ML20062K170
| ML20062K170 | |
| Person / Time | |
|---|---|
| Site: | Summer |
| Issue date: | 11/20/1980 |
| From: | Nichols T SOUTH CAROLINA ELECTRIC & GAS CO. |
| To: | Harold Denton Office of Nuclear Reactor Regulation |
| Shared Package | |
| ML20062K174 | List: |
| References | |
| NUDOCS 8012020293 | |
| Download: ML20062K170 (122) | |
Text
{{#Wiki_filter:* ] 1 a j SOUTH CAROLINA ELECTRIC a gas COMPANY ) Post orries som re4 I ] CotuMelA, SOUTH CAROLINA 29218 l T. C. Nichots. J a. November 20, 1980 v.a c.o,n e... co. cnww wa.. on.c. 1 1 Mr. Harold R. Denton, Director Office of Nuclear Reactor Regulation j U. S. Nuclear Regulatory Commission Washington, D. C. 20555
Subject:
Virgil C. Summer Nuclear Station Docket No. 50/395 Seismic Qualiffention Review Team Followup Information
Dear Mr. Denton:
On October 14-17, 1980, the NRC Seismic Qualification Review Team (SQRT) visited the Virgil C. Summer Nuclear Station to audit the seismic equipment qualification program. At this meeting South Carolina Electric and Gas Company (SCE6G) committed to provide followup information on various subjects. This letter provides forty-five (45) copies of that information. Certain information regarding Barton transmitters model numbers and accumulator tank test and analysis is proprietary. This information is being submitted under separate cover letter. 1. SQRT Information Sheets - Updates of all SQRT Information sheets are provided by this letter. (See attachment #1) -l 2. Seismic Reports Remaining to be Accepted - The following is a list of seismic reports of which the review and acceptance remains to be com-pleted. BOP Supplied (a) Fire dampers (b) Limit switches for HVAC ductwork dampers (c) Electric motor actuators for dampers (d) Roof ventilators (e) Reactor building cooling unit damper actuators (f) Reactor building cooling unit solenoid valves HONyng (g) Filter plenums S33fAH33 7/0110? ylm (h) Solenoid valves and limit switches on purge isolation valves DU (1) Solenoid valves for air handling units E il Fil I 330 251 W
- ens, w
ms ghs ~ t .8012020 4 I
Mr. Harold R. Denton November 20, 1980 Page Two 1 I (j) Heat tracing panels (k) NAMCO switches on Anchor Darling { (1) Solenoid valve panel for main steam isolation valves j (m) Terry Turbine for EFW pumps (n) Solenoids for Rockwell International valves (o) 1" ball valve actuator - Anchor Darling (p) Sodium hydroxide tank (q) Fuel oil storage tank (r) 2" motor operated valve - Rockwell (s) Radiation monitoring panel (t) Local control panels NSSS Supplied L (a) Reactor trip switchgear (b) International instrument PAM indicators (c) Core subcooling cooling l (d) Critical systems leak monitoring equipment l 3. FSAR Tables - FSAR tables in Chapter 3 are in the process of being reviewed and are being revised as necessary to include updated informa-j tion. 4. Seismic Reports i Item Status (a) Reactor Building Cooling Will be submitted at a j Unit Bypass Damper Actuators later date (b) Main Steam Isolation Valves Given to NRC at meeting (c) 480 Volt Substation Given to NRC at meeting i (d) H2 Analyzer Panel Will be submitted at a later date (e) Radiation bbnitor System Panel Will be submitted at a j later date (f) PAM Indicators Will be submitted at a later date (g) Diesel Generator - Electric and 1 copy to be hand carried i Air Starting Controls to NRC on 11/17/80. I copy i sent directly to Brookhaven Labo ratory. t r t , _.. _,,,, _ _ _. ~,. -.,_,__,m.,,,_..
b i j Mr. Harold R. Denton November 20, 1980 Page Three a 4. Seismic Reports (con't) Item Status (h) Accumulator Tanks The attached SQRT Information sheets summarizes information in the seismic report. If the Staff desires to physically see the report, Westinghouse will bring the report to Bethesda for your i review. (i) Electrical Containment 1 copy to be hand carried to NRC Penetrations and Miscel-on 11/17/80. 1 copy sent directly laneous Connectors to Brookhaven Laboratory. 4 t 5. Revised SQRT Table - A copy of the revised SQRT Table is provided by this letter. (See attachment #2) 6. Specific Items (a) Component Cooling Pump bbtor - This is to confirm that the seismic analysis of the service water pump motor conduit box applies to the component cooling water pump motor conduit box. (b) Terry Turbine Appurtenances - Both Terry Turbine Corporation and I Wyle Laboratories have confirmed that the first evidence of loosening of bolting did occur af ter nine (9) OBE tests and one (1) SSE test, not prior to 5 OBE's. Therefore, the number of tests is considered to be more than adequate to meet design requirements. In addition, SCE6G Nuclear Operations will periodically inspect and tighten these bolts, if required, as part of their plant surveillance activities., (c) BOP Supplied Valves - GAI uses " Design Verification Standard" l DS-8 for both in-house and out-of-house 'as-built' analyses. The standard requires that the originator and the verifier com-pare the analytical results against valve accelerations dictated by the various design specifications. Refer to attached sheets from that Standard. The Westinghouse Class 1 valve accelerators are sent to CAI via formal letters and is incorporated into the subsystem work package of DS-8. (See attachment #3) .i ..-._.m..,..
Mr. Harold R. Denton November 20, 1980 Page Four In summary, valve accelerations are checked as a part of the design verification program to ensure design acceleration values are not exceeded. (d) BOP Valves - Information regarding acceleration values from final as-built piping analysis for the main feedwater isolation valves, the main steam isolation valves, the main steam safety valves and control valve MS-lF-2030 will be provided at a later date. The design verification will be completed by mid-Decem-ber, 1980. (e) Charging Pump - The natural frequency of the charging pump was determined to be greater than 33 hertz based on sine sweep tests performed by the vendor. Test results are documented in a priority test report prepared by the vendor. If it is necessary for the NRC to review this report, Westinghouse will bring this report to Bethesda for your review. (f) RHR Pumps - In the copy of the seismic report, several pages, including the title page were missing. These pages have been found. The entire report is on microfilm at Westinghouse. In making a copy for the October 14-17, 1980 meeting, they were mistakenly omitted. The fact that the Watts Bar spectra applies to Summer Station has been verified. In fact, it was so stated on the missing title sheet. Also, the information regarding nozzle loads, dimensions and forces is included on the updated SQRT information sheet. Finally, Westinghouse did verify that the accelerations used to quality the RHR pumps did envelope the ZPA for Summer Station. The ZPA was used because the pump is rigid. These results indicate a factor of 10 in conservation. (g) Battery Chargers - Attached to this letter is a copy of GAI procedure for the design of electrical and instrumentation equipment bases and attachments along with a copy of the design analysis for the battery chargers. This analysis demonstrates the adequacy of the existing velds. (h) Pressure and Differential Transmitters - A list of transmitters in safety related applications, including location, model number (model numbers are given as Lot numbers which were tested by Barton) and applicable test reports are provided as an attachment to this letter. SCE&G has verified that the acceleration values of the equipment are greater than the acceleration values of the areas where the equipment is located. (See attachment #5)
Mr. liarold R. Denton November 20, 1980 Page Five SCE&G will notify the NRC when all seismic reports have been reviewed and accepted and a summary of any problems if they occur. In addition, as soon as the seismic reports listed in item 4 and the missing information on the SQRT information sheets for the Reactor Building cooling unit damper actuator, PAM indicators and the H2 analyzer panel are received, the NRC and Brookhaven Laboratories will be sent a copy. If you have any questions, please let us know. Very truly yours, T. C. Nichols, Jr. RBC:TCN:rh cc: V. C. Summer G.11. Fischer T. C. Nichols, Jr. E. H. Crews, Jr. D. A. Nauman
- 0. S. Bradham O. W. Dixon, Jr.
R. B. Clary W. A. Williams, Jr. J. B. Knotts, Jr. J. L. Skolds B. A. Bursey A. R. Koon Dr. Morris Reich NPCF/Whitaker File i
d i ATTACHMENT #1 I I t
- 4 l
i i y I k I r
, EQUIPMENT LIST FOR SQRT PLANT SITE REVIEW I. BOP Mechanical Equipment 1. Reactor Building Cooling Unit (AH, XAA-1A, B), Assembly 2. Reactor Building Cooling Unit (All, XAA-1 A, B), Damper Actuator 3. Component Cooling Water Pump (CC, XPP-1A, B, C) Pump and Motor l I 4. A. Turbine Driven Emergency Feedwater Pump (XPP-8-EF) Appurtenances l B. Turbine Driven EFW Pump Turbine (TPP-008-EF) Appurtenances 5. Main Feedwater Isolation Valves (FW, XVG-1611A), Valve and Actuator 6. Control Valve (MS-lF-2030) 7. Main Steam Isolation Valve (MS, XVM-2801A) 8. Main Steam Safety Valve (MS, XVS-2806A) 9. Refueling Water Storage Tank (SF, XTK-25) II. NSS Mechanical Equipment 1. Charging Pump (CS, XPP-43A) 2. Residual Heat Removal Pump (Ril, XPP-31) III. BOP Category I Instruments, Electrical Equipment and Supports 1. 480 Volt Unit Substations l 2. Battery Chargers 3. Transfer Switches (7200 Volt) 4. Control Board Switch Modules 5. Reactor Protection Under-frequency and Voltage Relay Panels 6. Main Control Board 7. Ilydrogen Analyzer Panels 8. Control Room Evacuation Panels (XPN 7200 A/B) 9. Radiation Monitoring System Panel (XCP-6200) IV. NSSS Cater,ory 1 Instrument, Electrical Equipment and Supports 1 Pressure Transmitters and Differential-Pressure Transmitters 2. Post Accident Monitors (Indicators) i-1
9. V. BOP and NSSS Additional Equipment 1. Accumulator 2. Diesel Generator Electrical and Starting Equipment 3. Low Voltage Electrical Penetrations and Miscellaneous Connectors d e 1 e I I i l t* 1 l t
tu - \\ 1-1 Oualification Sumary of Eouipment V. C. Summer I. Plant Name: Tyoe* 1. Utility: SCE&G PWR X ~ 2. OSSS: Westinghouse 3. A/E: GAI BWR II. Comoonent Name Reactor Building Cooline Unit Damner Actuator 1. Scope: [ ] NSSS [ X] BOP a 1 2. Model Number: NT 312B-SR4-12 Quantity: 3. Vendor: Bettis 4. If the component is a cabinet or panel, name and model No. of the devices included: N/A Appearance ' Pneumatic Actuator 5. Physical Description a. i b. Dimensions 72 in. long x 15 in. Max. Diam. c. Weight 393 lb. 6. Location: Building: Reactor Building i Elevation: 543 Ft. 7. Field Mounting Conditions [ ] Bolt (No. 4 , Size 3/4" ) I [] Weld (Length ) [] 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) S/S: F/B: -Y: 9. a. Functional
Description:
Open and Close llEPA Filter Bypass Damper b. Is the equipment required for [] Hot Standby [] Cold Shutdown [x ] Both 10. Pertinent Reference Design Specifications: SP-534-044461-000 Expecting to receive final report by 12-25-80 t k- ?.. 1_i VII. If Oualification by Analysis or by the Combination of Test and Analysis, then Comolete: N/A s l. Description of Test including Results: 2. Method of Analysis: [ ] Static Analysis [ ] Equivalent Static Analysis [ ] Dynamic Analysis: [ ] Time-History- [ ] Response Spectrum 3. Model Type: [ ] 3D [ ] 2D [ ] 1D [ ] Finite Element [ ] Beam [ ] Closed Form Solution 4. [ ] Computer Codes: Frequency Range and No. of modes considered: [ ] Hand Calculations 5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS [ ]Other: (specify) 6. Damping: Basis for the damping used: 7. Support Considerations in the model: I 8. Critical Structura1 Elements: Governing Load or Seismic Total Stress A. Identi fication -- Location Response Combination Stress Stress All owat Effect Upon Functional B. Max. Deflection Location Operability % e
10 - i I 1-2 {! Oualification Summary of Eouipment I. Plant Name:
- v. c. Summe'r Tyoe:
1. Utility: SCEEG PWR X 2. OSSS: westinghouse 3. A/E: cat BWR II. Component Name Reactor Buildine Cooline Unit Assembly 1. Scope: [ ] NSSS [ X] B0P I 2. Model Number: N/A Quantity: 4 3. Vendor: American Air Filter 4. If the component is a cabinet or panel, name and model No. of the i devices included: N/A l Appearance ' Air Handling Unit 5. Physical Description a. i b. Dimensions 25.5 ft. long X 12 ft. wide X 29.1 ft. high l l-c. Weight 100,000 lbs. ~ 6. Location: Building: Reactor Building El evation: 514 ft. i 7. Field Mounting Conditions E ] Bolt (No. 34 , Size s/8" ) i l [] Weld (Length ) b] Seal Welds Betwe~en Sections 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) S/S: F/B: V: 9. a. Functional
Description:
Reactor Buildinn Air Cooling Unit b. Is the equipment required for [X ] Hot Standby [] Cold Shutdowr [] Both 10. Pertinent Reference Design Specifications: SP-534-044461-000 DSP 534-044461-000 I. f I-2 III. Is Eauipment Available for Inspection in the Plant: [X] Yes '[ ] No IV. Ecuipment Oualification Method: Test: Analysis: X Combination of Test and Analysis: Test and/or Analysis by American Air Filter Company (name of Company or Laboratory & Report No.; V. " Vibration Inout: 1. Loads considered:1.[ ] Seismic only 2.[ ]Mydrodynamic enly 3.[ ] Explosive Only Seismic + Deadweight + LOCA induced 4.[ ] Other (Specify) 5.[X] Combination of diff. pressure load i-6. Method of combining RRS: [ ] Absolute Sum [ ] SRSS [ X] (other, specify) 2. Required Response Spectra (attach the graphs): Fig. 11 (X,Y&V) & 12~(X,Y&V) 3. Required Acceleration in Each ' Direction: ZPA 4 3/3 = .397 or.399g gjg - .397 or.399g y= .288g VI. If Oualification by Test, then Complete: [ ] random 1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat [] 2. [ ] Single Axis [ ] Multi-Axis 3. No. of Qualification Tests: OBE SSE Other I 4. Frequency Range: 5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Plot TRS on RRS graphs). [ ] No 6. Input g-level Test at S/S = F/B = Y= 7. Laboratory Mounting: 1. [ ] Bolt (No. Size ) [ ] Weld (Length ) [] 8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable 9. Test Res0lts incid' ding modifications made: ~ 10. Other tests performed (such as fragility test, including results): !I l i-i
. 1-2 VII. If Oualification by Analysis or by the Combination of Test and Analysis, then 9 Comolete: s 1. Description of Test including Results: 2. Method of Analysis: e [ ] Static Analysis [ ] Equivalent Static Analysis [x] Dynamic Analysis: [ ] Time-History [x] Response Spectrum i 3. Model Type: [x ] 3D [ ] 2D. [ ] 1D 4 [x] Finite Element [ ] Beam [ ] Closed Form Solution 4. [x] Computer Codes: Strudl/Dynal Frequency Range and No. of modes considered: up to 30Hz, 9 modes ~ [ ] Hand Calculations 5. Method of Combining Dynamic Responses: [x] Absolute Sum [x] SRSS [ ]Other: 2% OBE (speci fy) 6. Damping: 5% DBE Basis for the damping used: R.G.l.61 7. Support Considerations in the model: Anchor Bolts (Fixed Translationally, Released Rotationally) I 8. Critical Structural Elements: Governing Load or Seismic Total Stress A. Identification - Location Response Combination Stress Stress All owa b. Member 242 ~ SSE + LOCA AP 32.5ksi 41.4ksi (Vertical Structural + Dead Weight Member in the middle of left wall) 4 Effect Upon Functional B. Max. Deflection Location Operability .162 in. Joint No. 88 (Member 224) Negligible near to Member 242 (in Lateral direction) I g t l l --,n-l I-3 l Oualification Sumary of Eouipment I. P1 ant Name: V. C. Summdr Nuclear Plant Tyoe: 1. Utility: SCE&G PWR X 2. 0SSS: 3. A/E: X BWR II. Component Name Component Cooling Water Pump and Motor 1. Scope: [ ] NSSS [ x] B0P a l CS PAM TEWAC (Motor) 2. Model Number: 18X20X24 IISA '(Pump) Quantity
- 3 3.
Vendor: Bingham-Willamette Co. and Westinghoure Electric Corp. 4. If the component is a cabinet or panel, name and model No. of the devices included: N/A Double Suction-Double Volute Appearance ' w/ Motor 5. Physical Description a. b. Dimensions Pump 6F"X68"X63"/ Motor 82"X83"X74" c. Weight Pump 6500, Motor 14500, Base 4000 6. Location: Building: Intermediate Building Elevation: 412 7. Field Mounting Conditions [x] Bolt (No. 14, Size 1/4 - ) .l [] Weld (Length ) [] 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) 36.511z overall S/S: 34. 311z (motor) F/B: 43.4 (motor) y: 38.7 (motor) 9. a. Functional
Description:
Supply Water to Cool various Components l b. Is the equipment required for [X ] Hot Standby [ X] Cold Shutdowr [3 Both 10. Pertinent Reference Design Specifications: AsME B&PV Code Section III, Subsection ND, SP-502 l li l 4 l 1 g _ ~. 9 ---- -f..
- 1_3 III. Is Eauipment Available for Inspection in the Plant: [x] Yes '[ ] No IV. Eouipment Oualification Method: Test: Analysis: x (Motor is included in the model) ~ Combination of Test and Analysis: Bingham Willamette Co. Test and/or Analysis by Basic Technology,.Inc. (Pump) (name of Company or Laboratory & Report No.) Westinghouse /IJ1E 77007 (Motor) V. Yibration Input: 1. Loads considered:1.[ ] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only Seismic + Deadweight 4.[ ] Other (Specify) 5.[x] Combination of + Nozzle Loads + motor torque 6. Method of combining RRS: [ ] Absolute Sum [x] SRSS [ ] (other, specify) 2. Required Response Spectra (attach the graphs): 61x, 61Y, 61V (Rev. 3) 3. Required Acceleration in Each ' Direction: ZPA. OBE =.308 or.180g OBE =.308 or.180g 05E =.209g S/S = DBE =.477 or.289g gjg = DBE =.477 or.289g y= DBE =. 324g VI. If Oualification by Test, then Complete: N/A [ ] random 1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat [] 2. [ ] Single Axis [ ] Multi-Axis 3. No. of Qualification Tests: OBE SSE Other 1 (specify) 4. Frequency Range: TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Plot HRS on RRS graphs) 5. [ ] No 6. Input g-level Test at S/S = F/B = V= 7. Laboratory Mounting: 1. [ ] Bolt (No. Size ) [ ] Weld (Length ) [] 8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable ~ 9. Test Res0lts inclu~ ding modifications made: 10. Other tests performed (such as fragility test, including results): 1 e 1-3 YII. If Qualification by Analysis or by the Combination of Test and Analvtis, th m Comolete: s l. Description of Test including Results: I 2. Method of Analysis: 4 [x] Static Analysis [ ] Equivalent Static Analysis [x] Dynamic Analysis: [ ] Time-History (Pump only) [x] Response Spectrum 3. Model Type: [x] 3D (Pump) [ ] 2D [ x] 1D (Motor) [x] Finite Element- [ ] Beam [ x] Closed Form Solution-(Pump) (Motor) 4. [x] Computer Codes: ANSYS (Pump), Custom program for motor Frequency Range and No. of modes considered: Fund. Freq=36.5H; 10 modes (Pump) 34.3 to > 30Utiz, 4 modes (motor) [x] Hand Calculations (For motor stress analysis) 5. Method of Combining Dynamic Responses: [ ] Absolute Sum [x] SRSS [ ]0ther: 6. Damping: N/A Basis for the damping used: 7. Support Considerations in the model: Bolts i 8. Critical Structura1 Elements: Governing Load or Seismic Total Stress A. Identi fication-Location Response Combination Stress Stress Allowat EL. 16 Seismic 1.65ksi 10.ksi 21.6ksi (Pump Pedestal Plate) Static Flange Motor Torque Motor Soleplate nottom of Seismic plus .18.5ksi 26ksi motor operating torque Effect Upon Functional B. Max. Deflection Location Ope rability .0116" Node 674 Negligible (Shaft) 5 h? \\f Y ' Y 55" E - 'd' c; * ' 'N'W ?. G r. :?h5*ThGN. &&? v i
10 - I - 4A l 'l I Qualification Sumary of Eouipment I. Plant Name:
- v. c. summer Type:
1. Utility: ScE&G pkg X 2. OSSS: Westinghouse 3. A/E: GAI Bh2 II. Component Name Turbine Driven EFW Pump, XPP-8-EF, Appurtenances 1. Scope: [ ] NSSS [ x] B0P 2. Model Number: 3X6X9c MSD 7-Stage Quantity: 1 3. Vendor: Bingham-Willamette co. 4. If the component is a cabinet or panel, name and model No. of the devices included: N/A I ~ 5. Physical Description a. Appearance Piping of various sizes b. Dimensions various C. Weight Various 6. Location: Building: Intermediate Building-El evation: 412' 7. Field Mounting Conditions [ ] Bolt (No. , Size ) [] Weld (Length ) [X] Piping Welded to Pump 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) l S/S: > 53n: F/B: > 46 y: > 53 9. a. Functional
Description:
Pump provides emergency feedwater to steam generators b. Is the equipment required for [] Hot Standby [] Cold Shutdown [X] Both 10. Pertinent Reference Design Specifica~tions: DSP-503B-044461-000 ?. I
I - 4A l l III. Is Eouipment Available for Insoection in the Plant: [x] Yes '[ ] No IV. Eouipment Oualification Msthod: Test: X Analysis: Combination of Test and Analysis: i Binghan-Willamette Co./ Test and/or Analysis by Basic h hnology,,Inc. (name of-Company or Laboratory & Report No.) Y.. Vibration Inout: 1 1. Loads considered:1.[x] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only 4.[ ] Other (Specify) 5.[ ] Combination of 6. Method of combining RRS: [ ] Absolute Sum [ ] SRSS [ ] (other, specify) 2. Required Response Spectra (attach the graphs): 61x, 61Y & 61v 3. Required Acceleration in Each ' Direction: OBE 3/3 = .36 or.308g pfg = .36 or.308g y=- .209g VI. If Oualification by Test, then Complete: [ ] random 1. [x] Single Frequency [ ] Multi-Frequency: [ ] sine beat [] 2. [X] Single Axis [ ] Multi-Axis 3. No. of Qualification Tests: OBE SSE Other 1.5 Min I 4. Frequency Range:_ o 30 uz 5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Plot TRS on RRS graphs ~ [ ] No 6. Input g-level Test at S/S = .48 F/B = .48 Y= .4 7. Laboratory Mounting:
- As installed at the plant 1.
[ ] Bolt (No. Size ) [.k] Weld (Length ) [] 8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable 9. Test ResUlts incitiding modifications made: satisfactory 10. Other tests perfonned (such as fragility test, including results): No t. I
- _ I -~4 VII. If-Oualification by Analysis or by the Combination of Test and Analysis, then Comolete: i l. Description of Test including Results: 2. Method of Analysis: N/A [ ] Static Analysis [ ] Equivalent Static Analysis [ ] Dynamic Analysis: [ ] Time-History [ ] Respons,e Spectrum I 3. Model Type: [ ] 3D [ ] 2D. [ ]-lD [ ] Finite Element [ ] Beam [ ] Closed Form Solution 4. [ 3 Computer Codes: Frequency Range and No. of modes considered: N/A [ ] Hand Calculations i S. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS [ ]Other: l (specify) 6. Damping: Basis for the damping used: 7. Support Considerations in the model: I 8. Critical Structura1 Elements: Governing Load or Seismic Total Stress i A. Identification-Location Response Combination Stress Stress Allowat Effect Upon Functional B. Max. Deflection Location Operability l b lt e I - 4B Oualification Surrnary of Eauipment I. P1 ant Name:
- v. c. Suminer Tyoe:
1. Utility: SCE&G PWR x 2. $SSS: Westinghouse 3. A/E: GAI BWR II. Component Name Turbine Driven EFW Pump Turbine, TPP-008-EF, Appurtenances 1. Scope: [ ] NSSS [X] B0P 2. Model Number:. GS Type Quantity: 1 3. Vendor: Terry 4. If the component is a cabinet or panel, name and model No. of the devices included: Appearance' Piping of various sizes 5. Physical Description a. 1 b. Dimensions various l C. Weight Various 6. Location: Building: Intermediate Elevation: 412' I 7. Field Mounting Conditions [ ] Bolt (No. , Size ) j j [] Weld (Length ) [ X] Piping clamped tb supports which are welded to the turbine base 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) S/S: > 33tiz F/B: > 3311z V: > 3 3112 9. a. Functional
Description:
Drives EF Pump to supply emergency feedwater to steam generators b. Is the equipment required for [] Hot Standby [] Cold Shutdown - [X ] Both 10. Pertinent Reference Design Specifications: DSP-508B-044461-000 t e i. I ~
1 _ 43 III. Is Eauipment Available for Inspection in the Plant: [x] Yes '[ ] No IV. Equipment Oualification Method: Test: Analysis: Combination of Test and Analysis: x Test and/or Analysis by Terry corp./ Bingham-Willamette Co. (name of Company or Laboratory & Report No.) Y.. Vibration Input: 1. Loads considered:1.[x] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only 4.[ ] Other (Specify) 5.[ ] Combination of 6. ~ Method of combining RRS: [ ] Absolute Sum [ ] SRSS [ ] (other, specify) 2. Required Response Spectra (attach the graphs): 61x, Y & V I l 3. Required Acceleration in Each ' Direction: OBE S/S = .36 or.308g F/B = .36 or.308g y= .209g VI. If Oualification by Test, then Complete: [ ] random 1. [x] Single Frequency [x] Multi-Frequency: [ ] sine beat { [x] Randorr with Sine beat 2. [x] Single Axis [x] Multi-Axis 3. No. of Qualification Tests: OBE 7 SSE 1 Other 1.5 min I 4. Frequency Range: 0 30Hz 5. TRS enveloping RRS using Multi-Frequency Test [X] Yes (Plot TRS on RRS graphs' [ ] No 6. Input g-level Test at S/S = .sg F/B = .se Y= _c 7. Laboratory Mounting: As installed 1. [ ] Bolt (No. Size ) [ ] Weld (Length ) [X]at the site 8. Functional operability verified: [x] Yes [ ] No [ ] Not Applicable 9. Test Res0lts incid' ding modifications made: satisfactory ~ 10. Other tests perfonned (such as fragility test, including results): No e. I 1_ 4B l VII. If Oualification by Analysis or by the Combination of Test and Analysis, then i ~ Complete: s 1. Description of Test including Results: Based on Bingham-Willamette Basic Technology Inc. test results on Turbine Driven EFW Pump XPP-8-EF Appurtenances, Terry developed tlye Span criteria which was utilized in the subject qualification. 2. Method of Analysis: d [ ] Static Analysis [ ] Equivalent Static Analysis 1 [ ] Dynamic Analysis: [ ] Time-History [ ] Response Spectrum 3. Model Type: [ ] 3D [ ] 2D [ ] 1D [ ] Finite Element [ ] Beam [ ] Closed Form Solution 4. [ ] Computer Codes: Frequency Range and No. of modes considered: [ ] Hand Calculations i 5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS [ ]Other: (speci fy) 6. Damping: Basis for the damping used: 7. Support Considerations in the model: l 8. Critical Structura1 Elements: Governing Load or Seismic Total Stress A. Identification -- Location Response Combination Stress Stress Allowab Effect Upon Functional B. Max. Deflection Location Operability a 1 4 O e l' l u n-..
