ML20054M595

From kanterella
Jump to navigation Jump to search
Summary of 820604 Meeting W/Util & Harstead Engineering in Bethesda,Md Re Containment Ultimate Capacity & Stability Analyses.Util Will Submit Addl Info Re Capacity Results Due to Piping Penetrations by 820730.Viewgraphs Encl
ML20054M595
Person / Time
Site: Catawba  Duke Energy icon.png
Issue date: 07/07/1982
From: Jabbour K
Office of Nuclear Reactor Regulation
To:
Office of Nuclear Reactor Regulation
References
NUDOCS 8207140004
Download: ML20054M595 (86)


Text

- - _. _ _ _ _

+

JUL 7N Docket Nos: 50-413 dnd 50-414 1

APPLICANT: Duke Power Corvany FACILTIY: Catawba Nuclear Station, Units 1 and 2

SUBJECT:

SUMMARY

OF MEETING ON CONTAINMENT ULTIMATE CAPACITY AND STABILITY ANALYSES On June 4,1982, the NRC staff met in Bethesda with representatives from Duke Power Cocyany and their consultant, liarstead Engineering, to discuss Catawba containment ultimate capacity and stability analyses. The attendance list and meeting agenda are attached as Enclosures 1 and 2.

Af ter brief introductory remarks, Duke's representatives started their presentation on the containment design and analysis. A copy of the viewgraphs is attached as Enclosure 3. Duke had utilized the dual containment concept for Cdtawba: the pri-mary containnent is a free standing steel vessel with flat liner plate embedded in the foundation, and the secondary containment is a reinforced concrete structure.

Thirteen stiffener rings and 120 vertical stringers are utilized to reinforce the steel shell. One equipment hatch and two personnel airlocks penetrate both con-tainments. The containment shell was designed based on loads and loading combin-ations in accordance with the NRC Standard Review Plan, Section 3.8.2. The con-tainment shell was analyzed utilizing "KSilEL" model for axisymmetric loads, and Wilson-Ghosh finite element model for ncn-axisymmetric loads, KSHEL is a finite difference progran which neglects the effect of vertical stiffeners. Modal stresses were combined using the SRSS method, and the final stresses were obtained using the absolute sum method for KSHEL and Wilson-Ghosh.

The localized areas around the equipment hatch and airlock were analyzed using "STARDYNE" cor.puter code for static and dynamic conditions. Other localized analyses were also performed for jet impingement and hydrogen detonation. The con-tainment ultimate capacity analysis was performed utilizing the " MARC" cocputer code.

This analysis showed that the containment shell can withstand an ultimate internal pressure of 72 psi.

Harstead Engineering, consultant to Duke, presented the Catawba stability analysis.

A copy of their viewgraphs is attached as Enclosure 4. Their presentation covered local and general buckling of the containment shell. ASME Code Case N-284 was used to calculate the knockdown factors and the theoretical elastic buckling stresses.

The major penetrations were modeled and analyzed using NASTRAN. General and stringer buckling utilized BUS 0R-4 and HEA program. The analysis results are tabulated in Enclosure 4 and show the safety factor for the controlling load conbination. The minirmm safety factor in the cylindrical shell is 1.97 for a combination of dead load, LOCA and earthquake. However the shell thickness used in the analysis was 0.05" less than nominal therefore the actual safety factor is above 2.0.

OFFICE ) . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . * * *. "* * ' " " " * " " * * * * * * * * * " * " *

  • CURNAME 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * * * * ********************* ********************

goa

_E , p , ,

sac ronu sis tio-soi sscu o24a OFFICIAL RECORD COPY use.m isu- m sa

.6 . . ,

4

e. (-4 2-The NRC staff had the following cor.nents which require additional information from Duke:
1. Clarify and justify the containment penetrations' classifications.
2. Discuss how danping was treated in Wilson-Ghosh nodel.
3. Cocpare the concentration f actors obtained for the localized areas around the equipment hatch and personnel airlocks, using KSHEL and STARDYNE.
4. Provide the analytical results for the jet impingement on containment piping penetrations, equipment hatch and personnel airlocks.
5. Justify the six feet spherical loading on containment shell utilized to simulate hydrogen detonation.
6. Clarify the equivalent strain through nidpanel element obtained for element 50 using the MARC analysis.
7. Provide performance test results, where available,0f the equipment hatch and personnel airlock seals for high temperature condition.
8. Provide the containment ultimate capacity analysis for dead load in addition to a 45 psi internal pressure. Verify that the stresses meet the ASME service limit C at associated temperature.
9. Verify that the SEB Technical Position, with respect to buckling, is met for containment loadings corresponding to service levels A, B, C and D.

At the conclusion, Duke agreed to provide the additional information requested by the staff. Duke will submit the containment ultimate capacity results due to the piping penetrations by July 30, 1982.

K'ahtan N. Jabbour, Project Manager f Licensing Branch No. 4 Division of Licensing

Enclosures:

As stated cc: See next page

' NOTE. SEE PRE"ICUS 'J':ITE FOR CONCURRENCE oment D1.3B,,,(,4,dd

,,L A.;,DL,4 B,,,(,4, ,,,S,E B,,,,,,,, ,,,, ,,, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , .....................

suxume Q lhac, *ED.uacan.... ...

om> wdr .......... . u.u4a2.........

. .*DJ eng. .. ... ... . .

. w8;8a.......

. 4%8a.....

e .. . . . . . . . . . . . . . . . . . .

....................~.

nac ronu ais co-eo: uscu eaa OFFICIAL RECORD COPY usceoa ni m aa 1

/

Docket tios: 50-413 and 50-414 APPLICANT: Duke Power Corpany FACILTlY: Catawba Nuclear Station, Units 1 and 2 i

SUBJECT:

SUMMARY

OF l1EETING Ott CONTAINMENT ULTIMATE CAPACITY AND i STABI ITY ANALYSES l

On June 4,1982, th NRC staff met in Bethesda with representatives from Duke Power Corpany and their co sultant Harstead Engineering, to discuss Catawba containment ultimate capacity and Qtability analyses. The attendance list and meeting agenda are attached as Enclosd 1 and 2.

Af ter brief introductory remarks, Duke's representatives started their presentation on the containment design a d analysis. A copy of the viewgraphs is attached as Enclosure 3. Duke had utili ed the dual containment concept for Catauba: the pri-mary containment is a free sta g steel vessel with flat liner plate embedded in the foundation, and the seconda ntainment is a reinforced concrete structure.

Thirteen stiffener rings and 120 ve tical stringers are utilized to reinforce the steel shell. One equipnent hatch and o personnel airlocks penetrate both con-tainments. The containment shell was de igned based on loads and loading combin-ations in accordance with the NRC Standar eview Plan, Section 3.8.2. The con-tainment shell was analyzed utilizing "KSHEL Wilson-Ghosh finite elcaent model for non-ax\model forloads.

is) metric axisyumetric KSHELloads, and is a finite dif ference program which neglects the effect of ertical stiffeners. Hodal stresses were conbined using the SRSS nethod, and the fin stresses were obtained using the absolute sun method for KSHEL and Wilson-Ghosh.

The localized areas around the equipment hatch and a lock were perforced using "STARDYhE" coimuter code for the static and dynanic a ly ses. Other localized analyses were also perforned for jet impingenent and h rogen detonation. The con-tainnent ultinate capacity analysis was perforned utili ng the " MARC" computer code.

This analysis showed that the containment shell can withs and an ultimate internal pressure of 72 psi.

Harstead Engineering, consultant to Duke, presented the Cata ba stability analysis.

A copy of their viewgraphs is attached as Enclosure 4.x Their resentation covered local and general buckling of the containment shell. ASME Cod Case N-284 was used to calculate the knockdown f actors and the theoretical ehstic kckling stresses.

The najor penetrations were modeled and analyzed using NASTRAN. General and stringer buckling utilized 80SOR-4 and HEA progran. The analysis results are tabulated in Enclosure 4 and show the safety factor f or the controlling load conbination. The mininun safety factor in the cylindrical shell is 1.97 for a combination of dead load, LOCA and earthquake. However the shell thickness used in the analysis was 0.05" less than noninal therefore the actual safety f actor is above 2.0.

g ., - w -

The NRC staff had the following coments which require additional information from Duke:

~

1. Clarify and justify the containnent penetrations' classifications,
2. Discuss how daraping was treated in Wilson-Ghosh model.
3. Corpare the concentration f actors obtained for the localized areas .'

around the equipment hatch and personnel airlocks, using KSHEL and STASRDYNE.

4. Provide the analAtical results for the jet inpingement on containment piping penetrationi equipment hatch and personnel airlocks.

S. Justify the six feet herical loading on containment shell utilized to siculate hydrogen de nation.

6. Clarify the equivalent stra p through midpanel element obtained for elenent 50 using the MARC anal sis.
7. Provide performance test results, where availzble of the equipment hatch and personnel airlock seals or high temperature condition.
8. Provide the containnent ultimate cap ty analysis for dead load in addition to a 46 psi internal pressure. Verify that the stresses neet the ASME service limit C at associat. temperature.
9. Verify that the SEB Technical Position, with spect to buckling, is net for containment stress levels A, B, C and (ut At the conclusion, Duke agreed to provide the additional in grmation requested by the staff. Duke will submit the containment ultiaate capacity re uits due to the piping penetrations by July 30, 1982.

Kah" tan N. Jabbour, Proje t Manager l

Licensing Branch No. 4 Division of Licensing

Enclosures:

As stated s s

cc: See next page i

omes> .DL,;,(B,, ,,(A,;,0,(,:,, B,,,6 ,,,,,S,E B ,,,, ,,D,(;,(B ,M, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

suame > .KJabbour/hmc ..fdQd[a'n..... . .....QJekg. .. ...fAria n e am.... . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .

ous> .50.J/8,2,,,,,,,,, ,,6,4,7,lg.,,,,,,,, ,,,,,6,l,1,{l8,,,,,, ,,g/,,,,18,2 ,,,,, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

NRC FORM 318 00-80) NRCM Dao OFFICIAL RECORD COPY usom im-mm

. . . 7 >

J~ .

