ML20063K770

From kanterella
Jump to navigation Jump to search
Summary Technical Rept:Primary Containment Integrated Leak Rate Test
ML20063K770
Person / Time
Site: Oyster Creek
Issue date: 04/30/1982
From:
GENERAL PUBLIC UTILITIES CORP.
To:
Shared Package
ML20063K762 List:
References
NUDOCS 8209080472
Download: ML20063K770 (35)


Text

S'JMMARY TECHNICAL REPORT PRIMARY CONTAINMENT INTEGRATED LEAK RATE TEST APRIL 1982 O

RAO P

,._-____. ._ _ ___._ _ _ -_m. .

_. m . _ _ _ _ . ___ ,_.___. - m _ _ ____ _ . . _ __ _ _ _ _ _ _ _ _ _ _ . _ . _ _ _ _ _ . . . _ _

i t 4

4 f

1 4

9 i

] TABLE OF CONTENTS t

4 Introduction . . . . . . . ............ . . 2 i Ge neral Da ta . . . . . . . ...... . . . . . . . . 3 l

Technical Data . . . . . . . . . . . . . . . . . . . . 3

.i j Te st Da ta . . . . . . . . . . . . . . . . . . . . . . 4 4

l Verification Test . . . . .... . . . . . . . . . . 4 Analysis and Interpretation . . . . . . . . . . . . . 5 Test Chronology . . . . . ........... . . . 14 4

l f

Local Leak Ra te Test Results . . . . . . . . . . . . . 15

] Leak Detection System . . .... . . . . . . . . . . Attachment I

}

Calculational Methods . . . . . . . . . . . . . . . . Attachment II Supporting Test Data . . . . . . . . . . . . . . . . . Attachment III 4

l f

i s

1 i

e i

)

l i

l i

I

,.----.- ..--- - . --,..---. - , - . , , . - ,- - . . - - - - - ._. - ~,,, -. . . - - - . - _ - . - ._-- - - , . - - - - . - . - -

INTRODUCTION The Prima ry Containment Integrated Leak Rate Test (PCILRT) was conducted on April 2-3, 1982. The 24 hr. pressure test was performed in accordance with 10CFR50, Appendix J, the Oyster Creek Technical Specifications, and Station Procedure No. 666.5.007, " Primary Containment Le ak Ra te Te s t" .

Specific deviations from Appendix J testing requirements are listed in I the "0yster Creek Appendix J Exemption Requests", dated November 22, 1978 and approved on March 4, 1982. Guidance in conducting the test was provided by ANS N274-1978, ANSI N4 5-2-19 72 and ANS/ ANSI 56.8-1981.

Included herein, in accordance with 10CFR50, Appendix J is a summary of pertinent data, Type B and C test results, an analysis and interpretation of test results, and a test chronology. A description of the leak detection system, calculation methods, and supporting test data are provided as attachcents. Additional test supporting data is available for review at the station site in accordance with ANS/ ANSI 56.8-1981.

a i

l l GENERAL DATA i

Owner Jersey Central Power & Light Co./ General Public Utilities j Docket No. 50-219 i  !

! Location Route #9, Forked River, New Jersey l j Containment Design Mark I, General Electric Co.

I Test Completion Date April 3,1982 TECHNICAL DATA Containment Net Free Volume, cu. ft. 300,000 l

i Design Pressure, psig 62 (35)

Design Temperature, OF 175 (281)

Design Accident Peak Pressure, Pac, psig 38 psig Calculated Accident Peak Temperature, OF 285 i

1 a

i

i l

TEST DATA Tes t Me thod Absolute Data Analysis Ma ss Pl ot Test Pressure 37.142 psia Maximum Allowable Leak Rate .567 wt %/ day Calculated leakage Rate at upper confidence level (UCL) .273 wt %/ day (uncorrected, unadjusted)

.291 wt %/ day (corrected, adjusted)

Measured Leak Rate, Lam .225 wt %/ day (uncorrected, unadjusted)

.244 wt %/ day (corrected, adjusted)

VERIFICATION TEST Calibrated Leak Superimposed (%/24 hrs) .7619 wt %/ day Mass step change N/A Mass step change measured by type A Instrumentation N/A

ANALYSIS AND INTERPRETATION '

Definitions:

Pa(psig): Calculated peak containment internal pressure related to the design basis accident Pt(psig): Containment vessel reduced test pressure selected to measure the integrated leakage rate during type A testing La(%/ day): Maximum allowable leakage rate at pressure Pa, as specified in technical specification Lt(%/ day): Maximum allowable leakage rate at pressure Pt Ltm(%/ day): Total measured containment leakage rate at pressures Pa and Pt respectively, obtained from testing the containment with components and systems as close as practical to that which would exist under design basis accident conditions.

i

Acceptance Criteria 10 CFR5 0, Appendix J requires that the leakage rate, LTM, at the 95%

confidence level shall be less than .75 Lt. Therefore, Lt = La (Pt/Pa) !

Lt = 1 wt %/ day (20psig/35psig) /2 Lt = .75593 Ltm = .7 5 Lt = .75 (.75593)

Ltm = .567 wt %/ day Test Methods and Test Results Containment leakage rate was determined by the absolute system analysis i

method and mass plot calculational technique. The Re ference Vessel method was utilized for data comparison to insure confidence in test results.

The results of the absolute and mass plot analyses were corrected to account for changes in containment free volume due to water accumulation i in the containment sump. (Re actor vessel level changes were automatically corrected for in the test method computerized program).

These results were further adjusted to incorporate the results of Local Leak Rate Testing (LLRT). The level correction calculation and LLRT adjustment are given below.

i l

l

The test results at the measured and 95% UCL for both the Absolute and Reference Vessel test methods are given in Table I. Both the level corrected and LLRT adjusted values at the 95% UCL for the Absolute Test Method are also provided.

TABLE 1 TEST RESULTS

SUMMARY

Calculation Absolute Method Reference Vessel Method Te chnique Measured Ca lculated Mea sure d Calculated 95% UCL 95% UC Uncor rected .2253 .2732 N/A N/A Mass Level Plot Corre cted .2313 .2792 N/A N/A Total Ad justed .2440 .2919 N/A N/A Mass Po int Uncorre c ted N/A N/A .3017 N/A Total Time Uncorrected N/A N/A .3672 .4244 Level Correction The measured leakage rate was corrected to account for water leakage into the containment as determined by the following equation:

Lw = 2400 [0.1337 (Sp -S 7 )]

(300,000) (DT)

Where Lw = water leakage into containment free volume, wt %/ day DT = time interval between initial and final sump integrator readings, hrs.

S = initial sump integrator reading, gallons 7

Sp = Final sump integrator reading, gallons

2400 = 24 hrs / day x 100%

3 300,000 - containment net free air volume, ft 3

.1337 - conversion factor, gallons to f t Substituting values:

Lw = 2400 [0.1337 (166632-166496)] = .0060 wt %/ day (300,000) (24)

Incal Isak Rate Test Adjustment The level corrected leakage rate is further adjusted to include total leakage from those values and penetrations isolated during the type A test.

The following penetration was isolated during the type A test:

Instrument air and nitrogen system, V-6-393 & V-6-395 MSIV Drain Valves - V-1-106,107,110 & 111 Post type A local leak rate test results: 3.97SCFH = .012 wt %/ day Overall Test Performance Figure I is a graphical description of the test performance as determined by the absolute and mass plot test method. The irregular test data results during the early test period is attributed to dewcell instrumentation instability. Following this unstable period, the data converges to the true leak rate in a smooth, continuous fashion. During the last hours of the test the measured leakage rate value begins to converge to the 95% UCL leakage value as expected.

1

.- - - ~ . - . _ . -

_9 FIGURE I 1982 LEAKRATE TEST--24 HRS.

t l 2*5 j --

~- - - - - - - - - - - - - - - - - - - - - - -

UPPER CURVE

  • 95%!UCL

.j  ;

LOUER CURVE

  • LEAK RATE 1

-- I i

2. 0 - - - - - - - - - - - - - - - - - - - - - -

t i i

\ l i

-4 \

e\

J l  !

+f- : .

1  :

1.e5 -

t-A - - - - - - - - - - - - - - - - --- - ---- - - - - - - - -

r-

\f }\

LEACACE / # I UT*/ DAY

1. 0 -

1 f/

o jl-k


I

['g

\

l\ \! k  ;

0.5--

g[/

V

'J (i \ 'sN- - - - - - - - - - - - - - - - - - - - - - - -

i s

N ~ ..--

' ~ ~ . . ... _ . - _ ... _... -.- - - . - - - - - - - - - -- --

0.0- ,

- -- r -- -- - ------r------ - - -

r--- -- ,

92.0 92.2 92.4 92.6 92.8 93.0

, TIME (JULIAN DAY) l l

l

Verification Test In accordance with 10CFR50, Appendix J, a verification test was perf o rmed following the type A test to provide a method for assuring the systematic error or bias was given adequate consideration.

