutine, sample output and a listing of each program.
These programs were developed on an IBM 370 computer system in the FORTRAN IV j
language and should convert easily to other systems.
1 i
(
1
2.0 BACKGROUND
The purpose of standarizing the format for meteorological data
- submitted to the NRC was to minimize the staff time necessary to utilize and interpret this data.
If each applicant were to submit data in their own format, an inordi-nate amount of time could have been spent in trying to procest the data.
However, because each site had a different meteorological program, the format had to be flexible enough to handle any differences from one site to another.
The result was a format that could handle almost all meteorological parameters anticipated to be recorded at a nuclear power facility.
The only major drawback of the format was that it used up a large amount of space due to the many empty data fields where no information was available.
The diversity of the data available from site to site also led to additional programming considerations.
In writing the programs to process the data, the intent was to keep them as simple as possible so they would be easily adaptable to other computer systems.
However, a minimum amount of complexity was needed to address the differences in data available at each site and handle blank data fields.
It was also necessary to have a consistent interpretation of the data between each of the programs.
2.1 Blank Data Fields According to the criteria for the Standard Format (see Appendix A), if a specific meteorological parameter is not available for the entire data set, the appropriate field for that parameter may be left blank.
To avoid confusion with computer systems that interpret a blank field as a value of zero, each program checks for blank fields.
If they are found they are converted to the appropriate code for missing data.
2.2 Erroneous Data Except for the programs DATE (which only reads the dates) and PRINT (which is used to list all the data as it is), each of the codes has a built in limit beyond which the' data are considered as erroneous.
These limits are consistent for all the programs and are as follows.
lower upper parameter limit limit units wind direction 0.0 365.0 degrees wind speed 0.0 99.9 meters /second sigma theta 0.0 365.0 degrees temperature
-99.9 99.9 degrees C dew point
-99.9 100.0 degrees C delta-T
-7.0 35.0 degrees C/100 meters precipitation
- 0. 0 254.0 mm/ hour See Appendix A for the NRC Standard Format for Meteorological Data.
2
3.0 DATE 3.1 Description of Program Date reviews a data set in the NRC Standard Format for the correct sequential ordering of the data by year, Julian day and hour.
3.2 Input Cards ~
Card Column Format Variable Description i
1 1
Il LL Coding of hourly data:
I LL=0, coded 0000-2300 i
LL=1, coded 0100-2400 2
1x Blank i
3-74 18A4 Title Title for output 3.3 Discussion of Output The output consists of the date of the first data record that is read, the dates and record number of any data that is found to be out-of-sequence for any reason, and the date of the last data record that is read.
When an error in the data sequence is found, the two sequential records where the error occurs will be listed.
3.4 Implementation s
Input Units
(
1 - data file of hourly meteorological data in NRC Standard Format 5 - input card 1 Output Unit
- defaults to printer 3.5 Subroutine Flow Chart This program contains no subroutines.
- 3.6 Subroutine Description 1
This program contains no subroutines.
l l
3
[
_m i
3.7 Sample Output 1
4 4
1 1
L 4
I l
i I
l I
J l
1 j
i
)
r 1
6 1
i I
i, 4
Y 4
4 a
,.---,-e--
e-
,v,,,,-.,,,,~,,,cnne, a s, w,.
e nm.,-
,n---em,,..
-w.~,-w
PROGRAM: DATE VERSION: 1 DATED: MARCH 1982 RUN DATE:
THURSDAY MAY 13, 1982 SITE:
TEST DATA CONTAIHS DATA FROM DECEMBER 1980 TO JANUARY 1981 BAD DATA DATES INSERTED TO CHECK PROGRAM DATE HOURLY DATA CODED 0100 TO 2400 TITLE: SAMPLE RUN : INPUT FILE : DATA 2 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT)
HOURLY DATA CODED: 01-24 u,
PROGRAM:'DATE VERSIDH: 1 DATED: MARCH 1982 RUN DATE: THURSDAY MAY 13, 1982 SAMPLE RUN : INPUT FILE : DATA 2 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT)
DATE OF FIRST DATA RECORD READ: 80 365 12 BAD DATE SEQUENCE IN DATA:
80 365 15 RECORD 4
0 0 0 RECORD 5-BAD DATE SEQUENCE IN DATA:
0 0 0 RECORD 5
80 365 17 RECORD 6
BAD DATE SEQUENCE IN DATA:
80 365 20 RECORD 9
BC 345 11 RECORD 10 BAD DATE SEQUENCE IN DATA:
80 345 11 RECORD 10 80 365 22 RECCRD 11 BAD DATE SEQUEt:CE IN DATA: 80 366 1
RECORD 14 82 366 2 RECORD 15 BAD DATE SEQUENCE IN DATA:
82 366 2 RECORD 15 80 366 3 RECORD 15 BAD DATE SEQUENCE IN DATA: 80 366 11 RECORD 24 cn 80 366 11 RECORD 25 BAD DATE SEQUENCE IN' DATA:
80 366 11 RECORD 25 80 366 13 RECORD 26 BAD DATE SEQUENCE IN DATA:
81 1
1 RECORD 38 81 4 2 RECORD 39 BAD DATE SEQUENCE IN DATA:
31 4 2 RECORD 39 81 1 3 RECORD 40 BAD DATE SEQUENCE IN DATA: 81 1 19 RECORD 56 99 999 99 RECORD 57 DAD DATE SEQUENCE IN DATA:
99 999 99 RECORD 57 81 1 21 RECORD 58 9AD DATE SEQUENCE IN DATA: 81 2 3 RECORD 64 81 2 8 RECORD 65 BAD DATE SEQUENCE IN DATA:
81 2 8
. RECORD 65 81 2 5 RECORD 66
PROGRAM: DATE VERSION: 1 DATED: MARCH 1982 RUN DATE:
THURSDAY MAY 13, 1932 SAriPLE RUN : INPUT FILE : DATA 2 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT)
DATE OF LAST DATA RECORD READ:
81 2 11 RECORD NO.
72 i
b 4.0 JFREQ 4.1 Description of Program JFREQ derives a joint frequency distribution of wind speed, wind direction and atmospheric stability from meteorological data in the NRC Standard Format.
Atmospheric stability can be determined using either a vertical temperature gradient (in degrees C per 100 meters) or sigma theta.
The distribution is printed in both hours and percent along with various summarizations of the data. The option of having the hourly data punched on cards is also available.
4.2 Input Cards Card Column Format Variable Description 1
1-72 18A4 A
Title to be printed on each page of the output.
2 1
11 ILEV Level of wind data to be used.
ILEV=1, Upper (U).
ILEV=2, Intermediate (I).
ILEV=3, Lower (L).
2 Il IS Delta T interval to be used.
1S=1, U-L IS=2, U-I IS=3, I-L Sigma theta level to be used.
4 IS=4, Upper IS=5, Intermediate IS=6, Lower 3
11 IP Option to punch the hourly joint frequency distribution.
IP=0, do not punch IP=1, punch 4
Il LSH Coding of hourly data.
t LSH=0, 0000-2300 hours LSH=1, 0100-2400 hours 5
Il IPS Print hourly stability class by hour of day.
IPS=0, do nat print IPS=1, print i
6-10 FS. 2 CALM Wind speed that defines calm winds (must be >0.0 and <0.5 m/s) 11-17 F7.1 VB Code for variable wind direction.
VB=0.0 if there are no variable wind directions.
8
h I
Card Column Format Variable Description 3
1-6 312 IY(1)
The year, month and day that IM(1) calculations are to begin.
ID(1) 7 1x Blank.
8-13 3I2 IY(2)
The year, month and day that IM(2) calculations are to end.
ID(2) 4.3 Discussion of Output The output is divided into three sections.
The first section lists the stability class by hour of day.
The second section gives the joint frequency distribution in hours and the third section gives the joint frequency distribution in percent.
All percentages in the third section are based on the total number of hours shown at the end of the hourly summaries in the second section.
The number of hours (or percent) o'f variable winds and calm winds in each stability category h included in the total number of hours (or percent) shown for that stability.
In addition, the variable winds are summarized separately at the end of each of the joint frequency distributions.
Punched output will contain the hourly data in the same order as the printout shows it, except for the first card which will contain the hours of calm, and the variable winds which will not be punched.
The format is as follows:
Card 1-4:
Description cards Card 5:
715 (calms for stability A, B,..., G)
Card 6-75:
1615 (hourly data for 7 stability classes with 10 wind categories per stability class)
The appropriate titles and total number of hours are punched out to aid in identification of the card output.
4.4 Implementation If more than one joint frequency distribution is desired from the same data file, it may be obtained by inserting as many input cards 1, 2, and 3 as desired, as long as the dates specified are chronological.
That is the program that will not go back and reread records from the data file that have already been read.
Input Units 1 - data file of hourly meteorological data 5 - input cards 1, 2, and 3 Output Unit 6
printer 1
9
i i
y, i
7,i r
k g
f s
4.5 Subroutine Flow' Chart i!
MAIN HEAD 1 4.s
,j g i r-- IDAT
- JDAT
(
- SECTOR
- SIGMA
- SPEED
- STABLE 4.6 Subroutine Descriptions ExceptforMAIN,allsubroutinesarelhstedalphabetically.
MAIN The main part of the program initializes all data, reads the input cards, reads the data file, summarizes all data into the joint frequency distribution, calls all the subroutines, prints out all the results, and puncher output if required.
4'
- i HEAD 1>
f st
(
This -routine prints out the input parameters that were specified.
IDAT
- tdi, This routine converts a given month and day to an' equivalent J01ian day.
s JDAT This routine converts a gi,ven Julian day to an equivalent month and day.
SECTOR This routine distributes the wind direction data into 16 sectors centered on the principle compass points using the following equation.
,\\
1 SECTOR = 1+[(DIR+11.25)/22.5]
i-if SECTOR = 17, change to SECTOR = 1 where SECTOR = direction sector wind is blowing from (SECTOR should be truncated to nearest wnole number)
DIR = direction wind is blowing from (degrees)
~,
Wind directions that coincide with a CALM wind speed are placed into sector 17.
-Wind directions that are considered variable are placed into sector 18.
1 10 l
(
l
,L-,-,,
c p
'r s
t.
SIGMA Jr g'.
/,
p
,}'
Tbis'routinecomputesstabilityclassfromthehorizontaldeviationofwind' a
V r
direction (sigma theta) as follows.
/
Sigma theta Stability I
(degrees)
Category Class
'f<p**
22.5 < 00 1
A 17.5,500<22.5 2.
B f
12.5 < 00 < 17.5 3
C 7.5 7 oo < 12.S 4
F 3.8 5 00 < J!5 5
'E 1
2.1 < 00 < 3.8 6
F
- 00 < 2.1 '
7 G
I-
~
SPEEC-s
/
This rou' tire distributes the wind speed data into '10 diff e' rent categories in
?
meters per second as follows.
p.
Wind speed (m/s)
Category CALM 1
CALM < U < 0.50 2
0.50 < U 7 0.75 3
s 0.75 < U 7 1.00 4
1.00 < U 7 1.50 5
j 1.50 E U 3 2.00
,6 i
2.00 < U < 3.00 7
3.00 < U 7 5.00 8
,,,j J 5.00<U310.00 9
10.00 < U 10
. a, s; f -
The variable CALM on input card 2 must be a wind speed greater than 0.0 s
and less than 0.5 m/s.
,' STABLE
- This routine
- computes the stability class from atmospheric temperature gradient (delta-T) as follows.
Delta-T Stability
( C/100m)
Category Class
/
AT < -1.9 1
-1.9 < AT I -1.7 2
L
-1.7 <'AT I -1.5 3
C I
-1.5<AT5-0.5 4
D
,r 4
-0.5 < AT < 1.5 5
E 1.5 < AT E
- 4.0 6
F 4.0 < AT 7
G j
i 11
4.7 Sample Output l
l
[
k
(
t
\\
12
PROGRAM: JFREQ VERSION: 3 DATED: FEBRUARY 1982 RUN DATE:
FRIDAY MAY 7,
1982 INPUT FILE : DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT)
TITLE: SAMPLE RUN
?
WIND DATA FR0t1 LEVEL:
LOWER DELTA-T INTERVAL:
INTERt1EDIATE MIPUs LOWER PUNCH HOURLY JFD ON CARDS: NO HOURLY DATA CODED:
01-24 WRITE STABILITY CLASS BY HOUR OF DAY: YES CAlt! WINDS CODED:
0.27 tt/S VARIABLE WIND DIRECTION CODED:
8888.8 JFD FOR DATA PERIOD: BEGINING - 80 12 30 ENDING
- 81 1
3 U
PROGRAM: JFREQ VERSION: 3 DATED: FEBRUARY 1932 RUN DATE:
FRIDAY MAY 7,
1982 SITE:
TEST DATA CONTAINS DATA FROM DECEMBER 1980 TO JANUARY 1891 HOURLY DATA CODED 0100 TO 2400 acanwwmwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww S3
PROGRAM: JFREQ VERSION: 3 DATED: FEBRUARY 1982 RUN DATE:
FRIDAY MAY 7,
1982 SAMPLE RUN - INPUT FILE : DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT)
LEVEL OF WIND DATA:
10.0 METERS DELTA T LAYER:
60.0- 10.0 METERS STABILITY CLASS BY HOUR OF DAY HOUR YR MN DY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 80 12 30
- - - - - - - - - - - E E E D D D D C C C C C C 80 12 31 B B C A A D D D E E E E E E D D D D - C - - C F 81 1
1 B B C F G D D A - E E E E E D D - - C C C C C C 5
PROGRAM: JFREQ VERSION: 3 DATED: FEBRUARY 1982 RUN DATE:
FRIDAY MAY 7,
1982 SAMPLE RUN INPUT FILE : DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT)
LEVEL OF WIND DATA:
10.0 METERS DELTA T LAYER:
60.0- 10.0 METERS JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS ATMOSPHERIC STABILITY CLASS A U (NLil N
NNE NE ENE E
WNW NU NNU TOTAL CALM 0
CAlt1.5 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
.5
.75 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
.75-1.0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1.0-1.5 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1.5-2.0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
2.0-3.0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
3.0-5.0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
5.0-10.0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
>10.0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 YARIAntR 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
TOTAL 0
0 JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS ATt10 SPHERIC STABILITY CLASS B U ( P1Lil N
NNE HE ENE E
WNW NW NNW TOTAL C Alt!
O CALM.5 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
r.
5.75 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
c4.75-1.0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1.0-1.5 0
2 2
0 0
0 0
0 0
0 0
0 0
1 1
0 6
1.5-2.0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
2.0-3.0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0-0 3.0-5.0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
5.0-10.0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
>10.0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
Y ARJ AB L E o
TOTAL 0
2 2
0 0
0 0
0 0
0 0
0 0
1 1
0 6
JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS ATMOSPHERIC STABILITY CLASS C U_IML11 N
NNE NE ENE E
WNW NW NNW TOTAL CAlt!
O CALM.5 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
.5
.75 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
.75-1.0 0
2 0
0 0
0 0
0 0
0 0
0 0
0 0
1 3
1.0-1.5 0
0 2
0 0
0 0
0 0
0 0
0 0
0 0
0 2
1.5-2.0 0
0 0
0 0
0 0
0 G
0 0
0 0
0 0
0 0
2.0-3.0 0
0 0
2 0
0 0
0 0
0 0
1 0
0 0
0 3
3.0-5.0 0
0 0
2 0
0 0
0 0
0 0
0 0
0 0
0 2
5.0-10.0 0
0 0
0 2
0 0
0 0
0 0
0 0
0 0
0 2
>10.0 0
0 0
0 4
0 0
0 1
0 0
0 0
0 0
0 5
YARIABLE D
TOTAL 0
2 2
4 6
0 0
0 1
0 0
1 0
0 0
1 1/
CALM: 0.27 M/S
L0000000004O4 L000300006122 L0000100000n A
A 1
A T
T T
2 O
O O
8 T
T T
9 1
W 000000000 0
U 000000000 0
W 000000000 0
N N
N 7
H N
N Y
A M
W 000000000 0
W 000000000 0
W 000000000 0
N H
N W
000000000 0
W 000000000 0
W 000000000 0
N N
N W
W W
D E
F Y
A S
S S
D S W 000000000 0
S W 000000000 0
S W
000100000 1
I A
A A
R L
L L
F C
C C
Y Y
Y T
T T
I W
000000000 0
I W
000000000 0
I W
000000000 0
L S
L S
L S
E I
W I
W I
W T
B B
B A
A A
A D
T T
T S
S S
N W
000000000 0
W 000000000 0
W 000000000 0
U C
S C
S C S R
I I
I R
R R
E E
E H
H H
S P
P P
R S W 000000000 0
S W
000000000 0
S W 000000000 0
E O S O
S O S T
M S M S M S E
T T
T M
A A
A 0
S 000000000 0
S 002000000 2
S 000000000 0
0 1
)
T N
0 I
R 0
E 000000000 0
E 001000000 1
E 000000000 0
P 6
S S S
S S S 2
R S R
S R
S 8
M U
U U
9 A
O O
O 1
R H
H H
G Y
O R
N E
000000000 0
N E 000000000 0
N E
000000000 0
R R E
I S
I S
I S
A P Y U
A N
N N
R R
L O
O O
B O
I I
I E
F T
T T
T F
C E 000000000 0
C E
000000000 0
C E 000000000 0
T A
E S
E S
E S
U T
R E
R E R
E D
P L
I I
I E
T E
D D
D T
U D A
D D
D D
D N E 000000004 4
H E
000000041 5
N E 000000000 0
E A
A A
L P
D D
D t1 E
E E
A E
E E
S P
P P
S E 000000000 0
S E 000000000 0
S E
000000000 0
E H
N N
E D
E D
E D
E S
N N
N 3
(
I I
I S
W W
W R
N 1
E F E 000000000 0
F E
000000000 0
F E
000000000 0
O A T
O H
O N
O H
I T
E S
A N
N N
N R
D O
O O
E 0
I I
I T
V :
T T
0 U E 000000000 0
U E 000000010 1
U E 000000000 0
1 B N B
H B
N E
L I
H I
N I
N I
R R
R F
T T
T S
S S
r T
A I
I I
U T
D N 000000000 0
D N 000000010 1
D H 000000000 0
P A
N D
Y Y
Y Q
I C
C C
S E
D N
N N
/
N E
E E
M R
F I
U U
U J
N W Q
Q Q
7 2
U E
E E
050000 E
E R
l
- 5. 5
- 0. R
- 5. 5050000.0L
- 5. 5050000.0LE R
)
R F R
1 12350
.B LM 71....
F S
L 0
F
}
M U
F S
2350
.R
/M 71 A
E LM 71 1 2350 1
R L
L T
- - - - - 10AL T
ML1
- - - - - 10AL T
- - - - - 10AL i
1 t
t t
At -
- 1IA N
(Al-
- 1IA M
f_CA5750500.0>RT 50500.0>RT JA N
G P
E N
{Al - 50500 - 1
_C A 5 7.1 1 2 30.> A O CA57.1 L
O M
V I
RT I
I C
123.
O U C R
A E
O U P S L
J 5
VT J
[
5 VT J
5 VT C
t
_ _.. - _.~.. -
~. ~,.
]
PROGRAM: JFREQ VERSION: 3 DATED: FEBRUARY 1982 RUN DATE:
FRIDAY MAY 7.
1982 SAMPLE RUN : INPUT FILE = DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT)
LEVEL OF WIND DATA:
10.0 METERS DELTA T LAYER:
60.0- 10.0 METERS f
JOINT FREQUENCY. DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS ATMOSPHERIC STABILITY CLASS G M_IUL11 -
N NNE NE ENE E
SSW Su WSW W
WNW _
NW NNu 10 T r.L CALM O
CALM.5 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0-i I
.5.75 0
0 0
0 0
0 0
0 0
0 0
0 0
0
~0-0 0'
.75-1.0 0
0 0
0 0
0 0
0 0-0
-0
'O 0.
0 0
'O o
1.0-1.5 0
0 0
0 0.
0 0
0 0
0 0
0 0
0 0
0-0 1.5-2.0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0
-0 2,0-3.0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
-3.0-5.0 0
0 5.0-10.0 0
0
~ 0 0
0 0
0 0
0 0
0 0
0 0
0 0-0-
0 0
0 0
0
.0 0
0
'O' O
O O
0 0
0
>10.0 0
0 0
0 0
0 0
0 0
0 0
0 0
0' 0
0 0
V ARJ AElf 0
76TAL 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
)
JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS ATMOSPHERIC STABILITY CLASS ALL H_1HL11 N
HNE NE ENE E
WNW NW
.HNW TOTAL CALM 0
CALM.5 0
0 0
0 0
0 0
0 0
0 0
0' 0
0 0
0 0.
.5.75 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0-0 0
j gg.75-1.0 0
2 0
0 0
0 0
1 2
0 0
0 0
0 0
1 6
1.0-1.5 0
2 4
0 0
0 0
0 0
0 0
0 t
1 1
0 9.
j
't.5-2.0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0'
2.0-3.0 0
0 0
2 0
0 0
0 0
0 0
1 0
0
.0 0
3 3.0-5.0 0
.0 0
2 0
0 0
'O O
O 0
0
'O 0
0 0
2 5.0-10.0 1
1 0
0 6
0 0
0 0
0 0
0-0 0
0 0
8
>10.0 0
0 0
0 9
0 0
0 1
0 0
0 0
0
'O O
10' I
VARIABLE R
FOTAL 1
5 4
4 15 0
0 I
3 0
0 t
I t
1-1 40 CALM: 0.27 M/S i
TOTAL VALID HOURS :
40
< TOTAL POSSIBLE HOURS :
72 OVERALL STABILITY CLASS FREQUENCIES IN HOURS STABILITY:
A B
C D
E F.
G ALL FREQUENCY:
0 6
17 4
12 l '.
O' 40 DVERALL WIND SPEED FREQUENCIES IN HOURS WIND SPEED (M/S): -CALM CALM.5
.5.75
.75-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-5.0 5.0-10.0
>10.0 VARIABLE'
. FREQUENCY:
0 0
0 6
9:
0 3
2 8
10
' 2 CUNULATIVE FREQ:
0 0
0 6
15, 15 18 -
'20 23 38 1
I
PROGRAM: JFREQ VERSIGH: 3 DATED: FEBRUARY 1982 RUN DATE:
FRIDAY MAY 7,
1982 SAMPLE RUN : INPUT FILE : DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAtl PRINT)
LEVEL OF WIND DATA:
10.0 METERS DELTA T LAYER:
60.0- 10.0 METERS DISTRIBUTION OF VARIABLE WINDS U (M/S)
A B
C D
E E
G TOTAL CALM 0
0 0
0 0
0 0
0 CAlti.5 0
0 0
0 0
0 0
0
.5
.75 0
0 0
0 0
0 0
0
.75-1.0 0
0 0
0 0
0 0
0 1.0-1.5 0
0 0
0 0
0 0
0 1.5-2.0 0
0 0
0 0
0 0
0 2.0-3.0 0
0 0
0 0
0 0
0 3.0-5.0 0
0 0
0 0
0 0
0 5.0-10.0 0
0 0
0 2
0 0
2
>10.0 0
0 0
0_
0 0,
0 D.
TOTAL G
0 0
0 2
0 0
2 5
< o o o o o o o o o o olo J
e to J
oe oooo lo J
< o o.o o o o o o o o C o
<oooeooeoomCm n
N QooooooooeoCo Ceooomoooooc'm.
==
... J.
O. o o o N m o N men N C N eC
>=
l P
- tc e
f CP 3
g l
e-3 2
2 o
o o
Z o
Z c o.n o.c c o o.C, Z
c.o o o c.o c c o
- c. o m.o o o o.o o m.
s N
Z Z
ooooooooo o
ooooooooo o
comoooooo N
E 3
2 o
o 3
o o.o o o o o.o o o o o m o c o c.o o c o c.o.o o.c.o o.
o Z
m Z
Z ococoocco o
cooNooooo N
coooooooo o
4 3 m 3 o
o O 3 Z
ooooooooo o
Z o c o m o c o c o.
m.
c o c.o.c o c c o Z
o e 3 e =
m 3 e
cooocooco o
o cooNooooo N
m coccoooco o
ac J
J J
U U
U Q
3 1
3 3
M o o o o.o o o o.o g
r o.
o ooooooooo o.o o o o o o o.o.
o.
6 M
ooooooooo o
M ooooooooo o
M ooooooooo o
.J
.d
.J M
M M
m SQ CO
< 3
< 3
< 3 o
o
>- e r e r m o o o.o o o o o o.
o.
oc.ooooooo o.
c o c.o. o m o.c o.
m.
m =
m 3 W
m 3 e
ococcocco o
ococococo o
occooNoco N
U U
U Q
e*
M M
M N
Z W 3 W
3 W
3 D
= m o
Z m Z m o.c o.c.o n o.c.o.
o.c c.o c o c c.o.
o.
c.o c o.c o c.c.o o.
g A
L a
m cooococco o
e ococococo o
m occooooco o
O O
O E
E E
m
>=
E
< 3 4 3
< 3 cocococc.o oc.oooocco.
m o.
o en o
e ococococo W
e e
e,
m w
e W
ooooooooo o
cocococoo o
ocooococo o
E o
m o
o
=
c o c.o.c o c c o.
o.c.c o c o.c c o c.o c o c c o o m.
m.
o o
o e
e
... e.
a cocococco o
occococco o
cocococoN N
>=
m m
Z o Z
Z Z
M
+
0 O
O E
o M
W M
W M
W L e r o coooooooo o
>- m
> m o
o c o c o o.c.c o.
o.
- c. o c c o c o c o.
O m N
O m o m o E coooooooo o
ooooooooo o
ooooooooo o
cm <
m a
m N
W W
k O
C 2 W Z
W Z W E
r.4 W
M c.o c.o.n.o o c.o.
o.c.o.c o o o c o c.o c o c.o c c.o.
o M
m o
M m
o L >
Z, Z
cooococco o
Z cocococco o
Z cocococco o
W
.,,J O
O O
s:
O M
M M
W 6
e=
W
>=
6 6
O W O W O W o
W m
o W m W m o.c o c.o c o.c.o c o c.o n.o c c o c.o o o c.c.o o.o.
o.
g W
g W D >
g W
C C.
J M
ooooooooo o
M ooooooooo o
s-e ooooooooo o
W W
Q Q
Q e
D Q O
Q Q
Q Q
Z LJ Z
W Z
W oo o
W
- E c o c.o o.o.c.c.o.
a c c o.o.o.c c o.
c.o c.o o o c c.o.
o.
o at o
<C
.,,a e
C.
Q ocococcoo o
Q coccococo o
C ococcoomo m
E W
W W
W W
W m
A A
L m W e W W W co o
W Z
o Z
o Z
Q W c o.c.o.o o. c.c o.
o.
c o c o.c o c.c o.
o c o. c o c c.o o.
Q W
W Q
W m
Z ooooooooo o
Z ococoocco o
Z coccommoo o
>')
w M
M M
==
m 3
3 3
x Z
- =
W L
W k
W o
o k W o
o c o o o.o o.c c o.
o.
- c. o o.o. c o c. c o o.
o O Z O Z O
at
>=
0 Z o c o.c.o c o c.o M
r W
m at E
Z ocoooooco o
Z ooomooooo e
Z coccoccoo o
W Q O
O O
W c.
M M
M k.
H o
D W D W o
o D W o
o
, +.
M Z
c o c o.c.o c c o.
W =
m Z
c0 Z
o m Z o
o o o o o.o.o o.o o.
o c.o o o c c o o.
M Z
a M
Z M
w ooooooooo o
M coomococo e
W comoooooo A
A e.
O m
e
<t M
M M
D >=
Q Z Q Z Q Z Z Q c.o c.o o.o c c.o.
cocococc.o o.
o o
L o c o c.o n o.c.o.
O M
U cococoooo o
O ococoomoo o
O ococonoco o
W Q
Z Z
Z
\\
E Z
W W
W E
6 M
D D
D "3
2 3 O
O O
N D
W Lu W
N.
E a
W E
e m o W
emo e. o. o. o. o. c. WJ
- m. mo m.o.o o o
- m. m o.o o o. c J E
E E
m E
o 6
-== N M m o.
6 m
.oJ 6
m o
sc
% EIN**NMmo em N EI at W
N E I N. *1
- NMmo. gr N. *I JE I I i i *= o C.J
> EaE
- 1 6 I I B"oCA
>=
E.J E W
a J
>= E i 0 9 I *o4 J
6t 1 * >4 4C E
M
=M4 2
w4C J l
w.af eC Z
w4C J lmo i
l m o m o o. o *A &l>=
l m o e o. o. o "A On>=
O < m. W. *. IA. o o. o. =A MiM O
A W
Z w*E.J N
O *C W N O
E ll>
M O at m. f%
w
>jo atlO O 3 0.
O 3 O
- NM
- NM 4
W O 3 0
- ""NM 4lO
- C 20 i-o o.
m
_J e
n
-~.au
_.n
' [
i a
o lo
.J
- o c o C7c
.J
'o Io ei o.o.o.o o o. o e o o C o
- C o. o. o. 6A. o. o o. o. o. e. o o.
< o o o oena o.o.o o o.a".I e-1.
si-g N
Ooooooooooooo O o o o tw o o o c an N i.aio
'OooooNooooooN FJ
>=
p-
1 C.,*'
-eZ Z
Z
. o c.o.o.o. c.o.c.o.
o.
o.o.o.o.o.o.o o.o.
o.
O o o.o o o o.o o.
o.
Z Z
N Z
ooooooooo o
ooooooooo o
Ooooooooo:
o at E
3-3 3
- o. c. o. o. c. o. c c o. o.
o c. c. a. c. c. o. o o. a.
Z.
Z o.c. o.c.o.c o. c o.
a.
Z Doooooooo o
conoccoco o
cocooocco o
9 A
3' W 3 6-3
.Z o.o o.o.o.o o.o.o.
o.
o.o.o.o.o.o.o o.o.
o.
o.o.o.o.o o.o.o.o.
o.
z Z
m 3 m i; e 3 sn ococoacco o
e
'ococcooco o
e coooocoon o
- C aC -
aC
.J
.J a
- O O
O Q
3 3
3 o
o M
o o o o o.o o.o.o.
o.
o.o.o.o.o o o o.o.
o.
- o. c o..n. o. o. o. o. o..m.
g r
r
- 6 M
cocococco o
M cocooccoo o
M cooNooooo N.
A J
M M
M c3 so so
< 3
< 3
< 3
- c. o. c. o. c. o. c c. o. a.
c.o.o o.c o c c o.
o.
o
>- m
>= sn o.c.c o c.o.c c.o.
m 3 n m m 3 W
e g
cocococco o
cooococco o
cocococco o
O O'
O Q
M M
M E
N E
Z W 3 W
3 U 3
- o. c. o. c. o. a. c. c. o.o.
o.o.o o o.o.o.o.o.
e.
o
= m
= in
- a. c. o. o c. o c c. o.
t I
D
= m g,.
g Am.
ooooooooo o
e ocoooccoo o
e cocococco o
O O
O-E E
E i
1 m
P.
>=
>=
a
<C 3
<C 3
4 3 o o.o.o.o.o.o.o.o.
o.
c.o. n. o. c. o. o. c. o.
o o o o o.o.o.o.o.
o.
e o
.m I
W m
m en e
W
' ococococo o
o C. c o c c o o o o
cocococco o
I o
e o
o th o.o.o o.o.o o.o.o.
o.
c.o.o.o.c.c.o.o. o.
o.
c o. o o. o. o. o. o o. -o.
o e-5
^
ooooooooo o
cathoooooo e
o G F3 c o c co o e
>=
0 m'
o Z
Z Z
Z o.
O O
O:
M E o M
W M
W o
o M
W o o. o. o. o. o. d. o. o.
o.
o.o.m.e o.o.o.o.o.
.n.
- o. o. o. o. o. o o. o. o.e.
>- e
> - - en C
e
>- m O e O m N..
O m e3 E ooooooooo o
czoNoooooo N
ooooooooo o
c' m
m a
M W
L W
O
>. O E Z W Z
U Z
t.J o.c.cs.o.c.o c.c. o.
c.o.c.o c o.c c.o o.c.o.n.o. c.o.c.o.
o.
o M
m o
M m
W M
M at CL D
aC Z
ooooooooo a
Z ooooooooo o
Z occoaccoo o
& N J
O O
O so O M
M M
W L H
d 6
O W O W O W o c o.c.c.o.c c o.
o.
o W m o
U m
- c. o. c c a. c c o. o.
o c c o.c o c c o.
'M W
=C W
en A
J M-cocococco o,
CE W
' O. D H g W
>.e coccoooco o
M cocococco o.
W >- W Q
Q Q
e-3 Q l
-< O O
Q Q
Q Z W o
e Z W co o
Z W-o o. o o. o. e. o. o. o. o.
- o. o. o. o. o. o. o. a. 6A.
iA.
- o. o o. o o. o o. o o.
o.
gC et W
r
.J L
Q ooooooooo o
Q o c o c o o c o. N N
O 00000o000 o
E W
W W
i
=C W-W W
th 0.
A Q.
m W m W en W o
o.c.o.c.o.c. o.c.o.
o.
c.o c o.c.o. c c o.
o.
- o. c o. c. c. o c c. o.
2 Z
W Z
A W
- W Q W A
W Z
ocococcoo o'
cocococco o
.Z en Z
cooococco o
-e om 30 w
m.e e
3 3
3 g
Z.=. W L W LL W
L W l
O Z J
O Z c.o.c.o.c.o.c.c o.
o.
c o.c.o. n.o.c.c.o.
C. 0 0 0 0 0 0 0. o -
o.
- O
- C O Z M
> W l
m 4 E Z
cocococco o
Z conoccoco o
Z cocooooco o
E-Q O
O O
'i M-M
- > al -
o.
-e e-W M
o D-W D W o
o D W so Z
c3 Z o.c o.c.o.c.o c.o.
o.
o.c.o.c o. c.o.c o.
o.
- c. o c o c. o c.an. o.
O.
W e
so Z M
Z M
Z
. J M
Z M
g conococco o
Cg ocococoNo N
N oconococo o
A p-r e
- C. e e
sh M
M M
D >-
Q Z Q Z c
o C Z o.c.o.c.c.o.o.p o.
o.
- o. o. o. o. o. c. o. sA. o.
in.
c o o. o. o. o. o. c. o. o.
CL ac -
i 2 -Q b.
lj
-O M
o ooooooooo o
o cococooNo N
O oconococo o e W
Q-Z Z
Z N
Z W
W W
E M
6 M
D D
D t
t
'7 - Z3 O
O O
N l
N.
D W
W W
in. nn. nA o. o. o. o. o-W.J o
- o. e. o. o o o. o. W E
CK -
in. tho. in. o. o o. o
- m. 4A W
M e
CK E
= h.
I; E,W o
a E
L sh
- N M 4A o EC E I N " *" N M 60 o..
. c..,J O
'" N poSA o C:
E I N. *I E 1 N. *I CD N
- C O 8 8 I i ** o *C J
86 l i B 5 ** o <
J M
E.J E ewe I
. N a
'A
>=
i 0 9 I " o et.J k
DJE 1
- M4 4C E
l th o sA o.o. o A CElp-
- r et J BCo e o I e M*C '
Z w*C J
O *C m. b... en. *
- o A CE'*-O *C 60 N. ** ** N p4
- C.J B iA o I.-
et Z
O at m. N..=. e o. o. O A CY >-
' O CL W
Z-J M
M
-O I'>
M aC O D U
- atlO aC
>lO 0
- NM aclO.,O. D O.
m w N pq.
O Cr
.at W
- c a >i-o
>M 21 in L
y
+.,..-
.w.y v
v
--,.w.
,-3
.-.m,v.=.
... - -. ~.,, -, ~ -,,~,.
e-m---w
L L
0n 0300o0 A0000000303n0 A0n00505000n0 T...
T 2
O0000000C00O0 O000520750S50.
8 T
T 1 P 2?
0 9
1 1
E L
t t
t 0
0 B0 H
000000000 0
H 005000000 S
A.
7 H
H 000000000 0
0020D0000.
I5 2
R Y
A V
A N
0 0
M l
000000000 0
U 0005000n0 5
H 000000000 0
0002000en 2
0.00 L
0..
L 155 G W A
W 0
0
> 29 N
000000000 0
N 000500000 S W S W 5
S 000000000 0
S 000200000 2
A A
0 Y
L L
A C
C 000 D
W W
0 0
1 I
Y 000000000 0
Y 000500000 5
- 00 R
T T
027 F
I 000000000 0
I 000200000 2
L L
5 I
I B
B A
W A
W 0
0 e
T S
000000000 0
T S
000005000 S W 5
0 E
S U T
000000000 0
000002000 2
500 A
C C
D I
I 050 R
R
. 3 N
E W
E t
3 l
U H
S 000000000 0
H S
000000000 0
R P
P S
000000000 0
S 000000000 0
O O
M M
0 S
T T
350 R
A W A W E
S 000000000 0
S 000000000 0
075 T
S S
L0
. 4 E
000000000 0
000000000 0
L.
2 M
A0 0
0 1
S S
0 0
0 0
0 000000000 0
000000005 5
1 205
)
000000000 0
005000002 1
T S
S 507 N
0 N
N 0
3 O
O G
I 1
R 0
I E
I E
0 0
0 P
6 T
S 000000000 0
T S
005000000 5
2 C
S C
S 8 M A
000000000 0
A 002000000 2
5 9
A R
R 1
R F
F 155 G
5 Y
O R
N E N
E F
27 0.2 3 R
R E
I S
000000000 A
P Y 0
I S
000000000 0
2 1
U A
N 000000000 0
N 000000000 0
R R L
O O
B O
I I
E F
T T
T F
C E C E 0
0 T
A E
S 000000000 E
S 000000000 0
E 0
100 U
T R
E R
E 0
D P L
I 000000000 0
I 000000000 0
3 555 E
T E
D D
711 T
U D A
O D
D T
D N
E N
E 00 0
N E
A 000000000 0
A 000000005 5
E 0
L C
D.
5 P
D 000000000 0
D 000000052 7
R 0
700 M
E E
12 3
E 1
T A
E E
P N
- 00 S
P P
E 5
S E S
E 00 0
N C
0 E
N 000000000 N
000000000 0
I R
E D
E D
E 5
E S
N 000000000 0
N 000005500 0
S C.
P 5
3
(
I I
1 E
2 S
W W
I 4
N
- 00 R
C I
M..
N 1
E F
E F E 0
0 N
L00 O A T
O H
000000000 0
O H 000000000 0
E S
A I
T E
U E C 6
S A
M N
000000000 0
N 000000000 0
Q 0
I R
D O
O 1
1 5
E B
C E
0 I
I 5
R 5
N V
T T
F 1
E 0
U E U
E 00 0
0 U
E 1
B N
000000000 0
B N
000000050 5
S Q
M00 L
I N
I N
I R
000000000 0
R 005500020.
S E
L 2
Y A
R A00 F
T T
1 R
L 0
F C
S S
E C A.
a T
A I
I V
0 D
U T
D N D N 0
0 O
Y E
P A
000000000 0
000000050 5
C T
E
)
N D Y
Y E
I P S Q Q
I C
000000000 0
C 000000020 2
S R L
S
/
E E
D N
N
/
I M
R R
N E
E M A B
D
(
F F
I U
U T
A N
J N W Q
Q 7
A T
I D:E U
E E
D S YY W EYV 2
R F R
)
- 5. 5050000.0L
- 5. 5050000.0L E
R
)
O F
S F
S 0
T L
IN L
PNT A
E
/ M 71 12350
.R
/ M 7112350
.R N
L LE L
SEA R
L L
T M
M - - - - - 10A L
T MLM
- - - - - 10A L
E A
IU A
uL L. L G P E
N
(
t
- 50500.0>R 5 0 5 0 0.0.> R T
- 1IA N
f AL
- 1IA M
C R
BQ R
D vU O M V I
CA57.1123 CA57.1 A O O U C
L R
E AE E
NE1 T
I t
R A
E O U C
1 23 AO A E
V TR V
IRU n "*
5 YT C P O SF O WFC o
P S
L J
5 VT J
Nee e
a N
E Q
M M
L W
W<
Q Z
3 E
O M
W W
W E
o e
o J
o to
<.o C o C o O o o.c c o.
Fl a
W 3
Cio c c o c c o c c o a Z
O
>l M
E o
L o o o o o.o o o o o o!c Ne E e <
c;
- N cococooCoC o
O
> O M
E E W
< L >
3 0 0 0 0 0 0 0 0 0 olo u &
J o
O Ll W
6 ococcocco o 6
~
3 Q L J
W >
W o lo r o o
- w....o c o e u c o!o coo O
O 00000000D h
W J
LE occ.ccoco.cclo.
M Cp.
W cococoacco m
W W
M w
W W
Z
- W ccococonoc o
O W
W Ol e
M W
W D
0000000o00 0
M < E Z
E Q
M W
o 3
18 o
W W
4 cocooocco.co.
a sc sci.
M cococococo O
k M
M W
D >
L <
Z Q L
o c o c.o c o.c o c o O
M O
<l W
Q cococococco N
Z Z
A M
Q 7 Z 3 M
D W
E E
D ^
- m. n. n. c o c o. o o
E" O
80 m
a
< W H
\\El
- NMeo
- E J
J E
EJEh. *8 I e l l aom O L W
W w <d i m o n. o c l
- O O
E >
W Q < m. Ne**Nn.A
.o m
M < W H
D U
A e J
o n
23
5.0 MISS 5.1 Description of Program
-This program summarizes the periods of occurrence of missing hourly values of wind direction, wind speed, temperature, dew point, delta-T and precipitation for data in the NRC Standard Format.
5.2 Input Cards Card Column Format Variable Description 1
1-72 18A4 TITLE Title that will be printed at tog of output.
2 1-6 3I2 JY, JM, JD Starting year, month and day.
7 IX Blank.
8-13 3I2 KY,' KM, KD Ending year, month arid day.
+
5.3 Discussion of Output The program MISS summarizes the lengths of the missing periods, the number of occurrences of missing data, the total number of hours of missing data, the longest period of missing data, the total number of hours checked and the percent data recovery.
5.4 Implementation Input Units 1 - data file of hourly metoerological data in the NRC Standard Format 5 - input cards 1 and 2 Output Units
- defaults to printer 5.5 Subroutine Flow Chart MAIN BLNK
-- CHK l
-- IDAT 5.6 Subroutine Descriptions Except for MAIN, all subroutines are listed alphabetically.