ATTENDAliCE LIST b/4/62 hRC NUTECH K. Jobbour T. Kishbaugh (Part-time)

F. Schauer D. Jeng fl. Chokshi L. Yang S. Kim S. Chan K. Shaukat (Part-tirae)

Duke Power Ceapany R. Sharpe M. Childers D. Dettart J. McConaghy D. Byrd Harstead Engineerino G. Harstead fl. I' orris A. Unsal OFFICE )

SURNAME)

DATE )

M em OFFICIAL RECORD COPY us*o mi-awa sac ronu ats on.ec3

_~

et..

3 .

MEETING

SUMMARY

DISTRIBUTION 14 Docket No((

NRC/PDR Local PDR JUL 7 1982 TIC /NSIC/ TERA -

LB #4 r/f Atto rney, ' OELD OIE E. Adensam Project Manager K. Jabbour '

Licensing Assistant M. Duncan ,_,

NRC

Participants:

K. Jabbour F. Schauer D. Jeng 4 N. Lhokshi L. yang S. Kim S. Chan '

K. Shaukat (Part-Time) bcc: Applicant & Service List

lP

  • J*

CATAWBA Mr. William 0. Parker Vice President - Steam Production Duke Power Conpany P.O. Box 33189 Charlotte, North Carolina 28242 cc: William L. Porter, Esq. North Carolina Electric Membership Duke Power Company Corp.

P.O. Box 33189 3333 North Boulevard Charlotte, North Carolina 28242 P.O. Box 27306 Raleigh, North Carolina 27611 J. Michael McGarry, III, Esq.

Debevoise & Liberman Saluda River Electric Cooperative, 1200 Seventeenth Street, N.W. Inc.

Washington, D. C. 20036 207 Sherwood Drive Laurens, South Carolina 29360 Nc 'th Carolina MPA-1 P.J. Box 95162 Mr. Peter K. VanDoorn Raleigh, North Carolina 27625 Route 2, Box 179N York, South Carolina 29745 Mr. F. J. Twogood Power Systems Division James P. O'Reilly, Regional Administrator Westinghouse Electric Corp. U.S. Nuclear Regulatory Commission, P.O. Box 355 Region II Pittsburgh, Pennsylvania 15230 101 Marietta Street, Suite 3100 Atlanta, Georgia 30303 l

Mr. J. C. Plunkett, J r.

I NUS Corporation Robert Guild, Esq.

2536 Countryside Boulevard 314 Pall Mall Clearwater, Florida 33515 Columbia, South Carolina 29201 Mr. Jesse L. Riley, President Palmetto Alliance Carolina Environmental Study Group 2135 1/2 Devine Street 854 Henley Place Columbia, South Carolina 29205 Charlotte, North Carolina 28208 Richard P. Wilson, Esq.

Assistant Attorney General l S.C. Attorney General's Office P.O. Box 11549 Columbia, South Carolina 29211 Mr. Henry Presler, Chairman Charlotte - Mecklenburg Environmental Coalition l 943 Heniy Place Charlotte, North Carolina 28207 l

[

, Enclosure 1 ATTENDANCE LIST 6/4/82 NRC NUTECH K. Jabbour T. Kishbaugh (Part-time)

F. Schauer D. Jeng N. Chokshi L. Yang S. Kim S. Chan K. Shaukat (Part-time)

Duke Power Company R. Sharpe M. Childers D. DeMart J. McConaghy D. Byrd e Harstead Engineering G. Harstead i N. Morris l

A. Unsal l

N

]

Enclosure 2 CATAWBA NUCLEAR STATION STEEL CONTAINMENT VESSEL DESIGN AND ANALYSIS JUNE 4, 1982 CONFERENCE WITH USNRC SEB PROPOSED AGENDA I. Introduction P

A. Containment Description

, B. Codes and Standards

! C. Materials D. Loads and Load Combinations E. Acceptance Criteria F. Overview of Design and Analysis II. Overall Design by Analysis A. Axisymetric Loads B. Non-Axisymmetric Loads

~.

III. Localized Analysis of Equipment Hatch / Air Lock Area A. Static B. Dynamic IV. Miscellaneous localized Analyses V. Containment Ultimate Capacity Analysis A. Overall Quasi-Static Analysis B. Appurtenances VI. Stability Analysis A. Overall B. Local DESIGUATED ORIGIIIAL 1

Certifica E7 } . bl $

1 C

Enclosure 3 i

I. INTRODUCTION A. CONTAINENT DESCRIPTION B. CODES N4D STANDARDS C. MTERIALS D. LOADS AND LOAD COMBIMTIONS E. ACCEPTANCE CRITERIA F. 0/ERVlBl 0F DESIGN AND ANALYSIS DESICliATED ORIGII AI; Certified 27_ y ), f } Q ,

-_7

  • t i

i

' h, ..,.

, ~

y,

\

..,u....

r -

. / -

. s

./ .,. .g 5

_L@. _ _ _

. w ]r...-,

5, . m( _.,

s) g

.. , ~ .. . ,:,.

  • 3 . . . . . . ,
  • 'm "

![ l!l g ,a i... . . .!!

i

.1

_x ,7p p .

c. . .+ n . L ,

's .. p i:

. 1II:t : --

I L'r !

il!l -

- l .1 =... * %r;:.

!g .

..m.m P ^'x \ d a/

~

% j !U .. ;,w..., ... -

b__

y~< >

e

'= ( 4 q

~

)e_-(p.4. "[ 2 g-peu _,, aw sm>-

l

, u a.

m r .':' .-

w T.. w. ._,  :-

% (=3 JU 9t l:

u7.b (a,F 4'zgge it %L -

I J -

.s a.u .

T S:15 i ,

r

  • a E:21._. M.tna;-~ J. -

- Q- ... . i

.t

,s ..- i . -.. ..

\ .

i l . .

1 . i

_1. uu.t--

~1,nu s:+

cc.c me .u . m , c _v. ._. , ~ -

  • ,-c uc - e . , v , .. s REACTOR BUILDifiG STRUC1 URAL OUT1.!iiE G..T,e,, .

&.s.Ny"Y. J

9 HEMISPHERICAL DOME m N ^

EL.721 ,

d -

3..

O'G G.

S 79 s

/

'o 4 '

,v m

D

~

%__ 9-y _dc o =

l- . _ _

EL 6 6M-9 "

,, I-

~; F-1-

O q I-N h 2 - _ . . . _

l380~

6 o

m g f-V ERTIC AL

, y p

/ CYLINDER

% l- .

  • 1 - - O 75. TH'K c ;_ i a dL t!

.<a f I-U g J.

e

-f-EL.564'4 5 9 --

- 1.0TH'K I-EL 550' O'

.y $ j,, s nn N

R O.25"T H'K - -

FLAT LINER PLATE 9 . ,,

% EL.52 l + 4's 252 _-

_ ._ ~ - .. .- ,

a .

w

, 5' O' _

3'- O

_A nts utue ,

( ~

,) _ 9* r" o D

_. -- - __. e G5Lf*5 _ . - _ ~ . ~ . . -

A*Me SW-l- } A'eac!oe B14

~

.y s e s *g ,

_ ..={.,7_me: C :+s for s ea? l 7 p, , x Ene:: g,,).

W- ,

\ s [ t n,o' ) ne d. ^

c ,

E *. M o'- 5 g _-, . ,, g # : . , ,, g _y -

{ g6 _ c ,c,c9, A _ j'q __ ,

,- L N p. -0 j -jig (Lo e Afr.C300) '

l 4

./ k G TA:% ~ ,j 12M C /

\s l IIl v.c) .-\ y j __ .}. _ ft oc_ PIq's ]

. . /N 'A . k' u '

( \ -

.>k #

\ms)/ l E: CW-S I.

gm'" y.t?n,.

g.g

.1

}__-_-='\_7..m_ .

l ,

C/E*'C79-4 [ _

EL EVATION

[ER50151EL. LC3 MI:. C500 T'/P/ CAL AlRLOC K DETAILS x s

.i I,

' I

-e. ,?, . .'. ,

... 3 l  :'.

> n.

z c

.s t

n ., -

.' . s ,'.' x.  ?,

.{.. , .

d 3 ,

g p

,s s e [, , , , -

i =

\

'g *h j .. '...

- ' 'w 39f, - --- i

/' I 4

y; - _ - - ,. __ __ - -.,,., p . ', ~

. t .. -- J i' l L _ .' - , . . . . _ . .. Z ~-

1 J l 8

/ O y-

\. s tu -

b i D6 c.el. O!$ I' (1

4 N .. [ "s tob c ,~~

Tr l Y,g% Glt lf, n

y. .

v ar e g,._ -- 'I

- }Wo

,,I.

i I

b '

n1 1.

^'

hs gu I' -

,6 6 ', .

t 14 I i -

i g l I  %

  • t' l l' lpl 'g i- ' I' ' k I

,>l<

a  : , l' w a g ,,

l' I e . h A l f d 5 i a n, 3

l 7 $

, i, a

. '? I i ,, .

l y

g

-m , , .. > .

) *' 4' .w ue i

b iI f

.d ce ~ $[ i ,

E M [lw 11 I .j o

l'(OAh .I O gl o

I

~

is- 4 t

/

/

/ g'

\J r

/

lI I

\

/g.73 e

.e .n * .