Definitions Lo = The known leakage rate superimposed on the containment during the verification test Lam = The measured containment leakage rate at the test pressure La - The maximum allowable leakage rate at the test pressure Lc = The composite leakage rate measured during the verification test Acceptance Criteria 10CFR50, Appendix J requires that the verification test results must satisfy the following order relationship:

( Lo + La m - 0. 2 5 La ) 3. Le <. ( Lo + La m + . 2 5 La )

Verification Test Methods and Test Results The verification test utilized the superimposed leak verification method in which a calibrated leak was superimposed on the existing leaks in the primary containment. A 3.95 SCFM leak was introduced into the leak detection system

<and the corresponding composite leakage rate was determined by the absolute analysis method and mass plot calculational technique. The Reference Vessel analysis method and point-to-point calculational technique was also utilized to assure confidence in test results. The results of the testing at the 95%

UCL are given in Table II.

t VERIFICATION TEST RESULTS TABLE II, Absolute Reference Lx Method Vessel Method to 0.7619 0.7619 Lam 0.2732 0.4244 La 0.1890 0.1890 Le 1.2169 1.2654 Substituting values for the acceptance criteria order relationship provides the following test results:

Absolute Method (0.7619 + 0.2732 b 0.1890) f.1.2169 4 (0.7619 + 0.2 732 + 0.1890) 0.8461 4 1.2169 4. 1.2241 Reference Vessel Method (0.7619 + 0.4244 - 0.1890) 4.1.2654 3 (0.7619 + 0.4244 + 0.1890) 0.9973 0.9973 ( 1.2654 < 1.3753 i

l

-_ , _ . _ , - _ _ _ , _ _ . _ ~ . . . ._. . . _ . . _ _ _ _ _ --_ -

Figure II is a graphical illustration of the verification test performance as determined by the absolute and mass plot test methods. The irregular test data during the early stage of the test is attributed to unstable dewcell ins trumenta tio n. Af ter the deweell instrumentation stabilized, both the measured and 95% UCL leakage rates continuously decrease in a smooth, continuous fashion.

Summary and Conclusion Type A Te st ("As-Im f t")

The results of the 24 hr. test determined a containment leakage rate well below that required in 10CFR50 Appendix J. The accuracy of the test data has been verified by the satisfactory performance of a verification test. It is therefore concluded that the validity of test data has been confirmed and that all type A testing requirements of 10CFR50, Appendix J has been demonstrated.

Type A Tes t (" As-Foun d" )

Due to excessive containment valve / penetration leakage determined by the

" pre-repair" LLRT, the "as-found" containment leakage exceeded the acceptable containment leakage criteria. Valve repairs were completed and applicable valve " post-repair" leakage values were added to the Type A Test ("As-Lef t) l results as required by 10CFR50, Appendix J. " Pre-re pair" and " post-repair" valve leakage values are provided on pages 18 and 19. Appropriate instrument sensitivity is included in each test result value.

l

r FIGURE II 1982 UERIFICATION TEST u

\

1. 4 - r, -

, s, s

t 8

! j \'

N 1  !

I -

.f N l

1 3 ._

l t

,.__[

.I

^

N T--

\ .,

/\ c

/

x' %

i 1

./ / \ / e i < '

/  ; N LEAKAGE --

,,f  !

u m oav I -

/

1*2 i - - - -!N 1

}---

! -- l , N '

/ l i

! l  ! l l

_ _ _ . . _ . . . . _ _ ._ _ . _._ _.. _ . ._ . . _ p!_ . . . . _ . . _ . . . . . .

i ,1 .. . _ _ _ . _ . _

. . . . _ . . _ . . ._ . . _ _ l .  ; 'O

/ UPPER CURUE

  • 95% UCL LOUE,R CURUE
  • EEAKRATE ~,

~

t 10- ----------l---------------------------------f---------------- - - - - - - - - - - - - '

s I  !

/

0. 9 - - r r r- r-- - r ,- r --r - T- r rr -- r :- i-- r-- }t r- r- r- r--

93.50 93.55 93.60 93.65 93.70 93.75 TIME (JULIAN DAY)

i I

l TEST CHRONOLOGY AND HIGHLIGHTS Type B and C local leak rate tests were performed on all testable penetrations prior to the initiation of the type A test. (The results of the local leak rate testing as required by 10CFR50, Appendix J, are provided in the following section).

The chronology of significant events prior to and during the performance of the type A test is as follows:

Ma rch 30, 1982 An inspection of the drywell was completed. No structural deterioration was observed.

7:45 pm - Began containment pressurization March 31,1982 6:15 am - Commenced drywell depressurization due to inadequate drywell recirculation fan operation.

2:30 pm - Drywell depressurized. An investigation revealed a damaged fan speed control shim. The speed control shim was replaced.

i April 1, 1982 2:20 am - Perfonned a drywell airlock leakrate test to insure the integrity of the drywell inner door seal.

3:14 am - Began drywell repressurization.

10:50 am- An air leak was discovered at valve N-19 which allowed a N2 system leak into a predetermined type A test leakage path. A new leakage path was determined and utilized.

12:57 pm- Drywell pressurized to test pressure.

4:30 pm - Began pressure stablization period.

April 2,1982 1:30 am - Dewcell instrumentation appeared to be unstable.

2:50 am - Service air vent was closed to investigate deweell instability.

5:00 pm - Type A test was concluded with leakage rate of 0.273% at 95%

DCL.

10:55 pm -Began verification test.

I T

April 3,1982 5:30 am - Determined that verification test period would be lengthened due to unstable deweell instrumentation. <

3:50 pm - Discovered that verification test rotameter was not properly i connected to test cabinet. The rotameter was properly i

reconnected.

5:40 pm - Verification test was concluded with a leakage rate of 3 95 SCFM.

7:30 pm - Began drywell depressurization.

l

Type B and C Incal Imak Rate Tests Type B and C local leak rate tests were performed on all testable containment isolation valves, gaskets, and penetrations in accordance with 10CFR50, Appendix J and the Oyster Creek Technical Specifications.

Instrument Air and Nitrogen System Valves V-6-393 and V-6-395, and MSIV Drain Valves were isolated during the type A test. These valves were tested af ter the completion of the 24 hr. test and their test result values added to the type A test result value.

An attempt was made to test all four feedwater checkvalves although these valves are exempt from testing until piping modifications are completed in accordance with 10CFR50 Appendix J. However, due to the current piping con-figuration, it was determined that the test results were not representative of the valves leak tightness.

The " Pre-Repair" and " Post-Repair" results from the local leak rate testing are provided on the following pages and include all local leak rate testing conducted since the previous type A test. Leak rate test values listed indicate leakage through a penetration. Individual valves or seals which did not meet acceptable leakage criteria are as follows:

Description Valve /Gaske t Main Steam Isolation NS03A, NSO4A Main Steau Drain V-105, V-111 1-8 Sump Discharge V-22-28, 29 Drywell Purge V-27-3 Drywell Airlock Outer Door Casket Torus to Reactor Bldg. Vac. Breaker V-26-16 Torus Ve nt Bypass V-28-47 Summa ry o f Tes t Results 20 psig (SCFH) 35 psig (SCFH)

To tal (Post-Repair Test Results) 92.56 117.40 Combined leak rate @ 35 psig = 117.40 SCFH l = 0. 2 79 La where La = 419.88 SCFH Total (Pre-Repair Test Results) - exceeded acceptance criteria.