MAIN The main part of the program, reads in the data, makes all summaries and prints out the results.
24
BLNK Checks for and converts blank data fields to 9999.9.
?
CHK i
.This routine categorizes the occurrence intervals of.the missing data into i
periods of 1,2,3,4,5,6,7-11, 12-23, 24-47,'48-71, 72-95,96-119. and greater
[
then 119 hours0.00138 days <br />0.0331 hours <br />1.967593e-4 weeks <br />4.52795e-5 months <br />.
IDAT This routine converts a given month and day to an equivalent Julian day.
4 i
4' s
n 4
3 f
I 4
i 25
5.7 Sample Output i
4 9
i l
3
?
s 26
~... _
i j'
-PROGRAM: MISS VERSION: 2 DATED:. FEBRUARY 1982 RUN.DATE:
. FRIDAY.
MAY 14, 1982-l SYTE:
+
1 TEST DATA i
j i
CONTAINS DATA FROM DECEMBER 1980 TO JANUARY 1891 l
HOURLY DATA CODED 0100 TO 2400 j
DDDOMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
}
0 t
i f
i i
YHPUT OPTIONS:
i TITLE: SAMPLE RUN - INPUT FILE :. DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT) 2 STARTING DATE: 80 12 30 ENDING DATE:
81 1 2 9
1 N
%4 1
1 i
~
4 i
1 i
i-I J
<+
PROGRAM: MISS VERSIDH 2 DATED: FEBRUARY 1952 RUN DATE:
FRIDAY MAY 14, 1982 SAMPLE RUN INPUT FILE : DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT)
HOURLY
SUMMARY
OF MISSING DATA 110.0 METERS 60.0 METERS 10.0 METERS TEMPERATURE DIFFERENCE PERIOD OF WIND WIND DEU WIND WIND DEW WIND WIND DEW (DEGREES C/100 METERS)
OCCURENCE DIR SPEED TEMP POINT DIR SPEED TEMP POINT DIR SPEED TEMP POINT 110.0- 110.0-60.0-PRECIP (HOURS)
(DEG) (M/S)
(C)
(C)
(DEG) (M/S)
(C)
(C)
(DEG) (M/S)
(C)
(C) 10.0 60.0 10.0 (N1) t 1
3 3
0 2
4 0
0 1
7 0
3 9
2 2
8 2
1 0
0 0
1 0
3 0
0 3
0 0
0 2
2 0
3 1
0 0
0 0
0 0
0 2
1 0
0 0
0 0
0 4
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
5 0
0 0
0 0
0 0
0 1
0 0
0 0
0 0
0 6
0 0
0 0
0 0
0 0
0 1
0 0
0 0
0 0
7-11 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 m12-23 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 co 24-47 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 43-71 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 72-95 0
0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 96-119 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0
>120 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 LONGEST CASE 3
1 1
0 2
1 2
72 5
6 0
1 1
2 2
1 TOTAL HOURS MISSING 6
3 3
0 4
4 6
72 12 22 0
3 9
6 6
8 70TAL HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 PERCENT DATA RECOVERY 91.7 95.8 95.8 100.0 94.4 94.4 95.7 0.0 83.3 69.4 100.0 95.8 87.5 91.7~
91.7 88.9
6.0 PRECP 6.1-Description of Program This program will summarize precipitation data by occurrence, intensity, stability class and month and day.
6.2 Input Cards Card Column Format Variable Description 1
1-72 18A4 TITLE Title to be printed on output.
2 1
11 IS Delta-T interval for stability determination.
IS=1:
upper-lower IS=2:
upper-intermediate IS=3:
intermediate-lower 2
1x Blank 3-8 3I2 LY1, LM1, LD1 Starting year, month and day 9
1x Blank 10-15 3I2 LY2, LM2, LD2 Ending year, month and day 6.3 Discussion of Output Three tables are printed out which summarize precipitation amounts by month and day, precipitation occurrences by intensity and month, and precipitation occurrences by stability and intensity.
Also given is the percent data recovery for precipitation.
6.4 Implementation Input Units 1 - data file of hourly meteorlogical data in the NRC Standard Format 5 - input cards 1 and 2 Output Units
- defaults to printer 6.5 Subroutine Flow Chart MAIN BLNK
-- IDAT
-- JDAT
- JPRECP 4
-- STABLE 29
i
't 6.6 Subroutine Descriptions Except for MAIN, all subroutines are listed alphabetically.
NAIN The main part of the program reads in the data, makes all summaries and prints out the results.
BLNK Checks for and converts blank data fields to 9999.9.
IDAT This routine converts a given month and day to an equivalenet Julian day.
JDAT This routine converts a given Julian day to an equivalent month and day.
JPRECP This routine categorizes hourly precipitation by intensity.
STABLE This routine computes the stability class from atmospheric temperature gradient (delta-T) as follows.
Delta-T Stability
( C/100m)
Category Class AT < -1.9 1
A
-1.9 < AT 2 -1.7 2
B
-1.7 < AT i -1.5 3
C
-1.5 < AT 2 -0.5 4
0
-0.5 < AT 7 1.5 5
E 1.5 < AT 2 4.0 < AT ~ 4.0 6
F 7
G t
30 t
6.7 Sample Output t
31
PROGRAM: PRECP VERSION: 2 DATED: FEBRUARY 1982 RUN DATE:
FRIDAY MAY 21, 1982 SITE:
TEST DATA CONTAINS DATA FROM DECEMBER 1980 TO JANUARY 1891 HOURLY DATA CODED 0100 TO 2400 cadwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww TITLE: SAMPLt RUN INPUT FILE : DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT)
START DATE: 80 12 30 END DATE: 81 1 2 N
HOURS VALID PRECIPITATION:
64 TOTAL NOURS EXAMINED:
72 PERCENT DATA RECOVERY:
88.9
.~-
.-n.
N 80 cm C
- E c3 N
N w
]
N
-E 4
IB
- 4 H
O 1
i
>=
atc O c3 c. o c. o o. cz. o. o. o. o. o. o. o. o. o. o. o. o o. o c. o. o. c3. c. o. ca. ca sa. cs e0 4
W M
M A c o c o c o o o c3 O c o c o c3 c o c o c o a c c o o o o o N N A
e e w=
==
s o cs. o. n. o m o c3. c o o. o. cz. o. ca c3 o c3 ca. ca. cz. o. o. o. c. o. c. o. c. c. o.
c3 y
o H
Z o c o o o cz o c3 c3 o ca c o n o c o c ca m c3 o c ca m o c cz o a o o 4
Q Z
D E
H o c3. c. o. co. c. o o. c o o o o ca. c o ca. c. c3. cn. o. c. o cD. o o o o. o o ca.
o O
m O
D o o c3 O o o o o o o o o o o o c3 cs c o o c c3 o c o c ca o c3 c3
.c3 E
V W
W W
E M
n.
- o. m o c3 c o a c3.c. o. o. o. cz. o. o. o o. o o. o o o. o c3 c. o cz o. o. o. o.
c3 J
W J
m C3 o o o o o o o o o C3 o C3 o o o C3 o c3 o C3 o C3 o c3 o C3 CD C3 C3 o c3
'l M
E n
M H
o c3 o. o. o. o C3 o c3. c3 o. o. o. o. o. o. o c3. o o. c3. C3. c3. o. o. o. o. o CD. c3 o. o o.
Z p
a M
<t at a c c o o c3 o c3 o c o c co o cz o c3 c o c o o o o o o o o o o ca c3 M
C A
N A
80 E
Z e
<C at
- M J
c3. o. c. ca c. o o.c. o. c3 ca. cs. ca c3 ca. c3 c3. c3 c3. c3 c3 c3 cp o. c c3 cD.o c3. c3 o.
c3 o
Z p
>. O 7
o c3 c ca ca ca o c ca c o c3 ca c3 c3 c3 c3 ca c o ca cz o c3 o o o ca cD o o - o
?
M M Z Z
=C A
O >
3 E Z M M O
so O
>. E f
W L so Z
- o. c. o. o. c3 c.o n o.c3. o o.o o o o.o c3.c o c. o o o o. o.o o o cs.o o
L 3
t O
7 o c o c o o o c ca c3 ca c o ca c3 cz o ca ca o c o c c3 co c o ca c o c3 c3 m
W Q
n.
N W W M
M 3
M
- C O
- C Q:
E
).
- o. c3 c. o. c3 c. c3 o. o. o. c3 c o c. o. o. c3 c. o cB. o. o. o cz. o o. o o o. c3 o.
c3 W
E
.c a
a E o c3 o o o o o o o c3 o o o o o o o o o o o c3 c3 c o c o n o c3 c3 o O.
M
=C Z
^
m O
M W
W M
- o. o CD o. o o o o. o o C3 o o o o C3 o. o. o. o o o. C3 o. C3. o o.C3 o. o. C3 o
W gg g.
m H
et c3 c3 o o o o o o o c o cs o o o ca o o o c3 C3 o C3 o o o o c3 o o o C3 4
N
.w M
Q.
e Z '""
O O
at W
Mc. o.o c3. c3 C3 o c3 o o e o o o o o.o.o o.o o. o.o.o c3 o C3 c3.c3 c3 cm c3 M
H M
o m
at n.
M-O E o c o c3 o o o o o o o o o o o c3 c c3 o o o o o o o o o o cs o o. c3 W>
tt W
J
'M sQ o o. o o. o. o o o o o. o. o C3 c3. O. C3. C3 c3. o o o e. o. o o. o o o. o. o. o o
E W
4 o o o o o o o o o o o o o c3 o c3 CD o c3 o c3 o c3 CD o o o c c3 o o c3 3
H 1
3 i
n.
e Z
. A.
M O
Z N.o. o o o o.o c o.cs o o o c o c3 c3 c c3 c o c3 c o c o c o c c o............N.
W..
eg M
7
@ ** o o o o o o o o o c3 o c3 o o o o c o c3 o o o o o o o c3 c3 c3 N Q.
Z 3
M
- E
.c W.
M J
=J o
n.
=c
- N M e n e b oo Ch o
- N M e m @ N eo ch o e N M e c c N eo ch c3 "
- C O E A
- ** * " - ** ** ** **
- N N N N N N N N N N M M H M
<t O
- A m 33
N eo e
=
.=
N
><E O
mMN""coccoowooooN m N W
N M
Q 4
4 m
Q H
M L
oconocococoococco o o O
Z o
4fi M
W D
H O
4 Z
Q H
ocoooooooooooooom o o Z
O Z
M o
o D
M H
M Z
A ocococonocococcom o o W
W
=
H M
o Z
M Q
Z 4
O cococococooococco o o D
Z o
n H
H Z
Z O
M E
M A
J oooooooooooooooom o o N
80 D
eo E 7
o e 4 Q Z
== M W
H C
N Z
> O M
O M M M C 4 A 4
Z conoconoconoccoco o o D
E D
=
M M
E 7
o i
sQ Q D
W L M
L H
M D
W Q A O
ooooooooooooooooo o o W
H Z
4 H 3 W
E o
4 O
M Q
M W
D a
O L
U E
O M
Doooooooooooooooo o o 4
A W
Z 4
o O
W M
W W
W 4
N w
H M
M coconocococconoco o o A
4 Z -
M E
o O 4 O
M H
W D 4 M
M Q L
W>
11 so cocooooccuococcom o o W
W W
O n
M E
H D
2
@ c o o w N o o o o o *= c o o== o e to A
4 N
N Z
7 m
A H
t OW **
ML T D
omonoccoom******
M M
H
- Nmh sonomoo M H E
M o * *
- *= N M @ m N e== N N M e Z Z 4
14.8 t/1 ^
l 1 1 l I I 1 0 $ 1 1 1 1 1 1 W
M J.
ZE onomoccomm******
J U
C A WE
- NmW * * * *
- eomomoc 4 W O E Hw o * *
- ** N M e m S *
- N N M e H
W M 4 Z
AAAAAAAAAAAAAAAA O A sg A
m M
H J7
PROGRAM: PRECP VERSION: 2 DATED: FEBRUARY 1982 RUN DATE:
FRIDAY MAY 21, 1982 SAMPLE RUN
- INPUT FILE : DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT)
DELTA-T INTERVAL:
60.0-10.0 METERS PRECIPITATION OCCURRENCES SUMMARIZED BY STABILITY AND INTENSITY IN HOURS STABILITY CLASS CUMULATIVE INTENSITY A
B C
D E
F G
MISS TOTAL PERCENT PERCENT (MM) 0.0 4
6 17 10 3
2 2
5 49 76.56 76.6
>0.0
.25 0
0 0
0 3
0 0
0 3
4.69 81.3
>.25.50 0
0 0
2 0
0 0
0 2
3.13 84.4
>.50
.75 0
0 0
1 0
0 0
0 1
1.56 85.9
>.75-1.0 1
0 0
1 0
0 0
0 2
3.13 89.1
>1.0-2.0 0
0 0
0 2
0 0
0 2
3.13 92.2
>2.0-3.0 0
0 0
0 0
0 0
0 0
0.0 92.2
>3.0-4.0 0
0 0
0 0
0 0
0 0
0.0 92.2
>4.0-5.0 0
0 0
0 0
0 0
0 0
0.0 92.2
>5.0-7.5 0
0 0
0 0
0 0
0 0
0.0 92.2
>7.5-10.
0 0
0 0
0 0
0 0
0 0.0 92.2
>10.-15.
0 0
0 0
2 0
0 0
2 3,13 95.3
>15.-20.
0 0
0 0
0 0
0 0
0 0.0 95.3
>20.-25.
0 0
0 0
0 0
0 0
0 0.0 95.3
>25.-30.
0 0
0 0
0 0
0 0
0 0.0 95.3
>30 -40.
0 0
0 0
1 0
0 0
1 1.56 96.9
>40.
0 0
0 0
2 0
0 0
2 3.13 100.0 HRS WITH PRECIP 1
0 0
4 to 0
0 0
15 23.44 PERCENT 6.67 0.0 0.0 26.67 66.67 0.0 0.0 0.0 TOTAL HRS 5
6 17 14 13 2
2 5
64 PERCENT 7.8 9.4 26.6 21.9 20.3 3.1 3.1 7.8 l
l
7.0 PRINT I
7.1 Description of Program This program produces a listino of the following parameters from a data file in the NRC Standard Format:
wind direction, wind speed, sigma theta, temperature, dew point, delta-T and precipitation.
7.2 Input Cards Card Column Format Variable Description 1
1-72 18A4 TITLE Title to be printed on each page.
2 1-6 16 IS Start date for printing data in order of year,-month an day (3I2).
7 IX Blank.
8-13 16 IE End date for printing data in order of year, nonth and day (3I2).
7.3 Discussion of Output The data is printed with a title and header ~on each page.
There are 53 data records per page printed across 132 columns with each record preceeded by_the.
year, month, day and hour.
The stability class (A, B,..., G) is also given for sigma theta and delta-T data.
Missing data are printed out as follows:
Missing data Blank data field wind speed 99.9
-99.9 wind direction 999
-99 sigma theta 999.9
-99.9 temperature 999.9
-99.9 dew point 999.9
-99.9 delta-T 99.9
-99.9 precipitation 999.9
-99.9 7.4 Implementation Input Units 1 - data file of hourly meteorological data in the NRC Standard Format 5 - input cards 1 and 2.
Output Units i
- defaults to printer 36
- } c h.
7.5-Subroutine Flow Chart MAIN BLNK
- JDAT
- SIGMA
- STABLE
- 7. 6 Subroutine Descriptions Except for MAIN, all subroutines are listed alphabetically.
MAIN The main part of the program reads in the data, calls all subroutines, and prints out the data.
BLNK Checks for blank data fields and sets codes for missing data.
o JDAT This routine converts a given Julian day to an equivalent month and day.
SIGMA 1
This routine computes stability class from the horizontal deviation of wind direction (sigma theta) as follows.
Sigma theta Stability (degrees)
Category Class 22.5 < 00 1
A 17.5 7 00 < 22.5 2
B 12.5 7 00 < 17.5 3
C
- 7. 5 7 00 < 12.5 4
D 3.8 7 oo < 7.5 5
E 2.1 _7 00 < 3.8 6
F 00 < 2.1 7
G STABLE This routine computes the stability class from atmospheric temperature
-gradient (delta-T) as follows.
Delta-T Stability
( C/100m)
Category Class AT < -1.9 1
A
-1.9 < AT 7 -1.7 2
B
-1.7 < AT i -1.5 3
C I
-1.5 < AT I -0.5 4
D
-0.5 < AT 7
- 1. 5 5
E 1.5 < AT 7 4.0 6
F 4.0 < AT 7
G i
37 I
i r
si/-
1 c
+
7.7 Sample Output' l',-
t
(./
,, (
,8 st 6
v 1
i 5
4 I
l 38 i
f
\\
PROGRAM: PRINT DATED: MARCH 1982 VERSION: 2 RUN DATE:
THURSDAY MAY 13, 1982 SITE:
TEST DATA CONTAINS DATA FROM DECEMBER 1980 TO JANUARY 1891 HOURLY DATA CODED 0100 TO 2400 a
accaamwwwwwwwwamwwwwwwwwwwww***wmwwwwwwwwwwwwwwwwwwwwww TITLE: SAMPLE RUN INPUT FILE : DATA 1 DATES SPECIFIED TO DE PRINTED:
START DATE: S0123J END DATE: 310102 x
._.4 s
d
\\
PROGRAMr PRINT DATED: MARCH 1982 VERSION: 2 RUN DATE: THURSDAY MAY 13, 1982 SAMPLE RUN INPUT FILE : DATA 1 TEMPERATURE DIFFERENCE 110. 0 M_ FJJR_S 60.0 MJI PS 10JJELERS LQFF F F S C /10 0 %.MJ_
R T
WD W5 SIGMA TEMP DLK.*i WD us SIGMA J EMP DLGPT kD W3
$10MA TEEP DLWPT 110.0-110.0-60.0- PRECIP 7311N DY t@ (DEG)(M/$)
5.5 d)
(DFA (C)
LC1 QE_G ) ( M / S ) _ _DFf)
"(C)
(C)
(p %)(M/$)
L DFM
( Ql _.f CJ_
14._0 60.0, 9 0J, (M)_
(
u 80 12 30 12 '180 1.0 20.0 15.0 173 1.0 7.5 U 21.L 999.9 170 1.0 10.0 D 25.0 15.0 2.0 F 1.0 E 1.0 E 0.1 80 12 30 13 200 5.0 1.0 G 21.0 17.0 18 0
'2.0 5.0 E 21.0 999.9 90 10.0 35.0 C 25.0 12.0 1.0 E 0.5 E 0.3 E 0.2
80 12 30 14 220 7.0 5.0 E 20.0 18.0 20 5.0 5.0 E 21.0 999.9 90 20.0 20.0 B 26.0 10.0 0.2 E 0.1 E 0.1 E' O.1 30 12 30 15 220 10.0 1.0 G 20.0 15.0 15 10.0 1.0 G 24.0 999.9 90 20.0 25.0 A 27.5 12.0
-2.0 A
-1.0 D
-1.0 D Q.4 80 12 30 16 220 12.0 0.5 G 20.0 19.0 10 10.0 2.0 G 25.0 999.9 90 20.0 30.0 A 28.0 10.0
-2.5 A
-1.2 D
-1.2 D 0.5 80 12 30 17 300 18.0 1.0 G 23.0 21.0 5 12.0 1.9 G 26.0 999.9 90 20.0 35.0 A 30.0 12.0
-2.6 A
-1.3 D
-1.4 D
0.6 80 12 30 18 320 15.0 1.5 G 20.0 18.0 1
5.0 2.1 F 26.5 999.9 90 20.0 9.0 D 25.0 15.0
-2.7 A
-1.3 D
-1.4 D 0.9 80 12 30 19 330 16.0 1.6 G 20.0 19.0 0
0.5 2.2 F 25.5 999.9 90 20.0 5.0 E 24.0 24.0
-2.8 A
-1.4 D
-1.5 C 0.0 80 12 30 20 340 10.0 1.7 G 20.0 19.9 36 0.1 2.3 F 25.0 999.9 90 20.0 4.0 E 23.0 23.0
-2.9 A
-1.4 D
-1.5 C 0.0 80 12 33 21 350 9.0 1.8 G 20.0 20.0 0
0.2 2.4 F 23.0 999.9 80 10.0 3.0 F 22.0 21.0
-3.0 A
-1.5 C
-1.5 C 0.0 80 12 30 22 351 9.1 1.9 G 21.0 20.0 360 0.3 2.5 F 22.5 999.9 70 5.0 2.0 G 21.0 21.0
-3.1 A
-1.5 C
-1.6 C 0.0 80 12 30 23 352 9.2 1.0 G 22.0 20.0 359 0.4 2.6 F 22.0 999.9 60 2.5 1.0 G 20.0 19.0
-3.0 A
'.6 C
-1.6 C
0.0 80 12 30 24 353 9.3 0.9 G 22.0 10.0 358 0.5 2.7 F 20.0 999.9 50 1.3 0.5 G 20.0 19.0
-3.3 A
-1.6 C
-1.6 C 0.0 80 12 31 1 354 9.4 0.8 G 21.0 10.0 357 0.6 2.8 F 20.0 999.9 40 1.2 0.3 G 20.0 19.0
-3.4 A
-1.7 3
-1.7 L 0.0 80 12 31 2 353 9.5 0.7 G 21.0 11.0 356 0.7 2.9 F 19.0 999.9 30 1.1 0.2 G 15.c 12.0
-3.5 A
-1.8 8
-1.7 B 3.0 80 12 31 3 356 9.6 0.6 G 20.0 13.0 355 0.8 3.0 F 18.0 999.9 20 1.0 0.1 G 14.0 14.0
-3.6 A
-2.0 A
-1.6 C 0.0 80 12 31 4 357 9.7 0.5 G 999.9 12.0 354 0.9 0.1 G 17.0 999.9 20 99.9 0.0 G 14.0 15.0
-3.7 A
-2.1 A
-1.9 A 0.0 80 12 31 5 358 9.8 0.4 G 20.0 11.0 353 1.0 3.1 F 16.0 999.9 21 99.9 0.5 G 13.0 999.9 99.9 -
-2.0 A
-2.5 A O.0 80 12 31 6 359 9.9 0.9 G 19.0 11.0 352 1.1 3.2 F 15.0 999.9 999 10.0 1.1 G 19.0 18.0
-2.2 A
-1.1 D
-1.2 D 999.9 80 12 31 7 360 10.0 1.0 G 12.0 11.0 350 1.2 3.3 F 14.0 999.9 999 5.0 1.5 G 20.0 19.0
-1.0 D
-1.0 D
-1.0 D
0.0 80 12 31 8 1 11.0 1.1 G 13.0 12.0 350 1.4 3.4 F 999.9 999.9 999 99.9 999.9 -
20.0 19.5
- 1. 0 D
-0.5 D
-0.5 D 0.0 30 12 31 9 1 11.0 1.1 G 12.0 11.0 340 13.0 3.5 F 999.9 999.9 10 10.0 1.4 G 21.0 20.0
-0.4 E
-0.2 E
-0.2 E 0.8 80 12 31 10 2 12.0 10.0 D 14.0 11.0 330 16.5 3.6 F 20.0 999.9 90 9.0 tG.0 B 22.0 22.0
-0.1 L
-0.1 E 3.0 E 999.9 80 12 31 11 30 13.0 12.5 C 14.5 14.0 180 21.0 3.7 F 20.5 999.9 90 99.9 19.5 B 21.0 20.0 0.0 E 0.1 E 0.1 E 12.0 80 12 31 12 180 1.0 5.5 E 20.0 15.0 175 1.0 7.5 D 21.0 999.9 170 1.0 10.0 D 25.0 15.0 2.0 F t.0 E t.0 E 50.0 80 12 31 13 200 5.0 1.0 G 21.0 17.0 180 2.0 5.0 E 21.0 999.9 20 10.0 15.0 C 25.0 12.0 1.0 E 0.5 E 0.3 E 100.0 80 12 31 14 999 7.0 999.9 -
20.0 18.0 20 40.0 5.0 E 21.0 999.9 90 99.9 20.0 B 26.0 10.0 0.2 E 0.1 E 0.1 E 0.0 80 12 31 15 999 10.0 999.9 -
20.0 15.0 70 10.0 1.0 G 24.0 999.9 90 99.9 25.0 A 27.5 12.0
-2.0 A
-1.0 D
-1.0 D 0.0 80 12 31 16 220 12.0 999.9 -
20.0 19.0 100 10.0 2.0 G 25.0 999.9 90 99.9 30.0 A 28.0 10.0
-2.5 A
-1.2 D
-1,2 D 0.0 80 12 31 17 999 18.0 999.9 -
20.0 21.3 5110.0 1.9 G 26.0 999.9 110 99.9 35.0 A 30.0 12.0 99.9 -
-1.3 D
-1.4 D 0.0 80 12 31 18 999 15.0 999.9 -
20.0 18.0 130 5.0 2.1 F 26.5 999.9 130 99.9 9.0 D 25.0 15.0
-2.7 A 99.9 -
-1.4 D 0.0 80 12 31 19 999 16.0 999.9 -
20.0 19.0 150 0.5 2.2 F 25.5 999.9 90 99.9 5.0 E 24.0 24.0
-0.8 A
-l.4 D 99.9 -
0.0 80 12 31 20 340 10.0 1.7 G 20.0 19.9 36 0.1 0.3 F 25.0 999.9 180 20.0 4.0 E 23.0 23.0 99.9 -
99.9 -
-1.5 C 0.0 80 12 31 21 350 9.0 1.8 G 20.0 20.0 0
0.2 2.4 F 23.0 999.9 200 10.0 3.0 F 22.0 21.0
-3.0 A 99.9 -
99.9 -
0.0 80 12 31 22 351 9.1 1.9 G 21.0 20.0 360 0.3 2.5 F 22.5 999.9 200 5.0 2.0 G 21.0 21.0 99.9 -
-1.5 C 99.9 -
0.0 80 12 31 23 352 9.2 1.0 G 22.0 20.0 359 3.4 2.6 F 22.0 999.9 250 2.5 1.0 G 20.0 19.0
-3.2 A 1.4 E
-1,6 C 0.0 80 12 31 24 353 9.3 0.9 G 22.0 10.0 358 0.5 2.7 F 20.0 999.9 260 1.3 0.5 G 20.0 19.0
-3.3 A 1.5 E 1.6 F 0.0 81 1
1 1 354 9.4 0.8 G 21.0 10.0 357 0.6 2.8 F 20.0 999.9 290 1.2 0.3 G 20.0 19.0
-3.4 A
-1.7 B
-1.7 B 0.0 81 1
1 2 355 9.5 0.7 G 21.0 11.0 999 99.9 999.9 -
19.0 999.9 310 1.1 0.2 G 15.0 12.0
-3.5 A
-1.8 8
-1.7 B 0.0 81 1
1 3 356 9.6 0.6 G 20.0 13.0 999 0.8 3.0 F 18.0 999.9 20 1.0 0.1 G 14.0 14.0
-3.6 A
-2.0 A
-1.6 C 0.0 81 1
1 4 357 9.7 0.5 G 999.9 12.0 354 99.9 0.1 G 17.0 999.9 20 99.9 0.0 G 14.0 15.0 5.0 G 4.1 G 3.9 F 0.0 81 1 1 5 358 9.8 0.4 G 20.0 11.0 353 1.0 3.1 F 16.0 999.9 21 99.9 0.5 G 13.0 999.9 99.9 -
4.8 G 7.5 G 0.0 81 1 1 6 359 99.9 0.9 G 19.0 11.0 352 99.9 3.2 F 15.0 999.9 999 99.9 1.1 G 19.0 18.0
-2.2 A
-1.1 D
-1.2 D 999.9 88 1
1 7 360 10.0 1.0 G 12.0 11.0 350 1.2 3.3 F 14.0 999.9 999 5.0 1.5 G 20.0 19.0
-1.0 D
-1.0 D
-1.0 D 0.0 81 1 1 8 999 11.0 1.1 G 13.0 12.0 999 1.4 3.4 F 999.9 999.9 999 99.9 999.9 -
20.0 19.5
-1.0 D
-0.5 D
-5.0 A 0.0 81 1 1 9 1 11.0 1.1 G 12.0 11.0 340 13.0 3.5 F 999.9 999.9 to 10.0 1.4 G 21.0 20.0
-0.4 E
-0.2 E 45.0 G 0.0 31 1 1 10 2 12.0 10.0 D 14.0 11.0 300 16.5 3.6 F 20.0 999.9 90 9.0 18.0 3 22.0 22.0
-0.1 E
-0.1 E 0.0 E 999.9 81 1
1 11 30 13.0 12.5 C 14.5 14.0 180 24.0 3.7 F 20.5 999.9 90 99.9 19.5 B 21.0 20.0 0.0 E 0.1 E 0.1 E 1.2 81 1
1 12 180 1.0 5.5 E 20.0 15.0 175 1.0 7.5 D 21.0 999.9 150 1.0 10.0 D 25.0 15.0 2.0 F 1.0 E 1.0 E 2.0 81 1 1 13 200 5.0 1.0 G 21.0 17.0 180 2.0 5.0 E 21.0 999.9 90 10.0 15.0 C 25.0 12.0 1.0 E 0.5 E 0.3 E 11.0 81 1 1 14 220 7.0 5.0 E 20.0 18.0 999 5.0 5.0 E 21.0 199.9 90 99.9 20.0 L 26.0 10.0 99.9 -
0.1 E 0.1 E 32.0 81 1
1 15 220 99.9 1.0 G 20.0 15.0 15 10.0 1.0 G 24.0 999.9 90 99.9 25.0 A 27.5 12.0
-0.0 A 99.9 -
-1.0 D 0.0 4O
PROGRAM: PRINT DATED: MARCH 1932 VERSIGN: 2 RUN DATE: THURSDAY MAY 13, 1932 SAMPLE RUN INPUT FILE : DATA 1 TEMPERATURE DIFFERENCE 110.0 METERS 60.0 METIRS 10.D METFRS (DEGREES C/100METFRS)
WD WS S I G:1A T UIP DEWdT WD WS SIGMA lEMP DEWPT WD WS SICMA TEMP DEWPT 110.0-110.0-60.0- PRECIP YR MN p_Y 18 (DEG)(M/S) _QEM (C)
(C)
(MG)1M/S)
(DEG),
25.0 999.9
-90 20.0 30.0 A 26.0 10.0
-2.5 A
-1.2 D
-1.2 D 0.0 (0)
(C)
(P_EG)LM3 ) _1P_Eil (C)._LCl _
10.0 60.0 10J (Pat) 81 1
1 16 220 12.0 0,5 G 20.0 19.0 to 10.0 2.0 G 81 1 1 17 300 18.0 1.0 G 20.0 21.0 5 12.0 1.9 C 26.0 999.9 10-20.0 35.0 A 30.0 12.0 99.9 -
99.9 -
99.9 -
0.0 81 1
1 13 320 15.0 -99.9 -
20.0 18.0 1
5.0 2.1 F 26.5 999.9 90 20.0
-9.0 G 25.0 15.0
-2.7 A 99.9 -
99.9 -
-99.9 81 1 1 19 330 16.0 1.6 G 20.0 19.0 0
0.5 2.2 F 25.5 999.9 90 20.0 5.0 E 24.0 24.0
-2.3 A
-1.4 D
-1.5 C 0.0 81 1
1 20 340 10.0 1.7 G 20.0 19.9 35 0.1 2.3 F 25.0 999.9 90 20.0 4.0 E 23.0 23.0
-2.9 A
-1.4 D
-1.5 C 0.0 81 1 1 21 353 9.0 1.5 G 20.0 20.0 0
0.2 2.4 F 23.0 999.9 30 10.0 3.0 F 22.0 21.0
-3.0 A
-1.5 C
-1.5 C 0.0 St 1
1 22 351-99.9 1.9 G 21.0 20.0 360 0.3 2.5 F 22.5 999.9 70 5.0 2.0 G 21.0 21.0 -99.9 -
-1.5 C
-1.6 C 0.0 31 1
1 23 352 9.2 1.0 G 22.0 20.0 359 0.4 2.6 F 22.0 999.9 60 2.5 1.0 G 20.0 19.0
-3.2 A
-1.6 C
-1.6 C 0.0 81 1
1 24 353 9.3 0.9 G 22.0 10.0 353 0.5 2.7 F 20.0 999.9 50 1.3 0.5 G 20.0 19.0
-3.3 A
-1.6 C
-1.6 C 0.0 81 1 2 1 354 9.4 0.8 G 21.0 10.0 357 0.6 2.3 F 20.0 999.9 40 1.2 0.3 G 20.0 19.0
-3.4 A
-1.7 3
-1.7 B 0.0 31 1 2 2 355 9.5 0.7 G 21.0 11.0 356 0.7 2.9 F 19.0 999.9 30 1.1 0.2 G 15.0 12.0
-3.5 A
-1.3 B
-1.7 3 0.0 81 1 2 3 356 9.6 0.6 G 20.0 13.0 355 0.8 3.0 F 18.0 999.9 328 1.0 0.1 G 14.0 14.0
-3.6 A
-2.0 A
-1.6 C 0.0 El 1 2 4 357 9.7 0.5 G 999.9 12.0 354 0.9 0.1 G 17.0 999.9 20 99.9 0.0 G 14.0 15.0
-3.7 A
~2.1 A
-1.9 A
-99.9 31 1 2 5 353 9.8 0.4 G 20.0 11.0 353 1.0 3.1 F 16.0 999.9 21 99.9 0.5 G 13.0 999.9 99.9 -
-2.0 A
-2.5 A 0.0 01 1 2 6 359 9.9 0.9 G 19.0 11.0 352 1.1 3.2 F 15.0 999.9 999 10.0 1.1 G 19.0 18.0
-2,2 A
-1.1 D
-1.2 D 999.9 31 1 2 7 360 10.0 1.0 0 12.0 11.0 350 1.2 3.3 F 14.0 999.9 999 5.0 1.5 G 20.0 19.0
-1.0 D
-1.0 D
-1.0 D 0.0 31 1 2 3 1 11.0 1.1 G 13.0 12.5 350 1.4 3.4 F 999.9 999.9 999 99.9 999.9 -
20.0 19.5
-1.0 D
-2.0 A 5.0 G 0.0 31 1 2 9 1 11.0 1.1 G 12.0 11.0 340 13.0 3.5 F 999.9 999.9 8333 10.0 1.4 G 21.0 20.0
-0.4 E
-0.2 E
-0.2 E 0.0 81 1 2 10 2 12.0 10.0 D 14.0 11.0 300 16.5 3.6 F 20.0 999.9 8338 9.0 13.0 B 22.0 22.0
-0.1 E
-0.1 E
0.0 E 999.9 31 1 2 11 30 13.0 12.5 C 14.5 14.0 130 21.0 3.7 F 20.5 999.9 90 99.9 19.5 8 21.0 20.0 0.0 E 0.1 E
-2.0 A 1.0 Aw I
1 i
a
2 8
9 1
3 1
Y A
M Y
A D
S R
U H
T E
T A
D N
U R
2 N
O I
S R
E V
1 8
9 E
1 T
Y A R D A
2 2
U M A
5 N
A T
9 A R A
1 J G D
O H
O R C
T P
R E
A 0
K L
M 0 C I
9 E
0 F
1 H
0 D
C 4
T D
E R
2 U
E T
E O P
T A
B T
O N
N D
M T
I I
E D R
A C E 0
P09 T
E T
0 9
E 9
A D R 1
D E
0 B
9 M S 9
O N D O
9 T
R I
E N
T S
F D
U E
S O
R DEE T
T A E C ETT N
T T
E IAA I
A A
A L
FDD R
D D T
P I
P A
M CT S A D A
ER N T S
PAD M
I A Y STNSE A
A D L
R T
R E
S G
E N D U L
E O
T O A O T
T P
S I
A R
I C
3 T
D i
1
- - - -. _ - ~ _ ~. -.- - -.
i PROGRAM: PRINT DATED: MARCH 1982 VERSION: 2 RUN DATE: THURSDAY MAY 13, 1982 SAMPLE RUN INPUT FILE : DATA 2 TEMPERATURE DIFFERENCE 110.0 METERS 60.0 MFJFRS 10.0 MFl_ERS (afERFES C/10nMETERS)
WD WS SIGMA TEMP DEWPT WD W5 51GMA TEMP DtuPT WD WS SIGMA IC1P DEWPT _110.0-150.0-60.0- PRECIP 18 tM DX ER (DLQ)(M/S)
(1)E G )
(Q) LCJ_ (MQ)(M/S) R EE)
(C) j_CL QEG)(M/S) JSf&l _(S.).
(C) 10.0 60.0 10.0 (Mm j
80 12 30 12 180 1.0 5.5 E 20.0 15.0 175 1.0 7.5 D 21.0 999.9 170 1.0 10.0 D 25.0 15.0 2.0 F 1.0 E t.0 E 0.1 80 12 30 13 200 5.0 1.0 G 21.0 17.0 180 2.0 5.0 E 21.0 999.9 90 10.0 15.0 C 25.0 12.0 1.0 E 0.5 E 0.3 E 0.2 1
80 12 30 14 220 7.0 5.0 E 20.0 18.0 20 5.0 5.0 E 21.0 999.9 90 20.0 20.0 B 26.0 10.0 0.2 E 0.1 E 0.1 E 0.1 G0 12 30 15 220 10.0 1.0 G 20.0 15.0 15 10.0 1.0 G 24.0 999.9 90 20.0 25.0 A 27.5 12.0
-2.0 A
-1.0 D - 1. 0 D '
O.4 O 1 0 0 220 12.0 0.5 G 20.0 19.0 10 10.0 2.0 G 25.0 999.9 90 20.0 30.0 A 28.0 10.0
-2.5 A
-1.2 C
-1.2 D 0.5 GD 12 30 17 300 18.0 1.0 G 20.0 21.0 5 12.0 1.9 G 26.0 999.9 90 20.0 35.0 A 30.0 12.0
-2.6 A
-1.3 D
-1.4 D 0.6 80 12 30 18 320 15.0 1.5 G 20.0 18.0 1
5.0 2.1 F 26.5 999.9 90 20.0 9.0 D 25.0 15.0
-2.7 A
-1.3 D
-1.4 D 0.9 00 12 30 19 330 16.0 1.6 G 20.0 19.0 0
0.5 2.2 F 25.5 999.9 90 20.0 5.0 E 24.0 24.0
-2.8 A
-1.4 D
-1.5 C 0.0 80 12 30 20 340 10.0 1.7 G 20.0 19.9 36 0.1 2.3 F 25.0 999.9 90 20.0 4.0 E 23.0 23.0
-2.9 A
-1.4 D
-1.5 C 0.0 4
80 12 10 11 350 9.0 1.8 G 20.0 20.0 0
0.2 2.4 F 23.0 999.9 80 10.0 3.0 F 22.0 21.0
-3.0 A
-1.5 C
-1.5 C 9.0 80 12 30 22 351 9.1 1.9 G 21.0 20.0 360 0.3 2.5 F 22.5 999.9 70 5.0 2.0 G 21.0 21.0
-3.1 A
-1.5 C
-1.6 C 0.0 80 12 30 23 352 9.2 1.0 G 22.0 20.0 359 0.4 2.6 F 22.0 999.9 60 2.5 1.0 G 20.0 19.0
-3.2 A
-1.6 C
-1.6 C 0.0 80 12 30 24 353 9.3 0.9 G 22.0 10.0 358 0.5 2.7 F 20.0 999.9 50 1.3 0.5 G 20.3 19.0
-3.3 A
-1.6 C
-1.6 C O.0 80 12 31 1 354 9.4 0.8 G 21.0 10.0 357 0.6 2.8 F 20.0 999.9 40 1.2 0.3 G 20.0 19.0
-3.4 A
-1.7 8
-1.7 B 0.0 l
82 12 32 2 355 9.5 0.7 G 21.0 11.0 356 0.7 2.9 F 19.0 999.9 30 1.1 0.2 G 15.0 12.0
-3.5 A
-1.8 L
-1.7 B 0.0 00 12 31 3 356 9.6 0.6 G 20.0 13.0 355 0.8 3.0 F 13.0 999.9 20 1.0 0.1 G 14.0 14.0
-3.6 A
-2.0 A
-1.6 C 0.0 80 12 31 4 357 9.7 0.5 G 999.9 12.0 354 0.9 0.1 G 17.0 999.9 20 99.9 0.0 G 14.0 15.0
-3.7 A
-2.1 A
-1.9 A 0.0 80 12 31 5 358 9.8 0.4 G 20.0 11.0 353 1.0 3.1 F 16.0 999.9 21 99.9 0.5 G 13.0 999.9 99.9 -
-2.0 A
-2.5 A 0.0 G0 12 31 6 359 9.9 0.9 C 19.0 11.0 352 1.1 3.2 F 15.0 999.9 999 10.0 1.1 G 19.0 18.0
-2.2 A - 1.1 D
-1.2 D 999.9 00 12 31 7 360 10.0 1.0 G 12.0 11.0 350 1.2 3.3 F 14.0 999.9 999 5.0 1.5 G 20.0 19.0
-1.0 D
-1.0 D.
