ML20044D882

From kanterella
Jump to navigation Jump to search
Sample Analysis for Effect of Postulated Pipe Break ABWR Main Steam Piping.
ML20044D882
Person / Time
Site: 05200001
Issue date: 04/30/1993
From: Hwang H, Raju Patel
GENERAL ELECTRIC CO.
To:
Shared Package
ML20044D880 List:
References
GE-NE-123-E070, GE-NE-123-E070-0493, GE-NE-123-E70, GE-NE-123-E70-493, NUDOCS 9305210055
Download: ML20044D882 (55)


Text

. _ . _

O l l

GENuclearEnergy l 775 coewenue GE-NE-123-E070-0493 Sen.csw m25 DRF NO. B21-00498 CLASS II l APRIL 1993 {

I i

SAMPLE ANALYSIS FOR THE -

EFFECT OF POSTULATED PIPE BREAK 1 ABWR MAIN STEAM PIPING  !

v I

I i

PREPARED BY:

UL MW H.L. Hwang y '

i Principal Engineer i

J APPROVED BY: , sV '

chi /v2

. D.'Patel #

Piping Projects Manager i

I h

[

9305210055 930528 i ADOCK 05200001  ;

l (DR PDR

L GE-NF 123-E070-0493 TABLE OF CONTENTS DESCRIPTION PAGE i

ABSTRACT iii

1.0 INTRODUCTION

1 2.0 PIPE BREAK FORCING FUNCTION ANALYSIS 2 3.0 NON-LINEAR ANALYSIS 6  ;

l 4.0 STRESS ANALYSIS 10 l

5.0 CONCLUSION

S 13

6.0 REFERENCES

14

[

FIGURES Figure 1 ANSYS Analysis Model Figure 2 Impact Force at Pipe Whip Restraint (PWR) (DT=.001 Sec.)

Figure 3 Bending Moment Time Histories at Elm. 21 (DT=.001 Sec.)

Figure 4 Displacement Time Histories at the Break Location (DT=.001 Sec.)

Figure 5 Moment Time History at Headfitting (DT=.001 Sec.)

Figure 6 Force Time Histories at Headfitting (DT=.001 Sec.)

Figure 7 Bending Moment Time Histories at Elm. 22J (DT=.001 Sec.)

Figure 8 Bending Moment Time Histories at Elm. 421 (DT=.001 Sec.) -

L

-i- ,

f

FIGURES (Continued) GE-NE-123-E070-0493 I

Figure 9 Bending Moment Time Histories at Elm. 381 (DT=.001 Sec.)

Figure 2A Impact Force at the PWR (DT=.0005 Sec.) l Figure 3A Bending Moment Time Histories at Elm. 21 (DT=.0005 Sec.) ,

Figure 4 A Displacement Time Histories at Break Location (DT=.0005 Sec.) l l

Figure 5A Moment Time History at Headfitting (DT=.0005 Sec.)

Figure 6A Force Time Histories at Headfitting (DT=.0005 Sec.) ,

Figure 7A Bending Moment Time Histories at Elm. 22J (DT=.0005 Sec.)

Figure SA Bending Moment Time Histories at Elm. 421 (DT=.0005 Sec.)

Figure 2B Impact Force at the PWR (w/ Rotated Blowdown Angle):

Figure 4B Displacement Time Histories at the Break Location (w/ Rotated Blowdown Angle)

Figure 5B Moment Time History at Headfitting (w/ Rotated Blowdown Angle)

Figure 6B Force Time History at Headfitting (w/ Rotated Blowdown Angle)

Figure 7B Bending Moment Time Histories at Elm. 22] (w/ Rotated Blowdown Angle)

Figure 9B Force Time Histories at Elm. 223 (w/ Rotated Blowdown Angle)

Figure 2C Impact Force at the PWR (w/ displaced elbow and break pipe orientation)

Figure 5C Moment Time Histories at Elm. 42J (w/ displaced elbow and break pipe orientation)

Figure 6C Force Time Histories at Elm. 42J (w/ displaced elbow and break pipe orientation) {

Figure 9C Bending Moment Time Histories at Elm. 381 (w/ displaced elbow and break pipe orientation)

F Appendix A Piping Dynamic Analysis Engineering Computer E Program Analysis Results -

Figure A-1 Force Time History for Broken Pipe Segment Figure A-2 Force Time History for 2nd Pipe Segment ,

Figure A-3 Force Time History for 3rd Pipe Segment Figure A-4 Force Time History for 4th Pipe Segment I

Figure A-5 Force Time History for 5th Pipe Segment Figure A-6 Force Time History for 6th Pipe Segment Figure A-7 Force Time History for 7th Pipe Segment ,

Figure A-8 Force Time History for 8th Pipe Segment  ;

-ii-5

GE-NE-123-E070-0493 ABSTRACT This report documents the results of a pipe break analysis performed at the request of the NRC for a GE Advanced Boiling Water Reactor (ABWR) main steam line following a postulated circumferential break in the main steam line where it connects to the reactor pressure vessel nozzle. This report supports the ABWR Standard Safety Analysis Report (SSAR) and supplements Appendix "3L" of the SSAR, " Procedure for Evaluation of Postulated Ruptures in ,

High Energy Pipes."

This pipe break analysis illustrates GE's pipe break analysis methods. It also addresses the specific NRC questions regarding the GE methodology raised during the NRC audit of the SS AR. These NRC concerns are listed below:

(1) Document GE procedure for calculating the forcing functions for line segments of a ruptured pipe and for the thrust force at break location.

(2) Document GE procedure for performing the nonlinear time-history analysis of the ruptured pipe using the ANSYS computer program.

(3) Show compliance with ASME III, Equation (9) stress limit .;et by SRP 3.6.2 (MEB 3-1) for the piping between the containment isolation valves following a postulated pipe rupture.

(4) Provide justification for the 0.001 time step used by GE in the ANSYS time-history i

analysis.

(5) Show that GE methodology based on the simplifying assumption of no rotation of the thrust force at the pipe break is valid for predicting stresses in the containment piping.

(6) Show the use of the GE program, PDA, provides a satisfactory basis for selecting the size of the pipe whip restraint.

-iii- ,

GE-NE-123-E070-0493 l This report documents the following results of the sample analyses: l l

l (1) The postulated pipe break location that results in the highest stresses inside the containment is at the connection of the main steam pipe to RPV nozzle.

(2) The ASME'III, Equation (9) stresses in the containment area of the main steam pipe following a pipe rupture at the RPV nozzle are below the SRP 3.6.2 limit of 2.25 Sm, even with the followirg conservative assumptions: (a) the restraining effects of snubbers )

on main steam line are not considered; (b) the restraining effects of SRV branch lines are l not considered; (c) the lower pressure in main steam pipe immediately following a pipe  !

I rupture is not considered.  ;

(3) Decreasing the time step from 0.001 seconds to 0.0005 seconds has insignificant effect on results, proving convergence of the ANSYS solution with the GE analytical assumption of 0.001 seconds.

f (4) The maximum pipe stress in the containment area does not increase due to rotation of the thrust force at the pipe rupture location. This confirms that the GE nonlinear analysis based on no rotation of the thrust force provides accurate results.

(5) The GE computer program, PDA, provides a satisfactory basis for selecting the size of the pipe whip restraints.