-/ km i-t I

'x* $,

h \ .c / t 6 7' 5

/ V' {QG d' t 5 y{/ w ci! 's'/ /.

t jr.q ,1.::'

k.. ' . .- .tg:(

'2 % 0o' O V dpI l-T}

- - . m2 . ... -

J . .L ,- -

._ I 4  ! I- < ot 7<

'4 ,b -

{ T $ :.I

~

4 {'N .

E.

\ '

'\ N 0 fll l tif L fi l't '

b N

?.

/. S -l 2 d e.)

0'V // / 'I.r

' Wl fd p, E l k:*S l \

e /e g (L r{

g. , , . er ~ u.

3 g ?e. /

$ e st i

\

7 i$ l ,$ / f-~.. .-t+--- & k

.- . . , - . . , ~..-

A-:::'k W.te l d

--s__

r

., .f .

ll.5 Ii

~h '

>:t o,- .. -.

,y'. ,- , ', , ,  ;,

1. I

) ,):<

{i l'

??

e.g,*

.g.

i

' >g 1.

5'

)$

.=.#-

< ll-i t.

'. f.

.<R S '-

) =

Q I

3

[.

i,

tj og

' t, . u' ..i .e!

('

I

- s.,.

en.

l '4 '

g6 9 1:

i Ik

  • . _ 16 . .___.-_...41.,._ }4! . ..........J.'L.

i

.w.. - s  ! ! .!

i .

i Containment Vessel Loading Combinations (1) D+L+Pt+Tt (la) D~+ CL (2) D+L+T o +R g (3) D+L+T g +R o +E (4) D + L + T, + R, + P, + E (5) D + L + T, + R, + P, + E (6) D+L+T + a R, + P, + E' (7) D t L + T, + R, + P, + E' (8) D + L + T, + R, + P, + Y r +Yj + Y,+ E' (9) D+L+FL+E 003 2) + L t +E' .

Where CL = Construction loads Pt = Test pressure Tt = Test temperature P, = External pressure due to the internal vacuum created by accidental trip of the Containment spray system.

Te = Thermal loads during conditions causing P, FL = L ads caused by post-LOCA flooding, if any.

Li: Loth. TRAMSIEMT PRE 550RE

CONTAINMENT STRESS LlHITS Loading Primary Stresses Primary & Sec. Stresses Peak Stresses Combination Gen. Memb. Loctl Memb. ~

Bend + Local No. P, P t Memb. PB+PL (1) .95 1.255 1.255 35 Consider for Y Y Y Fatique Analysis (2) & (3) S

"' 1.55" 1.55, 35" Consider for Fatigue Analysis (4) & (5) S, 1.55, 1.55, N/A N/A (6) & (7) Not integral a'nd 5, 1.55, 1.55, N/A N/A continuous Integral and The Greater The Greater The Greater N/A N/A continuous of 1.25" of of 1.85" or S y or 1.85" 1.55 or 1.55 (8) Not integral and The Greater The Greater The Greater N/A N/A continuous of 1.25* of 1.85" of 1.85-or S or 1.55 y or 1.55"y y

Integral and 85% of Stress Intensity Limits of Appendix F N/A N/A continuous (9) 1.55 " The Greater The Greater N/A N/A  !

of 1.85" of 1.85 i or 1.55 of 1.55" NOTES: (1) Thermal stresses are not considered in computing P,, P , and P 8' (2) Thermal effects are considered in:

(a) Specifying stress intensity limits as a function of temperature.

(b) Analyzing ef fects of cyclic operation (NB-3222.4).

(

1 i

[

II. OVERALL DESIGil BY #MLYSIS A. AXISYWETRIC LOADS B. IG-AXISYFTEfRIC LOADS

N /

e 61TAh2A MITA!!! MENT d!!EL a " SHEL" MODEL K

ei t .

E e n/

e,gg 1g,ffRD ElCV.

p195.3

  • J,Yk 1495 Sk3 +1

"' Ca a<r ass +9 y {'g w",nf 1295 6 C9 9 9 O

dh$' 194 9 649*r dh>f 1049 433*S

'l e App,;, g '

dltk 92 9 429+5 Sy m etry g Nffk BG9 'e19 9 6 i 4

. R s 6D o* <

dbE* 499 4NF5

,k.

Ohk S49 599 +5 J&- 497 $93*5 Gb

&I 3.* * $ 4) e tt (to hy ,,,t

{0 .

Z$7 573+C G.

  • e o49 siJoS

. U o 4'2'l -

13't EsJe5 I"# { p 34 $ $4

  • tG

' ~

~,, h<H{r)  :~ o Fri to

__ ___ _. --- A

.. . . . -=. . -

. 4 4 .

4 I:

i FREQUENCY ANALYSIS RESULTS KSHEL f10 DEL Mode Number Frequency Wave G6/2nwM Nt at Base

/

1 6.73 n=1 .0274 -1487.42

2 17.76 n=1 .0048 27.17 3 18.76 n=0 .0014. -93.20 4 25.64 n=1 .0030- 8.71 5 28.29 n=1 .0021 2.15 6 28.76 n=1 .0008 -1.13 7 29.54 n=0 .0001 -0.03 1
SRSS of 7 modes 1490.61 4

Mode 1 contributes 99.8% of response-4 i

t

}

l l

1 i

l l

. o i

8 a

R 8

z $3 o

8 /

b-- i o C -

>- 3 O beW O C 9 C

MOS o-w 8 aj to w .

. z ia d WW U 'EUT 8 2

~5%

oem i

To -

@ O D. -

8 C

O EEM g

.~I " g m

C C $

U Bue 8u

.=

- ~

$d 35 t' E

98

.8 U

- .s E

ch h

C 22 if C 8

- g C -- ,

C 9

.o 3

8 C N O

m 9 as tit to nst sa cu co azt ca*c61 co c# ca a9 83*:f 0!= IISd3 AllStd31NI SS3315 T1RCAL STRE59 IRTBOSD T13TR)BUTIDM I

~

t El. 721+3 25 699+11 l

I 46 48

; 38 39 I l 47 l l 49

- 652+7 9 l 12 l 15 l 18  ! 21 l 24

. _ 636+7 I I I I i ,

8 l 11 1 14 l 17 l 20 l 23 I

620+7 I I I I

7 l 10 l 13 l 16 l 19 l 22

._ 604+7 I 1 I I 40 41 42 43 44 I 45

' ,,3 - , ,,

,,,,I , ,,

,I,,,, ,

I 1 ,

- 591+0 ACC FAN ROOM ACC INSTR, ROOM Hx ACC FAN ROOM ACC R

52 34 27 35 29 36 31 37 53 50

, , , - 565+3 26 28 PIPE, TRENCH 30 l 32 l _ 552+0 i

l I i i i I l 1 I ll l 1 I I I i l l 1 o ~ m e ~ m m m oo ~ m

& .e co o m -r m m m m m -- - - - - ~ ~ ~ ~ ~

TMD TRANSIENT PRESSURE ANALYSIS DEVELOPED ELEVATION OF COMPARTMENTS ADJACENT TO CONTAINMENT VESSEL -

N

i l

1

+ COMPARTMENT PRESSURE

  • FOURIER REPRESEf1TATI0t1 l

i 4

g_ LEVEL 2 TIME =0.1 SEC

~- .

x <

O YA "A .

a. m-

~~ ,-J

. - ----p df .

o l\ ...- - , ,/

I N_ 31 n__s!E Dk 4~. , 2 '"

0.00 45 00 96.00 135.00 180'.00 22'5 00 2/0.00 3I5.00 3'60.00 AZIMUTH (DEGREES) d-C -

E LEVEL 2 TIME =0.2 SEC y

s s i

,e.

a m m-

\, ,

/

g s, g -y--- f o- s

/

- s g' o N

\+ '

l tt - ,

o jr-e so-(-

~  :%*-

a s o ,

0.00 45 00 95.00 135.00 18'0.00 22'5.00 2'70.00 315.00 3'60.00 AZIMUTH (DEGREES) h LEVEL 2 TIME =0.4 SEC 3$b s ,, --#

m e -$

c.

/

tsJ

\

g

\ /

/ \\ /

E A / g /

S m .

\

\

/ \

y' 4.l l f

'2 m \. q. t/

i E *g - /'et.  ; s( ,_ < , %W o }W ~

9 v o

0.00 45'.00 9d.00 13'5.00 18'0.00 22'5.00 27'0.00 315.00 36'0.00 AZIMUTil(DEGREES) l

3I

.i

. e.e

$r a A.e .j G,g 32 CATAWBA CCNTAINMENT

-,p9**9 VESSEL

  • s8 WILSON-GHOSH MODEL

'A@0 47s

%6 45 @

44 @

43 42 2-COORD. ELEV.

tGspcs.e 5's , n,. g (in)

g. 690" 4o 1405 6G9+1

--~

ig. 39 f

._ 33 368 37 3*g 1285 G59tl 33< 34 186 9 649t 5 3 -e si 1049 639 + 5 29%

6 1

27< 28 929 629+5 p gy, g Symmetry ,

2ci 24-* 2 5 809 619 +5 l *E'@

2

@ 22 689 609+5 R = 690" fg---e to le + 19 569 599 + 5 87 0 is 497 593+5 15

  • g is 12i is 383 583 +11 O -

is o g o-eio 257 573+5 dE , g34 g-

  • 0 G ~*7 137 563+5

(, ,8 o4 34 0

554+l0 552&O m.. .. .. . .. . . -

f CATAWBA STEEL CONTAINMENT VESSEL OVERALL ANALYSIS STRESS INTENSITIES MAX STRESS ALLOW STRESS LOAD INTENSITY INTENSITY  %

COMB FIBER (KSI) (KSI) MAX / ALLOW ^

I 31.95 49.50 64.6 1 M 18.18 28.80 63.1 0 21.23 49.50 42.9 I 17.66 49.50 35.7 2 M 9.79 16.50 59.3 0 13.58 49.50 27.4 I 17.97 49.50 36.3 3 M 9.75 16.50 59.1 0 13.13 49.50 26.5 I 17.35 49.50 35.1 3a M 10.02 16.50 60.7 0 14.80 49.50 29.9 4 M 15.52 16.50 94.1 4a M 15.32 16.50 92.8 5 M 1.82 16.50 11.1 Sa M 3.05 16.50 18.5 6 M 15.77 32.00 49.3 6a M 15.33 32.00 47.9 7 M 2.70 32.00 8.4 7a M 4.18 32.00 13.1 8 M 15.77 32.00 49.3 See Note 9 M 3.33 24.75 13.4 9a M 4.84 24.75 31 .7 10 M 23.60 32.00 73.7 NOTES: Load Case 8 is identical to Load Case 6 except for jet impingement loads. Allowable jet loads are established considering local effects superposed on overall stresses.