- su - 1-5 j Oualification Sumary of Equipment I. Plant Name: V. c. summer Tyoe: 1. Utility: scu.c Pkm X 2. OSSS: Westinghouse 3. A/E: GAI Bh2 II. Comoonent Name Main Feedwater Isolation Valve XVG-1611A-Fw 1. Scope: [ ] NSSS [X] B0P i 2. Model Number: 18" x lis" x 18" - 9n0 FWTV Quantity: 3 3. Vendor: Anchor / Darling Valve'co. ~ 4. If the component is a cabinet or panel, name and model No. of the devices included: Appearance ' Pneumatic /nydraulic Operated 5. Physical Description a. Gate Valve i b. Dimensions 18" o.o., 40" long, 125" ninh C. Weight 10,000 lb. 6. Location: Building: west Penetration Room Elevation: 436' N 7. Field Mounting Conditions [ ] Bolt (No. , Size ) L F [] Weld (Length ) [ X] 18" OD weld to Fw Pipe 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical): 40.33Hz Overall S/S: F/B: V: 9. a. Functional
Description:
Isolate steam cenerators b. Is the equipment required for [] Hot Standby [] Cold Shutdowr: [ h3 Both 10. Pertinent Reference Design Specifications: DSP-589A-044461-000 I-5 III. Is Ecuioment Available for Inspection in the Plant: [x] Yes '[ ] No IV. Equipment Oualification Method: Test: Analysis: X Combination of Test and Analysis: Anchor / Darling Valve Co./ Test and/or Analysis by Anamet Lab., Inc. (name of Comp 7ny or Laboratory & Report No.)' V.. Vibration Inout: 1. Loads considered:1.[ ] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only Static + Operational 4 4.[ ] Other (Specify) 5.[ ] Combination of seismic Loads 6. Method of combining RRS: [ ]' Absolute Sum [x] SRSS [ ] (other, specify) 2. Required Response Spectra (attach the graphs): N/A 3. Required Acceleration in Each ' Direction: S/S = 3a F/B = 3g V= 3g VI. If Qualification by Test, th5n Complete: n/a [ ] random 1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat [] 2. [ ] Single Axis [ ] Multi-Axis 3. No. of Qualification Tests: OBE SSE Other I (speci fy) 4. Frequency Range: 5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Plot TRS on RRS graphs): [ ] No 6. Input g-level Test at S/S = F/B = V= 7. Laboratory Mounting: 1. [ ] Bolt (No. Size ) [ ] Weld (Length ) [] t 8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable 9. Test Res0lts incitiding modifications made: 10. Other tests performed (such as fragility test, including results): i
' 1_3 VII. If Oualification by Analysis or by the Combination of Test and Analysis, then 9. Complete: 1 l. Description of Test including Results: 2. Method of Analysis: j [X] Static Analysis [ ] Equivalent Static Analysis [x] Dynamic Analysis: [ ] Time-History [X] Response Spectrum 3. Model Type: [x] 3D [ ] 2D. [ ] 1D [ ] Finite Element [ ] Beam [ ] Closed Form Solution 4. [ 3 Computer Codes: \\ Frequency Range and No. of modes considered: Single Freq. > 33Hz j [ ] Hand Calculations S. Method of Combining Dynamic Responses: [ ] Absolute Sum [X] SRSS [ ]Other: (speci fy) 6. Damping: N/A Basis for the damping used: N/A 7. Support considerations in the model: Welded to Pipe Line 1 8. Critical Structura1 Elements: Governing Load or Seismic Total Stress A. Identification -- Location Response Combination Stress Stress All owab Bonnet Seismic + Operational 21.63ksi 30ksi Load Effect Upon Functional B. Max. Deflection Location Operability .006" Operator C. C. No Interference with respect to valve body r I
- su I-6 l' ! 1 Oualification Sumary of Equipment I. Plant Name:
- v. c. Summe'r Type:
1. Utility: SCE&c PWR X-2. 0SSS:_Westinghouse 3. A/E: GAI BWR II. Component Name control valve Irv-2030-Ms 1. Scope: [ ] NSSS [X] BOP Valve - 657-ES 2. Model Number: Actuator - en Quantity: 1 3. Vendor: Fisher Controls 4. If the component is a cabinet or panel, name and model No. of the devices included: N/A { ~ 5. Physical Description a. Appearance 4" Globe Valve b. Dimensions 4" Body /Overall Dimen. 21" L X 68" H X 25" W c. Weight 835 lbs, to 10x 6. Location: Building: Intermediate B1dn. El evation: 414'-4-1/4" 7. Field Mounting Conditions [ ] Bolt (No. , Size ) [ x] Wel d (Length Butt 41d Ends [] 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) S/S: 23.5 F/B: 25 V: 29.5 9. a. Functional
Description:
control valve for Main Steam Supply to the Turbine Driven Emergency Feedwater Pump Turbine b. Is the equipment required for [] Hot Standby '[ ] Cold Shutdown [x] Both 10. Pertinent Reference Design Specifications: SP-519-4461-00 DSP-519-044461-000 SP-702-4461-00 SP-325-4461-00 -w wi= 1-6 III. Is Eauipment Available for Inspection in the Plant: [x] Yes ~ [' ] No IV. Equipment Oualification Method: Test: x Analysis: Combination of Test and Analysis: Test and/or Analysis by Fisher Controls /Wyle Lat. (name of Company or Laboratory & Report No.. V. Vibration Inout: l 1. Loads cons,idered:1.[x] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only 4.[ ] Oti er (Specify) 5.[ ] Combinat, ion of 6. Method of combining RRS: [ ] Absolute Sum [ ] SRSS D(] 2. Required Response Spectra (attach the graphs): N/A 3. Required Acceleration in Each ' Direction: S/S = 1.5g F/B = 1.5g Y= la VI. If Oualification by Test, then Complete: [ ] random 1. [x] Single Frequency [ ] Multi-Frequency: [x] sine beat [] 2. [ ] Single A is [x] Multi-Axis o 3. No. of Qualification Tests: OBE SSE Other 150 sec. w/SSE F/B & V: 25, 29, 33.5 & 40liz (specify) I 4. Frequency Range: s/s & V: 23.5, 26, 29, 33.5 & 40Hz 5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Plot TRS on RRS graphs' [ ] No N/A 6. Input g-level Test at S/S = 1.5n F/B = 1.5n V = 1. g 7. Laboratory Mounting: l. [ ] Bolt (No. Size ) [x 3 Weld (Length ) [] 8. Functic.1al operability verified: [X] Yes [ ] No [ ] Not Applicable 9. Test Res0lts incliding modifications made: satisfactory \\ 10. Other tests performed (such as fragility test, including results): No 4. j 4 I-6 VII. If Oualification by Analysis or by the Combination of Test and Analysis, then Comol ete-1. Description of Test including Results: 2. Method of Analysis: d [ ] Static Analysis [ ] Equivalent Static Analysis [ ] Dynamic Analysis: [ ] Time-History [ ] Response Spectrum 3. Model Type: [ ] 3D [ ] 2D [ ] ID [ ] Finite Element [ ] Beam [ ] Closed Form Solution 4. [ 3 Computer Codes: Frequency Range and No. of modes considered: [ ] Hand Calculations 5. MethodofCombiningDynamicResponses: [ ] Absolute Sum [ ] SRSS [ 30ther: (specify) 6. Damping: Basis for the damping used: 7. Support Considerations in the model: 8. Critical Structura1 Elements: Governing Load or Seismic Total Stress A. Identification - Location Response Combination Stress Stress Allowat Effect Upon Functional B. Max. Deflection Location Operability c h I
__ I-7 Oualification Surmary of Equipment f V. c. Summer I. Plant thee: Tvoe* l 1. Utility: sci:sc pha x 2. 0555: westinghouse 3. A/E: cal Bk2 II. Comoonent Name Main steam isolat ion valve xmt-noi A-m: i 1. Scope: [X] NSSS [ ] B0P 2. Model Number: N/A Quantity: i 1 3. Vendor: Atw od and Morrill =i } 4. If the component is a cabinet or panel, name and model No. of the devices included: i Appearance '32" Articulated Poppet wye Type j 5. Physical Description a. b. Dimensions 32" 0.D. 78 long, 102" high l, c. Weight 27,250 lb. 6. Location: Building: West Penetration Room-l l Elevation: 436' I 7. Field Mounting Conditions [ ] Bolt (No. , Size ) j [] Weld (Length ) [X] 32" 0.D. weld t'o MS line 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) 33"* F/B: > 33113 V: > 3311z S/S: 9. a. Functional
Description:
Isolate steam cenerators b. Is the equipment required for [] Hot Standby '['] Cold Shutdowr [X 3 Both 10. Pertinent Reference Design Specifications: DSP-505-044461-000 l i* i
. y_7 III. Is Eouipment Available for Inspection in the Plant: [x] Yes '[ ] No IV. Eoutpment Oualification Method: Test: x i Analysis: Combination of Test and Analysis: Atwood & Morrill Co., Inc. 1 Test and/or Analysis by Brewer Engineering IAb. (name of Company or Laboratory & Report No.). Y.. Vibration Input: 1. Loads considered:1.[ ] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only l; Seismic + Pipe 4.[ ] Other (Specify) 5.[x] Combination of nunture 6. Method of combining RRS: [ ] Absolute Sum [ ] SRSS [x] (other, specify) 2. Required Response Spectra (attach the graphs): 62 x, 61Y & 62v 1l 3. Required Acceleration in Each ' Direction: OBE S/S = .274 or.461g F/B = .274 or.461n V= .222n VI. If Oualification by Test, then Complete: [ ] random 1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat [x] static 2. [ ] Single Axis [ ] Multi-Axis 3. No. of Qualification Tests: OBE SSE Other N/A I 4. Frequency Range: N/A TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Plot b,S on RRS graphs)' 5. [ ] No j 6. Input g-level Test at S/S = 3a F/B = 3a V= 38 7. 1.aboratory Mounting: 1. [ ] Bolt (No. Size _ [x] Weld (Length ) [] ) 8. Functional operability verified: [x] Yes [ ] No [ ] Not Applicable 2 ) 9. Test Resnits incitiding modifications made: satisfactory i t l 10. Other tests performed (such as fragility test, including results): No i j _._.
- I-7 VII.
If Oualification by Analysis or by the Combination of Test and Analysis, then Comolete: n/A 3 1. Description of Test includir.g Results: 2. Method of Analysis: [ ] Static Analysis [ ] Equivalent Static Analysis 4 l [ ] Dynamic Analysis: [ ] Time-History j [ ] Response Spectrum 1 j 3. Model Type: [ ] 3D [ ] 20, [ ] 1D l i [ ] Finite Element [ ] Beam [ ] Closed Form Solution 1 i 4. [ ] Computer Codes: i Frequency Range and No. of modes considered: 4 [ ] Hand Calculations 5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS [ ]Other: (speci fy) 6. Damping: Basis for the damping used: 7. Support Considerations in the model: I 8. Critical Structural Elements: Governing Load or Seismic Total Stress A. Identification -- Location Response Combination Stress Stress
- Allowab, i
t Effect Upon Functional B. Max. Deflection Location Operability 4 4 h ).. 3
_ 1-8 Oualification Sumary of Eauipment ~ i I. Plant Name: V. c. Summer Tvoe-1. Utility: scnsc PWR x 2. OSSS: Westinghouse 3. A/E: CAI BWR II. Component Name Main stenn saferv valvo xvs-nou - m 1. Scope: [ ] NSSS [ x] B OP 2. Model Number: consolidated Type 3707RA Quantity: 1 3. Vendor: Dresser Industria1' valve & Instrument Div. 4. If the component is a cabinet or panel, name and model No. of the devices included: i I, Appearance' safety valve ~ 5. Physical Description a. b. Dimensions 6" Inlet x 10" outlet l 1 1400 lbs. i c. Weight 6. Location: Building: tiest Penetrat. ion Room Elevation: 436' j 7. Field Mounting Conditions [ >3 Bolt (No. 12, Size 13/s") l [] Weld (Length ) [] 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Yertical) S/S: 3 7112 F/B: 3711z V: > 7511z 9. a. Functional
Description:
Provides overpressure protection to the main steam and feedwater piping and the secondary side of the steam generator. b. Is the equipment required for [x ] Hot Standby [] Cold Shutdowr [] Both 10. Pertinent Reference Design Specifications: DSP-533-044461-000 i. I
. _. 1_3 III. Is Ecuipment Available for Inspection in the Plant: [x] Yes '[ ] No IV. Equipment Oualification Method: Test: x Analysis: 4 Combination of Test and Analysis: Test and/or Analysis by Dresser Industrics (name of Company or Laboratory & Report No.) Y.. Vibration Inout: 1. Loads considered:1.[x] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only 4.[ ] Other (Specify) 5.[ ] Combination of i 6. Method of combining RRS: [ ] Absolute Sum [ ] SRSS [ ] N/A 2. Required Response Spectra (attach the graphs): N/A 3. Required Acceleration in Each ' Direction: S/S = F/B = Y= VI. If Qualification by Test, then Complete: [ ] random 1. [x] Single Frequency [ ] Multi-Frequency: [ ] sine beat [x] sine 2. [x] Single Axis [ ] Multi-Axis 3. No. of Qualification Tests: OBE SSE Other n 4. Frequency Range: 10, is, 2suz 5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Plot TRS on RRS graphs) [x ] No 6. Input g-level Test at S/S = 6e F/B = V= 6n 7. Laboratory Mounting: l. [X] Bolt (No. 12 Size l-3/8') [ ] Weld (Length ) [] 8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable 9. Test Res0lts incitiding modifications made: Satisfactory 10. Other tests performed (such as fragility test, including results):_ No 4 ~L-
. I-9 Oualification Sumary of Eauioment I. Plant flame: V. C. Summer Type: 1. Utility: SCE&c Pk2 X 2. 11555: 3. A/E: x Bk2 II. Comoonent Name -I Refueling Water Storage Tank 1. Scope: [ ] !1555 [A3 BOP 2. Model Number: N/A Quantity: I 3. Vendor: Pittsburgh-Des Moines Steel Co. 4. If the component is a cabinet or panel, name and model No. of the devices included: N/A Appearance ' Tank 5. Physical Description a. b. Dimensions 68 Feet liigh, 40' Inside Diameter 6 4.58' x 10 Pounds water. c. k'ei ght 6. Location: Building: outside on lower roof.' Aux. Bldn. Elevation: 413' 7. Field Mounting Conditions [X] Bolt (No. 90 _, Size 2-1/2") l [] k' eld (Length ) [] 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) S/S: > 3311z F/B: > 3311z V: > i3nz 9. a. Functional
Description:
Storage of nerueling water. Spray cooling water for Post LOCA Safety Injection water supply, Post LOCA Cooling b. Is the equipment required for [] Hot Standby [] Cold Shutdown [X] Both Safe Shutdown 10. Pertinent Reference Design Specifications: ASME B&PVC, Section Ill, Subsection NC s-l l
. I-9 1 III. Is Eauipment Available for Inspection in the Plant: [x] Yes '[ ] No IV. Eouipment Oualification Method: Test: Analysis: x Combination of Test and Analysis: Test and/or Analysis by Pittsburgh-Des Mo-ines Steel Co. (name of Company or Laboratory & Report No., V. Vibration Input: 1.
- l. cads cons,idered:1.[ ] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only
~ 4.[ ] Other (Specify) 5.[x] Combination of static, press & seismti 6. Method of combining RRS: [ ] Absolute Sum [ ] SRSS [ ] (other, specify) 2. Required Response Spectra (attach the graphs): 54x, 54Y, 54v 3. hequired Acceleration in Each ' Direction: OBE S/S = .232 or.268g F/B = .232 or.268g .V = .106c i VI. If Oualification by Test, then Complete: ng [ ] random 1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat [] 2. [ ] Single Axis [ ] Multi-Axis ,3. No. of Qualification Tests: OBE SSE Other 4. Frequency Range: 5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Plot TRS on RRS graphs' [ ] No 6. Input g-level Test at S/S = F/B = Y= 7. Laboratory Mounting: 1. [ ] Bolt (No. Size ) [ ] Weld (Length _ ) [] 8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable 9. Test Res0ltst'inclu~ ding modifications made: I 10. Other tests performed (such as fragility test, including results): 9 I -./ i
_ I-9 VII. If Oualification by Analysis or by the Combination of Test and An11ysis, then Comolete: i j l. Description of Test including Results: 2. Method of Analysis: e [ ] Static Analysis [ ] Equivalent Static Analysis [ ] Dynamic Analysis: [ ] Time-History [X] Response Spectrum 3. Model Type: C:] 3D [ ] 2D [ ] 1D [ ] Finite Element [ ] Beam [ ] Closed Form Solution 4. [ ] Computer Codes: Frequency Range and No. of modes considered: Rigid > 3311z [ ] Hand Calculations 5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS * [ 30ther: N/A 6. Damping: N/A Basis for the damping used: 7. Support Considerations in the model: noited I 8. Critical Structural Elements: stresses & deficctions are not given explicit. Ilowever, the thickndss of shell was determined. Governing Load or Seismic Total Stress A. Identification - Location Response Combination Stress Stress Allowat ^ Effect Upon Functional B. Max. Deflection Location Operabili ty I 1
- c..
10 - 't Qualifica:icn Su=a-v cf Ecui:=er.: I. Pl ant Name - V. C. Sumer Nuclear Station Tveei- ~ 1. Utility: South Carolina Electric & Gas do. ' .PkR X 2. HS35: W PWR 3, A/ : Gilbert Assoc. 3%R Charging / Safety' Injection Pump II. C- ~~ nen 9= a 1. Sc:ce: CX3 NS35 [ 3 SCP. 2. Mccel Nu=:er: 21/2" RL-IJ Quantity: 3 3. Vender: Pacific Pumos Div., Dresser Industries 4. If the c:::enent is a cabinet er panel, name 2nd =edei Mc. of the devices inclucec: N/A A:pearance Motor, Gear' & Pumo Mounted on a Base f 5. Physical Descripti:n a. b. Dimensicas .L = 236", W = 52 3/4", H.= 55" c. Weignt 22,300-lbs. 6. L caticn: Suil ding: Auxiliary Building El evati:n: 388' - 0" 7. Field Mcunting Conditiens [X] Eolt (No. 16 ,St:e11/81 C3 Weld (Leng:n ) l [] l 3. Natural Frequencies in Each Direction (Sice/ Side, Fr n:/Eack, Vertic21 S/S: > 35 Hz g/g. > 35 Hz y: > 35 Hz 9.
- a. T:m::icnal 6;;;ien:
Provide flow during Charging and Safety Injection System operations. b. Is One ec:ri~, -.r:: required fer (] Hot Stancty [] C:ld Shut:::, 1 [X3 Both 12. M-er. R.efanr.ca Design 5:ecificati:ns: W E Spec 678815 Rev. 2 l and Addendum E Spec 952274 Rev. 2. h-m_
l- - 11 III... Is Ecuiccent Availacle for Inscection in the Plant: [x3 Yes [] No 1Y.. Ecuiccen: Oualific2:icn Methed: Test: Analysis: X ,0c=bination cf Test and Analysis: Tes and/cr Analysis byPacific Pumps'(pump) & W40' Buffalo (motor & Gear (name of Cc=;any cr Laccra: cry a Reper; nc.) Y. Vibratien Incut: 1. Leads censidered:1.[x3Seis=ic enly 2.[ 3Hydrecynamic cnly 3.[ 3Explesive enly 4.[ ] Other (Specify) 5.[ ] Ccmcinatica cf seismic plus normal uge a uon 6. Methed of ccccining RRS: [ ] Absciute Sem [ ] SRSS C 3 2. Recuired Res;cnse Spectra (attach the graphs): ~3. Required Acceleraticn in Each 'Directien: 3G 3G 2c ./3 = Y. S/S = = r V I'. If Qualifica:icn by Test. then Cc=ciete: N/A [ ] randem 1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine bea: [] 2. [ ] Single Axis [ 3 Multi-Axis 3. No. cf Qualifica:icn Tests: OBE SSE' Other (spec:fy) 4 Frequency Range: 5. TRS enveleping RES using Multi-Frequency Tes: [ ] Yes (Plot TRS cn RRS gra;hs) [ 3 Ne 5. Input g-level Test at 5/S = F/3 = V= 7. Laboratory Mcunting: 1. [ ] Ecit (No. Si:e ) [-] Weld (Lens:n ) [] 3. Functienal operability verified: [ ] Yes [ ] No [ 3 Not A;;licacle 9. Tes: Results including accifications' mace: 1 10. C:ner' tests performec (suen as fragility tast, inclucing resuits)- l v m--
, f ",, If Cualific2 ica tv Anaivsis :r tv ee C:mcin2 icn cf Test and Analvsis. then VII. Cem:1 eta:.' .9 i 5 A sine-sweep test was conducted to 1. Descri;; ion of Tes inclucing Results: de.termine natural frequencies. Natural frequencies determined were 40.16 Hz (Transverse)and 50.8014z (Axial) = 2. Methed cf Analysis: [X3 Static Analysis [ ] E:;uivalen: Static Analysis [ ] Dynamic Analysis: [ ] Time-His cry [ ] Respense Spec rum 3. Medel Type: [ ] 3D [ ] 23 []10 [ 3 Finite Elemen: [ ] Beam [X 3 Closed Fcrm Sclutien 4. [ 3 Cemcuter Ccdes: N/A '" ^ Frequency Range and No. cf medes censidered: [X3 Hand Calcula:icns 5. Method of Cc=::ining Dynamic Res;cnses: [ ] Absciute Su= [ 3 5R55 N/A [ 30ther: 6. Damci ng: N/A Basis for the damping used: N/A 7. Sup::cr: Ccnsiceratiens in the =cdel: S. Cri:iral 5L_.21 Ilements: Governing Lead or Sei smi c Total Stress A. G_ %_fi c.r. :en L u_ien Rescense Ccmoination Stress Stress All ewaci s Motor Support Feet Motor Normal plus Seismic 10469 psi 10711 psi 20291 ps 14815 psi 16600 ps Suction Nozzle Pump Normal plus Seismic 13700 psi 16600 ps Discharge Ndzzle Pump Normal plus Seismic 1 4 Effect Upen Func:icnal 3. Max. De'e r:en L: r:icn Oceracili:v 0.0064 in. Motor Rotor No adverse affect o'n allowable operability O.030 in. I
f o Charging Pump Sine-sweep frequency search tests demonstrated that the pump, gearbox and motor assembly was rigid and static analysis was used for seismic qualifi-cation. The seismic analysis levels were compared with the plant ZPA level at the appropriate auxiliary building floor level to verify that the analysis was conservative. Direction Analysis Level Plant DBE Level X Horizontal 3.0 9 0.29 g Y Horizontal 3.0 g 0.24 g Vertical 2.0 g 0.19 g i
g..'. Qualifica:icn Su=arv ef Ecuic=ent i V. C. Summer Nuclear Station 7yeg: 2, 71an Name - , k2 - - X 1. Utility: South Carolina Electric ik Gas do.
- p 2.
NSSS: Westinahouse 3. A/E: Gilbert Assoc. ght Residual Heat Removal Pump & Motor II. Cemeenen: Name 1. Secpe: [X3 NSSS ( 3 BOP. 2 2. Model Nur.ce: 8X20 WDF' Quantity: 3. Vendcr: Ingersoll Rand 4. If the cc=;cnent is a cabinet er panel, name and model Nc. cf the devices included: N/A Vertical Single Stage Centrifugal Pump 5. Physical Description a. Acpearance b. Dimensicns 79" high 39" diameter c. Weigh 8000 lbs. 5. Lccation: Buil ding: Auxiliary Building ~ El evaticn: 374' - 0" 7. Field Mcunting Conditions (X] Ealt (No. 3 , size 2" ) C 3 Weld (Leng:n ) [3 1 8. Natural Frequencies in Each Of recticn (Sice/ Side, Fren:/Eack, Vertical) ~ N/A' S/s: 40.6 Cps F/B. 46.5 Cps y, 9.
- a. hun = icn21 DMption:
Residual Heat Removal ~ b.- Is me e;ui;:sent required for [] Hot Stancby (X] Ccid Shu ::c,. ( 3 Seth ID. Mr.etc Refenr.ca Design scecifica-icns: W Gen. E Spec 678815 Rev. 2 ~ 'w,-... . - - -. - -,,.,, -, - - - - -, - + - -.. -
c o In.. Is Ecui:=ent Avail acle fer Ins:ectien in the 21 ant: CX3 Yes [ 3 No u hed: Test: l'1.. Ecui:=en: Oual i ficatien e X Analysis: Cc=binatica cf Test and Analysis: Test and/or Analysis by Mcdonald Engineer.ing Anal. Report # ME-174 (na=e of C:=pany or La:cra :ry a Re;;r No.J V.. Vibration Incut: 1. Leads c:nsidered:1.[ 3Seis=ic only 2.C JHycrecyna=ic Only S.[ 3Explesive enly Seismic, deadweight, thermel 4.[ 3 Other (Specify) _S.C 3 C:=cina:icn of expansion & nozzle load 6. Methed cf c =cining RRS: [x 3 Absciute Sc= [ ] SRSS [ ]
- ner, specifyJ see Attachme uired.es;:nse Spectra (attach the graphs):
, e q.. 2. n n '3. Required Ac:elerati:n in Each 'Directien: 2g 1.5 g S/S = 2g gjg, y, IfOualificatienbvYest. then C:=clete: This section is not applicable V I'. [ ] rancem 1. [ ] Single Frequency [ 3 Multi-Frequency: [ 3 sine bea: 2 [] 2.. [ 3 Single Axis [ 3 Multi-Axis " SSE' Other 3. No. of Qualifica:icn Tests: OBE tspec;fy) 4 Frequency Range: l S. TRS enveleping RRS using Multi-Frequency Test [ ] Yes (Plot TRS en RRS graphs) [ 3 No 5. Input g-level Test at S/S = F/3 = V= 7. Labora::ry.ucunting: 1. [ 3 Bolt (No. Size ) [ 3 Weld (Leng n ) [] 8. Functional operability verified: C 3 Yes [ 3 No [ 3 Not A;clica:le 9. Test Results includin's =ccifica:icas =ade: l ~.._ __.
6 12 VII. If Cualific2 icn by Analysis er by ne Cc=::inaticn cf Test and Analysis. then Cccci eta: ' ?? .i. ~ 1. Description of Tes including Results: N/A 2. Methed of Analysis: [X 3 Static Analysis [ 3 E:;uiv,alent Static Analysis [ X3 Dynamic Analysis: C 3 Time-Histcr/ [ ] Respense Spec r.:m 3. Medel Type: [X3 SD [ 3 2D [ 3 10 [X3 Finita Element [ 3 Beam C 3 Closed Fer:: Sclutien 4.. [x,]. C.-. "...= r C.- d..a.s : NASTRAN; ICES-STRUDL Frequency Range and No. of =cdes considered: 2 Mode's; 2 Lowest Frequencies 40.6 cps, 44.5 g [ 3 Hand Calcula:icns 5. Methed of C:=cining ynanic Res:en:ss: "X: u cci cia, h: E 3 IRSS .C 30:ner: 6. Damei ng: N/A Basis for the dacr,,ing used: 7. Supper: Ccnsir.eratiens 'in the =cdel: 3 Punip Hold Down Bolts 8. Crirical SL T21 Elements: See attached summary Governing Lead er Sei smic Total Stress I A 'M*cifi cz-icn. 1*~ Rescense Cc cinaticn Stress Stress All ewab' ,i 4. Effect Upen Functicnal 3. Max. De %...'en L:d en 0:eracili cv l
Residual Heat Removal Pump A three dimension finite element analysis demonstrated that the pump motor assembly was rigid. As a result, static analysis methods were used for qualification purposes. The seismic qualification level was compared with the applicable seismic ZPA's for the plant at the pump location. Direction Analysis Level Plant DBE Level X Horizontal 2.0 0.21 Y Horizontal 1.5 0.31 Vertical 1.5 0.17
l .h
- 2.