-1.0 D 0.0 t
80 12 31 8 1 11.0 1.1 G 13.0 12.0 350 1.4 3.4 F 999.9 999.9 999 99.9 999.9 - 20.0 19.5
-1.0 D
-0.5 D
-0.5 D 0.0 G0 12 31 9 1 11.0 1.1 G 12.0 11.0 340 13.0 3.5 F 999.9 999.9 10 10.0 1.4 G 21.0 20.0
-0.4 E
-0.2 E
-0.2 E 3.0 80 12 31 to 2 12.0 10.0 D 14.0 11.0 300 16.5 3.6 F 20.0 999.9 90 9,0 18.0 B. 22.0 22.0
-0.1 E
-0.1 E 0.0 E 999.9 80 12 31 11 30 13.0 12.5 C 14.5 14.0 180 21.0 3.7 F 20.5 999.9 90 99.9 19.5 B 21.0 20.0 0.0 E 0.1 E 0.1 E 12.0 E0 12 31 11 180 1.0 5.5 E 20.0 15.0 175 1.0 7.5 D 21.0 999.9 170 1.0 10.0 D 25.0 15.0 2.0 F 1.0 E 1.0 E 50.0 30 12 31 13 200 5.0 1.0 G 21.0 17.0 180 2.0 5.0 E 21.0 999.9 20 10.0 15.0 C 25.0 12.0 1.0 E 0.5 E 0.3 E 100.0 80 12 31 14 999 7.0 999.9 -
20.0 18.0 20 40.0 5.0 E 21.0 999.9 90 99.9 20.0 B 26.0 10.0 0.2 E 0.1 E 0.1 E 0.0 i
90 12 31 15 999 10.0 999.9 -
20.0 15.0 70 10.0 1.0 G 24.0 999.9 93 99.9 25.0 A 27.5 12.0
-2.0 A
-1.0 D
-1.0 D 0.0 80 12 31 16 220 12.0 999.9 -
20.0 19.0 100 10.0 2.0 G 25.0 999.9 90 99.9 30.0 A 28.0 10.0
-2.5 A
-1.2 D
-1.2 D 0.0 i
GD 12 31 17 999 18.0 999.9 -
20.0 21.0 5110.0 1.9 G 26.0 999.9 110 99.9 35.0 A 30.0 12.0 99.9 -
-1.3 D
-1.4 D 0.0 4
80 12 31 18 999 15.0 999.9 -
20.0 18.0 130 5.0 2.1 F 26.5 999.9 130 99.9 9.0 D 25.0 15.0
-2.7 A 99.9 -
-1.4 D 0.0 l
80 12 31 19 999 16.0 999.9 -
20.0 19.0 150 0.5 2.2 F 25.5 999.9 90 99.9 5.0 E 24.0 24.0-
-2.8 A
-1.4 D 99.9 -
0.0 j
1 80 12 31 20 340 10.0 1.7 G 20.0 19.9 36 0.1 2.3 F 25.0 999.9 180 20.0 4.0 E 23.0 23.0 99.9 -
99.9 -
-1.5 C 0.0 1
j GD 12 31 21 350 9.0 1.8 G 20.0 20.0 0
0.2 2.4 F 23.0 999.9 200 10.0 3.C F 22.0 21.0
-3.0 A 99.9 -
99.9 -
0.0 j
J 80 12 31 22 351 9.1 1.9 G 21.0 20.0 360 0.3 2.5 F 22.5 999.9 220 5.0 2.0 G 21.0 21.0 99.9 -
-1.5 C 99.9 -
0.0 1
00 12 31 23 352 9.2 1.0 G 22.0 20.0 359 0.4 2.6 F 22.0.999.9 250 2.5 1.0 G 20.0 19.0
-3.2 A 1.4 E
-1.6 C 0.0
}
80 12 31 24 353 9.3 0.9 G 22.0 10.0 358 0.5 2.7 F 20.0 999.9 260 1.3 0.5 G 20.0 19.0
-3.3 A 1.5 E 1.6 F 0.0 81 1 1 1 354 9.4 0.8 G 21.0 10.0 357 0.6 2.8 F 20.0 999.9 290 1.2 0.3 G 20.0 19.0
-3.4 A
-1.7 3
-1.7 B 0.0 81 1 4 2 355 9.5 0.7 G 21.0 11.0 999 99.9 999.9 -
19.0 999.9 310 1.1 0.2 G 15.0 12.0
-3.5 A - 1. 8 B - 1. 7 B 0.0 81 1 1 3 356 9.6 0.6 G' 20.0 13.0 999 0.8 3.0 F 18.0 999.9 20 1.0 0.1 G 14.0 14.0
-3.6 A
-2'0 A
-1.6 C 0.0 J
81 1 1 4 357 9.7 0.5 G 999.9 12.0 354 99.9 0.1 G 17.0 999.9 20 99.9 0.0 G 14.0 15.0 5.0 G 4.1 G 3.9 F 0.0 i
81 1 1 5 358 9.8 0.4 G 20.0 11.0 353
- 1. 0 '
3.1 F 16.0 999.9 21 99.9 0.5 G 13.0 999.9 99.9 -
4.8 G 7.5 G 0.0 4
G1 1 1 6 359 99.9 0.9 G 19.0 11.0 352 99.9 3.2 F 15.0 999.9 999 99.9 1.1 G 19.0 18.0
-2.2 A
-1.1 D
-1.2 D 999.9 j~
81 1 1 7 360 10.0 1.0 G 12.0 11.0 350 1.2 3.3 F 14.0 999.9 999 - 5.0 1.5 G 20.0 19.0
-1.0 D
-1.0 D
-1.0 D 0.0 1
81 1 1 8 999 11.0 1.1 G 13.0 12.0 999 1.4 3.4 F 999.9 999.9 999 99.9 999.9 - 20.0 19.5
-1.0 D
-0.5 D
-5.0 A 0.0 I
81 1 1 9 1 11.0 1.1 G 12.0 11.0 340 13.6 3.5 F 999.9 999.9 to 10.0 1.4 G 21.0 20.0
-0.4 E
-0.2 E 45.0 G 0.0 81 1 1 11 30 13.0 12.5 C 14.5 14.0 ~ 300 16.5 3.6 F 20.0 999.9 90 9.0 18.0 B 22.0- 22.0
-0.1 E
-0.1 E 0.0 E 999.9 81 1 1 10 2 12.0-10.0 D 14.0 11.0 180 24.0 3.7.F 20.5 999.9 90 99.9 19.5 B 21.0 20.0 0.0 E 0.1 E 0.1 E 1.2 G1 1 1 12 180 1.0 5.5 E 20.0 15.0 175 1.0 7.5 D 21.0 999.9 150 1.0 10.0 D 25.0 15.0 2.0 F 1.0 E 1.0 E 2.0 l
81 1 1 13 200 5.0 1.0 G 21.0 17.0 180 2.0 5.0 E 21.0 999.9 90 10.0 15.0 C 25.0 12.0 1.0 E 0.5 E 0.3 E 11.0 81 1 1 14 220 7.0 5.0 E 20.0 18.0 999 5.0 5.0 E 21.0 999.9 90 99.9 20.0 B 26.0 10.0 99.9 0.1 E 0.1 E 32.0 j
81 1 1 15 220 99.9 1.0 G 20.0 15.0 15 10.0 1.0 G 24.0 999.9 90'99.9 25.0 A 27.5 12.0
-2.0 A 99.9 -
-1.0 D 0.0 s.
Lu i
PROGRAM: PRINT DATED: MARCH 1982 VERSION: 2 RUN DATE: THURSDAY MAY 13. 1982 SAMPLE RUN INPUT FILE : DATA 2 TEMPERATURE DIFFERENCE 110. 0._MRifR S 60.0 MFTF3S
- 10. 0 MET.E.RS (DEGREES C/10011ETERS)
WD W5 SIGt1A TEMP DLWPT WD W5 SIGNA ILMP DEWPT WD W5 SIGMA TEMP DLWPT 110.0-110.0-60.0- PRECIP Y3 tiji,QY H_3 (DE(i)ffdji) J QFgl (C).,[CJ,_ (jl,E[G )J_Mf_S ) _LQE_G_1 - (C) _. CL QFQ)LMd) (DEG1 (C)
(
(
__CL 10.0 60.0 10.O.
(M) 81 1
1 16 _
12.0 0.5 G 20.0 19.0 10 10.0 2.0 G 25.0 999.9
-90 20.0 30.0 A 23.0 10.0
-2.5 A
-1.2 3
-1.2 D 0.0 220 s
81 1 1 17 300 13.0 1.0 G 20.0 21.0 5 12.0 1.9 G 26.0 999.9 90-20.0 35.0 A 30.0 12.0 99.9 -
99.9 -
99.9 -
0.0 81 1
1 18 320 15.0 -99.9 -
20.0 13.0 1
5.0 2.1 F 26.5 999.9 90 20.0
-9.0 G 25.0 15.0
-2.7 A 99.9 -
99.9 -
-99.9 81 1
1 19 330 16.0 1.6 G 20.0 19.0 0
0.5 2.2 F 25.5 999.9 90 20.0 5.0 E 24.0 24.0
-2.3 A
-1.4 D
-1.5 C 0.0 99 12665 99 340 10.0 1.7 G 20.0 19.9 36 0.1 2.3 F 25.0 999.9 90 20.0 4.0 E 23.0 23.0
-2.9 A
-1.4 D
-1.5 C 0.0 81 1
1 21 350 9.0
- 1. 8 G 20.0 20.0 0
0.2 2.4 F 23.0 999.9 30 10.0 3.0 F 22.0 21.0
-3.0 A
-1.5 C
-1.5 C 3.0 81 1 1 22 351-99.9 1.9 G 21.0 20.0 360 0.3 2.5 F 22.5 999.9 70 5.0 2.0 G 21.0 21.0 -99.9 -
-1.5 C
-1.6 C 0.0 31 1 1 23 352 9.2 1.0 G 22.0 20.0 359 0.4 2.6 F 22.0 999.9 60 2.5 1.0 G 20.0 19.0
-3.2 A
-1.6 C
-1.6 C 0.0 81 1 1 24 353 9,3 0.9 G 22.0 10.0 353 0.5 2.7 F 20.0 999.9 50 1.3 0.5 G 20.0 19.0
-3.3 A
-1.6 C
-1.6 C 0.0 31 1 2 1 354 9.4 0.8 G 21.0 10.0 357 0.6 2.8 F 20.0 999.9 40 1.2 0.3 G 20.0 19.0
-3.4 A
-1.7 B
-1.7 B 0.0 31 1 2 2 355 9.5 0.7 G 21.0 11.0 356 0.7 2.9 F 19.0 999.9 3a 1.1 0.2 G 15.0 12.0
-3.5 A
-1.8 B
-1.7 B 0.0 81 1 2 3 356 9.6 0.6 G 20.0 13.0 355 0.3 3.0 F 13.0 999.9 323 1.0 0.1 G 14.0 14.0
-3.6 A
-2.0 A
-1.6 C 0.0 81 1 2 8 357 9.7 0.5 G 999.9 12.0 354 0.9 0.1 G 17.0 999.9 20 99.9 0.0 G 14.0 15.0
-3.7 A
-2.1 A
-1.9 A
-99.9 31 1 2 5 358 9.3 0.4 G 20.0 11.0 353 1.0 3.1 F 16.C 999.9 21 99.9 0.5 G 13.0 999.9 99.9 -
-2.0 A
-2.5 A 0.0 31 1 2 6 359 9.9 3.9 G 19.0 11.0 352 1.1 3.2 F 15.0 999.9 999 10.0 1.1 G 19.0 13.0
-2.2 A
-1.1 D
-1.2 D 999.9 at 1 2 7 360 10.0 1.0 G 12.0 11.0 350 1.2 3.3 F 14.0 979.9 999 5.0 1.5 G 20.0 19.0
-1.0 D
-1.0 D
-1.0 D 0.0 31 1 2 8 1 11.0 1.1 G 13.0 12.0 350 1.4 3.4 F 999.9 999.9 999 99.9 999.9 -
20.0 19.5
-1.0 D
-2.0 A 5.0 G 0.0 31 1 2 9 1 11.0 1.1 G 12.0 11.0 340 13.0 3.5 F 999.9 999.9 ESS3 10.0 1.4 G 21.0 20.0
-0.4 E
-0.2 E
-0.2 E 0.0 81 1 2 10 2 12.0 10.0 D 14.0 11.0 300 16.5 3.6 F 20.0 999.9 8333 9.0 18.0 B 22.0 22.0
-0.1 E
-0.1 E
0.0 E 999.9 81 1 2 11 30 13.0 12.5 C 14.5 14.0 130 21.0 3.7 F 20.5 999.9 90 99.9 19.5 B 21.0 20.0 0.0 E 0.1 E
-2.0 A 1.0 4
4
i 8.0 QA 8.1 Description of Program This is a quality assurance program for checking hourly meteorological data in the NRC Standard Format.
Meteorological variables that.can be checked are; wind speed, wind direction, temperature, dew point, temperature gradient and precipitation.
Data are read and checked one hour at a time with the date, time and a description of the problem printed out if any questionable occurrences are found.
8.2 Input Cards i
Card Column Format Variable Descriptions 1
1 Il LEV Specifies the level (s) of data to be checked.
LEV =1:
upper LEV =2:
upper and lower LEV =3:
upper, intermediate and lower LEV =4:
lower 2
Il IS Specifies which delta-T intervals are to be checked.
IS=0:
NONE IS=1:
U-L 1S=2:
U-I 1S=3:
I-L IS=4:
U-L and U-I IS=5:
U-L and I-L IS=6:
U-I and I-L IS=7:
U-L, U-I and I-L where U= upper I= intermediate and L= lower 3
Il IW Check wind speed and direction IW=1:
check IW=0:
do not check 4
11 IT Check temperature IT=1:
check IT=0:
do not check 5
Il ID Check dew point ID=1:
check ID=0:
do not check IF ID=1, IT must equal 1 45
Card Column Format Variable Description 1
6 Il IP Check precipitation IP=1:
check IP=0:
do not check 7
IX Blank 8-13 3I2 LY1, LM1, LD1 Year, month and day checking is to begin 14 IX Blank 15-20 3I2 LY2, LM2, LD2 Year, month and day checking is to end 2
1-72 18A4 TITLE (18)
Title to be printed on each page of the output 8.3 Discussion of Output Whenever the program flags a potential error in the data, a description of the problem along with the data and time of occurrence is printed out.
For errors that have persisted for an extended period of time, the last hour of that time period will be the time printed.
The occurrence of valid data will cause any checking of an error over an extended time period to end.
At the end of the printed output, the summaries from checking the wind speed and direction data will be printed.
Also printed will be the maximum and minimum values for all levels of wind speed and direction, temeprature, dew point, delta-T and precipitation, and the number of hours they were based on.
When all checking of data and printing has been completed, a statement indicating successful completion will be printed.
8.4 Implementation Input Units 1 - data file of hourly meteorological data 5 - input cards 1 and 2 Output Units
- defaults to printer 46 i
l l
v '
8.5 Subroutine Flow Chart MAIN BLNK
-- HEAD 1
-- HEAD 2
-- HEAD 3
-- IDAT
-- PCPQ HEAD 1
-- SECTOR
-- STABQ1 DNQ HEAD 1 STABLE
-- STABQ2 HEAD 1 STABLE
- TEMPQ HEAD 1
-- WSWDQ HEAD 1 SECTOR 8.6 Subroutine Descriptions Except for MAIN, all subroutines are listed alphabetically.
MAIN The main program initializes all data, reads the input cards, prints out the input information, reads and writes the title from the data file, reads the data from the data file and calls the appropriate subroutines for checking the data.
BLNK Checks for and converts blank data fields to 9999.9.
DNQ This routine checks for F or G stability during the day and A, B, or C stability at night for IS=1.
Day is defined as:
December 24 - March 22 (Winter); hours 8-17 March 23 - June 21 (Spring); hours 7-18 June 22 - September 20 (Summer); hours 6-19 September 21 - December 23 (Fall);
hours 7-18 All other hours are defined as night.
i HEAD 1 This routine prints a header, page number and title at the top of each page of the output.
l 47 I
A HEAD 2 This routine prints out the input parameters that were specified.
HEAD 3 1
This routine prints out the summarizations of the wind speed and wind direction data compiled in subroutine WSWDQ.
HEAD 3 is called only after the last data record has been checked.
IDAT This routine converts a specified month and day to an equivalent Julian day.
PCPQ This routine checks precipitation data as follows for IP=1.
- Checks for precipitation occurring greater than 8 consecutive hours.
- Checks for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> of precipitation greater than or equal to 25mm (1 inch).
SECTOR This routine distributes the wind direction data into 16 sectors centered on the principle compass points using the following equation.
SECTOR = 1+[(DIR+11.25)/22.5]
if SECTOR = 17, change to SECTOR = 1 where SECTOR = direction sector wind is blowing from (SECTOR should be truncated to nearest whole number)
DIR = direction wind is blowing from (degrees)
Variable wind directions are treated as missing data.
STABLE This routine computes the stability class from atmospheric temperature i
gradient (delta-T) as follows.
Delta-T Stability
( C/100m)
Category Class AT < -1.9 1
A
-1.9 < AT 7 -1.7 2
B~
-1.7 < AT 7 -1.5 3
C
-1.5 < AT 7 -0.5 4
0
-0.5 < AT 7 1.5 5
E 1.5 < AT 7 4.0 < AT ~ 4.0 6
F 7
G 1
48
STABQ1 This routine makes the following three checks on the stability measurements for IS=1.
- Checks for the wind speed at any of-the levels specified to be greater than 7.5 m/sec during unstable (A,B,C) or stable (F,G) conditions.
- Checks for delta-T less than -3.4 C/100 meters (autoconvective lapse rate).
- Checks for unstable (A,B,C) or stable (F,G) conditions during precipitation.
STABQ2 This routine makes the following stability checks for IS=1.
- Checks for a greater than 3 stability class jump for two consecutive hours.
- Checks for the same stability class for 12 or more consecutive hours.
- Checks for a greater than 2 stability class difference between two temperature gradient intervals for the same hour.
TEMPQ This routine checks both temperature and dew point at all specified levels for IT=1.
The checks that are made are as follows.
- The same temperature for 8 or more consecutive hours.
- Dew point greater than temperature if ID=1.
- Temperature minus dew point greater than 5 C during precipitation if ID=1.
- Temperature equal to dew point for 8 or more consecutive hocrs if ID=1.
WSWDQ l
This subroutine makes the following checks on wind direction and wind speed for IW=1.
For each level:
- Checks for wind speed greater than 25 m/sec.
- Checks for wind directica from the same sector for more than 8 consecutive hours.
i 49
If more then one level is to checked:
- Totals up the cases where the wind direction is the same at any two levels.
- Totals up the cases where the wind speed is the same at any two levels.
- Totals up the cases where the wind speed is greater than 2.5, 5.0 and 7.5 m/sec at either of two levels while the wind direction between the two levels is greater than 22.5 degrees.
- Checks for the wind speed at the lower of any two levels to be greater than the wind speed at the upper of any two levels.
}
1 I
9 i
i 50 i
8.7 sample Output i
w
- -s.
i l
t 51
PROGRAM: QA VERSION: 2 DATED: FE3RUARY 1982 RUN DATE:
FRIDAY MAY 14, 1982 PAGE:
1 SAMPLE RUN - INPUT FILE = DATA 1 (SEE SAf1PLE OUTPUT FOR PROGRAM PRINT)
CHECK FOLLCWING LEVEL (5) 0F DATA:
LOWER INTERMEDIATE UPPER CHECK FOLLOWING DELTA-T INTERVALS:
IN T err 1EDI AT E MINUS LOWER UPPER MINUS IN T ERf1EDI AT E UPPER MINUS LOWER CHECK WIND SPEED AND DIRECTION: YES Cl!ECK TEt1PERATURE: YES CHECK DER POINT: YES CHECK PRECIPITATION: YES l
CHECK DATA:
BEGINING - 80 12 30 l
ENDING
- 81 1 2 l
SITE:
1 TEST DATA R]
CONTAINS DATA TROM DECEMBER 1980 TO JANUARY 1891 HOURLY DATA CODED 0100 TO 2400 wuwwwwwwwwwwwwwwwwwwmwwwwwwwwwwwwwwwwwwwww*wwwwwwwwwwww l
l 1
m.
._.- - _ m. -. _,.
_m
' PROGRAM: QA VERSIGH: 2 DATED: FEERUARY 1982 RUN DATE:
FRIDAY MAY 14, 1982 PAGE:
2
' SAMPLE RUN : INPUT FILE : DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT)
E RAX MM
. TEMPERATURE GREATER THEN DEW POINT BY 10.0 DEGREES C DURING PRECIPITATION OF 0.1 MM 80 365 1200 HEIGHT:
10.0M 30 365 1200 PRECIPITATIDH OCCURED DURING STABILITY CLASS F BETWEEN 110.0M AND 10.4M 80 365 1200 STA3ILITY CLASS F DURING DAY BETWEEN 110.0M AND 10.0M i
t 80 365 1300 HEIGHT:
10.0M.
TEMPERATURE GREATER THEN DEW POINT BY 13.0 DEGREES C DURING PRECIPITATION OF.
0.2 MM 80 365 1400 HEIGHT:
10.CM TEMPERATURE GREATER THEN DEU POINT BY 16.0 DEGREES C DURING PRECIPITATION OF 0.1 MM i
80 365 1500 HEIGHT:
10.0M TEMPERATURE GREATER THEN DEM POINT BY 15.5 DEGREES C DURING PRECIPITATION OF C.4 MM 80 365 1500 WIND SPEED GREATER THEN 7.5M/SEC FCR STABILITY CLASS A-BETWEEN 110.0M AND
- 10. 0M -
80 365 1500 PRECIPITATION OCCURED DURING STABILITY CLASS A BETWEEN 110.CM AND 10.0M 80 365 1500 STABILITY CLASS JUMPED FROM E TO A OVER ONE HOUR PERIOD BETWEEN 110.0M AND 10.0M 80 365 1500 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STABILITY FOR 60.0M MINUS-10.0M IS D-r 80 365 1500 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STABILITY FOR 110.0M MINUS 60.0M IS D
80 365 1600 ' HEIGHT:
10.0M TEMPERATURE GREATER THEN DEW POINT BY. 13.0 DEGREES C DURING PRECIPIT ATION OF 0.5 MM t
80 365 1600 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M 80 365 1600 PRECIPITATION OCCURED DURING STABILITY CLASS A BETWEEN 110.0M AND 10.0M 4
30 365 1600 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STABILITY F'OR 60.0M MINUS 10.0M IS D
80 365 1600 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STABILITY FOR 110.0M MINUS 60.0M IS D
i 80 365 1700 HEIGHT:
10.0M TEMPERATURE GREATER THEN DEU POINT BY 18.0 DEGREES C CURING PRECIPIT ATION OF 0.6 MM 80 365 1700 HEIGHT: 110.0M DEU POINT (
21.0 ) IS GREATER THEN TEMPERATURE C 20.0 )
4 30 365 1700 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A ~ BETWEEN 110.CM AND 10.0M 80 365 1700 PRECIPITATIDH OCCURED DURING STABILITY CLASS A BETWEEN 110.0M AND 10.0M 80 365 1700 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STABILITY FOR 60.0M MINUS 10.0M IS D
80 365 1700 STA3ILITY FOR 110.0M MINUS 10.0M IS A 14HILE STABILITY FOR 110.0M MINUS 60.0M IS D
80 365 1800 HEIGHT:
10.0M TEMPERATURE GREATER THEN DEW POINT BY 10.0 DEGREES C DURING PRECIPITATION OF
- 0. 9 MM j
80 365 1800 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M 80 365 1800 PRECIPITATION OCCURED DURING STABILITY CLASS A BETWEEN 110.0M AND 10.0M E930 365 1800 STABILITY CLASS A DURING HIGHT BETWEEN 110.0M AND 10.0M s
2
?
80 365 1800 STABILITY FOR 113.0M MINUS 10.0M IS A kHILE STABILITY FOR 60.0M MINUS 10.0M IS D
4 80 365 1800 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STABILITY FOR 110.0M MINUS '60.0M IS D
80 365 1900 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M 80 365 1900 STABILITY CLASS A DURING HIGHT BETWEEN 110.0M AND 10.0M SD 365 1900 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS C BETWEEN 60.0M AND
- 10. 0M -
l 80 365 1900 STABILITY CLASS C DURING NIGHT BETWEEN 60.0M AND 10.0M
]
80 365 1900 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STABILITY FOR 110.0M MINUS 60.0M IS D
4 80 365 2000 WIND SPEED GREATER.THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M 80 365 2000 STABILITY CLASS A DURING HIGHT BETWEEN 110.0M AND 10.0M 80 365 2000 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS C BETWEEN 60.0M AND 10.0M i
80 365 2000 STABILITY CLASS C DURING NIGHT BETWEEN 60.0M AND 10.0M j
80 365 2000 STABILITY FOR 110.0M MINUS 10'.0M IS
.A WHILE STABILITY FOR 110.0M MINUS 60.0M IS D
80 365 2100 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY. CLASS A BETWEEN 110.0M AND 10.0M 80 365 2100 STABILITY CLASS A DURING NIGHT BETWEEN 110.0M AND 10.0M 80 365 2100 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS C BETWEEN 110.0M AND 60.0M l
80 365 2100 STABILITY CLASS C.DURING NIGHT BETWEEN 110.0M AND 60.0M 80 365 2100 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS C LETWEEN 60.0M AND 10.0M i
80 365 2100 STABILITY CLASS C DURING HIGHT BETWEEN 60.0M AND 10.0M 80 365 2100 HEIGHT:
10.0M WIND FROM SECTOR E FOR PREVICUS 9 HOUR PERIOD f
1 80 365 2100 HEIGHT: 110.0M TEMPERATURE: 20.0CEGREES C FOR PREVIOUS S HOUR PERIOD 4
80 365 2200 WIND SPEED GREATER THEN 7.5M/SEC FOR STALILITY CLASS A BETWEEN 110.0M AND 10.0M 80 365 2200 STABILITY CLASS A DURING HIGHT BETWEEN 110.0M AND 10.0M l
80 365 2200 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS C BETWEEN 110.0M AND 60.0M 80 365 2200 STABILITY CLASS C DURING HIGHT BETWEEN 110.0M AND' 60.0M 80 365 2200 STABILITY CLASS C DURING HIGHT BETWEEN 60.0M AND 10.0M 50 365 2300 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M '
80 365 2300 STABILITY CLASS A DURING NICHT BETWEEN 110.0M AND. 10.0M S0 365 2300 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS C BETWEEN 110.0M AND 60.0M 1
a
.,m r.
g..
_~_
- - ~
4 PROGRAMt QA VERSION: 2 DATED: FEBRUARY 1982 RUN DATE:
FRIDAY MAY 14 1982 PAGE:
3 SAMPLE RUN
- INPUT FILE : DATA 1 (SEE SAMPLE CUTPUT FOR PROGRAM PRINT) 1B PM ML8803652300 STABILITY CLASS C DURING NIGHT BETWEEN 110.0M AND 60.CM
-80 365 2300 STA3ILITY CLASS C DURING HIGHT BETWEEN 60.0M IND 10.0M 80 365 2400 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS
'A BETWEEN 110.CM AND 10.0M 80 365 2400 STABILITY CLASS A DURING HIGHT BETWEEN 110.0M AND 10.0M 80 365 2400 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS C BETWEEN 110.0M AND 60.0M 80 365 2400 STABILITY CLASS C DURING HIGHT BETWEEN 110.0M AND 60.CM 80 365 2400 STADILITY CLASS C DURING HIGHT BETWEEN 60.CM'AND 10.0M 80 366 100 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M a
80 366 100 STADILITY CLASS A DURING NIGHT BETWEEN 110.0M AND 10.CM 80 366 100 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS B BETWEEN 110.CM AND 60.0M 30 366 100 STABILITY CLASS B DURING NIGHT BETUEEN 110.0M AND 60.0M 83 366 100 STALILITY CLASS B DURING HIGHT DETWEEN 60.CM AND
- 10. 0T1 4
80 366 200 MISD SPEED GREATER THEN 7.St1/SEC FOR STABILITY CLASS A BETWEEN 110.CM AND 10.0M 80 366 200 LAPSE RATE OF
-3.5 DEGREES C/100TIETERS EXCEEDS THE *.UT0 CONVECTIVE LAPSE RATE 30 366 200 STABILITY CLASS A DURING NIGHT BETWEEN 110.0M AND 10.QM I
80 366 200 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS B DETWEEN 110.CM AND 60.0M 80 366 200 STABILITY CLASS B DURING HIGHT BETWEEN 110.CM AND 60.CM 80 366 200 STABILITY CLASS B DURING NIGNT BETWEEN 60.0M AND 10.0M 80 366 300 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A DETWEEN 110.CM AND 10.CM 80 366-300 LAPSE RATE OF
-3.6 DEGREES C/100 METERS EXCEEDS THE AUT0 CONVECTIVE LAPSE RATE i
80 366 300 STABILITY CLASS A DURING NIGHT BETWEEN t10.0M AND 10.CM j*
SC 366 300 STABILITY CLASS A..DURING NIGHT BETWEEN 1*C.CM AND 6 0. 0T1 80 366 300 UIND SPEED CREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 60.0M 30 366 300 STABILITY CLASS C DURIMG HIGHT DETUEEN 60.021 AND 10.0M 80 366 400 HEIGHT:
10.0M DEW POINT C 15.0 ) IS GREATER THEN TEMPERATURE (
14.0 )
m80 366 400 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A DETWEEN-110.0M AND 10.CM
- 30 366 400 LAPSE RATE OF
-3.7 DEGREES C/100t1ETERS EXCEEDS THE AUT0 CONVECTIVE LAPSE RATE I
80 366 400 STABILITY CLASS A DURIt:G NIGHT BETUEEN 110.0!1 AND 10.CM j
80 366 400 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A DETWEEN 110.0M AND 60.0M 50 366 400 STABILITY CLASS A DURING HIGHT BETHEEN 110.0M AND 6 0. 0!!
3 CD 366 400 STABILITY CLASS A DURING HIGHT BETWEEN 60.CM AND 10.0M 80 366 500 UIND SPEED GREATER THEN 7.5T1/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 60.0M 30 366 500 STABILITY CLASS A DURING NIGHT BETUEEN 110.0M AND 60.0M 80 366 500 STALILITY CLASS A DURINO HIGHT SETWEEN 6 0.0t1 AND 10.0M 80 366 600 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A DETWEEN 110.0M AND 10.0M 80 366 600 STA3ILITY CLASS A DURING NIGHT BETHEEN 110.0M AND 10.CM i
00 366 600 STABILITY FOR 110.0M MINUS 10.0M IS A MHILE STABILITY FCR 60.0M MINUS 10.CT1 IS D
i 80 366 600 STALILITY FGR 110. Dil 111NUS 10.0M IS' N FGR PREVICUS 12 HOUR PERIOD A WHILE STABILITY FOR 110.0M MINUS 60.0M IS D
80 366 800 HEIGHT: 60.CM WIND FROM SECTOR 1
80 366 1000 HEIGHT: 110.0M WIND FROM SECTOR H FOR FREVICUS 14 HOUR PERIOD 80 366 1200 HEIGHT:
10.0M TEMPERATURE GREATER THEN DEW POINT BY 10.0 DEGREES C DURING PRECIPITATION OF 50.0 MM 83 366 1200 PRECIPITATION OF 50.cMM FELL IN THE GIVEN 1 HOUR PERIOD 80 366 1200 PRECIPITATION DCCURED DURING STABILITY CLASS F BETWEEN 110.0M AND 10.0M 30 366 1200 STABILITY CLASS F DURING DAY BETUEEN 110.0M AND 10.0M i
SD 366 1300 HEIGHT:
10.0M
' TEMPERATURE GREATER THEN DEW POINT BY 13.0 DEGREES C DURING PRECIPITATION OF 100,0 MM 80 366 1300 PRECIPITATION OF 100.0MM FELL IN THE GIVEN 1 HOUR PERIOD 30 366 14C0 HEIGHT: 60.0M WIND SPEED OF 40.0M/SEC CCCURRED l
80 366 1500 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS' A BETWEEN 110.CM AND 10.0M j
80 366 1503 STABILITY CLASS JUMPED FROM E-TO A DVER ONE HOUR PERIOD BETWEEN 110.0M AND 10.0M E0 366 1500 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STABILITY FOR 60.CM MINUS 10.0M IS D
l S0 366 1500 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STABILITY FOR 110.CM MINUS
- 60. M IS
-D-SD 366 1600 UIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.CM AND 10.0M 80 366 1600 STABILITY FOR 110.CM MINUS 10.0M IS A UHILE STA3ILITY FOR 60.Ct1f1INUS 10.0M IS D
j 80 366 1600 STABILITY FOR 110.CM MINUS 10.0M IS A WHILE STA3ILITY FOR.110.0M MINUS 60.0M IS D
l
~
f i
PROGRAM: QA VERSION: 2 DATEDs. FEBRUARY 1982 RUN DATE:
FRIDAY MAY 14 1932-PAGE:
4 SAMPLE RUN INPUT FILE : DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT) 11 ESJ 1003 80 366 1703 HEIGNT: 110.CM DEW POINT C 21.0 ) IS GREATER THEN TEMPERATURE (
20.0 )
80 366 1700 STABILITY FOR 110.0t1 MINUS 10.CM IS A WHILE STABILITY FOR 60.0M MINUS 10.CM IS D
80 366 1700 STABILITY FCR 110.0M MINUS 10.CM IS A WHILE STABILITY FOR 110.CM MINUS
- 60. ort IS D
80 366 1300 MIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.CM AND 10.CM 30 366 1300 STA31LITY CLASS A DURING NICHT EETWEEN 110.0M AND 10.CM 30 366 1800 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STABILITY FOR 60.CM MINUS 10.CM IS D
20 366 1600 STASILITY FOR 110.CM MINUS 10.0M IS A WHILE STABILITY FOR 110.0M MINUS 60.CM IS D
80 366 1900 UIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M 80 366 1900 STA3ILITY CLASS A DURING HIGHT BETWEEN 110.CM AND 10.0M 83 366 1900 STA3ILITY FOR 110.0M MINUS 10.CM IS A WHILE STADILITY FOR 60.0M MINUS 10.0M IS D
S0 366 1900 STADILITY FOR'110.CM MINUS 10.CM IS A UNILE STALILITY FOR 110.0M MINUS 60.0M IS D
4 80 366 2000 WIND SPEED GREATER THEN 7.SM/SEC FOR STABILITY CLASS C BETWEEN 60.0M AND 10.0M 30 366 2000 STABILITY CLASS C DURING NIGHT BETWEEN 60.0t1 AND 10.CM i
d 80 366 2000 STABILITY FOR 110.0M MINUS 10.CM IS A WHILE STABILITY FOR 60.0M MINUS 10.CM IS D
80 366 2000 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STABILITY FOR 110.0M MINUS 60.0M IS D
80 366 2100 UIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A 3ETWEEN 110.0t1 AND 10.0M 80 366 2100 STABILITY CLASS A DURING NIGHT SETWEEN 110.0M AND 10.CM I
80 366 2100 STABILITY FOP, 110.CM f1INUS 10.CM IS A WHILE STABILITY FOR 60.CM MINUS 10.0M IS D
I 80 366 2100 STABILI1Y FCR 110.0M F11NUS 10.0M IS A WHILE STABILITY FOR 110.0M IIINUS 60.0M IS D
I 30 366 2100 HEIGHT: 110.0M TEMPERATURE:
20.0 DEGREES C FOR PREVIOUS 8 HOUR PERIOD 80 366 2200 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS C BETWEEN 110.0M AND 60.CM 80 366 2200 STABILITY CLASS C DURING NIGNT BETWEEN 110.0M AND 60.0M 80 366 2200 STABILITY FOR 110.0M MINUS 10.GM IS A WHILE STABILITY FOR 60.0M MINUS 10.CM IS D
]
80 366 2200 STASILITY FOR 11C.CM MINUS 10.0M IS A WHILE STABILITY FOR 110.0M MINUS 60.0M IS D
80 366 2300 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND
- 10. 0M.
+
c630 366 2300 STABILITY CLASS A DURING HICHT BETWEEN 110.0M AND 10.OM LAB O 366 2300 STABILITY CLASS C DURING NIGHT BETWEEN 60.0M AND 10.CM r
i 60 366 2300 STASILITY FCR 110.0M MINUS to.CM IS A WHILE STABILITY FOR 60.CM MINUS 10.0M IS D
d 80 366 2300 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STASILITY FOR 110.CM MINUS 60.0M IS E
80 366 2400 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A 'BETWEEN 110.CM AND 10.CM 80 366 2400 STABILITY CLASS A DURING NIGHT LETWEEN ll0.0M AND
- 10. 0t1 80 366 2400 STABILITY FOR 110.0M MINUS 10.CM IS A UHILE STABILITY FOR 60.CM MINUS 10.CM IS' F
80 366 2400 STABILITY FOR 110.0M MINUS 10.CM IS A WHILE STABILITY FOR 110.0M MINUS 60.0M IS E
81 1 100 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M 31 1 100 STASILITY' CLASS A DURING NIGHT BETWEEN 110.CM AND 10.0M b
31 1
100 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY-CLASS B BETWEEN 110.0M AND 60.0M 81 1
100 STABILITY CLASS B DURING HIGHT BETWEEN 110.0M AND 6 0. 0t1 81 1 100 STABILITY CLASS B DURING HIGHT DETWEEN, 6 0. 0t1 AND 10.0M i
i 81 1 100 STA3ILITY CLASS JUMPED FROM F TO B OVER ONE HOUR PERIOD BETWEEN 60.0M AND 10.0M 81 1 200 WIND SPEED GREATER THEN 7.5M/SEC FCR-STABILITY CLASS A BETWEEN 110.0M AND 10.CM 81 1 200 LAPSE RATE OF
-3.5 DECREES C/1C0t'ETERS EXCEEDS THE AUT0 CONVECTIVE LAPSE RATE
[
s 81 1 200 STABILITY CLASS A DURING NIGHT BETUEEN 110.0M AND 10.0M 81 1 200 WIND SPEED GREATER THEN 7.SM/SEC FOR STABILITY CLASS B BETWEEN 110.0M AND 60.0M L
81 1 200 STABILITY CLASS B DURING NIGMT SETUEEN 110.0M AND 60.CM 91 1 200 STABILITY CLASS B DURING NIGHT BETHEEN 60.CM AND 10.0M t
31 1 300 WIND SPEED GREATER THEN 7.5M/SEC FCR STABILITY CLASS A DETWEEN 110.CM AND 10.0M 81 1 300 LAPSE RATE OF
-3.6 DEGREES C/100f1ETERS EXCEEDS THE AUT0 CONVECTIVE LAPSE RATE 81 1 300 STABILITY CLASS A DURING NIGHT BETWEEN 1*0.0M AND 10.0M 6
i 81 1 300 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 60.0M l
81 1 300 STABILITY CLASS A DURING HIGHT DETWEEN 110.CM AND 60.0M St 1 300 STABILITY CLASS C DURING HIGHT BETWEEN 60.0M AND
- 10. 0 t1 31 1 400 HEIGHT:
10.0M DEU POINT C 15.0 ) IS GREATER THEN TEMPERATURE (
14.0 )
i 81 1 400 UIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS G CETHEEN 110.0M AND 10.0M 81 1 400 WIND SPEED GREATER THEN 7.bM/SEC FCR STAEI*.ITY CLASS G BETWEEN 110.0M AND 60.0M i
1 Y
m
.__m
~ ~
_ _. - - - - ~ _ _.
L PROGRAM: QA VERSION: 2 DATED: FEBRUARY 1982 RUN DATE:
FRIDAY MAY 14, 1982 PAGE:
5 SANPLE RUN INPUT FILE : DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT)
M M1 ll0J8 81 1 400 STABILITY CLASS JUMPED FROM A TO G OVER ONE HOUR PERIOD BETWEEN 110.0M AND 10.0M G1 1 400 STASILITY CLASS JUMPED FRCM A TO G OVER ONE HOUR PERIOD BETUEEN 110.0M AND 60.0M 81 1 500 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS G 3ETWEEN 110.0M AND 60.0M 81 1 600 STABILITY CLASS A DURING NIGHT BETWEEN 110.0M AND 10.0M 91 1 600 STABILITY FOR 110.0M MINUS 10.0M IS G WHILE STABILITY FOR 60.0M MINUS 10.0M IS D
81 1 600 STABILITY FOR 110.0M MINUS 10.0M IS G WHILE STABILITY FOR 110.0M MINUS 60.0M IS D
81 1 700 HEIGHT: 110.0M WIND FROM SECTOR N FOR PREVIOUS 11 HOUR PERIOD 4
81 1 800 LAPSE RATE OF
-5.0 DEGREES C/100 METERS EXCEEDS THE AUT0 CONVECTIVE LAPSE RATE 81 1 800 STABILITY FOR 110.0M MINUS 10.0M IS D UHILE STABILITY FOR 60.0M MINUS 10.0M IS A
81 1 000 STABILITY FOR 110.CM MINUS 60.0M IS D WHILE STABILITY FOR 60.0M MINUS 10.0M IS A
i 81 1 900 STABILITY FOR 110.0M MINUS 10.0M IS E WHILE STABILITY FCR 60.0M MINUS 10.0M IS A
[
81 1 900 STABILITY FOR 110.0M MINUS 60.0M IS E WHILE STABILITY FCR 60.0M MINUS 10.0M IS A
31 1 1000 STABILITY FOR 110.0M MINUS 10.0M IS E WHILE STABILITY FOR 60.CM MINUS 10.0M IS A
31 1 1000 STABILITY'FCA 110.0M MINUS 60.0M IS E UHILE STABILITY FOR 60.0M MINUS 10.0M IS A
G1 1 1200 HEIGHT:
10.0M TEMPERATURE GREATER THEN DEW POINT BY 10.0 DEGREES C DURING PRECIPITATION OF 2.0 MM 81 1 1200 PRECIPITATION OCCURED DURING STABILITY CLASS F BETUEEN 110.0M AND 10.0M 4
81 1 1200 STABILITY CLASS F DURING DAY BETWEEN 110.0M AND 10.0M 81 1 1300 HEIGHT:
10.0M TEMPERATURE GREATER THEN DEN POINT BY 13.0 DEGREES C DURING PRECIPITATION OF 11.0 MM B1 1 1400 HEIGHT:
10.0M TEMPERATURE GREATER THEN DEW POINT BY 16.0 DEGREES C DURING PRECIPITATION OF 32.0 MM i.
B1 1 1400 PRECIPITATION OF 32.0N1 FELL IN THE GIVEN 1 HOUR PERIOD 1
81 1 1600 WIND SPEED GREATER THEN 7.5M/SEC FOR STA3ILITY CLASS A BETWEEN 110.0M AND 10.0M 81 1 1600 STABILITY FOR 110.0M MINUS 10.0M IS A W:1ILE STA3ILITY FOR 60.0M MINUS 10.0M IS D
81 1 1600 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STADILITY FOR 110.0M MINUS 60.0M IS E
81 1 1700 HEIGHT: 110.0M DEW POINT (
21.0 ) IS GREATER THEN TEMPERATURE (
20.0 )
81 1 1700 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STABILITY FOR 60.0M MINUS 10.0M IS D
ISS1 1 1700 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STABILITY FOR 110.0M MINUS 60.0M IS E
t i
81 1 1300 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILI1Y CLASS A BETWEEN 110.0M AND 10.0M 81 1 1800 STABILITY CLASS A DURING HIGHT BETWEEN.110.0M AND 10.0M 81 1 1800 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STABILITY FOR 60.0M MINUS 10.0M IS D
5 81 1 1800 STABILITY FOR 110.CM MINUS 10.0M IS A WHILE STABILITY FOR 110.0M MINUS 60.0M IS E
81 1 1900 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M J
81 1 1900 STABILITY CLASS A DURING NIGHT BETWEEN 110.0M AND' 10.0M G1 1 1900 UIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS C BETWEEN 60.0M AND 10.0M
=
81 1 1900 STABILITY CLASS C DURING NIGHT BETWEEN 60.0M AND 10.0M
?