ACKNOWLEDGEMENTS M Herzog, It is special thanks to P Chen and K Jaquey of ETEC,and provided EO Swain and SJ Lin of GENE to review the report valuable coments. Those coments have been incorporated into the report.

t

-iv-r

GE-NE-123-E070-6493

1.0 INTRODUCTION

i This report presents the results of an analysis performed to evaluate the effects of a postulated ;

l circumferential pipe break at the connection of the ABWR main steam pipe to the Reactor Pressure Vessel (RPV) nozzle on the pipe stresses between the inboard and the outboard Main '

Steam Isolation Valves (MSIV). This postulated break was chosen for analysis because this break will create the maximum stress in the pipe between the containment isolation valves, since the M.S. pipe has the largest diameter (i.e. 28") compared with SRVDL's 10" and Feedwater's 12" size. l The analysis for the postulated main steam pipe break analysis presented in this report includes l forcing function calculations and the nonlinear dynamic analysis.

The result of the analysis show that the stresses i the j'pe between the containment isolation  !

valves meet SRP 3.6.2 stress limit (2.255m).

I GENL123-E070-0493 '

l 2.0 PIPE BREAK FORCING FUNCTION ANALYSIS 2.1 Description b

The steam Gows in the main steam nne from the RPV to the turbine during normal operation.

~

When a postulated pipe break occurs at the RPV nozzle safe end or at the first elbow down stream of the RPV nozzle, the steam flow in the main steam line suddenly reverses and flows back to the i break location. A decompression wave starts at the break location and propagates toward the turbine, creating force time histories on each main steam pipe segment.

In order to calculate the force time histories on each pipe segment, a modification in the Turbine Stop Valve Closure Force (TSFOR) calculation method is used. TSFOR is an Engineering Computer Program (ECP) used to calculate the pipe segment force time histories due to turbine stop valve closure event. The program is dearibed in NEDE-23789. The boundary condition of this program is modified to calculate the pipe segment force time histories due to the postulated pipe break of the main steam pipe at the RPV nozzle. t i

l Modifications to TSFOR and the procedures to calculate the force time histories are described in the following sections.

'I 2.2 Generation of Main Steam Pipe Break Input Data ,

The back flow of steam through the main steam piping can be computed by applying the break boundary condition at the main steam RPV nozzle _as shown below (Reference 1).

p/p0 = (2/(K+ 1))"(2K/K-1) = 0.30

<j > /C0 = (2/(K+ 1)) = 0.87

< rho >/(rho 0) = (2/(K+1))"(2/(K-1)) = 0.40 where, i

p = steam pressure at the break exit, psia p0 = stagnation pressure, psia

<j > = discharge velocity at the break exit, ft/sec l C0 = sonic velocity at the stagnation condition I

rho = steam density at the exit, Ibm /ft^3 rho 0 = stagnation density, ibm /ft'3 K = gas constant,1.3 for saturated steam.

l l

GE-NE-123-E070-0493 An executable program file, called MS-BRK, has been set up to calculate the pipe segment forces due to the postulated break. The method of analysis is the same as described in the ANS-58.2, Appendix A.

The MS-BRK program input is setup exactly the same as the TSFOR input which is described in NEDE-23789, Reference 4. The pipe break boundary condition computer input is calculated as described above. The input includes pipe inside diameter, flow rate, pressure, specinc volume, segment length, the friction factor and the gas constant.

The procedure defined in this paragraph for a main steam pipe break is not applicable for a break in the feedwater pipe. For piping systems containing water, force time histories due to a postult.ted pipe break are calculated using the methodologies provided in Section 6.2 and Apper. dix B of ANS 58.2 (Reference 2).

2.3 Calculation o! Input Force Time Histories at the Break Location Let the length of the first pipe segment with the break be L ft. The time for the pressure wave to travel through the first pipe segment is t1 = L/C, where C = sonic velocity in steam.

t1 = 0.0038 seconds For t < t1 F = PA = 533,671 lbs.

For t 1 t1 F = C TPA = 373,570 lbs.

W here P = 1,070 psi A = 498.4 in' CT = 0.7 The blowdown force time history shown in Figure A-1 is input at the pipe break location.

GE-NE-123-E070-0493 i

The determination of the steady state thrust coefficient, CT, is dependent on the fluid and the friction loss terms. .

l fUD = 2.5 (Based on representative values for previous BWR's CT = 0.7 (From Figure B-3 ANS 58.2, Appendix B, Reference 2)

The fUD value includes the friction from the pipe break to the turbine, plus the friction I

through hiSIV's and through the other three pipes from RPV. The overall fUD is > 2.5.

2.4 Analysis Steps 1

The following steps can be used to generate the pipe segment force time histories due to main steam pipe break at the nozzle safe-end.

!) Prepare the TSFOR01 input deck.

Create a PERhi file to sase force time histories. ,

2) Select the following file to run instead of TSFOR01 :

$$ SELECT FS0027/HLH/ hts-BRK-R i

3) Down load the time histories to PC (ASCII).  ;

~

4) Run hts-BRK-R to convert the force time histories to ANSYS input format.
5) Prepare the ANSYS input model.
6) RUN ANSYS. i Details of Steps 3 through 6 are included in ANSYS Analysis Procedures.

i F

~

GE-NE-123-E070-0493 I

2.5 Forcing Function Calculation Results The nodes to which the forces for each pipe segment are applied are defined in the table below. ;

Bend radius of elbows is not considered in segment definition when calculating segment forces.

Where elbows exist, the segment extends to the tangent intersection point. This approximation f has proved valid when calculating segment forces due to other thermo-hydraulic loads such as t

turbine stop valve closure and safety relief valve discharge.

Seement No. Nodes 1st 5 l 2nd 12 ,

3rd 16 4th 39 5th 43 ,

6th Outside Containment j 7th Outside Containment l 8th Outside Containment -

Examples of the output plots are shown in the following figures: ,

Figure A-1 : Force time history for broken pipe segment Figure A-2 : Force time history for 2nd pipe segment Figure A-3 . Force time history for 3rd pipe segment Figure A-4 : Force time history for 4th pipe segment Figure A-5 : Force time history for 5th pipe segment Figure A-6 : Force time history for 6th pipe segment Figure A-7 : Force time history for 7th pipe segment Figure A-8 : Force time history for 8th pipe segment b

i i

GE-NE-123-E070-0493 l

3.0 ANSYS NON-LINEAR ANALYSIS  !

3.1 Analysis Model ,

The pipe break non-linear time history analysis can be performed by ANSYS program. The piping model is shown in Figure 1.

The selection of elements and nodes is the same as for the seismic and dynamic analysis of the pipe. The main steam guide located inside the drywell, which provides only lateral restraint, in the horizontal direction and in the vertical direction, is included in the model and is modeled as two spring elements. Snubbers, seismic restraints and branch piping are excluded from the model. This model simplification is generally conservative when estimating displacements of f the piping system since they would act as restraints to displacements.  !

In some cases a seismic support could be oriented such that following a pipe break, the restraint provided by the seismic support ccrid result in higher piping stresses. Therefore, the  ;

engineer should first review the seismic support design to determine whether seismic supports should be included in the ANSYS analysis model.

i The selection of the input are described as follows:

1 Analysis : KAN=4 Plastic pipe : use STIF 20 Plastic elbow: use STIF 60 .

Pipe whip restraint : use STIF 39 3.2 Analysis Time Step  ;

When performing the non-linear analysis, it is necessary to show the analysis time step is adequate to result in convergence. In order to show that the analysis time step of 0.001 seconds  :

is adequate, an analysis with time step of 0.0005 seconds has been performed. The results of the analysis are plotted in the figures listed below. Comparisons of the results between 0.001 seconds and 0.0005 seconds time step show that the differences are less than 3%. Therefore, l time step of 0.001 seconds can be used in the analysis.