SUMMARY
OF RESULTS ll A summary of the results of the detailed calculations is presented for i both the OBE and SSE loads. '~ 2.1 Normal + SSE + Maximum Nozzle Loads ] ACTUAL ALLOWABLE I Pump lloid Down Bolts (tensile) 22,671 psi 38,940 psi (shear) 10,969 psi 17,556 psi Support Bracket Stress 26,343 psi 29,160 20,651 psi 28,800 f Support Weld Stress 24,059 psi 48,600 Casing Stress at Support Cooler Bracket Stress 9,875 24,960 ld $ cooler Bracket Bolt (tensile) 3,043 24,000 - L' i! Supporting llead Channels 6,164 24,960
- i.'
Motor lloid Down Bolts (tensile) 16,816 22,838 f (shear) 5,605 12,000 i. g Pump Flange Bolts (tensile) 21,518 24,360
- O1
} 'r ; 20,067 29,160 ', d i Pump Casing Stress I i5 .008 in. .051 in. ( Rotor-Stator Clearance .' k Motor Bearing (upper) 1850 lbs. 9000 lbs. (lower) 3265 13900 1) V[, Impeller Contact Stress 818 psi 19,440 psi 10,534 psi 18,000 ' I,, Shaft Stress N ,.a .n, ,' f,-. il ;l fdj ,';j; g 1 t a i! 1..
t "c l. 2.2 Normal + OBE + Maximum Nozzle Loads ACTUAL' ALLOWABLE 16,477 psi 35,784 psi Pump Hold Down Bolts (tensile) (shear) 8,885 14,630 20,100 24,300 j Support Bracket Stress 15,808 24,000 Support Weld Stress 24,059 48,600 Casing Stress at Support 6,419 20,800 Cooler Bracket Stress 1,522 20,000 i Cooler Bracket Bolts (tensile) 3,150 20,800 Supporting Head Channels 8,408 20,000 Motor Hold Down Bolts (tensile) (shear) 2,802 10,000 20,095 20,300 Pump Flange Bolts (tensile) 18,7.41 24,300 Pump Casing Stress .004 in. .051 in. Rotor-Stator Clearance 922 lbs. 9,000 lbs Motor Bearing (upper) 1868 13,900 lbs. (lower) 432 psi 16,200 psi Impeller Contact Stress 10,228 psi 15,000 psi Shaft Stress 4 ) 5
i III - 1 { Oualification Sumary of Eauipment I I. Plant Name:
- v. c. summer' Nuclear station Ty6e:
l. Utility: scuc PWR X 2. 0SSS: Westinghouse 3. A/E: CAI BWR II. Comoonent Name 480 Volt Unit substation 1. Scope: [ ] NSSS [x] BOP 2. Model Number: N/A Quantity: 6 3. Vendor: Could-Brown Boveri (I'TE) 4. If the component is a cabinet or panel, name and model No. of the devices included: HPL-c primarv switch. tvne vug transformer. nnd 480 volt switchgear with K-line breakers Appearance large floor mounted structure 5. Physical Description a. Largest smallest b. Dimensions 2P t x s'-8" ox7'-6" it 19' i. y 4'-in" n v 7"-6" u c. Weight 15,980 lbs. 6,790 lbs. ~ 6. Location: Building: IB IB IB AB su su El evation:. 463' 463' 463' 463' 425' 441' i 7. Field Mounting Conditions [ ] Bolt (No. , Size ) 'I [ x] Weld (Lengthvanes ) l [] l 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) S/S: F/B: V: -9. a. Functional
Description:
Transformers electrical power from 7200 Volts to 480 Volts and distributes power to Class IE loads. ~ b. Is the equipment required for [] Hot Standby [] Cold Shutdown [ d Both 10. Pertinent Reference Design Specifications: sP-552-4461 'I
. III - i s III. Is Eauipment Available for Inspection in the Plant: [x] Yes '[ ] No l IV. Equipment Gualification Method: Test: x Analysis: Combination of Test and Analysis: Test and/or Analysis by Wyle Lab; 437901 and 43827-1 (name of Company or Laboratory & Report No., SCE6G Ref: IMS-92-2836-(CGSG-16813, 10/18/78) Y.. Vibration Input: IMS-92-3001-1 (CCSG-16807, 10/17/78 and CGSG-16952, 10/31/78) i 1. Loads considered:1.[x] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive 'only 4.[ ] Other (Specify) 5.[ ] Combination of 6. Method of combining RRS: [ ] Absolute Sum [ ] SRSS [ ] (other, specify) 2. Required Response Spectra (attach the graphs): See Figures 56,62,64,72 6 74 3. Required Acceleration in Each ' Direction: (Max. ZPA for SSE) S/S = u.890g F/B = 0.715g y= o.415g VI. If Oualification by Test, then Complete: [ ] random 1. [ ] Single Frequency [x] Multi-Frequency: [ ] sine beat [x] Combination of multi-2. [ ] Single Axis [x] Multi-Axis freq. & sine beat See 3. No. of Qualification Tests: OBE attached SSE Other (specify) 3 4. Frequency Range: 5. TRS enveloping RRS using Multi-Frequency Test [x] Yes (Plot TRS on RRS graphs: Lowest [ ] No 6. Input g-level Test at ZPA S/S = 2.7a F/B = 2.7a V = n.95g for SSE 7. Laboratory Mounting: 1. [ ] Bolt (No. Size ) [ x] Weld (Lengthvarie3) [] 8. Functional operability verified: [x] Yes [ ] No [ ] Not Applicable 9. Test Res0lts incitiding modifications made: Satisfactory performance with ~ no damage or degradation 10. Other tests performed (such as fragility test, including results): Prior to final qualification test switchgear was tested and found to require the diagonal stiffeners used in the qualified equipment. 1.. -
III - 2 Ou2iification 3urmlary of Eauipment I. Plant Name:
- v. c. summer Nucicar station Type:
l 1. Utility: sCE&G PWR x 2. 0555: Westinghouse 3. A/E: cat BWR II. Comoonent Name Battery Chargers 1. Scope: [ ] NSSS [ X] BOP i 2. Model Number: BCs12300 Quantity: 3 j 3. Vendor: solidstate controls, Inc. 4. If the component is a cabinet or panel, name and model No. of the i devices included-t i Appearance ' single bay cabinet 5. Physical Description a. b. Dimensions 2'-s" w x 6' n x 6'-11" n c. Weight 1650 lbs. 6. Location: Building: Intermediate sutiding-Elevation: 412' i 7. Field Mounting Conditions [ ] Bolt (No. , Size ) i j [x] Weld (Length Plus ) i [] 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) S/S: 10. 2, 11. 6, 22.3.24.5 F/B: 12.2, 14, 18 V: None 9. a. Functional
Description:
converts 480 voit a-c power to 125 voit (Normal) d-c power b. Is the equipment required for [] Hot Standby [] Cold Shutdowr [x] Both 10. Pertinent Reference Design Specifications: SP-561-4461
- m
- II - III - 2 III. Is Ecuipment Available for Inspection in the Plant: [x] Yes '[ ] No IV. Equipment Oualification Method: Test: x Analysis: Combination of Test and Analysis: Test and/or Analysis by Batelle-Columbus; -8856 JS (name of Company or Laboratory & Report No.) SCE&G Ref: IMS-92-2275-0 (CCCS-17571, 1/3/79 and Y.. Vibration Input: CCGS-19204, 10/8/79) I 1. Loads considered:1.[x] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only 4.[ ] Other (Specify) 5.[ ] Combination of 6. Method of combining RRS: [ ] Absolute Sum [ ] SRSS [x] RRSx cross coupling (other, specify) 2. Required Response Spectra (attach the graphs): Figure 61 3. Required Acceleration in Each ' Direction: (ZPA for SSE) S/S = 0.477g pfg = O!477g y= 0.324g VI. If Oualification by Test, _then Complete: [x] random 1. [ ] Single Frequency [x] Multi-Frequency: [ ] sine beat [] 2. [x] Single Axis [ ] Multi-Axis 3. No. of Qualification Tests: OBE 230sec SSE 20sec Other Sine sweep 4. Frequency Range: 5. TRS enveloping RRS using Multi-Frequency Test [x] Yes (Plot TRS on RRS graphs: ZPA [ ] No 6. Input g-level Test at for S/S = 3.sg F/B = 3.sn V = 3.sn SSE 7. Laboratory Mounting: Not Not 1. [ ] Bolt (No. K"") Size h "") [ ] Weld (Length ) [] 8. Functional operability verified: [ x] Yes [ ] No [ ] Not Applicable 9. Test Res0lts incitiding modifications made: operated satisfactorily without ~ degradation or damage. 10. Other tests performed (such as fragility test, including results): t. l III - 3 Oualification Sumary of Eouipment I. Plant Name: V. C. Summer'Nucicar Station Tyoe: 1. Utility: SCE&G PWR X 2. OSSS: W stinghousc 3. A/E: CAI BWR II. Component Name Transfer Switches - 7200 voit 1. Scope: [ ] NSSS [ y] BOP i 2. Model Number: N/A Quantity: 3 i 3. Vendor: could-Brown Boveri (Terac con -ols, Inc.) ~ 4. If the component is a cabinet or panel, name and model No. of the devices included: Appearance " Multi-bay floor mounted cabinet 5. Physical Description a. b. Dimensions 6'W x 5'n x 7'-6"a i c. Weight 4800 lbs. Intermediate Auxiliary Service Water PP House 6. Location: Building: Blds-Blds. Elevation: 436' 388' 425' 7. Field Mounting Conditions [ ] Bolt (No. , Size ) g [x] Weld (Length Plun ) l [] l 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) S/S: F/B: V: 9. a. Functional
Description:
Select source of 7200 voit power for " swing" pumps. b. Is the equipment required for [] Hot Standby [] Cold Shutdowr [ x] Both 10. Pertinent Reference Design Specifications: SP-613-4461-00 i--
.- 111 _ 3 III. Is Eauipment Available for Inspection in the Plant: [x] Yes '[ ] No IV. Ecuipment Oualification Method: Te$t: X Analysis: Combination of Test and Analysis: Could Rept. 37-01280-SS Test and/or Analysis by Wyle Lab. 43972-1. (name of Company or Laboratory & Report No.. Y.. Vibration Input: SCE&G Ref: IMS-92 3298-0 i ~ (CGGS-17191, 11/29/'i8) 1. Loads considered:1.[X] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only 4.[ ] Other (Specify) 5.[ ]' Combination of 6. Method of combining RRS: [ ] Absolute Sum [ ] SRSS [ ] (other, specify) 2. Required Response Spectra (attach the graphs): Figures 52, 62, 72 3. Required Acceleration in Each ' Direction: (Maximum ZPA for SSE) S/S = u.425g F/B = u.715g y= 0.416g VI. If Oualification by Test, then Complete: [X] random 1. [ ] Single Frequency [X] Multi-Frequency:. [] [ ] sine beat 2. [ ] Single Axis [x] Multi-Axis 1 FB/V < SSE 3. No. of Qualification Tests: OBE 5FB/V,5ss/vSSE 1rB/V, Other sine Sweep I 1 ss/v (speci fy) 4. Frequency Range: TRS enveloping RRS using Multi-Frequency Test [X] Yes (Plot bS Lon RRS graphs) 5. [ ] No 6. Input g-level Test at (ZPA)S/S
- 5.4c F/B =
5. 5,- Y=m 7. Laboratory Mounting: 1. [ ] Bolt (No. Size ) [ ] Weld (Length ) [] 8. Functional operability verified: [ X] Yes [ ] No [ ] Not Applicable ~ 9. Test Res0lts including modifications made: Minor and acceptable Structural damage; auxiliary contact chatter within acceptable limits. 10. Other tests performed (such as fragility test, ircluding results): III - 4 Oualification Sumary of Eouipment Virgil C. Summer Nuclear I. Plant Name: Station - Unit 1 Type: 1. Utility: SCE&G PWR x 2. OSSS: Westinghouse 3. A/E: G/C BWR Kepresentative Main Control Board Control Devices Mountad II. Component Name on a Test Panel 1. Scope: [ ] NSSS D00 B0P 2. Model Number: N/A Quantity: 1 Test Panel 3. Vendor: Reliance Electric Company 4. If the component is a cabinet or panel, name and model No. of the devices included: See Attached List I Appearance ' See Attached 5. Physical Description a. b. Dimensions See Attached See Attached c. Weight The Devices are Mounted on the Main Control Board 6. Location: Building: Located in the Control'Buildinn El evation: Elevation 463 i 7. Field Mounting Conditions [ ] Bolt (No. , Size ) i [] Weld (Length ) [X3 Panel Mountinc 8. Natural Frequencies in Each Direction (Side / Side, Frent/Back, Vertical) ~ S/S: Unknown F/B: t'nknown y: unknown Control Devices are Representative of Main 9. a. Functional
Description:
Control Board Mounted Device nequired to Control and Monitor Safety Related Plant auxiliaries and conditions. b. Is the equipment required for [] Hot Standby [] Cold Shutdow: [x] Both 10. Pertinent Reference Design Specifications: Main Control Board SP568 and Seismic Spec. SP702
II - III - 4 III. Is Eouioment Available for Inspection in the Plant: [] Yes '[x] No IV. Equipment Oualification Method: Test: seismic Test Analysis: Combination of Test and Analysis: Test and/or Analysis by Wyle Laboratories Report 43703-1 (name of Company or Laboratory & Report No.;l Y.. Vibration Inout: j 1. Loads cons,idered:1.[X] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only 4.[ ] Other (Specify) 5.[ ] Combination of 6. Method of combining RRS: [X] Absolute Sum [ ] SRSS [ ] (other, specify) 2. Required Response Spectra (attach the graphs): 3. Required Acceleration in Each ' Direction: S/S = 1.3 g's ZPA pfg = 1.3 g's ZPA y= .48 g's ZPA VI. If Qualification by Test, then Complete: [x] random 1. [ ] Single Frequency [x] Multi-Frequency: [ ] sine beat [] 2. [ ] Single Axis [X] Multi-Axis ,3. No. of Qualification Tests: OBE 5 SSE 3 Other g (specify) 4. Frequency Range: 1.011z to 40liz TRS enveloping RRS using Multi-Frequency Test [ A] Yes (Plot hits on RRS graphs) 5. [ ] No 1g 6. Input g-level Test at S/S = 2.7 n's ZPA F/B = 2. s c's ZPA ~ Y = ZPA 7. Laboratory Mounting: Unknown 1. [ ] Bolt (No. Size ) [ ] Weld (Length ) [] 8. Functional operability verified: [x] Yes [ ] No [ ] Not Applicable 9. Test Res0lts incid' ding modifications made: The capability to withstand ~ F,eismic loading without compromise of structure or electrical function was . demonstrated. 10. Other tests performed (such as fragility test, including results): Not performed 1 1-l -- III - 4 VII. If Oualification by Analysis or by the Combination of Test and Analysis, then Complete: t l. Description of Test including Results: 2. Method of Analysis: [ ] Static Analysis [ ] Equivalent Static Analysis [ ] Dynamic Analysis: [ ] Time-History [ ] Response Spectrum 3. Model Type: [ ] 3D [ ] 2D. [ ] lD [ ] Finite Element [ ] Beam [ ] Closed Form Solution 4. [ ] Computer Codes: Frequency Range and No. of modes considered: [ ] Hand Calculations 5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS [ ]0ther: (speci fy) 6. Damping: Basis for the damping used: 7. Support Considerations in the model: I 8. Critical Structura1 Elements: Governing Load or Seismic Total Stress A. Identification - Location Response Combination Stress Stress All owat Effect Upon Functional B. Max. Deflection Location Operability I n. 1._____
iU - III - 5 Oualification Sumary of Equipment I I. Plant Name:
- 1. C. Summer Nuclear Station Type:
1. Utility: SCE6C Ph2 X 2. $SSS: Westinghouse 3e A/E: CAI Sk2 II. Component Name Reactor Protection UF&UV Trans. and Relay Panels 1. Scope: [ ] NSSS [X] BOP 2. Model Number: N/A Quantity: 1 3. Vendor: ceneral Electric Company 4. If the component is a cabinet or panel, name and model No. of the devices included: 12ncV13AllA & 12SFF21A1A relavs I Appear,aace 'e 3 bay floor mounted cabinet 5. Physical Description a. b. Dimensions 9 'W X 6 '-7 1/2 ' D X 7 '-6"11 i c. Weight 9000 lbs. 6. Location: Building: Intermediate Building Elevation: 436' 7. Field Mounting Conditions [ ] Bolt (No. , Size ) [x ] Weld (Length 4" ) [] 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) S/S: F/B: V: 9. a. Functional
Description:
Senses voltane and rreauency or Reactor Coolant Pump supply to provide reactor protection system input signals b. Is the equipment required for [] Hot Standby [ ]. Cold Shutdowr Used for reactor trip on under voltage or under frequency [] Both 10. Pertinent Reference Design Specifications: SP-626-4461-00 1
/ .. III - 5 III. _Is Eouipment Available for Inspection in the Plant: [X] Yes '[ ] No IV.~ Equipment Oualification Method: Test: X Analysis: s Combination of Test and Analysis: General Electric 349-18403 f ~ Test and/or Analysis by wyle Lab. 43105-1. (name of Company or Laboratory & Report No.. SCE6G Ref: IMS-94B-92-2857-(CGGS-14800, 3/3/78 and - V. Vibration-Input: CGGS-16952, 10/31/78) 1. Loads considered:1.[X] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only ^
- 4. [ ]
Other (Specify) 5.[ ] Combination of ? 6. Method of combining RRS: [ ]' Absolute Sum [ ] SRSS [ ] (other, specify) 2. Required Response Spectra (attach the graphs): Figure 62 3. Reguired Acceleratio_n in Each ' Direction: (ZPA for SSE) S/S = 0.715g F/B = 0.425g y= 0.344g VI. If Qualification by Test, then Complete: [ ] random I. [ ] Single Frequency [X] Multi-Frequency: [ ] sine beat [X] Sine beats Random with
- 2. - [ ] Single. Axis
[X] Multi-Axis Super impos 3. No. of Qualification Tests: OBE SSE Other 117 total test run I (specify) ~
- 4. ~ Frequency Range:
5. TRS enveloping RRE using Multi-Frequency Test [X] Yes (Plot TRS on RRS graphs) 4 -* [ ] No 6. Input g-level Test at S/S = 1.7g F/B = 3.4g y = 1.95g 7. Laboratory Mounting: 1. [X] Bolt (No. Size ) [ ] Weld (Length ) [ ]' 8. Functional operability verified: [x] Yes [ ] No [ ] Not Applicable 9. Test Resi01ts incl 6 ding modifications made: ~ 10. Other tests performed (such as fragility test, including results): i b. \\, ~ I; j%
10 - ! I III - 6 ll Oualification Su=2ry of Ecuinment 1. Plant Name: 1.C. Summer Nuclear Station 7ype: 1. Utility: SCE6G Pk2 x 2. liSSS: Westinghouse 3. A/E: GAI Bh2 II. Comoonent Name Main control Board 1. Scope: [ ] NSSS [ y] B0P Custom designed equipment 2. Model Number: without type or model number Quantity: 1 j 3. Vendor: Reliance 4. If the component is a cabinet or panel, name and model No. of the i devices included: See attac5ed sheet 1 .L" shaped control board with Bench 5. Physical Description a. Appearance Board h annled Anntmciator i b. Dimensions see attached sheet 2 C. Weight See attached sheet 2 6. Location: Building: control Building Elevation: 463'-0" 7. Field Mounting Conditions [ ] Bolt (No. , Size ) t [x ] Wel d (Length 6" 01) 12" Centers [] i 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) 20 20 S/S: F/B: y: 19.8 9. a. Functional
Description:
Main control Board for display s control of plant conditions b. Is the equipment required for [] Hot Standby [] Cold Shutdown- [ h] Both 10. Pertinent Reference Design Specifications: SPEC-SP568, SP-702 i 1 e f
.. III - 6 III. Is Eauipment Available for Inspection in the Plant: [x ] Yes '[ ] No IV. Eauipment Oualification Method: Test: i Analysis: l ~ Combination of Test and Analysis: x Test and/or Analysis by Reliance Electric. Col./Wyle Lab. (name of Company or Laboratory & Report No.): Y. Vibration Inout: 1. Loads considered:1.[x] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only 4.[ ] Other (Specify) 5.[ ] Combination of 6. Method of combining RRS: [ ] Absolute Sum [ ] SRSS [x] (other, specify) 2. Required Response Spectra (attach the graphs): 26x, 26Y, 26v 3. Required Acceleration in Each ' Direction: S/S =.328 or.365g F/B = .328 or.365g y. .13g VI. If Oualification by Test, then Complete: [x] random 1. [ ] Single Frequency [x] Multi-Frequency: [ ] sine beat [] 2. [ ] Single Axis [x] Multi-Axis 3. No. of Qualification Tests: OBE 5 SSE 1 Other l 4. Frequency Range: 1 - 40 Hz j S. TRS enveloping RRS using Multi-Frequency Test [x] Yes (Plot TilS on RRS graphs) 1 [ ] No 6. Input g-level Test at S/S = F/B = Y= 7. Laboratory Mounting: 1. [ ] Bolt (No. Size ) [x] Weld (Length ) [] 8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable 9. Test Res01ts~incitiding modifications made: satisfactory for the test, but test was performed for the isolated Section II only. 10. Other tests performed (such as fragility test, including results): Model search was performed for the assembly as installed (in-stu) ~ 1 III - 6 VII. If Oualification by Analysis or by the Combination of Test and Analysis, then Compl ete: i l. Description of Test including Results: Model search was performed to obtain modes and model shapes which are utilized for analysis 2. Method of Analysis: [x] S'tatic Analysis [ ] Equivalent Static Analysis 4 [x] Dynamic Analysis: [ ] Time-History [X] Response Spectrum e 3. Model Type: [X] 3D [ ] 2D [ ] 1D [x] Finite Element [ ] Beam [ ] Closed Form Solution -4. [ ] Computer Codes: Stardyne Frequency Range and No. of modes considered: [ ] Hand Calculations 5. Method of Combining Dynamic Responses: [ ] Absolute Sum [x] SRSS [ ]Other: 6. Damping: N/A Basis for the damping used: I 7. Support Considerations in the model: Yes l 8.. Critical Structural Elements: Governing Load or Seismic Total Stress A. Identification-Location Response Combination Stress Stress Allowat Beam Element 21 Gravity + DBE 8.37ksi 45ksi See III t Effect Upon Functional B. Max. Deflection Location Operability ^ 0.0417" Node 72 Negligible Sec. IV e 1
- III - 7 i Oualification Sumary of Equipment I. Plant Name: V. C. Summer Nuclear Station Type: 1. Utility: SCE&G PWR X 2. OSSS: Westinghouse 3. A/E: CAI BWR II. Comoonent Name 112 An lizer Panels XPN721 A&XPN721 B 1. Scope: [ ] NSSS [ >3 B0P i 2. Mooel Number: KILL Quantity: 9 3. Vendor: Comsip, Inc. - Delphi Systems Div. 4. If the component is a cabinet or panel, name and model No. of the devices included: Appearance ' $n[Qpp Panel & c ntr 1 Panel 5. Physical Description a. l Vert panel - 30" L X 30" W X 72" 11 b. Dimensions Control Panel Insert - 19" W X 17" 11 X 20" D U "'""" c. Weight XPN7215A - Auxiliary Bldg. 6. Lt ation: Building: XPN7215B - Fuel llandling Bldg. XPN7215A - 463'-0" Elevation: XPN7215B - 463'-0" 7. Field Mounting Conditions [ ] Bolt (No. Size ) 3 [] Weld (Length ) ~ [] 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) S/S: F/B: V: 9. a. Functional
Description:
Continuously monitor reactor bidg. atmosphere for 112 concentration b. Is the equipment required for [] Hot Standby [] Cold Shutdown [] Both 10. Pertinent Reference Design Specifications: Post Accident SP-636-044461-000 SP-702-4461-00 Seismic Q,ual. Report not received i tri - 7 III. Is Eauipment Available for Inspection in the Plant: [] Yes '[ ] No IV. Equipment Oualification Method: Test: Analysis: Combination of Test and Analysis: Test and/or Analysis by (name of Company or Laboratory & Report No.) Y.. Vibration Input: 1 1. Loads considered:1.[ ] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only 4.[ ] Other (Specify) 5.[ ] Combination of i 6. Method of combining RRS: [ ] Absolute Sum [ ] SRSS [ ] (other, specify) 2. Required Response Spectra (attach the graphs): 3. Required Acceleration in Each ' Direction: S/S = F/B = V= VI. If Oualification by Test, then Complete: [ ] random 1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat [] 2. [ ] Single Axis [ ] Multi-Axis 3. No. of Qualification Tests: OBE SSE Other 4. Frequency Range: 5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Plot TRS on RRS graphs'.L [ ] No 6. Input g-level Test at S/S = F/B = Y= 7. Laboratory Mounting: 1. [ ] Bolt (No. Size ) [ ] Weld (Length ) [] 8. Functional operability verified: [ ] Yes [ ] No [ 3 Not Applicable 9. Test Res0lts incitiding modifications made: 10. Other tests performed (such as fragility test, including results): ,3 I 777 _ 7 VII. If Oualification by Analysis or by the Combination of Test and Analysis, then Comolete: i l. Description of Test including Results: 2. Method of Analysis: i [ ] Stati: Analysis [ ] Equivalent Static Analysis [ ] Dynamic Analysis: [ ] Time-History [ ] Response Spectrum 3. Model Type: [ ] 3D [ ] 20 [ ] 1D [ ] Finite Element [ ] Beam [ ] Closed Form Solution 4. [ 3 Computer Codes: Frequency Range and No. of modes considered: [ ] Hand Calculations 5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS [ ]Other: (speci fy) 6. Damping: Basis for the damping used: 7. Support Considerations in the model: I 8. Critical Structura1 Elements: Governing Load or Seismic Total Stress A. Identi fication -- Location Response Combination Stress Stress Allowabi l Effect Upon Functional B. Max. Deflection Location Operabili ty t .1
10 - III - 8 Oualification Surmiary of Eauipment Virgil C. Summer Nuclear I. Plant Name: Station Unit 1 Tyoe: 1. Utility: SCE6G PWR X 2. OSSS: W stin8 ous 3. A/E: G/C BWR h II. ' Component Name Control Room Evacuation Panels (XPN7200A & XPN7200B) 1. Scope: [ ] NSSS [X ] B OP i 2. Model Number: N/A Quantity: 2 3. Vendor: Reliance 4. If the component is a cabinet or panel, name and model No. of the devices included: Panel mounted devices qualified by Reliance for Main Control Board ~ 5. Physical Description a. Appearance Rectangular Control Panel i b. Dimensions .42" W X 72" 11 X 36" D c. Weight 6. Location: Building: Intermediate Building Elevation: 436'-0" 7. Field Mounting Conditions [ ] Bolt (No. , Size ) l [X] Wel d (Length 6" on )12" Centers [] 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) Overall 21. 4511z, 26. 7211z, 3'5. 8311z S/S: F/B: V: 9. a. Functional
Description:
Provide cold shutdown & hot Standby capability from outside the Control Room l b. Is the equipment required for [] Hot Standby [] Cold Shutdown ' [] Both 10. Pertinent Reference Design Specifications: I SP-610-044461-000 SP-702-4461-000 I J
- 111 - 8 III. Is Ecuipment Available for Inspection in the Plant: [x] Yes '[ ] No IV. Ecuipment Oualification Method: Test: Analysis: x Combination of Test and Analysis: Test and/or Analysis by (name of Company or Laboratory & Report No.) V. ' Vibration Input: i 1. Loads cons,idered:1.[X] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only-4.[ ] Other (Specify) 5.[ ] Combination of 6. Method of combining RRS: [ ]' Absolute. Sum [ ] SRSS & ] i-(other, specify) 2. Required Response Spectra.(attach the graphs): Fig. 62 X, Y & V 3. Required Acceleration in Each ' Direction: ZPA for OBE 4818 F/B = 481g S/S = y= .222g VI. If Oualification by Test, then Comolete: N/A [ ] random 1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat [] 2. [ ] Single Axis [ ] Multi-Axis ,3. No. of Qualification Tests: OBE SSE Other I 4. Frequency Range: 5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Plot TRS on RRS graphs) [ ] No 6. Input g-level Test at S/S = F/B = Y= 7. Laboratory Mounting: l. [ ] Bolt (No. Size ) [ ] Weld (Length ) [] l 8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable I 9. Test Res'Olts incliding modifications made: 10. Other tests performed (such as fragility test, including results): l l 3 l
- try _ g VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Comolete: l. Description of Test including Results: N/A 2. Method of Analysis: e [ ] Static Analysis [ ] Equivalent Static Analysis [x] Dynamic Analysis: [ ] Time-History [ ] Response Spectrum 3. Model Type: D(3 3D [ ] 2D [ ] 1D EC] Finite Element [ ] Beam [ ] Closed Form Solution 4. [x] Computer Codes: stardyne Frequency Range and No. of modes considered: complete range /15 modes [ ] Hand Calculations 5. Method of Combining Dynamic Responses: [ ] Absolute Sum DC] SRSS [ ]Other: 2% for OBE 5% f r SSE (speci fy) 6. Damping: Basis for the damping used: SP-702 7. Support Considerations in the model: Fixed translationativ s vor,tionativ I 8. Critical Structura1 Elements: Governing Load or Seismic Total Stress A. Identification -- Location Response Combination Stress Stress Allowat Beam No. 115 Static + Seismic 2.3k 32.4k l Effect Upon Functional B. Max. Deflection Location Operabili ty I .0314" Node 63 Negligible i 9 i*
. III - 9 Oualification Sunrnary of Eauipment Virgil C. Summer Nuclear I. Plant Name: Statica Unit 1 Type: 1. Utility: SCELG Ph2 x ~ 2. ESSS: W*StinS o"Se 3. A/E: G/C Bh2 h II. Component Name Radiation Monitorine System Panel (XCP6?on) 1. Scope: [ ] NSSS [X ] B 0P 2. Model Number: N/A Quantity: 1 3. Vendor: Nuclear Measurement Corp. 4. If the component is a cabinet or panel, name and model No. of the devices ir.cluded: Ratemeters CRM CRM-74 & GA-3M, Beta Annunciator 1221AII, Relays B&B KUP14A15 & KUP14D15, Recorders Westronics MHE and Westinghouse Optimac 17450 Series. Miscellaneous Switches. 5. Physical Description a. Appearance Self-standing panel b. Dimensions Length 110,5", lleight 90,68", Deep 30" c. Weight 3600 lbs. (approx.) 6. Location: Building: Control Building Elevation: 463'-0" l 7. Field Mounting Conditions [ ] Bolt (No. , Size ) I [ x] k'el d (Length 2" ) [] 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) 8"* S/S: F/B: 91IZ V: None -9. a. Functional
Description:
Panel containing radiation monitoring instruments b. Is the equipment required for [x] Hot Standby [] Cold Shutdown [] Both 10. Pertinent Reference Design Specifications: j SP-618-044461-000 SP-702-4461-00 t I III - 9 lII. Is Eouipment Available for Inspection in the Plant: [x] Yes '[ ] No IV. Equipment Oualification Method: Test: _Test Analysis: Combination of Test and Analysis: Test and/or Analysis by Wyle Lab. Report,44u73-1 (name of Company or Laboratory & Report No., V.. Vibration Ir:put: 3 1. Loads considered:1.[x] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only 4.[ ] Other (Specify) 5.[ ] Combination of 6. Method of combining RRS: [x] Absolute Sum [ ] SRSS [ ] (other, specify) 2. Required Response Spectra (attach the graphs): 26x, 26Y & 26V 3. Required Acceleration in Each ' Direction: .508 of ZPA .566 of ZPA .262 of ZPA 373 _ gjg, y_ VI. If Oualification by Test, then Complete: [x] random 1. [ ] Single Frequency [x] Multi-Frequency: [ ] sine beat l [] 2. [ ] Single Axis [x] Multi-Axis 3. No. of Qualification Tests: OBE 5 SSE l' Other (speci fy) 4. Frequency Range: 1 to 35uz TRS enveloping RRS using Multi-Frequency Test [X] Yes (Plot NS on RRS graphs} 5. [ ] No 1.1 g: 6. Input g-level Test at S/S = 2.3 g ZPA F/B = 2.5 g ZPA y = zpA 7. Laboratory Mounting: l. [ ] Bolt (No. Size ) [ x] Weld (Length 2" ) [] 8. Functional operability verified: [x] Yes '[ ] No [ ~] Not Applicable 9. Test Res0lts inclu~ ding modifications made: The test demonstrated the functional operability of the instrumentation. 10. Other tests perfomed (such as fragility test, including results): None i I
_ _ _ _. III - 9 YII. If Oualification by Analysis or by the Combination of Test and Analysis, tnen Complete: i s 1. Description of Test including Results: 2. Method of Analysis: [ ] Static Analysis [ ] Equivalent Static Analysis t [ ] Dynamic Analysis: [ ] Time-History [ ] Response Spectrum 3. Model Type: [ ] 3D [ ] 2D [ ] 1D [ ] Finite Element [ ] Beam [ ] Closed Form Solution 4. [ ] Computer Codes: Frequency Range and No. of modes considered: [ ] Hand Calculations 5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS [ ]0ther: (speci fy) 6. Damping: Basis for the damping used: 7. Support Considerations in the model: I 8. Critical Structura1 Elements: Governing Load or Seismic Total Stress A. Identi fication -- Location Response Combination Stress Stress All owab 1 Effect Upon Functional B. Max. Deflection Location Operability i .1 EP c 3_
c 10 Qualifica:icn Se=a-v cf Ecui:=ent v V. C. Summet Nuclear Station 7yd:. ,~. Plant Name.. I. 1. Utility: South Carolina Electric l5 Gas Co. ,Fk2 'X ~ Gilbert Assoc. ' Sk2 2. NSSS: W 3. A/E: Class lE Pressure & Differential Pressure Transmitters-I?. C ~.~~-~ ~ e n 9 E e 1. Sccpe: CX3 HS35 ( 3 E C P. Propriartary Information. Many To be provided. under separate cover Quanti'.y: 2. Mccel Humber: letter. ~ 3. Vender: ITT/Barton If the c:::enent is a cabine er panei, name and model Mc. cf the 4. devices included: - N/A rectangular / cylindrical 5. Physical Descripticn a. Appearance shaped transmitter 7 1/2" x 7 13/16" x 6.1/2" b. Dimensien;, c. '4ei ght 21 lbs. 5. Lccation: Euil ding:b ~ El evaticn:8 7. Field Mcunting Ccnditicns (X) Sol * (No. 4 _, Size 5/16") (] 'deld (Leng:n ) (] 8.. Natural Frequencies in Each Directicn (Side / Side, Fren:/3ack, Vertic: .~- 'N/A N/A N/A S/S: F/3: V: o.