81 1 1900 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STABILITY FOR 60.0M MINUS 10.0M IS D
G1 1 1900 STABILITY FOR 110.0M MINUS 10.0M IS-A WHILE STABILITY FOR 110.0M MINUS 60.0M IS E
G1 1 2000 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M 81 1 2000 STABILITY CLASS A DURING HIGHT BETWEEN 110.0M AND 10.0M 81 1 2000 UIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS C BETWEEN 60.0M AND 10.0M G1 1 2000 STABILITY CLASS C DURING HIGHT BETWEEN 60.0M AND 10.0M 81 1 2000 STABILITY FOR 110.0M MINUS 10.0M IS A WHILE STASILITY FOR 110.0M MINUS 60.0M IS D
81 1 2100 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M 81 1 2100 STABILITY CLASS A DURING NIGHT BETWEEN 110.0M AND 10.0M 31 1 2100 UIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS C BETWEEN 110.0M AND 60.0M i
1 81 1 2100 STABILITY CLASS
.C DURING NIGHT BETWEEN 110.0M AND 60.0M 31 1 2100 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS C BETWEEN 60.0M AND 10.0M 1
81 1 2100 STABILITY CLASS C DURING HIGHT BETWEEN 60.0M AND 10.0M 81 1 2100 HEIGHT: 110.0M TEMPERATURE:
20.0 DEGREES C FOR PREVIOUS 8 HOUR PERIOD 81 1 2200 STABILITY CLASS C DURING HIGHT BETWEEN 110.0M AND 60.0M 81 1 2200 STABILITY CLASS C DURING NIGHT BETWEEN 60.0M AND 10.0M Q1 1 2300 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A DETWEEN 110.0M AND 10.0M 81 1 2300. STABILITY CLASS A DURING HIGHT $ETWEEN 110.0M AND 10.0M 81 1 2300 WIND SPEED GREATER THEN 7.5M/SEC FOR STASILITY CLASS C BETWEEN 110.0M AND_ 60.CM 1
81 1 2300 STABILITY CLASS C DURING HIGHT BETWEEN 110.0M AND 60.CM i
t i
-. ~
. PROGRAM: QA VERSION: 2 DATED: FEBRUARY 1982 RUN DATE:
FRIDAY MAY 14, 1982 PAGE:
6 SAMPLE RUN INPUT FILE : DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT)
Y3 R.11 110.U3 81 1 2300 STABILITY CLASS C DURING NIGHT BETWEEN 60.0M AND
- 10. 0 f t 81
' 2400 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M 81 1 2400 STABILITY CLASS A DURING NIGHT BETWEEN 110.0M AND 10.0M G1 1 2400 WIND SPEED GREATER THEN 7.5M/SEC FCR STABILITY CLASS C 3ETWEEN 110.0M AND 50.0M 81 1 2400 STABILITY CLASS C DURING HIGHT BETWEEN 110.0M AND 60.0M 81 1 2400 STABILITY CLASS C DURING NIGHT BETWEEN 60.0M AND 10.0M 81 2 100 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M 89 2 100 STABILITY CLASS A DURING NIGHT BETWEEN 110.0M AND 10.0M G1 2 100 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS B BETWEEN 110.0M AND 60.0M 81 2 100 STABILITY CLASS B DURING HIGHT DETHEEN 110.0M AND 60.0M 81 2 100 STABILITY CLASS B DURING NICHT BETWEEN 60.0M AND 10.0M 81 2 200 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M 01 2 200 LAPSE RATE Or
-3.5 DEGREES C/100 METERS EXCEEDS THE AUT0 CONVECTIVE LAPSE RATE 81 2 200 STABILITY Cl4SS A DURING NIGHT BETWEEN 110.0M AND 10.CM 81 2 200 WIND SPEED CREATER THEN 7.5M/SEC FOR STABILITY CLASS B BETWEEN 110.0M AND 60.0M 81 2 200 STABILITY C:. ASS B DURING NIGHT BETWEEN 110.0M AND 6 0. 0 f1 81 2 200 STABILITY C; ASS B DURING NIGHT BETWEEN 60.0f1 AND 10.0M 81 2 300 WIND SPEED REATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M 81 2 300 LAPSE RATE OF
-3.6 DEGREES C/100 METERS EMCEEDS THE AUT0 CONVECTIVE L APSE RATE 81 2 300 STABILITY C. ASS A CURING NIGHT DETWEEN 110.0f1 AND 10.CM G1 2 300 WIND SPEED GREATER THEN 7.5M/SEC FOR STADIL'TY CLASS A BETWEEN 110.0M AND 60.0M 81 2 300 STABILITY CLASS A DURING NIGHT BETWEEN 110.0M AND 60.0M 81 2 300 STABILITY CLASS C DURING NIGHT BETWEEN 60.0M AND 10.0M 31 2 400 HEIGHT:
"t.0M DEN PDINT C 15.0 ) IS GREATER THEN TEMPERATURE (
14.0 )
G1 2 400 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M 10G1 2 400 LAPSE RATE OF
-3.7 DEGREES C/100f1ETERS EXCEEDS THE AUT0 CONVECTIVE [ LAPSE RATE G1 2 %00 STABILITY CLASS A DURING HIGHT BETWEEN 110.0M AND 10.0M l
81 2 400 WIND SPEED GREATER THEN 7.5t!/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 60.0M G1 2 400 STA3ILIT" CLASS A DURING HIGHT BETWEEN 110.0M AND 60.0M G1 2 400 STABILITY CLASS A DURING HIGHT BETWEEN 60.0M AND 10.0M G1 2 500 WIND SPIED GREATER THEN 7.5M/SEC FCR STABILITY CLASS A BETWEEN 110.0M AND 60.0M G1 2 500 STABIL7/Y CLASS A DURING NIGHT BETWEEN 110.0M AND 60.0M 81 2 500 STABIL TY CLASS A DURING HIGHT BETWEEN 60.0M AND 10.0M G1 2 600 WIND SIEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 10.0M 81 2 600 STABILIiv CLASS A DURING NIGHT BETWEEN 110.0M AND 10.0M G1 2 600 STABILITY.MR 110.0M MINUS 10.0M IS A WHILE STABILITY FOR 6 0.0M f1INUS 10.0M IS D
81 2 600 STABILITY P.R 110.0M MINUS 10.0M IS A WHILE STABILITY FOR 110.0M MINUS 60.0M IS D
81 2 COO WIND SPEE0 GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 110.0M AND 60.0M 31 2 800 STABILITY CLASS G DURING DAY BETWEEN 60.0f1 AND 10.0M G1 2 800 STABILITY FOR 110.0f1 MINUS 10.0M IS D WHILE STABILITY FOR 60.0M MINUS 10.0M IS G
81 2 800 STABILITY FOR 110.0M MINUS 60.0M IS A WHILE STALILITY FCR 60.0M MINUS 10.0M IS G
81 2 800 STABILITY FOR 110.0M T11NUS 10.0f1 IS D WHILE STABILITY FOR 110.0M MINUS 60.0f1 IS A
81 2 800 HEIGHT: 60.0M WIND FROM SECTOR N FOR PREVIOUS 12 HOUR PERIOD G1 2 900 STABILITY CLASS JUMPED FRCM A TO E OVER ONE HOUR PERIOD BETWEEN 110.0M AND 60.0M G1 2 1000 HEIGHT: 110.0M WIND FRCM SECTOR N FOR PREVIOUS 14 HOUR PERIOD 81 2 1100 WIND SPEED GREATER THEN 7.5M/SEC FOR STABILITY CLASS A BETWEEN 60.0M AND 10.0M El 2 1100 PRECIPITATION OCCURED DURING STABILITY CLASS A BETWEEN 60.0M AND 10.0M 81 2 1100 STABILITY CLASS JUi1 PED FRCM E TO A OVER ONE HOUR PERIOD BETWEEN 60.0M AND 10.0M G1 2 1100 STABILITY FOR 110.0M NINUS 10.0M IS E WHILE STABILITY FOR 60.0M MINUS 10.0M IS A
G1 2 1100 STABILITY FOR 110.0M MINUS 60.0M IS E WHILE STABILITY FCR 60.0M MINUS 10.0M IS A
._.m i
PROGRAM: QA VERSION: 2 DATED: FEBRUARY 1982 RUN DATE:
FRIDAY MAY 14, 1982 PAGE:
7 SAM?LE RUN : INPUT FILE : DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT) i
. HUMBER OF OCCURRANCES OF WS AT 110.0M LOWER THEN THE WS AT 60.0M EQUALS.
10 NUMBER CF OCCURRANCES OF WS AT 60.0M LOWER THEN THE WS AT 10.0M EQUALS 40 l
. HUMBER OF.0CCURRANCES OF WS AT 110.0M LOWER THEN THE WS AT 10.0M EQUALS 20 HUMBER OF OCCURRANCES OF WD AT 110.0M EQUAL TO WD AT 60.0M EQUALS 0
NUM3ER OF OCCURRANCES OF WD AT 60.0M EQUAL TO WD AT 10.0M EQUALS 1
NUMBER OF OCCURRANCES OF WD AT 110.0M EQUAL TO WD AT-10.0M EQUALS
-0 HUMBER OF OCCURRANCES OF WS AT 110.0M EQUAL TO WS AT 60.0M EQUALS 5
HUMBER nF CCCURRANCES OF WS AT 60.0M EQUAL TO WS AT-10.0M EQUALS 3
NUMBER 0? 03CURRANCES OF WS AT 110.0M EQUAL TO WS AT 10.0M EQUALS 3
WD DIFFERENCE BETWEEN 110.0M AND 60.0M IS GREATER THEN 02 EQUAL TO 22.5 DEGREES AND WS AT EITHER LEVEL IS GREATER THEN OR EQUAL TO 2.5M/SEC OCCURRANCES:
29 WS AT EITHER LEVEL IS GREATER THEN OR EQUAL TO 5.0:1/SEC OCCURRANCES:
29 WS AT EITHER LEVEL IS GREATER THEN OR EQUAL TC 7.5M/SEC OCCURRANCES:
23 WD DIFFERENCE BETWEEN 60.0M AND 10.0M IS GREATER THEN OR EQUAL TO 22.5 DEGREES AND WS AT EITHER LEVEL IS GREATER THEN OR EQUAL TO 2.5M/SEC OCCURRANCES:
33 WS AT EITHER LEVEL IS GREATER THEN GR EQUAL TO 5.0M/SEC OCCURRANCES:
30 i
8]
WS AT EITlfER LEVEL IS GREATER THEN OR EQUAL'TO 7.5M/SEC OCCURRANCES:.
27
)
WD DIFFERENCE BETWEEN 110.0M AND 10.0M IS GREATER THEN OR EQUAL TO 22.5 DEGREES AND WS AT EITHER LEVEL IS GREATER THEN OR EQUAL TO 2.bM/SEC OCCURRANCES:
49 I
WS AT EITHER LEVEL IS GREATER THEN OR EQUAL TO 5.0M/SEC OCCURRANCES:
49 HS AT EITHER LEVEL IS GREATER THEN OR EQUAL TO 7.SM/SEC OCCURRANCES:
47 l
l I
,i I
(
b
P RO GR /.M : QA VERSION: 2 DATED: FE3RUARY 1982 RUN CATE:
FRIDAY MAY I4. 1932 PAGE:
8 INPUT FILE DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT)
SAPPLE RUN
SUMMARY
OF MAXIMUM AND MINIMUN VALUES 110.0 M 60.0 M 10.0 M HRS MIN MAX HRS MIN MAX HR$
MIN MAX WIND DIRECTION (DEG) 66 1.0 360.0 63 0.0 360.0 60 10.0 323.0 WIND SPEED (f!/S) 69 1.0 18.0 63 0.1 40.0 50 1.3 20.0 TEf'PERATURE (CEG C) 69 12.0 22.0 66 14.0 26.5 72 13.0 30.0 MOISTURE (DEG C CR *.)
72 1C.0 21.0 0
999.9
-99.9 69 10.0 24.0 110.0 -
10.0 M 110.0 -
60.0 M 60.0 10.0 M DELTA T (DEG C/100M) 63
-3.7 5.0 66
-2.1 4.5 66
-5.0 7.5 w
GROUND LEVEL PRECIPITATION (r.M) 64 0.0 100.0
t 9.0 STABQ 9.1 Description of Program 4
STABQ reads hourly values of temperature gradient (delta-T) or sigma theta from a data set in the NRC Standard Format and summarizes the data according to stability class and continuous periods of occurrence.
5.2 Input Cards Card Column Format Variable Description 1
1-72 10A4 TITLE Title that will be printed at top of each page of output.
2 1
Il IS Stability criteria:
IS=1, Delta-T IS=2, Sigma Theta i
2-8 1x,312 JY, JM, JD Starting year, month and day 9-15 1x, 312 KY, KM, KD Ending year, month and day 9.3 Discussion of Output Three tables are printed; one for each of the possible stability levels available from the three measurement levels.
Stability data is summarized by periods of occurrence with the longest single period of occurrence also given.
If a missing data value is encoutnered, the period of occurrence will end.
9.4 Implementation I
Input Units l
1 - data file of hourly meteorological data in the NRC Standard Format 5 - input cards 1 and 2 Output Unit
- defaults to printer 9.5 Subroutine Flow Chart MAIN BLNK l
CHK IDAT SIGMA l
STABLE 9.6 Subroutine Descriptions Except for MAIN all subroutines are listed alphabetically.
l 60
MAIN The main part of the program reads in the data, makes all summaries and prints out the results.
BLNK Checks for and converts blank data fields to 9999.9.
CHK This routine categorizes the occurrence intervals of the stabilities into periods of 1,2,3,4,5,6,7-11, 12-23, 24-47, 48-71, 72-95,96-119 and greater than 119 hours0.00138 days <br />0.0331 hours <br />1.967593e-4 weeks <br />4.52795e-5 months <br />.
IDAT This routine converts a specified month and day to an equivalent Julian day.
SIGMA ~
This routine computes stability class from the horizontal deviation of wind direction (sigma theta) as follows.
Sigma theta Stability (degrees)
Category Class 22.5 < 00 1
A 17.5 7 00 < 22.5 2
B 12.5 7 00 < 17.5 3
C 7.5 7 00 < 12.5 4
0 3.8 7 00 < 7.5 5
E 2.1500< 3.8 6
F 00 < 2.1 7
G STABLE This routine computes the stability class from atmospheric temperature gradient (delta-T) as follows.
l Delta-T Stability
( C/100m)
Category Class AT < -1.9 1
A
-1.9 < AT 7 -1.7 2
B
-1.7 < AT 7 -1.5 3
C
-1.5 < AT 7 -0.5 4
D
-0.5 < AT 7
- 1. 5 5
E 1.5 < AT [ 4.0 6
F 4.0 < AT 7
G i
61
-.. ~ -.
9.7 Sample Output i
i i
I 1
l i
)
62 P*N&
--twp vw
._,y,,
PROGRAM: STABQ VERSION: 2 DATED: FEBRUARY 1982 RUN DATE:
FRIDAY MAY 7.
1982 TEST DATA CONTAINS DATA FROM DECEMBER 1980 TO JANUARY 1891 HOURLY DATA CODED 0100 TO 2400 cawwwwwwwwwwwwwwwwawwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwawwww INPUT OPTIONS:
TITLE: SAMPLE RUN : INPUT FILE : DATA 1 (SEE sat 1PLE OUTPUT FOR PROGRAM PRINT)
COMPUTE STABILITY BASED ON: DELTA-T START DATE: 80 12 30 END DATE: 81 1 2 O
N CD w
e N
E F<
Q M
N 6
W
>=<
Q
=
D X
m W
l Z
Ci e
o o o o o o o o o o o o "
M I
N L
N 43 C
N I
C 6i M o o o o o o o o o o o o a
>=
C I
C4 N
L 3m CO Q
W 6
O I
L C4 d
WI
" N M o o o e o o o o o o M
M W
W 4
3 >=
U Q
Q.
W Z
W
>= Z W
>=
3 ft
>=
Q o D P=
Q O
M l
W o
O aQ l o
M o o o o o o o o o o o N Q
M l
J L
c 4
E I
L <
a.:
o C >=
M 0
o N W
- W I
l W
c 01 o o o o o o o o o o o o o o o
E i
N w
Z D
W
=
W
~.f Z
Q P-M
>= W I
M
< so 80 I o o o o o o o o o o o o e o W
O t
W
>=
- 1 3<
W >=
J J
H W
8 L
Q
<l M
o " *
- o e
o o o o o l
>=
2 3
C L
Z Q
cr M
W C3 W
>=
C" Z
LW I
3 >=
0On i U
W M
Zdi O
E
>4 Q W ft I M
N LS N >=
=I W
J O rt p i
- N M m
~
N N
M N
J M
MOO 1 1
I I
I I
i A
W O
L sc (4 O = I N
N e 80 N c 0
0 C <
WUw I e
N N
Z M
< >=
LQ 6
O a e 64 a
I
2 9
9 1
7 Y
A M
Y A
D I
R F
E T
A D
N U
R
)
T N
G-0 1
0 0
0 0
0 0
0 0
0 0
0 2
I R
P 2
8 M
9 A
1 R
G F-0 0
0 0
0 0
0 0
0 0
0 0
0 0
Y O
R R
A P
U R
R D
O E
F S
F R
S E-0 1
2 0
0 2
0 0
0 0
0 0
0 6
I E
E U
T C
D P
E N E
T E
T U
R Y
A O
0 U
T D
C I
E 0
C LD-2 2 3
0 0
1 0
0 0
0 0
0 0
6 L
6 O
I P
B M
F A
A 0
O T
S S
0 R
E E
1 1
0 0
2 0
0 0
0 0
0 0
0 0
4 E
1 B
C-S M
2
(
N U E
N E
W N
1 O
A T
I T
E S
A B
B-0 3
0 0
0 0
0 0
0 0
0 0
0 2
R D
E T
V A
E T
L L
I E
F D
A-2 0
2 0
0 0
0 0
0 0
0 0
0 3
T N
U O
PN D Q
I E
B S
A E
A T
B S
S N
FE A
U Y
OC) -
C R
T NS-9 0
1 3
7 1
5 1
2 T
M I
DER-S 2
4 7
9 1
1 A
E L
ORU-1 2
3 4
5 6
1 R
L I
IUO-E G
P D
RCN-7 2
4 8 2 6
G 1
2 4
7 9
N O
M A EC( -
O R
A T
PO L
P S S i
i
PROGRAM: STABQ VERSIDH: 2 DATED: FEBRUARY 1982 RUN DATE:
FRIDAY MAY 7,
1982 SAMPLE RUN : INPUT FILE : DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT)
ST ABILITY B ASED ON DELT A-T BETtJEEll 60.0- 10.0 FIETERS hut 1BER OF OCCURENCES PERIOD OF OCCURENCE STABILITY (HOURS)
A B
C D
E F
G 1
2 0
5 0
0 2
2 2
2 3
0 3
1 0
0 3'.
0 0
0 1
1 0
0 4
0 0
0 2
0 0
0 5
3 0
0 0
- 1 0
0 6
0 0
2 0
1 0
0
~~
7-11 0
0 0
0~
0 0
0 12-23 0
0 0
0 0
0 0
g 24-47 0
0 0
0 0
0 0
48-71 0
0 0
0 0
0 0
72-95 0
0 0
0 0
0 0
96-119 0
0 0
0 0
0 0
>120 0
0 0
0 0
0 0
LONGEST CASE 2
2 6
4 6
1 1
~
5
(
9 k
10.0 TDP 10.1 Description of Program
/
This program determines the average, minimum and maximum values of temperature, dew point, wind speed and wet bulb from hourly data in the NRC Standard Format.
The average value for wind speed is the root-mean-square wind speed and wet bulb is calculated from temperature, dew point and barometric pressure.
10.2 Input Cards Card Column Format Variable)
Description 1
1-72 18A4 TITLE Title to be printed at the top of each page of the output.
2 1-10 F10.0 PBAR Barometric pressure (inches of Mercury) 3 1-6 312 LY1, LM1, LD1 Start date (year, month and day) 7 1x Blank 8-13 3I2 LY2, LM2, LD2 End date (year, month and day) 10.3 Discussion of Output
}
Printed output from TOP contains both monthly and annual summaries for all three possible levels in the NRC Standard Format.
If a level has no available data, then the outp.ut will indicate all missing data.
Also printed out are the number of valid data values that were used to determine each of the results.
Wet bulb temperature is calculated from temperature, dew point and the g
barometric pressure inputted on Card 2.
If dew point is greater than temperature for a given hour, the dew point value is assumed to be invalid and not used.
Dewpointisreadfromthefieldlabeled" moisture"intheNRCStandardFormab.
In the event that dew peint is not located there, the format of the read statement will have to be modified so that dew point will be read.
Similarly if wet bulb were already available, the program would have to be modified not calculate it, but use it directly.
10.4 Implementation Input Units 1 - data file of hourly meterological data in the NRC Standard Format 5 - input cards 1, 2, and 3 Output Units
- defaults to printer 67 I
w,
~
10.5 Subroutine Flow Chart MAIN BLNK JDAT 4
MAXMIN PSY PVSF WBF PVSF SET 1 SET 2 10.6 Subroutine Descriptions Except for MAIN all subroutines are listed alphabetically.
MAIN W
The main part of the program reads in all data, makes all summarizations and prints out the results.
BLNK Checks for blank data fields and converts them to 9999.9.
JDAT This routine converts a given Julian day to an equivalent month and day.
MAXMIN This routine determines the maximum and minimum values on a monthly basis for each of the variables.
PSY Y
This routine calculates the wet bulb temperature (degrees F), humidity ratio (lb of water vapor /lb of dry air), enthalpy (BTU's/lb of dry air), volume l
(cubic feet /lb of dry air), vapor pressure (inches of Mercury) and relative humidity (fractoion, not percent) from temperature (degrees F), dew point (Degrees F), and barometric pressure (inches of Mercury).
')
The source of this subroutine is:
NUREG-0693, Analysis of Ultimate Heat Sink Cooling Pends, by R. Codell and W. K. Nuttle, USNRC, November 1980,
- p. 104.
PVSF
[
This function calculates the vapor pressure of water (inches of Mercury) as a function of temperature (degrees F).
The source of this function is:
NUREG-0693, Analysis of Ultimate Heat Sink Cooling Ponds, by R. Codell and i
W. K. Nuttle,;USNRC, November 1980, pp. 104-105.
68 i
1 3=
4 SET 1, SET 2 These routines are used to initialize data.
.WBF 4
This function approximates the wet bulb temperature (degrees F) from enthalpy (BTU's/lb of dry air) and barometric pressure (inches of Mercury).
The source of this routine is: NUREG-0693, Analysis of Ultimate Heat Sink Cooling Ponds, I
by R. Codell and W. K. Nuttle, USNRC, November 1980, p. 105.
I J
l 1
i i
k t
4 0
4 i
7 69
. -. -n
10.7 Sample Output i
1 70
i PROGRAM: TDP VERSION: 3 DATED: MARCH 1982 RUN DATE:
FRIDAY MAY 7,
1982 SITE:
TEST DATA CONTAINS DATA FROM DECEMBER 1980 TO JANUARY 1891 HOURLY DATA CODED 0100 TO 2400 accawwwwwwwwww*wwwwwwwwwwwwwwwmwwwwwwww*wwwwwwwwwwwwwww TITLE: SAMPLE RUN : INPUT FILE : DATA 1 (SEE sat 1PLE OUTPUT FOR PROGRAM PRINT)
INPUT DATA:
BAROMETRIC PRESSURE:
29.0 START DATE: 80 12 30 END DATE: 81 1 2 l
?$
000 WIND SPEED IS ROOT-MEAN-SQUARE WIND SPEED DDD WET BULB IS CALCULATED FROM TEMPERATURE, DEW P::'.+T AND PRESSURE
PROGRAM: TDP VERSIDH: 3 DATED: MARCH 1982 RUN DATE:
FRIDAY MAY 7,
1982
~
sat!PLE RUN INPUT FILE : DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT) 110.0 METFRS 60.0 t1ETERS 10.0 t1ETERS YEAR MONTH AVG P11 H
?!AX HRS AVG f1I N FIAX HRS AVG flIN t1AX HRS 2980 DECEMBER WIND SPEED (M/5) 10.8 1.0 18.0 37 9.3 0.1 40.0 36 12.1 1.r 20.0 27 T Ft1P ER A T UR E (C) 19.4 12.0 22.0 36 21.8 14.0 26.5 35 22.5 13.0 30.0 3/
DE!J POINT (C) 16.0 10.0 21.0 37 999.9 99.9 -99.9 0
16.8 10.0 24.0 34 L!ET BULB (C) 17.4 11.7 20.9 34 999.9 99.9 -99.9 0
19.3 13.4 24.3 3 '>
1980 ANNUAL WIND SPEED (M/S) 10.8 1.0 18.0 37 9.3 0,1 40.0 36 12.I 1.0 20.0 27 I
T E!!PER A T URE (C) 19.4 12.0 22.0 36 21.8 14.0 26.5 35 22.5 13.0 30.0 31 D L 'sJ P O I N T (C) 16.0 10.0 21.0 37 999.9 99.9 -99.9 0
16.8 10.0 24.0 34
!!E I DULD (C) 17.4 11.7 20.9 34 999.9 99.9 -99.9 0
19.3 13.4 24.3 35 ddd LJIND SPEED IS ROOT-MEAN-SQUARE LJIND SPEED 004 t!ET BULB IS CALCULATED FROM TEt1PERATURE, DELJ POINT AND PRESSURE D
PROGRAM: TDP VERSION: 3 DATED: ri?.C Cl! 1982 RUf4 DATE:
FRIDAY MAY 7,
1982 SAMPLE RUN. INPUT FILE : DATA 1 (SEE SAMPLE OUTPUT ff1R PROGRArt PRINT) 110.0 f:E TI RS 60.0 METERS
- 10. 0 t1ET ERS YEAR MONTH AVG MI t1
-_-__ -_-_ - _'_fla (
HRS AVG MIN MAX llRS AVG MIN MAX llRS
_---- -~~-- _--- ---_.
1981 JANUARY WIND SPEED
( r1/S )
10.8 1.0 10.0 32 8.5 0.1 24.0 32 10.1 1.0 20.0 23 TEMPERATURE (C) 18.2 12.0 22.0 33 20.0 14.0 26.5 31 20.4 13.0 30.0 35 del 4 POINT (C) 13.9 10.0 21.0 35 999.9 99.9 -99.9 0
17.3 10.0 24.0 33
!!ET BULB (C) 15.7 11.7 20.9 32 999.9 99.9 -99.9 0
19.1 13.4 24.3 31 1931 ANNUAL WIND SPEED (M/S) 10.8 1.0 18.0 32 8.5 0.1 24.0 32 10.1 1.0 20.0 23 T E t1P ER A T UR E (C) 18.2 12.0 22.0 33 20.0 14.0 26.5 31 20.4 13.0 30.0 35 DEt4 POINT (C) 13.9 10.0 21.0 35 999.9 99.9 -99.9 0
17.3 10.0 24.0 35 WET BtlL B (C) 15.7 11.7 20.9 32 999.9 99.9 -99.9 0
19.1 13.4 24.3 31 M**
WIND SPEED IS ROOT-MEAN-SQUARE WIND SPEED DMM !!ET BULB IS CALCULATED FROM TEt1PERATURE, DEW POINT AND PRESSURE D
PROGRAM: TDP VERSIGH: 3 DATED-MARCH 1982 RUN DATE:
FRIDAY MAY 7,
1982 SAMPLE RUN - INPUT FILE : DATA 1 (SEE SAMPLE OUTPUT FOR PROGRAM PRINT) 110.0 f1ETERS 60.0 METERS 10.0 METERS DECEMBER 30, 1980 TO AVG MIN ffAX llRS AVG III H f!AX HRS AVG MIN MAX IIR S JANUARY 2,
1981
!!TND SPEED
( fi/ S )
10.8 1.0 18.0 69 8.9 0.1 40.0 68 11.3 1.0 20.0 50 TEt!PERATURE (C) 18.8 12.0 22.0 69 21.0 14.0 26.5 66 21.S 13.0 30.0 72 DE.1 POINT (C) 15.0 10.0 21.0 72 999.9 99.9 -99.9 0
17.0 10.0 24.0 69 11E T BULB (C) 16.6 11.7 20.9 66 999.9 99.9 -99.9 0
19.2 13.4 24.3 66 000 WIND SPEED IS ROOT-MCAN-SQUARE WIND SPEED dRO WET BULB IS CALCUL ATED FR0f1 TEMPERATURE, DEW POINT AND PRESSURE 5
APPENDIX A NRC STANDARD FORMAT FOR METEOROLOGICAL DATA Use:
9 track tape (7 will be acceptable)
Stnadard Label, which would include Record Length = 160 characters Block Size = 3200 characters (fixed block size)
Density = 1600 BPI preferred (6250 or 800 PBI will be accepted)
Do not use:
Magnetic tapes with unformatted or spanned records.
At the beginning of each tape, use the first five records (which is the equivalent of ten cards) to give a tape description. -Include plant name and location (latitude, longitude), dates of data, information explaining data contained in the "other" fields if they are used, height of measurements, and any additional information pertinent to identification of the tape.
Make sure l
all five records are included, even if some are blank.
Format for the first five records will be 160A1.
Meteorological data format is (16, 12, I3, 14, 25F5.1, F5.2, 3F5.1).
Decimal points should not be included when copying data onto the tape.
All data should be given to a tenth of a unit except solar radiation, which should be given to a hundredth of a unit.
This does not necessarily indicate the accuracy of the data (e.g., wind direction is usually given to the nearest degree, but record it with a zero in the tenth's place; therefore, 275 degrees would be 275.0 degrees and placed on the tape as 2750).
All nines in any field should indicate a lost record (99999).
All sevens in a wind direction field should indicate calm (77777).
If only two levels of data are monitored, use the upper and lower level fields.
If only one level of data is monitored, use the upper level field.
l A-1
t S
TABLE A-1 MAGNETIC TAPE METEORLOGICAL DATA i
LOCATION:
DATE OF DATA RECORD:
i I6
-Identifier (can be anything).
I2 Year 13 Julian Day I4 Hour (on 24-hr clock) 4 i
ACCURACY F5.1 Upper Measurements:
Level =
meters j
F5.1
. Wind Direction (degrees)
Wind Speed (m/s) j.
FS.1 l
F5.1
. Sigma Theta (degrees)
.)
f F 5.1 Ambient Temperature (*C)
F5.1 Moisture:
l FS.1 Other:
)
i F5.1 Intermediate Measurements:
Level =
meters FS.1 Wind Direction (degrees)
FS.1 Wind Speed (m/s)
FS.1 Sigma Theta (degrees)
FS.1 Ambient Temperature (*C)
F5.1 Moisture:
FS.1 Other:
1 FS.1 Lower Measurements:
Level =
meters j
F5.1 Wind Direction (degrees)
FS.1 Wind Speed (m/s)
F5.1 Sigma Theta (degrees) i F5.1 Ambient Temperature ( C)
FS.1 Moisture:
}
F5.1 Other:
i FS.1 Temp Diff (Upper-Lower) ( C/100 meters)
F5.1 Temp Diff (Upper-Intermediate) (*C/100_ meters)
F5.1 Temp Diff (Intermediate-Lower) ( C/100 meters)
FS.1 Precipitation (mm) 2 i
FS.2 Solar Radiation (cal /cm / min)
FS.1 Visibility (km)
F5.1 Other:
FS.1 Other:
J A-2
APPENDIX B PROGRAM LISTING 0F DATE 1
i I
i i
I
}
B-1
\\
l 1
C 2.
C *************************************************************
3 C*
4 C*
DATE 5
C*
6 C*
THIS PROGRAM CHECKS FOR THE SEQUENTIAL 7
C*
STORAGE OF DATA IN THE NRC STANDARD FORMAT 8
C*
BY YEAR, JULTAN DAY AND HOUR.
9 C*
10 C
- P30GRAMMER WILLIAH SNELL 11 C
- DATE: MARCH 19R2 12 C
- VERSION 1
13 C*
14 C *************************************************************
15 C
16 DIMENSION TODAY(R),A(200),TITLEC18),LHC4),1,P(2) 17 DATA I.H/0,1,23,24/,LP/366,365/
)
18 C
19 C
READ AND WRITE OUT HEADING OF DATA fit,E 20 C
21 CALL RHB240 (TODAY) 22 PRINT 200, TODAY 23, 200 FORMAT ('1','PROGRAME DATE',10X,'VERSIONt 18,10X, 24 1 ' DATED MARCH 1982',15X,IRUN DATE: ',RA4) 25 READ (1,10) A 26 10 FORMAT (4(40A4/),40A41 27 PRINT 11, A 28 11 FORMAT ('
8,'SITEt'/80',10('
8,20A4/))
29 C
30 C
READ INPUT CARD 31 C
32 C
L T,= 0 HOURLY DATA CODED 0000-2300 33 C
LL=1 HOURLY DATA CODED 0100-2400 34 C
TTTLE IS A TITL' TO BE PRINTED ON EACH PAGE 35 C
36 READ (5,12) LL, TITLE 37 12 FORMAT (11,1X,18A4) 38 I,1=LH(LL+1) 39 L2sLHCLL+3) 40 L=L2+1 41 PRINT 203, TITLE,L1,L2 42, 203 FORMAT (///'O',' TITLE:
',18A4/'08,' HOURLY DATA CODED 43 1
80',I1,'
8,I2) 44 C
45 C
INITIALIZE 46 C
47 irs-1 48 TTOT=1 49 IT=0 50 PRINT 200, TODAY 51 PRINT 201, TITLE 52 701 FORMAT ('0',18A4) 53 C
54 C
READ DATA AND CHFCK SEQUENCE 55 C
56, 20 READ (1,102,END=999) IY,JD,IH 57 102 FORMAT (6X,12,I3,12) 58 IF(IT.EQ.0) PRINT 206, IY,JD,IH 59, 206 FORMAT (80','DATE OF FIRST DATA RECORD READ
',I3,I4,13///)
60 IR=IR+1 B-2
61 GO TO 30 62 C
63 25 READ (1,102, ENDS 999) IY,JD,IH 64 IRsIR+1 65 K2=IY*100000,JD*100+IH 66 IFCK1.EO.K2) GO TO 30 67 IR2 SIR +1 68 PRINT 208, IY1,JD1,IH1,IR,IY,JD,IH,IR2 l
69 208 FORMAT (808,' BAD DATE SEQUENCE IN DATA: ',13,I4,13,8X, 1
70 1 ' RECORD 8,16/'
8,27X,I3,I4,13,8X,' RECORD ',I6) 71 C
72 ITOTsITOT+1 l
73 ITsIT+1 74 IF(ITOT.LT.15) GO TO 30 l
75 PRINT 200, TODAY 76 PRINT 201, TITLE 17 ITOTs0 78 30 IYisIY j
79 JDisdD l
80 THisIH 81 IHsIH+1 82 IFCIH.EO.L) GO TO 35 l
83 K1=IY*100000+JD*100+IH l
84 GO TO 25 l
85 C
86 35 JDzJD+1 87 YsIY*0.25 88 KYsY 89 IS=(Y=KY)+1.75 l
l 90 LDYsLp(IS)
(
91 IF(JD.LE.LDY) GO TO 40 92 JDs1 l
93 IYm1Y+1 94 C
95 40 KisIY*100000+JD*100+L1 96 GO TO 25 l
97 C
98 999 CONTINUE 99 IR2 SIR +1 100 IFCIT.EQ.0) PRINT 209 101 209 FORMAT (IO','NO ERRORS FOUND IN DATE SEQUENCE OF DATA')
102 PRINT 210, IY1,JD1,IH1,IR2 103 210 FORMAT (///'0','DATE OF LAST DATA RECORD PEADt ',
- 104, 1 13,I4,13,8X,tRECORD NO.',I6) 105 C
106 STOP 107 END B-3
APPENDIX C PROGRAM LISTING OF JFREQ C-1
1.
//dSZJFDEg JOB (W DC 1, 72 0, J.), d.S HELL 2.
/ *C NT L WS 4, TIC 3.
/
// STEP 2 EXEC F0EG CO MP 5.
// COMP.SYSIN DD
- 6.
C 7.
C 8.
C 9.
C JFahu 10.
C 11.
C THIS PROGRAM CALCULATES JOINT FREQUnNCY 91STRIBUTIONS 12.
C OF WIND SPEED AhD DIRECTION dY STABILITY CLASS 13.
C AND PRINTS STABILITY CLASS BY DOUR OF DAY 14.
C 15.
C
- PROGRAMM Ed : AUDRhY SdITd 16.
C
- DATA: JUNZ 1977 VEESION: 1 17.
C 18.
C
- M00IFIED: WILLIAM SNELL 19.
C
- DATf: HOVEMdER 1978 VERSICN: 2 20 C
C 22.
C 23.
C 24.
C 25.
REA L*8 U 26.
C OM M0 h/ DATA 1/IL EY,I S, IP,L SH,IPS,C ALa, Vu,I Y (2),I M (2),
27.
1 ID (2), A (18) 28.
C0d MO N/ DATA 2/C (12 ), a W O (J), w WS (3), ST Ao (3),SST (J) 29 DIM EhSION T00 AY (9 ), JD (2), TIILi(20 0),CS (8),IHS (24),
30.
1 la AT A (10,18,8), D AT A (10,18,8),V Ah (10),IV AR (10),
31.
2 ISuaD (18,8), ISUMS ( 10,8), ISUM(8),
32.
3 S U M D ( 18,8 ), S UM S ( 10,8), SUM (3),
33.
4 I W S 0 (10 ), S nSC (10), ins (10), SnS (10),
34.
5 SC (8), U(11), alN D1 (3), WIN D2 (3), H(J) 35.
C.....
36 C.....INITIALI4E 37.
C.....
38.
X=1 39.
D AT A CS / 8 4 ', ' d ', ' C ', ' D ', ' c ', ' E ', ' d ', ' ' /
40.
D AT A SC/' A
' 'o
',8C
'D
'E 8,8F
'G
' 'ALL '/
41.
D AT A U/ 8 CALM
',' C AL M.5 ', '
.5.75 ','
.75-1.0',
1.0-1.58,'
- 1. 5-2. 0 '., '
2.0-3.08,'
3.0-5.0',
42.
1 43.
2
'5.0-10.0',e y10,3 e, e V ARIAdLE'/
i 40.
D AT A IHS/24 *d/
45.
DATA IdSC,SsSC,H/10*0,10*0.,J*0./
46.
D AT A ISUM D, SUMD/144 *0,1 a4 0./
47.
D AT A ID AT A/14 40 *0/
48.
D AT A IV AE,I nS,ISU a,ISUMS/10 8* 0/
49.
D AT A V AE,Sd S, SUM, SUMS /108 *0./
50.
C 51.
C ALL RBD240 (TO DA Y) 52.
C 53.
10000 CONTINUL 54.
NUM=0 55.
L CN T= 0 56.
C 57.
C 58.
C.....
59.
C.... 3 EA D CATA FFOM CARDS 60.
C.....
C-2
61.
C 62.
C---------A IS TiiE TI1LE CABD 63.
C---------ILIV INu1 CATES LcVmL CF WINO DATA TO Bf UStu 64 C
ILEV=1 FO :- UPPEP LEViL 65.
O ILcV=2 F0E lhThl:nuu;Alu ciVen 66.
C ILEV=J F0s LGath LEVEL 67.
C---------lS IhbICATES Inc LcVit Udto TC dt1SUHi STAoILITY 08.
C iS=1 FOR DELT A I:
UPPth - LCath 69 C
IS=2 FOE uc1TA T:
UPPLE - INTELdhu1 ATz 70 C
1S=3 roh DcLTA T:
INTthhEulATE - LCaEu 71.
C IS=4 Fod diudA TiicT A:
UPPc3 72.
C IS=5 Fod SIGa A TiltT A:
INTcEMEDIATs 73.
C 1S=6 F09 SIGMA ThtTA:
LOWcE 74 C---------lE=1 FU NC d JFD IN uCUhS 75.
C I P= 0 LO NOT PUdCii J FD 76.
C ------ --- L S h = 0 20E liCUES CCuFu 00-23 77.
C LSn=1 FOR iiGU td CUDeu 01-24 18.
C---------I PS =0 0 0 NOT PSIhT STAB 1LITY bY HOUE OF D AY 74 C
IPS=1 PfinT STABILITY BY LOUP OF DAi u3 C---------CALa IS STAETIh6 SPecu CF AHhtdGatTth (M/S)
P 1.
C---------Vb = COLE FCE VA21AuLi WIhD. Il NO WlaDS CoucU 62.
C---------
VAFIABLc, V6=0 STArTidd YLAE, MCATal ANO DAY 83.
C---------I Y ( 1),1 M ( 1),1 D (1)
=
84 C ---------l Y ( 2 ),l H ( 2), I D ( 2) thulhG YcAS, MONTE Abb LAY 85.
C 96.
'4 cA D (5,2no, n s o=1111) A u l.
200 FCSMAT (19 A 4) 88.
P EA u (5,50) lLEV,IS,IP,LSn,IPS,CALn,VD, l Y (1),lM (1),1b ( 1),1 Y ( 2),1M (2),iu (2) 69.
90.
>l FORdAT t S11, F 3. 2, F 7.1/ 312,14,312 )
91.
n EITc (6,3b) TODAi 92.
CALL hcAD1 93.
CALL lu Al (IL, la,I t, JD) 14 ISFT= lY (1)
- 10 00 +J D ( 1) 95.
ILN D=IY (2)
- 13dQ +J D (2) 96.
Lil;=0 97.
C 99.
C.....
99.
C.....? tA d MhTnG5 CLCG1C A L JATA 100.