LOCAL LEAK RATE TEST Double Grsketed Snels Pre-Repeir Test Results Post-Rapeir Tact Racults Test Date Leak Rates (SCFH) Tes t Date Leak Ra te s (SCFH) 20 psig 35 psig 20 psig 35 psig TIP Punetrations (4) 2/15/82 0.04 0.05 2/15/82 0.04 0.05 Torus Manhole Cover - North 10/1/81 .0122 .0161 2/9/82 .008 . 01 1 3/25/82 0.02 0.03

- Sou th 10/1/81 .48 .642 2/10/82 .496 .66 3/25/82 5.54 7.33 Drywell Head Seal 6/12/80 0.016 0.02 6/12/80 0.016 0.02 Drywell Head Manhole Cover 6/4/80 0.01 6 0.02 6/4/80 0.016 0.02 Steam Dryer Penetration 5/10/82 0.0073 0.0096 5/10/82 0.0073 0.0096 Torus to Drywell Vacuum Breakers (4) 2/9/82 5.94 7.86 2/9/82 5.94 7.86 Reactor Building to Torus Vacuum 2/7/82 0.043 0.057 2/7/82 + 0.041 0.055 Breakers (2) Caskets and 0-rings 3/2/82 Biological Shield Stabilizer Manways (8) 2/17/82 2.63 3.79 2/17/82 2.63 3.79 Drywell Airlock Seal 2/13/82 0.007 0.009 2/13/82 0.007 0.009 Drywell Airlock 7/19/80 4.21 5.486 7/19/80 4.09 5.49 3/9/81 7.78 10.29 4/1/81 4.667 6.17 5/29/81 11.63 15.43 10/18/81 4.633 6.129 11/4/81 3.114 4.116 4/1/82 4.67 6.17 4/1/82 4.67 6.17 Penetrations and Isolation Valves Electrical Penetrations (32) 2/11/81 to 2/11/82 to 2/16/82 0.96 1.28 2/16/82 0.96 1.28 Steam Dryer Penetrations (16) 2/13/82 0.096 0.128 2/13/82 0.096 0.128 Drywell Airlock Electrical Penetration 2/10/82 0.008 0.01 1 2/10/82 0.008 0.011 Demineralized Water System Penetration 2/12/82 0.35 0.46 2/12/82 0.35 0.46 Drywell Sump Discharge V-22-28 6 29 2/12/82 7.36 9.74 3/19/82 1.40 1.85

knetrations and Isolation Valves Pre-Repair Test Result s Post-Repair Test Results 4

1 Test Da te Leak Rates (SCFH) Test Date kak Rates (SCFH) 20 psig 35 psig 20 pois 35 psig i Drywell Equipment Drain Tank Discharge 2/12/82 0.04 0.05 2/12/82 0.04 0.05 V-2 2-1 & 2 MSIV's - NSO3A & 4A 02/08/82 *

  • 04/05/82 1.43 1.89 .

- NS03B & 4B 02/08/82 11.49 15.2 02/08/82 11.49 15.20 3 MSIV's Drain Valves i V-1-106, 107, 110 & 111 03/17/82 *

  • 04/09/82 1.17 1 54 q Isolation Condenser Vent Valves v-14-1 & 19 01/22/82 0.98 1.30 01/22/82 0.98 1.30 V-14-5 & 20 01/22/82 3.53 4.67 01/22/82 3.53 4.67 i

TIP Ball Valves (4) 03/19/82 2.21 2.92 03/19/82 2.21 2.92 2

Instrument Air & Nitrogen System 02/14/82 2.33 3.08 04/09/82 1.84 2.43 i V-6-393 6 395 Drywell Vent V-27-1 & 2 02/09/82 5.11 6.76 02/09/82 5.11 6.76 i Drywell Purge V-27-3 & 4 03/03/82 10.73 14.20 03/03/82 10.73 14.20

) Drywell N Purge V-23-13 & 14 02/06/82 0.10 0.13 02/06/82 0.10 0.13 2

Drywell N Makeup V-23-17 & 18 2

02/09/82 0.79 1.05 02/09/82 0.79 1.05 Drywell Vent Bypass V-23-21 & 22 02/09/82 0.096 0.13 02/09/82 0.096 0.13 j Torus N Purge V-23-15 & 16 2

02/08/82 3.14 4.16 02/08/82 3.14 4.16 Torus N Makeup V-2 3 6 20 02/09/82 0.07 0.09 02/09/82 0.07 0.09 2

I Toru s Ve n t V-28-17, 18 6 47 05/13/81 .03 .03 02/15/82 4.32 5.71 02/15/82 4.32 5.71 Reactor Building to Torus Vacuum Breakers V-26-15 & 16 02/07/82 10.89 14.74 03/02/82 1.297 1.72 V-26-17 & 18 02/07/82 9 92 13.12 03/02/82 9.92 13.12

) Drywell 0, Analyzer & Particulate Monitor ,

V-38-9 5 10 02/11/82 1.14 1.51 02/11/82 1.14 1.51

Torus Particulate Monitor V-38-16 & 17 02/11/82 0.75 0.91 02/11/82 0.75 0.91

) Torus 0 Analyzer V-38-22 & 23 2

02/12/82 6.18 8.18 02/12/82 6.18 8.18  ;

  • Would not pressurize l

Pzga 1 of 5 ATTACHMENT I LEAK RATE DETECTION SYSTEM The leakage rate detection system consists of thirty (30) four-wire platinum (RTD's) and ten (10) lithium chloride dew cells positioned in the containment structure as illustrated in Figure I-1. The analog signals from these sensors are input to a multiplexer scanner also positioned inside the containment. A data acquisition system located external to the containment interrogates the scanner on demand for temperature and humidity information.

Containment absolute pressure and reference vessel differential pressure information is input to the data acquisition system from a pair of fused quartz bourdon tube manometers which are externally connected to the contain-ment and reference vessel. The analog signals are processed through an analog to digital converter and transmitter at present intervals to a PRIME 750 computer. A system sensitivity check is performed by introducing a calibrated leak through a mass flow transducer. The output from the transducer is also processed via the analog to digital converter and data acquisition system to the computer. In addition, the system reads and records the ambient tempera-ture and pressure.

The computer operates in a real time mode to collect the transmitted information and calculate on demand the containment leakage rate. Figure I-2 is a detailed functional block diagram of the Leak Ra te Detection System including individual appropriate component performance specifications.

l

?.) ? :: q 1_ r .. , : ? of 5

, FIG.'?S i-1 '

,1 (RfD and Dewcell Scr.sor Iontico)

I

  • s h

e ~N.% N

, p_ .El_95'_0"__h. g

> M i

i 4  ! -

f.:

6- g M -

./ D.{ 8

~

k l  : N l ,

/

1j r

$- l El 59'0"  !

y

. \..

ng; 4

@ g ' lj:2 el $, @ s

- i \

El 48'0"

_ __. p 1 ._ _ ._

_s

@OO [3 }OO j

_ _ ___ ? \.- E2. 39 ' o" 0.'?

_ _ _ _!n w' '

yLF.~ @@@

@ l my- - - -(. _, F

_ El 31'0" g g,

_v_

OO-N

\ El

, 22'3" y _ _ __

~

)@ @ @ @ 7

, 3 s El 10'3" l {, 's

~

l

\

l  :

I . .

1 .

I "

, / o RID Iocations \ /

j 'j: hirt-red 1-30 's /

N o Dewcell locaticos Icttered A-J i

i

,s.

e m-- ---.y- wa--,ee-,-w-%. v.-- ,mm n_.-.p.,-m, e,.~ m -.__

. Vent -

ATTACHMENT I _

Paga 3 of S gg FIGURE I-2 , ~' Press y ) , ' Analog to

-) Digital Calib Converter (7--- Icak Sensor e

hnbient PRTyN1Y .

CO!C'AIMTf I M o-150" AP .

Trans 3/8" tubI m i Reference j Vessel .i '

g n Chanters (A,B,L Acquisition

,0--100 System 3/8" tubiner '

.* Psig 7' .

trans 1/2" p @

3/ tubingI Inputs l  ! Multiplexer \>

from 30 t  ;) .i: Scanner IUDS j: &

and 10 fj Signal D u ells <. i i.

Conditioner

, B ,

, - ~ - ] ,

lr I' Prime 750 Computer g.

'. ,,e-I--

" No.1 lb. 2 i

f

P;gs 4 of 5 ATTACHNENT I INSTRUNENTATION r

Temperature Configuration: 4 wire Operating Range: 32-250*F Accuracy: 60-120*F,j;0.1*F 32-250 *F, j; 0.15'F Repeatability: j;0.1*F Element: Platinum Quantity: 30 Dewpoint Temperature Measurement Dewpoint Range: 0-200*F Dewpoint Accuracy: + 1*F Dewpoint Repeatability: j; 0.5'F Dewpoint Sensitivity: j;0.1*F Type of Sensor: Lithium Chloride Quantity: 10 l

Page 5 of 5 ATTACHMENT I l

Pressure Measurement Operating Range: 0-100 psia 0-150 in. H2O (differential)

Accuracy: 1 0.02% of reading Repeatability: 10.001% of full scale Stability: Less than 0.001% F.S. degree Fahrenheit ambient temperature range Type of sensor: Quartz Bourdon Tube Quantity: 1 each of the above Data Acquisition System A/D Dual slope integration V -4 F, constant scan rate Display: 5 + digit, polarity, decimal and legend Sampling Rate: DC-180DB, 10000 ohm unbalance AC-180DB at 50-60 HZ Normal Mode Rejection: 80DB Input Impedance: 1000 megohms / volt Ambient Temp. Range: 050*C Zero Offset: Recalibrate before each reading automatically Voltage Temp: 10.002% of reading (0.25 V/*C)

Accuracy: 1 0.005: F.S. ,10.005% of reading at 25*C with i 10% power variation at 6 7% F.S. :

! 0.012 F.S.