- a. "?:n:=icnal ^Wption:
Measures process conditions b. Is O.e etni;::ent required fcr [] Hot Stancby [] Ccid Shu:: NOTE: Used f'or a variety b 3 .,0D 0 of functions 1D. Mr.'nen-Refam.ca Casign 5:eci fica.i ns : P. O. # 54-274770 SDefined in Table 3.11-0 of FSAR. Note that in this Table the model humber is proprietary. and must be furnished to the NRC under proprietary inforration agreement by SCESG.
11 - J c o o ,71. Is Scuic en: ' vail aci e fcr Inscecticn in -he Fi ant: [X3. Yes [ 3 Ne [Y.. Ecuiccent Oualificaticn Meched: Test: X Analysis: Cc=binatien of Test and Analysis: Test and/cr Analysis by NS-TMA-2184,12/21/79 Westinchmmn %r it e
- !o r (name of Cc=pany er La:cratcry a Reper; Nc.)
Y.. Vibration Incut:. 1. Leads censidered:1.[XJSeis=ic only 2.[ 3Hydredynamic enly 3.C JExplcsive caly 4.C ] Other (Specify) S.[ ] Ccabinatien of "I^ 6. Me-hed cf ccccining RRS: [ ] Absciute Sum [ 3 SRSS [ ] to:ner, specify) 2. Req'uired Res; case Spectra (attaca the graphs): ~ 3.' Required Acceleraticn in Each 'Directica: E - Y '= S/S = b F/B = Y T. If Qualifica:icn by Test. then Cc=cl e e: [X1 random 1. [ 3 Single Frequency [ X3 Multi-Frequency: [ ] sine beat [] ~ 2. [ ] Single Axis [ X3 Multi-Axis 3. No. of Qualifica:icn Tes s: OSg '5 33g-12 Other (speci f~v ) 1 - 35 Hz Frequency Rance: S. TRS envelcping RRS usinc Multi-Fre,uency Test [X3 Yes (Plot TRS en RRS crachs [ ] No 6. Input ;-level Test at S/S =- N/A F/3 =. N/A. y. N/A 7. Labcra: cry Mcunting: Sf:e /16" ) g.3.,iel d (Lene.:1. _) C] 5 1. [ 3 Solt (No. 4 8. Functicnal c;erability verified: [X] Yes [ ] No [ ] Not Applic2cle Acceptable.-seereport'C 9. Test Results includin'g mcdificatiens made: IC. 0 r.er ~;es:s perfc:- ee (such as fragility est, inclucing resuits): 76N-31730 G Letter NS-mA-2184 date,d December 21, 1979 to USNRC. = ~
6 - a VII. If Cualific2tica '. ' Analysis er by -he Cc=cinatien of Test and Analysis, then s Cc=cle a: I This section is not applicable. 1. D escn.-;;;cn er ies inclucing,sesulu: 2. Mec.cd cf Analysis: [ ] Static Analysis [ ] Equiv,alen: Static Analysis [ ] Dynamic Analysis: [ ] Ti=e-Histerf ( 3 Respense Spec rum 3. McdelTyhe: [ ] SD C 3 2D [ ] 10 [ ] Finite Elemen [ 3 Beam [ ] C1csed Fcra Sciu:icn 4. [ 3-Cc=putar Ccdes': Frequency Rance and No. cf =cdes censidered: [ ] Hand Calculations S.- Maced of Cc=bining Dynamic Res;cnses: [ ] Absciute Sum [ ] SRSS [ 30ther: (specify) 6. Damoing: Basis for the da=;ing used: 7. Sup;cr-Ccnsir_eraticas in the =cdel: 8. Critical S L _ Tal ' Elements: Gcverning Lead or Seismic Total Stress A Gm:ficde-1 L d.en Resconse Cc=cinatien Stress Stress A11 cwa ~ ,1 J
- Effect Upen Functichal 3.
M ax. D e-h_...~ cr. L r_ r ien 0:eracilicy d -w -_-r
e - 10 Oualificacien Sc=are of Ecui: men i Tvce:- 5 V. C. Summer Nuclear Station _ Plant Name:- South Carolina Electric 5 Gas C'o. , P'w2 'X 1. U:jli ty: ~ W 3. A/E. Gilbert Assoc. 3'n2 2. N'"- Pressure & Differential Pressure Transmitters Cemconent Name 1. Secpe: [ X] NSSS [ 3 B C P. Propriatary Information. Quantity: Many 2. Model Hur.ber: To de nroviana,manr com,,,~ cover letter. 3. Vendcr: ITT/Barton If the c:=;cnent is a cabinet er panel, na::e and acdel Mc. cf the 4. devices included:. N/A rectangular / cylindrical a. Appearance shaped.transmi tters 5. Physical Cescription 511/16" x 12 5/16." x 7 3/4" b. Dimensicas c. Weight 14 lbs. 5. Locaticn: Building:b ~ , EY atl cn.O r.1 7. Field Mcunting Ccnditicas O(] ~ol't NNo. 4 , Size 5/16") C] Weld (Leng:n ) [3 Natural i~requencies in Each Directicn (Side / Side, Front /3ack, Vertic21) 8. ~ N/A N/A N/h gjg. F/3, y, 9.
- a. I h::::=ien21 "M p ticn:
Measures Process Conditions b.. Is O.e ec:ri;=en required fcr () No St2ncty [] Ccid Shu:c:: n 7fYunc[1onXariety [] sotn e fa :a NOTE:- 10 = --ir.en Ment.c2 Cesign 5::eci fica tiens : P.O. # 54-235481 Note that on this Table the model. number is proprietary 'Jefined in Table 3.11-0 of FSAR. sna mist be furnished to the NRC under a proprietary information agreement.
11 - II.. Is Ecuictent 1 vail acle (c/ Inscecticn in the ?l ant: (X ] Yes [] No 7.. Ecui: ment Cualifica:icn "ethed: Test: X g Analysis: Cc=bination of Test and Analysis: Test and/or Analysis by NS - WCAP-8687.Supp. 2 (name of Cc=pany or Laccratcry 4 Recort 30.J .. Vibratien *ncut: 1. Leads censidered:1.CX]Seis=ic only 2.C JHydrcdynamic enly 3.C ]Explcsive cnly 4.C ] Other (Specify) _S.C ] Cc=binaticn of 6. Me-hed of cc:.cining RRS: C ] Absciute Sum ( ] SRSS ( ] N/A 2. Req ~uired Respense Spectra (attach the graphs): ~ '3. Required AcceIeraticn in Each 'Directicn: ~ 0 b Y= b F/3 = S/S = V I'. If Cualifica icn bv Test. then Ccmclete: ( 3 randem 1. [ ] Single Frequency CX] Multi-Frequency: [ ] sine bea: [] 2. [ ] Single Axis [X] Multi-Axis 3. No. cf Qualifica:icn Tests: OBE 5 SSE' 12 Other (specify) 1 - 35 Hz 4. Frequency Range: S. TRS enveleping RRS using Multi-Frequency Test [x ]. Yes (Plot TRS cn RRS graphs' [ ] No 6. Input ;-l evel Test a:- -S/S 2 N/A F/3 = N/A y = N/A I. Labora cry Meunting: X 4 Size 5/16"_) (. ] ' del d (Leng-h ) [] C ] Eclt(No. 1. c. runct;cna,i. operacl iity verm ed: ( XJ Yes (.] No C } Not A;;plicacle 9. Tes: Results includin'g mccifica:icas mace: f73g )5 7 ;33;, jn );cjng 7333) 3) j ........e..___..
- 3; None C SEE WCAP-8687 Suppleme.nt 2
v -.i. ~ 6'- - I i VII. If Cualific2 icn by inalysis er by 22 C::cinatien cf Test and Analysis. then
- 'I C =ol eta: I lThis section is not applicable.
i-l l. DescMptien of Tes including Results: ~ 2. Method of Analysis: [ ] Static Analysis [ ] E:;uiv,alent Static Analysis [ ] Dynamic a.nalysis: [ ] _it=e-nist:ry [ } Respcase Spec-um 3. Medel Type: [ ] 3D [ ] 20 [ ] 10 [ ] Finita Elemen [ ] Seam ( 3 C10 sed Fern Sclutien 4. [ 3 C:::utar Ccdes: Frea,uency Ranc.e and No. of =cces ' c:nsidered: [...and '.a.. tcusat; ns Jn 5. Method of C::bining Dynamic Respenses: [ ] Absciute Sum ( 3 SRSS [ 1.0 "..r. ispecity) 6. Damaing: Basis for the damping used: 7. Suppor Ccnsir_eratiens in the =cdel: 8. Cri:ical 5 .21 El ements: Governinc L:ad or Seismic Total Stress; A
- h r-:ficad cm L ~. z t i : n Restense'C :cination Stress Stress All ewa :
,i J. Eff ect U;en. uncti:nal r 3., Fax. De9 e d :n bezden 0:eraci1i:v
0ualification Sumary of ' Equipment I. P1 ant Name: V. C. Summer Nucicar Station Type: 1 1. Utility: SCE&G-PWR X i 2. $SSS: Westing'nouse 3. A/E: gyg GAI !l II. Component Name PAM Indicators ' *I 1. Scope: [X] NSSS [ ] BOP 2. Model Number: 1151 - 1152 Quantity: 31 I l 3. Vendor: International Instrument 4. If the component is a cabinet or panel, name and model No. of the devices included: N/A ^ 1; [ 5. Physical Description a. Appearance ' later i-b. Dimensions later c. Weight later 6. Location: Building: Control Building El evation: 43' 7. Field Mounting Conditions [X] Bolt (No. later, Sizelater ) '{ [] Weld (Length ) l [] 3 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertict S/S: later F/B: later y: later 9. a. Functional
Description:
Display process conditions on main j control board for post accident conditions. b. Is the equipment required for [] Hot Standby [] Cold Shutd [' ] Both used for a variety of tunctions 10. Pertinent Reference Design Specifications: later o... e a i
- (
III. I!, Eauipment Available for Inspection in the Plant: [ X] Yes '[ ] No IV. Eouipment Oualification Method: Test: x Analysis: Combination of Test and Analysis: Test and/or Analysis by We'stinghouse (name of Company or Laboratory & Report Nt V. Vibration Input: Later 1.' Loads considered:1.[ ] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only 4.[ ] Other (Specify) 5.[ ] Combination of 6. Method of combining RRS: [ ]' Absolute Sum [ ] SRSS [ ] Required Response Spectra (attach the graphs): (cther, specify) 2.
- 3.. Required Acceleration in Each ' Direction:
S/S = F/B = V= VI. If Qualification by Test, then Complete: Later [ ] random 1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat [] 2. [ ] Single Axis [ ] Multi-Axis 3. No. of Qualification Tests: OBE SSE ~ Other (speci fy) 4. . Frequency Range:_ 5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Plot TRS on RRS graphi [ ] No 6. Input g-level Test at S/S = F/B = Y= 7. Laboratory Mounting: 1. [ ] Bolt (No._ Size ) [ ] Weld (Length ) [] 8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable 9. Test Resnits incitiding modifications made: 10. Other tests performed (such as fragility test, including results): l ~l r... _ l
VII. If Oualification by Analysis or by the Combination of Test and Analysis, th'er, Comolete: 'j s 1. Description of Test including Results: i i ~ 2. Method of Analysis: [ ] Static Analysis [ ] Equivalent Static Analysis [ ] Dynamic Analysis: [ ] Time-History [ ] Response Spe'ctrum 3. Model Type: [ ] 3D [ ] 2D [ ] 1D [ ] Finite Element [ ] Beam [ ] Closed Form Soluti -4. [ 3 Computer Codes: Frequency Range and No. of modes considered: [ ] Hand Calculations '5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS [ ]Other: ( speci fy) 6. Damping: Basis for the damping used: = ~~ 7. Support Considerations in the model: 8. Critica[ Structural Elements: t Governing Load or Seismic Total Stre A. Identification-- Location ' Response Combination Stress Stress Allo \\ I-l 1 I i Effect Upon Functional B. Max. Deflection Location Operability
30 Qual 1ficacien Su=arv cf Ecui::en: V. C. Summer Nuclear Station gee.. L P1an Name:. 1. Utilitf: South Carolina Electric & Gas Co. ,Pk2 X ~ Gilbert Assoc.' Sk2 2. NSSS: W 3. A/E: 4 1450 Ft Accumulator Tank II. Cem:cr.ent Name 1. 5ccpe: [ X] NS35 [ ] 30P. Quandity: 3 2. Model Nuncer: 3. Vendcr: Delta Southern If the c:::enent is a cabinet or panel, name and ccdel No. of 2.e 4. devices inciuced: N/A ' A;;earance Vertical Tank on Skirt Support 5. Physical Oescripti:n a. 138" 0.D. b. 3ime.si ns 152k (flooded); 54k (empty). Full flooded weight is c. h*eight used in stress calculations for conservatism. 5. L:caticn: Euilding: Reactor Building ~ Elevaticn: 412 ft. 7. Field Mcunting C:nditicas [X 3 5o10 (No. 28, Si ze2 1/4' [] k' eld (Leng:n _) [3 Natural Frequencies in Each Direction (Sice/Sice, Fren:/3ack, Vertica' 8. 67.'Hz 20.3 Hz u. e/w~ 20.3 Hz ->=.. s. rl 9.
- a. N T= icnal NMption:
Provides emergency core cooling ~ water in case of primary system depressurization. l b.. Is ne egIi;=ent required f;r [X 3 Hot Stantby [] Ccid Shu:c:- [] Soth 10. M.~-.en-Mannta Desi gn S;eci ficatier.s : E-Spec 679065 R'ev. 3 6 Assumcd based on supplied bolt hold diameter of 21/2". Anchor bolts are, supplied by A/E. This item should be verified by Gilbert.
11 - I'! I... Is Ecuic=en: Avail able fer Inscection in the Pl ant: (x ] Yes [] No IV. Ecuic=en: Cualificaticn Methed: Test: Performed by H (see note) Original analysis perf6rned by Prepared by Delta Southern (see note)~ Note: Subsequently, frequency testing ^nal sis. a 7 vendor. was performed on similar accumulator at X Diablo Canyon site 't.o verify mathematicalCcabination of Test and Analysis: - Su ary o.f Results is attached. modeling techniques. Test and/or Analysis by (name of Ccmpany or Laccratcry & Repor: No.J Y. Vibration Incut: 1. Leads censidered:1.(x] Seismic only 2.( ]Hydredynamic cnly 3.C ]E ;1csive caly 4.( ) Other (Specify) 3.( ) Ccabinatica of
- 6.
Meced of cer.ciring RRS: [13 Absciute Sum ( ) SRSS ( ) tc ner, specifyJ 2. Re;'uired Respense Spectra (attach the craphs): Gilbert letter #CGGS-ll74 ~3. Recuired Acceleratien in Each ' Direction: (for DBE) S/S = 0'.45 'g' F/3 = 0.45 ' g' y=
- 0. 45 ' g' V I'.
If Cualificatien tv Test. then Cemclete: [ ] randem 1. ( 3 Single Frequency (X] Multi-Frequency: [ ] sine bea C] 2. ( X3 Si ngle Axi s [ ] Multi-Axis 3. No. cf Qualifica icn Tests: OBE SSE' Other (1) 1 w amplitude (specify) 10 Hz - 40 Hz 4 Frequency Range: 5. TRS enveleping RRS using Multi-Frequency Test [ ] Yes (?le: TRS en RRS graphs) N/A[ ] No N/A y, .02.'g' F/3 = 5. Input g-level Test at S/S = 7. Lahcra cry Mcunting: insitu test 1. [ ] Eolt (No. Size ) (.] Weld (Leng.7 ) () 3. Functicnal cperability verified: ( ] Yes [ ] No (X ] No: Apclicacle 9. Ies Results includin'c mcCifica:Icns mace verification of modeling' techniques 10. Ctner ' tests peric..ec (such as fragility test, incluCing resuits):
- Absol.ute sum method was used for original 2-D qualification.
For subsequent 3-D qualification, responses'from 3 direction accelerations were combined by the 8 sass rnrhod.
12 VII. If Cualificatica by Analysis or by the Ccmcinacion of Test and Analysis, then Cc=cle*a:.' 't .-3 3 1. Description of Test including Results: Frequency test on SIS accunulator concluded that modeling techniques usad by h'estinghouse accurately predict equipment dyttanic response. 2. Method of Analysis: [-] Static Analysis [X3 Squivalent Static Analysis [ ] Dynamic Analysis: [ ] Time-Hi story [ ] Respense Spectrum 3. Medel Type: [x] 3D [ ] 20 [ 3 10 see Attachment [x] Finite Slement [ ] Seam [ ] Cicsed Fern Scluticn .for clarifyisg [x 3 Ccmputar Ccdes: L'ECAN 11' Frequency Range and No. of medes censidered: [ X3 Hand Calculatiens I S. Methed of C:mcining Dynamic Res;cnses: [x 3 Absolute Sum [ 3 SRSS [ 30ther: ispec1fy) (Consistant vi 6. Damoi ng
- Sasis for the damping usad: Reg. Guide 1.6.
ccg pg3p) 1 *' - 2 7. skirt rigidly attached to concrete founda-7. Supper: Ccnsicerations in the model: tion with anchor bolts S. Critical SL __ tal Ile:ents: skirt support, vessel shell, bolts, base plate Governinc Lead or Sei s=i c Total Stress ' A. GILE:ficad en L w. inn Rescense'Ccaci nati on Stress Stress A11 cwa ~i-c Vessel skir.t at seismic (DBE) not avail. 5.816K 12.20 K junction with base piate Concrete 35i' psi 750 psi Baseplate 23.1 ksi 28.8 k Anchor bolts tension; 11.0 ksi 27.3 k shear; 4.7 ksi 14.4 k l Sffect Upen Functicnal 3. Pax. De ', ec-i en Lcc2d en Oceracilicv 0.045" top of vessel none e. 6
o ..-C.i<.GT;w w s, ..,.6.' , 4.. .4. 4 si.. a s... a '~ T!TLE PAGE P /* ~ l w C's C A T E CM A'O 3 Y U A TE C" A S 5 # CAIE
- [A VI # M7 N M. sbrho
.P A C. E C T / f l l l CALC. NC/- '/s Fils NC. GRCUP S. C. C\\c r cC c_d s e s.5 VIE gerk e.r - = A h 2e.nder 2. '2-D S h k i<- om a\\3 :ss w a.. 1.5'f 'noro_e A d d s m3 sbv a = ' 3' \\ea. A t n c3 A. 1.o'f yea c.d et-de e.. 3 an al F ed--=d. %b s pe d\\y,. m ecb.\\ 6 4 'f iea$uiem es4. gsst wot b elbo, h e p e n n e_: eA b ua e a.s -? r - 4 ie un md 9 = ' h -: e ar e. csvea m
- s. L.