GE-NE-123-E070-0493  ;

i I

3.3 Analysis Results 1

Plots of the calculated loads and displacements are provided in the figures listed below. (

Figure 2: Impact force at the pipe whip restraint. DT=0.001 see i (max impact = 670,000 lb)

Figure 3: Bending moment time histories. DT=0.001 sec. at Elm. 21, at elbow near break Figure 4: Displacement time histories. DT=0.001 sec at the break location Figure 5: Moment time histories at head 6tting, (Elm 421) DT=0.001 sec.

Figure 6: Force time histories at head 6tting. (Elm 42J) DT=0.001 sec i

Figure 7: Bending moment time histories. DT=0.001 sec at Om 225, before main steam guide Figure 8: Bending moment time histories. DT=0.001 see at Elm 42I, near headfitting Figure 9: Bending moment time histories. DT=0.001 sec. at Elm 381,1st elm after MSIV.

Figure 2A: Impact force at the pipe whip restraint. DT=0.0005 sec ,

(0.7PA =373,600 lb, max impact =670,000 lb)

Figure 3A: Bending moment time histories. DT=0.0005 sec.

at Elm. 21, at elbow near break Figure 4A: Displacement time histories. DT=0.0005 see at the break location Figure SA: Moment time histories at headfitting, (Elm 42J)

DT=0.0005 sec.

l l

I GLNL123-E070-0493 Figure 6A: Force time histories at headfitting. (Elm 42J)

DT=0.0005 sec '

Figure 7A: Bending moment time histories. DT=0.0005 sec at Elm 223. before main steam guide i

Figure 8A: Bending moment time his:ories. DT=0.0005 see at Elm 42I, near headfitting 3.4 Discussion of Large Displacement Analyses

. Since the analysis was based on the ANSYS option that assumes small displacements of the piping model, it is necessary to con 6rm the validity of the analysis iflarge displacements occur. The displacements from the terminal end Main Steam Break Structure (MSBS) analysis (using ANSYS) results show that the largest displacements and rotations occur at the break.

These rotations and displacements of the pipe at the break cause a change in the direction of the ' s thrust force at the break. To determine if the effects of this thrust direction change the stresses

~

in the pipe between the isolation valves, GE has performed time history analyses for both the original and displaced positions to confirm the validity of the small displacement assumption in ,

the non-linear time history analysis results.

Two cases of displaced analysis have been performed. In Case 1, the element at the break and the thrust force are rotated. In Case 2, the thrust force and the section of piping between the break location and the first pipe whip restraint are rotated. - ,

The results of the Case 1 analysis are shown in the following figures:

Figure 2B: Impact force at the pipe whip restraint. DT=0.001 sec (Included rotated blowdown angle)

Figure 4B: Displacement time histories. DT=0.001 see at the break location (Included rotated blowdown angle)

Figure 5B: Moment time histories at 42J (headfitting)

(Included rotated blowdown angle)

.g.

GE-NE-123-E070-0493 Figure 6B: Force time histories at 42J (headfitting)  ;

(Included rotated blowdown angle)

Figure 7B: Bending moment time histories. DT=0.001 see at Elm 22J.

before main steam guide (Included rotated blowdown angle)

Figure 9B: Bending Moment time histories. DT=.001 sec at Elm 381,1st elm after MSIV i (Included rotated blowdown angle).

The results of the Case 2 analysis are shown in the following 6gures:

Figure 2C: Impact force at the pipe whip restraint. DT=0.001 sec (Included displaced elbow and broken pipe orientation)

Figure SC: Moment time histories at 42J (head 5tting)

(included displaced elbow and broken pipe orientation)

Figure 6C: Force time histories at 42J (headfitting)  ;

(Included displaced elbow and broken pipe orientation)

Figure 9C: Bending moment time histories. DT=0.001 sec. at Elm 381,1st elm after MSIV. '

(Included displaced elbow and broken pipe orientation)

The maximum stresses between the MSIV's do not increase due to the force direction change -

as result of the large displacements at the break location. This shows that the nonlinear analysis '

based on design location is acceptable. If the results from Case 1 and Case 2 did not closely i

agree with the design location, an acceptable alternative would be to use the large displacement option of the ANSYS program.

4

GE-NE-123-E070-0493  ;

4.0 STRESS ANALYSIS 4.1 Pipe Data Pipe = 28" OD x 1.423" t ,

I = (28^4 - 25.154^4) x 3.1416/64

= 10520 in*4 Z = 751 in'3 .

Assume break occurs at normal operation, T = 552' F. l Sm = 18,570 psi for SA-350-LF2 (Carbon steel)

Allowable limit = 2.25 Sm

=41780 psi  :

i The maximum bending moment between the MSIV's will be developed about 0.075 second after the break. The decompressing wave travels at 1600 ft/sec. It has traveled a distance of 1600x0.075 = 120 ft when the maximum moment occurs. Therefore, the prest :tre between the MSIV at the time when the maximum bending moment is developed will be much less than normal operating pressure of 1050 psi. It is conservative to use 1050 psi to calculate the pressure stress.

Sp = PD/4t ,

< 1050 x 28/(4xt.423)

= 5165 psi Weight stress, Swt = 1074 psi Sp + Swt = 6239 psi ,

l

GE-NE-123-E070-0493 i

4.2 5 foment and Stress Comparisons Comparisons of the bending moments and bending stresses at the head ntting are as follows.

Results I = Using normal procedure with time step 0.001 sec. l Results 2 = Study case with time step 0.0005 sec.

Results 3 = Study case with time step 0.001 sec.

Include rotated force angle Results 4 = Study case with time step 0.001 sec.

(Included displaced elbow and broken pipe orientation) hioments and stresses at the headfitting:

hia hib hic Mr B2 M/Z (E6) (E6) (E6) (E6) psi i Result 1 15.3 15.0 13.3 25.2 33600 Result 2 15.0 15.0 13.3 25.1 33500 Result 3 20.5 4.5 9.0 22.8 30400 Result 4 19.9 13.0 8.0 25.0 33390 The B2 index for a taper transition, B2 = 1.0, is used at tiie head fitting.

This index is from NB-3600. The table above shows the value calculated from the Result 1 is slightly conservative.

GE-NE-123-E070-0493 f'

I From Figure 9, moment time history phts at element 381, the first element after MSIV, the maximum bending are as follows:

Ele 38I Ma Mb Mc Mr B2 M/Z (E6) (E6) (E6) (E6) psi i

Result 1 15.0 13.0 11.5 23.0 30600 f

1 Result 4 19.5 8.5 13.0 24.9 33200 This shows that the maximum stress between the isolation valves is at the headfitting for the analysis with the design configuration. The combined stress is as follows: ,

Sp + Sw + S break = 5165 + 1074 + 33600 i

= 39,839 psi Allowable stress = 41,780 psi Stress ratio = 39839/41780 = 0.954 ,

All the stresses are within the allowable limit of 2.25 Sm. i 4.3 Pipe Whip Restraint Loads as Comparison With PDA Results i The maximum pipe whip restraint loads calculated are as follows:

t Ficure No.  :

P ANSYS Result 1 670,000 lb 2 ANSYS Result 2 670,000 lb 2A ANSYS Result 3 650,000 lb 2B .

ANSYS Result 4 640,000 lb 2C PDA Result 666,727 lb The above results show that the PDA calculated consistent result with ANSYS output. The PDA analysis is shown in Appendix A.  ;

r

.12 -

t

GENE-123-E070-0493 [

5.0 CONCLUSION

S

1) The maximum combined stress in the pipe between the containment isolation valves is 39839 psi. This is belcw 2.25 Sm allowable limit (i.e.