Repeatability: 1 0.005% F.S.

P:ge 1 of 6 ATTACHMENT II CALCULATIONAL METHODS Reference s

1. ANSI N454 - 1972, Leakage - Rate testing of Containment Structures for 31 clear Reactors.
2. ANS N274 - 1978 (W.C. 56.8 - Draf t #2), Containment System Leakage Testing Requirements.

The containment leakage rate calculation was performed in accordance with the above standards and utilized the absolute system analysis method and mass plot calculational techniques. In addition, the reference vessel system analysis method was also performed for comparison to insure confidence in the test result. These analytical methods are described below.

ABSOLUTE METHOD The absolute method of leakage rate determination consists of measuring the temperature and pressure of the containment atmosphere, with suitable correction for changes in humidity. This method assumes the temperature variations during the test will be insufficient to effect significant changes in the internal volume of the containment structure.

The percent leakage of air from the containment structure in terms of the original amount contained and that which escaped during each hourly test period is then calculated by the following formula:

I (

Leakage Rate (Wt %/ day) =

[1 - ( ) (100) }]

(T2) (P1) h where:

T1 = mean absolute temperature of the containment structure air, at the start I

of each data collection period (point-to point method) or at the beginning of the test (total time method).

T2 = mean absolute temperatue of the containment structure air at the end of each data collection period (point-torpoint) method.

l I

m

ATTACHMENT II P gs 2 of 6 P1 = total aboslute pressure in the containment structure at the start of each data collection period (point-to-point method), or at the beginning of the test (total time method).

P2 = total absolute pressure in the containment structure at the end of each data collection period (point-to-point method).

h = total length of test period (hours)

An upper one-sided 95% confidence limit for the leakage rate (total time) is then calculated using the mass point calculational technique.

REFERENCE VESSEL METHOD The reference vessel method of leakage rate determination compares changes in the pressure of the ontainment atmosphere with the pressure in a hermetically closed reference vessel system. Due to its geometry and location in the containment structure, the reference vessel assumes the temperature of the containment atmosphere with a time lag that is compatible with the frequency of the data collection.

The leakage rate of air from the containment structure in teras of the original amount contained and that which would escape during a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> period is then calculated in accordance with the following formula:

Leakage Rate (WT %/ day) = ( ( ( - + ~

~ +

[ ]

h T2 (PI-PV1) PI-PV1 Where T1, T2, P1, P2 and h are defined above and PRI = absolute pressure of the re ference vessel at the start of each data i

collection period.

PR2 = absolute pressure of the reference vessel at the completion of each data i

collection period.

PV1 = the partial pressurc of water vapor at the start of each data collection pe riod .

PV2 = the partial pressure of water vapor at the completion of each data collection period.

l I

1 ATTACHMENT II Pzga 3 of 6 )

MASS POINT METHOD The mass point calculational method utilizing th i ideal gas law, determines the mass of air in the containment, at each time )oint during the test and performs a straight line least squares analysis to estimate the leakage rate. -

An exact upper one-sided limit of 95% confidence level is then calculated on the leakage rate using the relationships identified below. The derivations and details for this calculational method can be found in reference 2.

The calculational methods employed in the computer code for mass point technique calculates a least squares analysis as follows:

NOTE: Symbols are defined at the end of this section.

The least squares line is given by W = At + B where the slope (A) and intercept (B) are given, respectively by A=N()[tW)-({[W) gg 1 ()[t)g N ({ t

) -({}t) ,

s AND e 3=()[W) g (((t g )-({[tW) gg ()[ty)

N(}[t g ) -({}t)g Each tg is the elapsed time between a clock time for the initial reading and the clock time at which the ith reading 10 taken. The fonnulas for A and B do not require equal time intervals.

1 . .-

The leakage rate is expressed as the ratio of the rate of change of the mass and the mass in the containment at time t y a c. The values of t g _

have units of hours and since the leakage rate is desired in We %lday the o

estimated mass point leakage rate, expressed as a positive number, is e

calculated as follows:

L = (-2400) ( A/B) l l

l _

1 l

ATTACHMENT II P gs 4 of 6 )

The uncetaintyfin the estimated value of leakage rate is assessed in terms of, the standard deviations of A and B and their covariance followed by the computation of an upper, limit of the 95th confidence level for the leakage.

The estimate of the common standard deviation of the masses with respects to the line is given by:

S=(((W-R)2j1[2 N-2 where Wi is the measured mass at time ti and 71 is the estimated ~hass at time it from 91 = Ati +B In order to determine the standard deviation of the slope (Sa ) let K= S

[N([t g ) - ([tg) ]

2 then S, = K[N]

To determine the standard deviation of the intercept (S )

b S I l b" i

  • ~

[ and the covariance of the slope and intercept (SAB) is

.~'

S,

= K 2[-[tg]

~

In order to calculate the exact upper one-sided limit of a 95% confidence l 1evel for the leakage rate, let a=B -t 95 (Sb2) 2 b = AB - t 95 ( ab) and I e=A -t b 5 a then the exact upper one-sided limit of a 95% confidence level for the leakage. rate is determined as follows:

2

!' UCL (+95) = -2400 [b - (b -ac) /2)f, l .

5

. .1

ATTACHMENT II Page 5 of 6 SYMBOLS AND SUBSCRIPTS SYMBOLS P - Total absolute pressure in the containment (psia)

T - Mean absolute temperature of the containment air (*R)

V - Internal free volume of the containment (assumed to remain constant 3

for the duration of the test - f t )

R - Gas constant for air (53.35 f t-lbf/lbm *R)

Py - Partial pressure for water vapor (PSIA)

N - Number of pairs of measurement W - Measured mass of contained air (Ibm)

T - Time interval of measurement af ter initial measurement (hr)

W - At & B - Lease squares line relating measured masses to corresponding times of measurement A - Slope of least squares line B - Intercept of least squares line S, - Estimate of standard delvation of slope of least squares line S - Estimate of standard deviation of intercept of least squares line b

S - Estimate of covariance between slope and intercept of least squares ab line L - 2400A/B - Estimate of leakage rate, derived from least squares slope and intercept, expressed as a positive number (%/ day)

T - 95th percentile of student's distribution 95 UCL - Exact upper one-sided limit of a 95% confidence level for the leakage rate.

SUB SCRIPTS i - Indicates the ith data point.

l PIga 6 of 6 For all analytical methods described above, constant containment volume is assumed. The leakage rate is later corrected for changes in containment volume due to water leakage into the containment. Changes in reactor vessel water level are automatically accounted for in the computer program.

Data for temperature and dewpoint input is corrected for instrument error using three point calibration data provided by the equipment supplier. In addition, the pressure sensor readings are corrected using a similar technique. Weighting factors are assigned to the temperature and dewpoint sensors thus providing a single ambient and dewpoint temperature reading indicative of containment conditions.

COMPUTER CODE QUALIFICATION:

An independent audit was performed on the computer code prior to utilizing it in the 1978 Primary Containment Leak Rate Test at Cyster Creek.

The audit consisted of an in-depth check of the equations used to confirm agreement with those recommended by the governing standards. In addition, the code was run using data obtained by contractors who performed leakage rate tests on other containment structures. The results of this check agreed favorably with the values obtained using the cognizant contractor's code. The code was also utilized during the 1980 PCILRT at Oyster Creek.

(

i

i 1

Page 1 of 5 ATTACHMENT III SUPPORTING TEST DATA 24 hr. Test Data Ab sol ut e Me thod Da ta . . . . . . . . . . . . . . . . . . . . . . . . . . . .Pa g e III-l Re ference Vessel Me thod Data. . . . . . . . . . . . . . . . . . . .Page III-3 Verification Test Data l

Ab sol u te Me th od Da ta . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pag e III-5 Reference Vessel Method Data. . . . . . . . . . . . . . . . . . . .Page III-6 l

l i

l l

i I

L

-,_..v . ..

l I

l l

tt)

W O

N O

Di to De Wa b tS

<o g+

MU NO*

< MW

=

Z  %&

L#

% W ?,,

b b

d.

OJ & C :0 0 t= t - O LS - O O 0 O O O = = 03O O T*O O Ct3 f. Oo ?COOO O N tw  % a *) :t s=O0t:+ 03o O Z = = = = Oi O! 0101 ?! 0111 ?! ?! 0103 01 *l 03 O O O 00 O *0 00 M M O l0 0 0 O ;0 Y ? v 9 v v v = v v v v f v c 0

? O CC*00r.e N t= 0 0- &0 O W01O- = O! C 00Ov Or.t V W -CO C a01?