,S a L c3.e.e, C_% 5 ms =._k o.s g A b a 'E-b pb d. tb,k 'S \\eca s Es_ Tk._ adoe\\ n wem z w. =. 3 -b, $ se A. 5 W_. m e k \\ asc\\ysi3 me A \\ ss a. e% A naae\\ c..- p -a. 9 % -~ s. m.= ..a a p s gc_ e.\\ m d e. 4. 2='. medd Aw *\\y n di\\isec( 4e Lusc MJ co 704-e c_ed.e. A'\\\\ m odet, ut\\ cd d -ci. h o m -.,. # ar e 1 ee\\v ik e_ Erd -eAe v: A b 44 e.,,. '., 4 ; s. m 1 a rC *. pf * -i W. C W*
- m.2, a= d
,,= 2,k t tO% AC E) C C.h S C Scf,.'JM d F bcb c_a\\ e dad. s so. b idse = + c \\.;, -. ') h,d a e _. ed eaW u.. c-h. OV =se e*.e= A k a t* h5 A d *=,1 c. "3 c \\ $ M g e ang sg$ pe:n, o,. m e ( y ( nd a re3 0ir e~.d) b W u _ed W =.. Aso\\de mebd. 3... a. Weue-L y enaer. c.de a d m :. Ofi.A m,, Ace-
- ovv\\~ ht.,
.x \\ p 1r. u (, Y. . y./f..' AUTHOR OATE CH K*D. $ Y OATE CH K *D. S Y OATE A E V, A E V. NO. DATE WESTINGHOUSE FORM $5646-0 ji
m.-.m=- m===- :. ..s =..- - .* +. ... g ....s.. .u. :., ..-....-..--.-.a.u.,... e ..-e t. u. ..._f.~.*. ......_,...r .... a......... C -'._-----:.- _ - m : .r T.= :......:.. : ~~ ~~..
- =v-.-.:.'-~~=.
....3.. ..........--
- c. -
...... ~ ~. *.. .....c,=.-..........~-e. '...... '.. ~.. _ -.............. -.. =.w... l. w ..... =... .. 7_y 7... --- ... ~ ....__._ s. _..,_... _ - _.___a.._...,._,- .r-. ~ - s .s. -- , _..-- g -Qf n ,f o ~ W m. 3.M -- y ,v
- a. w-. o.
.t._ a u .v. _ - s. k., i., w.n s _.,- n c,. _u - - n:- f..(..i g ^ c - -" U q'o u m-
- n o,-
r _...-. :. n. f g. -_ a,n _y. w -. x c-- g J- -F s Fq*f. y - -i - e s. t,. m.&. -. i C i s i-i i .g ._j ( _=a~....a..L..-..v ._.a- --. ar -.: =.2.z:.w - - - - s. . a - ...g ..C [ 'i ; ' ....~. 3.:..: =_ - h _.. r-t.s ha.h_ :..T--. ~'. Ja '.- 1 m *- t ss.aw g
- n
- =
- -.:
.... - _-.--.a:.. : :=-.----..._u_........:._-__-:-.a.a .a- ..u- --.--. :.:.. r.= _,..r....a. -...,p.g,2 . :.. u.: .u..-- .a --. :,.:. -- 4.. *. ' y. --. ; : 7 -'9:+- ~~---v -.a . :.: :.=-. --..-- :.- -..... : -.. : --. : -- : - ,- = -. ~'
- :r -- - ----
--.e.:==_- - :: ;;.y. --.u --.: ::.: :. :..: a :.~r.. .%:-= . t s. __. _ - '::,., ::,,,:.:.".-.. :. _ ;.: ',,_ :.m--. ; : - -.. ;.- - - - - - -n:.:.:;.3.::.: r:a. :- "...a.. : ..:_.=_===----=-=---- --m : ^ f. - - - ~; ; - -- :- .....__...-.__.;._........4..e., _..-.._._-._.....__..._t..._ - -..,.-. - ~ ~.... -, .__..~.~..-9..a....., 7__: , =. 3 .. -..... ~.. ...m ..s .e s* = -.. ~ -. ...e e _ -. l..... . i.; t.,r= s . ~. ...._..,.5.._.- w. 7 k. . i- - .c =:... .g I.6. 7 2 -- m, g; f f.t.. .,e e. f. f. C l.'g i .b g \\ ., h -*.! l e 6 6 ) .N-s J"'
- ..m 3
l i 7- .N
- 6...
e-i b.i
- =..
_..g...-. 4 s. -=,, b ' '
- - - * ~ * - =
. g. g4 ) = . I. p
- = e.
- * * ~~
. '~ --s.. ~* _.. L 3 Q __;n y. e- _,,..l.e, .. m ~ -3' 3 6 gI N Q
- ?
N P y o iei wt 7. G,e, m. e
..t.. D. ...._.........................._..i.......... { ..._.....s..._ ...m......=.. _.. ............ ~....... h _...c 6 .r. .y___ -w_-.---- . _ -. f.. t .a. - _
- .j..
.... m, -.~~.N _ __.. _. _....--.. -.. _. _.,._...s.._.%._. -. .~ _,. g _- - p,- - g 1 .A. s.a. A q,,_ - i f i ,7 r . - + * - - a -c a p-*.8 I a s. ~ - - anc
- r
- s. j.
r g..- - Q o w s ,w . 4.-- %.{_ p a-ee l 4..- - pi - r1 i ; g. tn q n i_ v g .i g v m , i f. _. m ~ l e i g 9 t..i s., t) 7_._- it . A M J -r\\ i gr. N O j.. -n,- w i --. i p W. .--i r~. (. e v., m ? s s s A L . ~ _ ~ N x .N. x x N N 'g \\,.j w.m x s f-g,; x x. x g .~1 ~- \\ _2 a .s i g. ( .g e 9_ I. .t., _. ; i t t j Mh!O.5...w _.T..*_T...D.. _.M..."..R..M., N.T*.t. 2... W. E WC ..:-.._W...-........._. ~ 2
- ve.r h.-. -.
(. c.. _ :... - .- s m. t :. : w... v.-:w : -:.. _ ;.; 5:.- :. s...._. e. .. r a. u.-..r .:s.a ~ _ : r. v..--s u ;.a. 2. :.s _ s -:: :2.i .a -=-- .=:.-..:...?.,..--. - - _ ~ .r. .=_=-:.....=....:..:=...=...=.. =..- _..=.v,.-~...n. .... _.....:...-. =. g g.. ~= _.. --. _ J. ": : ;*-".",;..'4 *-"'. -. *.1 :-"; " O.*-" : - '0-_"*..:*...- 4 * * : y,
- 1..
..:..-1 .._= - ~ ;' ; * ~ :.
- . :i = r1.*_-..':':--'
~.^-*"-""%-*..-*6*:. .~.
- ~ ~ ~. ~. ~ ".
- ' "1. :. :;. .. ~ ~ '
- ~44'-
- -.. m :a.....; _
- ._::._. ::;.. _m: : ~==.. : _....a...c.
1.:- M-. .......=.-_====.=__..=.,:..;- .... ~. _ - -.. _. -.. - -. -. ..... ~ ..._.____..._._..._(y i_ ~ .m i. -.~.- -- _....._...._3 ,,, g. = ~ - -. ..._.. t n ~ -.s 1m _ r_ _ j . c. .-.w. 4(..... 4 e i N . u_.. s. ts _-, c ,_. ~ 1 e% _.m. A.. s 1 -1:. t. _., s -t - n _ _ _ _ _....g n, t__ t. . _ __.t.q _i a% i e 2 6_ c o v N b r. b Y ..., - v s. t~ ....... - - = =...........f.. 5 e %w.y ..m. ~ ,,,._m ...m .r.
t ..._ _..... _.... p p..e.... ,._n. ... g.. .... g....... .._.6,,,. g s... -.......... a,.T.,....... e .f.. ,.L..,....- - - ~.. _........ _. _.... ...._-. = _- e.. 'h.,*....... n. d ,.b _.- - -._. - - -- s a...i...__.. . * " ~ ~, _a n e .. ~,.. -..e ._....oa.sm....,, p ~ .o. _a. ~-a.._.s.,.... .s..- -4. g., , ~, %.,,... s'*
- ~,. ~.,.,... *.
,ii., _r... ,J. s_ _ 6 4 .w v - ~.., ",A 8' .-= i .e;.(,-*_= .-=I ,, i
- --t*-C
==*O ,r - O. -t^., }' d y-- -, s. 2 6 pa ,,6,,, .,* - U} sh r =.d l _ e,,.L k. w .Q I' n ...,**t ,y-4, 7, ..m a.(p.Q W J~@- p .~ .c t2 o ' e i e*
- pen ri e
. e.e'**,, q.h. "9..I 4 i MY 1 L,, y D** ,qC O Ll ~ e s e s s ..A p gm .m.-.--.._.=_...) I ~--_ '.-s-=4 s**% m= w--* e., N -e..s. % ~ -*?.**4 ,e e -e= g. 'Z .o t l s- ^.Q-.e w i i 1 % ding y== .L_7)--
- 4. _
t v
- v...
e o -.~~ , _ i e i /.....i,,, f ,g n
- - '**=*
f ~' .-_--s..,_=.a,a-..... --t-..r.s..s .. i..::..~i '-- e i...,,W .u:... .r -4 ** ~ .ua a. . : ~ w s_ :.r .._.. ~.;,. w ~_ : - - -.t-.. +.: -. -r...- - ..--..t.1.-...._-*- r 1--]. ; _ -..._.;:.- ..~1 . _..: F
- f d ' ' --.*
.-- : :f '. i - -- u - -- !-T: u .' Q Y.. -F.~. '-I. -. i c_ ::. - i ; ; ;: Q Z- .....-d' H - '. f
- y..
, ~ f---l., : ~=.. g f. ^,.. I. --.. :.: :.. ~.-. :.x ' -. _ ' ..-n... I =* ~------":.:.__..-.:-:--..c.-:._.-
- ~ : ~ :..u:-
..,,..-~2' ' -..~... ^ a? ? ri ........,. M...j *c;. p -i ---2 ,T . '.. _ j: t. ....... m_~ . n -.-- _.-:- r:. ~. - - - ~ ._._.:..:.~__._:.;.. . 1 . _ -a__'_.u_.;___..-_--__-: ..._ ~ : -:.. : _ :, _.. _. -. _ _. - - - - -._ . _. m __. = __2 .,2..a N ~i.-~%j'G _3=#__9
- _.*- Ei--P i.
- _ = -
3:.h =1..:.c := :_- "-SfQ; : -: -Y b-- ~ ~ _] _. ef. _ '.'K{ -: -2f :: ' __.#_~,,.. __'-_ __...E...;.:._ C ;2
- - - Z_ ' _- _:i. _.._-._.^ ; = - - -... _--- -
r-- -
- ~; - 3: =_ _ __ _:._.
!.' :. : ~_~__*.. w O.-- .9. -._._ r.. _ --- ..- = _ _ *.-. _. D1...p e e A .W- ..a.._= g m_=.._e q ._..._m.mmt -.=.e..emq e==e.m.em mp e -._M_ Q _e. ee.- 8 =*. h. O - g 6 L 6 N -*-"-"-W m'..3 .... m es _ m-s. g ^ .,e gu___ t ] ~ N. yy i N%
- 6.-
s..-' g ,,,,,,g ) .....4,. &*^ e a* ' - = ~ ...LE . e. >.M ~ z ..-A .. mumm._ W- ~ ...j u..J W._ ' D 4 W e4 c-a @ wou.w my .e-.==.-..--...e...-...e. 6 .e ' %%n i. - -
10 - v2 Oualification Sumary of Eouipment 4 I. P1 ant Name: V. C. Sumer' Nucicar Stat f or Type: 1. Utility: SCE&c PWR x 2. NSSS: Westinghouse 3. A/E: GA1 BWR II. ComDonent Name liesel Generator Electrical and Air Starting Controls 1. Scope: [ ] NSSS [x] BOP 2. Model Number: N/A Quantity: 2 sets i 3. Vendor: _ Colt Industries 4. If the component is a cabinet or panel, name and model No. of the l devices included: cen. Neutral Trans. Box. Cont. Relav and Ter~. Bon Ckt. Bkr. Box, Mtr. Str. Box, DC Aux. Fuel Purap Starter, Main Air Valve Air Start Solenoid Valve. Air Start Distributor. Bearine Gear int. Valve. Main Governor 5. Physical Description a. AppearanceSeveral Panels & Misc. Components b. Dimensions va:ies v ries c. Weight 6. Location: Building: Diesel Generator Elevation: 436' 7. Field Mounting Conditions [x] Bolt (No. varier, Sizevarie:) l [] Weld (Length ) [] 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical) S/S: Not Determined F/B: V: 9. a. Functional
Description:
Controls starting and running of Engine for diesel generator set b. Is the equipment required for [] Hot Standby [] Cold Shutdow: [ x] Both 10. Pertinent Reference Design Specifications: SP-546 o I 1 - = -....
.- v-2 i III. Is Eouipment Available for Inspection in the Plant: [x ] Yes '[ ] No IV. Equipment Oualification Method: Test: x Analysis: Combination of Test and Analysis: Test and/or Analysis by Wyle Laboratories,. 43501-1 (name of Company or Laboratory & Report No.',, V.. Vibration Input: 1. Loads considered:1.[x] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive only 4.[ ] Other (Specify) 5.[ ] Combination of i 6. Method of combining RRS: [ ] Absolute Sum [ ] SRSS [ ] 2. Required Response Spectra (attach the graphs): 31x, Y, v 3. Required Acceleration in Each ' Direction: (sSE ZPA) S/S = 0.775 g F/B = 0.775 g Y= 0.180 n VI. If Oualification by Test, then Comolete: [x] random 1. [ ] Single Frequency [x] Multi-Frequency: [ ] sine beat [] 2. [ ] Single Axis [ ] Multi-Axis 5 s/s 1 s/s 3. No. of Qualification Tests: OBE 5 F/n SSE 1 F/n Other 2 < ant: 1 <nne (speci fy) 4. Frequency Range: 5. TRS enveloping RRS using Multi-Frequency Test [x] Yes (Plot TRS on RRS graphs' ,2 [ ] No 6. Input g-level Test at(ZPA) S/S = 2.1 g F/B = 2.0 g y =
- 0. 5 r.
7. Laboratory Mounting: 1. [x] Bolt (No. Size ) [ ] Weld (Length ) [] 8. Functional operability verified: [x] Yes [ ] No [ ] Not Applicable 9. Test Res0lts incid' ding modifications made: components operated properly and ~ no degredation or damage occurred. 10. Other tests performed (such as fragility test, including results): None L._
l !' V-2 } VII. If Oualification by Analysis or by the Combination of Test and Analysis, then Compl ete: i 1. Description of Test including Results: i a 2. Method of Analysis: 3 i4 [ ] Static Analysis [ ] Equivalent Static Analysis [ ] Dynamic Analysis: [ ] Time-History l [ ] Response Spectrum 5 3. Model Type: [ ] 3D [ ] 2D [ ] lD [ ] Finite Element [ ] Beam [ ] Closed Form Solution 4. [ ] Computer Codes: i Frequency Range and No. of modes considered: 1 [ ] Hand Calculations 5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS [ ]Other: (specify) 6. Damping: Basis for the damping used: c 7. Support Considerations in the model: 8. Critical Structural' Elements: Governing Load or Seismic Total Stress A. Identi fication --- Loca tion Response Combination Stress Stress All owab H9 I i 1 Effect Upon Functional B. Max. Deflection location Operability
Page No. 21 .y," Report No. 43501-1 i' FULL SCALE SHOCK SPECTRUM (g Peak) l 1.0 0 10 JS 100 1000 0 l DAMPING l 6 %] q -+-+- .,i g p, 1 i 1 --f---- } ) 7 i i i i i i i i_._.~- {iC_ AFf-]- {' C-- d ' gg _ f-~^~~~~~~~ ' ' ' ' ~ ~ ~ ~ ' - ' ~ ~ ~ ~ {_hhi' i Q +: r.. _Ap p _.r _ _.__.tgt miry =. -- g__g tr+rsp ;=t,-7.. t_t=.t_ _. t t. + 1 4_ p _ .. f . x.y ; _ 1 +_.a +-+ ,/
- }M:
-i [ ++-* E -l-I f*'* 1 x-1 3 . -b '=i6h hh h fdE5: b bC. --_t=~n-. ..I _k_ . _ _. ~ i--+ 5._.l _. - b _.u.____.-l'T"RK: __i__ _ I*1_ I. -t_-.;-* ___g-- 7 "* 1. ._,- g ' ~+-+- M _1 i s_ ' O -p I - 1-e i -l; .\\,- i, ~ - + - ++-- y '.h b. -i; l i e ,i + - -/ +- N. - + - -' +- I-**-+ / f~++I Nd -f* l g t I /- ir i i 1 -Fr rv S-f*-/ l l-l l:l l i 6
- f ""lMMMiEl@Ei-i-15illi?
=-- l=2.- -ts E=fElih=r L=====fEs ri= =s . _ _ -_-- __.-- g i ,_y_, - t-r-+ - ; - t -- i +,1 m.
- t. --- e +- i-a.
-s-s-u /^ y . _ 1 i i + - - i 1 - t-- -f a a i i-i 3 O ' - ' - - - ' - ~ "- fiist.9 $f5.' _j - ~~ "~ -' ' 'C fi-.:fE95!iC'~ ~ ~ 'p " L Z f = I' .__;_Jrli. -~~ --I [___j ---t-+- t - t-C "T-+- p.- ._ _t-p-" -t a t-t. -"g - -t--- } O O ~~ ,a U _. L j 4 b' j y] I 1 i i oa g i-
- o 9
_ _.. _ - '. " + ^ 4" { 3 --_* J +- + +- t v$ 3 "-+-f - l l l l N l l N ?_t=5 EiEEl=hi555!iss=l +5}H-- ~
- =t=-
==fE = IE= L-- - ~ ~~ 'F ~1- -- l---{E=}j=. s{i.jf e _n- - - p h, --__4 _,=t_ _i r. 1 .__,.___4__ w_ ;_ 5 {r .._u_.._c_ +---- t--- 1 W i -i r i i go 3 r -' - - ' - -, _ _._=_.=_x_z_ .= g - r== _t.- nt:j3_ j _. _ r- ' * - - - + -'-- g-+y4 ._t-_. t. 4 _u t-Y .9-- h. y i f g e 2 3 4 5 6 7 8 9 to 2 3 4 5 6 7 9 9 to 2 3 4 5 6 7 8 9 10 i i 10 100 1000 l Frequency (H:) AXIS h1 LOCATION NO. HC4 TEST RUN NO. 9
Page No. 22 Report No. 43501-1 FULL SCALE SHOCK SPECTRUM (g Peak) 3 l 1.0 10 8 100 0 1000 O DAMPING 5 '7al 10 9 1 T T 1 1 - i 7 e i 1 i .i i i i 6 - -. _. - ._._._m.- -m---+-
t--
~4-S r.- r -. i r I k I I I 3 i =_ l - m 2 C i
- 7 e
f'% M3 i . +, ,i-ri er 3 e .et ! .i; i i i e a g.1i t i e e i+ q l I i r s 1 i .i e e i ff. ,3 y .i-i 4 i- ) _p., ..m. _y-g- --.r. g c s -_-.= t.- "=a"- - I N g e, " I~,f -..w .~.. ..,- g / l i 1 I i ! l j 3 f ^ .O / t = 1 ~ f 7%-- L .L-- ._W $= 1, I, S [ e U V gig *; < 'l. .l 3n i i- ,i i i i o= ia n 4 1 1 3 as 8 i i i U y, 7 1 r A 1 A i e i r i i l I* I i 4 { r 1 I I 0 p4 r-pa-n+a---._ -- --~ + - p- -r-a S
- -~
4 m $3 = =.h k- -_ L 5 2 1 i i I 1 1 I I i 1 1 i i 1' i s l 1 2 3 4 5 6 7 8 9 to 2 3 4 5 6 7 8 9 to 2 3 4 5 6 7 8 9 :* 1 10 100 1000 ~ Frequency (Hz) AXIS No i m. LOCATION NO. /C4 TEST RUN NO. 9
Page No. 23 s R port No. 43501-1 FULL SCALE SHOCK SPECTRUM (g Peak) i ' l.0 0 10 0 100 0 1000 DAMPING dj 10
- =
a +- r I i 7 i i i i + i I i i .s .i i i I _m.___.. _=._.. - _ t---- 6 _.;-.~.0 2. ~~ .~ ~ _ _ ? - t-_ L- &+-~ 1 i h[
- 'm L
i I f. \\, a - i i i rr y f ---._ _.__,_ g----
- =:2:
--+------
r--
_--_2-___ - -_ e -+ ) -- - e-, h, 2 _.+-.. . m 1 =t-a n O _l \\ l 1 X 'l ~+~ I C / \\ i V I* 1 / i .i g. i. 5 i sti. a r A;.i r. l i i e I j 'm 1 9 .f Mm' 1 ~ Y f 8 %-./ KK1 i 7 n i ej --_----.,.--.,fi. _ -.. q -/ 4 I v -+------/-. r- ; CL p - O 4 1 + i Y i l l 3 _7_ O a C. +-: u g i I a I i i i i I I g O O e *1 < ) 5 I l u8 go "o 9 l 1 Mw v q mg I I i a i u$ y 5$ l l l l' je 6 i gg, - + - - -. ar - b$ s 4 W l i
- v 3 m
. j__ 2 ,-4.m 2 ~_ ~ l I i E 1 1 4 i i I I I l_ g 2 3 4 5 6 7 8 9 to 2 3 4 5 6 7 89:o 2 3 4 5 5 7 8 9 13 1 10 100 1000 i Frequency (Hz) 1 AXIS No 2 s.. LOCATION NO. Nc4 b TEST RUN NO. = w w w .y -- -, -w. y v---r--,- ---w --r y
C Paga No. 24 1 Report No. 43501-1 FULL SCALE SHOCK SPECTRUM (g Peak) 1.0 O to!!D 100 1000 O DAMPING M 10 1 9 i s' 3 i i i l. .i. 4 .__.p. = .a_.._ t_ -+ . _ _ _. _ _ _ ~ +-- I l tu 3 g-W +-- .______L___.__.-.--.. -- 2 M O i v =- f% 1 c 1 e i + t 6 'I i 6,., i.i 6 6 10 9 i i M. ~ ' t 8 ij$ .l r e i f f \\ I I i j ._._y__. -o-
r---
r-q j-.__._. 1 w / / M C% i, I j' w a 1 ~ 1 x s 3 'w i c - "f 3 .9 -z' L r W ~ l i --..wm l r w .sno y _1 x x ~gf/ r i ? U m u a tI < v3 ua gg h9 1 1 1 at 5 i i i a Y U 3, 7 i : i i x Ea i e ja 6 _ _ 7_ g.._ _p-,,_ y a e. --'f' 4._ i n -= 9 g 1 I I 1 I t i e v 3 I 2 i I i l -t-i i I t t I I ~~ 6 i i t 2 3 4 5 6 7 8 910 2 3 4 5 6 7 8 913 2 3 4 5 6 7 8 91: 1 10 100 1000 Frequency (Hz) AXIS O2 s. LOCATION NO. V6 A TEST RUN NO. /l.
'o . qp. - p . A 4 - 4 p, w - w = = 1 t y =r -@b Wp1 =05 1 y 4 -w p p.- w#_pr.;pm A q-1 = = m & _ hg 4 f g w r 3 - t L L w
- i g s%.,MW MM
&p& R4 wtmh V ga =w,p.L.a.muu 6 M g n s wmu = g aw x s2m.d..z x n. m -t. ~ - +n ; =g 2t C. Mk_cutflim EM ef=FEli WJM=i-% guy== =t~ mo = . gn .= whpm MM@if MPtOMt+ !WiME! 4 s = g Ps E=Th Eti-W=
- =c:=.2 : ::=;: y - y==u1=:==ur t.gy 5i:
t
- ==k=
" ~ . p=== =:p= t u== ~1=M x1==1= nt= c
== uz-. 1Q.? t-- en::.. p rn:== = =:ar
- ==:=-
m-
- ==t Ty-"qT-jiH3_g-
== g H.; ~
- = f===
=- r
==n:g:=:MA===s= W :*v'"i==x Pr:: .1: t-2*- : - =a .= 1 = 1_ -~ 7 -4 _jL - w2{C -* N~ - ~
== t=,== 5 M ):r.=n p}-~i g_ :-Q' _-,_w. 7":f W-dRC *T . ~~ # ~H=n: *.: n:
- -~ + 1 __ _. u
-. - _... -a: 7 3 D., -+ y.- _.j ---t+ ?W __M D m ~ 5 : = M.,:*P = p'." "__t ~~~ .X- - 7: W.~..._:
- g. -.
wnq+C 3_-u. -g _- u. ,s.- + 4
- x
_.s
- g..lb.111_~C.%.A.f
.*C
- +-Q,-+-
-.--(y+ y i - i +- 1. m un, tu=tu--._w. tft ' tc. es u-j 1 4 ..., 3 -.o - } -f + eI-4 -+-
- La I -*-'
in n.
- -.- 4>.
n Q = i y -. y. , m, t
- y-.-
Dw-+ c-r - e 4',-+> _.. _ h.._4.._;-4 m.%. Q ;:,
- , c-sg_._e - p hl-11 -+,-
i ' ,.f-- i o ">-t' m*.- &Ji i .J
- r
-*-+
- i.
-+-._ Nl d j l' O! W W i i i b' di i i k
- i i y *--
i i i, ! i ) ii\\ t 'l' ll i,;' M il lI!',ill N ! WMS o = .m a n y ;'::, o .-d
- M-M.
A P -+-,/ ss* an*tA+- H M,. s _: au +'-. . t d ,+. -t k _ - 1 u- -4 -+-+ 2-Z.--+/ ^. i ,i s _,. : - _ + - ~.- g ..y
- f.-
- ~ y ; q / -.-. 4i .. - +.- t-+-
- w.
!,~ w% W,-- - 1 ;. w t i y:. i NM.--. i ~ j ji j ++- A i w T ',i i. i w - t :; --.--+"- ~+ i .N. L+ i ,-+-w. - + - ! N3: .-._; i' 3 ' 1 3 1-i ; li l iill i . i (- ".i i; i i i {. h'h: = y N/: -* F+ i ii. i i ii iii W~+a i i .j i e i! e o4 1. ii1 i i i, ,i/ ^i 7 i i ~~'t~t*' ! V i' ~ ~* f 3 s .i 3 -. -m w_ n , yp ; g u =, v + aa x q-Qw-t+ 1 a. c. $.~
- j. =v-p.t-y--y-t-79ppp+%ra.
-sg,- r= -b y 7 _;=Lj-- - q_ -q-g.j j g jg: 4_. + Aodi . S / %g g
- g. L.
0 i .:q i=f-p %.,m. J,1._1-m.y= = t_.=i =Wie d bnC-r- .p.1p+ 9=4 4: d 1p: q n z.m s i 2 i -.4.c y-- w m --"T 7=-n # geae -9. ~ +-,== % y. qT. h t- - =h-2 i -, y .i_z.i :1-.ih-i: d rF- -p=i -f faki %z (n. F ;; a ! _:.i?:f ...g i_-.- O-M M= f;L &E ir-b ~:_Mi-i-i Hsh ~ i i
- .H. := i.d.lh..
O 1 I z a u u.- 2 .a- +r m.,. _ i,g p
- u= an.. + a
. n...-P i. +H. m m. -i.- t-+ a,=a..
- e. =; =:= :
s
- n. :..
.m....=L. = r ~g g b C9fi ~ I.I h h='-IM4N h. d'h. d h' h-d. iiN ih ~h Nh-I^:i ':d~b'IN:f:I.i -.N*N. i=n )n -m=E k-d-.f bbk-t ,:.n@..N:f i 3 =-....a w 10I iv 9% a== ,=
- c. -
=c Mi=ImF 'i=EEi-. mi rm= d :
- 4r-
- x 3 G
_.;]yn{:f:l1:: =::u i~T===: a
- x
=2: ::x:. - ~ - - - p-g
== rL+ ~
- qP,_.-.
1._: 2-
- z- -ne~ 1x===
- = = ~ -
g =_c=.rt= = : r :11 :--~. :- n : 2-
- r-t-+==: =t :=:t t r= ::= r.
fs..p cc-c = :: l .w :- x --. m..__ _2= (1
- . - e-,r==.+=.- =,=.~_:.-= - - -- F' -_----- _.;_+---.