41780 psi) as specined in SRP 3.6.2.

2) The maximum pipe stresses between the MSIV's do not increase due to the force direction change as result of the displacements at the break i location. This shows that the nonlinear analysis based on design location is ,

acceptable.

3) Calculated pipe whip restraint load by ANSYS is 670,000 lb. The PDA calculated peak restraint load is 666,727 lb. Both results are comparable.

Either PDA or ANSYS program is acceptable to be used for sizing pipe whip restraints.

l 5.1 Conservatisrn in the Analysis i I

Summary of conservative assumptions are as follows:  :

a) The main steam pipe snubbers are not considered. This is conservative I t

because the supports reduce pipe stresses between MSIV's. The support can  ;

absorb energy before failure if load is exceeded. i The branch pipes are not included in the model, which is conservative because the branch pipes act like restraints for the main steam pipe.

i b) Pressure stress at the normal operating condition is used in the load combination. This is conservative because the pressure in the pipe will be I reduced due to pipe break, i

l I

)

i

GE-NE-123-E070-0493 i

6.0 REFERENCES

!) Lahey, R.T. and Moody. F.L. " Thermal-Hydraulics of a Boiling Water Nuclear Reactor," American Nuclear Society 1977.

2) ANSI /ANS-58.2-1988, " Design Basis for Protection of Light Water Nuclear Power Plants Against the Effects of Postulated Pipe Rupture."
3) GE Document NEDE-10813, PDA, " Pipe Dynamic Analysis User's Manual."
4) GE Document NEDE-23789. "TSFOR01 User's Manual."

l 1

4 ^ ^ .- -

t il t

3 3 E 4

S .

. . . q ',

/N

\ sl.

4

. St

%kg .

gg M, 9 se e *ir . w :_-v g. m 3,

=

3e

.", sr F

ty

.Qh),s-Qij '* 44 .

(5)')

M o -

g \ % p, t

'8 er

[6

- Figure 1  : ANSYS analysis model- Modes and Elements (Element numbe I

e w.- ..%e-ee,ve..e.w, - ..e,v.,.-,-+-em =-r,.---s- -e.%,,--ev ve--+-%,-e-= _ r.m-w-=,=-- w , e -w-we's- wwe e -ww w i s cee -~ wee w -,-+e- swese,- w e-,w i=-,es ew --et. i.-=.--,-----c nye - -.se.-w-*s+-..vF.--es,~,.-se w e.g e w -% * . e e v e v a- , ,w,ie-*,e=-

. 1 t I > ;

3 .

9 4 .

4 0

7 0 .

E- .

3 2 _

1 L _

N _

G .

A _

42 6 c

9 6 _

49 6 e _

18 6555 s -

1 S7:6 10000 1 _

Y 42 ==== - 0' _

S 5T T 0 _

NG:S S .

AU3O A1P VIFFF ZDXY2 0

=

~

T D

t)

' nb iI a

t. i r0 . _

t0 .

. s0

. e, _

I r0 _

7 ,

I p6 .

iht=. .

wca .

. ep ._

I pm .

ii p

K .

x

. A

, E R

ea _

H hm -

t',

E -

T tb al A .

L e0

m. U c0 ie

_ 1 r6 _

S o, n

O

' E f3 _

l M1 7 .

\

I E N A t3 -

s L c=

aa n 2 3 pp 2 ,

)

_ O E I m( .

N L S B2 M A I

I =

e t

a

_ A S A R P N

2 a

v e U V I r

R E 6 u g

. . e , . W V1T 2 i _

=

e u

m-

=

w , a m

H R A U S F I * .

- e. .

w- r. O C '

l ' .

M m i d

tw B

4 N

  • b z

'h e

< l TN @

.m c Tm c em CMMM i O . . . . '

W ts . . d eQ333

> SN ll u it i; ll m OF H Z C ..m m

<OTC >wwLA

<-0 NOX>N t

U.

e e i t

- r4 .

<,. s 7>  :: / _5 a

,M i S

t

., . ,u 1

s, li; H

. 4k 0W g < .c

\.' _. w 4 s Z

~

MI

,- . ,O

/ ,

. - =~

/

.- N:-

3 2

D

a-4W

< -x -

E

% ( /

~

~

s !zm me 5

&a NN A P4 M i*

<J a s

s " ' ,,  :"

- M < k -

i .

s - ,

e

  • e.u
Nn.

sa I. I

. .I I

. I. .I I .

L  !. .

Da a

GE-NE-123-E070-0493 I ANSYS 4.4A AUG 7 1992 14:03:25

- POST 26 n

ZV -1 DIST=0.6666 XF =0.5 YF =0.5 n _ _

ZF -U.S

/~ . _ _

O /

,- . . - -,,4 #V n / w/

/

/,s *... i

, ,-. t

, , . ,i o'

/ '

r

/

l , '-~ - - _ ,

<e  ; .

7

. / / -

,/ / ,' _

l. ^

~4 IM *

-j 1 l -

l l l -

e e.ea .. -

8.. .

4 .. .. es . .. .r ..

- AHWR-USA MS NO2/l.E POSIUt ale' IIREAK 2- 3- 4 UY 3 4 .4 UZ j l'OS I 2 G- INI'=

' Figure 4 : Displacement time' histories. DT=0.001 sec.

at-the break-location i 5

i

-tw%=an-._..w -e s- m ,

  • r e , t e --w m-v% ,e-e-.wr=, ,*e. t-e + r- e ew w s-,se, w e w w ,v a w c' -u -W ier=-g r w -a - g m *=, mar e m- s e ie e e-we e= *' * -tes**"4 w u- weve & w*v-*:em+-,-**w.e -*~d=*'-euw*".w*e'+u-*Nu--e > +se+===we-*mi e- re- -=-,-

s' ,

A GFeNE-123-E070-0493 : '

1 1 ANSYS 4.4A AUG 7 1992 14:21:15 v= . POST 26

.. rm .er .

ZV = 1

.s-DIST-O, 6666

,5

. m.

v -

3 e.em r _,,

-jr. ,

x

\

' cm.w

[ \ ar et

-e. sm .w - 'x' l t 11

,m .., /

c. 4fuit +M ,

,~ 4: eu

-9.1 tat +Nt / 'N _.

/ ,f

' / .

/

/

. w. --- _

.... m . ,

i

-. -g

...e g g

..a g i.. , "

..., em . w, - .. .r AHWR-USA MS NO221E POS101AIE'ilRLAK 2 3 42 11

'3 .4 42 12 POST 2G-INPe Figure 5 : Moment time history at handfitting, (Elm-42J) .

DT=0.001 sec. -

1

'94P trr3 "9Fft?9W T FW '99 *-**Te4 W' t

  • W '"rf ** v ' P 9 t'91" VTWW'1P ?t" F1PW-3M T TT T7"IF' WN*M'W4'1"TTW42**f'erMp*9 Ff'W'FTT-P1W '-'Y -f6*9N*el M G*=W'm'*"r
  • *= $"W_S. fPW'TWM*W*-Tt]4T'**g- 'tNW +PM 9D9'-T M T ' f w *1'98P 'f r'g Tv W 9 t*t- %- ereigef We eg evm y w+ 7 w t ',yg"Le>a gor-y,4 -w

GE-NE-123-E0704493 ~

I ANSYS 4.4A-

  • AUG 7 1992 14:27:03 ,

m' POST 26 ses ZV -1 DIST=0.6666 XF =0.5 YF =0.5

/F =0.5

==.