. O OC DO 0 -O
  1. y LO O

w . c 01 @ C. O. O. tw t. . O. O. 03

. . . . .O C. 00 0. N. t. . O. L*. O.! O. C. O. O. N. t. . O. O. 010. . C. l0. O. t=. t. . O. C. 01 O. C. 00. O. N. ?.

C W < O O N C C e 01 - O O N C + 0 ?! = S O t. LS ? = - O $ 0 C LS t 01 - 0 0 N C a e al - ? O t= t' ? O 01 Oo O..O_.P*I,P O.I .IOO H Op P"'

.s

      • O., O,, C. v..+.-t t%t. t.. e..v .
    • O. -.0. 0 .00-00-00. :^** 01 0101

. . ?!

    • ** - O -.i il ^ 1 O2 - =. .=. .=. = .= .. . O.

--.** ' .' '..O O. ).O .O.** ..**P,* I .I . . *C.I *o .'. , ' ,

H '

M' ' O' ' L'1' O O' ' L'S' C' ' M' ' M' ' d' ' M' ' L'S' d W' ' C' ' C M M' ' O O' ' L'O' L'7' C' ' O' ' L'* O O' ' L'i M' ' 'S' ' ' L'i LS' '* O' ' 4' ' D M' ' d' " O O' I 'S 'W M N b < L O L L

% C LO LO L*J C C Li C C Li L1 O Lt C Li LO C L": C L1 O L"J L"J C C C C C C C L* Li La L* C C Li L^ L* L1 LO LO Li LO C O C M E  %

8 L Z 2: W O N O N 4 9 N = - O C O t* :0 e t= N o - 0 01 L' al - :a O O ? 4 00 t o n C e 0 00 + + 010 :- -0 e ? N Lt - N 00 " O O lE *= b Z a O C O ? 0! t e o C 9 ? c 0 N t1 C :" La O Of C & O! 01 Of e o O 00 C 9 010; :"O -^ 01 O - O lI: Ob  : O  % - 01 :0 0 0l C :0 C 0 00 0 0 :0 0 0 C C C - 0! al O t - O O O O O - 3 C C :w 01 O

g U<

p .C f; M

E F

=<% 0 00. . N. 4. e C. . . t. C. O. O. f.l C. 01 LO..O.f. O.0C.0=. 4 O. O.00. . O. O.@. t=. twC.

. &. O.^. O. O. t.?.t.t=.1O 01 --O.C

. O. 01 h4 00 M W - C ? ? C 0 0 C *0 0 010 0 O N ** = O :0 O O C O O t ? C be tw O O L* 0 0] O N - N O *0 0 N O C N N N O m

CO

  • O O O ? n O C O O = t. tS v C = " O O N LS C O C O O v t= t. " - 0 3 - v 01 - Ol = 0 01 - - - R O O O O S ? ?

% < ~ w 00 0* -'" O 00 :*

  • O 00 0 *0 00 0' 00 O! !! *0 ;" O O 00 = 01 = = = t *! LO "O ?! ? ? 0" O 010* "O 00 0 O ^ O *t O O! O f O f aC

>= E 2= f %

==

f 4 <

M L'D C C t^ t* M La L* O t0 O t* Li 1* L* 1* M 10 d 13 L* Li t* d Li M i* LS L* 1* 17 LS t* LO M 1.0 L* t* L* t* !": $ $ L* La 10 0 t0 C L* O O L$ C t0 C C 10 t* L* C C L* L* Li L* t* L1 L* 1^ C C C C C O O O La L*: C C C C L* La L* C O C t* L' O L* O Orsk 4 W h dW Od H <Z .

4E

[c WWH < ?! % a O C la @ - 00 C * " :* tS = $ 0 014 C t O lll ^ = 0 O tw C O N - O @ f. N @ L^ ? - O & O ? ? O O C O ? O

.OQ ' H O O %G=OOt

< N C Ot. -01kC0l;" O :^ 70100 7 0 0-C7N0J0l N 4 tONOM= - ~0 N- 00 O O N vLa0;0>0101;*00lOOCl*NC

.S C O +- t$ t. O Lt O tw = o o e 01 CCCCCCCL: CCC - O " a l - 010 - - -

4 Od O =

0 % O. v. O. O. t. :0. t. 0. :0. O. O. t. O. t. t. t. O. t. +. :0. v. t. 9. t. v. t. 0* t. 03. 00 9. :0. :0. :0 00 00 3. :". O. O. O. O. ;0. ;". ~^. :^. 0". O.

As y e .

g.W 00

=

n %n.r en n W a.y nnen g I' ~.P ~~.W ~=.F 4 gr 4 w 4 w tr ww  % Mr W tr %r  % 4 n a n.F e.r hnw t# %#nW n  % n.F n %r n n 4e.# %.F V %r n n

%er 4n.Wn n

W4oF w 4.W a nmir n.W 4 n.#

m a nn gr %r W % n.y n.r nF wen

% 4  %# hr n w n L # 0

6  %

U  : % :::

O < 4 WE N O <

U k * = 01 0 4CO 00 t* CO 01ON:0La+ od NCNCO 0101*! LaCOC*OCt 0101 O t OO= C 01@t 00 O. 0O!= - N0 O O :^ O t0 0 00 0 Lt O N &MCO=C- -OO'v

" OLS17010101 t O Oc O O - 0 01 N M00C010 C W *

  • Ca &

>M ;4 0

  • p L

.E A V ". 00O0il Y 00O0YC. C..j LO. . tw. tw tw . C. C. tw . .tv 0. N.

tw 0. OOOOOlCO"N@Yb . 01 . O. C. O. tw N. O. C. t=. C. Of O. tw

. . . O. tw

. O. O. O. O. ?. O. o. C O. G. O. .

$$ *S. E N *O " O!. =Y IYYC ?O@D DO@OOOOOOOOh f./. O = Z" W N N tw N N tw N to to t= != to tw N t= tw t"w N tw N N O tw 0 :0 !* C != C t"w tw C C C C t"w C C C C tw 4 C C C C C C

,U # C WC W W  :::

  • O t - ^ & N O Li t* M 00 O t O 0] t"l - o C C C 0 = - C O C O 00 t 00 = N 4 ? O ta It O 0* C C ?! L* ^ - O C

< A C

n, Cn f. C 00 L*J = - 00 0 0, N N t + 0 = 0 .S 00, . .0. 0 01 O t.10 O. V n.

C0 e el O :0tw C e e o N LS - C - e O O 4 05

    • O 4 s

,N  % Ww nw - - n. n. n.

O. m w

. 0. @. wm Crv. m m .m eswwww.w* t o t. !* r . . . , * * ) ~ ^ .w~

. . .~. '.' .'.*

. w. w** *.* .*. t N. ==*. v* L0. L*, L*e

t. . .

OW W 6,e..... *

  • to t= N t to t. N.m.m--~~ t= t= t N~ t=~ N t=~b~-tw m e.I*. I= != s .e . ~t=t NNNr.twNNr N twt. tw tv ,., N N ,9 9 ,

F g F m m,, m. ,m, m.

. ~~

, ~ ~~~~w A N N tw t to t=~ tw tw tw N~~~t= t= t= N i N tw t= N N tw tw t= tw W

N CW k 6 O a* N O :* O *0 4 t = 0 N t 01 & O t - S C e = & 4 O O C O e o t* t t 00 01 O O tw e O o tw ? O LS - N = O C W

a*.*. .. fi.. . a . . . . 0 0y y00.i Ny yC.jt1i y?y:^y .i= .- - 0 .e..j i.e. . i O: , O o, O,,,.O

=

s.e b

N., gyNg t.=.,.c O,f. , , .,a .C. C ,C.,t7. t.$. t.'. *. - t..,y +ge :^

c Cg,,..g

.g e.

O

. , ,. . . .g . g...,.. l. 01

a. gO..! . . .n .a.

, i 'i O_

s e.= = ..gy g

g .., . . . e. g s. . . . . .

. ea t.

e. g.

ep e.. . . t.,

gy g. e ,. .

. ...e. g. .,. e .a g e L : t. N g m ..

hs t=..De N ..te N. t t N N ...

ge gp totW N. .N.tw.NtrNtetw t.

N.

. we es . .meN N. ..m t= he 4W tw te N..N. .N. .N. ..8 te te Of er t N. t.= N N tw N,. t.w N.

.*W . . se ta 4 of te te N. N N N. tw N

.me . .te wege. .av ma ge me N .N. N. N N N. t. N. t N m .e .e. ed . .te - - --

4 mW 9e ** *W j n O t": O la O tt O ti O d O La O t* O LO O La O La O La O tt O tt O LO O t* O Li O t O t* O W O t* O C O t* O $ 0 l W C..l v.. C . 0.1 v.. Li. =. 01 v.. C.. =.01 v.. c .. *.1 v....O. =. 01 . . v. c. =.