1 ~==_s. u.3.=_.= v g_=.. . = = _. -. _.. - - _ -. =. m -. - -===.=.. T.ecum -Z: =v.W-.2_. =- r.=- R:: "-L=.=-E=r ~~- g ..a s.i s - - + p
+-.-+-Wq> s -.-
-.--n.. 2 M- -4 & N-qnv _..-..e_ u +..
- : 1
.ea .m.-. u-._: 3,- q +.. d -. -. -. -. =., .-.-.: -a. _ - 4.-___-. _. _ - -.. -., _. - - _. i m-+-.-ny.-.- - + - - + + - : --'n. ,+e.-n.,-..--6_-._e-++. ; W:,4-. _..4.._.. --- .@j. 4*t. k -E-.-...- :,,.. -g y.- -,,,-t- .t ' 4-2 m ..I,I + - ^, '-t-+ -.---,-.-4--t-+-t-'. +.,l j, g t 1 +- i j:
- p. t.
,%.g -.g_. .._.-t-
n. ; -+p-.
i', +s- .p-a_ i ,; _r-
- 4.1 U j i
-44.-ff.y-+'-- +*,44-M. ~5j h* 2 -.__ ; H-- .--r ~+. - . _.!_ l
- i,
- ' + - y - .i'i l ! i. ~ i 7. l, r[4.9-_ ! W H W,.. ._L LH- ! 4- + e _-_A.~:.. ;+-._.H . 4-H-- a.. - i i 4- +-- e . _4 -.._... .-+_e. -,-.-l- ,3 <. -. .-++m-.-- -+-.-w. ,+ -w s*-w + ,.+_e. g. ,.m-,. ...,I.+--.-.-+-. _w,..;, s-1 + .+ - - -t+. '. *: \\.. +- +-- ~- -w+ .-._~-r.-m-e _m__-e . - + -+-+ + - + - + +: : --M-* ._ ; - ^ we -+ _o 1-t., : ^ - - '.%-_h-.-.-.-4-h M* +!' t-' t-+ . - _ j. 4..- .+---.--*4+r -b
- t-t- 4 --- h t-
-.-++-+-o-4-++ -+ ...,4 .-+. +-i ._~-. h.. -1 4- <.
- 4. + 4-.
4, 4- ~ ' f.. kI
- w..w +t.-a-_.-._-4+_.4.-.
.% 4, .... + 4J.. t 1 r.-..p_, - -. _ +.._.' _ p t. . + -. Q.. -r. - _g -r .-.-+.. +.-.-+4 -.3,t 4- -h'-+,+. ..-._r,. -4..-. w.s.-,_ ++r 3--,. . + -. + + - +. + + - * *. t-t--- +t l,- -4.e.._. .-wr. 4 +-4 4-~ +:
- - - - ft +4--..h.-
- tr..' }a.+;---
-y-.-. --t-4 pp.r.. 4..44-t- + 4-. p." t--* *-t- - * - + -- -Y._t--r..4 i ;i f-"-.
- 4_r
+ +. g 4- . _, - 7..,,-gw, . -.,...W fu., _. g,,.. -,; + .. +r 7eg_. f. --._-4--u _L._,_ 9 ++.,, L.-. _ _._._+, ~.. ._e. : 11., T1,. 1 - ri. i;ii 'b. Pf-'+t-- ~t-* t :i i ;,' i, i j ; t-4 ~ t i i , ' -M,,, i 1 1 i i - i
- i
. -, t-1 4 - iij
- i;
- W *-
^ ~~ s% h) % I */ % "l *3 ~' *3 'q' t
a -.i- .---.i, -..E-E .i-aS-. .= _ n' ^ ^ - g g-g g . ug a L
- u p p
?g =p
- 1:
= 7 i h ik h "- Ih es i U b 6 px ewa u. m -y ..w w=i men -y we mu - A ga.,4 net.a;- = m-W =++H-3=tria.Sw-in-finf._ti.. :-i.- -iE.P :_ i.C G2a
- m-l-imisa nE-si-9
- ...-
b -3 2-3-f Lr -
- 1 2 aaq t-z:
r: rz - -: r mt- =r
- .m.
= - 6 'f $ +25 A %' +'I = hM ::t.:&.
- - ~
=-
- =.-a*--=n xz=r= r
=r
m=
:=. =r
w. =1- ^: t - = Z:..1 --
- s-~Z~-.
-
- ^1=--= 1 := %-
=-~; %% ^%-^=~~~L- =- --= ... e E.- r ---.--m=Ed: ~ <= 1 M t =- 4:,R.= H : n:- FE:Ni== E t = Q =:=:=r -- =4==. L=:=. t =-
- =:=:-- ='====
e ~ - ~ - ~ - - - + - 5 ; -.- p77,n,_ y,_ --- y. : ~ _;;-. ~.- J .._t_,_, .11i__g - -.- T~1 O* i_. +- ' T E t:= dp: m. y ~ xif 4. L._.- r-+ ~ -+: - S~r-*--N +1. -+ ~ ^ : -+ a---m re.. w-6
- _ :-yu-- g S
.. C=Tu j-- - .c.-'- T, -. M u -- -pr_. ~g" 3. c 1---m. ~C_ a.~ 19-.-.J -+*- g- - l 3 O .g @. O y.. 4-4--+-M: L--,-- 1 + O u n n . : : i 1 1 l._v.--+- _~ 1 6_._. _ -$. _ y g 6 ) i.- i -.k
- 4'*
s-G -l y ~ t, /ptt.j i 1M i i i, p4 - 1 1 1 i i ]_ !!4 4 i -1 r t i r - i. ! T 3 ! i i 1 i ! i -.I t t . r e a .it fg
- =
t I i id I t j l ' !i i; i., ) it l 6 } e j!,, I f ! i {. !I o - i
- i Q ij i
r-- t .., i -i a w - + i sa_a h,%* r' 2- . -us .-.+.-4 -}-- ~3 .-+-: " ^. t ^ -e --+. h-- 1 --.-+: -+ -t-4 -.=+ 5
- +..-+-+ !
. b ^ ' -tm.e
- f'*9]
.-.4.- +-.w -- w. 1 A g + g - - p! + -.-4-- '-+-: I 3. Q - S -._..._4 . -.,#._.-._w u,+- n. 1 i H,~ f 2 D' { 4- .-.+- + - ~ ~ - - - l@ , -+-4+ -Q j+! +-b g 4-r.- ! ---+- - + - -
- -+-
i : 4 1 . i, i ~- 1 I ' - h '.. 1 l I 4 Mi.-_k.,.: I'! I i. M. .- 4_ i i ; i
- e i 1
pJ o g ~ l l }$ = ,4:u. v.,a.4. +,. n =v- +. -e, u.- n, w=, a. wv m n a.r ww u a g: -..,n. n.. p--.; mr .v i -. : r.. F .-.. m is c m
- o
.u p n_ .~ ~ ._-Md . idM-i l M.ils dihdi. ] =.. c e r- -=. u. 7
- g--t-
-.FflM-M__j p d Tpub 3E .M' H-.?' Eri. fM.:+D nM g s i lij - :h ~} * - -E a l 2 -p . n=j :
- T-j J i p -i i. ig g
= ... vr6 7 .,... :_ ; - u -w L .s. +. : -y:.:w: y : : .4 . u
- =-r~
- ga_ t - ---
u) .u-. mr-= a:r-2
- .r. m.
u ,---.. r - :. M.-.... :c.:r :..,w.. =. d,
- .y=.
u =- r l ....m nn==.- =..=. . x=.r.--:=. r.._:- =-=..= = --:.=1- ..r -. 't=-=_. _= m
- t.==
=.== r:. :== q,rn =~~w:x =- g;k~n : ' e +g. n:: -. u+- - +- n: :; Q ....,w , y ;,,,,:n 3 ,_x-.n p ;, .. n:=
- xr===
.g
- nr
: n:
.1=
7 n -.1.-
- ==:==--
. -.
. = = - ~. .:~~ = :- -- v I; '-*.;.- =-.47_t+-+-
- :.a-,-
4 ...-*. :.!.: ; n. _* r. ;i- '.*z_:: _w : C:.ZT. % ;- .._m : ;._=.-_d_
- m. C_ ;
. 2C. 4*.a.-- g.-- g.s g di'i9 3.i.E-_.-.. -. -_:=d. ---++tdi N F-E -NE3.- :.- 2~*.-3 1 M* 1 *.~: r.. d ~~ 4 ~ _c e.e-.+. -..-9.-. w - + w. ....4--.-. .. - _ ~.... . + _- -+ +.. - -.M+.-.-*M -'.*.7-e - + + -. - -e.--- - + - - + + -. - .-e ,+ .-a-' + -w . ~. '.-M-. .+.-: --.g - - + " * ' " + .. = . l.-. ;+ _ w N - 4 .-...-,-.l 4--e e. .J- }..-._-- 4-.--.- . - + + +. +. - +, - +. .we.-... -.4.- t n.-.-+-,- .i +_.- + +n.- ~..-~ 4++ - ;--. - e . -, ~ .+ .4-- + +-4-.-- -+=-.-. t. - W - e -. -., - +. -.
- +-+m-..
+4*+-+-
- + - * - - + - + -
I-+-'*
- i
-+ =.v., ~1.* .-+-t--*-+-+--+* ' - * * * * - + - - -+ l-+- . *, - - + + q..-.+w.. %,,? ' ' ;..4 4.- -.-.-4,t.,.-. - - -
- Y r
i 4.-; i -+*t T ^ - _., - +. -- -+4 -4+.r. - - + - - -~p + - - ., u 3 M M**- F t-- -4*+.-+- --a 44 g t.- .4 ..t--+ j ~+-,-+g- ~ . -. - - + + + +, - .+. j-i-.,..+.~) ~--t-+-+--- 1 &-t- +, -+- .1 i . * - + - .. + - '-t j- -+-- -+.*,.L'- , 4- , yL-- -+ i + +.. - - + - -t-4 .h? --4_-+j - +pw -..+-4-,- i , j 7 v b f - + - + -. - ' ' -.hy.----.r.+ I-4 -. -. e 7 ..-e
- -4
+= p..m..p - ,g 7 -, ..) pt, --~. p++ =p 5-- . 7_- , e ..._ p p. .- -. 1 -g-- .g.,- . 5 , + e.* . +. ,.,.-_q p .-.-.p y -r. . -L... p -.-,-t p g ..-p7.- 4 m. 7 g -. e. -* b.. k+ WY-.' ' 9-) -~ae..'.--- ,.. -..n_....-- -... ~ _ - + - -....-.e.-I,*..*..*++-' - + * +. + - - * - * -.~ -,--++9.-+.. 4. -w +++
- ++
+ '--+: - - - - L^ '-- .,..,4o...-+...+p.-.-,._.. l.s- &,. p -~ w.+-. ..--%.+%-..---m.+~ ,+_..-+-w-..-.-... .- -+ ...-,_.pg.- p %+. 4 r_ r.- ~ -+-. - - - ,,-e-.......,,...--.e-. I'*4 -,--w t, _ 4.+4. m . _ +. _ _ - -...-.- + - - + + + - + * .-e-.--.-.-.-.,.,.a.e.-+.-p- "+.-+-e,-+e. % 4 .4 4 4%.o. e .-+ : : .~ .w.-- +___ +-,.w-r - -.-.-,..-4 - - - + =. -,.. -+-4..4.-+- 4 e g ~.,... h+ '. 4_.% , l . 4-+=.--. e 9, -. 2- .4--.- .+ v.+,+o-.4.-4..-. 4 -o.-+_.-- 7 .~a.-... :... ,3; 4-. .M-+-+- -+ e.-p 4 =+ b.- -.+t.._- i-,. ,p . e.4 4-s -4 e .. - + - + -. .-+ -+-h.-. ...w._.'-e.--.--..-p.- j g 7, 4.. -.-9 c..---.-++-.-+ --wo.wg ' -. - + -.. -. - - p.._.-4-.%_m_...-cs - t --b *
- t.
t-+ -+-$- + -. - - + -.-b--b.-- 4. _. _ - +... - MW 4 .4 ._.e-- z ..h...p ..x .... p._7-'+,-.4. 4 + 4 _......_-4h. .*9a.4-. -. - =, = - .a-._-... -. - -., 4 -+ .,N +-h -4 f y. g - p.,,.- %_.7 _.y 7 g ., p y 7,_...p.,y;..-..y p p ., 7, -,,. u, p. y,.. .,3;,.. 7. 7,.-.pm. 4.. 4 . m+ n .-y.-y 7 -.r.. m 77.. -+, -e, n, 4...gm.e ,. e. y p;y. .+ .- - +.g ,--r+ .77 .pn a , m .+ m l C N (e N" N ( ) W t L 1b *-3 3 *3 *)') =d
to . -_- -.. + - - iz I j g '~-d -L ^ -l + - if l -=- +- + - -h-- C 7. 9] -%[= ~4: _ 4 -]. =-- +--,. ---- Q -;3 ._ro d-7 y N " % 3.t icPJ W p pw. y - f1 wp W M?Ad itd{--N_ u =FF m > &i:+rt *g= mu wa - wr y w a
,
= i kot-y' ;..qt. 4-M i = .W,=1,- -- %-p WM-ti =ig M-44t in#= uhy.d=l.% f=. = =pt - d-!= n =:w-z fp =- y;-- m }. -.t- _t u.. i. -_:r. g,s -.t..= y9 c.- - =, ~. . n-. -- y .u 1. t- +g-1 _,,m - ym. -.. --m T __ ; y g- .ar cW==ht:.- b h ' *Y ~ ? ' M *k ^~ _..r x il.-m: _M._r~.5-~if~'O[IT L -.d-*- b 1N *~4 -.c.t - % n-- -m -m-.---
J IrontrE. = rW* ~
- t'-7
- ~ -+ A-
-~ s -.-+- Q I._.- _..34 - 4 j: 4: -. ~- --+- _m g ; y, .a. ;
- a w c
w - -- J g.-.-.-C 7+ --+--P-l'- g m -tju m : = g % g -e - : 4 r-n - - T; 4--=3.-.- - ~. - + - -+ p M - -- b O. _ 4 Y_. ft't-+--. g%No.. -, -+-+] 'E_ y -- ri ap _ -+ . z..- - p --- u 9 u 1 -h LI w w" = M ,m w m+,,,w .+ i a
- un n. i
/ 4 .n : -,}. 7 2-.g-. M. - i i --- E 1. n [ h -+--g}-]!l l !N l l~ 2 D %-p~ - i ii + p io e 1 f fI 1 k ~ b n , i , i1 - 6 ! i F-i a,+-1 gi 1 i i i i i n. - N. D *~~
- K i
,i i i! i!.' !i! , i i i 4 .!i y,_ I. i i i n i i i h' Wi (1 'f ? ..i - i j i,, i6 .l D 2 u W~ !!"' d- .Q
- h[
-+ ii nF 'g ._E, 6-g- 1 m i [,-+ i . _L G----5 : $ !"-*/-NC -'-* Tti 4 i I m: p .-.u w o 4 I i Q -4.-. U:n -U ] I 1 . y; j +-.-+ -+ .i 7 1 l I i P i i ! \\. i-aL .\\! ,I 1 a i v C o n w , i x_. x. i N/ M .+i 1. 1, ' ~ 1 ~ i s g. ^. ++ - i X i N 1, n i i d. -g4-M..-- a o m m - @m
- m. 7-uw a
m m a 1.. .g_. - q,- --t-+ -g v -f.t y: 4%- .4. +: E e t.-% ._t-s . a..; .g u p, ..w. g 2. -u .. s ~ ~~T ] -jh ^ - m!=.. m.:z mmmmk y 1 - = w--m- + - - -.m m ~-~. = - ^ w - h1 -- - g --
- s--:
Og1 u-w p p -gpp% a;M-. p' + n m= -. s- ~ - =-
- 1=
= =: L. . M=1 ? O/n E? i=- .=g= p ..y ;_ ws:-p g- =- ~ - --dd d41 - Id=i = 2 E i-{d-:i=1W .J M gp M
- = t A=wndp_ =
- - {= --=3 U
- g
= u. _.=i n. - W r= n:.. b' F# = = --=- E= r=i ^h --
~+- -
=%==- - -==- = -6 ~=x-
==.- = m:-:~a. : e.)- n =. .n =-+---r ---=== =
- n r rLt==t = tn %
- : m-v
= =
=~ =-- tu .. -== _.. = -.. 3 y e v =-.e ck
d.c.=E:: q.y plir m:u:.. i";_-.
n ,;.= _-=:.m- - - _= z __ y. _%rq: wa 8. 1.-.,,,- n y- .c.n-wr n g=.=-+.== 3 mr en =r .5 .L n rm= _.=_ ; - tm = ne l' -.--. y -- -- .1 -. ,p _.-.a-----~ - z
- m. &. _.--:.=.- -
._T. (y -+.-. -. s. W.- :-.- x%..% ..w_:n.w.. 1=.. .V n=n:. =--_ .+ g %,_. ,j ;-. 74-; 7; --p_; 77-n 5 ,__,_n . _. _,.. _= = ;_;-. _., ;
- ,-+,, -
,_1:}.qt= :- --+--t-~~g_-.-..-.~~ Cd --- ;=: ~ m -+ x = N* %g ; Q - M -.
- 3. -- -
J" - + ~3 M*-*% -+-. _jng ...-e - g-~4:Cr+* C'--.--
- i 1-
-g\\r*: + w..^ ^ - 4. ..-a--.m . +,...-..q; 2 4 .-+--I.-. -w'_.,. ,i 4 -+--s -+-4-+, ., - + -. +. .-+-v.+=.-* ~ h .-9-M-+-, ++- - .+.-+4-+e . ~ + = i 3 -+- -+- += =. -t p-.^ T k' - - ..-4-+.4=t-4,M-+-+- -+-+--.-t_ h 4+ ~. --+-- _-e.--h+'++-4,4,--4 T-.. -e.-+- -4.+-4,-+ -b4-4+. . - + - - y ; * * * - " ^p. -4 m b 3 - 44 t,i %- e.- s +%-.-.. --+ l }, - ++., 4 4-p: . - + - -. -. - +
- a. - 4 l ;;.-,,
- +.. -, *. - -,-3, +-+ i - -t -4,-- -..-, j{f-3-+- . t-r 4 tr L 7 7 ,i 4--v-L7-4.4
- i. i
+_pj
- t
. r.._._,,-.w,..._ q -e. i q F.-- n ,,, p . g*}7 t-4 6- - i .-.+- ..$-ei-w y -$- 9.-- ..i 4 +- 1 + 1 e.
- 4-Oe-4 4-"-
W b =#-"*.- -$-t-. - + -. 4 i. ..l.. q;- h 3 j; ,. N +: -id ..74 g y 5 -.---. l.w.-4--.. g ..+7 ,7-L
- j
-t-p n p.e4 .g. +,. 4-+-+. Q.- -. ._. 9 ,,-{-p ,t
- n h.: Fii% m-Ma_:en r++.-.-._,.
ntn ~;= 0.-4 nt =,-. J.n. : O... - . + -. -4. - 1. -. - > -. I,a.- 4, _ e.
- . t/k,.._,. J,. $ rl-.,-- $1. _-...+* -,4.
..'.-+-.+ - ' .F +
- - - - + - +
-+
- --+-
4 .s-..-.,4-.-,,- .. + +, + - ^ '--+-*:,'1 i
- -t-
. g -~ +-.-.-.,.,..,.4,.g,-. 4.- : - :: :. .-4 -.4--m; -+... +49% -.. +-e.., .;-.-t-+-. 4 -+-..+---.-+.y-4 4-.,4%:;:..v*.-+-.,.-..-s ..-.-n-.. -l 4 . - - + -, -, .t=- + -,, _ . -.., + -p+ l ,1
- 6. --p 4-4 44 p +
p.-.-+t,-9= t-4.-w.M-d-. 4-e s~; .,} I ++ *-+ w .o.ow,,- - -+-e.-.--. .-+a- , - + -. - +.,-.,g...p. ~.-.=9-. 4.+-F.4~ .-e-+4. +o. 4 L.,.. i I +.4 _L a.J. +.4 4.-- .-,,_4 - +-+- y i9
- +-
,4.-+. L -+-* -+-m.,- + y e.-o . - -, -._.-.-..-..-q, .+-+4.,+. ...,t . LA+L -4444 ., -a.l . p +4 . + -. . + - m - + t-+-h,
- r
-P r,. -#.a.+..-.... -. 7. 4 4_r i g 1 +4.- -. -. -. -.,-,4 b ~'-*-t-'
- q y.e
,.+.. _. -. + +. + 3-. pw..._.,.q-.. l -,.t-P F*- ,H... H -by,-p.-9.p-Q.., p_p g-. I - i4....4- ; ;-.,-t--'-"*-'+' - +,P,A*-'--++-+m+.*-+- --+- '+-t !~- i -e q p-ppg _-..,_4. 44h_r 1,.+%,9-. p'*q-. pp l-... +4 t .r r 1 7 7 -H ti -t-N- ,,rt i. -t,-4-+" - ^ 4 --+ i - t* t r ,4 i i i -,-+ e-+- i, i4 tH-i i t-t. -t i.
- Tt i
r r-Tr t-t- +ti 'i i 2
- o. i.
i g i, t 3 C-4,, u et. c.s sa 1 -p) (vcq '. W 3 9 3 ? W 4 i
l Qualification Sumary of 'Eauipment I. Plant fiame:
- v. C. Summer Nuclear Station Type:
s 1. Utility: SCE6G Ph2 -X L i 2. NSSS: Westinghouse 3. A/E: GAI Bh2 i II. Component Name tow Voltage Power - Control-Inst. Electrical Penetrations i nna Misc. Connections I l. Scope: [ ] NSSS [X B0P LVP M01 R31C5004G tve, 309 8 2. Model Number: Module Type: Insc. ) M10 Quantity: 40 l 3. Vendor: D. G. O'Brien, Inc. 4. If the component is a cabinet or panel, name and model No. of the devices included: N/A ~ 5. Physical Description a. Appearance ~ Cylindrical - Modular b. Dimensions 18" Length,19" Diameter i. s c. Weight 265 Lbs. I 6. Location: Building: Reactor Building El evation: 473', 469", 441', 425' 7. Field Mounting Conditions [ y] Bolt (No. , Size ) [ [] Weld (Length ) l [] 8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertic. S/S:
- 7. 2511Z.
F/B: 20.5HZ. V: 25HZ. 9. a. Functional
Description:
Allow passage of one or more electrical c'ircuits through a single opening of the containment pressure barrier, while maintianing the integrity of the barrier. b. Is the equipmen*, required for [] Hot Standby [] Cold Shutd [X] Both 10. Pertinent Reference Design Specifications: GAI Spec. 559, D.G.O. Report ER-252 App.K, GAI Spec. - 702. r... i
III. Is Eauipment Available for Inspection in the Plant: [ y] Yes '[ ] No IV. Equipment Oualification Method: Test: Analysis: Combination of Test and Analysis: x Test and/or Analysis by_ Action Environmental Testinh0 Corp. Sunnlemental Report No. lll (nam ~e of Company or Laboratory & Report Nt V. _ Vibration Input: 1.' Loads cons,idered:1.[x] Seismic only 2.[ ] Hydrodynamic only 3.[ ] Explosive onl: 4.[ ] Other (Specify) 5.[ ] Combination of 6. Method of combining RRS: [ ]' Absolute Sum [ ] SRSS [ ] (other, specify) 2. Required. Response Spectra (attach the graphs): GAI Spec. 702 Fig. 9x, 9y, 9v '3. Required Acceleration in Each ' Direction: (SSE ZPA) 1.50x08E, S/S = 1.5x.243=.364g F/B = 1.5x.242=.363g y= 1.5x.220=.330g VI. If Qualification by Test, then Complete: [x] random 1. [ ] Single Frequency [x] Multi-Frequency: [ ] sine beat [] 2. [ ] Single Axis [x] Multi-Axis 10 each 3. No. of Qualification Tests: OBE SSE direction 0ther (specify) 4. . Frequency Range: 0.5 - 55HZ 5. TRS enveloping RRS using Multi-Frequency Test [x] Yes (Plot TRS on RRS graph. [ ] No 6 Input g-level Test at S/S = F/B = V= 7. Laboratory' Mounting: 1. [x] Bolt (No. Size ) [ ] Weld (Length ) [] 8. Functional operability verified: [x] Yes [ ] No [ ] Not Applicable -9. Test Re5 Lits in~citiding modifications made: There was no evidence of mechanical damage or deterioration of the tested units as a result of the sine or random Seismic vibration tests performed. 10. Other tests performed (such as fragility test, including results): N/A ~
VII. If Oualification by Analysis or by the Combination of Test and Analysis, ther Comolete: l. Description of Test including Results: Seismic tests were completed for Duke Powere Co. as part of D.G.O. Report ER-252 App. (K). An analysis to correlate the required respone spectra to the V. C. Summer penetration is ' included and will be formally presented in the final report.(D.G.O. Report ER-255) currently in process. 2. Method of Analysis: [ ] Static Analysis [ y3_ Equivalent Static Analysis [ ] Dynamic Analysis: [ ] Time-History [ ] Response Spectrum 3. Model Type: [ ] 3D ( ] 2D [ ] 1D [ ] Finite Element [ ] Beam [X] Closed Form Solutil 4. [ ] Computer Codes: Frequency Range and No. of modes considered: [ y] Hand Calculations ~S. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS N/A [ ]Other: (speci fy) 6. Damping: N/A Basis for the damping used: , 7. Support Considerations in the model: N/A ~' ~ 8. Critical Structura1 Elements: N/A-Governing 1.oad or Seismic Total Stre A. Identi fication -Location - Response Combination Stress Stress All e s I I I t Effect Upon Functional B. Max. Deflection Location Operability-o i.
+ s, ~- l a ATTACllMENT #2 t 4 --,-w --ee
~ e =_- 4 TABLE 1 Page 1 of 10 SEISMIC QUALIFICATION OF BALANCE OF PLANT MECilANICAL EQUIPMENT REQUIRED FOR SAFE S11U1DOWN Safe Installation quipmen u down Method of Description of Status System (1) Tag. No. Description Operation (3) Seismic Qualification Seismic Qualification (4) Location % Completion AH XAA-1A,B; Reactor Building a
- 1. Assembly - analysis
- 1. Lowest natural Reactor Building 100 XAA-2A,8 Cooling Unit (4 Units) frequency determined Above Elev. 463'-0" i
to be 12.75 Hz. i Dynamic multi-axis analysis, response spectrum input.
- 2. Damper - analysis
- 2. Natural frequency determined to be i
25.32 Hz. Static multi-axis analysis.
- 3. Fan and hotor -
- 3. Natural frequency analysis determined to be i
57.47 Hz. Static multi-axis analysis. l
- 4. Damper actuator -
- 4. Multiple frequency, type test multi-axes seismic l
test.
- 5. Limit switch -
- 5. Single frequency, test single axis test.
(1 to 35 Hz no reasonance frequency determined in test range). AH XAH-12A,B Control Roca Normal Supply a
- 1. Cabinet - analysis
- 1. Natural frequen y Control Building 100 Cooling Unit (2 Units) determined to be Elev. 482'-0" 31 Hz. Dynamic multi-axis analysis.
o
- 2. Dampers - test
- 2. Multiple frequency, multi-axis test i
(1 to 40 Hz).
- 3. Cooling coil -
- 3. Natural frequency analysis determined to be 31.5 Hz. Static multi-asis analysis.