} \

295Mu8 \

\

108uum

',, sm h 4 M *.

~*

__ ,47 9 s *, _

'm ,

e - y .

\

k.

j.

\

o' .

', /

44 >

.~

t '~ ~~'

., ,e .

s. ..r

-teamus

\l 1 t l t e l . e. at ' l e. M e. es l. e. es 8 e, i e es e. es e. es o. or e. e, ARWR-USA MS N0ZZl_E POS1UI ATE HREAK

-2 3 42 H 3 4 42 9 l'OS T2 G-INP=

. Figure 6 : Force time histories at headfitting. (Elm 42J)

DT=0.001 sec I

.t 3

9 4

0-0 7

0 E-3 2

1 E

N-E G

A 42 6 9 6 49 6 15 6555 1 . . ..

S7:6 1000H Y 22 =====

S 1T T NG:S S AU4O VIFFF A1P ZDXYZ o

e s

I' se "

  1. a ",, 1 0

v

,' ,' 0. e e 0d

~

i m

=i Tu Dg

.m

/' , _ _ sa ee

- r it
i s e rs g o

, tn K si

/

. A ia

E hm l /, R H ee a.

e E mr io T tf A e L

i.

U tn b, a -

1 S e

~

_ s O 1 2 mJ e l' o2 m

g s E

11 m2 L gm

~ . 2 22 nl 2 22

- '\ ia O d

'% N nt m 34 ea i e S B M = .

A I .

=

= /^M' . S U

N I 7 e

. e , r r .

. 6 e

r

e. o. . R 2 r

. s. e. . e. W u

= a ,m m. m B 23T g e n - m. w-e.

e- A .O S

i 1 e a s . . .

l' F

.l l1l1ll. ll' i!

3 -

9 .

4 0-0 .

7 .

0 _

E-3 2

1 E .

N- .

E G _

A .

42 6

. 9 6 .

49 6

- 1 9 5

6555 S7:6 10000 Y 62 =-=== -

S 1T T NG:S S AU4O A1P VIFFl ZDXYZ u .

c .

e .

s .

. s s " 1'

, 0 .

e ", e.

P,[.

0 -

\

.\

0

= _

y  ; e T

.'- ' N .

D _

o . _

\ \ n.

e sg -

_ S .\\

\

en -

ii r

o rt g

ot ti .

K sf .

s A id -

' a. ha e I, d

R e .

I I

eh .

s w m .

g

\ E ir .

I ta A e

- o L tn

n. U n,

.. 3e I' e .

- S O

mI

,\ ~~ s e.

e l' 56 o2 m4 _

gm _

E.

2 1

22 nl

/  % e. 2 44 ia

/ ,

e 2 d

/

i O nt N

l/ /

7 l

S 34 ea B' _

M e  :

e A P u

v S N 8 e I U

- e .

r r r_ .

e

, 6 r e r r ,

R .-

e. " e
o. e. .
o. e. o.

W 2 u u , = 23T g-r e

. =.

w a - s e m.

e m.

e H

A S O i 1 e ' , e e e - - '

l F .

GE.NIC-123-EH70-0493 ANSYS 4.4A Alm ~ll 1991 16:54:48 l'OS T 26

.e.

/V -l e s== = DISI 0.6666 XI -H.5

. Yi .H.S

.. /t =H.S

.__ _ ,X .

. = _

.r

-a .w

-. 9355 *. S 4 tems..e l 1 I .

.. a. .

  • AHWR USA MS N0//li l'O S itM A l l HRI AK .~ - . . . . - -

2 :I :18 5

I 4 IN 6 l'Oh I t h I Ni' s

Figure 9 : Bending moment time histories. DT=0.001 sec.

at Elm 381, 1st ela after MSIV.

s-

GFrNFel23-E070-0493 i ANSYS 4.4A AUG 19 1992 11:14:48 v*. POST 26 ZV =1

_;_ ., . DIST=0.6666~

f __ XF =0.5 YF =0.5

. , , , , , . 21- -- O . 5

+16 0415

-e

.m

- 4 9018819

, I

\

s

\D

-'a'""" *

j. i i i

. l ..., l .. l -..,

e. e< e. , .s e. er . . . ,

ABWR-USA MS NO22LE POS1ULAIE BREAK CURVE- VARIABLE NAME i 1 2 3 1 POST 20-INP=

' Figure 2A: Impact force at the pipe whip restraint. DT=0.0005.sec

'(pa=373,600- Ib, max impact =670,000 lb)

....:.._.,_.._,_...._,_ . . _ _ . _ _ . , _ . .. . ;.._ ..__.,._. u .._.- . -. -.. .~. , . . _ - . , _ . . . _ . _ _ . _ . _ . - . . _ , _ _ _ , . . _ , - . _ _ _ _ . . . . _ . . - _ _ _ _ . _ _ .

GE-NE-123-E070-0493 I ANSYS 4.4A AUG 19 1992 11:18:56

      • POST 2G ZV =1 t 1

DIST=0.6666 XF =0.5 YF -0.5 ,

- ZF =0.5 4

vmm.

l 0- -

v.

- ) \ \ Lt

\

(

\

ec-= I -

f- g,

%./~

e

,  ;; I f. '

J'y ' --

V li ' \ ._ ., ,

s,.. y

  • tf ,

1

( ' \rW:1 - ~~~^~~'s

-,- /

. l ., l i. i..

j

.. l 7 ..", "

.. .. n . ..., .,

' AHWR-USA MS NO22LE l'OSIUt ATE ilREAK -

2 3 2 5 3 .4 .2 G l'OS T 2 G-INI'm t

Figure'3A

~

Bending moment time histories. DT=0.0005 sec.

.at elm. 2I ,at elbow near-break

.1.,-.2_.._...._..,_....._.._.____.,_.__._. _ . . . .  ; a.- . -

. . . . _ , . _ _ , . . _ _ _ _,_ . - . . _ - . - - . . . ,-_:-_...._~..__.___. . _ - . . . _ . . _ ,_.-_:

GE-NE-123-E070-0493 i 1

ANSYS 4.4A AUG 28 1992 -

10:28:36

= POST 26 as ZV - 1.

DIST=0.6666

-~ . XI =0.5

. - YF =0.5

z. ,- ZF =U.5 f

29 f%4 ,/. -

,4 WY r

#p p to .

./. *

/

a l!4 / -

/. _

i

,a

/ , / ,.:V,,9. -- ~ L .% , .,.Z

~

~s

, f

/

,f -e

~ ..

s

-* '" t

. ;l ...,

j i.. i.. .a .l .. l i. .

. . , .. .a .. es ...,

" AHWM-USA MS NO22LE'POSTUl_'AIE HREAK 5 6 5 UY 6- 7 5 U2 -l

' l'OS T2 6-INI'= 1 Figure 4A: Displacement time histories. DT=0.0005.sec

.at the' break. location t'

'- - - , . , , - . - . . . - , ~ . ..,-b- , - . , ,,- ...~ ,,,,,m-..O-.-. ,-.- - - -,-=.. .,,- . v. ---,-...-..m ~ - + . . - . , - . - . . -...---- - -.. _ ._- --.---.- - _ _ - -

GE-NE-123-E070-0493 i ANSYS 4.4A- -

AUG 19 1992

. 11:30:56

m. POST 26

.. am er ZV =1 a'****'

DIST-0.6666 XF =0.5 n YF -0.5 .

.. m .er ,, ZF =0.S 4

. ,N' s

. m .er i

/

, 1 .-

/ 42 ft

. m .. \ <

/

i mr \ 8 l '

j.