. .0.1

. .v. ..C . 0.1 y c =. 0.3 ".. C..- .. 03 "., $ =.. 0.1 Y. O =. . C.1 v C =. .

l c . . . . .. .. .. . . . . .

"'a O! Of O! 00 O O O O O O O = = = O! 01010] O O O O t t t t L* M C C C C C C t N N f. O O O O 7 O O P =O F 01 02 01 01 01 03 01

> = = = = - = = 03 ?! ?! ?! 0101 ^! ?! ?! *1 "I ^! *) *) *! *1 *! *1 ^! al 01 *! *! ^10: ^! *1 al 01 : al al al ^! ^l a f *? O! 9 *! ?)

  1. @7&#@70@>>@@@OO7777???Ot@7777@t#@?OOO7 OT7??OOO C

s

' s O!

01 CO N

CJ C

C 00 RS el Cl C

Cd t= alO t - OOtS= *10 oO c4tw O OWNO9O**OOD?!-O010!*0v c :* O Nae a. OePLO N 0] 03@OC O O O O N 9 = t013

-0101O v 401COC 4NOOOON"'O Q ==0 =?!O M 017O 4 O  ::"

LS IS O O M O O O O b u a c c c c c 4 4 4 C 4 4 4 + c 4 t= tw N N t= N tw N N tw tw tw N t= Z O O O O 000 "O \

3"

=. 0 0. Oi. O. 4. :0 C. t=. t. =. 0 0 01. O. 4 0*. O. to. t. =. 0 0. Of ..

. @ c. O. O. !=. t. =. 0 0 01 e. . 4. O. O. tw. 9. . O. LO ?.) O. C. 00 0. tw

. . g0 0 .*' la

  • 01 - O 3 N c a *0 *1 = 0 'O tw c t CO ^1 O e O C O 9 :* = 0 e N c LS
  • 01 - O O tw c t *0 01 O e O N IS 4 CO O,l .J O.4 Ca . .a. . OOONNNt 1 l .a .1 1 l , N.

. . 5 .

.N.l 1 tw

.a.a. 1 4C4. . C.1.C .4 .e .c L.O I.S LS M. d O L* O vp ? ? $ ? t t v :* O ^; *:

  • 0; O 0101. OJ Of

. .1.2 . .1.1.1.1.1.1 . 1.11111111141111111111w. . . . . . . . . . . s .. . .i .l . . . 1 N LO O O C La L* M M d C L* O O O O O Lt t$ d C O O O LO L* O 10 C d d LS O LO O O L4 O C C O O t*, O L0 M C L* O LS @

O L' O C L3 O O M C C 0 LO O O O O LO O d LO C O C O L110 0 LO O La d LS M M C LO C C C L* LO L' O C C C O O O .=

C 8

LS tw t. ** 9 O O t :^ - 9 O O e *! -= N - O = 0 N c *) N 1* O

  • O O = 0 010 t O O O O C S = = ** ** o C O O t.w=!= N 0 O 0 4OvO=O0 O  ? 0 O M *! o00c &c :*

O 0* L)O* O Q O NO

  • *) O O M 0! M 4O N V tO *!- t?01 O L'01 NOfO=Ov O 01* O'l C- O C o= 4c 03 o t-OIO!O=:*0101 "1 -ISLi010; N ?C < ;0,
  • ta3

. 9.C. O. O. O. =. 01. L*,. L C.l tw. . O O. C. O. O. O. t. c. =. O. O. O. 9. C. v. LO O. c. C 4. O. l0 0. O. O. O. C. C. C. 0. C. M. 0 4 O. O. CO. 0 01 o

V"*".'N*.*.t*,#'. **a.' ^ ^ ^ ^ v^ v^ La. =o v^ ** ** != t *, sO v^ **. L*, L*, L^, t= t.h =Aw ^ ^ ^v '.a.. L*,*.**^=*.

  • 1.v**,*,n". .. . w w . , =

. , . , w

'w'^= ""

3

.: O.

O .l ."I .1.O.

e Q  ?. O. N N. f . t., N N. . N. .Nl .1.t N.IC,..!.!...

yCL I .IO.l. ! .4 . .1.

.O.

c l".<.1 ** v 0= (L Of ..!.....

. . . .. . .,...!.l.- . . .c..c. .1. M...

.3 .**1 4.. 9. + ) .t !L*

. . . . . lt.1.l

.1. .l .0 v..l...

0.*! ..l .."I*0 M **

. ... ,. ,. 0]. .O! .=1.=I

. . .1 . ,..=I .

M t* t^ it C Li M LO O IS $ t^ ti 10 a L* M LO Li t* L7 t* 'O d d 10 t* M L' O L* d L* L* L* LO Li LO O O (* LO 1* LO t^ M t* O O L*

  • I ta2 t* O L0 L* O d M L' O LS C C L3 O L*) O LO LO M 10 0 C LO L" C LO O L* t." L* L^ L^ IS LO LS LS C C C L* L* LO O LO L* 1* 1S C L7 0 0) t1 O h
0) t.

C.l 03 ;e;

. 0 t$ e 01 O e e O = = t* = c c 00 tw 00 C O O C C e N CO = L* c = c e c = c + ?! O t c :0 C C c 00 t = 0 0 *1 tw CO 4 e ? O O O O O O ~ O O e ? O O - - - - L*) - = *! O 01 O = 0* O - 01 = *) 0 01 : L* v ? c ? t 13 LOL' O e O N LS :

c c, t.* O.cC m. .4 .,C.,.4.,.C.,.C N.,.,c, c. c.. c M 0. C .w.

c., e.. CC

, ,. .. ., .4...C.. ..C,......

c., c. c, c, c. 4., L.*.,C., .C. C.,

O. e. . . ..,....C".

.c. LS.

. . LO

.... .n.,.. ., .c., c., , . .., . ,... . . .. . . ..... . ~ ,... .~..,.,..,.c.,..~4

. ,4...4.. L.S.

... . 0*, ... . ..... . ...

. . ., ..... .. .. . n ,,,3 OmOaw www w ww w w w w w w w w ww w w ww w w wm am e a mO, mma eaa a aa a aaa m, ma aa aea a w aa aa wwww w w aeeawwOmawww w ww wwwww aO W

nU n.

>=

<* ; n 0 0 019 0 "I C :^ N e c = "O - = tw 01 = O! N O = = c O O t* t* O Lt - N 010 :* e e t = 0 :* t. O - + 0 - LS t 0 00 CO 01 & t= c 0 01 0* - O 4 t CO O O C L' O al tt :1 :O v v :0 O al 0101 CO C C 01 ? - = v 03 Lt :0tOOOccOO OA CO

\ n t=. t=. N. c. N. .c .tw. .tw O O. tw . . tw . tw O. O :J. O :O. O. O. 00. e. o. O. e. .01 @ O. O. O. e. O. e. O.f e. O. O! . =. *.) =. . 01 01 . O M. =. O.

gte

.= n OeOOO eceeeeeeecrecceeeve eceOceeOceeeer>OOOOOOO=O.twctwNtw c c c c c c 4 C C C C C c c c c c

  • c tw c c 4 tw c c c tw c c c c c c c tw tw t= l= tw t= tw (= t W Ub (C
  • ==

Cf <

W F A

CW J W

M COM.t ?! to *) 13t eL101 tw =O c OSO - :0 tw COOO=OLS O *1 O O! e cc- 0twN@OLS Of O ON 019 *O01

  • 10
  • 100O@ = v0*c :*c*~ eO twtO=O0=0:O L* c" o=o0 N = :" tw e Li :0te
  • 1=
  • t tt*:* W:

t.n3 U

T. t. ?. ?.01. O. O.0000 0 01 O O. 1. O.*O.::. O. O. ~.*O. Y. v. t. t. t. t. Y. v. t. t. t. t. t. t.t*LS .c. 1S.IS.IS. C. 4 4. C C. C. c. c FW

. . . . . c g,,

N N N tw N tw tw t= N N tw tw N tw N tw N N tw tw N N tw tw N N tw tw tw tw tw N to N N t= tw tw to to t. !* tw N tw to tw tw tw. 03 ;

N t= tw tv N tw tw N N tw tw t tw N N N N N i= t= t= tw tw N tw tw tw tw tw tw tw N N tw t= tw t= t= tw t= t= tw tw tw t= tw tw tw tw L bt U

  • =

&q:. =u r.:

1O ei = tw :0 1 : iS t - e e e tw te i3 t' < t :- .> .i - = :0 O iw N e + + + et :, : :e :- :* e e e = = N N t - : = ei - .I:

CO

- N N twm t C- C - -4 . .c-- c c.13. a t* 10. La LS t* t0 C tS O C t v v t t t v v v v v v t v C e 9 y v v t t t t. t t

--=.