J 4
-~_ 4 Q I TABLE I (Cont'd) Page 2 cf 10 Safe Installation Equipment Shutdovu (3) Seismic Qualification Method of Description of Status System (1) Taa. No. Description gg) Operation Seismic Qualification Location % Completion
- 4. Fan - analysis
- 4. Natural frequency determined. Static multi-axis analysis.
- 5. Certificate of con-formance with IEEE-344 furnished by motor vendor.
Qualification report on file at vendor's office for audit. Vendor considers qualification report es proprietary. AH XAH-13A,B Relay Room Air Handling a (5) (5) Control Building 100 Unit (2 Units) Elev. 482'-0" AH XFN-30A,B Control Room Emergency a Analysis Natural frequency de-Control Building 100 2sn (2 Fans) termined to be 61.1 Hz. Elev. 482-0" Static mutli-axis analysis. AH XFN-39A,B Battery Room Exhaust a Analysis Natural frequency de-Intermediate Bldg. 100 Fan (2 Fans) termined to be 50.8 Hz. Elev. 423'-0" Static multi-axis analysis. AH XFN-80A,B Service Water Pumphouse a Analysis Natural frequency de-Service Water Pump-100 Supply Fan (2 Fans) termined to be 56.8 Hz. house Elev. 441'-0" Static multi-axis analysis. AH XDP-12A,B; Pneumatic Actuated a Type test Biaxial, multifrequency Auxiliary Building 100 13A,B;18A, Dampers test, response spectrum Elev. 412'-0" B;19A B;21A, input. Type tests in-XDP-12 & 13 B;22A,B;23A, cluded damper, actuator Control Building 100 B;24A,B;35A, and limit switches and Elev. 482'-0" B;39A,B;45; solenoid valves. XDP-18,19,21,22,23,24 72A,B;73A,B; 35,39,45,96,99,100 74A,B;88A,B; 103,106.112,113, 89A,B;96,99A. 129 & 133 B;100A,B;103A, Service Water Pump-100 B;106;112A,B; house Elev. 441'0" Il3A,B;133A,8; XDP-72,73 & 74 129 Intermediate Bldg. 100 Elev. 4'12'-0" XDP-88 Intermediate Bldg. Elev. 412'-0" XDP-89
e i i TABLE I (Crot'd) Page 3 of 10 i Safe Installation II) Equipment Shutdown [3)SeismicQualification Seismic Qualification (5) Method of Description of Status System Tag. No. Description Operatic Location % Completion i AH XDP-152,153 Electric Motor Actuated a Type test Multiple frequency, Intermediate Bldg. 100 & 155 Dampers for Battery multi-axis seismic Elev. 412'-0" Rooms A and B (4 Units) test. BR XTK-6A,B Recycle Holdup Tanks d Analysis Static, multi-axis Auxiliary Bldg. Above 100 analysis Elev. 412'-0" CC XPP-1A,B,C Component Cooling a
- 1. Pump and motor
- 1. Natural frequency Intermediate Bldg.
100 Water Pump (3 pumps) analyses determined to be Elev. 412'-0" 36.5 Hz. Static multi-axis analysis.
- 2. Pump piping - test
- 2. Single sinusoidal test frequency, single axis input.
Natural frequency is greater than 30 Hz. CC XPP-58A,B,C Component Cooling Booster d Analysis Lowest natural frequen-Intermedite Bldg. 100 Pumps ey determined to be Above Elev. 412'-0" 54.1 Hz. Static multi-axis analysis. 4 CC XHE-2A,B Component Cooling Water a Analysis Lowest natural frequen-Intermediate Blds. 100 Heat Exchanger (2 heat ry determined to be Elev. 412'-0" t exchangers) 31.5 liz. Stat 4c multi-axis analysis. CC XTK-3 Component Cooling Water d Analysis Lowest natural frequen-Auxiliary Bldg. 100 } Surge Tank cy determined to be Above Elev. 463'-0" 69.6 !!z. Static multi-axis analysis. CO XTK-8 Condensate Storage Tank b Analysis Hydrodynamic frequency Adjacent to Water 100 determined to be 0.252 Treating Building at Hz. Dynamic mult-axis Grade analysis (TID-25021). Response spectrum input. i CS ITK-12A,B Boric Acid Tank a Analysis Hydrodynamic frequency Auxiliary Building 100 (2 tanks) determined to be 0.464 Elev. 463'-0" l Hz. Dynamic multi-axis analysis (TID-25021) Response spectrum input. d
~ ,,~~ ~, l l TABLE I (Cont'd) Page 4 of 10 1 Safe Installation Status Method of Description of g3) Equipment Shutdown (3) Seismic Qualification System (1) Tat. No. Description Operation Seismic Qualification Loration _, % Completion DG XPP-4A,B; Diesel Generator Fuel Oil a Analysis Natural frequency Diese! Ccercator 100 XPP-141A,B Transfer Pump (4 pumps) determined to be 486 Bldg. Elev. 427'-0" Hz. Static multi axis analysis. DG XTX-9A,B Diesel Generator Starting a Analysis Lowest skid natoral Diesel Generator 100 8 C,D Air Skid (2 skids) frequency determined Bldg. Elev. 436'-0" to be 20.7 Hz. Dynamic multi-axis analysis of starting air equipment. i 1 DG XTX-20A,B Diesel Generator Fuel a Analysis Hydrodynamic frequency Diesel Generatur 100 011 Day Tank (2 tanks) determined to be 1.47 Bldg. Elev. 436'-0" Hz. Dynamic multi-axis analysis (TID-7024). Static multi-axia analysis. DG XTK-53A,B Diesel Generator Fuel a Analysis Static multi-axis Adjacent to Diesel 100 Oil Storage Tank (2 tanks) analysis. Generator Building Below Grade
- 1. Diesel engine and
- 1. Dyaanic multi-axis Diesel Generator 100 DG XEG-1A,*5 Diesel Generators and a
Associated Equipment mechanical equip-analysis. Bldg. Elev. 436'-0" (2 units) ment - analysis and 427'-0"
- 2. Electrical and air
- 2. Multiple frequency, starting controls -
multi-axis testing. test DC XHD-13A,3 Diesel Generator Air Intake a Analysis Natural frequency Diesel Generator 100 C,D Filter Silencer (4 Units) determined to be 67.1 Building Elev. 463'-0" Hz. Dynamic multi-axis analysis. DC XNA-7A,B Diesel Generator Exhaust a Analysis
- 1. Lowest shell natural Diesel Generator 100 Maffler (2 mufflers) frequency determined Bldg. Elev. 463'-0" to be 30 Hz. Static multi-axis analysis.
- 2. Internals lowest frequency determined to be 4.4 Hz.
Dynamic multi-axis analysis. 4
~ 7_ s-I 1' TABLE I (Cont'd) Page 5 of 10 l Safe Equipment Shutdoen Hethod of Installation System (1) Taa. No. Description Operationg3) Seismic Qualification Description of Status Seismic Qualificationg4) Location % Completion EF XPP-8 Turbine Driven Emergency b
- 1. Pump and Turbine -
- 1. Natural frequency Intermediate Building 100 l
Feedwater Pump analysis determined to be Elev. 412'-0" 64.7 Hz. Static multi-axis analysis. i J
- 2. Pump and Turbine
- 2. Single sinusoidal i
piping appur-test frequency, tenances - test single axis input. Natural frequency is greater than 30 Hz. EF XPP-21A,B Hotor Driven Emergency b
- 1. Pulp - analysis
- 1. Natural frequency Intermediate Building 100 Feedwater Pump (2 Pumps) determined to be Elev. 412'-0" 47.6 Hz.
Static g multi-axis analysis.
- 2. Pump piping appur-
- 2. Single sinusoidal tenances - test test frequency, single axis input, natural frequency is greater than 30 Hz.
EF IFV-3531 Control Valve b Analysis / Test Static test of unbraced Intermediate Building 100 IFV-3536 (6 valves) IFV-3541 extended structure Elev. 423'-6" IFV-3546 (valve bonnet, actuator, IFV-3551 snubbers and appurten-IFV-3556 ances) resulted in 1 natural frequency of i 20 Hz (x-axis) and 21 Hz (y-axis). Multifrequency sweep resulted in cho-osing 19, 24, 26 and 30 Hz (x-z axis) and 19, 22 and 30 Hz (y-z axis) for sine beat test. Seismic test was biaxial. See also, Note 2. FH XCR-3 Fuel Handling Building d Analysis Dynamic multi-axis Fuel Handling Bldg. 100 Crane analysis. Top of Crane Rail Elev. 494'-6" 4 FH XCR-4 Reactor Building Crane d Analysis Dynamic multi-axis Reactor Building, 100 analysis. Top of Crane Rail i Elev. 552'-0" J
^ i l l! 5 TABLE I (Cont'd) Page 6 of 10 l: Safe Installation Equipment Shutdown (3) Seismic Qualification Seismic Qualification (4) Location 1 Completion System (g) Taa. No. Description Hethod of Description of Status Operation j Fuel Transfer Canal Gates i FH INF-42 Spent Fuel Pool Gate d Analysis Lowest natural frequen-Fuel Handling Bldg. 100 l cy determined to be Below Elev. 463'-0" 160 Hz. Static multi-axis analysis. XNF-43 Cask Loading Pit Gate d FW XVG-1611A, Main Feedwater b
- 1. Valve and actua-
- 1. Natural frequency Penetration Access 100 B,C Isolation Valves (3 Valves) tor - analysis determined to be Area Elev 436'-0" 57.48 Hz. Static seismic analysis.
Natural frequencies in horizontal direc-tions were 22 and 24 Hertz, no resonant frequencies found i below 33 Hertz in [ i vertical direction. Multifrequency and sine beat tests per-i I formed. Sine beat test performed at 22, 24, and 33 Hz.
- 2. Actuator-test
- 2. Multiple frequency, biaxial seismic test.
MS IPV-2000 Control Valve (3 Valves) b Analysis / Test Static test of unbal-Intermediate Building 100 l IPV-2010 anced extended struc- & Penetration Access IPV-2020 ture (valve bonnet. Area Elev. 436'-0" actuator, snubbers and appurtenances) resulted in natural f requency of 23 Hz (x-axis) and 21 Hz 4 (y-axis). Multifrequency i sweep resulted in cho-osing 23, 27.5 and 29 Hz (x-z axis) and 21, 25 and 29 Hz (y-z axis) for sine beat test. Seismic test was bianial. See also. Note 2.
~~ TABLE I (Cont'd) Page 7 of 10 Safe Installation quipment Shutdown Hethod of Description of Status System (1) Tag. No. Description Operationg3) Seismic Qualification Seismic Qualification (4) Location % Completion MS IF-2030 Control Valve b Analysis / Test Static test of unbal-Intermediate Building 100 anced extended struc-Elev. 412'-0" ture (valve bonnet, actuator, snubbers and appurtenances) resulted in natural frequency of 26 Hz (x-axis) and 25 Hz (y-axis). Multifrequency sweep resulted in cho-osing 23.5, 26, 29, 33.5 and 40 Hz (x-z axial and 25,29, 33.5, and 43 Hz (y-z axis) for sine beat test. Seismic test was biaxial. See also Note 2. MS XVM-2801A Main Steam Isolation Valve b Analysis / Test Natural frequency de-Intermediate Building 100 B,C (3 valves) termined to be 58.2 Hz. Elev. 436'-0" Static multi-axis analysis. Static seismic load test. MS XVS-2806A Main Steam Safety Valves b Test Single frequency, Intermediate Building 100 through (15 valves) single axis seismic Elev. 436'-0" XVS-2806N test. Natural frequency & XVS-2806P determined to be 37-38 Hz. MU XPP-40A,B Reactor Makeup Water d Analysis Lowest natural frequen-Auxiliary Building 100 i Pumps cy determined to be Above Elev. 374'-0" 31 Hz. Static multi-axis analysis. MU XTK-39 Reactor Hakeup Water d Analysis Static multi-axis Auxiliary Bldg. Above 100 Storage Tank analysis. Elev. 412'-0" l SF XHE-7A,B Spent Fuel Pool d Analysis Lowest natural Auxiliary Bldg. Above 100 Cooling Heat Exchangers frequency determined Elev. 388'-0" to be 116 Hz. Static multi-axis analysis. SF XPP-32A,8 Spent Fuel Cooling d Analysis Lowest natural Auxiliary Bldg. Above 100 Pumps frequency determined Elev. 412'-0" to be 70.6 Hz. Static multi-axis analysis. 4
n., TABLE I (Cont'd) Page 8 of 10 Safe Installation Equipment Shutdown Method of Description of Status System (1) Tag. No. Description Operationg3) Seismic Qualification Seismic Qualification (4) Location % Completion SF XTK-25 Refueling Water Storage Tank a Analysis flydrodynamic f requency Auxiliary Building 100 determined to be 0.275 Elev. 412'-0" Hz. Dynamic multi-axis analysis (TID-25021). Response spectrum input. SI XSM-SA,B RHR Isolation Valve d Analysis Lowest natural Auxiliary Bldg. Above 100 Containers frequency determined Elev. 397'-0" to be 30 Hz. Static multi-axis analysis. SP XPP-38A,B Reactor Bldg. Spray Pumps d Analysis Lowest natural Auxiliary Bldg. Above 100 frequency determined Elev. 374'-0" to be 56.8 afz. Static multi-axis analysis. SP XSM-4A,B Containment Spray Isolation d Analysis Lowest natural Auxiliary Bldg. Above 100 Valve Containers frequency determined Elev. 397'-0" to be greater than 30 Hz. Static multi-axis analysis. SP XTK-60 Sodium liydroxide Storage Tank d Analysis Lowest natural Auxiliary Bldg. A'ove 100 u frequency determined Elev. 412'-0" to be 31.7 Hz. 4 Static multi-axis analysis. SS XCE-1;2; Nuclear Sampling Heat d Analysis Lowest natural Control Complex 100 3A,B,C; Exchangers frequency determined Above Elev. 425'-0" 4;5;6;7 to be 90 Hz. Static multi-axis analysis., SW XPP-39A, Service Water Pump (3 Pumps) a Analysis Natural frequency de-Service Water Pump 100 B,C termined to be 14 Hz. House Elev. 436'-0" Dynamic multi-axis ~ analysis, response spectrum input. SW XPP-45A,B . Service Water Booster a Analysis Natural frequency Intermediate Building 100 Pump (2 pumps) determined to be 36.6 Elev 412'-0" Hz. Static multi-axis analysis.
TABLE I (Cont'd) Page 9 of 10 Safe Installation Equipment Shutdown Hethod of Description of System (1) Tag. No. Description Operationg3) Seismic Qualift:. tion g4) Status Seismic Qualification Location % Completion SW XRS-2A,B.C Service Water System d Analysis Lowest natural Service Water 100 Traveling Water Screens frequency determined Purphouse Elev. to be 6.24 Hz. 436'-0" Dynamic multi-axis analysis. VL XAH-4A,B RHR/ Spray Pump Room c (5) (5) Auxiliary Building 100 Cooling Unit (2 units) Flev. 385'-0" VL XAH-1A,B; Charging Pump Room Cooling a (5) (5) Auxiliary Building 100 XAH-2 Units (3 units) Elev. 400'-0" VL XAH-IIA,B Emergency Feedwater Pump b (5) (5) Intermediate Building 100 Area Cooling Unit Elev. 423'-6" (2 units) VL XAH-24A,B Battery Room Air a (5) (5) Intermediate Building 100 Handling Unit (2 units) Elev. 423'-0" VL XAH-9A,B Service Water Booster Pump a (5) (5) Intermediate Building 100 Area Cooling Unit (2 units) Elev 426'-0" VL XAH-6, ESF Switchgear Room Cooling a (5) (5) Intermediate Building 100 XAH-8 Unit (2 units) Elev. 451'-0" VL XAH-19A,B Speed Switch Room Cooling a (5) (5) Intermediate Building 100 Unit (2 units) Elev. 451'-0" VU XPP-48A,B HVAC Chilled Water Pump a Analysis Natural frequency Intermediate Building 100 C (3 pumps) determined to be 137 Elev. 412'-0" Hz. Static multi-axis analysis. VU XHX-1A,B, HVAC Mechanical Chillers a Test Multiple frequency. Intermediate Building 100 C (3 chillers) multi-axis test (1 to Elev. 412'-0" 40 Hz range). 4
TABLE I (Cont'd) Page 10 of 10 Safe Installation Equipment Shutdown g3) Seismic Qualification Seismic Qualification (4) Location 1 Completion Method of Description of Status System (3) Taa. No. Description Operation Power Actuated Valves a Analysis / Test In general, valves (see At all Seismic Cate-95 (other than control valves FSAR Table 3.9-8) were gory I buildings, at and special valves listed seismically qualified all elevations. above) by analysis. Natural frequency was determined and a static multi-axis analysis was performed. Selected valves and/or prototypes were tested by a static seismic load test or by a single frequency, single axis seismic test. NOTES: 1. System: AH - Air Handling (HVAC) HU - Make-Up ' dater ER - Boron Recycle RC - Reactor Coolant CC - Component Cooling Water RH - Residual Heat Removal CD - Condensate SF - Spent Fuel Cooling CS - Chemical and Volume Control SI - Safety Injection DG - Diesel Generator Services SP - Containment Spray EF - Emergency Feedwater SS - Sample System FH - Fuel Handling SW - Eervice Water FW - Feedwater VL - Local Ventilating and Cooling MS - Main Steam VU - Chilled Water 2. Seismic analysis of each type of control valve. Prototype of each control valve type was seismically tested. Multiple frequency, multi-axis seismic test. 3. Equipment is required to maintain the plant in the following condition: a. Hot stand-by and cold shutdown b. Hot stand-by c. Cold shutdown d. Safety related, but not required for shutdown 4. Types of analysis: a. Static b. Equivalent static (also known as static coefficient analysis) c. Dynamic (also known as seismic modal analysis) input to analysis can be either response spectrum or time-history. 5. Qualified by similiarity to XAH-12A,B-AH which was seismically analyzed / tested. KAH-12A,B-AM is the " worst case" for seismic design.
8-TABLE 2 Page 1 of 2 SEISMIC QUAllFICATION OF NUCLEAR STEAM SUPPLY STSTEN MECHANICAL EQUIPMENT REQUIRED FOR SAFE SHUTDOWN Safe Installatica quipmen Shutdon Hethod of Description of Status System (1) Tag. No. Description Operation (2) Seismic Qualification Seismic Qualification Location % Completiga 43) CS XPP-13A.B Boric Acid Transfer a Analysis Natural frequency Auxiliary Building 100 Pump (2 pumps) determined greater Elev. 452'-0" than 30 Hz. Static multi-axis analysis. CS XPP-43A,B Charging Pumps (3 pumps) a Analysis Natural frequency Auxiliary Building 100 C determined greater Elev. 388'-0" than 30 Hz. Static multi-axis analysis. RC XTK-24 Pressurizer Assembly a Analysis Natural frequency Reactor Building 100 determined. Dynamic Elev. 437'-6" I multi-axis analysis. RC XSG-2A, Steam Generator a Analysis Natural frequency Reactor Building 100 B,C (3 units) determined. Dynamic Elev. 437'-6" multi-axis analysis. RH XPP-31A,B Residual Heat Removal e Analysis Natural frequency Auxiliary Building 100 Pump (2 pumps) determined greater Elev. 374'-0" 30 Hz. Static multi-axis analysis. RH XHE-5A,B Residual Heat Removal Heat c Analysis Natural frequency Auxiliary Building 100 Exchanger (i heat exchangers) determined. Dynamic Elev. 412'-0" multi-axis analysis. SI XTK-28A,8 Accumulator Tanks d Analysis (Later) Reactor Building 100 Elev. 412'-0" SI XTK-27 Bcron Injection Tank d Analysis (Later) Fuel Handling 100 Building Elev. 412'-0" SI (Later) ECCS Valves d Analysis / Test In general, valves Reactor Building 100 (See TSAR Table 3.4-8) Elevs. 412'-0", were seismically 436'-0" qualified by analysis.
4.AD u TABLE 2 (Cont'd) NOTES: Page 2 of 2 1. System: AH - Air Handling (ifVAC) MS - Main Steam CC - Component Cooling Water RC - Reactor Coolant CD - Condensate RH - Residual Heat Removal CS - Chemical and Volume Control SF - Spent Fuel Cooling DG - Diesel Generator Services SI - Safety Injection EF - Emergency Feedwater SW - Service Water FW - Feedwater VL - 1.ocal Ventilating and Cooling VU - Chilled Water 2. Equipment is required to maintain the plant in the following condition: Ilot stand-by and cold shutdown a. b. Hot stand-by a c. Cold shutdown g d. Safety related, but not required for shutdown 3. Types of analysis: a. Static b. Equivalent static (also known as static coefficient analysis) Dynamic (also known as seismic modal analysis) input to analysis can be c. either response spectrum or time-history. t h a [g I __ n ) N 1 I v. V j s [ k ( o s ~~ * ~;~ u y 4" )
r-- ~ I i I. TABLE 3 [ age 1of5 SEISMIC QUALIFICATION OF BALANCE OF PLANT SEISMIC CATECORY I INSTURMENTATION, ELECTRICAL EQUll' MENT AND SUPPORTS w s I i Installation Safe Shutdown Method of Description of Status Description Operation (1) Seismic Qualification Seismic Qualifications Location % Completica Valve Operators a Supplied equipment tested; Multifrequency, multi-axis, Au seismic designed buildings, 95 (actuator) type test and analysis test; sine beat test at all elevations reasonant peaks. 7200 Volt Switchgear a Type test Random frequency with Intermediate Building 100 superimposed sine beats; Elevs. 436'-0", 463'-0" multi-axis test Service Water Pumphouse Elevs. 425'-0" and 441'-0" 480 Volt Unit a Type test Multi-frequency with Auxiliary Building Elev. 100 Substations superimposed sine beats; 463'-0" multi-axis test Intermediate Building Elevs. 436'-0" and 461'-0" Service Water Pumphouse Eleys. 425 '-0" and 441'-0" 480/120 Volt Vital System d Supplied equipment tested Random frequency; Control Building 100 Transformers multi-axis test Elev. 436'-0" Motor Control Centers a Type test Random frequency; Auxiliary Building, 100 multi-axis test Elevs. 412'-0" and 463'-0" Intermediate Building Elevs. 436'-0" and 463'-0" Service Water Pumphouse Elevs. 425'-0" and 441'-0" Motors for Safety Class a Analysis Static acceleration of Auxiliary Building Elevs. 100 Pumps and Fans rigid structure; sum of 374'-0", 385'-0" 388'-0", squares combination of 397'-0", 400'-0" 412'-0", stress 452 '-0", and 475 '-0" Intermediate Building Elevs. 412 '-0", 423 '-0", 423 '-6", 400'-0", 426'-0" and 451'-0" Fuel llandling Building Elev. 436'-0" Control Building Elev. 482'-0" Diesel Generating Building Elevs. 427'-0", 436'-0" and 447'-3" Battery Chargers a Supplied equipment tested Random frequency; single Intermediate Building 100 axis test Elev. 412'-0" )
n, _ .n;, a s _l _, ') ~ s y i i G ~. - / 7 l ll s 1 ;. -.... .I = r / m" / ~!;% f r ,. e n g _ / f e V / TABLE 3 (Cont'd) Page'2 of 5 Installation Safe Shutdown Method of Pescription of Status Description Operation (1) Seismi_e Qualiff'estion griic Qualifications S Location M ompletion j Diesel Generators a Analysis and test of Static acceleration of Diesel Generating BuilM rg
- ,7 100 some components rigid structures and randon Elevs. 436'-0", 427'-0", and frequency for tests; sum of 463'-0" j.
squares combination of stress for analysis and o multi-axis test Cable Tray and Cable a Analysis Peak response acceleration All seismic designed buildings, 100 Tray Hangers of structures; vector sua all elevations combination of stress l Electrical Containment a Type test Random frequency; single Penetration Access Area 100 Penetrations and axis test Elevs. 412'-0", 436'-0" Miscellaneous Connectors and 463'-0" e ! Fuel Handling Building Elcys. 436'-0" and 463'-0" and other areas. Distribution Panels a Type test Random frequency; All seismic designed buildings, 100 multi-axis test all elevations Batteries and Battery a Type test of cells; Response spectrum for Intermediate Building 100 Racks modal analysis of racks racks and random Elev. 412'-0" frequency for tests; sum of squares combination of stress for racks and multi-axis test for cells Speed Switches a Type test Randor frequency; Intermediate Building 100 (7200 volt) multi-exis test Elev. 434'-0" Service Watn Pumphouse Elevs. 42S'-0" and 441'-0" Transfer Swghes a Type test Random frequency; Auxiliary Building Elev. 100 (7200 volt) multi-axis test 388'-0" Intermediate Building Elev. 436'-0" Service Water Pumphouse Elev. 425'-0" TransferSgches a Type test and analysis Random frequency; Intermediate Building Elev. 100 (480 volt) multi-axis test; and 412'-0" static multi-axis analysis Pressure Transmitters a Type test 'Rendom frequericy; All seismic designed buildings, 90 sulti-axis test all elevations
_-=,. TABLE 3 (Cont'd) Pare 3 of 5 Installation SafeShutdow{1)j Method of Description of Status Description Operation Seismic Qualification Seismic Qualificaticos Location 1 Completion Transfer Switch for 'a Analysis and type test Random frequency; Auxiliary Building 100 C Charging Pump of components multiaxis tests of Elev. 388'-0" Auxiliaries components; natural frequency and stress analysis of panel Level Transmitters a Type test Random frequency; All seismic designed buildings, 90 multi-axis test all elevations Flow Transmit ters a TTPe test Random frequency; All seismic designed buildings, 90 multi-axis test all elevations Temperature Sensors e Type test Single frequency; single All seismic designed buildings, 90 axis test all elevations Control Board a Type test Random frequency; Control Building Elev. 463'-0" 100 Switch Modules multi-axis test planned ESF Loading Sequence a Type test and analysis. Random frequency; multi-Control Building Elev. 436'-0" 100 Control Panels axis test Reactor Protection Under-d Type test and analysis Random frequency with Intermediate Building Elev. 100 frequency and Voltager superimposed sine beats; 436'-0" Relay Penels multi-axis test Main Control Board ') I a Supplied equipment tested Random frequency; multi-Control Building Elev. 463'-0" 100 and analysis axis test; response spectrum input to dpsamic multi-axis analysie; sum of absolute values ',i stress Heating Ventilating a Supplied equipment tested Random frequency; multi-Control Building Elev. 463'-0" 100 and Air Condi ControlPanel((joing and analysis axis test; response spectrum input to dynamic multi-axis analysis; sum of absolute values of stress Balance of Plant a , Type test Identical to Westinehouse Control Building Elev. 463'-0" 100 Instrument Panels supplied 7300 series process control equipment cabinets 4 I i
- - ~ ~ ~ TABLE 3 (Cont'd) Page 4 of 5 Installation Safe Shutdcwn Method of Descr:iption of Description Operation (1) Seismic Qualification Seisaic Qualifications Location 7, Completion Status Control Room Evacuation Type test and analysis Random frequency multi-Intermediate Building 100 a Panel axis test; response Elev. 436'-0" spectrum input to dynamic multi-axis analysis; sum of absolute values of stress Auxiliary Relay Rack Test and analysis; Insitu test of panel for Control Building Elev. 436'-0" 100 a component tests frequency and response; analysis for stress; component multifrequency and multiaxis tests ifVAC Mechanical Water .a Supplied equipment tested Random frequency; multi-Intermediate Building 100 Chiller Contrcl Panels axis test Elev. 412'-0" and Motors Radiation Monitoring a Type test Control Panel Randomfrequency,mult{g) Control Building Elev. 463'-0" 100 axis tests are planned Termination Panels a Analysis Response spectrum input to Control Building Elev. 448'-0" 100 dynamic multi-axis analysis; (supported by Elev. 463'-0") sum of absolute values of stress Earthquake Type test and analysis Random frequency, multi-Ccatrol Building Elev. 436'-0" 100 a Instrumentation axis tests are planned; single sine sweep test done previously llydrogen Analyzer Panels a Type test or analysis Randomfrequency,mult{g) Penetration Access Area 100 axis tests are planned Elev. 463'-0" Fuel Handling Building Elev. 463'-0" Local Control, Pelay a Analysis with component Random frequency multiaxis 'la rious 90 and Fuse Panels type test data tests of components, natural frequency analysis and static stress analysis NOTES: 1. Equipment is required to maintain the plant in the following condition: a. Not stand-by and cold shutdown b. Hot stand-by
s-- t
- TABLE 3 (Cont'd)
Page 5 of 5 NOTES (Cont'd): c. Cold shutdown J. Safety related, but not required for shutdown 2. Electrical continuity required for safe shutdown but transfer capability not required. 3. Not yet qualified; qualification to be in accordance with methods described in FSAR Section 3.10. 4. The control boards are seismically qualified. Non-nuclear safety class components mounted on the boards are not required to be seismically qualified but the control boards are so designed that failure of non-nuclear safety class components does not degrade any seismically qualified components. I 4 i
TABLE 4 Page 1 of 2 SEISMIC QUALIFICATION OF NUCLEAR STEAM SUPPLY SYSTEM SEISMIC CATEGORY I INSTRUMENTATION, ELECTRICAL EQUIPMENT AND SUPPORTS Installation Method of Description of Status SafeSbutdog) Operation Seismic Qualification Seismic Qualifications Location
- 4 Completion DS :tiption II)
Pressure Transmitters a Test Bi-axial, multifrequency All seismic designed buildings, 90 and Differential-Pressure all elevations Transmitters Proc *ss Control a Test Single axis sine beat, Control Building Elev. 436'-0" 100 Equipment Cabinets bi-axial multifrequency NSSS Solid State d Test Single axis sine beat Control Building Elev. 4:6'-0" 100 Protection System Cabinets Nuclear Instrumentation d Test Single axis sine beat, Control Building Elev. 436'-0" 100 l System Cabinets bi-axial multifrequency Safeguards Test Racks d Test Single axis sine beat Control Building Elev. 436'-0" 100 l Resistance Temperature a Test Single axis sinusoidal. Control Building Elev. 463'-0" 0 l Detectors Refer to WCAP-8234-A. l Instrument Supply a Test Single axis sine beat, Control Building Elev. 436'-0" 100 Inverters bi-axial sine beat. Refer to WCAP-7817, WCAP-7817 Supplement 2, WCAP-7821 Supplement 2 Addendum 1 Multi-axis, multifrequenc)II) Intermediate Building Reactor Trip Switchgear d Test 100 Elev. 463'-0" Power Range Neutron d . Test Single axis sinusoidal. Reactor Building Elev. 412'-0" 0 Detectors Post Accident Monitoring a Test Multi-t-is, multifrequencyII) Control Building Elev. 463'-0" O l Equipment (Indicators) Post Accident Electric d Test Single axis sine beat for Reactor Building Elev. 463'-0" 100 Hydrogen Recombiners recombiners, bi-axial sine beat for control panel Core Subcooling Monitor d Test Not yet qualified; Control Building Elev. 463'-0" 0 qualification to be in accordance with method: described in Section 3.10 of the FSAR.