~

~.

[

,' \ /

.m /' , ./

\

, N' / / -

i. ,=.

..m.

g ...,

g o..

i..  ;

..., .. n . .. .i

' ABWR- USA MS N0ZZLE POS'IULATE HREAK

2. .3 42 11 3 4- 42 ~12 -

. POST 2G-INP=,

Figure 5Ai Moment time history at headfitting,.(Elm 42J)

DT=0.0005 sec.

t i .

.....__..;___._._..__,._--_;._._.__-..._....___,_.u_..._._._.. -

' ' P g

w -

w 3

9 ,

4 0- -

e 0 i 7 s 0 e E- m

=

3 +

2 e 1

- e E -

N-E G

e w

+

A .

42 6 e r

9 6 )

49' 6 J ~

11 6555 2 w w

4 . . . 4 +

S9:6 10000 -

Y132 ===== w S 3T T m -

w NG:S S l .

w AU1O VIFFF E A1P ZDXY2 ( m g

n e v

i -

, ~ .

  • t m

=

y i t

i -

e f ~

f' ,, . .r g

. d a

e

,=

e h -

' =, n

. t

\, ,/l' a

~  ; 's +-

/

. +

e w

. K i w

. A r -

i-E

, ,\

R o e t

r H -

m s m

' ~ f E T

'i h ,

/" ,

/- .

A L

U eec e

' i T ms e m,, ~

S O

i t 05 -

. P

'  ; e H9 0 w m\

y e0 E

\ L c.

  • Z 22 v

\ e. '

r0 2 44 A o= +

0 N FTD

. 34 .

, l S

M s _

= A'-

= A P 6'

= S .N e I e

e U -

r G r' i R 2 a

s

- w

+

. * . . . e .

. W g m H 23T

" ., . . W . = S i-r 4

8 6 .. =

r A O F

I i, . a 9 - i

- - w P

o w

e b

s e

w-m I  : ' t (

t l

n -

ch p 3

e, t~ r o

W ,

A. l U '

E  ;

z,  ;

E  !

C  !

t i

l

'I TN c ,

. tn c '

T Ch c =;

e4 C Ln tn Ln  :

  • .... t M Ch
  • c m33CO l

>= =*Ln N ll tt ll ll h  ;

D N &  :

Z c ..H m a

<O-O >wLtA

<~C NOX>N '

O e

R t

M

~+ -, o.

g o .

n. o s 1 _.< .e

't

.'N oe  :

(

E lw 14 :s i l, , -

  • ia e l

e ., ,

N i

I e

e il ee '[  ?

4& f

'- i i $4 5  ?

)' \ , e O 6

~6 43 Q  !

a c4 1

g WW '

\ < I .< 4E '

~'

'N. x

? $ ee [

N nu c4 0

\ s W $M i .

.g

.- < GA '

./ g a -ns +

/

-i D e f =

m y

On,

'.* EN '

1 3

9~

eN

~"

s f hmrN:

9  :;

s g 9 NN N . .e4 e - l N, ./ g NN e,, ,

c z e.  :

E MT a -

E

~~ f

%/ K y y }

  • .. '< 'y tw  ;

g a ~

.= e .

!  ! t' f 1 i  ?  ?  ? E U i

!.  !.  !.  !.  !.  !  !, I

, 5,  !, - $ * " 7ng 3-  !

i

)

5 T

't i

s GE NE-123-E070-0493 1

ANSYS 4.4A AUG 19 1992 II:28:39

m. POST 26 i' .. . m ZV =1

..w - -

DIST=0.6666

,\ XF =0.5 e

-s \ YF =0.5

..,, s / , \ 's, 2F *H.5

\ / --

. 4< i

, . . ~ .

nat i . / g N , ,

\ / ,.

. - , ,/ ~ N., ..

/i I

\

'^

7 a

(' ,

- r w .er y, L

-r

...rm ..i "*

j g i i g g i-

  • e.se e. e4 e.es e. se e. ,

..., .. n ..., ..

AHWR-USA MS N0ZZiE POS1ULATE HREAK 2 3 42 5 3' 4 42 6' l'OST20-INP=

Bending moment time h* stories. DT=0.0005 sec Figure 8A at elm 42I',near..headfitting-

. . . - . _ - _ _ _ _ . - _ . . . , _ _ _ _ .-...._.._..2.._._..-......,.._.-.,~. -,_;_. -,.,_..._._,-.,..;,_.-_._..--...._.a.._.,.- -

u_._...__._____...__..__ _ . . .

GE-NE-123-E070-0493

[ 1 ANSYS 4.4A AUG 28 1992 13:54:08 v== i'OST26

.m.

ZV =l

. . . . - - DIST=0.6666

, l.

YI' =0.5

_ ZF -U.S

-2988P.

-ame

?

-.m i

(

s., ,

\ ,

\

4 se. _.-

. l .. .e l 1.. . i.. l

. .. n l. i.. .

.. .. n ... . . .i AHWR-USA MS NO22LE l'OSIUI All HREAK CURVL VARIAHLE NAME 1 2 3 1 <

l'OS i 2 G- I NI'=

Figure 2B Impact force at the pipe whip restraint.

(pa=373,600 lb,-max impact =670,000 lb)

.(Included rotated _ blowdown angle) ._

, __ _ _ . . _ _ . _ . . _ . _ . .. . . . _ . , ..._. . . ~ . .. - _ _ . _ - , _ . _ . , - . . . . . . . _ _ .. _ _ . . . . . . _ . . . . _ _ . - - _ . _ _ . _ . _ . . . . _ _ _

GFeNE-123-E070-0493 1 ANSYS 4.4A AUG 28 1992 13:59:17

m. POST 26 1.

LV =1 DIS T=0. 6666 XF =0.5

./ ' "' YF =0.5 2*

/.

./ Zl- =U.5 i-

,/ . -

,s

./ - ~_,-

,/ c .

,c se

{

/

.. j

./

7- ~.

7"" ,n

/ 7 s c.

/ 'N N e

,p _f

.s A'x- s.

s, N

N A

\x \s, .. N s x s s.

s -

N S .,

997 i g g l

. i ., I .. . . . l .. l ..,

AUWR-USA'MS N0ZZLE POSTUl. ATE BREAK-I 5 6 5 UY. 1 i G- 7- 5 U2 POSi26-INP=

Figure 4B:' Displacement. time histories. . I

. at'the break location

'(Included rotated blowdown angle)-

GE-NE-123-E070-0493

, l. ANSYS 4.4A '

AUG 28 1992 13:56:21 v.t v POST 26

..%6et*

ZV =1 DIST=0.6666 XF =0.5  ;

YF =0.5

e. em .er ZF =U.5

, - f

~

/

f3 \. /

, - - - f avC '

\. ,/

~m m "b

l , q. -~ A2 19

i. ' 9. efl8E 497

\

s

4. OMt *97

' (a 1.' ,

d .(

^'

' ~'

. , em . ..

'\,

-e. tans.es \

\

\ .

,g y , *- 4/ ta

-e. ,

g g ,

j j e . e. m i.. = .. ...