III. LOCALIZED AfMLYSIS OF EQUIRGIT HATCWAIR LOCK AREA A. STATIC B. D W l11C l

. an y v) gD EEw

\-

$d 5 & .

z- J f?z8 Q 4 y

_ . :cGwANh A m x w

' /wwwww NNvs/x N N xx JK;NfWVVN/ \4W \ \ \ \\

[# }' L-f%T-KWMfX/\/" < f't:^a \

\ \ \\

~ A A A/ A A A' . .Th \ \ \ \\

"VYYI\ /\ /\\ \ \ \ \\

,' ~ - ~ "' '"'

./ \ \\\ \ \ i

'l t\ /\ 11 1_\ _ / \Ii

[4 ' \\

~

sl l\lV_\l "\l- \l \ \\ \ \

\_}

i

. j % {0L)

' ,fU Il .

lII  ! I p

s '

! ug: #y u-p - -.~..- ..- M.

e TDh! ! d I~! 5 [ A d:-@d '

4 & ' H' ' i i li-l a

1 ^.M=kVt1Ul\i\hl\ A A A \/ \/

Q- Q Q~ "- 444h ! !! /T.,f JW /_ll' / // // i\ i\

\///'V lbw/////

W / _ / ///

'Q N ~1 X X X \ X \/ \// K a//V / / / // - .

\

Mih^^WV\ /V/ . /YnT // /.y,v /#

h wmscwwcnmy-

~

swxnwawmyn ~ i l

i l

8 9 g

s py- _

,g6 , -  :.ym .

's//-p--

/  ; -

e @ g{j - 41 ,

$# ~ -

g .4' f#G_- - .m -

- .9 :s.

<h#p-g p - ^w ,

g6 -r JE@fs.gy

,f.. -

.'- /

[

} .

/\/\/\/\/%/\ .

N. ,

y\ x ----_

' ANN ,

'KN i s NxN_ .

-N'N w - .

l s _

~-,

I Nx_

- .N;;

u J

Lu '

Q o -

E 2 o

e6 a w

< J G LL1 o

]

t l

. e I

i s

. x, I \/ '

/

}\J NV) . .e \ -

y -

7- =

s, N/N/ j t.

f/j

\

/[/

/ l' .

,/

/

\ -_

L- /

l

- d -

l r x LOC.A LI Z.ED MoDEL PLAb)

~

\ N /-

N /

\ N~ < -

\ N w . - /

/ /

\ NN D~/ NNq\ - '

y /

xN /,-k1 j/

_/ \ - - -

NN_/ // \ ~

/

NN - --

\

gN _

, \d_ g?L ' . - ~ .2 - .

~

K Q d\\ ' N f /

f< f N x t x i - .

ya l' /

\ N N l

_ /

KNx ~

/

J ,

i N  % [ C - # -

N's% N

/

/'

LOC ALI1.E~D MODEL

Ed. H ATcH / AIRLOC.K AREA X Y

_ _ _ _ _ . . -__________-._________._-..._______________.__o

l t

  • CRTRHSA Ctr47R]NMENT VESSEL

/

(

~

N .

O l

g \  !

s

  • 0 k

CONTCUR LEVELS H[N 21732 ,,

A .21732 8 .23524 "

C .25315

  • D .27;'S E .23397 F14 x .2"97 PLOT 3r N3RnRL DIF.."LRCEf' NT ETCR 1CPC4 VECTCR I:3 1 fcgg , gg;,go RADI AL ItsPLACEMEMT ror ro IMTERblAL PRESSURE

1 L

CONTAIN? TENT VCSSEL m

/

e a . . .

4 e - - _.

1 ' %W h

CCNTCUR LEVELS , l MIN .49577E-::1 A .995??C-01 g # M A'4 i 8 17332 C 303 :S 0 .43331

f. 56955 T 55S29 0 .22803 H 95778 I 3'O - ' -a - - __ _ a _ ___t e f ,

MRX 2 2173 .

PLOT OF 'N0!tMAL DISPLAttr. TNT STAR TAPE 4 VECTCR NQ 3 SCALt. : 167. %

i ,

l

  1. ADIAL DISPLAGMEA)T DOE TO _D1TER.blA L PRE 550RE i

FREQUENCY AMLY$l$ RCSULTS EQUIPpfMT HATCH /A]R LOCK POo(L MXlAL WIGHTS ph y GEERALIZED E l T*r2) z = up 1

MODE (H2) x=0 ,y a 90 ,,

1 3.65 26909. 2675. O.

2 3.72 26. 674. 25009.

3 6.38 279267. 2499220. 1.

4 6.40 2482870. 266733. 14.

5 6.69 2958. 11492. 5.

6 6.90 94. 17052. O.

7 7.95 278. 63. O.

8 8.11 360. 675. 11.

9 z 8.38 a - 47. <- 12. 1.- 14 .. 4.

10 8.54 11. 55. 3.

11 ,

9.53 111. 247. 28.

12 10.99 1. 352. O.

13 11.31 20. 4. 10.

14 12.12 7. 23. 3.

15 12.57 864. 2268. 249.

l 16 13.22 1. 269. 41.

l 17 13.35 177. 57. 13.

18 13.51 86. 5. 605.

19 14.10 988. 10207. 172.

20 14.37 4355. 6651. 893.

l l

t

, CBf Ah24 CONT 4]NN(NT YES$[L +

035PLP. CEMENT CR5E 1 /

~ T x.

N

\

\'

\ q k4'C'

,m 4;%

\ / , ,

N x

, (/\ '

.s . .

i s

s s f g

~ w

{

I ST ANDrNE f! NITE ELEn:NT t00"L ragggCTION ON 41- C PLRNt tpgg ha, 3 MODE 1 l

l l

l

~

CATRW!9 CNTR!NMENT CML DISPLACEMENT CASE 2

% N X2 N 'N k\g s ';

.._, . ~--A l \ '/

/ XI 57R5Thi f!h!T ELEMENT TIIE'. PROJECT!CH CN X]-X2 FLANC CR : N3 3 l

MODE 2.

Mr.,,

4 e 8 a

9 8 4 f f 1

.o

/

i i t l1 m

'l l I t r i o N '

Il f J i '

gt%'N / /

f.4 N N 5 exTNNb>PnpMNL s 's n /- / ,

g\cs\ 4y X %/'sY d\d+)K- N 0 sc4 x k' n & ~ M. / /

y a.vu%n sNN m x

ww! Ei \! .,,

N $

e

, ,n . w u. w.n

.. ~ .

a s E * '

g g -

Le.w i

p w -d@g,s* 3pp.n . : f-eE .

/ e
g ~

J

\_,i v-4: :e_--a;m .,}), .

3

/

N

/

g 5 2_bI_ [ __ \ .

e; i t s l 2 0 e

' /\

t l c/m o E 6 g

i l

I l MODEP_ (ELEVAT1DN) i I

\ , - . - -

CATAW84 CONTRI49ENT mL UITLRCE!'ENT CR5g g

/

a 1" -4 ;

/ ,,

n

\t i y gg?'

\

lU,o/ \l 2hwy i \,/\/, 7 ggia g,f Kl

! Il INI ,

l ll I /

Ik kll1($i \

k - ib .; O\ .,r:w. .e ^

~~

, -)) 4 s /- ,

e

/ C7

\

i b

k /, M;. y

', la s

/

1

\Aff'

^2 N

h

/ I i 4[,

X1

, 1 y.

l 37RTThf l'! NIT: gter g,yy ,

MODE,3

S

' 9 0

e M

/

u

' LI I\\

\ \ ^\ \

e HM r

, , i l '

@hn i l ~t li;1 l l- l l i.I I i {

i

R j !e
v. ,I ;7 i i g

i n, .i,2, I I I e

!=

Es 4 6:-

SM {!

ww~eI b

i l

,s ,

i I

it

[

u e

e r. i l I I E

s@ ,c h!!! I } } \I} l 5E $

  • I IjllW fl l ,

1j f Il ji; i a

!\!!HU i i.llitit .

I <j1

1 4 ,

l MDE 3 Elev4moy i

e f

I

/

CATRWD4 CoutA! MENT ESOEL 0}5 PLACEMENT CR$l 4

["

- _ -~

f'- m

/

-_r K2

\ N $ $.

< Agpv

\

w

. s.. \. g. ..

,. N,j- >. /

Ll x.

\ .-

s u

_/ P .j,h 1

2 [N-- \ Dg'i'" % ' ll?..j.~0; g.

\hx/

l \. x s 'g .

).g 3

/gjN s

.s .

i

-y :.T-

$1 Aft 31ht f] NITE EL*ntNT itC"L PE3JECTION DN xl-X2 PLRNE CASE NO. 3 MODE 4

l CAT AHOR CCNT AINt'LNT YESSEL 015PLFIErfEhf CR52 S /'

, ern!5 Y5 " '~'

--g f

,! )(2 y

j!, /

\

2' E \ '

$a'l x w %o;.