L.....Phlhi SiAv111TY OY dOUf CF LAY 10 1.
C.....
132.
C 10 3.
IF (4. E w. 2) GL 70 1000 10 4.
it t A L (1,444) TIILL 10 5.
4 44 F0FnAT (4 (4 044/),40 A4) 106.
a' Pli E (6,3 6) T00Af 11 7.
n' EI T c (0,445) TITLc
,20A4/9 t'
,20A4/))
13 P.
445 /CidAT t'0','SITh '/'
10 v.
C 110.
L ilD = 1 111.
GO TO 11 112.
CO CCNT1 HUE 113.
GC TC (1S1,152,153,154,154,154),1S 114.
151 u11 =U (1) 115.
OT2 =-J (3 )
116.
GO 10 154 117.
1 52 uT1=n(1) 118.
0 T2 = 11 ( 2 )
11 9.
Go To 154 120.
153 D71 =it (2)
C-3
121.
DT2=H (3) 122.
154 CON TI NU E 123.
LHD=0 124.
I F (IPS. Eg. 0 ) Go TO 61 125.
W RITE (6,3 8) TODAY 126.
I F (IS.L E. 3) WRITE (b,20)
A, H (ILEV), DT1, cT2 12 7.
I F (IF.GE. 4) mRITE (6,32) A, H (ILEV), H (IS-3) 128.
IF(LSh.EQ.0) W R IT E (6,36) 12 9.
I F ( LS h. Ew.1 ) WHIT h (6,39) 130.
GO TO 61 13 1.
1000 CONTIhUE 132.
I F (IPS. Eg.0) Go TO 11 13J.
I F (IH E. LT. 2 4) GO TO 11 13 4.
C ALL JD AT (I YR,J DA Y,IdON,ILA Y) 135.
n' BITE (6,3 7) IYR,IdO N,ID AY, (CS (IHS (I)),I=1,2 4) 13 6.
L HC= L HC + 1 137.
I F ( LH C. LT. S 0) GO TO 11 13 8.
W RI TE (b,3 8) TODAY 139.
I F (IS. L L. 3) WFITE (6,20)
A, h (IL EV), LT 1, LT 2 140.
I F (IS.G E. 4) WHITE (6,32)
A, h (ILEV ), H (IS-3) 14 1.
I F (LS H. Ew.0 ) hEITE(6,36) 14 2.
I F ( LSH. EV.1 ) hnITE(4,39) 14 3.
LHC=0 14 4 C
14 5.
11 P E A D ( 1,111, Lh D= 99 9) I YE,J D A Y,IdR, 14 6.
1 ( (h (I), h WD (I), h W S (I),SST (I) ),1= 1,3),
14 7.
2 (S T A B ( N), N = 1,3), (C (I),1= 1,12 )
148.
111 FORMAT (61,12,I3, I2,21,3 ( 4F5.1,151),3F5.1, 149.
- T16,3 (5X,3 (1 X, A4),15 X),3 (1 X, A4))
150.
ILA Ts=I YE*100 0+ aD AY 151.
I F (ID AT E. LT.I S RT) GO TO 11 152.
IF (ID ATE. GT. I Eh D) GO TO 999 153.
CALL ULNK 154.
I F ( L3 L. LQ.1 ) GO TO 60 155.
61 I F ( LS H. EQ.0 ) IhB=Iuh+1 15 6.
Ills (IliR ) = 8 157.
LCN T=LC NT + 1 15 8.
W L= WW D (ILEV) 159.
h S= w w s (ILEV )
16 0.
I F (IS.G E. 4) GO TO 22 161.
IF (ST AB (IS). LT.-7.0. 08. ST AB (IS).GT.35.0) uo TO 1000 162.
C ALL ST ABLE (STA b (IS), K) 163.
GO TO 33 164.
22 ST=SST (IS-3) 1b S.
I F (ST. LT. O. 0.0F. ST.GT.360.0) GO TO 1000 16 6.
C ALL SIGd A (ST,K) 16 7.
33 IhS (IdR) =K 168.
C 16 9.
I F ( WD.EV. 77 77.7. OR. wS. E w. 0. 0) Go TO 42 170.
IF OS.LT.0.0
.02.
WS.GE.99.9) GO TO 1000 111.
C AL L SPEED ( WS,C ALM,1) 17 2.
IF ( W D. E g. V B) GO TO 41 173.
I F ( WD.LT. 0. 0
.0 F.
WD.GT.365.0) GO TO 1000 17 4.
41 CCNTINUE 175.
C ALL SECTOR (W D, wS,C ALM, VB,J) 176.
Go TO 43 17 7 42 I=1 1/8.
J=17 17 9.
43 CONTINUE 180.
C.....
C-4
idl.
C.....C ALCU LATE IDATA, NUd, AND DATA 10 2.
C.....
183.
C 164 C---------ID ATA A ND u AT A ARE TliE FBtgDENCIES FOB SPECIFIC MIND 135.
C SPEEDS WIND DIRECTIUdS, AND STABILITY CLASSES IN 106.
C 1100BS A ND FFACTIONS, E ESP cCTI VmLY 187.
C---------N Ud A NJ U M AR E Tlid NU ddhh 0F liOUR S OF D AT A 13 8.
C 189.
I DATA (I,J,K) =ID AT A (I, d, K) t1 19 M.
IuA TA (I,J,8) =ID AT A (I, J, d) + 1 19 1.
NUM=NUM+1 192.
GO TO 1000 19 3.
999 CONTINUE 19 4.
IF (N UM.Ev. 0) GO TO 10000 19 5.
U M= 10 0. 0/ NU M 19 6.
C 19 7.
Do 10 5 I= 1,10 198.
DO 10 5 J= 1,18 199.
Do 10 5 K= 1,8 200 105 DAT A (I, J, K) =IDATA (I,J,K)
- UM l
211.
C 20 2.
C.....
20 3.
C.....C ALCU LATd S UMS OF FBEgU hNCIdS IN HOURS AND FRACTIONS 20 4.
C.....
20 5.
C 20 6.
C -- -- -- ---I S U M D, SUMJ = SUMS OF FREQUENCI4S FOR EACh DIBELTION Ik A 207.
C STADILITY CLASS IN HOURS AND FRACTIONS, R ES P ECIIV EL Y 20 8.
C---------ISUMS, SUMS = SUMS OF FB490cNCIsS FCB LACu ' MIND SPEED IN A 209.
C STABILITY CLASS IN h00LS AND EsACTIONS, RESPECIIV EL Y 210.
C -- -- -----I S U M, SUM = TOTALS OF ALL FBsgUENCIES IN A ST ABILITY CLASS 21 1.
C IN dOURS AND FRACTIONS, RESPECTIVELY 212.
C -- -- -- -- -I, J, n A N J L,M,N CORBtSPON U TO WIN D SPEED, WIN D DIRECTION, 213.
C AND STABILITY 214 C
21 5.
uo 110 M=1,16 216 90 110 h= 1,8 217.
DO 110 I=2,10 218.
ISU MD (M, N)=ISUMD (M, N) +ID ATA (1,M,N) l 219.
110 S UM D (M, N) =S UMD (M, N) +D AT A (I, M, N) l 220.
C 221.
DO 115 L= 2,10 222.
Do 115 N=1,8 223.
Do 115 J= 1,16 224.
ISUMS (L, b) =ISUMS (L, N) +IDA1& (L,J,N) 225.
115 S UMS (L, N) =S UMS (L, h) +D AT A (1, J, N) l 226.
C 22 7.
DO 120 N=1,8 228.
ISU MS (1,N) =ID AT A (1,17,N) 229.
120 SUaS (1, N) =D AI A (1,17,N) 230.
C 23 1.
DO 125 L=1,10 232.
Do 125 N=1,8 233.
ISU MD (18, N) =ISU MD (18, NJ +1LAT A (L,18, N) 234.
SUM ~D (18, N) = gUMu (18, N) +DAT A (L,18,N) 235.
ISU M (N) =ISU M (N) +1SU MS (L,N) 236.
125 SUM (N)=s0M(h) + SUDS (L, N) 237.
C 238.
Do 126 N=1,8 239.
S UM (N)= SUM (N) +SUMD (1d,N) 240.
1 26 ISU M (h) =ISU M (N) tISU MD (18, NJ C-5 t
24 1.
C 242.
C.....
24 3.
C.....C ALCULATE O VERALL FREQUENCIES 244.
C.....
24 5.
C 246.
Do 14 5 L= 1,10 247.
DO 14 5 N= 1,7 248.
IVAR (i) =IV A R (L) +1 DATA (L,18, N) 249.
V AR (L)= VAR (L) +D AT A LL,18,N) 250.
IWS (L)=IW S (L) +1SU nS (L,H) 25 1.
145 S WS (L)= SWS (L) *S UMS (L, N) 252.
C 253.
IWD=0 254.
SnD=0.
255.
DO 149 N=1,7 256.
I WD =I WD +ISU MD (18, a) 257.
149 S WD=S ho +SudD (18,N) 258.
C 259.
I WSC (1) = ids (1) 260.
S WSc (1) =SWS (1) 261.
DO 146 N=2,10 26 2.
I hS C (h) =IWSC (N-1) *I nS (N) 20 3.
146 S WSC (N) =S WSC (N-1) +S WS (N) 26 4.
C 2b 5.
C.....
260.
C.....PRINI JOINT FREQUEhC Y TABLhs A ND OVERALL FREQUENCIES 267.
C.....
268.
C 269.
C 270.
PCD B= NU d
- 10 0. 0/ LC NT 271.
C 272.
Do 134 K=1,8 J73.
GO TO ( 14 7,14 2,14 2,14 7,14 2,14 2,14 7,14 2), h 274.
147 W RITE (6,3 8) TODAY 215.
I F (IS.L t. 3) W RITE (6,20) A,d (ILEV),DT1,DT2 276.
I F (IS.G E. 4) W RITE (6,3 2) A,H IILE V),H (IS-3) 217.
142 WRITE (6,3) SC (K) 278.
WRITE (o,4) 279.
WRITE (o,7) U (1),IS Ud S (1,6) 280.
DO 133 I=2,10 281.
mRITE ( 6, 5) U (I), (IDATA (I,J,K),J= 1,1b),ISUMS (I, d) 282.
133 CONTINUE 28 3.
kBITE (6,7) U (11),ISUMD (18, K) 284.
W BI Td (6,13) 28S.
WRITE ( 6, 0) (IS UM D (J, K),Jal,16),ISU M ( K) 286 IF(K.Eg.3.OR.
K.EQ.6
.08.
K.tg.8) WRITb (6,d) CALM 287.
134 CONTINUE 288.
W RI TE (6,1) NUM,LCNT 2d9.
WHITE (6,14) (SC (I),1= 1,8), (IS U M ( M), M= 1,8) 290.
WRITh (6,15) (U (I),1= 1,11), (I WS (L), L= 1,10), I W D, 29 1.
1 (I WSC (N), N=1,10) 292.
W EITE (6,3 9) TODAY 293.
I F (IS. L E. J) WRITE (6,20) A, d (IL hV), UT 1, CT 2 294.
I F (IS.G E. 4) WHITE (b,32) A, H (IL EV ), H (IS-J) 29 5.
eRITd (o,27) 296.
DO 13 7 I= 1,10 297.
1 37 WRITE (b,28) U (I), (ID AT A (I,18, K), K= 1,7),IV A R (I) 298.
WHITE (6,30) (ISU MD (18, N),N= 1,7),1W D 29 9.
C 300.
C C-6
J01.
DO 136 K=1,8 30 2.
G O To ( 14 8,14 4,14 4,14 8,14 4,14 4,14 8,14 4), K 303.
148 J RITE (6,J8) TODAY 30 4.
I F (IS.L E.3) WRITE (6,2 0) A,H (ILEV),DT1,DT2 305.
I F (IS. G E. 4) WHITh (6,3 2) A,H (ILE V),u (IS-3) 306.
1 44 sRITE ( 6,2) SC (K) 30 7.
WRITE (o,4) l 30 8.
mRITE ( 6,12) U ( 1),3 0M S ( 1, K) 30 9.
DO 13 5 I= 2,10 l
l 310.
WRITE (6,9) U (I), (U AT A (I,J, K),J=1,16), SUDS (I, K) 31 1.
135 CONTINUE 312.
WRITC (6,12) U (11), SU MD (18, K) 313.
mRITE (6,13) 314.
WRITE (6,10) (SUM D (J, K),Jal,1 b), SUM (K) 31 5.
IF(n.Eg.3.CR.
K.tg.6.OR.
K.EQ.8) hBITE (6, d) CALa 316.
136 CONTINUE 317.
m'EIIZ (6,3 5) PCud 31 d.
WRITE (6,16 ) (SC (I),1=1,8), (S UM (a), M= 1,6) 319.
WRITE (6,17) (U (I), I= 1,11), (S WS (L), L= 1,10), S w D, 320.
1 (S WSC ( h), N= 1,10) 321.
W RI TE (6,3 8) T0 DAY
[
322.
I F (IS.L E. 3) mRIIE (6,20) A, H (ILEV ), uT 1, LT 2 323.
I F (IS.G E.4) WBITE (6,32)
A, H (ILEV ), H (IS-J) 324 d RI TE (b,27) 325.
Do 13 8 I= 1,10 326.
138 WRITE (6,29) U (I), (CATA (1,18, d),K=1,7), VAB (I) 327.
WRITE (6,31) (S UM D ( 18, N), E= 1,7),S W D 328.
C 329.
C 330.
X=2 331.
IF (IP. NE.1 ) GO TO 10000 332.
C
[
1 333.
C.....
I 334.
C..... PUN CH JOI NT FEEQU ENCY D AT A IN NUMBERS OF HOURS l
335.
C.....
33 6.
PUNCH 21, A 337.
I F (IS.L E. 3) PUNCH 24, d (ILEV),DT1,DT2 338.
I F (IS.G E. 4) PUNCH 34, M (ILEV),H (IS-3) 339.
PUh CH 23, NUd 340.
PUNCd 8, CALM 341.
PUNCH 18, (ISUMS ( 1, K),K=1,7)
J42.
DC 161 K= 1, 7 34 3.
00 16 0 I= 2,10 34 4.
PUNCH 19, (IDAT A (I, J, K),J=1,16) 345.
160 CONTINU E i
346.
161 CONTINUE 347.
888 CONTINUE 348.
C l
349.
C.....
t 350.
C.....F0F MAT ST AT raENTS l
351.
C.....
352.
1 FORuAT (8 0','TCTA L VALID HOURS = ',I6,15X,' TOTAL POSSIbLE',
353.
1
- HOUR S = ',10)
' ' JOINT FREQUENCY DISTRIBUTION OF WIhb '
354.
2 FORMAT ('
8//'
- 355, 1
'S PEED AND DIRECTION IN FRACTIONS',101, JS b.
2 ' ATMOSPHERIC STABILITY CIASS 8, A 4) l 351.
3 FORMAT ('
'//8
'JOIhT FEELUEhC1 DISTRIBUTION OF MIND 8,
358.
1 'SPEEC ANJ DIRECTI0d IN H00RS',101,
, A 4) 359.
2 ' ATaOSPHnRIC STA BILITY CIASS '
l 360.
4 FORMAT
(' 0',1 X, ' u ( d/ S) ',8 X,8 N ',41, ' H N E ',5 X, ' bE ',41, ' Ed E ',
C-7
30 1.
1 6 X, ' E',4 X, ' ESE ', 5%,' SE *,4X, ' SS E',b X, ' S ',41, ' SS W ',5 X, ' SW ',4 X, 362.
2 ' h S m ',6X,' n ',4 X, ' a N W ',5X, ' N W ',44, ' N N a ',2 X, ' TOT AL '/ 8.+ ',
36J.
3 14, ' _ _
_')
36 4.
5 FORMAT ('
, A 8,2X,1717) 365.
6 FCEMAT ('
' TOTAL',5X,1717)
Jo b.
7 FORdAT ('
, A 8,114 X,I 7) 367.
8 F0EMAT('O',' CALM =',F5.2,'
M/S ')
368.
9 FOR MAT ('
, A S,2X,17F7. 2) 369.
10 FORMAT ('
' TO* A L ',5 %,17 F7. 2) 370.
12 FOR M AT ('
, A S,1141,F 1. 2) 371 13 FORMAT
('+','___
__',2A,17(1X,',
2_'))
37 2.
14 POPMAT ('O'/8 0',' 0VER ALL STABILIT Y CLASS FREQUENCIES IN '
373.
1 'H00sS '/ 'O ', 'STA BILITY : ',4 X,1 ( 4X, A 4),5 X, A4/' ',
37 4.
2
'F LEQUENCY :',2 X,7I8,110) 315.
15 FOR MAT ('
8//' 8,80VERALL WIkL SPEED FREwUEbCIzS IN HOURS'/
370.
1' 0', ' hI hD S EEED (M/S) :', A 8,2X, A8,2 (11, A8),
377.
2 4 (2X, A 8),31, Ad,1 X, Ab,3X, A8/'
, ' FR EQUENC Y: ',31,2 (2 X,Id),
378.
3 2 ( 1X,I 8),4 (2X,IS),31,I8,11,18,31,I8/ ' ',
37 9.
4
'C UM UL ATIV E Fa hg :',I7,2X,18, 380.
5 2 ( 11,18j,4 (24,I8),31,18,11,18,34,I8) 331.
10 FOBMAT
(' O'/8 0',8 0VER ALL ST ABILIT Y CL ASS FREQUEhCIiS IN 382.
1
'P ERCE NT '/ '0 ', 'STA BILITY A',41,7 (41, A4),5X, A4/s e,
383.
2 ' F RE GU ENC Y : ',2 X, 7 F 3.1, F 10.1) 364.
17 FOR dAT ('
'//' ', 'C BEE ALL WIh t SPEED FREQU EUCIES IN PERCENT *,
395.
1
/'O',' WIND SPdED (M/S) :', A 8,2X, A 8,2 ( 14, A 8),
386.
2 4 (2X, A 8),3 X, A8,1 X, A8,31, A8/' 8, a FREQ UE NC Y: ',3X,2 (2X, F8.1),
337.
3 2 ( 1 X,F 8.1),4 (2 X, F8.1 ), 3X,F8.1,11, F 8.1,3 X, F 8.1/ 8 *,
3853.
4
'C Ud UL ATIV E FREQ : ',F 7.1,2X, F8.1, 389.
5 2 ( 11,F 8.1),4 (2 X, F8.1 ),3X, F8.1,1X, F8.1,3X,F8.1) 390.
1d FCRMAT (715) 331.
19 FORMAT (loI 5) 392.
20 FORsAT
(' 08,16 A 4/ '0 ', ' LtVEL O F WIND DATA: ',F6.1,'
METERS *,
333.
1 13X,8 DELTA T LAfER:
8,F7.1,'
8,FS.1,'
METERS 8) 39 4.
21 FOR MAT (20 A4) 39 5.
23 FORMAT (' TOTAL N UMBE R OF HOURS = ',17) 39 6.
24 FOR M AT (' O', ' LEV EL O F MIND DATA:
8,F6.1,8 METERS',51, 397.
1'UELTA T LAYER:
',F6.1,'
',F5.1,8 METERS *)
398.
27 FOR MAT ('0 8//' 08,' DISTRIBUIION OF V ARI ABLt WINES'/'O*,
l 39 9.
1 11, ' u (M/S) ',
400 2 SX, ' A ',7 X, ' B ',7X,' C ',7 A, ' D ', 7 X, ' E',7 %, ' F ', 7X, ' G ',
401.
3 SX,' TOTAL'/'+',1X,'
, 5 X, ' _8,6 (71, '_ ' ),5 X, '
- )
402.
28 F03 MA1(
- 8, A8,d (1 X,I7))
, A8,8 (1 X, F7.2) )
l 403.
29 FOR MAT ('
,8 (1 X,17) 404 30 FOR M AT ( ' + ', ' _
', 8 ( 3 X, ' _____ ' ) / ' ','
101AL '
405.
1)
,8 ( 14, F 7. 2) 406.
31 FOR M AT ( 8 + ', '
__ _ ', 8 (3 X, '
') /'
8,8 TOTAL '
40 1.
1 )
40 8.
32 F0FMAT
(* O',18 A 4/ ' 0 ',
- LEV EL OF WIND DATA:
8,Fb.1,8 METERS',
,F6.1,'
MtTARS')
409.
1 13 X,'SIGaA THETA LEVEL:
i 410.
34 POR MAT ( 8 0 ', ' LEVEL OF MIND O AT A: e,po,1,eMETERS',5X, 41 1.
I' SIGd A THzT A L4V6L:
',F6.1,'
METt RS ')
41 2.
35 FOR M AT ('O ', 'PERCE NT D AT A BECOVERY = 8, F S.1) 413.
3b F03 d AT (' O', 'STA BILITY C LASS BY h002 0F DA Y'/'
8,
','Yh MN DY 0
1 2
3 4
5 6
7 8
414.
1 4bX,'HOUk'/'
415.
2 '9 10 11 12 13 14 15 16 17 18 19 20 21 22 23*/* ')
416.
37 FOR MAT (13,2I3,2 X,24 (2 X, A1))
417.
38 FORMAT (' 18, ' P ROGR AM : JFREG',104,' VERSION: 38,10X, 418.
1 ' O AT ED : FsBRUARY 1982',201,'RUN LATE: ', 8 A 4) 419.
39 FORMAT ('O', ' STABILITY CLASS BY HOUR OF DA Y'/8 8,
420.
1 464,' HOUR'/* ', ' YS d h of 1
2 3
4 5
6 7
o C-3
421.
2
'9 10 11 12 13 14 15 16*17 18 19 20 21 22 23 248/' *)
422.
C 423.
GO TO 10000 424.
1111 STOP 425.
EMD 426 S UB BO UTI N E BLWK 427.
C 428.
C.....CHECd FOR BLA NK DATA FIEL LS 429.
C 430.
COM MO N/D AT A 2/ C (12 ), WW D (3), W WS (3), ST Ad (3), SST (3) 431 D AT A 2K/'
'/,Z/9999.9/
432.
Ma9 433.
N =- 2 434.
Do 10 I=1,3 435.
N=N+3 436.
I F (C (N).EQ. BK) m W D (1) =Z 437.
IF(C (N+ 1).EQ.BK) W W S (I) =Z 438 I F (C (N+ 2).dg. BK) SS T ( I) -=Z 439.
10 IF (C (M+I).E J. dK) ST AB (I)= 2 440 B ET US N I
441.
END 442.
SUUROUTINE HEAD 1 443.
C 444.
C-------- PRIN T IN P UT IN f0 En AT10 t1 445.
C 446.
R EA L* d S,T 44 1.
C0d MON / D ATA 1/IL EY,IS, IP,LSH,IPS,C ALa, VB,IY (2),IM (2),
446.
1 Id (2), A (1 d) 449.
DIM EN SIO N S (o), P t 2),T (2) 450.
C 451.
D AT A S/ '
UPPER','
IhTER','
LOmEB','
452.
1 ' M EDI ATE 8,'
'/
453.
uATA R/'NO 8,'Y4S '/,T/* 00-23
' ' 01-24
'/
454.
C 455.
W RITE (o,101 ) A
,18A4) 456.
101 FCR M AT (// ' O ', ' TIT LE : '
457.
W HITE (6,100 ) S (IL EV ), S (IL EV + 3) 456.
100 FOR MAT (// 'O ', ' MIN D DATA F50M LE VEL: ',2 A8) 459.
C 460.
Go TO (20,25,30,35,35,35),15 461.
20 W RITD (6,105) S (4),S (1),S (3),S to) 462.
105 FOR MAT ('O ', ' DnL1A-T I NTra VA L: ',2A d, ' MIN US',2 Ad) 463.
GG TO 50 l
464.
25 W RITE (b,105) S (4),S (1),8 (2),S (5) l 465.
GO TO 50 I
460.
30 W RITh (o,105) S (2),S (5),8 (3),S to) 467 GO 10 50 460.
35 n hlTh (6,110) S (IS-3 ), S (IS )
469.
110 F0E dAI ( 8 0 8, 'SIGM A T HEI A L E V EL :',2 A S) 470.
C 47 1 50 L=IP+ 1 472.
W RITc (6,115) h ( L) 47 3, 115 FOR M AT (' O ', ' P UNCH HCURLX JFD Ch CARDSA ',A4) 474.
L=LSh+1 475.
W h1TE (6,120) T (L) 476 120 FOR MAT ( 8 0 ', ' HOU EL Y DAIA C00ED:
8, A8) 47 7.
L =I P S + 1 47 8.
W RITh (o,125) R (L) 479.
125 FOR M AT ('0 ', ' n RITE STA oILITY CL ASS dY HOUR OF DAY: ', A4) 480.
W RITE (b,130 ) CALM C-9 sm--
481.
130 FORMAT ('O','C ALM WINDS COLED:
8,F6.2,'
M/ S * )
482.
C 483.
I F ( V a. E g. 0. ) m R IT E (6,13 5) 484.
I F ( VB.N E. O. ) hSIT E ( 6,13 6) VB 485.
135 FORMAT ('O','No MINDS CODEL AS A V ARIABLE LIBECTICH')
486.
136 FOR MAT ('O ', ' V AkIA BLE WIND DIR hCTIOh CODED:
',F1.1) 487.
C 488.
m RITE (6,150) ( (IY (1), IM (I), ID (1)),1=1,2) 489.
1 50 FCB MAT ( 8 0 ', 'J FD FOR D AT A FERIOD:
dEGINING - ',313/*
490.
ENDING
,313) 491.
C 492.
RETUhN 49 3.
EhD 494.
SUBBOUTINE IuAT (ID,I M,1 Y,J D) 495.
C--------TnIS Subh00 TIN E CH ANGES MONTH AND LA Y TC JULI AN DA Y 496.
DIM ENSION ID (2),IM (2),I! (4),J t (2), YR (2),1YR (2), MON (12) 497.
DATA MON /0,31,59,90,120,151,181,212,24J,273,J04,334/
498.
DO 20 N=1,2 499.
I MM =I M ( N) 500.
J D ( N) = MON (IMM) 50 1.
JD ( W) =J D (N) +ID (W) 50 2.
Y h ( H) =I Y (N) *0.2 5 50 3.
IYE (N)= YE (N) 50 4.
S=YR ( N) -I YH (N) 505.
IF (s.E g. 0. 0. A N D. JD (N ). GT. 's9) J D ( N) =J D ( W) + 1 506.
20 CONTIhUE 50 7.
RETURN 50 8.
BhD 509.
SUB ROUTIN d JDAT (IY, JD,Id,ID) 510.
C 511.
C THIS SUDHOUTINE CON VEBTS JULI AN DAY TO MONTH ANu DAY 512.
C 513.
DIM ENSION dM (12,2) 514.
D AT A MM/0,31,59,9 0,120,151,181,212,24 3,273,30 4,33 4, 515.
0,31, 60,91,121,15 2,18 2, 213,24 4,27 4, J 0 5, J 3 5/
51 6.
C 517.
YB=IY*0.25 518.
I YR= Y 9 519.
S=YB-IYP 520.
L=1 521.
I F (S. EJ.0.)
L=2 522.
C l
523.
DO 10 I=2,12 524.
I F (JD.LE. MM (I,L)) GO To 15 l
525.
10 CON IINUE 526.
I=13 527.
15 I D= J D-M M tI-1, L) i 528.
I M= 1-1 529.
HETURN 530.
END l
53 1.
S UBROUTIN A SECTUR (OIR,S P, C Ald, V D,JJ) 532.
C ---- -- -- Td I S SUBROUTIN E CA LCUL ATES TH4 SzC IOB Td6 =ISD 533.
C-------- IS B LO WI NG F h 0 M.
(C 0aa0 h MLIE0EOLOGICAL N OT ATION) 534.
C -- ------ Td IS SUBEcuTINE COUSTESY CF JIM SHIELUS
(
53 5.
J J= 17 53 6.
I F (SP. L E. CA LM) EdTUhN 537.
JJ=19 l
538.
I F (DIE. Ew.V b) RETUEN 539.
JJ= 1 + ((u1R + 11.23)/22.5) 540.
I F ( JJ. E g.17 ) JJ=1 C-10
54 1.
EETUEh 54 2.
BNd 54 3.
SUBROUT Ih c SIGd A (Sr AB,hh)
Sn t.OUTidE CaLCOLdT2S STAulLITY lhCh SIGdA TdETA Su u.
C---- ---- I d I S u
S49.
JId ENSIch 3 (b) 54 6.
u AT A S/22. 5,17. 5,12. 5,7.5,J. 6, t.1/
S47 DC 100 nK=1,o 549.
100 I F (Si' AB. di. S (oh) ) dhTUBA 549.
hK=7 553 RETUBh 551.
dND 552.
Suuh00 TINE SPEED (SP,CALn,II)
SSJ.
DInthSION S[9]
55u.
u AT A S/ 0.,. 5,. 7 5,1.,1. 5,2., 3.,5.,10./
555.
S (1)= CALM 550.
DO 10 11=1,9 557.
10 IE (SP.L E.S (11) ) i ri uh l.
558.
I.I= 10 559.
EtTUPh Sh i).
END Su l.
S US ROUT IN L ST-3 Lc (31 A L,6n) l 502.
DIdtaSICN S(b) 5o 3.
C-------- 1tilS S Uo dOU f 1H E CA LC UL Al tS S I A 31L11 x CLASS 564.
C -------- nK= 1,2, J...C OR E'E SP C N D S TC STAoILITY CLASSES A,e,C...
56S.
D AT A S/ - 1. 9,- 1. 7, - 1. 5,- 0. 5,1. 5, 4. 0/
566.
00 100 En = 1,6 50 7.
1 00 IF (ST AD.Lt. S (KK)) stTURN Sod.
Ah = 7 309.
h tT UP. H a7 0.
LNJ 511.
//STsPJ E X6C EDSIS, N A dd=' nDC1 mS Z. TLST.D AT A1 ',
572.
//
J IS K= rI L E 3 3, LP ECL =100, d LE S12h =J 200 5/J.
// STEP 4 EXcC F0FGLAGO l
574
//GC.FT01F001 DD CS h= oI NF UT,01S E= (C L D,a tEP) 575.
//G C. FIOS F0 01 au 57 0.
T ES 1 RU N s1 517.
33011 0.25 oddd.8 S79.
800101 911231 57 9.
/*
l l
l l
C-11
APPENDIX D PROGRAM LISTING OF MISS I
l f
I i
t i
i I
l l
0-1 i
1.
C 2,
C
- se**+esseserssessesesesseseeeeeeesessessessesessessesseessesee 3.
C 4.
C MISS 5.
C 6.
C THIS PROGR AM CALCU LATES Pc2100S OF OCCURENCE OF 7.
C MISSING DATA 8.
C 9.
C
- PROG E A MM ER : WILLIAM ShlLL 10.
C
- DATE: JUNE 1978 11.
C
- VERSIO N: 1 12.
C 13.
C
- MO DI FIED :
W.
SNELL 14 C
- DATE: FE BRUA RY 1982 15.
C
- VERSION: 2 16.
C 17.
C 18.
C 19.
E EA L* 8 IIR 20.
COM 30 N/ DATA 1/D1 (16),C (l o) 21 DIM ENSION TODAY (8), A (20 0),li (3), D2 (16),1C (16), bun (16), BDX (16),
22.
1 ICliK (13,16),ITCT (16), TITLE (18),liR (13),ICT (16),1CTT (16),P (16) 23.
DATA HR/'
1 2
8,8 3
4 24.
1 5
6 7-11 8,'
12-23 8,
25.
2 24-47 ' '
48-71 ','
72-95 ','
96-1198,
>1208/
26.
3 27 D AT A BD N/0.,0., -9 9. 9,-9 9. 9,0.,0.,-9 9. 9,-9 9. 9,0.,0.,-9 9. 9, 28.
1 -9 9. 9,-7.,-7.,- 1., 0. /
29.
D AT A DD X/36 5.,9 9. 9, 99.9,100.,36 5.,9 9. 9,99. 9,100.,36 5.,9 9. 9, 30, 1 99.9,100.,35.,35.,35.,254./
31.
D AT A IC,ICT,ITOT/48 *0/,1CTT/16* 0/,1CliK/20 8*0/, D2/16 *0./
32.
C 33.
C ALL BliU240 (TODA Y) 34.
C 35.
C HEA D AND WRITE OUT HEADING OF DA1 A FILE J6.
C 37.
PRI NT 2 00, TODAY 38.
R EA D (1,10 ) A 39.
10 FCR N AT (4 (40 A4/),4 0A 41 40.
PRINT 1 1, A
,20A4/))
41.
11 F OR M A T ( ' ', 'SITF: '/ ' 0 8,10 (*
42.
C 43.
C R EAD INPUT CARDS 44.
C 45.
R EA D ( 5,12) TITLE, JY,J M, JD,h Y, KM, KD 46.
12 F CE M AT ( 18 A4 /3I2,1 X,3I2) 47.
C ALL ID AT (J D, JM,J Y, JJ D) 48.
C ALL ID AT (K D, KM,K Y, JK D) 49.
I ST RT=J Y
- 10 00 +J JD 50.
I EN D= KY
- 100 0 + J K D 51.
PRI NT 203, 11TLE,JY,JM,JD,hY,KM,KD 52.
C 53.
C REA D DATA A ND C ATEGOSIZE BY MISSING PERIOD 54.
C 55.
75 P EA D (1,102, END= 99 9) I Y, ID,H (1), (D 1 (I),I= 1,4), il (2),
(D 1 (1),I=5,8), u (.3), ( D1 (I),I= 9,16), (C (I), I= 1,16) 56.
57.
1 02 FOR h AT ( 6X,12,13,41,3 ( 3F S.1,5 X,2 F5.1,5 X),4 F5.1, l
58.
1 T10,3 (6X, A 4,1 X, A 4,6X, A 4,1 A, A 4,5X),4 ( 1 X, A4) )
59.
I DA TE=I Y
- 10 00 + I o 60.
I F ( ID ATE. LT. ISTLT) GO TO 75 l
0-2 i
b 4
61.
I F (ID AT E. GT.I EN D)
GO 70 999 62.
CALL BLNK 63.
C 64.
C S UM MARI2E D AT A 65.
C 66.
DO 15 N=1,9,4 67.
15 IF (D1 (N). Eg.7777. 7) D 1 ( N) =0. 0 68.
C 69.
DO SO N=1,16 70.
ICTT (N) =ICTT (N) +1 71.
IF (D1 (N).LT.B DN (N)
.C E.
D 1 ( H).GT. BD X (N) ) GO TO 25 72.
IF (D2 (N).LT.BDN (N). 0 E.
D 2 ( N).G T. BD X ( N) ) GO TC 30 73.
GO TO 50 74.
25 IC (N) =IC (N) + 1 75.
GO TO 50 76.
I F (IC (N ).GT.ITOT ( h) ) ITOT (N) =IC (N) 78.
ICH K (M, N) =ICHK (M, N) +1 75.
ICT (N)=ICT(N) *IC (N) 80.
IC ( N) =0 81.
50 CONTINUE 62.
C l
63.
00 60 N=1,16 84.
60 D2 (N) =D 1 (N) 85.
C S 6.
GO TO75 87.
C 88.
999 CCHTINUL E 9.
C 90.
DO 65 N=1,16 c 1.
IF(D1 (N).GE.bDN (N). A ND. El (N).LE.BDX (N)) GO TO 65 92.
C ALL CilK (IC (N), M) 93.
IF (IC (N ).GT.ITOT ( N) ) ITOT (N)=IC (N) 94 ICli n (n, N) =ICH K (M, N) + 1 05.
ICT (N) =ICT ( N) +IC ( N) 96.
65 CONTINU E 97.
c 98.
DO e6 N=1,1b 99.
6o P (N)= (ICTT (h)-ICT (N)) *100./ICTT (N) 10 0.
C 10 1.
C PRINT O UT P ESULTS 10 2.
C 103.
PPINT 200, TODAY i
104.
P RI NT 2 01, TITLE l
10 5.
PMIt.T 207, (h (N), N= 1,3),il (1),H (1),H (2), d (3), H (2), h (3) 10 6.
DC 150 M=1,13 10 7, 1 S0 2nlar 202, HR (M), (ICH4 (M, N),N=1,16) 10 8.
PRI NT 2 04, (ITOT (N),N=1,16) 10 9.
PFIET 205, (ICT (N ), N= 1,16) 11 0.
P EI hT 2 06, (ICTT ( N),N =1,16) 111.
P RI NT 2 08, (P (N ), N= 1,16 )
112.
C 113.
C FCE MAT ST AT EMENTS 114.
C 11 5.
2 00 FOP MAT ( ' 1 ', ' PROGH2.h - MI SS ',10 X, ' V ER SION : 2',10X, 116.
1 ' D ATED: FEDEUARY 198 2',2 0X,' RU N DATE: 8,8A4) 117.
201 P0K M)1 (' O ',1GL4/' 0',' liO UhlY
SUMMARY
OF MISSING DATA')
11 8, 2 02 POR M AT ( ' 0 ', A8,4 X,1217,1 X,317,1 X,17) 119.
203 FOR MAT (/////8 0',' IN PU T OP TI CNS: '/ ' 0 ', ' TITLE:
120.
1 18 A4/' 08,' ST ARTING D AT Ei ', 313/ '
D-3
12 1.
2 'E hDING DATE:
',313) 12 2.
204 F OR MA T ( 8 0 ', ' LONGEST C AS E',1217,11,317,1 A,I7) 123.
2 05 F0E MAT ('O ', ' TOTAL H OU RS '/
- MIS SI NG ',3 X,1217,1 X,317,1 X,I7) 12 4 206 F OR M 4 T ( ' O ', ' T OT AL !!OU DS ', 14,1217,1 X,317,1 X, I I) 12 5.
2 07 FOP M AT (' 0 ',6X,3 (15X,Fo.1, ' METEES '),9 X, 'T EM PER ATU RE *,
126 1 ' DI FF EH EN CE * / ' ',13 X, 3 ( 2X,2 b ( *
') ),2X,2 2 ('- *) / e e,
127.
2' PERIOD O F ',
12 8 Y J 2X,3 (2 (3 X, ' k IB D' ),11 X, ' DEd '),31, ' (DEGR EES C/10 0 METER S) '/ * ',
129.
4 '
OCCU BE NC E ',
130.
5 3X,3 (3 X, 8 DIR ',31,' SP EE U',2 X, ' TEMP',3 X, ' POI NT '),1 X, 13 1 6 3 ( F6.1, ' ' ),3X, ' PH ECIP '/ '
(HO URS) 8, 8
13 2.
7 3 ( 2X, ' (D EG ) ',2 X, ' ( M/S) ', J X, ' (C) ',4 X, ' (C) ',1 X),
13 3.
3 2X,3 (F 6.1,1 X), JX, ' (M M) '/ '
8,'
13 4.
9 12 (2 X, '----
'),14, 3 ( 2X, 8 - - -
' ), 3 X, 8 ---- 8 )
- 135, 209 FOR MAT (' O ', 'P ERCE NT DAT A'/'
EEC0VERY 8,
13 6.
1 12 F7.1,1 X, 3 F 7.1,1 X, F 7.1) 137 STOP 138.
END 139.
SUuh00 TINE BLNK 14 0 C
14 1 C.....C HECK FOR B LA NK D AT A FIELDS AND REPLACE AS MISSING 14 2.
C 14 3.
C CM MO N/ DATA 1/D1 (16),C (16) 14 4 D AT A UK/'
'/
14 5.
C 14 6.
DO 10 I=1,16 1 'l '.
10 I F (C (I). dy. 8h) D1 (I)= 9999.9 14 8 R kT CD U 149.
END 150 S UB RO UTIN E CH K (IC, M) 151.
C 15 2.
. C.....C AT EGORIZIES OCCURENCE INTERV ALS 153.
,C 15 4.
DIM ENSION N (12) 15 5.
D AT A N/1, 2, 3, 4, 5, 6, 11, 23, 47,7 1, 9 5,1 19/
150.
DC 10 M=1,12 157 10 I F (IC.L E. h (MJ ) RETURN 15U.
M=13 159.
R ET UR N 160.
END 16 1.
SUPROUTINE IDAT (ID,IM,IY.JD) 16 2.
C 16 3.
C......T HI S SUBROU TI NE CliA NGES MCNTil A ND DAY TO JULIAN DAY 164.
C 16 5.
DIM tNSION M0h (12) 16 6.
D AT A MO N/0,31,59,90,'120,151,181,212,243,273,304,334/
167 J D= MO N (IM) 16 8.
J D= J D + 1 D 16 9.
Y R=1Y *0. 25 17 0.
IYE=YR 171.
S=1B-IYE 172.
IF (S.E y. 0. 0. AN D. JD.GT. 59) JD=JU+1 173.
R ET UR N 17 4.
END 1
D-4
APPENDIX E PROGRAM LISTING OF PRECP r
s Y
e t
l l
I
\\
l i
f 1
I 1
E-1
1 C
2.
C 3.
C 4.
C PPECP 5.
C 6.
C THIS PROGR AM C ATEGOPIZES PPECIPIT) TION DA?A LY 7
C IdTENSITY, STABILITY CLASS, MOKTH AND DAY 8.
C 9.
C
- VERS IO N: 1 11.
C
- DATED: APPIL 1981 12.
C 13.
C
- RE VI SED: WILLI AM S NELL 14.
C
- VEBSIO N: 2 15.
C
- DATED: FEBRUAFY 1982 16.
C 17 C
18.
C 19.
R EA L*8 PPT (17) 20 COM MO N/ D ATA 1/D (4),C (4 )
21 DIM ENSION TOD A Y (8), A (20 0), TITLE (18),S (8),JPC (8,17),JPM (12),
22.
1 IP M (12,17), MONTH (12),PM (12),IPS (0),IPC (17), PROT (17),CU M (17),
23.
2 P9 (12),PC (8),PP (12,31),H (3),JPS (8),PJ (8) 24 C
25.
C INITI A LIZE V AR I A BL ES 26.
C D ','
E ' '
F ',
27 D AT A S /'
A ','
B ' '
C '
28.
1 '
G ','MISS'/
29.
D AT A PPT /'
O.0',
30 1 ' > 0. 0. 2 5', ' >. 2 5. 50 ', '). 5 0. 7 5 ', ' ). 7 5-1. 0 ',
31.