..., . .. 3 5 ...,

AHWR-USA MS NO221.E POSIUIATE HREAK 2 3 42 11 3 4 .42' 12

' POST 26-INib Figure.5B: Moment ~ time.' history at.headfitting,'(Elm 42J)

-(IncDaded~ rotated: blowdown angle) '

. . . - , , . . . .- ,_,2 ___2,_.. _..., _ -.--,_ ,~. _ _.n.._.~.a . - . . ; -- . _ - . - . . _ . . . . - . .=-..,--..#- .- - - _ . _ . _ . . _ . - _ - - -

'l GE-NE-123-E070-0493 1

ANSYS 4.4A AUG 28 1992 14:01:56

m. POST 26 i,

ZV =1

  • " DIST=0.6666 XF =0.5 YF =0.5

. ZF -0. 5

-. t i 1 e I

<:~

x,

~ ,

,/ .~.~ ,'.' . -

- \

, ./ ..

. ~\,&

l

~~-

i p .

~

,- y'a

  • /'*

?~v

, . y' 4

.- , , ,=

. -I

. l

.. l

. l ..".

AHWR-USA MS N0ZZLE l'051UI AIE HREAK 2 3. 42 8 3 4~ '42 9 l'05126-INP=

Figure 6B -Force time' histories at headfitting. (Elm: 42J)

(Included rotated blowdown angle)

,_.. _- _ -.. _ __. . . . - , , , . . - _ . . ._a._._,_,,....;.. . , _ , . . _ , . , . _ . . . . , , . ~ . . ~ _ _ _ . . . _ - . . - _ . _ . _ . . . . . ~ . , . . . __ . _. ;_ _ . . . c .u .

3 9 .

4 0 -

0 .

7 0

E- _

3 2

1 E

N -

E .

G .

A _

42 6 . ,

9 6 _

49 6 13 6555 5 .. . . ,

S8:6 10000 Y232 S

===== .

0T T .

NG:S S AU4O VIFFF .

A 1. P ZDXY2 ,

c _

e .

i s e ,i 1 .

N w a "i 0 0 _

. e

. 0d' .

/* N  ;

.i) .

/ . iue i

- i gl 7, . . g

/ .mn saa ee _

/ _

. i tn w rsw _

o o .

/, . . K tnd siw J

- . A i ao -

- E i

l ..

R I

I hmb ee .

~ .

\

N . E mrd  ;

A '

N- 1 i oe

. tft

\ .

A.

I ea Q .

e.

U tn b,t

, I o .

/ ^s S e' r .

O mJ _

s l o2d

,\ .

m2e _

E. d gmu

-s

'- . 1 N . 2 nll 2 . i ec O d n _

N ntI ea(

S B .

j M

= *  :

A B _

= . S .

U 7 _

r e.

r o.

. 8 0

+

. . R e

r

.

  • s a'

E

-- - W u

' . m e .

8 9

. H g _

e . s- -- A 1 - . i _

' F _

3 .

9 -

4 0- .

0 7 .

0 ,

E- .

3 2

1 E .

N- ,.

E .

G -

A -

42 6 9 6 -

49 6 18 6555 ,

5 . . .

S8:6 .

10000 .

Y262 ===== .

S 0T T .

NG:S S AU4O VIFFF  :

A1P ZDXYZ .

e  :

d ,

, 8

" .i) -

le

t. ue gl -

\

g -

\

\ s mn -

/ e. aa -

,4 l e e t 'n

\ o sw

n. o -

e . nd

's i w r

ao --

\ e .ml

\ e s b l

ee p/v K ird .

s s A roe -

_.'s 1e e.

E R

oft tea H

is b, ot a

/ \ w E h r

,v e

(

T J .

A r e2d .

^

i 4 L m2e

e. U it 'sll ud ie I S  :.

> O eac e.

e P 89 c n .

l rtI .

E. oa( .

t 2 22 1

F .

e. 22 e 2  :

O -

l

, l e.

e N

S M

34 B

9 e L.

P

= r e j3

" A N u

g w - S I -

e i U - .

G F .

R . 2 .

" . e e

. W 23I

-. e. e I 3 e

e s

t " .

u e .

m e

s

- t. - -

B A

S O

P _

GE-NE-123-E070-0493 -

1. ANSYS 4.4A NOV IH I ?)?)2 7: 57:H!)

l'OS I 26

/V .- 1

- DISI O.6666 XI -0.5 Yl' O.5

/t -H.S

- 1 41

,m

-m t

. l ..., i. . . . .

AHWR- USA MS NO//t i l'OSlut AlI HRIAK _ -

CURVI- VARIANII NAMi-

, t 2 .:1 I i

' Figure 2C: . Impact force'at the pipe. whip restraint. DT=0.001 sec .

L

-(Included displaced elbow and break pipe orientation) i

..-,.r-. 4-, . _ , . . , , , , , ,m,--.,...~,- ~ ,.,- .--, ,,..---_.e,J..,--. - . - r- .. - ,, . . . . . . --- . .. - . .., _ - . . - - . - . - . . . - . _ _ - . _ _ _ _ - _ _ _ . _ - - -

GE-NE-123-E070-8493 l ANSYS 4.4A NOV IH l ?)?)2 7: 5?): :15

.. I'OS i 26

. .w.

/V -1 DISI O.6666

.

  • ia .==

XI -0.5 Yi 0.5

. .., /l -H.5

. e A. .

l

. i.

-. ..i

. . , = .

l l

"" i l .i .

i l . . . , . . . . .. ..

. . . , . . . . , .w AHWR USA MS N0//lI- l'OS IUI All HRI AK ~~~ ~

l 2 :I - 42 11 l

.I 4 42- 12 l

Figure SC: Moment time histories at 42J (headfitting)

(Included displaced elbow and break pipe orientation) l P

6 m..-,...-,4..-- .-,.~.m.--, . . - . - . . . - - , - , -, - .--,-,..-.--..-,,.-~m.-,....~, . - - . ......-.-.....m--,--... ,---.._--,.m,.._, - - - _ . , - ~ . . - - . - . - . , - . . . , .

GE-NE-123-E070-0493

~ ~

1 ANSYS 4.4A NOV lit I ?)?)2 H:05::10

. l'OS T 26

/V -1 DIST O.6666

    • "* XI -0.5 Yi O.5

/t --H.S a ~.

f maa y ,

=== '

<tGame.

l t -m i -v es.

l ., ...-

l l AHWR-tiSA MS N0//lI l'OS B ut A II IIHi AK _ . _ . _

2 :I 42 H l :1 4 42  ?)

1 i Figure 6C: Force time histories at 42J (headfitting)

(Included displaced elbow and break pipe orientation) l l

l

~ ~ . . . - - . . - - , -. -. . , - - . .

3 9

4 -

0- .

O/

1 3 .

2 .

l E .

N-E G -

A 42 6 - .

.)t 6 4? l 6

I )! 6555 )

H . . . .

n .

SH:6 I HHHH o .

YI H2 -

i S 41 1 NV:5 5 t AO90 ' V1 I i I a ..

N I /DXY/ t .

n

. i e -

c r e o s

e

". 1 p

' 0 i p

' 0 0

k

. = a .

T e -

D r .

.b

. .V -

sId -

eSn -

i Ma -

. r orw .

K t eo .

. A stb -

i fl

. I R hae L l

f 1

emd -

m e l ml e .

l i ec .

A t a 1 tl 0 tsp 1 n1 s S e .i O m ,d -

w 'l e o1 -

5r  :.

. m8d i 3 e l HH g d

. /

/

l l

nmu i ll 0 -

dEc N n n  :

S  : 4 etI I

ie M

Ba( .

. A C -

a S .

e U 9 u

. , e ,

. R e u

. . r. . r W

. , a a

.. u H 2:I u g  :

n. . .

. . . A i i . . e . ' . .