C L.

g i-F

...=.=.=..........=.......=....

. . . . . . . . . . . . . . . . . . . . . . . pQ o N t.o. t.o t.o tw t N N N N N.,.,. tw

.. t=.,

...,t.-., t.o.t=. t.w -U O.......,,....... . . t.o.

, ...tw..t.=, N

, .N,. tw

, .N, ..N, N..t.w.

. .N N.. N...N,..N .t. N

. . N N.,

N .N.,

, ,t t.w

. ..t.= N N. rw N, t.w. t.w., N tw.

1

) O t%1 UW 2L tm2 L' O IS O t* O ta 0 t* O t^ O t* O La O LO O M O tS O tt O Lt O t*J O M O LO O 10 O ti O M O La O LS O LO O ta O LO O ta < ~

0 5 V... .L*. .= O.! t C .. O..l V.. ..L*J 01 Y ..O. =.

.. .. 01 Y LO = 0.1 T.. I.S. .. :..I Y.. IS .. ^.1 ?. 10 =. 0.1 Y.. C.*..I

. . . .. .. . .. v.. C.. =. 0.1 Y.. d =. 0 j v L.%. =.. ^.1 QR h

. ?! *10101 :" O O O P t t t la 1* L*: .S. c=c-c -c -tw- N- tw - -N- O -O O -O-e-S?j**u* 01 ^ ^:J * ^010; = = 01010;

= = *! *0;j I

OOO.

N 010! al *10l *101010t *101010l *! 010l *10l *l *! *1 *103 *10! al ?! ?! al *l at ?! *! *! ?! *! *! *1 '! al a! *l a! ^! *! *! *! *1 coVeccee7 ecee @e7ecoce>@ece7@?77e@@@eO77007? TOC 7?O

ATTACHMENT III .

i JERSEY CEFFRAL POWER 8 LIGHT Co.

OYSTER CREEK NUCLEAR CENERATING STATION

, INTEGRATED CONTAINMENT. LEAK RATE TERP

  • REFERENCE VESSEL METHOD
  • I' REPORT PREPARED SAT, APR 03 1982 STARTING PRESSURE : 37.377 PSIA 1 POINT-TO-POINT TOTAL TIME

! DAY TIME PRFSSURE DPRESS. TEMP. DEWPOINT PPlJI TTLR 'ITLR TTLR

' PSIA) (PSID) (F) (F) ( f!EAS . ) (MEAS.) (CALC.) (UCL+95)

I 91 22:40 37.373 3.152 79.064 73.368 0.28051 0.28051 0.42660 91 22:55 37.373 3.150 79.071 70.936 0.41355 0.346117 0.42596 91 23:10 37.3611 3.14 fl 79.063 73.352 0.39126 0.36169 0.42532 i 91 23:25 37.3618 3.147 79.039 74.057 0.47071 0 .311(191 0.4246tl 91 23:40 37.366 3.146 79.057 70.605 0.41130 6 0.40867 0.42404

. 91 23:55 37.364 3.144 79.018 74.5fl9 0.51316 0.42609 0.42341 92 0:10 37.361 3.143 79.015 71.547 0.494I7 0.43575 0.42404

. 92 0:25 37.360 3.142 78.985 72.757 0.26222 0.41405 0.42341

] 92 0:40 37.357 3.141 78.9115 72.7511 0.39773 0.41221 0.42277 92 0:55 37.354 3.139 711.988 71.862 0.341172 0.405113 0.42213 92 1:10 37.352 3.138 711.970 74.125 0.30629 0.39676 0.42149 92 1:25 37.349 3.136 78.974 72.723 0 .21162 7 0 .3117 5 2 0.42085 j 92 1:40 37.34fl 3.134 78.940 74.761 0.41400 0.38952 0.42022 92 1:55 37.344 3.132 71).942 74.630 0.40742 0.39075 0.41951) 9 92 2:10 37.348 3.131 711.935 75.563 0.27141 0 .31127 6 0 .4 1119 4 92 2:25 37.339 3.129 71).911 71.792 0.45119 0.38697 0 . 4 1113 0 92 2:40 37.336 3.128 78.899 73.742 0.34089 0.311425 0.41766 y 92 2:55 37.334 3.127 78.896 73.1130 0 .47116 9 0 .31194 6 0.41703 4

92 3:10 37.331 3.125 711.886 70.716 0.45569 0.39292 -0.41639 92 3:25 37.329 3.124 7 11 . 11!! 6 73.129 0.45735 0.39613 0.41575

, 92 3:40 37.326 3.123 711.110 0 112.273 0.4til65 0.40017 0.41511

! 92 3:55 37.323 3.121 711.112 1 76.130 0.66515 0.41213 0.41447 3 92 4:10 37.320 3.120 711.781 80.001 0.22736 0.404011 0.41383 1

92 4:25 37.316 3.118 711.776 -111.677 0.34549 0.40155 0.41320 92 4:40 37.313 3.116 711.753 711.330 0.248311 0.39535 0.41256 92 4:55 37.309 3.113 711.736 66.703 0.31535 0.39220 0.41192 92 5:10 37.299 3.106 711.660 74.738 1.47061 0.432111 0.411211 92 5:25 37.2115 3.101 711.4 till 57.1139 0.95137 0.45063 0.41064 92 5:40 37.274 3 . 0 911 711.394 71.593 0.47247 0.45145 0.41001 92 5:55 37.264 3.095 711.328 74.750 0 . 5111 9 1 0.45577 0.40937 92 6:10 37.253 3.091 78.201 64.555 0.71456 0.46405 0.40873 92 6:25 37.242 3.038 78.087 65.220 0.72200 0.47213 0.40809 92 6:40 37.230 3.081 77.976 69.927 0.78051 0 .411141! O.40745 92 6:55 37.218 3.081 77.864 69.729 0.73221 0.43883 0.40632 92 7:10 37.217 3.085 77.1148 71.356 -0.90026 0.44917 0.40618 92 7:25 37.219 3.086 77.845 69.701 -0.12752 0.43316 0.40554 92 7:40 37.220 3 .0116 77.!!45 69.961 0.06273 0.42314 0.40490 l 92 7:55 37.219 3.004 77.879 69.931 0.54561 0.42635 0.40426

! 92 II: 10 37.217 3.083 77.1153 69.1134 0.3735!1 0.424911 0.40363 i 92 11 : 2 5 37.214 3.001 77.1116 70.048 0.47567 0.42623 0.40299

! 92 11 : 4 0 37.209 3.079 77.766 69.969 0.57746 0.42990 0.40235 U$

) 92 II: 55 37.205 3.078 77.713 69.1150 0.39363 0.42902 0.40171 &

92 9:10 37.201 3.076 77.655 69.939 0.55991 0.43204 0.40107 h j 92 9:25 37.197 3.074 7 7 . 6'13 69.661 0.44630 0.43236 0.40044

92 9
40 37.191 3.073 77.591 69.928 0.40494 0.43174 0.39980 92 9:55 3 7 .1119 3.071 77.560 69.832 0.37478 0.430411 0.39916 92 10:10 37.186 3.070 77.526 69.1376 0.51689 .0.43230 0.39852 92 10:25 37.1112 3.069 77.433 69.732 0.23266 0 .4 2111 3 0.3970!!

92 10:40 37,178 3.068 77.473 69.724 0.50303 0.42964 0.39725

)

x hcp 4

4 4

2 4

0 1739628407395184062931730628417395284063951 7406 1 1

6936047151 259360471 4325936037141 1 59260370481592 655443221009037765513321 1 1 1

0091 87665443321 1 099877 9999999999930081 8838881310077777777777777766666 1 1 33333333333333333333333333333333333333333333333 00000000000000000000000000000000000000000000000 31 1 211 31 431 66506739073951 1

1 009479765063043441 8233 1 229845073652554560620506430941471 5795956171 5428 77665431 9972G507404207431 904229761 2675433220037 2222223211 1 100099988877776666655554444444444433 4444444444444443333333333333333333333333301 3333 1 0000000000000000000000000000000000000000O000000 829516691 3296423762792534299018701 24591 0O44001 1 1 1 1

334614836920464046915617371 947U01 3223944G255957 1 97225491 20342633306366321 31 66171 66377564072361 1

021 2573584991 101 091 220241 1 736442229090260099230 3444333324201 2022002221 32221 . .