' I /

4- \// t T I ~~ -

Oh . '

N' --

g _ ,

,. / '~ /N - -

'%r /]Q\ rh

?

l 9  ?, :

'A _

)l STRCht FIN!TE EltitCNT TCDCL PROJECTION ON xl-x2 PLRN CRa,: H3. 3 MODE 5

i CRinush CCNTRinntyr VCSCEL C3%nCEt'ENT CRst 5 T

' n.

fs Nshg i 7

[l: s)N2bs

- N [

)' '

M -

MNj igr dl.[_ [

~ \# ' T Ms pi N % > ,

$, > 'a 9 &Ed,$?

X1 l

  • E IINITC CLCt'ENT 1:00tt pg " "I-X2 PLRtfC C43c ns, j Mode to l

L

i FREQUEt:CY ANALYSIS RESULTS KSilEL ttJDEL Mode Number- Frequency Wave G6/2nuM N4 at Base

- 1 6.73 n=1 .0274 -1487.42 -

2 17.76 n=1 .0048 27.17 3 18.76 n=0 .0014 -93.20 4 25.64 n=1 .0030 8.71 5 28.29 n=1 .0021 2.15 i 6 28.76 n=1 .0008 -

-1.13 '

i 7 29.54 n=0 .0001 -0.03 i

~

i SRSS of 7 modes . 1490.61 Mode 1 c'ontributes 99,8% of response -

O e

b .

O d'

l .

1 l

t k

i k

.,r----< - + - t

  • w t -w- - - - -

- e y,. -

. - , , , . . - - - > . - - - - . . ~- - - --r p. ,

CRTMSA C:NTAWENT LCCRLIZE0 RNRLTSt3 PCR P + 0 + CEE

/

= .

4 CE C bC C Q 53 O cc&QcQCCQbCcC 53 c c CC sa a a CC O OC at a o a G D o aao aO a n c o N" aca "

. uv %

C gha m gc>

h.. -,

w' -

Q^

l CONTOUR LEYELS <- - -

, w , m l MIN 1614.4 C3

W;
;
  • y .+m,, - -

C J = 5.

I D 33230.

l lG iME:

22;ag,

. k'N/ W\Ao I H M 31.

!  ! 29478.

l nL.Ei!: _ __-

P.OT OP VCk7t3 5C3 STR:55 +XS STAR 7 APE 4 VECTSR NO 1 gg , 37, g loa:D C ASE #4 Vow Mtse.s STRESS OUTSIDE FACE

8 8 e

d se W d' "s

" e~

o t

"\o e

s e

i t n c

@Je- d ..- 4 -

S

,6 g .-

)(7 f

,g

~-

. IJ i

~

f.E

. ,/g G E ,kb h 1,/

e I

1 1

1

/

i 1-i IV. MISCEUREOUS LOCALIZED #FLYSES I

A. VERTICAL NO RING STIFFENERS l B. JET IMPINGBENT C. HYDROGEN DETONATION D. ATTAC W BITS E. ANCH0PAGE F. LINER RATE

/

V. CONTAll E K ULTIPATE CAPACITY ANALYSIS A. OVEPAU_ QUASI-STATIC ANALYSIS B. APRJRT& # CES

4 OVEPALL QUASI-STATIC ANALYSIS e " MARC" COMPUTER CODE SELECTED- ,

.'e NON-LINEAR GE0 METRIC FORMULATION e NON-LINEAR MATERIAL PROPERTIES e LARGE DEFLECTION e FOLLOWER LOAD e INCREMENTAL LOADING e STIFFNESS AND LOAD UPDATED AT EACH INCREMENT .

e RESIDUAL LOAD CORRECTION e CURVED SHELL ELEMENT AXISYMMETRIC ELEVEN LAYERS THREE INTEGRATION POINTS CUBIC SHAPE FUNCTION l

l l

L

(

e *

.uM S & a 4~&4 w, o I 6

?? /. g.

.- , CATAWBA CONTAINMENT AXISYMMETRIC MCOEL

.e-a 9

10' . l

/

e .

j ..

$* i s..

E.fy;::3 5e ,,

@ ..::e g ,, .g

. -g

,; A ,, @ .. nr.

mg -

..ds.

-6

!; --@ .. @ .,.:.:,s u -.g .M

.. g I,'- -@ .. @

=% ,, ,, *d.,

. -e -

l -

I'. nd...

., t @g . .

.':;@._@ @ J '!' ,,

~

3-

.,g,.

__.e A _,g

. @ ,, @ v.

':gs, l ..

- e$

.,- @ u ..  !' 5

., 9

-@g

.. _, __g .,

g. .2 9 ~ ~ ~ - 95,

_g

=-6 @

.z

.e ... e 8.* 1 e tos

-- wlet l r# ,e. ioi

,,g f-g t ro ,

t O

l,';

24 ... @ ,.; ',',N

\ . . . . . .m- sun

.40 sAh-02020:s O

e s o o

e.>

cc a

C.

man y

! I C N E

.- r v

lu

.C

- M m -

k. M M >-

W J c a =

to v

lo m .

e o

c= M 11 c e

e m w o La.

=

o

, L t--

4 o -

, .Jx s, w ae L.

e-.

=

wo

=.e-

- u.

lu =

t s.J o

M

,uC .

i <

=

8 G. 0006? =

- m I- g

-4 l l y r G

=

e o >.

I (ISN) 3 'ssans sastw uoA 1

k

NODE SG stiffe..ord ELEMENT 49 NODE G2-

\ '

\ \@ @

ELEMENT 50

@ =

NODE G3- -

ELEMENT SI I

stiffeners O'.O l.O 2.0 3'.O 4.0 5.0 6.0 7[O liorizontal Dispiccoment ( in.)

HORIZONTAL DISPLACEMENT BETWEEN STlFFENERS Elev. 609 '+ 05" to Elev. G19'+ C5" ,

5

-e m

.e -

h

I Fig. !!.1430.I SECTION 111. DIVISION I- APPENDICES Cossapse Limit Line

  • Regression Lirie **

CnHapse Lnad Polnt Test Cotiaose Load

. e

, e e"*e

,ee*

e o e e 1

  • ee e e *

=

t

... e S

e e

O

%g -

+Os i e

ta,; & = 2 6w e -

l l

l Sie.iin n, Dir.pt cen-ne .

FIG.11 14301 CONSTRUCTION FOR 111430 .

?

I e

e l\

4 I

80 73 pel _

70--

a i

' t 60-p i o ,

4 i .

- 50- -

O 8

e

- a U 40- -

0 E i

- I i I

E I t i d

s 30 _ ; , i t

NODE 32 l 20- -<

- , -se .

__ , s n.s-IO- d.

os  :  :  :  :  :

O l.0 2.0 3.0 4.0 S.O EO 7.0 Ditat:ccment (in.)

INTERNAL PRESSURE
VERSUS RADIAL DISPLACEMENT AT UPPER STIFFENER 6

=e _

e . e- m .e g e e e 6eS $ ee G gg g

e 80

/

_m, ,

70--

r =

/

GO-i 50--

a n

j40-- 3 s

e z

A so. -

4

/

NODE 1~"

20-~

. :n-r ai.2-10-l 1

1 or . .  :  :  :

o i.o 2.o s.o 4.0 s.o c.o 7.o Disp!ccoment (in )

INTERNAL PRESSURE VERSUS RADIAL DISPLACEMENT AT TOP OF DOME l

I l

l .___. .,. .. . .

1 l

i i

g a 80  ; ,

i 75 put (rrJrt) 70- - <

60- - ,

/

i c 50- -

E.

E g40- -

n.

O E

A- -

NODE 22 l

. 20-- . . - - -

2 17.5' ,

l 1 - E14.8*

<s 10- -*

L t

o.; . . . . .

} b I'. o 2'o

. 5.0 4'.o S.o 6'o . 7' o l Displacament (In.)

i INTERNAL PRESSURE l VERSUS HOR!ZONTAL DISPLACEMENT AT DOME-CYLINDER JUNCTION i

4 l

i r

  1. .... - .. e -e e .

60-I 73 osi /  ;

s 1

I 70-60- -

6 i g 50- -

p b

N

! y 40--

n.

O M so- -

NODE 96 -

20--o f

= 6 '_ _

- t i g.g.

10--

OI .' . l 4.0 l

5.0 l

G.0 7.0 0 1. 0 2.0  ?.O Displacement (In.)

l INTERNAL PRESSURE VERSUS RADIAL DISPLACEMENT AT LOWER STIFFENER e s 9

% e e e, em. .

l 80 s

o

< o 70- - oo h<>

(p 1>

o o o o .'

GO- o ,

o i IP 19 l'

i ,i n 8

O*

50- o i.

ch

  • i

= NODE !! 9 S

g 40-- i, n NCCE 113 O

C 3 .

A 30 - . ,,)

NODES !!3 8 119 11 20- p ..

l

  • l 10 - .

i l I 0"

O l.0 2.0 3.0 4.0 0.0 6.0 7.0 Displacement (In.)

INTERNAL PRESSURE VERSUS RADIAL DISPLACEMENT AT COTTOM ST)FFENER AND l NODAL LOCATION CLOSEST TO BASE i

. _ _ - - _ . - . ~. . --..w l

Pressure Level ELEMENT "O

. Below Yield INTEGRATION PolNT 2 A b e Yleid I ,

I . oves.o. L.,,

2 l j -

1 I

i -

3 8 l' I I

4 ll g , .

2 1 f

E ',

. # l

@5 l

=

2

)

l' f 6- l 8

5 =

Y' \

7 "5 h.