g 0 1 i. TABLE 4 (Cont'd) Page 2 of 2 Installation Safe Shutdown) Method of Description of Status Operation (2 Seismic Qualification Seismic Qualifications Location 1 Co:rrpletion Description Critical System Leak d Test Not yet qualified; Control Building Elev. 463'-0" 100 Monitoring System qualification to be in accordance with methods described in Section 3.10 of the FSAR. NOTES: l. Not yet completed. 2. Equipment is required to maintain the plant in the following condition: a. Hot stand-by and cold shutdown b. Hot stand-by c. Cold shutdown d. Safety related, but not required for shutdown k 4 i i 4 t e a l 4
I 1 l ATTACHMENT #3
't '"^*'***'**"" GILBERT ASSOCIATES, lNC. tscuan.'.s uto ccMatTMIT5 n a u.cr u.<, w.o. suusta pace 1 ( R EADING, P A. 3 of 4 suSJECT VERIFtER DATE 2.3 REVIEW OF ANALYSIS YES NO COMMEh7 2.3.8 DYNAMIC ANALYSIS 1. Were the pipe supports and restraints modeled properly? 2. Is application of the response spectrum curves utilized considered appropriate? 3. Were the spectral curves input properly? 4. Have all modes up to where the spectral acceleration flattens out to a base level been included in the response calculations? 5. Does selection of the master node degress of freedom ensure adequate representation of dynamic behavior? 6. Are the master nodes input properly? 7. Are the values specified as additional masses representative of the weight of the component to which they apply? 8. Is a seismic anchor movement (S.A.M.) analysis require? 9. Does the S.A.M. analysis method utilized f:., conform to an acceptable practice?
- 10. Are the displacements for the S.A.M. analysis correctly selected and input?
11. Is an analysis for occasional loads other than earthquake and S.A.M. required? 12. Were the calculated unbalanced loadings associated with 2.3.8.11 determined by an appropriate method? 13. Is the analysis identified by 2.3.8.11 performed properly? 2.3.9 OUTPUT 1. Is the appropriate scaling factor chosen for conversion of OBE to SSE values? 2. Are pipe stresses within the allowables (see 2.7)? 3. there the overlapping modeling technique is applied, are the governing stresses for comparison against the allowables appropriately identified? 4 Are pipe displacements reasonable? 5. Are no==le loads within the allowables (see 2.10)? 6. Are valve accelerations within the allowables (see 2.8)? j 7. Are penetration loadings within the allowables (see 2.9)? 8. Are flange stresses within the allowables? l l l
k ~#'~~"'""' ~2 2 GlLSERT A55CClATE5, INC. ENGINEERS AND CONSULTANTS p,o,gcy3,og .o,uno,gg ,,,c ( R E ADING, P A. SUSJCCT on GIN AIOR vgggpggg 2.8 VALVE ACCELERATIONS DATC o,yg TAG NO. JOINT NO. ISO NO. ACCELERATION ACCELERATION ACCELERATION A A2 A A A A 1 3 1 2 3 A A2 A3 1 X z S SU Y 5s ( ~o Z ^1T Oo r.o A AQ 2T A @H 3T
- \\CCELERATION ALLOWABLE ACCELERATION ALLOWABLE ACCELERATION ALLOWABLE VERTICAL (A2T)
HORIZONTAL
- HORIZONTAL ACCELERATION =
(A 2 + (A 2 lT) 3 ( t. ~
ATTACHMENT #4 w
5 '\\ November 14, 1980 GAI Report No. 2226 l PROJECT PROCEDURE FOR THE DESIGN OF ELECTRICAL AND INSTRUBIENTATION EQUIPMENT IIASIS AND ATTACIIMENTS s VIRGIL C. SU}DIER NUCLEAR STATION UNIT 1 l PRFI'ARED FOR SOUTil CAROLINA ELECTRIC AND CAS COBIPANY COLUlillIA, 50UTil CAROLINA liY G i l.IlERT/ COBlMONWE Alli ti, I?:C. READING, PENNSYINANIA 19603 801202o298 i
e PROJECT PROCEDURE FOR Tile DESIGN OF ELECTRICAL AND INSTRUMENTATION EQUIPMENT BASIS NiD ATTACliMENTS VIRGIL C. SUICIER NUCLEAR STATION UNIT 1 l TABLE OF CONTENTS i i PROJECT PROCEDURE FOR THE DESIGN OF ELECTRICAL AND INSTRUMENTATION i I EQUIPMENT BASIS AND ATTACllMENTS PROJECT CRITERIA FOR Tile DESIGN OF ELECTRICAL AND INSTRUMENTATION EQUIPMENT BASIS AND ATTACllMENTS SAMPLE ANALYSIS l k f
V. C. SUMMER NUCLEAR STATION PROJECT PROCEDURE FOR Tile DESIGN OF ELECTRICAL AND INSTRUMENTATION EQUIPMENT BASIS AND ATTACIIMENTS 1. Definitions: a. Base: The intermediate framework between the electrical equipment and the building structure, b.
Attachment:
The method of attaching the electrical equipment to the base. 2. For each piece of safety related equipment the Electrical, or Instrumen-tation and Control Department provides the following information to the Structural Department: Test or analysis data, where available, including the following: a. 1. Details of anchorage used for attachment during testing or loads calculated by analysis, including bolt size and strength, if applicable. 2. Natural frequency 3. Equipment damping b. Equipment data as follows: 1. Weight 2. Center of gravity if documented, or suggested assumption for center of gravity 3. Vendor drawings numbers c. A conceptual base and attachment design, including the following: 1. Exact location, including building and elevation 2. Conceptual base detail 3. Conceptual attachment detail I I l
Page two 3. The Structural Department performs the following tasks: Finalizes the design of the base in accordance with estnblished a. criteria (see attached). b. Finalizes the design of the attachment in accordance with established criteria (see att iched). Transmits the details of the final design to the Drafting Section c. of the Electrical Department. i i! 4. The Draf ting Section of the Electrical Department performs the following: a. Incorporates the detailed designs onto the applicable construction drawings. b. Checks the drawings for dimensional adequacy and functional concept. c. Signs out the drawing. 5. The Engineering Section of the Electrical Department, or the Instrumentation Depa r tmen t, performs the following: Reviews the drawing for concept and compatibility with equipment, a. b. Signs out the drawing. 6. The Structural Engineering Department performs the following: a. Checks the drawings for correct interpretation of the design. b. Signs out the drawing as an interfacing department. c. Performs an independent verification of the design. NOTE: If for any reason any of the interface sign-of f steps have been omitted, the reviewer in step 6c, will ensure that all final details are compatible with the design requirements. l l l
V. C. SUFDIER NUCLEAR STATION PROJECT CRITERIA FOR DESIGN OF ELECTRICAL AND INSTRUMENTATION EQUIPl!ENr IIASES AND ATTACIDIENTS DEFINITIONS 1. Base: The intermediate f ramework between the Elect rical Equipment and the building structure. 2.
Attachment:
The method of attaching the Electrical Equipment to the base. SAFETY RELATED EQUIPMENT Criteria for the design of equipment bases: 1. The base shall have adequate strength in accordance with applicable structural codes and standards. 2. The base shall be rigid with respect to the natural resonant frequency of the building. Criteria for the design of equipment attachaents: 1. Equipment qualified by test: The attachment shall be of the same type, size and strength as used a. during qualification testing. b. Alternatively, the attachments shall be in the same place and shall have equivalent or greater rigidity and st rength as the attachment used during qualification testing. Alternately, the attachment shall be as close as possibic to the c. location of the attachments used during test and shall have an equivalcut or greater rigidity and strength as the attachment used during the qualification testing. The equipment base shall be checked to ensure that with the revised attachment location that the effective stiffness has not been decreased. l
Page two .d. If the type of attachment used during testing is not fully known and documented, the attachment should be designed to have adequate strength in accordance with applicable structural standards for the seismic loading, and will be provided with a positive type connective such as: bolts, Threaded Nelson Studs, plug welds or fillet welds or a combination of these methods. 2. Equipment qualified by analysis: The attachment design shall be consistent with the qualification analysis and shall have a strength equivalent to or greater than that determined as required during the qualification analysis. Assumptions for the design of equipment bases and attachments: 1. The equipment shall be assumed resonant with the building natural frequency. The equipment' damping factor shall be taken as 5 percent maximum. 2. I I 1 o
'"^"'**'"""' GlLBERT ASSOCIATES,INC. Structorhl Encineerina OM - 0*ll. 3 - I ENGINEER $ AND CONSULTANTS w.o. Neu s e R paoc g,g g c7 n o g R E A DIN G, P A. $(@ f G, V.(,$Urnrggp 1 CO-N&l=CGQ l Oh6 0 $USJECT ORIGIN ATOR E!?c. Ec.uo. Support b Anchorcae - 60tferY Charger 300 kn?. A C'SO""On oAre 10 3I 30 X6C I A, x DCIa, X SCIA -15 Int.bidq. FI. EI. 412 ' O ven'x"5 9M rse ~~ A Reference Detail 3 :
- 'c "bb' Y:cc'cr UWg.
EMS 027 -4 Elec. Plan Dw9 E '201 -194 Elec. Det. Dwg. E '201 - 18 5 Sb.i Dat. G Btruct.Det.Dwg-5-515-ICI Unit Wt. : Isso d Approx. (rrom Vendor Dwg.) Test Data Connection : Grade 2 bolts (Inforrrc% InernpO) (Sei:rnic evaluation os eo,uipmen f-feet nport) Phv:Icci DirnenSions of Cabinet: Drorn Mendor bN9.) , w.oco", _ s s.cco"' _ l ll l l i 1 Assurned CG-1 =. yo y I l D' 3. r-i?l. Cl2* 3" _,h-l f me..-. EE -[*000 L 30 000"_ o ./ 5 Mcuniing Wolas.9&2" dicen. t yp. PROPRIET ARY IN FORW ATION OF GILBERT ASSOCI ATES, INC. - FOR N T ERN AL USE ONLY G At 353 REV. 3-77 e
\\ GILBERT ASSOCIATES,INC. {"""*p"'"}'gq; g7jgg g4jg [";; g ". ; '"' " ~ ENGINEERS AND CONSULTANTS pro;EcT NAuE w.o. NumeER PAoE R E ADIN G, P A. SC & $G Y.C. Summer Al 04*44SI a60 2 of 6 5UBJECT ORIGIN ATCR Elec. %uip. Support $ Anchorage-battery Charytr Soo Amp. f.c.2ermen oATE 10-31-80 X 6C 1 A, X bCIS, X5CI A -lo int. B!dg. Fl. 51. 412'.0" v Er, v,ER bKSE% Testing data of cabinet base connection is not suf-HNH o TE ficiently clear to assume. strength of bolts used in test. Therefore c strerigfh analysis shall de-terrnine capacity of attachment reg.uired. Cchinzt is inplaced v ing plug welds in holes provided thro base. of unit and stitch nelds along can edge. Sti$rnic Investigation: Archarc9e criteria assumes equipment reconcncs. a . tuned nith ihat of building and a 5 % critical equiprnent damping factor at peck rtSponsa. Frorn.the.respons Speciruml envelope for- 055 > Interrn2dicte Svildinc) of El. 412'-0"., the hflowing OCceIcro Yions are read from figures:. 6l. x -c,vakt o.54 9 ecst-ned) k (rorth. south) 1 qoc 2. 2.209(at1.0 9amrno acciing fcctor) V-quokz. : .o SS9 The chove seisenic data is taken Frcrn Specifico + ion 3eistnic Analysis, Testing and Documenta tior) - V. C. Suminer Nucicar Station -Unii! 3 P-702 -da bl-00 Mav r1, 197'? ". Figures 61 refer la Response Spectrum envelope. For Obc > 2ntermedicie Building Elevation 412 '-O ". n, Desian of Cabinent base Connection 8g Desicin detciI 'G" on Dng. E -201 - 18 5 indicates ccb. bc se e is connected to intermediatz support enzmber thru holzs k, in base by piv9 Welds and by stitch filler Ncid5 clar:q bau edge. To prove connection capacity,howevzr, o nly F ug l L welds are ccmputed on +he followin9 pc92.. PROPRIET ARY INFORM ATION OF GILSERT ASSOCI ATES. INC. - FOR INTERN AL USE QNLy G Al 350 REV. 3-77
GILBERT ASSOCIATES' INC* Structural cno;neenna 04l4.'
- 0. II
- S' l o-ENGINEERS AND CONSULTANTS PROJECT N AME W.O. NUMB ER PAGE READING, PA.
bC E d h Y.C.)Umn~2r / o4 44gf.ogo 53 5 $UBJECT O RIGIN AT OR Elec. Eq.uio. Support & Anchorogc.- battery Charger 300Arnr l C hwn1on One 10-51-30 -XBClA, X SCIS, xB CIA -I6 Ent. BIda. Fl. El. Al2'-0" ve"xnEnh&.% R.1- ^ Desion of Cab. Base ConneCtiorI
- "c" y
because of orientation of cabs-NIbriz. rerce.- Iaid ( er hole) g } k 446*) cSSurne rnax. horiz, accel in 27" O A l bolt spacine) direction: 5s '= Noriz. Force /hbl2 lb50% 2Ag =^l850 '$2 \\ h 'N 11"spcc. dir26t 2 holes actiry prside \\ f cs. .B c bl1-5 is. Ihriz.Fcree/ hole s Ib50% 0.5sq =a46* A i .I-ED" spac. direci 2 holes actin) prside 4 - M ax Upliff Forn = lasoxa2 446 x42 = 3502* ly 27 o" w. 1,30.o"g - - 13,g
- s24'-
y 4 (Flr hole) _77 30 Mo 8 91 Max. hear-hori.. ccceleration = I6 50
- x 2.2 0 q + I650*x o.549 = 1150*
(pt.cI, ole) 4 holes cctinq .en least down loading vert.of = 1650'-(1650 x 0.88 ) s 60* dann I 9 acceleration. (per hok) d hcles acting Ccnstrvatively c55urne N 3 and.5-W,occelerckns cc=. r Simo,'tantow ly.' Max. cornbined Grce = 5502% a582l ok + p eo " - 50" = (per hole) { vplif t) (Shzar) (donn) te:s then cacccify conservatively assurne. only plug weld effective.: of weld - C00ccitV of Pluo Vield Per Hole Hole D = 0 562" ll O T Q Ar?Q 0f Weld = D* x 0.2854= 05b2 x03354: o 38I sq.in L Allot!<2ble drt:5 elc.cS E 70 212ctrod:S=2IC00pd(.# :qif 0' j 5 Sirzna th of nzid cer hole > 21,000 x o.24&I = 5210 *= L f Cecc!vsion : The cabinzt connecticn i: ratishd=r') as construcfzd i PROPR!ET ARY INFORM ATION OF GIL9ERT ASSOCI ATES, INC. - FOR INTERN AL USE ONLY gal 350 REV. 3-77 e i !
O GILBERT ASSOCIATES, INC. Structurcl e aineerina 00I4 0 II O ~I n ENGINEERS AND CvF 5ULTANTS pro;EcT N AME w.o. NUMBER PAGE RE ADING, PA. SCE4G Y.C. Suminer. AI 04-C61 -060 4 of G SUBJECT Cfijl N ATO,R Elec. Equi SUPFcet 8 Anchorcqz-BoiterY Chcraze 500 Amp. 0 G b:'Un m P cATE lo El.30 X bC IA, X6CIS, XBCIA -10 Ent. B!c'9. Fl. El. AIC'-O" vwnEn
- h. fAh%
gy Y Max dn. G ac c^N "b ^ Design of foierrnediate Support SC-El ocfs. 6, ~~r-i hiotz : Non-supporting L's of w,,' rcab. base. Sec<nz. nelded +o embedded
- 3) N-
"riz Ara = I '27
- cc.
P S' Uce etxt pop) 4 5x 3 x E' 5pcos ,L to frcming L'S y Floor 51. alC
- O "
' A3:Urnt 2ndS of L5x5 K$ re:frQined oGainst rotatiOG 3 0 hk.fo ok. I Donn i= orc: cnd Directional Horit. Shear force corncu. n n produce rccx. n.ycringYnom.tn y 3 .Suppcrting L Howenc.: hear Force. action. y .. is.so nice..the shece center of.fhe. cngle. ] that :nif bending Sfress WiiI be 2xcmincd k in the horizardal. direction 8 Ess.2
- tsso 1 ns
'IG50" n ?.20q,d2 + (IG50+I650x.38 5 x l.5 "= 120s5"* Trii:Kn3 thrn 9 (Ma;< Do Force) 27* _2 .J 2.75 ('o. 5 9 x 2 : 0.73 in 4 g ~- 3 Tortional Shear = TC = i'lo35 x o. W = 19 o31 ps.>. at ecc hend Ut. Venant). J 0.25 x 2 ' Ereach md. combinec' ch2cr = End Shear Strep 3-16 60 ' X'2. goc) 605 ph IS G87 p sl (00 W " N'iL' h rC2) 4xjyg (coS than 14 500p:i., L area ofone leg of L {0'A0 ) Moriz bendin StreS3= 1650*x220 x BG" x I = 2h30 pl < [esS than. $Q 2 6 lo7 22000p54 o t m af '-- (o.60 fy) o Bznding Stress occurs at center 3fcn b
- Combined Shwr $reS5 occur! aiend af merr;.Nr J
. Cornb,ned htar dress = a os2 i sos = Is s37 pi < 145 porulo.% Ccnclusion : The. int. vpport i: sctiscc+or~f as c=no tructed PHOPRIET ARY INFORM ATION OF GIL9ERT AS3JCI ATES. INC. - FOR INTERN AL usE ONLY GAI 350 R EV. 3-77
o OEPARTMENT N AME DEPT.NO. FILIMG CODE GlLBERT ASSOCIATES,INC. Structural Engin22 ring 0 416
- 0. Il. 5 -l ENGINEER $ AND CONSULTANTS PROJECT N AME W.O. NUMB ER PAGE j
RE ADING, PA. 3Cg, G y, c, $ g rn ey-g r =/ o4-44 Gl- 060 5cf 5 su ;Ec7 capiaaroa Elec. Equip SvPPort Anchorcaz. - Saitery Chcrger 500 ArnP m 0 0 "'* * " i eATe 11-6-30 x5 CIA. X 8 cia, x 6 CIA -IS Ent. bldy. Fl. El. 412'0" veec" Oc ?l% AL Plan of' Infermidiote Support cab. base is suPPoried by thex fr.ima membert
- s-
- J. l 3 '.o. L lb 3x3xj R 'V38 Ji r 4 a J I i I Ei. 4/f o" g t d-i f I i l / l [ c 4 s ( emb. pl. t J J \\ Sec,I.I zrnb. pl. -'i, l l,_r unb. pl. Shon;nc)tnin.we !d T p Int. :0? Port . condition for c ny fr rrL. Plan Y All frarne CS 5x5x k ? i chec0nq n' eld Capacity: N l
- Assurne only welds to ernbedded pl. ct end of frcrre active.
against uplift.
- Although all welds resist shear, aswrne end mids hnly) l activt-agarnci shear
- McX. Cornbaned r>d UPliH(refer k cal
- 5) (ek)le and shear on one W x5" long fillet mld
= 45a2
- s + hon drengih o! h"x 5"larg lllei weld Allonable. Werkin]du ce 21000 esi -Atsc rable IM)
C (cles: 5 io zie&o PZ5 X 907 x 21000 ysh x 3"lon) = Il155 # ccpadf c f wild - f Thera [ ore, frame oflCchmZni 50 li d t ll IS SQfisfqGior'l QS Con $cuct2d. p a e crnog inen l = b i PROPRIET ARY INFORM ATION OF G'LSERT ASSOCI AT ES. INC. - FOR INTERN AL USE ONLY G A4 330 REV. 3-77 (g -~--n_...
a . w --g ,w_ w J 1 ATTACHMENT #5 1 m - - - * - - s =_--e. s_- -g-w, v-- -m~aw TW *tPer---7 '""7" ^^T~'~* F
i j-i 1 . TAG # MODEL # (*) REPORT NO. LOCATION. 4 PT402 Barton Lot #2 1 Reactor Bldg. Floor EL 412'-0" PT403 1 Reactor' Bldg. Floor EL-412'-0" PT455 1 Reactor Bldg. Floor EL-436'-0" PT456 1 Reactor Bldg. Floor EL-436'-0" 1 Reactor Bldg. Floor EL-436'-0" PT457 PT446 Barton Lot #3 2 . Turbine Bldg. Floor EL-436'-0" i PT4465 2 PT447 2 Turbine Bldg. Floor EL-436'-0" LT459 Barton Lot #2 1 Reactor Bldg. Floor EL-436'-0" LT460 1 Reactor Bldg. Floor EL-436'-0" LT461 l . Reactor Bldg. Floor EL-436'-0" FT474 1 Reactor Bldg. Floor EL-463'-0" LT474 1 Reactor Bldg. Floor EL-463'-0" FT475 1 Reactor Bldg. Floor EL-463'-0" LT475 1 Reactor Bldg. Floor EL-463'-0" LT476 1 Reactor Bldg. Floor EL-463'-0" i LT477 1 Reactor Bldg. Floor EL-436'-0" FT484 1 Reactor Bldg. Floor EL-463'-0" LT484 1 Reactor Bldg. Floor EL-463'-0" FT485 1 Reactor Bldg. Floor EL-463'-0" LT485 1 Reactor Bldg. Floor EL-463'-0" f-LT486 1 Reactor Bldg. Floor EL-463'-0" LT487 1 Reactor Bldg. Floor EL-436'-0" l FT494-1 Reactor Bldg. Floor EL-463'-0" i LT494 1 Reactor Bldg. Floor EL-463'-0" FT495 1 Reactor Bldg. Floor EL-463'-0" LT495 1 Reactor Bldg. Floor EL-463'-0" LT496 1 Reactor Bldg. Floor EL-463'-0" LT497 1 Reactor Bldg. Floor EL-436'-0" i-FT414 Barton Lot #3 2 Reactor Bldg. Floor EL-412'-0" I FT4143 2 } FT415 2 Reactor Bldg. Floor EL-412'-0" 1 FT416 2 Reactor-Bldg. Floor EL-412'-0" l FT424 2 Reactor Bldg. Floor EL-412'-0" 2 Reactor Bldg. Floor EL-412'-0" FT425 j FT426 2 Reactor Bldg. Floor EL-412'-0" j FT434 2 Reactor Bldg. Floor EL-412'-0" l FT435 2 Reactor Bldg. Floor EL-412'-0" FT436 2 Reactor Bldg. Floor EL-412'-0" FT476 2 Auxiliary Bldg. Floor EL-436'-0" i FT4765 2 FT477 2 Auxiliary Bldg. Floor EL-436'-0" FT486 2 Intermediate Bldg. Floor EL-436'-0" FT487 2 Intermediate Bldg. Floor EL-436'-0" ,~ FT496 2 Intermediate Bldg. Floor EL-436'-0" l FT497 2 Intermediate Bldg. Floor EL-436'-0" PT950 2 - Auxiliary Bldg. -Floor EL-463'-0" I ,en-w. g ..~.------__.,e-w--7 -w p 9-.4 -.,i-- - - - >,y-.pw-----+- .w.q m. ,.+9 g 7m9- ,r-
.-ryy y
y -g-yap.$w
J i. - TAG # MODEL # (0) REPORT NO. LOCATION PT9505 Barton Lot #3 2 PT951 2 Fuel Handling Bldg. Floor EL-463'-0" PT952 2 Fuel Handling Bldg. Floor EL-436'-0" PT953 2 Intermediate Bldg. Floor EL-436'-0" LT1310 2 Fuel Handling Bldg. Floor EL-412'-0" LT1311 2 Fuel Handling Bldg. Floor EL-412'-0" LT1320 2 Diesel Gen. Bldg. Floor EL-427'-0" i LT1321 2 Diesel Gen. Bldg. Floor EL-427'-0" i LT1322 2 Diesel Gen. Bldg. Floor EL-427'-0"
- Westinghouse Proprietary Information REPORTS 1.
NS-TMA-2184 2. WCAP-8687 I 4 i i } i .n...--,. ,,-.n ,, - - - -. - - -,.., -,, -... -}}