1 31 2203732223321 31 3 0000000O000000000000O0O000000000000000000000000 0263796l 31 1721 2701 1 6I 05505172039941 3371 141 1 1 5403 0582521 44302221 N61 241 1

9761 1973i864331 1 1 1 1 42334001 6699 1 1091 1 01 99092901 99892902.I 1 l 7676771 1 1

f. 777.li.1 1 1 1 21 1 221 351 3 .

99999999999999999199909990999999900000000009000 66666666666666666766676667666666677777777776777

)

55971623001 52461795874035913391 0015l 1 1 3713795349 22752001 7001 0026571 20242231 46647703i6991 21 34453 1 1 1

l 44333333233233333334444444444444455.G.55566666666 77777777777777777777777777777777777777777777777 77777777777777777777777777777777777777777777777 6343109176532091 63411 00877654321 1

1 1 1 l

20i8765321 091 1 6666665533335544144444433333333333332222222221 1 00000000000000000000000000000000000000000000000 33333333333333333333333333333333333333333333333 1

7321 5410097555543221 1 1 1 8776444333331 0991 1 7743312 1 5 1 77766666655555555555544444444444444544444444444-1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 11 1 1 1 1 1 1 1 1 1 1 1 I I 1 1 1 1 1 1 1 1 1 1 77777777777777777777777777777777777777777777777 33333333333333333333333333333333333333333333333 505050505050G050505050505050505050505050G050505 512451 01I 2451 2451 2451 24512451 2451 2451 2451 2A51 2 4 G. 1 2 I1: : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 222233334444555566667777I 881 999900001 1 1 I 22 I 11 II 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 2222222O22 22222222222222222222222222222222222222222222222 99999999999999999999999999999999999999999999999

5 f

o 4

eg a

P E) 3 T5 9 A9 6 R+ 1 L 2 KC AU 1 E(

L 6

4 A KE 5 FAAT I 6 S 1 P LR .

1 1

(

4 I 9 I 099876554321 1 09( 1 5 76544331 00 1 R I 6 S) 209U7654321 091 654321 0987654 1 1

I I

3 S .

40159371 593704826041 259371 1 5 /

l T A LC 9 2 6 9 2 6 9 3 6 9 3 6 0.'.6 0 3 7 0.*. 7 0 3 7 0 4 7 l

l N *  : I I U D 1 1 141 1 41 5 481 41 14 1 E

M H

O I

I E

R I(

A7I 47I471471 41 17665443221 009 RC665443221 009C1 U81 1 !

! 00f1 3n07777.777777777776 1 L 4

C i U A 444444444444444444444444444 4 A n S 555555555555555555555555555 6 T h S T E 6 k N E R 2 T P 2943921 1 1

1 1 3259567601  !

02496l -

.O I U S) 4096473536738671 1 2764930406 1

1

! t OT L G S .

40318065749300430721 1 7431 30 E CA O

  • N AS54241 64240461 1 1

4622990877739 P T S1

  • I MA .

O TS I

  • T E64347064t l 1 1

10050291 1 74246I 52 L l

i A

  • R RT56654432l I

01 988665541 3321 I 00 1

S CG
  • S A I( 3lf 1 11 11 1t1l 11 1f if 1 77777777777777777 IN I T A 444444444444444414444444444 63 E LI T S S 555555555555555555555555555 49 I I

T S Y 56 T AA E L 61 R T A I 2 D RE N . N EN E A 2 S) 00300441 1 1 441 61 93305OI 950645 I1 A WE T S l t SA3401 231 430022907379t 96901 97  ? 1 OG L T 9 EI 1 777777777C7761 777777771 777 1 1 1 S P I O 1 RS333333333333333333333333333 D R L PP  : L LA K P 3 V( 000000000000000000000000000 T

\E A 0 N LL E S I E 9 TC L S R  : C NU A P T YI 7 Ef i r M A N 4407390757345f941 2099430457l f

AE 6 C f

  • I 9905349520941 02543201 22651 6 1 1 DP 8 K E * , 1 O) 51 66786986377541 1 1 1 322133231 / 4 YE I t
  • T PF . . . .

T5 5 EE N

  • A W( 1 0000000001 000I 1 01 1 1I 1 1 I I 1 1 N9 SR I S E 777777777777777777777777777 E S RC A D CT I E T RA JR N D E T E O E PL P T C R . 1 000591178094591 5333296364f2 1 l E E F EW T1 CR 1 1 A P 1 4571 8 1 1 35643673501 4 9 0 0 2 5 l1 91 Y D P I O E E T)

EF 11.1 .1l1I. 11. . 11. 1 222222223344444553555 AL E T R T( 1 1 1 t1 1 311 1 1 1 1 311 1 l1 51t 11 13 11 1 1 5

1 31131 1 l 1 1 1 t 1 H T A P 777777777777777777777777777 E N R KC I C T AN E R FE E T O E LD M N P R) lf 621529641153097519641 1 51 1

1 1 1 62 I I I E UA4443332221 1 1 1 00009999083777 DF T R SI 999999999999999991 1 1 1 8 8 0.

1 1 1 l C.1 1 1f. ET I SS TO O EP666666666666666666666666666 AC R R( 333333333333333333333333333 L E P UR Z CE LP El 050505050505050505050505050 A l' i E 1 2451 24512451 2451 2451 2451 24 CU T M  : : : : : : : : : : : : : : : : : : : : : : : : : :

I 1I 1 1 22223333444455556666777 T 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Y 333333333333333333333333333 A 999999999999999999999999'J 99 D

L

ATTACHMENT III Paga 5 of 5 JERSEY CENTRAL POWER A LIGHT CO.

OYSTDI CllEEK NUCLEAR CENEllATING STATION INTECRATED CONTAINMENT LEAK RATE TEST *REFDIENCE VESSEL METHOD * ,

REPORT PREPARED SAT. APR 03 1982 !TTARTING PRESSURE : 36.9411 PSIA PolNT-TO-POINT T(TTAL TIME DAY TIME PRESSURE DPRESS. TEMP. DEWPOINT PPLit TTLR 'ITLR . TTLR (PSIA) (PSID) (F) (F) (!!EAS. ) (f f EAS . ) (CALC.) (UCL+95) 93 11:25 36.946 2.790 78.I40 70.I194 I.I4732 1.I4732 I . I44112 93 11:40 36.942 2.785 711.I50 70.600 I.I5262 1.I5006 1.14430 93 11:55 36.938 2.7112 711.170 70.657 0.110644 I.03556 I.143711 93 12:10 36.935 2 .7 711 711.1(15 70.733 I.09649 I.05078 1.I4327 93 12:25 36.932 2.774 7tl. IIl9 70.f149 1 . 0 7115 6 1.05631 1.14275 93 12:40 36.929 2.769 78.218 70.690 1.09007 1 . 0 611111 1.14223 93 12:55 36.926 2.766 711.237 70.957 1.14304 1.07341 1.14172 93 13:10 36.924 2.763 7tl . 25ft 70.1125 1.35907 1.10901 1.14120 93 13:25 36.9111 2.757 78.260 70.607 2.32003 1.24336 1.14069 93 13:40 36.915 2.755 78.249 71.393 1.44092 1.26296 1.14017 93 13:55 36.913 2.752 711.234 70.744 1 . 5110 4 1 1.29164 1.13965 93 14:10 36.910 2.750 78.265 70.7115 1.01273 1.26fl29 1.13914 93 14:25 36.909 2.746 7tl.279 70.5011 0.51015 1.20992 1 .131162 93 14:40 36.907 2.741 7tl.33fl 7I.429 I.06644 I . I995fl I . I3I110 93 14:55 36.905 2.737 711.355 71.154 0 IMO47 1.17554 1.13759 93 13:10 36.901 2.732 78.403 70.1141 1 .01163 3 I . I 69115 I.I3707 93 15:25 36.1199 2 .7 211 711.413 7I.I32 0 .1154114 I.I3123 1.I3656 93 13:40 36.i196 2.723 711.443 71.320 I.03991 1.I4494 I.13604 93 15:55 36.1194 2.719 711.492 71.209 0 .111 3 211 1.12740 1.13552 "

93 16:10 36.1191 2.714 711.4119 71.2119 0.83261 1.11257 1.13501 93 16:25 36.0811 2.7to 711.506 71.I24 0.909911 1.102fl3 1.I3449 g 93 16:40 3 6 .8115 2.705 711.523 71.323 0.115941 1.091611 1.13398 .

93 16:55 3 6 .0111 2.700 711.556 71.360 1.02204 1.08334 1.13346 ,,'

93 17:10 36.1578 2.696 78.534 71.254 I.01131 1.03522 I.13294 93 17:25 36.1176 2.692 711. 5 911 71.315 1.29070 1.09330 1.13243 93 17:40 36.1172 2 . 6 1111 711.582 71.167 1.12172 1.09427 1.13191 1.26541 O

e