Gf)

.2 a I

k

  • 9  ! -

=

9 .

l 10 I A O N I

I l raie. taru il

, . l . . l  ;

o 2.0 4.0 6.0 8.0 10.0 12.0 14.0 Equhcient Sircin, E. (la/g3 x!O-3)

EQUIVALENT STRAIN THROUGH MIDPANEL ELEMENT t

_.==*-an.-=m- ===G -*-ee m - =*-==----e G

i 1

. . l Pressee Level ELEMENT 49 -

Delow Yleid INTECRATION POINT 1 Abme Yleid 8

o l e m ter.,

I l

2 L- .

I I

I, -

l '

3 l ll; I

i i {

l 4 l >

a is I

5 5 l' , i N

11 I

o f,1 I N 5 .ill 73 II

,h ,

, \-

?

'I

).

$ a- \- - (

i[\

n l \

9 9 I j c\ @

16

,1 g

\  :

g Inside Lover  ;

I

, , , , , i 0 2'0

. 4'.0 6'.O C'.0 10'.0 12.0 I4.' 0 Equivalent Strcin, E ( Min x 10-3)

EQUlVALENT STRAIN THROUGH ELEMEN[ NEAR STIFFENER ,

i l l-i l

t _

-w

i l . .

CATAWBA C0flTAINMENT PRESSURE ULTIMATE CAPACITY ANALYSIS

SUMMARY

ULTIMATE INTERNAL

, LOCATION PRESSURE (PSI) CRITERIA ,

Containment Shell 72 Marc Axisymmetric Analysis Personnel Air Lock 79 Plastic Moment in Bulkhead i Equipment Hatch 94 Tensile Failure of Flange Base Anchorage 81 Concrete Shear Penetrations later i

l i

I i

l i

3 k

i h

,, ..ee,-- , - . - ~ , , - - - - - ,,r. , . , ,-yn , ,....,u --,,--,,v, .,-,v. - - , . .m.,--,, caw,.,,,e ,,-p ,,-w., v: n-,- + - - , ,- m -,. m-,,,. - , -, -e-..

8 a 4 ,

e VI. STABILITY NMLYSIS A. OVEPALL B. L(rlt

[

0 1

Enclosure 4 l

TYPES OF BUCKLIN G local - PANEL FORMED BY STRINGERS AND R.i N A STI F' FEN ERS i

e sT RtN 4 E R.- REGloN SETWEEd.1 1:2.t N G STI FFEN ER S 4ENERAL- L A R.G E R. RE4 TON IMGLuprNG  !

l STRINCTERS 4 R16 STtFf:ENERS 9 06 , , .c }

Cc0trica J

A N ALYT!G AL METWODS <

NONLINEAR ANALYSTS P F-E( t s E IA IM PER FECTioNS ARE KNOWN AMD AR-E MODEL E D EV AG.T LY IF IM PERFECTIONS ARE NOT l<.NOWW, IT 4AN LEAD To ERROR ON THE UN CON SE RVATIVE 6iDE LIN EAR Bl FORCATto N l

A P PLI GATION TO PRACTidAL PROBLEM S MADE PoSS1SLE BY USE o F KNOCKDOWN FAGToR WHICH R. ELATE L I N E A R.

l S t FU gcATt o N SOL UTioN S To EM PIRlCAL PAT A i

l

l l

CO M P R.E 551VE L CADIN 4 5 l

l LocA TR A hl s t E NT CCCURS E ARLY TMD DU RIN G LO C A - VA RIE S W . R .T. Tt ME, AIlM UTW 4 RE i G W T - PEAK @ t = 0.14 GEG.

l LOCA PU R t N G L o c A IN SI DE TEMP = 328'F l THERMAL AND PRESSVRE D RO PS T o 7,5 Psl 4 ,

t HAs No EFF:EcT IN pome NEG. FICTtTiou s PREssu RE = -1.5 PS14 -

PIRES. IN T E RLoc K S F12.EVEN T PRESSURE Fito M FALLIN 4 5 E LO W + O,25 PS I 4 IN TRE EVENT OF Ac.TU ATio M c1:

do NTAIN MENT S PRAY 4YSTE M --

NORMAL IN SIDE CONTAIN MENT TEMP: 120* F TRElzMAL l SEISMIC SMALL DEAD SMALL '

LOAD

M ET HODOLOGY

f. dALC U LATE KNOCKDOWP4 FACTORS PRO M .

doDE 4ASE N- 7_84

(

l

2. LOCAL BUCKLING STRESS CODE 4ASE N-284 HEA P R.o G RAM A ERO S PACE E Q U ATIO N S I
3. A ENERAL 4 GTRINS EER. @VCKLING HEA P ROGRAM - WAVE No, m 4 v1 Bo S o R.4 - S Ucl4.LIN 4 E 14 ENVALUE
4. M AIo A PENETRATioM S NASTRAbl 5, ooME GODE 4 AS E N-284 i
z. e CA-~ MEA CONTAINUENT B050R 4 MopEL FIGURE 4.1 l

l

, m, r Je773 I

y,,o

, < m, , -

S

...,..- m- , ,E,G,,8 . m , .. ,.

t , < , , ,. . .

t=

  • b E s IIO
  • g ,g, , g .

4a

$U q ft &?? f*

w1 c, m- .

Y Jg,8;Cg % "q h sa' f

  • S PTr.

7 SEE Of TML 1

- # #~ 4ti Dis.cattse wa _

es ,

e t si, . -

. i we t gI a < , , ,

r. m -

"-~ ~-

DETAIL t ,,

=tae.t-mH(. sTiFraniiin y - t rAu l

ew l

VU I

4 W~N h

  • M' . !*

q l'

  • W ,

4 t_tsf.s*

l 8 mm

t. N * *
  • I

' z* 12Y <>

l e_ t - 4 .-

gg w a-w1 g I

z . ,e *.t .a a r

l g y t I

(

I eu t 2 4 a t. ..;.n.

I ...-. t' .. ,

15

j i

O

  • a I 1

1 60.9 L -

J y I t [j FIGURE 4.4

.a g

...i gi , ,

f:

st.3 -

r.- .

j 46.3 =

l i .

r. .

41.e -

p

r. ,

i 37.3 - P E..-

,=., -
3, l

p.

O

' e-27.4 - -.

.I

22.6 -

E.

+

l t?.S - .

r4 13 1 F {j p

e.3 h s+

~$

h 3.s -

g

+b I -13 L t

f t

r t

I ' ' ' ' # f

, , f 1

SS7 631 696 731 706 710 715 720 725 730 734 CATA=84 C:Mf 21NetNT vtS3tt. TRAN3!!NT fMERNAL (t.00At Anal.YSIS 3(Ontite .aN8f5

  • I 21

i FIGURE 4.5 i t.Wir t Fu cotf ritigui =

400 5f0/de/ft /'F S cut 9i96 M.u cc,cFFttaC47 = l.16 sfo /4 r-/ rt'/* F te 4 094.T w m of ntsw = to 6Ta /e r./FT /* F 9e cupu. ws3T ce meu - su iTo /FT'/'s

\--

1 L a.

Igetyg com AsiaMewT 4 E+-t b (Mt A v0

[ (19E Aust,0 F4w 9 % tt (..O . l ) fo sF F4A&)

/ Ts ht

  • F e

t +..

e 1.-

u d-1..

5 CvT6s p 6 Co4T Ai g u t 4 M cw*t t. ( AIN 5 l

'. j r, ss e

- t

. i.. ... .. ~ ... ... ,.. s. 2.. wc sss.

AwWed Temperduns f.w 5+eam a w d & w. D w Am3 LocA 22

ven.

~

CATAWBA CONTAINMENT LOCA THEF.MA' l \

INF UT TO 5 050s .;.

FIGURE 5.11 1

SEG 9 3r Pf3 N

I 0* -

9 i g _., it w w SEG8 se as** sm s ns  ? L Lt.3 ** 9

  • It in99'e l *

==

l r mr '

  • N ,o c9.5-
  • c I

r,MS * '

d' st f.29

  • f*
  • N es j

De -

ILhT*9* l.

r. w - ,

eteg.g-I I s.,:

. lk N I # ' <> et 19f.s-I m

= . ,< . 3 . . c 1*123~

<p.m4 ft.% NA y' > ,

t% s,a 1 2

we g e r&

f t

  • m3
  • 4
  • I -

2a

~ $.

6N

E "' 2!; -

,L

. = 4. ,o-rn~l  %- 2 1_ ..?.3-

-n c.

37

l-

e

  • 2* E MAY 17, rJs2 CATAWBA CONTAINMENT i LOCA THERMAL HOOP STRESS N2 FIGURE 5.12 l

SEO S 38 PTS I

p$

' tt ret.9'.t *

\

^

l

$EG S l ze:14#' Ib2* , S PTS gt g3'..,-

ft 659'-t'

-=

8' m- ~

l '

Is f /O" '

gg p,*. g

  • I 4e

$E ft 639'* f *

  1. c 1, w- ,

t t .W* f

  • WN st w.s-l r ni- ,

'l ft46.i*

I G'O -

g it sw.s-9  ?.

R 2 t*W "

,' , e._ s tr.s-n pry m

$f et nr. e E*123' ,,

I y. c_ e-% s-SE

  • e f 4 " o ,, 36r.c-g
  • 6 h

21 y Ti , , y s . . .e-i ,.e., -

.. . .r. ,

t e5 +

38 y

2'41:1*._ ..

CATAWBA CONTAINMENT I

NI PLOT EXTERNAL PhiSSURE I.5 PSI l

'% FIGURE 5.6 C9 s ers

./

5 _,,

et W.9*.e*

i SEG 8 t

2, q4 #

  • f322' 5 Pf 3 t r23'.g-I A I et 6w-i-r*
  • b

-- ~

l '

tu aq'.y E s IIU * ,

en gE et L39' f *

  1. c l ,w- ,

o st m'.s-my t L hi9'. !