2 ' > 1. 0- 2. 0 ', ' > 2. 0 -3. 0 ', ' > 3. 0- 4. 0 ', ' ) 4. 0 -5. 0 ',
32.
3 ' > 5. 0- 7. 5 ', ' > 7. 5 - 10. ', ' > 10. - 15. ', ' > 1 5. -2 0. ',
33.
4 ' > 20.- 2 5. ', ' > 2 5. - 3 0. ', ' > 3 0. - 4 0. ', ' > 4 0.
'/
34 D AT A PP/3 72 *0./, P R, PC,PJ, PT,P M, PR CT, CUM /7 5*0./
35.
DATA II CT,I CT/2
- 0 /, J P M, I P S, J PS, I P M, I P C, J P C/ 3 8 5* 0/
36.
DATA MO NT H/ 'J A N ', 'F EB ', ' M AR ', ' APP ', ' M AY ', 'J U N ', 'J UL ', ' A UG ',
37 1 ' S EP ', ' O CT ', ' N OV ', ' D EC ' /
38.
C 39 C ALL RHB240 (TODA Y) 40.
C 01.
PPINT 205, TCDAY 42.
2 05 FOU M AT (' 1 ', ' PROGR AM : PR EC P ',10X, ' VERS IO N : 2',10X,
,8A4) 43.
- ' DATED: FEBFUAPY 19P2',20I,' FUN DATE: '
44.
C G 5.
C VEAD AND WRITE TITLE FPOM DATA FILE 46.
C 47.
R EA D (1,11) A 48.
P RI NT 12, A 49.
11 FCP MTI(4 (40 A4/),40 A 4) 51.
C
,2 0 A4/9 ('
',20A4/)////)
50.
12 FOR MAT
(' O', ' SITE : ' /'
52.
C F r,A D INPUT CAPDS 53.
C 54 C
TITLE = TITLE 'O BE PBIhTED ON FACH PAGE 55.
C IS = INTERVAL FOP D ETEPMINATION OF ST ABILITY 56.
C BASED ON DELTA-T 57.
C IS=1 : UPPER - LOWE3 58.
C IS=2 : UPPER - INTERMEDI ATE 59.
C IS=3 : INTEP MEDI ATE - LOWEP 60 C
LY1,LM1,LD1 = STARTING YEAB, MONTH AND DA Y E-2
61.
C LY2,LM2,LD2 = ENDING YEAP, MONTH AND DAY 62.
C 63.
P EA D (5,13) TI TL E, IS, L Y 1, L M 1, L D 1, L Y2, L M 2, L D2 64.
13 FOP M AT (18 A4/11,11,3 I2,11,312) 65.
PPI NT 14, T IT L E, L Y 1, L M 1, L D1, L Y2,L M2, L D2 66.
14 FOP M.1T ( 8 0 8, ' TITLE : ',18A4/'O','STAPT DATE:
67.
- 313/'
','END D AT E: ',313////)
68.
C ALL ID AT (LDI,LM1,LY1,J D1) 69.
C ALL ID AT (LD2,LM2,L Y2,JD2) 70.
I ST RT=L Y 18103 0 + JD 1 l
71.
I EN D= LY 2* 10 00 +J D2 72.
C 73.
C PEAD DATA FROM TA PE - NPC FORMAT 74.
C 75.
35 R EA D (1,100, END= 99 9) I Y,ID, (H (I),I= 1,3),
76.
1 (D (N), N= 1,4), (C (N),N=1,4 )
l 77.
100 FOR M AT (6X,I2,I3,41,3(F5.1,301),4F S.1, T121,4 (II, A4) )
l 78.
I DA TE=I Y
- 10 00 +I D l
79.
I F (ID AT E. LT.ISTFT ) GO TO 35 80.
I F (ID AT E. GT.IEN D) GO TO 999 l
81.
C ALL BLNK 82.
I IC ?= IICT + 1 83.
I F (D (4).LT. 0
.0*.
D (4).GT.25 4. ) GO TO 35 84 C
85.
ICT=ICT+1 86.
I F(D(4).GT. O.) JC T= JC T+ 1 87.
C ALL JPRECP (D (4),II) 88.
C AL L JD AT (I Y,ID,M M, MD) 89.
C 91.
P P (MM,M D) =P P (MM,M D) +D (4) l 92.
J PC (IC,II) =JPC (IC,II) +1 l
93.
IPM (MM, II) = IP M (MM,II) +1 i
94 PM(MM)=PM (MM) +D (4) l 95.
I F (D (4). GT. O. ) JPS (IC) =JP S (IC) + 1 l
97.
J PM (M M) =JPM (M M) +1 98.
IPC (II) =IPC (II) +1 99.
PT= PT +D (4) 10 0.
C 101.
GO TO 35 10 2.
C 10 3.
999 CONTINUE 104.
C 10 5.
DO 40 I=1,8 106.
P J (I) =J PS (I)
- 10 0. /J CT l
107.
40 PC (I) =IPS (I)
- 10 0./ICT 108.
C l
109.
DO 45 I=1,12 110.
45 P R (I) =J PM (I)
- 100./ICT l
11 1.
C 11 2.
DO 50 I=1,17 11 3.
P RCT (I) =IPC (I)
- 10 0. /ICT 114.
DO 50 J=1,I 115.
50 CUM (I) = CUM (I) +PPCT(J) 116.
C 117.
C 118.
P =I CT
- 100. / IICT 119.
PJJ= JCT *100./ICT 120.
P RI NT 275, ICT,IICT,P E-3
121.
2 75 FOR MAT (//////' O ', ' HOU PS. V ALID PRECI PITATION: ',16/' ',
122.
1
' TOTAL HOUPS EXAMINED:
',15/' ',
12 3.
2
'PEFCENT DATA PECOVERY:
', F6.1) 12 4.
L 1= 1 12 5.
L 2= 3 7
120.
IF (IS. EQ. 3) L 1= 2 127 I F (IS.E Q. 2) L2=2 126 C
12 9.
PRINT 205, TODAY 130 PFI NT 2 50, TITLE 13 1.
PRINT 201 132.
PRINT 210, (MONTH (1),1= 1,12) 133.
DO 300 N=1,31 134 3 00 P PI NT 215, N, (PP(I, N),I=1,12) 135.
PPINT 220, (P M (I),I=1,12),PT 13 6.
C 13 7.
PRINT 205, TODAY 138.
PRINT 250, TITLE 13 9.
PPINP 202 14 0.
PRINT 211, (MONTH (I),I= 1,12) 141.
Do 301 N=1,17 142.
301 P91NT 216, PPT (N), (IP M (I, h),I=1,12) 143.
PRINT 221, (J PM (I),,I= 1,12), (P P (I),I=1,12) 14 4 C
14 5.
PRINT 205, TODAY 146.
PRINT 250, TITLE 14 7 P RI NT 200, H (L1), H (L2 )
14 8.
PPI NT 203 14 9.
PRINT 212, (S (I), I= 1,8) 150 DO 302 N= 1,17 151.
3 02 P PI N' 217, PPP (N), (JPC (I, N),1=1,8),IPC (N), PPCT(N), CUM (N) 152.
PPIhT 222, (J PS (I), I= 1,8), JCT,PJJ, (PJ (I),I=1,8) 153.
PPINT 2 23, (IPS (I),1= 1,8),ICT, (PC (I),I= 1,8) 154 C
155.
200 FOR M AT ('O ', 'OELTA-T INTER VA L:
',F6.1,
,F6.1,'
156.
157 201 FOP MA T (/' 0',T 29,' PPECIPIT ATIO N SU MM ARIZED B Y MO NTH A ND DR Y',
158.
1 ' IN MILLIMETEFS')
15 9.
2 02 FOR M AT (/' n',T 28,' PR ECIPITATION OCCURP ENCES SUMM ARIZ ED BY',
16 0.
1 '
MONTH AND INTENSITY IN HOUPS')
161 2 03 FOR M AT (/' O',T20,' PR ECIPIT ATION OCCU RR ENCES SUMM ARIZED BY',
162.
1 ' STABILITY AND INTENSITY IN HOUBS')
163.
210 FOR M A T (' 0 ', T5 5, ' MON TH '/'
8,'
D AY ',12 (SI, A3) /)
164 211 F0P M4 T ( 8 0 ', T5 9, ' MONTH '/ ' ', 'I NTEN SITY ',12 (SI, A3) /' ','
(M M) ' /)
16 5 212 FOR M AT (' O ',T3 8, ' STA BILITY CLASS ', T109, ' CU MUL A TI VE '/' ',
166.
1
'I NT EN SITY ',8 (51, A 4),51, ' TOT A L',2 (5X,' PEPC EN T' ) /' ','
(MM) '/)
167.
215 FOP M AT ( *
,14,1I,12F8.1) 168.
2 16 FORMAT ('
',11, A 8,1218) 16 9.
217 FOR M AT ( * ',11, A 8,9I 9,41, F 8. 2,4 I, F 8.1) 170.
220 F OR M A T ( ' O ', ' TOT AL ',12 F8.1,5I, ' TOT A L=', F 8.1, 8 MM')
,12F8.1) 17 1.
221 POP M AT ( ' 0 8, ' TOT AL HPS',12I8,/'08,' PEFCENT '
17 2.
2 22 FOR M AT (/' O',' HHS WITH '/' ',' PRECIP 8,919,41,F8.2/'0',
,8 F9. 2) 173.
- ' PEPCENT '
17 4.
223 FOPMAT(//'O',' TOTAL HPS',919/'0',' PEPCENT ',8F9.1) 175.
2 50 FOP M) T ('O ',18 A4) 17 6.
C 177.
STOP 17 8.
END 17 9 SUBROUTINE BLNK 180.
C E-4
181.
C CHECK FOP BLA NK DATA FIELDS A ND CONVERT TO MISSIN G 18 2.
C 183.
COM MO N/ DATA 1/D (4),C (4) 18 4.
D AT A BLK/'
'/
18 5.
C 186.
Do 10 N=1,4 187.
10 I Y(C(N).EQ. BLK) D (N)=9999.9 18 8.
R ET UP N 18 9.
END 190 S UBROUTINE ID AT (ID,IM,IY,JD) 191.
C 192.
C.....THIS SUBROUTINE CHA NG ES MONTH A ND DAY TO JULI AN D AY 193.
C 19 4.
DIMENSION MON (12) 19 5.
D AT A MON /0,31,59,90,120,151,181,212,243,273,304,334/
19 6.
J D= MO N (IM) 197.
J D= JD +ID 19 8.
YR=IY*0.25 19 9.
IYR=YR 200 S =Y P-IY R 20 1.
IF (S. E Q. 0.
. AN D. J D. GT.5 9) J D= JD + 1 20 2.
R ET UF N 203.
END 204.
SUBPOUTINE JDAT (I Y,JD,IM,ID) 20 5.
C 206.
C THIS SUBROUTINE CONVERTS JULI AN D AY TO MONTH AND DAY 20 7.
C 20 8.
DIMENSION MM(12,2) 20 9.
D AT A MM/0,31,59,9 0,12 0,151,181,212,24 3,27 3,30 4,334, 0,31,60,91,121,152,182,213,244,274,305,335/
21 0.
21 1.
C 212.
YR=IY*0.25 213.
I YR =Y P 214.
S=YR-IYP 215.
L=1 216.
I F ( S. EQ.0.) L=2 217.
C 218.
DO 10 I=2,12 219 I F (JD.L E. MM (I,L) ) GO TO 15 220.
10 CONTINU E 221.
I=13 222.
15 I D= JD-M M (I-1, L) 223.
I M= I-1 224.
R ET UR N 225.
END 22 6.
SUBROUTINE JPPECP (P,1) 227.
C 228.
C ****
THIS SUBROU'INE CA TEGO PIZES PPECIPIT ATION 229.
C 230.
DIM ENSION A NT (16) 231.
D AT A AMT/0.,. 2 5,. 5,.7 5,1.,2.,3.,4.,5.,7.5,10.,15.,
232.
- 20.,25.,30.,40./
23 3.
DO 10 I=1,16 234.
10 IF(P.LE. AMT (I)) RETURN 23 5.
I=17 236.
END 23 8.
S UBPOUTINE STABLE (S,K) 239.
C 240.
C
- CALCUL ATE ST ABILITI CL ASS A - G BASED ON DELT-T f
E-5
24 1 C
24 2.
DIMENSION CL(6) 203.
D AT A CL/- 1. 9, - 1. 7,- 1. 5, -0. 5,1. 5,4. 0/
244 K=8 245.
I F ( S. LT.- 7.
.0".
S. GT. 3 5. ) *ETUBN 2u6 Do in K=1,6 24 7 10 I F (S. LF.CL (K) ) RETUCN 24 8 K =7 249.
9E'UPN 250 END E-6
APPENDIX F PROGRAM LISTING OF PRINT l
1 I
i F-1
l 1
C
)
2 C
3 C
4 C
PRINT 5
C 6
C THIS PROGRAM PRINTS HOURLY DATA FROM A DATA 7
C SET TN THE NRC FORMAT. DATA PPINTED IS WIND 8
C SPEED, WIND DIRECTION, SIGMA THETA, TEM PER ATilRE,
9 C
DEW POINT, DELTA-T AND PRECIPITATION.
10 C
11 C
- PROGRAMMERt WILLIAM Sf2LL 12 C
- DATES dl1NE 1978 13 C
- VERSION: 1 14 C
15 C
- MODIFIED W.
SNFLL 16 C
- DATEt MARCH 1982 17 C
- VFRSION: 2 18 C
19 C
20 C
2 '1 DIMENSInti TODAY(R),B(8),A(200),TTTLEf1A) 22 CouMON IW(3),CWC3),D(16),Cf16) 23 DATA R/'A','BI,'C','De,tEt,tyt,tgs,s.t/
24 DATA ICK/52/
25 C
26 CALL RHB240 (TODAY) 27 PRINT 11, TODAY 28 11 FORMAT (818,' PROGRAM PRINT',10X,'DATFDs MARCH 19828, 29
- 10X,' VERSION: 28,15X,'RUN DATE: ',8A4) 30 C
31 READ (1,12) A 32 PRTNT 13, A 33 12 FORMAT (4(40A4/),40A4) 34 13 FORMAT (///'O',' SITE
'/'
',10('
',20A4/))
i 35 C
36 READ (5,14) TITLE,IS,IE 37 14 FORMAT (1RA4/I6,1X,I6) 38 PRINT 16, TITLE,IS,IE 39 16 FORMAT (///'O',' TITLE
',18A4///'O',
40 1 ' DATES SPECIFIED TO BE PRINTEDt'/'
8, 41, 2 SX,' START DATE:
',I6/'
',5X,'END DATE:
',I6) 42 C
43 GO TO 25 44 15 TCKs0 45 PRINT 11, TODAY 46 PRINT 200, TITLE,H1,H2,H3,H1,H1,H2,H3,H2,H3 47 GO TO 50 48 C
49 C
50, 25 READ (1,100,END=998) TY,JD,IH,H1,TW(1),(D(N),N=1,4),H2,IWC2),
St.
1 (D(N),N=5,8),H3,TWC3),(D(N),N=9,16),CWC1),(C(N),N=1,4),
52 2 CWC2),(C(M),N=5,8),CW(3),(C(N),N=9,16) 53 CALL JnATCTY,JD,TM,ID) 54 TDATF=IY*10000+IM*100+TD 55 IFCIDATE.LT.TS) GO TO 25 56 IF(IDATE.GT.IE) GO TO 998 57 C
58 50 ICK=TCK+1 59 IF(ICK.ED.S31 GO TO 15 60 IH=IH/100 j
F-2
(
61 C A f.!, RI.N V 62 CALT, SIGMAfD(2),J4) 63 CALL SIGMAfD(6),J5) 64 CALF, S I G u A f D ( 10 ),.16 )
65 CAT,b STARI,F(D(13),J1) 66 C AI,f, ST A RI.F ( D ( 14 ), J 2 )
67.
CAT,L STAnLE(D(15),J3) 68 C
69 PRINT 701, IY,IM,ID,TH,IW(1),D(l' e(?),H(J4),D(3),D(4),IWC2),
70 1 D(5),D(6),B(JS),0(7),D(H),IW(3),s(9),D(10),Hfd6),D(11),D(12),
71, 1 D(13),R(J1),D(14),H(J7),D(15),4(.13),I(161 72 Go TG 75 73 C
74 100 FORMAT (6Y,T2,T3,I4,3(F5.1,IS,4F5.1,5W),4F5.1,T16, 75 1 3(5X,$(IX,A4),5X),4(1X,A4))
76 200 FDPMAT('O',1RA4/'O',T104,'TEMPERAT! IRE DIFFERENCE',/8 ',3X, 77 1 3(16X,F6.1,8 METERS'),TIOS,'(DEGREES C/100 METERS)'/'+',
l 78 7 13X,3(2R(8 8),2X),T104,23('.')/'
79 3 1?X,3('
WD WS SICMA TEMP DEWPT 8),
(
RO.
4 3(F6.1,'-
'),'PRECIP'/8 ',8YR 99 DY HR',
91 5 3(' (DEC)(M/S)
(DEG)
(C)
(C)
'),1X 82 6 3(F7.1,1X),'
(MM)f/'+',4('..
8),
R3 7 3(8
'),3('.......
'),'......')
84 201 FORMAT ('
',I2,3I3,3(1X,14,F5.1,F6.1,1X,A1,2F6.1),
R5 1 3(F6.1,1X,A1) F7.1) 86 C
A7 99R STOP RR.
NND A9 SilPROllTINE PLNF 90 C
91 C...CHFCF FDP RLANK DATA FIET.DS AND CDNVERT TO -99.4 OR -99 02 C... CHANGE CDDES FOR MISSING TO 09.9, 990.4 OR 999 93 C
94 CnMMDN TW(3),CWC3),0(16),C(19) 95 DATA RK/'
'/
96 DO 70 I=1,16
(
97 GO Tn (7,5,5,5,7,5,5,5,7,5,5,S,7,7,7,5),I t
98 5 IF(DCT).EO.9999.9) D(1)=999.9 99 GO TO 10
- 100, 7 TF(D(I).FO.9999.4) D(T)=99.9
- 101, 10 TF(C(T).FO.BK) D(I)==99.9 I
- 102, 20 CONTTNilE 103 DO 15 I=1,3 104 IW(I)=IW(I)*.1 105 IF(IW(I).EO 9999) TW(I)=999 106 15 IF(CWCI).EO.PK) IW(!)==99 107 R ET t!Q N 10R.
r'in l
109 S11 PRO'IT T H E JD AT ( T Y, JD, T M, I D )
110 C
111 C
THTS SlJ ARutlTINE CONVERTS dlll>I AH DAY TD MONTH AfID DAY i
112.
C i
113 nIMENSTOM MM(17,2) 114 DATA MH/0,31,59,40,170,151,lH1,212,243,773,364,334,
- 115, 0,31,60,01,171,1S?,3A2,713,244,774,305,335/
116 C
117 YR=IY*0.2S 118 IYR=YR 119 S=YR-TYR 120 f.= 1 F-3
171 TFfS.F0.0.)
I,= 7 172 C
123 On to 107,12 174 I r f d D. I.E. M M ('1, t. ) ) GO TO 15 l
125 t0 C0f1TINilE 176 i=13 127 15 in=JD-94(T-1,L) 178 TM=T-1 170 RETT 1HN 130 rNp 131 SUBpnIITTHE SIGMACSTG,K) 132 C
133 C...TH T S ROIIT T NV C A{, CUT, ATES ST ARTI, TTY FROM SIGMA THETA 134 C
135 DIMENSTOU Sf6) 136 NATA S/27.5,17.5,17.S,7.5,3.R,2.1/
137 V=H 138 TFfSIC.En.-99.0
.OR. STG.EO.099.4) PETilRil 139 Dn to F=1,6 in TFfSIC.GE.Sfl()) HETURN
- 140,
~
k=7 141 142 R ET U R ?J 143 FND 144 S II P R 0ll T I fl E S T A P L F ( U T, I S )
145.
C 146 C...CAICilt. ATE STARII,ITY CLASS BASED ON DEGREES C PEH 100 METERS 147 C
148 DIMENSION Sf6) 149 DATA S/-1.4,-1.7,-1.5,-0.5,1.5,4.0/
150 TS=R 151.
T F f DT. F.O. 9 0. 9 0P. DT.EO.-99.9) R E T ilp N 152 On to 1S=1,6 153 TFfDT.LE.SfTs)) DETilRN 154 1 n couTTuliE 155 TS=7 j
156 RFTt1RV 157 r'J D i
F-4
APPENDIX G PROGRAM LISTING OF QA l
l 1
i l
l G-1
1.
C 2.
C 3.
C 4.
C QA 5.
C 6.
C TdIS IS A QU ALITY ASSUR ANCE PSOGP AM F0F METE 000 LOGICAL 7
C DATA ON MA GN ETIC TAPE IN THE NRC FORMAT. PPOGPAM QA 8.
C CA N HA NDLE DATA FF OM A LL THt EE LEVELS SIMULTANEOUSLY.
9.
C TH E VAPI AB LES CH EC KED AD E WIND SPEED, WIND DIRECTION, 10.
C DEL'A T, TEMPEPATUPE, D E 's PCIN' AND TFECIPITATION.
11.
C 12.
C
- PPOG P A MM EP : WILLIA M SNELL 13.
C
- DATE: APSIL 1978 14 C
- V8MS IO N : 1 15.
C 16.
C
- MO DI FI ED :
W.
SNELL 17.
C
- DA*E: FEBFUAPY 1982 18.
C
- VERSION: 2 19.
C 20 C
21 C
22.
C OM MC N/ DATA 1/LE V,IS,F L1,EL2,EL3,1CHK, NS (18),IP,ID 23.
C OM MO N/ D AT A 2/IY 1, IY 2, I J 1,I D2, IH 1, IH 2 24.
C OM MO N/ DATA 3/WF 1 (3),W S2 (3 ), WD 1 (3),W D2 (3), T 1 (3), T2 (3),
DT 1 (3),DT2 (3), P1,P 2, D1 (3) 25.
26.
COM MO N/ DAT A 4/KX (3), JJ (3), KP, KT (6),J A,JB,JC 27.
COM MO N/ DATA S/IP AG E,INC, TITLE 28.
CCM MC N/ DATA 6/C ( 16 )
20 C OM MO N/ DA *A 7,'LY 1, LM 1, LD 1, LY 2, L M 2, LD 2 30 C OM MON / DA Tn u/TODR Y (8) 31.
C 32.
DIM ENSION A B(200), TITLE (19) 33.
DIMENSION W DM N (3),W DM X (3), W SM N (3),WSMX (3),'Mh (3),TMX (3),
34 1 DM H (3), DMX (3), DT MN (3 ), DT MX (3), N'n D (3), N WS (3), NT (3), ND (3),
35.
2 NDT(3) 36.
C 37 C
I NITI ALIZE 38 C
39 D AT A WD M N, W SM N, TM N, DM N, DT M N, P MN/16* 99 9. 9/
0 DATA WD MX,W SMX, TM X, DM X, D'MX, P MX/16*-9 9. 9/
41.
DATA N W D, NW S, NT, N D, NDT, N F /16
- 0/
42.
C 43.
C ALL PHP240 ('OD4 Y) 44 C
45 Do 12 I=1,3 46.
K X (I) =1 47.
K T (I) = 1 48.
12 K'(I+ 3) =0 40 DO 13 I=1,1P 50 13 N F (I) =0 51.
KP=1 52.
J A= 1 53.
J u= 1 54.
J C= 1 55.
INC=59 56.
ICHK=0 57 IPAGE=1 1
58.
C l
59 C
P EA D INFUT CARD 1
60 C
G-?
61.
C L EV... LEVEL OF ME ASUP EM ENTS DESIP ED:
62.
C UPPER (U) ONLY LE V= 1 63.
LEV =2 64 C
UPPEP (U), INTEPMEDIA?E (I) + LOWhP (L)
LEV =3 65.
C LCWEP (L), CNLY, L EV=4 66.
C I S.... D ELTA T F0F LEV ELS DESIPED:
U-L,IS=1 : U-I,IS=2 :
67.
C I-L, IS = 3 : U-L,U-1,IS=4 :
69.
C U-L, I-L, I S = 5 :
"-1,I-L,IS=6 69.
C I-L,U-I,U-L,IS=7 l
70 C
IF NO ST ABILIT t ME AS EUMEMENTS AME DESI4ED, IS=0 l
71.
C I W....T O CH EC K WIND FPEED + DIPECPION, IW=1 (IF NCT, IW=0) 72.
C I T.... T O Cil EC K TEM 9LHATUPE, IT=1 (IF NOT, IT=0) 73.
C I D....*O CH 2C K DF W POINT WI*H TEM PEF ATUPE, ID=1 (IF NC*, ID=0) 74 C
IP....TO CH EC K P7 EC IPIT ATION, IP=1 (IF NOT, I P= 0) 75.
C 76.
C LY1....
YEAE CIIECKING IS TC B EGIN 77 C
LM1....
MONTH CHECKING IS TO BEGIN 78.
C L D1.... D AY CHECKING IS TO BEGIN 79.
C L Y2.... YEAR CH EC KI NG IS TO END 80 C
LM2....
MONTH CliECKING IS 'O END 81.
C L D2.... DAY CllECKING IS T O END 82.
C 83.
" EA D (5,15) LE V,IS,I W,IT,I D,IP,L Y1,L M1,LD1,I Y2,L M2,L D2,TITL E 84.
15 F0n M AT (611,2 (1x,312)/19 A G) 85.
C ALL lie AD1(INC,TITL E,IP AGE) 86.
C ALL llE AD2 (LEV,IS,I W, IT,I D, IP) 87.
TNC=58 88 I F (ID.EQ. ')
IT=1 89.
C 90.
C AL L ID AT (L D1,L M1,L Y1,L D3) 91 C ALL ID AT (LD2,LM2,L Y2,LDG) 92.
IS'PT=LY1*1000+LD3 I
93.
ISTOP=LY2*1000+LD4 l
94 I
i 95.
C F EA D AN D WFITE TITLE F00M DATA FI LE 96.
C 97.
P 91 NT 36, AB l
99.
35 F0P MR T(u (un.s 4/),4 0A 4)
I 10 0 36 F0; MAT (' O ',20 A4/4 (' ' 20A4/))
19 1.
c)LL ifdAD1 (INC,TITL E,IP7G E) 10 2.
C 133.
C PEAD DATA FROM DATA FILE AND MAKb A PPPOPPIATE CHECKS 10 4.
C 10 5.
1 01 CONTINUE 10 6.
F EA D (1,41,END=103 ) IY 1, ID 1,Ill 1, EL 1, W D 1 ( 1), W S 1 (1), T1 (1), D1 (1),
10 7.
1EL2,W D1 (2), WS 1 (2),* 1 (2),D1 (2),EL3,W D1 (3), WS 1 (3),T1 (3),D 1 (3),
10 P.
2 (D T1 (I),I= 1,3),P 1, (C (I),1= 1,16) 109.
41 FCP M A * ( 6 X,12,13,14, 3 ( 3F 5.1, 5X,2 FS.1,5 X),4 F 5.1, 110
- T16,3 (6 X, A 4,1X, A 4,6X, A 4,1 A, A 4,5X ),4 (1 X, A 4) )
11 1.
I D.i TE=I Y 1
- 100 0 + ID 1 112.
I F ( ID AT L. LT.I STFT) GO TO 10 1 11 3.
I F (ID AT E. GT.ISTOP) GO TO 103 114 C
11 5.
CALL DL N K 11 6.
C 11 7.
C.....D ET LE MI NF M A XIM UM A ND MINIMUM OF EACH VALUE 118.
C l
119.
DO 48 N=1,3 120 IF (sD 1 ( N).GT. 36 5.
.0#.
W D1 (N). LT. O. ) Go TO 43 G-3
121.
I F (W D1 (N).LT. WDMN (N))
' DdN (N) =W D1 (N) w 122.
IF (hD1 (N).GT. WDMX (N)) W DM X (N) =W D1 (N) 12 3.
N uD (N)= NW D(N) +1 12 4 43 I F (aS 1 (N).GT. 99.9. 0F. mS 1 (N).LT. 9. ) GO TO 44 12 5.
IF (WS 1 ( N).LT. WSMN (N)) W SM N (N) = WS1 (N) 126.
I F ('aS 1 (N).GT. WSMX (N)) WSMX (N) =WS1 (N) 12 7.
NhS (N)= NWC (N) +1 129 44 I F (T1 (N ). GT.9 9. 9
.0".
T 1 ( N).LT.-9 9. 9) GO TO 45 12 9.
I F (*1 (N). LP.'MN (N ) ) TMN (N)='l (N) 130 I F (*1 (N).GT.?MX (N)) ?dX (N)="1 (N) 131.
N'( N) -N T (N) + 1 132.
45 I F (D1 (N).GT.100
.0P.
D 1 ( N).LT.-9 9. 9) GO TC 46 13 3.
I F (DI (N). LT. DMN (N) ) DMN (N)=D1 (N) 13 4 I F (D1 (N).GT.DMX (N)) DMX (N) =Di (N) 135.
N D(N) =N D (N) +1 136.
46 I F ( D* 1 ( N).G'. 35.0. OP. D'1 ( N).L T. -7.0) GO TO 48 13 7 I F ( DT 1 (N).LT. DTdN (N)) DTM N (N) = DT1 (N) 13 8.
I F (D* 1 ( N).G'. D'dX (N) ) DTMi(N) =DT1 (N) 130 N D* (N) = ND? ( N) + 1 14 0 48 CONTINUE 14 1.
I F ( P 1. G T. 25 4
.0P. P1.IT.O.) GO TO 49 14 2.
IF (P1. LT. Pd N) PMN=P1 143.
I F ( P1.G T. PM X) PMX=P1 14 4 hP=NP+1 14 5.
49 CONTINU F 14 6.
C 14 7 I F (IW. E Q.1) CALL WSWDQ 14 8.
I F (IT. E Q.1) CALL TEMPQ 14 9.
I F (IP. B Q.1) C A L L PC PQ 150 I F (IS.N E. 0) C ALL ST ABQ1 15 1.
I F (IS. N E. 0) CALL STABQ2 152.
C 15 3.
C P EINITI ALIZ E VAPI AHLES 154 C
155.
ICif K= 1 156.
I Y2=I Y1 157.
102 =101 150 11!2 =I111 159.
DC 50 N=1,3 16 0 W S2 (N)= WS1 ( N) 16 1.
W D2 (N)= WD1(N) 162.
D'2 (N ) = DP 1 ( N) 16 3.
T 2 ( N) =71 (N) 16 4.
C ALL SECTOR (WD2 (N), JJ (N))
165.
50 CON"INUF 16 6.
P2=P1
'16 7.
Go 'O 101 168.
C 169.
C C11ECK L AS* DA') PECOP D AN D PPINT PESULTS 170 C
17 1.
103 ICHK23 17 2.
I F (IF. N F. 0) CALL S?ADQ2 17 3.
I F (IT.E Q.1) CALL TEMPQ 114 I F (IP.E Q.1) CALL PC PQ 17 5.
I F (I w. EQ.1) CALL WSWDQ 176.
IF (IW. N E.1) GO TO 75 I
17 7 I NC =5 0 178.
C A L L lie P D 1 (INC, TITL F.,IP AG E) 17 9.
CALL HEAD 3 18 0 75 INC=59 G-4
181.
C ALL HE AD1(INC, TITLE,IP AGE) 182.
C 18 3.
P 21NT 8 0, E L1,FL2,EL3, ( (N WD (I), WDMN (I), WDMX (I)),I=1,3),
184.
1 ( (NW S (I),W SM N (I),W SM X (I) ),I= 1,3),
185.
2 ( ( N' (I),TM N (I),T MX (I)),I= 1,3),
186.
3 (( ND (I), DM N (I),DMX (I)),1=1,3) 187.
80 FCP M AP (' O ',T3 5, 'S UM M ARY O F MA XIMU M AN D MI NIMU N V ALUFS'//' O ',
19 8 1 14 X, 3 ( 17 X, FS.1,' M ') /'
,T26,3 (19 ('
8 ),5X) /' O',
18 9.
2 T26,3(' ilP S MIN MAX ',51)/'
190 3 T2 6, 3 ( ' -----
',5X) / ' 0 ',
i 19 1 4
'W IND DIPEC* ION (D EG ) ',T 26,3 (I S, 2F 7.1,5 X) /' 0 ',
l 19 2.
5 ' WIND SPEED (M/S)
,T26,3 (I 5,2F7.1,5X)/ 'O ',
193.
6 'TEMPERATUPE (DEG C) ',T 26,3 (I S, 2F 7.1, 5X) / ' 0 ',
19 4.
7
'M CI ST UD E (D EG C 0" %) ', T26,3 (IS,2 F7.1,5 X) )
19 5.
P 91 NT 81, E L1, E L3, E L1, E L2, EL2, EL3, 19 6.
( ( UDT (I),DTM N (I), DTM X (I) ),1= 1,3) 197 91 FOR M AT (///' 0',T26,3 (2 X, F5.1, '
, F 5.1, '
M',7 X) /' ',
198.
1 T2 6,3 ( 19 ('
' ),5X) / 'O ',
19 9 2 ' DELTA T (DEG C/100M)
, T2 6,3 (15,2 F7.1,5 X) )
l 200 I F (IP. E Q.1) PPINT 82, NP,PMN,PMX 20 1.
82 FCCMAT(///'O',778,'GSCUND LEVEL'/'
,"7 4,19 ('
' ) / ' 0 ',
23 2.
1 ' P PECI PIT A TION ( MM) ',* 7 4,I S,2F 7.1) 20 3.
C l
20 4 PHINT 90 20 5.
90 FOPMA'('18,'*****
LA ST D A' A PFCO PD II AS BEEN PEAD
- '/'O' 20 6.
1******
EX ECUTION SUCCES FULLY TERMIN ATED *****')
20 7.
98 STOP 20 8.
E ND 209.
SUBPOUTINE BLNK 210 C
21 1.
C.....C ilECK FOT BLANK DATA FIEL DS AND P EPLACE AS MISSING 212.
C 213.
C OM MO N/ DATA 3/WS 1 (3),W S2 (3), WD 1 (3),W D2 (3),T1 (3),72 (3),
214.
DT 1 (3), DT2 (3), P1,P2, D1 (3) 215.
C OM MO N/ D ATA 6/C (16 )
216.
D AT A UK/'
'/,S/9999.9/
l 217.
C l
21 8.
N=-3 219.
M=12 220.
Do 13 I = 1,3 l
221.
N=N+4 I
22 2.
IF (C (N).EQ. BK) WD 1(I) =S 223.
I F (C (N+ 1).EO. BK) WS 1 (I) =S 224 I F(C (N+ 2). EQ. BK) T 1 (I ) = 3 225.
I F(C (N+ 3).Eg. BK) D1 (I) = S 226.
IF (C (M+ I). EO. BK) DT 1 (I) =S 22 7.
10 CONTINUE 229.
I F (C ( 16 ). EQ.BK) Pl=S 224 F ETim N 230 END 231.
S UU DO UT I N E DN Q (IY,I D, Ill, K, E 1, E2 )
232.
C 233.
C.....S UBrCUTIN E DNQ CH ECKS PCF STABLE CONDITIONS DUPING 7t!E DAY AN.
238 C
U NSTA BL E CO NDI'IO NS AT NIGil' 235.
C 236 C OM MO N/ D ATA S/IP AG E, IN C, TIIL E l
23 7.
DIM ENSION N N (7),K K (3) 238.
DA*A NN/'
A','
B','
C','
D','
E','
F','
G'/
I 23 9.
C 24 0 I F (ID.L E. 81 ) GO TC 20 G-5 l
24 1.
I F (ID.t E.17 2) GO TO 19 24 2.
I F (ID. L E. 26 3) GO TO 19 233.
I F (ID.L F. 35 7) GO TO 19 24 4.
GO TO 20 24 5.
C 24 6 19 IF (IH.G E.70 0. A hD. IH.L E.18 00) GO TO 23 247 GO TO 22 24 8.
18 I F (IH.G E. 60 0. A ND. IH.LE.1900) GO TO 23 249 GC TO 22 250 20 IF (IH.G E. 800. A ND. IH.LE.1700) GC 'O 23 251.
22 IF(K.GT.3) GO 70 75 252.
PDINT 100,1 Y, ID,I H, N N (K), E1, E 2 253 INC=INC+1 254 C ALL HE AD1 (INC,TITL E,IP AG E) 255.
GO TO 75 250 23 I F (K. LT.6) GO TO 75 257 P PI N' 101,I Y, ID,I H, NN (K), E1, E 2 258 I NC=I NC + 1 25 9.
CtLL HEAD 1(INC, TITLE,IPAGE) 260 100 FOPMAT(' ', I3,I4, IS,3 X, 'S T A BI LITY CL ASS ',
1 261 IA4,'
DURING NIGHT B ETW EE N ', F 6.1, ' M A ND ', F6.1, ' M ' )
26 2.
101 POP M A * (
- 8,13,14,IS,3X,'FTABILITY CLASS',
26 3.
1A4,'
DUTING DA Y DETW EE N',F 6.1, ' M A ND ', F6.1, ' M ' )
264 75 P E'UP N 26 5.
END 266.
S UBROUTIN E HEAD 1 (INC, TITLE,IP 4G E) 267.
C 268 C.....PMI NT H EA DER ON E ACH PAGE 269.
c 270 COM MON / DATA 8/TO D A Y (9) 27 1 DIM ENSION TITLE (18) 272.
C 27 3.
I F ( IN C. LT. 5 4) ' ET UF N 27 4 PRINT 100, TOD.1 Y, IP AG E, TITL E 275.
I P (INC. N E.5 9) P 71 NT 101 27 6.
100 FOP MAT (
2',9X,' DATED:',
27 7.
- ' FEbFUA'Y 1982',9X,' FUN DATE: 8, R A4,9 X, ' P A G E: ',14 /' O ',10 A 4 )
27 8.
101 FORMAT ('O','
YP DAY HO"D'/'+','
')
279.
I NC =0 29n.
IPAGE=IPAGE+1 281 P ET UP N 28 2.
END 283.
S UB90 UTIN E HE AD2 (LEV, IS,I W,IT,ID, IP) 284.
C 28 5.
C.....P7I NT I NPUT INFon MATION 286.
C 287 P EA L* 8 S 28 9.
C OM MO N/ D A TA 7/ LY 1, LM 1, LD 1, LY 2, LM 2, LD 2 289.
DIMENSION S (4),9 ( 2) 290.
C 29 1.
DLTA S/'
UPPE*','
292.
D AT A F/ ' No
' ' YE S '/
29 3.
C 294 PPINT 100 29 5.
100 FCPMAT('O',' CHECK FOL LO WING LEVEL (S) 0F DATA: ')
29 6.
Go To (2 u,20,20,20),L EV 29 7 20 PEIN* 101, S(4) 29 8.
101 FOLMAT(' 8,10X,2AQ) 299.
GC 70 (24,2 4,22,2 6),L FV 300 22 P9I NT 101, S (2),S (3)
G-6
301.
24 PRINT 101, S(1) 30 2.
26 CONTINU E 30 3.
C 30 4.
PRINI 105 305.
105 FOR M AT ('O ', ' CHECK FOLLC WING DELTA-T INTF5VALS:')
30 6.
I F (IS. E Q. 0) Go 70 35 307.
GO To (34,3 2,30,3 2,30,3 0,30),IS 308.
30 PFINT 106, S (2),5 (3), S (4) 309.
106 POP MI T ('
',5X,2A8,' M IN US ',2 A 8) 310 107 FOPMAT('
',5%,A8,8X,'
MIN US ',2 A 8) 311.
Go To (34,3 2,38,3 2,3'4,3 2,32),IS 31 2.
32 P RI NT 107, S (1),S (2), S (3) 313.
G O To (34,3 8,3 8,3 4, 34,3 8,3u),IS 314.
34 PPINT 107, S (1),S (4) 31 5.
GO TO 38 31 6.
35 PPIN' 109 31 7.
109 FooMAT(8 ',22 X, ' NCN E' )
318.
38 COhTINUE 319.
C 320 L =I W + 1 321.
P PI NT 110, P ( L) 322.
110 F0EMAT('O',' CHECK WIND SPEED AND DIRECTION:
',A4) 323.
L=IT+1 324 PPI NT 115, P (L) 325.
115 POP M AT ('O ', ' CHECK T EMPER A TUD E : ',A4) 326.
L=ID+1 327 PRI NT 120, R (L) 328.
129 FOPMAT('O',' CHECK DEW POINT: ',A4) 329 L=IP+1 330.
P PI N*
125, P (L) 331.
125 F0D MAT ('O ', ' CHECK PRECIPITATION: ',A4) 332.
C 333.
P PI NT 130, LY1,LM1,LD1,LY2,LM2,LD2 334.
130 FOR M AT ('O', ' CHECK D AT A:
BEGINING - ',3I3/'
i 33 5.
EN DI NG
- ',313) 336.
C 337.
PPIN' 150 338.
1 50 F0F MAT ( ' O ', ' SIT E: ')
339.
C 330.
P ETUD N 341.
END 342.
SUBPCUTINE HEAD 3 34 3.
C 34 4 C.....SUBDOUTININ E HEAD 3 PPINTS OUT WIND SPEED AND DIPECTION DA*A 34 5.
C 346.
COM MO N/ D ATA 1/LE V, IS, EL7, EL2, EL3,ICH K, NS (19),I P, I D 347.
DIM ENSION N NN (16) 348.
DATA NNN/'
N','
NNE','
N E', '
ENE','
E','
ESE','
SE','
SSE',
349.
1' S','
SS W ', '
SW','
WSW','
W','
WNW','
NW','
NNW'/
35 0.
C 351.
GO TO (25,2 0,15,2 5),L EV 352.
15 PPI NT 100, FL 1, EL 2, NS (17) 353.
P? INT 100, EL2, EL 3, NS (18) 354 P PI NT 100, EL1, EL 3, NS (16) 355.
P PI NT 101, El1, EI 2, NS (9 )
356.
PDINT 101, EL2, EL3, NS (14) 351.
P RI N' 101, EL1, EL 3, NS (4) 358.
P RI NT 102, EL 1, EL 2, NS (10) 350 PDINT 102, EL2, EL 3, NS (15) 360 P PI NT 102, EL 1, EL 3, NS (5 )
G-7
361.
PFINT 103, EL 1, EL 2, NS (6), NS (7), NS (0) 362.