  • I

,, ni- ,

f L &% E' o

m-l

u w.c le +M' '

,, et'9f.n*

l Me 45 3- c_ 5er.. i' z nr ,,

I y, r_ t-6 4-SE

  • e F* # o r._ . 3 '. $ -

o N

6  :. ,

3 f I g 4 5 _

, , < a 4. .o-

?.9*f r _ * *f V- ,

e 'n l o i 30  ::$

ae

ex CATAWBA CONTAINMENT I N2 PLOT ,.

EXTERNAL PRESSURE I.5 PSI FIGURE 5,7 4

r= s l

SEO 9 G 38 PTS l.

E I

90 pe IL fok9'.(*

9 I z .?-s* c52* 1 fp]30 l TL LJ.9*

.< ,s,. . ..

0 a:

l '

E s IIU * ----,p it 49' . g *

  • N g _

rt 63,'. 5-f N5"

'. Et C9'. g*

_~ .

W8I e.

o t' I L h19'. E *

[ .

g, u ~ ,

ap e.==_ = .

El 63.T

  • vm

->~ 8 Il e99 .g*

l l { t e y7 '

--- <> t_ nM s*

l l

ma i dE r_ Sar.. -

Z*?:T

6 ,

l

$ r_ -n -

g:s T.

w.

We U

~

} . f $h d' ei L3 *. ( *

  • = = = - .

ec I

(

i MI .

I f~ .

= = 4. .y m ay. .y I -**^~f -

31 m3 I _ .

zG s CATAWBA CONTAINMENT j N12 PLOT I

ANGLE 23 TIMESTEP 7 LOCA WILSON-GOSH ANALYSIS l

FIGURE 5.10 SEG S 30 PTS I

p.C*

g -

i GL Mm9'l* *

~$EG d

, , ,3 , - su2* s ns et ur.v IL L59'- t *

$ N s

l '

E s if 6)" , ,p IL *+9'* $

l

[

"f tt m' f

  • l' M ~ gt m'.5*

o, WU Ch ,

et o9'.9*

C I

a. m - ,

' t ,t65-?*

m 1

it 199'ai*

g,4ys" P e C9f **

l Me gic m ,. r. . .-

z.nr ,,

4 g

, e_ t "' 8" 3E

  • c

< ,4 . ,, ,, ..r.,-

I

-e c 31 yA "4 , . s s e..o-l ,.. . ,  !. . .<. rq 36 Cf 2

za CATAWBA CONTAINMENT 5 N2 PLOT Is ANGt.E 23 TIMESTEP 7 l.0CA WILSON-GOSH ANALYSIS FIGURE 5.9 i

SEO S JiP75

\

'\

l*

. l Et M 't*

) i, SEG8

) 2* 0 48' 1 512 l 5 Pf3 "L'43'* 9 *

  1. L (mS9'* l*

0 a=

l ..,u,- ,

l k

Uc et 639'. r*

I ur ,,

s h

1 L isl9'* !

  • Mg
  • l Es 721 * >

n se a 'fs** t

  • N C:
e. -

l dU tu m .s-g , .7,- ,

, e_ sr.s-l me

? _ 8 9 3 '* + ' *

<*12T ,,

I g , t t-6 4*

u

  • c tog y ,, e. u 2 '. s '

x i .  :

yC- 'l

i ,. , a..e t l -.. , .; . / .. . ., . e ,

, ., . -n 35 NS 2

2E-

\ ~ . .. CATAWBA CONTAINMENT I

N1 PLOT ANGLE 23 TIMESTEP 7 LOCA WILSCN-GOSH ANALYSIS l . FIGURE 5.8 sEG 9 Ja PT5

\

\

i N

\

d'e' \t IL Guis9 a (

  • l \ s g sEsa
1. ,y , - ssn* s ns et u.v.s-E L 69fa l*

8='

a:

E s t/O " ,, (L v' e9'e $ '

N e

ft 139** f *

\

Mc l

ws- '

WN C'

it h49*.a

  • C l

,, w - .

a t 6 5. ?

  • l t

vm I

- "% (L 19f.6*

,,.y,~ ,

e_ ,,1. s-MM f t !83**

  • t*

y.;23' ,,

g g et 1 * ' _*

  • E*

l i

'E d

e l' *4 " o e._ .f.c

l u se/ :=

l 21 y$ $ .._,,...o-l , . s, / =

_ ..f q 34 -1

. a-

E' W CATAWEA CONTAINMENT I

N '

c,. Nl FLOT N( t.a ck wum-Gese AaLM l -

Sf0 9 38 Pf3

\

\

i \

  1. s \

g

\

[\

t it (sis 9'* f

  • SEG8

[ lfl i

y , ,3 4

  • 1 312' 5 PTS / f iLfd f*9" l l , c s,, . ..

n= f Es t/D' ,, IL 449'* S *

?

[

  1. c tt 639' F I

E' WS" o

) e_ y w .e V3 y

  • s Ob I IL bl9'* 6
  • C $

l st ti4'++" ( 19 rau " - 3 ,,

I fL&T*E' { pag

.,, 3, 3{

s l 8E m; 1'\ a m .s-i

,,,y,- , k n e,r s-i

i me h~\ '

fL !93'* H" Td.

e a i ~

wo M, 'i

-\ x ,

m en s-0 '

\

{ #8 y f u_ $ h_T_ e I E

I Gc ', '\

~3

  • k ,k } r ._ < s a'* e-l _,,, f '\ t \ _ ..r-r .,

, -n

=

~=

e FIGURE 4.6 kQ,g

$r a 33 kG,g 3

CATAWBA CONTAINMENT

$2 }99 So=,x,g 4

0 VESSEL

    • .o WILSON-GHOSH MODEL 47\U . .

4fsh 45\h 44 43 4 3 ,42 42 u Z-COORD. ELEV.

6 spes. e 5* t. g ,,, . g (in)

T g . 690, 4o 1405 669+1 10 39 38 36 37 3=g 1285 659+1 3 34 ll69 649t 5 30 si 1049 639 + 5 1

290 27 28 929 629+5 Axis of Symmetry ,

26*

24 25 809 sl9 +5 I a 22 689 609+5 i

R=690 19 569 599+5 497 593+5 is ,, # $s 12 13 383 563 +11 O

io 257 573+5 a( ,,e we 6 7 137 563'S

  • '4 34 5 5 4+ 10

' O 5524-0 p

23

ME M BRAN E FORGS N4% N.e % N,%

4 .

i I 4 7 38 I 4 7 36 ) 4 7 38 N + ,, -4,5 -g_2 -s.o _2.2 2., , o.g , o_ g .g 4 4_o 4_o 4o o4

+0.2 -I.7 23 o.3 o.7 TMp Neuw -7.3 42.9 + 2.2 -l.l

% gg -3. [ -o.c + 0.7 +0.8 7.3 2.6,

4

LocA THERMAL -23.3 -15.9 -7.o DEAD LOAD -0.9 0.8 o.2 -0,l -0.l EXTERNAL PRES- -0.5

  • __ i . c, esia -o.5 -0.s -as -o.9 -o.9 -o.9 -0.s NTERNAl PgES.

op a +-5.2 +5.2 +S2 +47 +4.5 +1.3 +1.0 +5. 2 se,s ,c sse '

g ,g , g y g g 7, -o.9 -o. 6 -a7 -0.2 - o.i - o.i -o.6 -o.6 - 0.6 NORMAL THERMAL -f 6 -3.3 -1 A l

,. a .

CATAWBA CONTAINMENT 9 Ni FLOT ls LOAD COM51 NATION NO. 6 FIGURE 6.15 l

SEG S 38PT3 l

l e 0*

2

., 5 st u.s v ses a r.i34e- rm- s n3 , t ,3., , .

f f L (.9fe I*

m-1 '

z. iso- , , , , .. . .

en

$b fL (n39'* f *

  1. c l

z,us-o st e .y MU CA

$p- , f t bl9* 9*

I

u. ni- ,

8L4T.!*

I oN m-

  1. su..r.s*

I'# ,p tt T9% %*

Me V5 - ft ?93^* * **

l l l'!I3~

{ l g

i me r- s-M =-

6 05 a .,

l ....,.

o

, g et 3.r.s-l 1 2 e* 1 2

-) d." -

, e , , c. .e-E*? ,

TL S T2 '* 0. e

-n 5 i -

=*

. e d' C MAY LT 1982 CATAWBA CONTAINMENT 1 LOADCOMBINATICM NO. 6: LOCA, INTERNAL PRESSURE, DEADLCAD HOOP STRESS N2 l

FIGURE 6.16 3e ers I

p h

.-, It (s/s9 I

  • SEG8

, , ,y , - 1sn* s ns .

t u.r.s-f [I u 6w. i-t- **

b n:

I '

ge s/U"'

,, _ tt M9'.5

  • 4 .=

d *= ft L39kf*

  1. c I

m- --

., \ , _ , . ., .

  • C CA NC e t 6i9 '. st
  • I
r. m - <

1P

't '

ft&MkE' l  :=

w"

= 3

,< ,w. s- -

A-r m*' '

n t'6 *~

4 I

me

,e: , et saf #

1 .. m -

9 l i

_ m . ,,. -

E5

,t ,.r.s-i se ):

24 bh - -

  • r ._ = = * <o-l p.n \'  %~,_

r_ cW o' y I i

9 _

! . 58 4 t -  !

1 I' d

~ "'

CATAWBA CONTAINMENT

,, LOAD COMBINATION NO 6 CRITICAL SUCXLING MODE N GO l FIGURE 6.17 SEG 9 se ns I

p$

it t.e9;i" SEG 8

/ r.34s* IU2* s ns et ur.,-

I a sw. ,-

D= -

I

z. rio - '

, se u, .s-i I

$E , ft 639' F*

  • c I

ns- ,

g6 g,2, . c.

@' '- et6W.s-I

r. w - ,,

i 4 8t 6# !*

(

l i

$C 3N l

es Et8 6 *$*

gg 4M*' ' I*M gt99t.q*#

l l

i m- Wa *t400 h $03 **1'

--m+

\

!

  • 1* ?23 * ,,

I m, n s-9 5-SE

  • e I'

<> g t s&3 *.t

  • I ge 24 *b ,,_ s s..,r p . ,y * ' '

e ._ e 2 '. 2

  • n

' - M 60 3

1. a CATAWBA CONTAINMENT I NI PLOT .

i LOAD COMBINATION NQ 10 FIGURE 6.1 i

SFO S 38P15 I

p$

l 1 _., it f69*6*

-1 1 SEG S J Zer148* IN2' ' S p?$

f t (.t. t '. 9

  • I . t e,, . , -

8 a:

l '

Es ttH * ,

,, 5, i

Gw

$C ft er. r-

  1. c I

m- ,

' st 62. .,.

MU 2'

o r= f t 619'. 8

  • I re u - .

$ ELGM'*S*

2 1 1

t- m I a. 4

.~ t N ft **9' !*

I'

,> CLT7f.q' I Me 05

" et59foo" f*?!3" ,

I

~. et < -, a-

"e g e ld1 <

g il et % 3'-?*

Ge  ?

2

-) Mt**  : -

I ,r N( z,, .nu.,q-

.<. c , -

4o a.t.

vue.

CATAWBA CONTAINMENT l

N2 PLOT LOAD COMBINATION NQ 10 FIGURE 6.2 i

SE<a S JiPTS I

0

, ., ft M 9't' SEG8

, , ,3 , - s.sn* ' s ers l. et u,r-v f

n w -i-b

  • = \

,.,u,- -

a .s, ,-

4 I

\

3E rt 63,-r-N_ I s _ _ , . . . .

I f

  • N 8' tt W9". ?
  • f

+C t I

/

z. w - ,

\,

g 8 L G M'* 5 "

.r- e

a= s a= _ u m'.s-g ,4 wy
  • et ??f.5"

(

l '

me et $9f**1*

z.nr ,,

s i !_ j m -,.,-

et

  • c

~

{ e l4 " g "

y,_ g gy '.C-I se '

s 7 W'9 et ? ? i.

-)i ..,_t .

....<.,'C' -

, i z

41 E3 e .

vcic_

CATAWEA CONTAINMENT I N12 PLOT LOAC COM8lilAT10N NO.10 FIGURE 6.3 i

SEG S 38 PTS I

e d

l _

, IL Ms9.t SEG8 Z

  • 1341
  • I 322

, f L f 95** 1*

I .

1. ,,o -

, , m,. ,. .

4m

$ ft f.39'. f *

  1. c I

z,us-

' s u <,n'. s*

MU C4 M 'r. E L 619'. ? '

l Es72/* i 8L 6J9. E

  • k l ms $.

N (L *?9'.5*

h 2

Zi+ W '

, c L ,,g ,.

Am W: et 89f* o

  • f*?23" ,,

' me et t-*.e-SE

  • e g oss o

" et 563'.5*

g e

&A

~j s diN ft T54 9*

1*^~ '

e _ c?f. *: n

. . + O 42 S$

-2

1.ce. .

CATAWBA CONTAINMENT LCAD COM$ NATION NCt 10 l

CRITICAL BUCKLING MODE Ns2G F,IGURE 6.5 i

SEG 9 JiPTS I

p h

.i IL M9 * '

  • j ,,,3.,. sm- SE,G s Ts 8 k

rt ur 9-f l ,< -r. i -

a:

E s lii!" , fL V*** S

  • i L

a '

m e, -

i wr ,,

, a .,.. ,.

Watogg  !

i 8% fL (st9.!*

  • C ,

i i

1. m - ,

o fL 6T E*

l I +m I s eg et m .s-

,,,y,- etr,r.s-l Me et ?9f*'t*

rn? a g

\

et s-49" 8i

< *e r e s49" ,

4 e t ? &3 '. ?

  • I 1 GO j

'g g m'4

(

c._ Ssa.f e_ ?_*f*3* e

- .9 l

3

! 45

F E Ho o f.L GA .

-]

FIGURE 4.2 ,

l M *4 *F Cearf. 49%46

  • "*$E* =a're em

~

~ m- j' "'e - 'se

- / -

% %_ - e ,,, #

r Y  % ,_ l l

Lb 'N \ - /+

F' N- l o. .- ur\\<,r #/- -

/-

I/

N

, in a

ir r

& [ff v g

if

//

N \ /lx /// fc

\

12 ./

Nx ~~~_ / -

/

/

N w _

N -

Et,. 513'-5 f

17

e 8e er a

FIGURE 6.9 u s..rus.u'T'A N /

w /

- /

K -

/

\

N -

N w _ - - -

'//

N -s s

\ -

'p' ha \\ -

q /

x %C' .

$ ,/ / 4 ,// .

xx x

""s .

N N Y

/t

/

N N L. _

swnmrt._

50

R E S U LT S - C.YLI N D E R l LOAD CO M BIN ATI O N G

D + P( + T( t E '

I. LOADIN 4 INPO7ED TO B>o SO R.4 F A.o M W W \ C H STATtC. A N A LYSI S R.E5 ULTS 4 8 UCKLIN 6 FA CTO R. I5 O STAINEo@ n = Go

2. H o o P KN OCKDoW N FACTO R. U S E D To oe>TAIN S AF ETY F Acto R. ,: 'Z.\l BASED UPoN t = o. 70 iN. .

LOAD GO M BIN ATION to D + T M D -t E '

l. RE6DLT5 O F STATIC A N ALYSIS (N4,Ng,W&e)

INCRE/ISED BY DIVIDtN A BY KNOCKDCWN F:AGTo R S

f. L CA D.S.vAEPuEDEag.ScSc@.4Jo-M EET- )* : 4-
3. B U CKLIN A FA CTo R. = S AFETY FAGToR= S.ol e> A SE D UPoq t=0,70 IN . @ n = _ ,

F OR. AY I SYM METRIC. CYLIN DER.

4. E F FECT C F N1 A. TOR. PEN ETRATION S Sy N A STR A M
5. 5 A F E TY FA CTo R = 1. *> 7 F o R. t : 0. 7C i N -

14 NO C K. D OW S F ACTOR.5 Fo R A41 Sy M METRIC SHELL WE F- E VSED W H IG H PROBA B LY SHOULD HAVE BEEN 1.0 ~

PEAK VALUE OF bd4 WA S U SED A S 1

do NTTANT IN BoTW- Hoop 4 VERTIGAL Dt RECT i o N LOAD GOMBIN ATtoN 3 D + To + E '

l L O NLY M ogM AL 4CNDITION FOR WWlGN Go M P RE SSIVE STRESS ES AR E NcT

N E.G L1 Q ISL.E.

l_ _ _ _ _ _ _ _ _ _ _ . _ . . _. - - _ _ - - - . . - - - - - - - - . - -- - - - - - - - - -

a RE S ULT 5 - DO M E  !

412tTt C A L SucKLIM A VA L UE 5 O STAIN E.D BY MANUAL G A L G O L ATloN S LOAD C. Oy e,1N AT I O N 7 D + 3'-e- E v

l. K N O C K D ow 4 FA c. Top. Fo R E';<TERNAL PRESSURE = o.y2.4 (,4coE CASE N-284) .
2. 5 AFETY FACTOR = '2.32.3 LOAD 4 cme >lNATio8{ lo D -r T M D -t E '

i.

N 4 5 N.e. AF-E OF CPPc? SITE S t d N L.E. ONE GoMPRESSNE, OTl4ER TENslLE 2 1F E G U A L 4 O PPost TE A N A Loc = O U S To P ORE'esnE AESE-U44MW4t4DEAfM(r =@ f:M

3. I F ON E 15 Do min AN T I N c o M PFt.E SSloN

%g= O. S l

4. KWock.DoW N VALUE SELECTED = 0.C
5. FACTO R o g SAFETY = 4.01

. t 3

Genera 1 BuckIing loca1 Buck 1ing Part of Ioad Containment Comb.' No.

Knockdown Factor of Knockdown Factor of Factor Safety Factor Safety 3 0.80 (CC) 7.04 (BSR) 0.80 (CC) 4.73 (CC)

Cylinder 6 0.80 (CC) 2.18 (BSR) 0.80 (CC) 2.33 (CC) 10 0.52 (CC) 3. 05 ' (BSR) 0.52 (CC) 1.97 (NAS) 7 0.124 (CC) 2.23 (CC) ~

0.124 (CC) 2.23 (CC)

Dome -

10 0.60 (I!EA) 4.01 (ilEA) 0.60 (HEA) 4.01 (IIEA) m TADLE 2.1 SUFHARY OF RESULTS i

Notes: (

k 1 - Shell thickness 0.05" less than nominal, therefore actual factor of safety is above 2.00 2 - E = 27,000 and 27,700 for T = 200 F and 70 F respectively.

f.

3 - Ioad Combination 3a DL + Seismic + Operatir.g Thermal 6 = DL + Seismic + LOCA 7 = DL + Seismic + External Pressure 10 = DL + Seismic + IOCA (THO) 4 - Analytical Methods Used s CC - ASME Code Case N-284 li l

BSR - BOSOR4 s NAS - NASTRAN I!EA - IIEA Computed

-e m *we