PDINT 193, EL 2, EL 3, NS (11),NS ( 12), NS (13) 36 3.
P PI NT 103, EL 1, EL 3, NS (1), NS (2), NS (3) 354 GO TO 2 5 36 5.
20 CON'INU E 366.
P PI NT 100, EL 1, EL 3, NS (16) 36 7 P 91 NT 101, EL 1, EL 3, NS (4) 36 8.
P PI NT 102, EL1, EL 3, NS (5) 36 9 P RI NT 103, EL1, hL 3, NS (1), NS (2), NS (3) 370 25 CONTINUE 37 1 100 FOR M AT('0 8, ' NUMBER OF CCCUS P A NCES O F WS AT',F6.1, 372.
l'M LOWER T!!EN TiiE WS 4' ', FE.1, ' M EQ U A LS ',17) 37 3.
101 FOR MAT ('O ', ' N UM BEF CF OCCUSPANCES OF WD AT',F6.1, 37 4 l' M EQUA L TO W D AT ', F6.1, ' M EQ U A LS ', I 7 )
37 5.
102 FCP M A* ( 'O ', ' NUM BE R OF O CCUP P A NCES O F WS AT',F6.1, 37 6.
l'M EJUAL TO WS AT ', F6.1, ' M EQUALS',I7) 377 103 FCP MAT ( 'O ', ' k D DI FF EP EN CE B ET W E EN ', F6.1, ' M A N D', F 6.1, 378 l' M IS G U E AT ED TiiEN OP EQU AL TO 22.5 DEGDEES AND'/'
',10X, 379.
2'WS AT EIPHEP LEVEL IS GPEA*FS TiiEN OS EQU AL to 2.5M/SEC',
,10X,'WS AT EITiiED LEVEL IS GREATE9',
380 36 X, ' C CC UF
- A NC ES =',I S/ '
,10I,
)
38 1.
48 TiiEN OF EQUAL 'O 5.0M/Scr',5X,' OCC UP P A NC ES= ',I 5/ '
39 2.
S' WS AT EITilEn L EVEL IS GF EATE7 TIIEN OF EQUAL TO 7.5M/SEC',5X, 39 3.
6' OCC UR R A NC ES=',I S) 384 JETUCN 38 5.
END 386.
SUBPOUTINE IDA' (ID,I M, I Y,J D) 397 C
398.
C.....TilIS SU B9 OUTI NE Clif NG ES MONTH A ND D AY TO JULI AN DAY 389.
C 390 DIM ENSI ON MON (12) 391 D AT A MO N/0, 31,59, 90,120,151,181,212,2 4 3,2 7 3,3 04,3 3 4/
39 2.
J D: MO N (IM) 39 3.
J D= JD +I D 39 4 Yc=IY*0.25 39 5.
I YP =Y" 396.
S=YP-IYP 397 IF (S. EQ. 0. 0. AN D. JD.GT. 59) JD=JD+1 398.
Pt'UPN 39 0 END 400 SUBPOUTINE FCPQ 401.
C 402.
C OM MO N/ DATA 1/ LEV,IS,EL1, EL2,EL3,1CH K, NS (18),I P,ID 403.
r OM MO N/ D A TA 2/ IY 1, IY 2, ID 1, ID 2, Ili l, III 2 404 COM MON / DATA 3/WS 1 (3),W S2 (3 ), WD 1 (3),W D2 (3), T1 (3),T2 (3),
DT 1 (3),DT2 (3), P1,P 2, D1 (3) 405.
40 6.
COM MO N/ DATA u/KX (3), JJ (3 ), KP, KT (6),J A, JB,JC 407 C OM MO N/ D AT A S/IP AG E, IN C, TI TL E 40 8.
C 409.
C.....S UB FO UTIN E PC PQ Cif ECK S FOR PR ECIP OCCUt LNG GREATEP TH AN 410 C
0 CONSECUTI VE HOUFS BND FOM 1 1100 F PRECIPITATION 411.
C G9EATED TliAN OF = 25MM (11NCll) 412.
C 413.
I F ( ICliK. EQ. 3) GO TO 60 414 I F ( F 1. G T. 25 4.
.09 P1.LT.O.) Go TO 60 415.
IF(P1.L*.25.0) Go PO 55 416.
PSINT 100, IY1,ID1,IH1,P1 417.
I NC=1 NC + 1 418.
C ALL llE AD1 (INC,TITL E,IP AGE) 419.
55 IF (ICHK. EQ. 0) GO TO 99
'42 0 I F ( P2.G T. 25 4
.0P. P2.Lt.0.) GO TO 60 G-8
421.
I F (P1.G T. 0. 0. A ND. P2.G T. O. 0) GO TO 75 422.
60 IF(KP.LT.9) GO TO 70
+
423.
P PI NT 101,I Y 2,I D2,I H2, K P 424.
INC=INC+1 425.
C ALL HE AD1 (INC,TI*LE,IP AG E) 426.
70 CONTINUE 427.
KP=1 428.
G O TO 9 9 420 75 K P= KP + 1 430.
99 CON?INUE 431.
100 F05MA"(' ', I 3,14, IS,3 X, ' P P ECI PIT ATION ',
0F ', F7.1,' MM FELL IN THE GIVEN 1 HOUP PEPIOD')
432.
1 '
,I3,I4, IS,3 X, 'P B ECIPITATION 43 3.
101 F09 MAT ('
434.
1' FELL F 0F T HE PPEVIOUS',13,8 HOURS CONSECUTIVELY')
435.
R ET UP N 436.
END 43 7.
S UBPCUTINE SECTOP (I,J) 438.
C 439.
C.....COM PUTE Tile WIND DIRECTION SECTOP 440.
C 441.
J=
1 + (( X+ 11.2 5 ) / 22.5 )
l 442.
I F (J. EQ.17) J=1 443.
I F ( X. GT - 3 65.
.uP.
X.' L T. O. )
J=-1 444.
C 445.
RETU3N 446.
END 44 7.
S UBPOUTINE ST ABLE (DELTA', h) 449.
C 449.
C.......... ST A B ILIT I ES :
K=1,2,3,...,
ST A BLITY=A, B, C,...
450.
C 451.
DIM ENSION S (6) 452.
DATA S/-1.9,-1.7,-1.5,-0.5,1.5,4.0/
453.
C 454 DO 100 K=1,6 455.
100 I F ( DE L' AT.L E. S (K) ) PE*UPN 456.
K=7 457.
P ET UP N 45R.
END 459.
SUBFOUTINE ST ADQ1 460 C
461.
COM MO N/ DATA 1/ LEV,IS,E L1,EL2,EL3,ICilK, NS (18),IP,ID 1
462.
C OM MO N/ D A T A 2/IY 1, IY 2, ID 1, ID2, IH 1, IH 2 l
463.
C CM MC N/ DATA 3/WS 1 (3),W S2 (3 ),WD 1 (3),W D2 (3),T1 (3),T2 (3 ),
DT 1 (3),DT2 (3), P1,P 2, D1 (3) 464 a65.
C OM MO N/ DATA S/IP AG E, IN C, TITL E 466.
C l
46 7.
C.....S UB FO UTINE ST AB Q1 C HECKS FOP STABLE OP HNS?ABLE CONDITIONS 468.
C W IT H WS GP E AT ES T H AN 7.5M/SEC c69.
C
.. C ilh C K S FOP DELTA T LE SS TH A N -3. 0 DEGPEES C P EP 100METEPS 47 0 C
( AUTOCC NV ECTIVE L AP SE ? ATE) 471 C
..CiiECK S FOR STABLE Or UN ST ABLE CONDITIONS DUPING PPECIPI*ATION 47 2.
C 47 3.
DIM EhSION N N (7) 474 DATA NN/'
B','
C','
D','
E','
F','
G'/
475.
C 476.
GO 'O (13,20,20,13,13,20,13),IS 477.
13 IF (DT1 ( 1).G T. 35.
.0F. DT1 (2 ). LT.-7. ) GO TO 20 47 8.
C AL L ST A BLE (ITT1 (1), K) 479 I F (K. EQ. 4
.0F.
K. EQ.5 ) GO TO 18 480 I F (WS 1 (1).GT. 99.9.09 WS 1 (1).LT. 0. ) GO TO 15 G-9
C81.
I P ( WS 1 ( 1).GT. 7. 5) GO TO 16 C82.
15 I F(hS 1 (3).GT.99.9.00 WS 1 (3).LT. O. ) GO TO 17 48 3.
I F ( WS 1 (3).GT. 7. 5) Go TO 16 484.
GO TO 17 49 5.
16 P RI NT 100, IY 1, ID 1, Ili l, NN (K), l L 1, EL3 48 6.
INC=INC+1 487.
C ALL flE AD1 (INC,TITL E, IP AG E) 488.
17 I F ( P1.L E. 0
.09 P1.GT. 25 4. ) Go TO 19 489.
I F (IP. N E.1) GO 70 19 49 0.
P RI NT 101, IY 1, ID I,III1, NN (K), EL1, EL3 49 1.
I NC =I NC + 1 492.
C ALL ffE A01 (INC,TITL E,IP AG E) 493.
19 I F ( DP 1 ( 1).G E.-3.4) GO 'O 18 494 P RI NT 102,I Y 1,ID1,Ili1,DT1 (1) 49 5.
I NC=I NC + 1 496.
C AL L lie AD1 (INC, TIPL E, IP AGE, 497.
18 CON TI NU E 498.
C R L L DN Q (IY 1,ID 1, Ili l, K, EL 1, EL 3) 49 9.
C 50 0 20 GO TO (30,23,30,23,30,23,23),IS 50 1.
23 I F (D* 1 (2).GT. 35..05 DT1 (2). LT.-7. ) GO Tc 30 50 2.
C ALL ST ABLE (DT1 (2), L) 50 3.
IF(L.EQ.4.0P.
L.EQ.5) GO 'O 28 504.
IF (WS 1 (1).GT. 99.9.00 WS1 (1).LT. O. ) GO TO 25 50 5.
I F (WS 1 (1).GT. 7. 5) G O 'O 26 50 6.
25 IF (WS 1 (2).G T. 99.9. 0P. dS1 (2).LT. O. ) GO 70 27 50 7.
I F ( WS 1 (2).GT. 7. 5) GO TO 26 50 8.
Go TO 27 50 4 26 PRINT 100, IY 1,ID1, Ill l, NN (L), EL 1, EL2 510 INC=INC+1 51 1.
C ALL iiE AD1 (INC, TITLE,IP AG E) 51 2.
27 I F ( P1. L E. O.
.0P.
P 1.GT. 25 4. ) GO 'o 29 513.
I F (IP. N E.1) GO TO 29 510.
PRINT 101, IY 1, ID 1,Ill 1, NN (L), EL 1, EL2 515.
I NC =I NC + 1 51 6.
C ALL llE A D 1 (IN C, TITL E, IP AG E) 517.
29 I F (D* 1 (2).G E. -3. 4) Go 'O 28 51 8.
P PI N? 102, IY 1,ID 1, Ill 1, DT 1 (2) 519.
I NC =I NC +1 520 C AL L HE A D1 (INC, *ITLE,IP AG E) 521.
28 CONTI N'3 E 522.
C AL L DNQ (IY 1,ID 1, Ill 1, L, EL 1, EL 2) 52 3.
C 52 4 30 GO TO (40,4 0,33,4 0,33,3 3,33), IE 525.
33 I F (DT 1 (3).GT. 35.
.0F. DT1 (3). L?.-7. ) GO TO 40 526.
C ALL ST ABLE (D*1 (3), M) 527.
I F ( M. EQ. 4.00 M.EQ.5) GO TO 39 528 I F (dS 1 (2).GT. 99.9
.0P.
WS 1 (2).LT. 0. ) GO TO 35 529.
I F (WS 1 ( 2).G T. 7. 5) Go io 36 530 35 IF (WS 1 (3).GT.99.9
.0P.
WS 1 (3). LT. O. ) GO TO 37 531.
I F (WS 1 (3).G T. 7. 5) Go 'O 36 532.
GO TO 37 533.
36 P PI NP 100, IY 1,ID 1, IH 1, NN (M), EL 2, EL 3 534 I NC=I NC + 1 535.
C ALL llE AD1 (INC, TITLE,IP AGE) 536.
37 I F (P1.L E. O.
.09. P1.G. 25 4. ) GO TO 39 537 I F (IP. N E.1) GO TO 39 53 8.
P PI N? 101, IY 1,ID 1, IH 1, NN (M), E!.2, EL 3 53 9.
INC=INC+1 54 0 C n L L IIE AD 1 (INC, tI'LE, IP AG Z)
G-10
54 1.
39 I F ( D' 1 ( 3).G E.-3. 4 ) GO 'O 38 54 2.
P RI NT 102, IY 1, ID 1, IH 1, DT 1 (3) 543.
I NC=I NC + 1 54 4.
C ALL HE AD1 (INC,TITL E,IP AGE) 34 5.
38 CONTINUE 546.
C AL L DNQ (IY 1,ID 1,Ill 1, M, EL2, EL3) 547.
40 CONTINU E 54 8.
C
,I3,I 4,IS,3 X, ' WIN D S PEE D 54 9.
100 FCP MAT ('
550.
l' GP EATEP TIIEN 7.5M/SEC FOR STABILITY CLASS',A4, 551 2'
BETW EE N', F 6.1, 'M A ND ', F6.1, ' M ' )
55 2.
101 FOR M AT ( *
',13,I4,IS,3X, 553.
I' PP ECIPIT ATION OCCU PED DUPING STA BILITY CLASS', A4, 554.
2' DETW EE N', F6.1, 'M AND',F6.1,'1')
,13,I 4, IS,3 X, ' L A PSE P AT E OF ',
555.
102 PORMtT('
55 6.
1F6.1,' DEGP EES C/10 0M ETEC S EXCEEDS TiiE AUT0CONV ECTIVE L APSE F ATE')
557.
R ET UR N 558.
END 559.
SUBSCUTINE ST ADQ2 560 C
561.
COM MO N/DA'71/ LEV,IS,E L1,EL2,EL3,ICH K, NS (18),IP,ID 56 2.
C OM MO N/ D AT A 2/I Y 1, IY 2, I D I, ID 2, Ill 1,1112 56 3.
COM MO N/ DATA 3/W S 1 ( 3),h S2 (3), WD 1 ( 3),W D2 (3),'1 (3), T2 (3),
DT 1 (3), DT2 (3), P1,D 2, D1 (3 )
56 4.
565.
COM MO N/ D ATA 4/KX (3), JJ (3 ), KP, KT (6),J A, JB,JC 566.
C OM MO N/ D ATA S/IP AG E, IN C, TITL E 567.
C 568.
C.....SUB BOUTINE S'7 BQ2 CilECKS POP A GB EATEP THEN 3 SPADILITY 56 9 C
C L A SS J UM P FF OM O NE 11009 TO TIIE NEXT 570 C
..ClitCKS FOP SA ME STA BILITY C L A SS G PEATEP TilA N 12 CONSECU'IVF ll07PF 57 1.
C 57 2.
DIM ENSION N N (7) 57 3.
D n.T A M1,M2,M3/0,0,0/
574.
DATA NN/'
A','
B','
C','
D','
E','
P','
G'/
575.
I F ( Ir liK. E Q. 0) GO TO 52 57 6.
C 57 7.
G O To ( 15,19,10,15,15,19,15), IS 578.
15 I F (ICliK.EQ. 3) GO TO 20 579.
I F (DT1 ( 1).GT.35.
.0 P. DT2 (1 ). GT. 3 5. ) GO TO 16 580.
I F (DP 1 ( 1).LT.~ 7.
. 0 P. D?2 (1). LT.- 7. ) GO TO 16 58 1.
C ALL ST AblE (DT1 (1), KA) i 582.
C ALL ST ABLE (DT2 (1), KB) 58 3.
M 1= 1 58 4 K C= I A BS (K A-KB) 585.
I F ( KC. L F. 3) GO 'O 14 586.
PPI NT 100, IY 1,ID I, Ill1, NN (KB),N N (K A), EL1, EL3 587.
I NC=I NC + 1 50 b.
C ALL ifE AD1 (INC, TITLE,IP AG E) 589.
14 IF(K.EQ.KB) GO TO 17 59 0 20 I F(J A.GT.12) GO TO la 59 1.
16 J A= 1 592.
GO TO 19 59 3.
17 J A= J A + 1 59 4 GO TO 19 595.
18 PRI NT 101, IY 1, ID 1, IIII, NN (K B),J A, EL1, EL3 59 6.
I NC ul NC + 1 597.
C ALL llE AD1 (INC,"ITLL,IP AGE) 59 8.
JA=1 59 9.
C 600 19 I F (IS.E Q. 2
.0P.
I S. EQ. 7 ) GO TO 25 G-11
60 1.
GO TO 29 60 2.
25 IF(ICHK.EQ. 3) GO TO 24 603.
IF (DT 1 (2).G*. 35.. 0 P.
DT2 (2). GT.3 5. ) Go 'O 26 604 I F (DT 1 ( 2).L T. -7
.00 DT2 (2 ). LT.-7. ) GO TO 26 605.
C ALL ST ADLE (D'1 (2), KD) 60 6.
C ALL STABLE (DT2 (2), KE) 60 7 M 2= 1 60 8.
K F= I A BS (K D-KE) 60 9.
I F ( KP. L E. 3) GO To 23 610 P PI N' 100, IY 1,ID 1,IH 1, NN (KE),NN (KD), EL1, EL 2 61 1.
I NC=I NC + 1 612.
C ALL HEAD 1 (INC, TITLE,IP AG E) 613.
23 IF(KD.EQ.KE) GO TO 27 614 24 I F (JD.GT.12) GO TO 28 61 5.
26 JB= 1 616.
GO TO 29 61 7 27 JB=JB +1 618.
GO TO 29 610 29 PRI NT 101, IY 1, ID 1, IH 1, N N (K E),J B, EL 1, EL2 620 I NC =I NC + 1 b 21.
C ALL HE AD1 (INC, TITLE,IP AG E) 622.
JB=1 623 C
62 4.
29 Go to (39,39,35,39,35,3 5,35),IS 625.
35 IF(ICHK.EQ. 3) G O TC 3 4 626.
I F (DT 1 (3).GT. 35.
.0P.
DT2 (3 ). GT.3 5. ) GO TO 36 627 I F ( DT 1 ( 3).L T. -7
.0 ?. DT2 (3 ). LT. -7. ) GO TO 36 629.
C ALL ST ADLE (DT1 (3), KG) 629.
C ALL ST ABLF (D'2 (3), KH) b30 M 3= 1 631 KI=IF BS (KG-KH) 632.
I F ( KI. L E. 3) GC TO 33 63 3.
P RI NT 100, IY 1,ID I,Id l, NN (KH), N N (KG), EL2, EL3 634 I NCsI NC + 1 635.
C ALL HE AD1(INC, TITLE,IP AGE) 636.
33 I F (KG.EO. KH) Go TO 37 637 34 IF(JC.GT.12) GO TO JP 638.
3E JC= 1 639.
GO TC 39 64 0 37 J C= JC + 1 64 1.
GC 'O 39 64 2.
38 P RI NT 101, IY 1,ID 1, IH 1, NN (K H),JC, EL2, EL3 643.
INC=INC+1 64 4.
C ALL HE AD1(INC, TITLE,IP AGE) 645 J C= 1 b4 6 39 CONTINUE 64 7 I F (ICHK. EQ. 3) Go TO 52 648.
C b49 C
CH ECK FOR G9 EATED THAN 2 STABILITY CLASS DIFFERENCE BETWEEN 650 C
TWO DI F FEP EN T S' ABILITY INTERVALS 651.
C 652.
IF(IS.NE.5.)ND. IS. N E. 7) GO TO 50 65 3.
IF(M1.EQ.0
.0P.
M 3. EQ.0 ) GO TO 50 b54 JZ= I A BS (K A-KG) 655.
I F (JZ.L T. 3) GO TO 50 656 P RI NT 102, IY 1, ID 1, IH 1, EL 1, EL2, N N (K A), EL2, EL 3, N N (KG) 657.
I NC=I NC + 1 658.
C ALL HE AD1 (INC, TITLE,IP AGE) 659.
50 I F (IS. N E. 6.AND.
IS. N E. 7) GO TO 51 660 IF(M2.EQ.0
.0". M3.EQ.0) GO TO 51 G-12
661.
J Z= I A BS (K D-KG) 662.
I F (JZ.LT. 3) Go TO 51 663.
P RI NT 102, IY 1, ID 1,Ill1, EL 1, EL2, NN (K D),EL2,EL3,N N (KG) 664 I NC =I NC + 1 66 5.
C ALL HE AD1 (INC,TITL E,IP AGE) 666.
51. P (IS. N E. 4.AND. IS. N E. 7) GO TO 52 667 I F ( M1. E Q. 0
.0P.
M 2. EQ.0 ) GO TO 52 l
66 8.
J Z=I A BS (K A-KD) 669.
I P (JZ. L'. 3) Go TO 52
(
67 0 PRINT 102, IY 1, ID 1,Ill1, EL1, EL3, NN (K A), EL1, EL2, N N (KD) 671.
I NC =I NC + 1 672.
C AL L HE AD1 (INC,TITL E,IP AG E) 67 3.
C 67a.
100 FOP MM * ('
', I3,I 4, IS,3 I, ' STA BI LITY CL A SS ',
675.
I' J UMPED F9 0M', A4,8 TO',A4,'
OVER ONE liOUP P EC IO D',
676.
2' BETW EE N',F 6.1, ' M A ND ', F6.1,
- M ' )
67 7 101 F 0F M AT ( *
,13,I 4, IS,3 X, ' STA BI LITY CLA SS ',
678.
1 A4,8 LASTED FOP PREVIOUS',14,' HOUP PEPIOO',
679.
2 '
BETW EE N',F 6.1, ' M A ND ', F6.1, ' M' )
680 102 FORM.nT(* ',13,I4, IS,3 X, 'STA BI LITY PUP ',
681.
1F6.1,'M MIN US ', F6.1, ' M IS ', A4, ' dHILE STABILITY FOR',F6.1, 682.
2' M MI NUS',F 6.1, ' M IS', A 4) 683.
52 P E*UP N 6P4 END 695.
SUBDOUTINE TEMPQ 68 6.
C 6R7 COM h0 N/ DAT A 1/LE V, IS, EL1, EL2, EL3,ICl!K, NS (18),I P, I D 688.
C OM MO N/DA') 2/IY 1, IY 2,ID I,ID2, IH 1, Ill2 689.
COM MO N/ DATA 3/WS 1 (3),WS2 (3), WD1 (3),W D2 (3),T1 (3), T2 (3),
690
- DT 1 (3),D'2 (3), P1,P 2, D1 (3) 601.
C CM MO N/ DATA 4/KX (3),JJ (3 ), KP,KT (b),J A,JB,JC 692.
C OM MO N/ D A T3 5/ IP AG E, IN C, *I'L E 69 3.
C l
694 C..... S UB DO UTIN E TEMP Q Cll EC KS FOP :
69 5.
C DFW POIN T (D P) GPEATF5 TII A N TE MP EP AT UP E (T )
696 C
T MINUS DP G DE A T EP THAN OR EQUAL TO 5 DEG r DUDING PPECIP 697.
C T EQUAL TO DP FO R 8 0F MOF E CONSECUTIVE HOURS l
698 C
SAME TEM PEPATURE FOC 8 OR MORE CONSECUTIVE llOURS 69 9 C
l 70 0 I F ( ICilK. EQ. 0) GO TO 1A2 1
701 GO To (75,50,25,50), LEV 70 2.
25 IF(ICilK.EQ. 3. A ND. KT (2). GE.9) GC 70 29 703.
I F (T 1 (2 ). GT. 9 9. 9
.0D. T 1 (2).LT.-9 9. 9) GC TO 26 70 4 I F (72 (2).LE.99.9.AND. T2 (2). GL.-99.0 ) GC TO 27 70 5.
26 IF(KT (2). GE.8) GO TO 28 706.
GO TO 29 l
707.
27 IF (T1 (;2). EQ.T2 (2) ) GO TO 39 70 8.
I F ( KP (2 ). LP. 8 ) GO TO 29
- 700, 28 P BI NT 100, IY 2,ID2,Ill2, EL2, T2 (2), KT (2l) 710.
I NC =I NC + 1 711.
C ALL lie AD1 (INC,TITL E,IP AGE) 712.
100 FOPMAT(* ', I3,I 4, IS,3 X, 'li EI GliT= ', F6.1, 713.
l' M',3 X, 'T FM PEP A TU ?E=', F6.1, ' D EGP E ES C F0F P R E VI OU S ',IS,
i 714 2' 110U # P E7IOD ')
l 715.
29 K'(2) =1 716.
GO TO SO 717.
30 KT(2) =KP (2) +1 1
718.
30 CONTINUE 719.
I F (ICIIK. EQ. 3.AND. KT (3). GE. 8) GO TO 58 l
720 I F (T 1 (3 ). G'.9 9. 9
.Ct. T 1 (3).L T.-9 9. 9) GC TO 56 G-13 1
721.
I F (T2 (3). LE.09. 9.AND. T2 (3). GE.-99.9 ) GC TO 57 722.
56 IF (KT (3).GE.9) GO TO 59 723.
GO TO 54 724 57 IF(T1 (3). Eg.T2 (3) ) GO TO 60 72 5.
I F ( K" (3 ). L'. 8 ) GO TO 59 726.
59 PFINT 100, IY2,ID 2,Ill2, EL3,T2 (3), KT (3 )
727.
INC=INC+1 728.
C ALL HE AD1(INC,TITL E,IP AGE) 729 59 KT (3) =1 730 Go TO 74 731.
60 K T ( 3) =K T (3) + 1 732.
74 I F ( LEV. EQ.4 ) GO TO 82 733.
75 CONTINU E 73 4 I F (Ir;tK.Eg. 3. ND. KP (1). GE. 8 ) GO 'O 76 735.
I F (T1 (1).GT.09. 9.0 F. T1 (1).LT.-99.9) GO TO 7b 73 6.
I F (T2 (1). LE.9 9. 9.7 ND. T2 (1). GE.-99.9) GO TO 77 737.
70 I F (KT (1).GF.8) GO TO 78 73 R.
Go TO 79 73 9.
77 IF(*1 (1).dg.?2 (1) ) GO TO 81 740 IF (KT (1). LT.H) GO TO 79 741 78 P PI NT 100, IY 2, ID 2, IH 2, EL1,'2 (1), KT (1) 74 2.
I NC=I NC + 1 74 3.
C ALL llEADI (INC, TITLE,IP AG E) 744 79 KT(1) =1 74 5.
GO TO 82 74 6.
81 KT(1) =KT (1) +1 747 92 CONTINUE 74 8.
C 749.
I F ( ID. N E.1) GO TO 500 750 C
751.
G o 'o ( 17 5,150,12 5,15 0), L EV 752.
125 I F (ICliK. Eg. 3. A ND. KT (4 ). GE.P ) GO TO 128 75 3.
I F (T1 (2 ). Gv.9 9. 9
.O P.
T 1 ( 2). L T. -9 9. 9) G9 'O 126 754.
I F ( D1 (2).L E.09. 0.AND. D1 (2).GE.-99.9) GO TO 127 755.
126 I F (KT (4). GE.9) GO TO 128 756.
GO To 129 757 127 I F (T1 (2). E2.D 1 (2) ) GO TO 13n 758.
I F ( K' (4 ). L'. 8) Go 'O 129 759.
128 PRINT 101, IY 1, ID 1, Ill 1, EL 2, T 1 (2 ), KT (4 )
760 I NC =I NC + 1 76 1.
C ALL !!E AD1(INC, TITLE,IP AG E) 762.
1 29 KP (4) =0 76 3.
G O TO 150 764 1 30 KT(4) =KT (4) +1 765 150 CON'I NU E 766.
I F (ICl!K. E g. 3.AND.
KT (5 ).GE. 8) GO TO 158 76 7.
I F (T1 (3 ). G'.99. 9
.0 P.
- 1 ( 3).LT.-9 9. 9) GO 'O 156 7b a.
I F (D1 (3).LE.99. 9.AND. D1 (3 ).GE.-99.9 ) GO TO 157 769.
156 I F ( K' (5).GE.8) GO 'O 158 770 GC TO 159 77 1 157 IF(T1 (3). Eg.D1 (3) ) GO T O 160 77 2.
I F ( K' (5 ). LT. 8 ) GO 'O 159 77 3.
159 PRI NT 101, IY 1,ID 1, Ili l, EL3, T1 (3 ), KT (5) 774 INC=INC+1 775.
C ALL llE AD1 (INC, TITLE,IP AGE) 776.
159 K'(5) =0 777 G O TO 174 778.
1 60 KT(5) =KT (5) + 1 77 9.
174 I F ( LEV. EQ.u ) GO TO 18 2 780 175 CONTINUE G-14
~
78 1 I F (ICliK.EQ. 3. A ND. KT (6 ). G E. 8 ) GO TO 178 782.
I F (T1 (1).G'.99. 9
.0 P.
T 1 ( 1).L'. -9 9. 9) GO TO 176 783.
I F ( D1 (1).LE.9 9. 9.AND. D1 (1).GE.-99.9) GO TO 177 784 176 I F ( KP (6).GE.8) GO TO 17 8 785.
GO TO 179 78 6.
177 I F(T1 (1). EQ.D1 (1) ) GO T O 1R 1 787.
I F ( KP (6 ). L'. 8 ) GO *O 179 788.
178 PRI NT 101, IY 1,ID 1, Ill 1, EL 1, T 1 (1 ), KT (6) 789.
I NC=I NC + 1 790.
C ALL !!E AD1 (INC, TITLE,IP AGE) 791.
179 KT(6) =0 792.
GO TO 182 793.
181 KT (6) =KT (6) + 1 794.
182 CONTINUE
, I3,14, IS,3 X, ' ll EI Gill = ',
79 5.
101 F0F M AT ('
796.
1F6.1, 'M ',3X, ' TEMPER AT OP E EQU ALS DEW POINT =',F6.1, 797 2'
DEGFEES C FOR LAST
',IS,'
lion RS ')
79 8.
C 799.
I F (ICliK.EQ. 3) Go TO 500 i
800 GO To ( 250,20 0,19 0,20 0),L EV 80 1.
190 I F (T1 (2 ). G'.9 9. 9.09. D 1 ( 2).GT. 99.9) GO TO 200 80 2.
I F (T1 (2 ). LT.-99.9. 0P. D1 (2 ). LT.- 99.9) Go TO 200 803.
I F (D1 (2 ). LE.T1 (2) ) GO 70 19 5 804.
PPINT 102,I Y 1,I D1,I H1, EL2,D 1 (2),T 1 (2) 805.
I NC=I NC + 1 806.
C ALL i!E AD1 (INC,TITL E,IP AG E) 807.
195 IF(IP.EQ. 0) GO TO 200 808.
I F ( P1.L E. O.
.0P.
P1.GT. 25 4. ) GO TO 200 809.
D D= T1 (2 )- D1 (2) 810.
I F ( DD. L E. 5. 0) GO 'O 200 81 1.
P ?.I NT 103, IY 1, ID 1, Ill 1, EL 2, DD, P 1 812.
I NC=I NC + 1 81 3.
C ALL !!E ADi (INC,TITL E,IP AGE) 814.
200 I F (T1 (3). GT.99. 9
.0F.
D 1 (3).GT. 99.9) Go TO 225 815.
I F (*1 (3 ). LT.-99.9
.0P. D1 (3). LT.-99.9) GO TO 225 816.
I F (D1 (3). LE.T 1 (3) ) GO TO 215 81 7.
P PI N' 109,I Y 1,ID 1,Ilil,E L3, D 1 ( 3),* 1 ( 3) 818.
INU=INC+1 819.
C ALL tio n D 1 (INC,TI'LE,IP AG E) 820 215 IF(IP.h0. 0) GO TO 2 25 821.
I F ( P1. L E. O.
.OR.
P1.G T. 25 4. ) GO TO 225 322.
D D= T1 (3)-D1 (3) l 823.
I F ( DD. L E. 5. 0) GO TO 225 l
824.
P FI NT 103, IY 1, ID 1, Ill 1, EL 3, DD, P 1 825.
INC=INC+1 826.
C ALL llE AD1 (INC, TITLE,IP AG E) 827 2 25 IF(LEV. EQ.4 ) Go TO 500 828.
2 50 I F (T1 (1 ). GT.9 9. 9
.0 P.
D 1 (1).GT. 99.9) Go 'O 500 829.
I F (T1 (1 ). LT.-99.1. CF. D1 (1). LT.-99.9 ) GC TO 500 830 I F (D1 (1). LE.T 1 (1) ) GO To 275 831.
PPIN* 102, IY 1,ID 1, Ili l, EL 1, D1 (1), T1 (1 )
832.
INC=INC+1 833.
C ALL llE AD1 (INC,TI'LE,IP AG E) 834 275 I F(IP.EQ.0) GO TO 500 835.
I F ( P1. LE. O.
.OR.
P1.GT. 25 4. ) GO TO 500 836.
DD=T1 (1)-D1 (1) 837 I F ( DD. L E. 5. 0) Go TO 500 838.
P PI N' 103, IY 1, ID 1, Ill 1, EL 1, DD, P 1 839.
INC=INC+1 84 0.
C ALL !!E AD 1 (ILC,TI'LE,IP AG E)
G-15
841 102 FCP ME T ('
,13,14,15,3 X, ' H EI GH T= ', F6.1, 84 2.
l'M',3X,'
DEW POINT
(', F 6.1, ' ) IS GPEATEP THLN TEMPERATURE
(',
843.
2F6.1,' ) ')
84 0 103 FOP MAT ('
,13,I 4, IS,3 X, ' H EIGHT= ', F6.1, 835.
I' M',3 X, 'TEMPEP ATU PE G PE ATES THEN DEW POINT BY',F6.1, 846.
2' DEGPEES C DUPING PP ECIPIT ATIC N OF ', F6.1, ' MM')
847 500 CONTINUE 4
84 8.
9 ET UB N 849.
END 850.
S UBRO UT IN E WS WDQ 851.
C 852.
C.....THIS SU bPOUTI NE CliECK F THE WIND SPEED A ND WIND DIRECTION DATA 853.
C 854 C OM MO N/ DATA 1/ LEV,IS,EL1,E L2,EL3,1CH K, NS (18),IP,ID 855.
C OM MO N/ D AT A 2/I Y 1, IY 2, I D I, ID 2, IH 1, IH 2 856.
C OM MO N/ DATA 3/WS 1 (3),W S2 (3), WD 1 (3),W D2 (3),71 (3 ),'2 (3),
857
- DT 1 (3), DT2 (3), P1,P 2, D1 (3 )
858.
COM MO N/DA TA 4/KX (3), JJ (3), KP, K'(6),J A, JH,JC 859 C OM MC N/ DAT A S/IP AG E, IN C, TITL E 860 C
861.
DIM ENSION J K (3),N NN (16),G (3) 86 2.
D AT A G/ 2. 5,5. 0,7. 5/
86 3.
C 864 D AT A NNN/'
N ',8 NNE','
N E', '
ENE','
E','
ESE','
SE','
SSE',
86 5.
1' S','
SSW','
SW','
WSW','
v ', ' WN W ', '
NW','
NNW'/
866.
C 867 I F (IC HK. EQ. 3) GO TO 75 868.
C 86 9.
C CHECK F0D WIND SP EED Gr EATED TH EN 2 5M/SEC 870 C
87 1 I F (LEV. NE.3) GO TO 50 87 2.
I F (WS 1 (2).GT. 99.9 ) GO TO 59 87 3.
I F (WS 1 (2).LT. 25.0) GO TO 50 874 P RI NT 100, IY 1,ID 1, Ill i, EL 2, WS 1 ( 2) 875.
I NC =I NC + 1 876.
C AL L HE AD1 (INC, TITLE,IP AG E) 877.
50 I F ( LE V. Eg.1 ) GO TO 51 878.
I F (WS 1 ( 3).GT. 99.9) GO TO 51 87 9.
I F ( WS 1 (3).L*. 25.0) GO TO 53 880 P PI NT 100, IY 1,ID 1, Il!1, EL 3, WS 1 (3) 881 INC=INC+1 882.
C ALL HE AD1(INC,TITL E,IP AGE) 883.
53 I F(LEV. EQ.4) GO TO 52 884.
51 I F (WS 1 (1).GT. 99.9 ) Go 'O 52 88 5.
I F (WS 1 (1).LT. 25.0) GO TO 52 886.
P PI N' 100,I Y 1,ID1,I H1,E L1,WS 1 (1) 887 I NC=I NC + 1 888 C 4LL ilE AD1 (INC,TI'TLE,IP AG E) 899.
52 CONTINUE
, I3,I 4, IS,3 X, ' ti EIGIIT= ', F6.1, ' M' 890 100 FOPMAT('
89 1.
1,5X, ' WI ND S PE ED O F',F 6.1, 'M/S EC CCCUP PED' )
89 2.
C 893.
C CHECK FOP W S GPEATER ' HEN 2.5,5.0,7.5 M/FEC 8)4.
C WlIILE WD'-WD'8 GFEATE? THEN 22.5 DEGFEES 89 5.
C C HECK FOR W D SA ME A' TW O LEVELS 896.
C CHECK FCF WS SAME AT TWO LEVELS 897 C
CHECK F0D WS LOWER LE VEL GPEA TEP TH AN WS UPPEP LEVEL 898.
C 899 G O T0 (75,5 5,55,7 5),L EV 900 55 I F (WD 1 (1).GT. 36 5. 0. 0 P.
W D1 (3). GT.3 65.0) Go 'O 62 G-16
901.
I F (WD1 (1).LT. O.
.09.
WD 1 (3).L*. 0. ) GO TO 62 902.
X= A BS (W D1 (1)- WD 1 (3) )
903.
I F ( X. LT. 2 2. 5) GO *O 61 90 4.
IF (WS 1 ( 1).GE.2. 5. A ND. WS 1 (1).LT. 99.9. 0P. WS1 (3).G E. 2. 5. AND.
905.
1 WS 1 (3).L'. 99.9 ) NS (1) = NS (1) + 1 906 I F ( WS 1 ( 1).G E. 5. 0.AND. WS 1 (1).LT. 99.9. 0P. WS 1 (3).G E. 5. 0.AND.
907.
1 WS 1 (3).LT. 99.9) NS (2) =NS (2) + 1 908.
I F ( WS 1 ( 1).G E. 7. 5. A ND. WS 1 (1).LT. 99.9.0F. WS 1 (3).G E. 7. 5. A ND.
909.
1 WS 1 (3).LT. 99. 9) NS (3)= NS (3) + 1 910.
61 I F ( X. EQ. 0.0) NS (4)= NS (4) + 1 911.
62 I F (WS 1 ( 1).GT. 99. 9. 0". WS 1 (3).GT. 99.9) GO TO 60 912.
Y=W S1 (1)-WS 1 (3) 913.
I F ( f. EQ. 0. 0 ) NS (5)= NS (5) + 1 914.
I F (WS 1 (3).GT. WS 1 ( 1) ) NS (16) =NS (16) + 1 915.
60 CONTINUE 916.
I F (WD 1 (1).GT. 36 5. 0.09 W D1 (2). GT.3 65.0) GO TO 85 917.
I F (WD1 (1).LT.O.
.0P.
WD 1 (2).LT. 0. ) GO TO 85 918.
X=A BS (W D1 (1)- WD1 (2) )
91 9.
I F ( X. LT. 2 2. 5) GO TO 8 3 920 I F ( WS 1 ( 1).G E. 2. 5. A ND. WS1 (1).LT.99.9
.0P.
WS1 (2).G E. 2. 5. AND.
I 921.
1 WS 1 (2).LT. 99.9) NS (6)=NS (6) + 1 922.
I F (WS 1 (1).G E. 5. 0.AND. WS 1 (1).LT. 99.9.05 WS 1 (2).G E. 5. 0.AND.
923.
1 WS 1 (2).LT. 99.9) NE (7) =NS (7) + 1 924 I F (L'S 1 (1).G E. 7. 5. A ND. WS 1 (1).LT. 99.9
.0P.
WS 1 (2).GE. 7. 5. A ND.
925.
1 WS 1 (2).LT. 99.9) NS (8):NS (8) + 1 926.
83 I F(X. EQ.0) NS (9) = NS (9) + 1 927 85 IF (WS 1 (1).GT. 99.9. 0P. WS1 (2).GT. 99.9) GO TO 80 928.
Y =W S1 (1)-WS 1 (2) 929.
I F ( Y. EQ. 0. 0 ) NS (10) =NS (10) + 1 930 I F (WS 1 (2).G?. WS 1 ( 1) ) NS (17) =NS (17) + 1 931.
80 CON TINU E 932.
I F ( WD 1 (2).GT. 36 5. 0
.0P.
W D1 (3).GT.3 65.0) GO TO 95 933.
I F (WD1 (2).LT.O.
.0E.
WD 1 (3).LT. 0. ) GO TO 95 934 X =A BS (m D1 (2)- WD 1 (3) )
93 5.
I F ( X. Lt. 2 2. 5) GO TO 9 3 936.
IF ( WS 1 (2).G E. 2. 5. A ND. WS1 (2).LT.99.9.09 WS1 (3).G E. 2. 5. AND.
93 7.
1 WS 1 (3).L*. 99.9 ) NS (11) =NS (11) + 1 l
93P.
I F ( WS 1 ( 2).G E. 5. 0.AND. WS 1 (2).LT. 99.9
.0P.
WS 1 (3).G E. 5. 0.AND.
939.
1 mS 1 (3).LT. 99.9) NS (12) =N S (12) + 1 940.
I F ( WS 1 ( 2).G E. 7. 5. A ND. WS 1 (2).LT. 99.9
.0P.
WS 1 (3).GF. 7. 5. AND.
94 1 1 WS 1 (3). LT. 99. 9) NS (13) =NS (13) + 1 942.
93 I F( X. EQ.0.0) NS (14) =N S ( 14 ) + 1 943.
95 IF (WS1 (2).GT.99.9. OP. WS1 (3).GT. 99.9) GO TO 75 944 Y=W S1 (2)-WS 1 (3) 945.
I F ( Y. EQ. 0.0) NS (15) =N S (15) + 1 l
946.
I F (WS 1 (3).G'. WS 1 ( 2) ),
NS (18) =NS ( 18) + 1 947 75 CONTINU E 94 8.
I F (IC HK. EQ. 0) GO TO 300 949.
C 95 0 C
CHECK FOR WIND DIRECTION FROM S AME SECTOP FOR MOPE THEN 8 H0flRS 951 C
,13,I 4, IS,3 X, ' H EIG H T= ', F6.1, ' M '
952.
106 Fon MAT ( '
953.
1,5X, ' dI ND P"0 M SECT OP ', A 4, ' FOP PRE VIO'IS ',I4, ' H0ffP P EP IO D ' )
95u.
I F ( L E Y. EQ.1 ) Go TO 200 955.
GO To (166,19 0,16 6,190), LEV 956.
166 IF (ICHK.EQ. 3.AND. KX (2). GT. 8 ) GO TO 167 957 C ALL SECTOC (WD1 (2), JK (2))
958.
I F (JK (2 ). LQ.-1
.O R. JJ (2).EQ.-1)
GO TO 167 l
95@.
I F (JJ (2). EQ.JK (2) ) GO TO 165 960.
167 I F ( KX (2 ). LT.8) GO TO 17 0 G-17
961.
N =J J ( 2) 962.
P?IN* 106,I Y2,ID2,Ill2,EL2,N NN (N), K X (2) 963.
I NC=I NC + 1 964.
C ALL llE AD1 (INC,TI'L E,IP AGE) 96 5.
170 K X ( 2) = 1 966.
GO *O 183 96 7 165 K X(2) =K X (2) +1 968.
18S J J ( 2) =J h (2) 1 969.
I F (ICilK.EQ. 3.AND. KX (3).G'.8)
GC TO 187 970 190 C ALL SECT 09 (h D1 (3), JK (3) )
97 1.
I F ( JK (3 ). FQ.- 1.0 P. JJ (3).FQ.-1)
GO TC 187 972.
I F (JJ (3). EQ.J K (3) ) GO 70 19 5 973.
187 I F ( KX (3 ). L*.8) GO 'O 18 8 074.
N =J J ( 3) 975.
PFINT 106, IY 2,ID 2,Ili 2, EL 3, NN N ( N), K X (3) 97 6.
I NC=I NC + 1 977 C ALL llE AD1 (INC,TITL E,IP AG E) 978.
1 88 KX(3)=1 974 GC TO 191 980 195 K X(3) =K X (3) +1 981.
191 JJ ( 3) =J K (3) 992.
I F ( LE V. EQ. 4 ) GO TO 300 9d 3.
I P (ICliK. EU. 3. A ND. KX (1). GT. 8 ) GC PO 210 494.
200 C ALL SECTOP (WD1 (1), JK (1))
985.
I F (JK (1). Eg.-1
. 0 P. JJ(1).EQ. -1) Go TO 210 98 b.
I ? (JJ (1). EO.J K (1) ) Go TO 215 987.
2 10 if ( KX (1). LP.8 ) GC PC 218 988.
N=J J ( 1) 989 PPINT 106, IY 2, ID 2,Ill 2, EL 1, NN N (N), K X ( 1) 99 0.
I NC =I NC + 1 991 C ALL llE AD1 (INC,TITL E,IP AG E) 992.
2 18 K X (1) =1 993.
GC TC 21b 99 0 215 K X (1) =K X (1) +1 99 5.
216 J J ( 1) =J K (1) 996.
300 CONTINUE 997.
P t* UP N 998.
END i
I
\\
i i
G-18
.n
nPPENDIX H PROGRAM LISTING OF STABQ t
f E
l
{
I J
H-1
1 C
2 C
- eeee**eenneeeeeeeeeeeeeeeeeen...ee.........eeeeene e
- 3, C
e c.
C e
STA80 e
5 C
0 C
e Tw!S PROGRA* CALCULATES PERIUOS OF OCCURENCF OF 7,
C STAA!LITY CLASS RASED t1N DELTA =7 04 SIG"A TWETA 4
C FROu A DATA FILE IN THE NRC STANDARD F04 MAT C,
C e
e PWOGRAMMEpt *ILLIAM SNELL e
10 C
e 11 C
- DATE: APRTL 1978 e
12 C
e VERSION: 1 e
13 C
14, C
e Mup!FTEns W.
SNELL 15 C
e DATE: FEh00AWY 19H2 e
16, C
e VEWSIONI 2 e
'17, C
e e
te, C
- eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee............ seeeeeeeeeeee.
19 C
200 WEALea nu,TL 21 CO*uuN/D A T A t /Sr.(3),DT (3) e C(e) 22, DIMENStos TODAyc8),A(2no),HR(13),IS1f31,TS2(3),1C(1),8(61, 23,
',IC N5 ( 7,13,3 ), I T Uf f 7,3 ) e T I T LE ( 18 ), H t 3 ), NN ( 7 )
24 DATA HW/'
)
2 3
8,'
4 25, 1
S b
7-11 ','
12=23 ',
20, 2
24=47 ','
06 71 8,'
72-95 8,8 96=119',
27, 3
>120'/
28, DATA NN/8A',tB','C','D',th','F','G'/
29, DATA IC/3*1/,ITUTeICHK,IS2/21*0,273*n,1 9/
30, DATA H/'OELT',tA=T 8,'
8,'SIG9','4 TH',' ETA '/
31 C
32 CALL Rw32u0 (ToDAY1 33 palat Pun, TODay 30 C
35, C
WLAU Ako adITE Uuf HEAnING OF GATA FILF 30 C
37 WEAD(1,10) A 38, 10 FORwaf(4(4044/1,00A41 30, PRINT 11, a 40,,
!! Eud*AT('='eto('
',20&4/))
41.
C c2, C
WEAD INPUT DAT&
43, C
44 C....
TITLF s TITLF Pd!aTEn qN EACH PAGE 45 C.., 15 s 1,
ST Adit t t V HASEn UN oELTA=T co, C....
IS a 2, STAHTLTTY BASED ON SIGaa THfTA l
47 C....
JY,Jw,Jo a STAWT YEAR, MONTH AND DAV l
08, C,...
- Ye n*,
D a END YEAd, MONT* AND nAY 49, C
So, READ (5,12) TITLE,IS,Jy,JH,Jn,=y,nM,xn St, 12 FuW"AT(1AA4/11,2(12,3f2))
52, LALL InAT(Jo,Ja,JY,JJD) 53, CALL IDAT(n0,<*,<Y,J401 59 ISTRTsJveloon+JJn 55 TE40seve1000+J<D 56, Nist 57 IF(IS.E9,21 Nis4 58, N2sISe3 59, PRINT 206, f ! T t.E, ( u ( % ), N a N 1, N 2 ), J Y, J w,.t o, < v, = M, x n 60 C
H-2
61 C
READ STAHILITY AND CATEGURIZE INTO A STABILITY CLASS 62 C
65.
75 WEA0(1,tnieENDs999) !Y,IDe((H(I),8G(T)),Tal,3),(Off!),Ist,5).
64 a (C(!), Isle 6) 05, 101 FUdMAT(bX,I2,13,48,3(F5.1,los,F5.1,1%R),3F5.1, 66
- T16,3(tex,A4,tSz),3(1X,A4))
67 IDaiEsIY*10uu+10 e4 IF(IDATE.LT.ISThT) GO TU 75 l
o9 IF(IDATE.GT.!END)
GO TU 999 l
70 CALL HLNk 71 C
72 00 15 Nai,'l 73.
IF(IS.EO.1) CALL STAHLE(DT(N),J) 74 IF(IS.Fu 2) CALL SIG"A(SG(N),J) 75, 15 IS1(k)sJ 76 C
77 C
SUuMAHf2F DATA i
78 C
79 00 5r. Net,3 80 1F(151(N).EG.9) GO TO 10 l
61 IF(IS7(N).F4.9) GO To 50 42 IFCIS1(N).FW.!S2(N1) G') To uo A3 30 Lets?(N) 64 IF(L.EO.9) GO TU 50 AS.
CALL CHw(IC(N).H)
So.
IF(IC(N).GT.tTOT(L,N)) ITUT(L,N) SIC (N)
M7 ICHM(L,M,N)sICwk(L,M,M)+1 88 TC(N)st 89 GU fn 50 90, ao IC(N)stCfN)+1 91 Su CONTINUE 92 C
i 93 00 en Nat,3 94, ou IS2(*)s191(4) 95 C
46 GO in 75 97 C
9H.
999 CONTTNUE 99 C
- 100, ou e5 Nat,3 101 LsIS2(N) l 102 IF(L.EQ.9) GU TU 65 103 CALL CNAflC(N),M) 104 fF(IC(N) GT.!Ti)T(L,N)) ITOT(L,N)aIC(u) 105 ICHK(L,M,N)sICHn(L,P,N)+1 I
106 05 CONTTNUE 107 C
108 C
PktNT GUT 9ESUt.TS 109 C
110 Oli 151 Nale3 111 PWINT 200, To0AY 112 PRINT 207, TITLE 111 IF(IS.F4.21 Gil To 140 114 IF(N.EQ.1) PWINT 203, H(1),Ht3) 115.
IF(N.EG.7) ARI97 293, w(t),"(2) lle.
IF(N.E4.5) PRINI 2 13, *(2) -(3) 117 GO Tri 145 118 140 PRINT 70%, H(4)
- 119, 145 PRINT 791, (N4(1),f: 1,7) 170 00 150 Hat,13 H-3
- lit, 150 PRINT 207, HW(M),(ICHk(t,M,N), Lot,7)
- 122, PRINT 204, (ITUT(L,N),Lal,7)
- 123, 151 CuNTINuE
- 12c, C
125 C
FORMAT STATEMENTS
- 120, C
- 127, 200 FORMAf('t','pROGWAut STA808,10x,8vERSInNt 28,10X,
- 128,
! 'DATEDI FEH4UARY 19428,15X,'WUN DATF3 ',gAu)
- 129, 201 FUWMAT('O',32X,' NUMBER UF UCCURENCES'/' ',' PER!nD OF'/'
- 130, l'
OCCURENCE',281,'STABILITV'/' ','
(Hnuus)',
- 131, 23x,7(7x,A11/' ','
=========',3x,7(5x,'==='1)
- 132, 202 suRMAT('n',Ah,hX,7(I6,2X))
- 133, 203 FORMAT ('O',' STABILITY RASED UN DELTA =T BET"EEN
'e
- 134, 1
FS,1,'=',FS 1,'
MFTEWS'1 135 dec 70WMAT('o',' LONGEST CASE',7(2x,I6))
- 136, 205 FOhnAT('o',' STABILITY HASED ON SIGdA THETA AT',Fh.1,'
METERS')
- 137, 206 FORMAT (/////80',' INPUT UPTJONSt'/808,'TITLFt 8,
- 138, t 18 A c / 8 0 8, ' Ci1HPU T E STARILIT, HASED Out 8,3A4/808,
- 139, 2 'STAwf nATEt',3I3/'
','END DATEI',3731
- 140, 207 FORMAT ('=',tead) lui.
STOP 102 END
- 103, suMWOUTIaE 6LNa
- 140, C
- tag, C.,,,,CHECa FOR ALANd DATA FIELOS
- 146, C
- 147, CO* MON / DATA 1/SG(3),DT(3),C(n)
- lub, DATA H</'
'/,l/9949,4/
- 149, 00 to late)
- 150, IF(C(II.FG.Hn) SG(t)2
- 151, I t.
I F (C (,I + 31. E Q H k ) Of(T)sl 152 RETUEN 153 ENn
- 154, SUHWOUTI*'E Cd*(IC,*)
- 155, C
INTEwVALS
- 150, C,...
CATEGURI11FS UCCURENCF 157 C
154 nIME*STO' N(121
- 159, DAIA N/l.2,3,4,5,o,11,?3,47,71,95,110/
160 UU 10 "st,12
- 101, 10 IF(IC,LE,N(M)) RFTows
]
- 162, Mal 3 i
- 163, dtTUE4
- too, ENn
- 165, SuH400 TINE InAT (Io,fe,IV,Jr)
- los, C========T"Is SuHRouTI'JE CHANGES ~oNTH ann cay in JULlaN nAY
- 167, ol ENStos fo(21,fM(21,tYC2),JO(2),YWr2ieTY8(2)e"DNf12) l 108 DATA MON /o 31,59,90,1Po,151,181,212,743,273,300,334/
j
- 109, ou 2c Nal,2 l
- 170, IM"sfM(N) 171 J h ( 9 ) s uo*-( T u")
- 172, J0fN)sJDfN1+TD(N1
- 173, fw(N)sivfN1*o.25
- 174, lYD(kIsvo(N)
- 175, Savk(N1-7v4(N) l 176 I>
(5,FU,0,0.4Nr,Jo(N),GT,59) JotNisJn(N1+1
- 177, 28-CON T I N'lE 178 METU4N
!?9, END
- 180, SuskouTILE SIGSA(di,"*1 H-4 l
lat.
C========THIS SURi400 TINE CALCULATES STABILYYv rRf1M SIG"A THETA
- le2, DIMENSTON S(h) 1d3 DATA d/27.5,17,5 12,5,7,5,3,M,2,1/
184 KKs9
- 185, I F ( S T, t. T, 0,. I)R, ST.GT,365.) RETURN
- 186, 00 109 KKulee
- 188, NKs7
- 149, W E T tJ p N
- 190, ENO
- 191, SUHROUTINE STARLE(ST,<w)
- 192, DI"ENST(IN S(h)
- 193, C========Tw!S SUHHUUTINE CALCULATES STABILfTV CLASS
- 194, C========K K s 1,7,3,,, COW W F SPflNDS fil STAHILITY Cl ASSE S A,6 e C...
19$,
OAIA S/=1,9,=1,7,=1,5,=0,5 1.5,4,0/
- 106, K4s4
- 197, IF(ST,LT,=7,a
,04, ST,G1,gg,0) WETupN l
- 198, DO 100 kg a 1,,i
- 200,
<n a 7 l
- 20t, 4ETUR"
- 202, FND i
I t
l l
i i
H-5 1
1
APPENDIX I PROGRAM LISTING OF TDP l
I t
I l
i
)
l 1
i i
l I
r 1
I-1
1 C
2 C eeeeeeeeeeeeeee****eee***eeeeeeee***eeeeeeeeeeeeeeeeeeeeeeeeeeeeen 3
C
- 4 C e Top a
5 C
- 6 C
- THIS PROGRAM CALCULATES MONTMLY ANNUAL AVERAGES 7
C
- OF TEMPERATURE, nEh POINT, WINn SPEEn (RM81 8
C
- AND *ET BULB (CALCULATFD) 9 Ce 10 C e PROGRAMMERI "ILLIAM SNELL 11 C
- DATE:
APRTL 1978 12 C
- VERSION:
1 13 C
- 14 C
- WEVISED:
R.
CODELL (To TNCLUDE "Et BULB ann RMS WINN SPEED) 15 C e DATE: OCTURER 1981 16 C
- VERSION 2
17 C
- REVISEra a.
SNELL 10 C
- 19 C
- DATEt MARCH 1982 20 C
- VERSION: 3 21 C
=
22 C.e**es**esee*****ee******e***ene******e********eeeeee******e******
23 C
24 REALe8 YY 25 C
26 COMMON / DATA 1/ T(3),0(3),w(3),TY(3)eDY(3),TN(3),0N(3),C(9) 27 COMMON / DATA 2/ TTt3),T*ETB(3),Ta(3),It'(3),1WETB(3),ITT(3),
w 28
- 00(3),In0(3),WX(3),kX(3),aN(3),8N(31,*8uls(3) 29 CUMMON/ DATA 3/ TTX(3),TnX(3),TTN(3),TeNf3),
30
- tax (3), Tax (3),TwN(3),TBN(3) 31 C
32 DIMENSTON T00AY(H),A(20VJeYYCl3),H(31,TTw(3),RAN(3),4&N(3)e 33, 1
TAVGt3),WT(3),Kof3),TifJT(3),DT0f(3), TAN (3),cavGt3),
34 2
DAN (3), TITLE (1M),8 AVG (3),Kn(3),wf0T(3),<R(3),HTOT(3),
35, 3
PT(31,P*(3),90(3),PPf3),IPT(3),IPDf31,fPa(3),IPBr3),
36 4
TAP (3),*AP(3)eDAP(%), HAP (3),
37 5
Pix (3),PnX(3),Pnx(3),
38 6
aAVGt31,PdXC3),PmN(3),PON(3),PTN(3),PBN(3) 39 C
40 DATA yy/' JANUARY
','FERURARy',' MARCH
'e' APRIL 41, 1
'MAY 8,' JUNE
','Juty
',8 AUGUST 42, 2
'SEPTMAER8,'OCfoutw ', ' Nilv E* RE w ', ' n E C EMR E P ', ' A N Nil A L
'/
43 C
44 DATA TTa,wAVG,8 AVG /9ep,/
45 DATA ipr,IPT,IPO,IPk/12*0/,Pa,PT,Pn,PP/12*n./
46 DATA OTX,PHX, pax,PDX/12e=99 9/,PTN,FnN,PRN,P.N/12eoQ,9/
47 C
48 CALL RMB740 (TODAY) 49 PRINT 25, TUGAY 50, 25 FORM T('t'e'PROGRAMI T OP ',1'e x, ' VER S inn t 38,10X,'nATEnt',
51
- 8 MARCH 1982 8,15 X, ' 4tlN DATEI 8,8A4) 52.
C 53 WEAD(1,ln) A 54 I t, FU4 MAT (4f40A4/),40A41 55 PRINT 11, A Se.
11 FORMAT (In',' SITE:
'/'o',10('
',2nA4/))
57.
C 58 READ (5,17) TITLE 59 12 FORMAT (lRA4) 60 PHINT 18, TITLE I-2
61, 1H FU4 MAT (////'O',' TITLE: ',18A4) e2, READf5,14) PHAR,LYi,LM1,LD1,LY2,LM2,LD?
65, 13 F ORM A T (F 10,0/312, t x,3I2 )
ou, WWINT 14, PBAR,LYleL"1,Lnt,LY2,LM2,Ln2 e5, tu FuRMAT(////'0',' INPUT NATA 3'/'O','8ADOppTWTC P4 ESSURE:
8, ee,
- F7.1/80','S1Auf DATE ',3I3/'
','END nATEt',313) 67 ISTWTalY1*10 ann +LMl*100+LD1 68, IENDs LYP610000+LMP*100+LD2 09 C
10, IC"Ks9 it, 1ANNs0 12, 4C480 73, ACTS 13 lu, nKsu 75 C
76 CALL SFT1 77, CALL SFT7 78 GU 70 75 79, 17 JvaIV 80 JMsIM 81, KCkst 82 GO TO 23 83, C
84 L
READ IN DATA AND COMPUTE MUNTH ann nay 85, C
86, 75 READ (1,160, ENDS 998) TV,JD,KM,((H(I),a(f),T(!),0(f)), fat,3),
87,
- (C(I),Is!,9) 86, 1 01 FORMAT (6x,I2,I3,14,3(F5.1,5x,F5,1,5X.2rs.1,5x),
89,
- Tle,3(11X,A4,6A,AG,tx,A4,5x))
90 C
91, CALL JDAT(fY,Jo,IMeID) 92, IDATEsfY*10000+IM*100+ID 93, IF(!DATE,LT.ISTRT) GO TU 75 94, IF(IDATE.GT,!END) GO TO 998 95 CALL btNN 96, IF (KCK,ED,0) Go f u 17 97, IF t 1*,NE,J*) Go Tu 50 98, C
99, C
TOTAL UP MONTHLT VALUES 100 C
- 101, 23 CONTINUE
- 102, DO 30 Nat,3
- 103, C
RMS a!NDSPEED
- 104, IF(a(N),tT,0,
,UR, h(N),GT,99,9) Gi) TO 26 l
105 Ta(N)stw(N)+a(N)**2
- 106, ITe(N)sITa(N)+1
- 107, 26 CUNTINUL
- 108,
- AULR(N)s99,4
- 109, C
TEMPERATURE 110 IF(T(N),LT,=99,9
,0H, f(N),GT,99,9) Go in pg 111 TT(N)stf(N)+T(N)
- 112, ITT(v)sITT(N)+1
- 113, C
CALCULATE MET BUL8 TEMP 114 IF(0(N),LT,=99,9 04, n(N),GT,99.9) GO TO 30
- 115, IF(0(N),GT T(N)) GO TO 28 116 TFAsT(N)*1,8+32,0 117 DFAsD(N)*l 8+32,0 118 CALL PSY(TFAeDFA,PHAW,wFA,PVAP,HUMRAT,FNTHAL,VOLUMF,
- 119, i
VAPR,RFLHUM)
- 120, aHULR(N)s(aFA=32,03/1,8 I-3
121 TWETB(N)sidETB(N)+*BULR(N) 122 I*ETB(N)s!*ETB(N)+1 123 GO TO 29 124 C
DE* POINT
- 125, 26 IF(D(N),Lle e99,9 04 D(N) GT.99,9) GO in 30 126 29 DO(N3sDD(N)+D(N) 127 IDD(N)sIDO(N)+1
- 128, 30 CONTINUE 129 C
130 CALL MAXHIN 131 C
- 132, GO 70 75 133 C
134 C
COMPUTE MONTHLY AVERAGES AND ARINT 135 C
136 So CONTINUE 137 00 55 Nat 3 138 WAVG(N)s099,9 139 HAVG(N)so99,9 140 TAVGtN)so99.9 141 DAVG(N)s099.9 142 IF(ITa(N).GT,0)
- AVG (N)sSQRT(Ta(N)/Ita(N))
143 IF(IaETH(N),GT,0) HAVG(N)sfaETR(N)/I*ETe(N) 144 IF(ITT(N).GT,0) TAVG(N1mTT(N)/ITT(N) 145 IF(IDD(N).GT 0) DAVG(Nis0DCo1/IDn(N) 146 Ka(Nisua(N)+ITw(N)
- 147, aTOT(N)s* TOT (N)+Ta(N) 148 kB(N)s*HfN)+I*ETB(N) 149 RTOT(N)spTOT(N)+TaETR(v)
- 150,
<T(N)skT(N1+ITT(N) 151 TT01(N)sTTOT(N)+TT(N1 152.
KD(N)sNDfN)+1DD(N)
- 153, 55 0 TUT (N)enTUT(4)+DD(N) 154 C
155 00 ho Nat,1 156 IF(TX(N),GT,TTx(N)1 TTr(N)sTX(N)
- 157, IF(Ox(N).GT.TDx(N)) TDr(N)spx(N) 156 IF(*z(N),GT, Tax (N)) Tax (N) sax (N) 159
!F(HX(N).GT.TRx(N)) THX(N)spx(N) 160 IF(TN(N),LT TTN(N)) TTN(N)sTN(N) 161 IF(DN(N).LT.TDN(N)) TDN(N) son (N) 1o2 IF(*N(N),LT.TwN(N)) T N(N)s=N(N) 163.
IF(BN(N),LT.TbN(N)) INN (N)sRN(N)
- 164, no CuNTINUE 165 t
166 IF(ICHk,NE.9) GO TO 65 167 PRINT 200
- toe, PRINT 25, TODAY 169 PRINT 201, TITLL,(H(11,In!,31 170 ICHAso
- 171, 65 CONTfNUE 172 C
173 PRINT 207, JY,YY(JM),
174 1 (taAVG(N),aN(N),*x(N),ITa(N)),Nat,31,
- 175, 2 ((TAVG(N),7N(N),fx(N),ITT(N)),Nat,5),
176 3 ((DAVG(N)eDN(4),Dx(N),IDD(N)),Nat,3),
177 4 ((savn(N),8N(N),nx(N),laETR(N)),Nat,3)
- 178, 201 FUWMAT('n' alma 4/'0',Tuo,3(6a,PS,1,' HETEWS',10X)/' ',
179 1 T35,3(5x,23('='))/'
8,'YEAW MUNTH 8,735,
- 160, 2 3(5x,'
AVG MIN
- ax HW5')/' ',
I-4
- 181, 3
8............',T36,3(uX,4(e.....
')))
- 162, 202 FOWMAT(ine, 8198,12,1X,46,
- 183, 1 117,'aIND SPEED (M/S)',T35,3(5X,3(r5,1,1Y),15),/' ',
184 2 T17,'YEMPERATukE (C)',T35,3(5X,3(FS,1,1X),IS),/' ',
185 3 T17,' dea POINT (C)',735,3(5X,3(F%,1,1X),15),/' ',
- 166, 4 T17,'aET RULB (C)',T3S,3(5X,3(F5.1,1X),15))
- 187, 204 FORMAT (///'O','***
WINO SPEEn 18 ROOY="EAN. SQUARE ',
188 e laIND SPEED'/' ','*** *ET HULH IS CALCULATED FNOa ',
- 189,
- 'TEMPERsTURE, dew POINT ann PRESSURF')
190 C
191 JMm!>
- 192, ICHKsICHk+1 193 IF(JY,NE.IY) GO TU 70
- 194, IF(Kk.EG,1) GO TO 79 195 GO TO 80 196 C
197 C
COMPUTE ANNUAL AVERAGE AND PRINT 196 C
- 199, 70 CONTINUE 200 IF(ICHK,NE.9) GU 70 71 201 PHINT 200 202 PHINT 25, TODAY
- 203, PRINT 201, TITLE,(H(I),Is!,3) 204 ICHKs0
- 205, 71 CONTINUE
- 206, 00 73 Nat,3 207
=AN(N)s999,9
- 206, IF (K5 (N),GT.0) aAN(N)ssuRT(> TOT (N)/**(M))
209 BAN (N)s999.9 210.
IF(KR(N),GT,0) RAN(N)sHTUT(N)/KHtN1
- 211, TAN (N)s949,9 212 IF(KT(N),GT,0) TAN (NisTTUT(N)/KT(N1 213 DAN (N)s999.9
- 214, IF(kD(N),GT,0) DAN (Nieni0T(N)/Ku(N) 215 IPW(N)sIPw(4)+<a(N) 216 IPT(N)s!PT(N)+MT(N) 217 IPn(N)sIPD(N)+kD(N) 218 IPH(N)s!PB(N)+KH(N) 219 Pa(N)sPafN1+aTOT(N) 220 P1(N)sPT(N)+TTOT(N) f 221 PD(N)sPD(N)+nTOT(N) 222 PBCN)sPB(N)+RTOT(N) 223 73 CONTINVE 224 C
225 PRINT 203 22e.
PRINT 202, JY,YY(13),
- 227, 1 (CaAN(N),TWN(N), tax (N),Ka(N)),Nst,31,
- 228, 2 ((TAN (N),TTN(N),TTX(N),KT(N)),Nst,3),
229 3 ((DAN (N), TON (N),TDx(N),KD(N)),Nst,3),
- 230, 4 ((BAN (N),THN(N),THX(N),KH(N)),Nat,5) 231 PRINT 203
- 232, 203 FORMAT ('n')
- 233, C
234 DU 76 Nei,3
- 235, IF(TTX(N),GT,PTX(N)) PTX(N)sTTX(N) 236 IF(inX(N),GT.P0X(N)) POX (N)sTDX(N) 237 IF(T*X(N),GT. pax (N)) PdX(N)sTwX(N)
- 236, IF(TRX(N),GT.P8X(N)) PRX(N)sTHX(N) 239 IF(TTN(N).LT.PTN(N)) PTN(N)sTTN(N) 240 IF(TDN(N).LT.PnN(N)) PDN(N)sIDNCN)
I-5
341 IF(TWN(N).LT.PWN(N)) PwN(N)sinN(N)-
343 IF(TBN(N).LT,PRN(N)) P8N(N)sTBN(N'
- 203, 76 CONTINUE 344 CALL SET 7 305 00 77 Net,3
- 344, WAN(N)e0 347 BAN (N)e0 248 TAN (N)e0 3C9 77 DAN (N)e0 250 ICMKs9 351 JYs!Y 353 IF(KK.EG.13 GO TO 999 353
!ANNel 354 C
- 355, 80 CONTINUE 356 C
257 CALL SETt 358
!P(! ANN.EQ.03 GO TO 79 259 IANNs0 200 00 78 Nat 3 261 MT(N)s0 363 KD(N)s0
- 363, KW(N)s0 364 48(N)S0 365 dTOT(Niso.
366 HTOT(N)co.
367 TTOT(N)so.
365 78 OTOT(N)co.
369 79 CONTINUE 370 C
271 GO TO 23 373 C
373 998 KK91 274 GO TO 50 l
375 999 PRINT 204 1
276 PRINT 35, TODAY l
277 00 90 Net,3 378 WAP(N)s999.9 219 IF(IPW(N) GT.0) WAP(N)sSQRT(Pw(N)/IPW(N))
280 8AP(N)s999.9 381 IF(IP8(N).GT.0) BAP(N)sP8(N)/IPB(N) 383 TAP (N)s999.9 383 IF(IPT(N).GT.0) TAP (N)sPT(N)/IPT(N) 384 DAP(N)s999.9 385 IF(!PD(N).GT.0) DAP(N)sP0(N)/IP0(N) 386 90 CONT!NUE 287 PRINT 205, T ITLE, (H ( !), Is !,3 ), Y Y C LM 1 ), L D 1, L Y 1, Y Y C L M2 ), LD2, L Y2, 288 1 ((WAP(N),PMN(N),PWX(N),IPw(N)), Net,3),
- 389, 2 (CTAP(N),PTN(N),PTX(N),IPT(N)),Nat,1),
- 290, 3 ((DAP(N),PDN(N),P0X(N),IPD(N)),h51,3),
391 4 ((BAP(N),P8N(N),PSX(N),IP8(N)), Net,3) 393 205 FORMAT ('08,18A4/'0',T40,3(6X,F5.1,8 *ETER8',10X)/' '.
293 1 A8,13,',
198,!2,735,3(5X,23('='))/8
',T12,'TO',
394 2 T35,3(5X,'
avg MIN MAX HR88)/8 8,A8,!),',
19',12, 395 3 T36,3(4X,4(8..... 81),/8 0',
296 4 ft7,'d!ND SPEED (M/838,T35,3(5X,3(F5.1,1X),15),/' ',
397 5 ft7,' TEMPERATURE (C1',735,3(5X,3(F9.1,tX),15),/' ',
298 6 ft7,'OEw POINT (C)',T35,3(5X,3(F5.1,1X),I5),/'
8, 399 7 T17,'wtf RUL8 (C)',T35,3(5X,3(F5.1,1X),t5))
)
300 PRINT 204 I-6 l
301 STOP
- 303, END 303.
SUSROUTINE SLNR 304 C... CONVERT BLANN DATA FIELDS TO 9999.9
- 305, COMMON / DATA 1/ f(3)~,0(3),W(3),TX(3),0X(3),TN(3),0N(3),g(9)
- 306, DATA 8N/I t/,I/9999.9/
307 C
304 Noe) 309 D0 to Ist,3 310 NsN+3 311 IPCC(N+13,sG.8h) W(!)st 312 IF(C(N+2).EO.8K) T(!)st 313 IF(C(N+3).EG.8M) D(!)st
- 314, 10 CONTINUE 315 RETURN 316 END 317 SUBROUTINE JDAT(!Y,JD,IM,ID) f
- 318, C
319 C
THIS SUBROUT!NE CONVERTS JULIAN DAY TO MONTH AND DAY 329 C
321 DIMENSTON MM(12,3) l 323 DATA MM/0,31,59,90,130,151,161,212,243,273,304,334, 323 o,31,60,91,121,152,1st,213,244,27s,305,335/
l 324 C
325 YMs!Y*o.25 326
!YRsVR 327 8sVR=!YR j
328 Let l
329
!F(8.lG.O.) Let 330 C
331 00 to !s2,12 f
332 IF(JD.LE.MM(!,L)) GO TO 15 333 to CONTINUE 334 1e13 335 15 IDeJD=MM(!=1,L) 1 336 IMe!=1 337 RETURN 335 END 339 SUBROUTINE MAXMIN 1
- 340, C
341 C.....TMIS SU8 ROUTINE CHECKS FOR MAXIMUM & MIN! MUM VALUE8 342 C
343 COMMON / DATA 1/ T(3),0(3),W(3),TX(3),0x(3),TN(3),0N(3),C(9) 344 COMMON / DATA 2/ TT(3),TWET8(3),TWC3),ITWf33,1 WET 8(3),1TT(3),
345
- DD(3),InD(3),wX(3),8X(3r,WN(3),8N(3),wSULB(3) 346 C
347 D0 50 Note) l 348 IF(D(N).LT.=99,9 0R. 0(N) GT.99.9)
Gn TO 25 349 IF(D(N)
.GT. DX(N))
)X(N)sD(N) 350 IF(D(N)
.LT. DN(N))
D N (N) eD ('4 )
- 351, 25 CONTINUE 352 IF(T(N) LT.=99.9 0M. T(N) GT.99.9) GO TO 3e I
353 IF(T(N)
.GT. TX(N)) TX(N)eT(N) l 354 IF(T(N).LT. TN(N)) TN(N)sT(N) 355 35 CONTINUE 356 IF(M(N) LT.O..OR. W(N).GT.99,9) GO (0 49 357.
!F(W(N).4T.WX(N)) WX(N)sW(N) 358 IF(W(N).LT.WN(N)) WN(N)eW(N) 359 45 CONT!;;UE 369 IF(WBUL8(N).EQ,99.9) GO TO So I-7 L
361
!F(MBULB(N).GT.8X(N)) BX(N)sW8ULH(N) 362
!F(n8UL8(N).LT.8N(N)) BN(N)sm8UL8(N)
- 363, to CONTINUE 364 RETURN 365 END 366 SUBROUTINE P8Y(DNeDP,PeenB,PVeWeH,V,RH) 367 C
THIS ROUTINE CALCULATE 8 WET SUL8 TEMPERATURE (wB), HUH!DITY 368 C
RATIO (w), ENTHALPY (H), VOLUME (V), VAPOR PRES 8URE (PV),
369 C
AND RELATIVE HUMID!TY (RH), WHEN DRY BUL8 TEMPERATURE (08)#
370 C
dew POINT TEMPERATURE (DP), AND RAROMETRIC PRES 8URE (PM),
371 C
ARE SIVEN 372 C
UNIT 88 08e W8, DP a DEGREE 8 F 373.
C PVe P8 R INCHE8 MERCURY i
374 C
W e L8 0F WATER V APs)R PER LR OF DRY AIR 375 C
H e BTU'8 PER LB 0F DRY AIR 374 C
V e CUBIC FEET PER L8 0F DRY AIR 377 C
RH 5 FRACT!ON (NOT PERCENT) 378 C
379
!F (DP.GT 08) DPeDB 380 PVgPV8F(DP) 381 PV8ePV8F(DB) 382 RHePV/PV8 383 Woo.622*PV/(PB=PV) 384 Vuo.75a*(08+459.7)*(1.0+7000.0*d/4360.03/98 385 Hs0.24*D8+(1061.0+0.444*DB)*W 384 IP (H.G'.0.0) GO TO 100 387 W8sDP 388 RETURN
- 389, 100 *8eW8F(H,PB) 390 RETURN 391 END 392 FUNCTION PV8F(X) 393 C
CALCULATE VAPOR PRE 88URE OF WATER (!NCHES OF MERCURY) A8 A
)
394 C
FUNCTION OF TEMPERATURE (DEGREES F) 395.
DIMEW8 ION A(6)es(4),P(4)
' 394 DATA A/=7.90298,5.02808e=1.3816E=7,11.344,A.1328E=3e=3.89149/
- 397, DATA 8/=9.09718,=3.56654,0.876793,0,0060273/
398 Ti(X+459.6883/t.8 j
399
!F (T.LT 271.16) GO TO 100
- 400, Zs373.16/T 401 P(1)sA(1)*(Z=1.0) 402 P(2)sA(21*ALOG10(Z) 003 Z1sA(4)*(1.0=1.0/Z) 404 P(31sA(3)*(10.0**Zl=1.0) 405 Z1sA(6)*(Z=1.c) 406 P(4)eA(5)*(10.0**Zlat,0) 007 GO TO 105
- C08, 100 Zs273.16/T C09 Pit)e8(1)*(Z=1.0) 410 P(23e8(2)*ALOGt0(Z)
- 11 P(3)sB(3)*(1.0=1.0/Z) 412 P(4)sALOG10(8(4))
413 105 8UMao 0 414 00 110 !ste4 815 110 8UMe8UM+PCI) 014 PV8Fe29.921*10.0**8UM 417 RETURN 418 END 419 SU8 ROUTINE SET 1 c20 C...!N!TIAL!!E DA7A I-8 I
.------,cr,,
421 COMMON / DATA 1/ T(3),D(3)# WC3)eTX(3),0X(3),TN(}),0N(3),C(9) 422 COMMON / DATA 2/ TT(3),TWETB(3)eT%(3)e!TW(3)e!WETB(3)eITT(3),
D0 ( 3 ),100 ',3 ), w X ( 3 ), R x ( 3 ), w N ( 3 ) e BN ( 3 ), W 8UL R ( 3 )
423 424 C
425 00 to Ist,3
- 426, DD(!)so.
l
- 427, TT(!)so.
l 428 TwETB(!)s0 429 Tw(!)so.
430
!DD(!)so 431 ITw(!)so 432
!WETB(!)s0 433 ITT(!)so
- 434, wX(!)s=99.9 435 BXCI)s=99.9 436 WN(!)s99.9 l
- 437, BN(!)s99.9 438 DX(!)s=99,9 439 TX(!)s=99.9 440 TN(!)s99.9
- 441, to DN(!)sg9.9 443 C
l 443 RETURN
- 444, END 445 SUBROUTINE SETI 446 C..!NITIALIZE DATA 447 COMMON / DATA 3/ TTx(3),TDX(3).TTN(3), TON (3),
448
- TwXt3),T8X(3)eT*N(3),78N(3) 449 C
450 00 to
!s','
451 TTM(!)s=<2.9 453.
TDX(!)s=99.9 453 TWX(!)s=99.9 454 79X(!)s=99.9 455 TKN(!)s99.9 456 TBN(!)s99.9 l
457 TTN(!)s99.9
- 458, 10 TDN(!)s99.9 459 C
460 RETURN 461 END 464 FUNCTION hRF(H,PR) 463 C
THIS ROUTINE APPR0x! MATE 8 IHE WET RULB TEMPERATUsE FROM 464 C
ENTHALPY H, AND BAROMETRIC PRES 8URE PB 465 NBCA,8,C.DeV)sA+(B+(C+D*V) Y)*Y
/
466 W(PVePB)s0.623*PY/(P8 PV) 447 X(wS12,W121so.24aW812+(1061.0+0.444*W812)*W12 444
!F (H.LE 0.0) GO TO 105 469 YsALOG(H) 470 IF (H.GT.11.758) 30 TO 100 471 WBFsWB(0.6041,3.48 stet.3601,0.97307,v) 472 RETURN 873 100 W8PsW8(30.9185,=39.682e20.58#1,=1.75R,Y) 474 RETURN 475 105 WB!st50.0 476.
PVisPV8F(W81) 477 WisW(PViePB)
- 478, XIsN(nsteWl) 479 Y1sM*X1 480 110 W83sW8 tat.0 1-9 l
L
- udt, pvgopvsfrang)
- 482,
- 2ca(PV/ PA)
- uG3, manxtaap,*p)
- oss, Y2sM x7
- 885, IF (Yl*V7) 130,140,115
- 486, 115 adtaaH2
- 467, YtsV2 I
- 406, fiU T O 110
- 489, 120 Jr (Y1,NF,0,0) Gli to t?5
- 490,
=6Pe=81 401 WETURN 4
- 492, 125 a85s*H; 49),
WEtuuN
- 094, 130 ZaAH5(Y1/Y2)
- 495,
- BFaf*H2*Z+dR11/(1 o+2)
- 494, WETURN
- 97, END r
i 1
(
i e
\\
,i I
I-10 1
___.___-..,.,...._,w,m,....,,._c
,,,,_,,,,-,,.,_.,,,,,_.,-,y,,,_.nwr...,__,...%,-.....,,,%..,.,.m..,,.,,,.,
,,.,.m.
_,.,_-e,-,%e,_.--
NRC roRu 335 U.S NUCLEAA REGULATORY COMMISSION BIBLIOGRAPHIC DATA SHEET NUREG-0917 4 TlTLE nND SUBTITLE (Add Volume No., rf approproate)
- 2. llenve blek)
Nuclear Regulatory Commission Staff Computer Programs For Use With Meteorological Data 3 RECIPIENT'S ACCESSION NO.
- 7. AUTHOR (Si
- 5. DATE REPORT COMPLE TED William G. Snell uouTw lvEaR June 1982
- 9. PE HFORMING ORGANIZATION NAME AND MAILING ADORESS Itactus I,p Co*)
DATE REPORT ISSUED l ^"
Division of Systems Integration
)uly 1982 Office of Nuclear Reactor Regulation U.S. Nuclear degulatory Commission Washington, D.C.
20555
- 8. ft,,,, o,,,,,)
l
- 12. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (inctue lep Co*)
p H RN NO.
Same as 9, above.
l
- 15. SUPPLEMENTARY NOTES 14 (teay, orma p
- 16. ABSTR ACT (200 words or less)
The Nuclear Regulatory Commission (NRC) receives hour-by-huur meteorological data on magnetic tape in a fonnat specified in Regulatory Guide 1.70, Rev. 2,
" Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants"(September 1975). The purpose of this report was to document the computer programs that are used by the NRC meteorology staff to examine, assess and utilize these hourly values of meteorological data. A description l
of each of the programs is given along with the input requirements, discussion of output, subroutine flow chart, a description of each subroutine, sample output and a program listing.
- 17. KE Y WORDS AND DOCUMENT AN ALYSIS 17a DESCRIPTORS i
17t> IDENTIFIE RS OPEN ENDE D TE RMS l
18 AV AILABILITY ST ATEME NT 19 SE CUR 8TY CL ASS (Th.s reporr/
21 NO OF P AGES Unclassified Unlimited 2o SECURITY CLASS <rss oa<,
22 eRiCe l
Unclassified s
N RC F ORM 335 it10H
UNITED STATES r ouIin ctassica NUCLEA7 EE 'ULATORY COMMISSION Post ce a setsP;ao WASHINGTON. D.C. 20556 n$!'n'a c Piaud to M OFFICIAL BUSINESS PENALTY FOR PRIVATE USE. $300 120555018877 1 ANIS US NRL ADF D IV CF TLDC POLICY & PUBLICAllGNS MGT BR POR NUREG CCPY WASHINGICN DC 20555
)
LA 212 i
i