F .

i 523240.0 0.7 0.7 .00386 .01271 13.27 9.1

28. 25.129 .19 110000. 402.89 23'1.65 1000000. I

~

4.543 .02EB 1579602. 104924. .235 B.480 26. 1 0606C10101 GENIRAL ELIC7RIC CC w. FANY i NOCLEAR ENERGY SYSTIMS 0I7ISIO i

APPE4DtX A i XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXPEXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX FFFFP 0000D AAAA XXX XXX P P D D A A XXX XXX P P D D A A XXX ,

XXX P P D D A A XXX XXX FFFFF D D AAAAAA XXX ,

XXX P D D A A XXX i XXX P O D A A XXX XXX P 0000D A A XXX XXX XXX -

XXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX PIPE DYNAM!C ANALYSIS PROGRAM I

REVISION 2 2/12/ 1976 i

i FRCGRAM OEVELCFED BY: LD STEINERT MARCH 1973 i ACMINISTERED BY:

STANOARD PLANT PIPING DESIGN CCMP. NO. 123 ETTICTIVE LENGTH TROM RISTRAINT CLEARANCI RESTRAINT TO ICADING (INCHES) EREAK(FT) DIRECTICN 4.543 4.170 0 DEOREES '

P!FE BENDING PIFE ROTATICN MAX. AL 4WABLE STRAIN STABILITY BENDING MOMENT ,

LIMIT ( IN/IN ) LIMIT (CEGR.) (TT-LES) 1.004E-01 8.6281 4647695.

IMFACT VIIDCITY= 21.70 TT/SEC IMPACT TIME = .0240 SECCNOS No. CT BARS CETL. CT Se. SETL CT REST. REL.CETL. TOTAL IITL. f COMPCSING IN DIR. OF IN DIR. CT CT PIPE END CT F!PE ENO ,

THE REST. THRUST (IN.) TERCST (IN.) IN DIR. CT TEFIST FIN.) l 6 .6543 1.1784 .0134 9.21:5 f

b I

[

f

k T r~,.e . 3-. r.r.-~e . T -r.ce -r

-s e-

~.n. -wr . - -rse h. .

-- .....n. gT,.

. . , ,. .v._r

. .n

N DIR. CT IN OIR. OT OYNAv 0 LOAD

,.u...-. . .u;., e. . TOR P:PE END !!MI OF

..r..>. ( -, = 3 . ,. . (. =3 )

~ lgro,-n .e*L g7.+.v.z,. .. .----.

y

. v- . .

654310. 654310. .0427 .0009 .04 7

...n.. ... z e L...,-t-.. v...-.,

...tr a s n.=:

. ..<.E ra,..l L. A:.5 B . E..Er.G l k:=-- . ..... .e--

AE50. EY

.. ...o n-:..

BY THE BY THE BY THE r r..e . . ENIF07

. .u. .r S. . ... .. . .:..r = ~  ;

. . . . ....%,- c- RrS*. rL..

. ~-- (r.....=..e.,,

(TT-LES) (TT-135) (T*-LES) (TT-LES)

.e. . 3 . 6 . .-..c. ,,,,

..s.45. 460. ....,

r. ..:

. . a-r .s. n=a-. .,r-..

r_a p~eg s. py r.r. u"ET*.

EY THE LOAD (PEAK) r.r. ' :.*..  !

LOAD (STATIO) AT REST. AT THI 27.E.u i TOP HINGE COMP.(LES) COMP. (LES)

(FT *35) PD1 702 COMP. (IN.) COMP. ( N.,

PS1 PS2 XR1 XA2 XF1 XI

0. 654310. O. 534107. C. 6.38 .00 9.31 .:

U3 UY Wf x  :

M >M rs3

      • EXCEPT TOR THE RESTRA*NT I.0AD COMPONENTS P01 AND P02, ALL */ARIAE*IS EELOW ARI IN A 0 FIC~20N FARALLIL TO THE BLC'4DC'a'N TCRCE. ***

i TIME P 3:5. P VEL. P ACC REL DIS. TTL DIS. RES.LCAD RES.LOAO 3

  • WOW AT PIS. AT R. AT R. CF END CF END COMP.PD1 COMP.PO: T ROI SEO IN. TT/SE TT/SEC IN. (IN.) (LES.) (LES.) (LIS.:

.0 E3 1.14 14.33 661.9 .00 1.66 0. O. 266:65.

.0145 2.;7 13.05 485.0 .00 3.31 0. O. 366:63.

.0195 3.41 20.16 380.9 .00 4.97 0. O. 266:65. t

.0240 4.54 21.70 309.2 .00 6.62

0. O. 366262. '

.0:56 4.95 20.96 .00 7.21 328499.

.0267 ******

D. 366:6E.

5.22 19.50 .00 7.61 442092. O. 366:65.

.0279 5.49 17.48 ****** .00 8.01 514300. O. 366:5E.

.0293 5.76 14.84 ****** .00 8.41 567456. C. 366:63.

.0311 6.04 11.23 ****** .00 8.80 609844. O. 366:55.

.0339 6.31 5.02 ****** .00 9.20 645311. O. 366:63. 1 i

\

E f

I a

3 gap i i

t i

J  !

i I

zg g,p g / ts' maisar wuerw l i

t $.13 9 '# D i

~

P A R. i l  ;

-LcAo  ;

LLS) -

\

r

  • t o + 4 t v a< * T -

f

' t e

F = 1514 601 T j 4.543' e e,o 7 r,5

  • P*# #" h 6 'T' ON l ## )  !

t

, SRok EM f'it' ~i pott.LE. Q I S LDWhodd

! (L5) 1]

i j T 531, 01 fin ucT u RE q,g FT i

373.570 l go' f

=

p 13.1'I FT '

t 4 l' p, g --

{

8.s O s il0000 I q  ;

s* I r G. W E 8 4 M1" / F T 0 cat-5Ec

[N

o. cost Str - E GE c-)

.i 401..F9 LE/FT i

i i

Figure A-1 : Force time history for broken pipe segment j t

t

.t

~

i

7 GE NE-123-E070-0493 TSF-MSR BRK MilY 12. 1992 100- ' I 1 i i i i

I i

50 -- .

v, O

Z g 0 -- T _

a O

I t--

1 1

U)

O 5

O

-100- _

C Ltj L)

(C O -150- ._

Figure A-2 : Force time history for 2nd pipe segment

-200~ i i 1 r-- r r- - -- - r -- -- -

0 100 200 300 t100 500 L;00 7Ull T." ( s ~a - THOUSANOTH3 "%d li"'!"i%!!E,l'd

/

PL 2

O O C}

U TSF-M50 Ufus G E-NE-l 23-E070-0493 Mil l' 10- ' 1 E--- E - _- -_ a _____

1J. lir.L t _.

0- -

Q _

en O

[f; ._

n I

F-i an ra 5 O -

n_

~

l l

U l (C l

0 u_

-t10 - -

1 Figure A-3 : Force time history for 3rd pipe segment

- i i i i i r i--

0 100 200 300 l 1100 500 600 700 mt (m> - THOUSANDTHS "l2 l?.-lll"1Dl'Efd

G E-NE-123-HD70-0493 '

TSF-MSR UHh

, , , MRT 12. 199?

I i _..I L .,

0 _

m O

~Z E

(n g -t10 - _

I F-l-

u, a

t Z D

D

CL -

I tj u

m

-120- -

\

l O

! LL Figure A-4 : Force time history for 4th pipe segment

-160 - r r r --- -- r---

r - : - - - -- - -- - -- i "

O 100 2U0 at10 (100 50U 600 '/Ot I

'+e i se > - THOUSANDIHS *'llll

, ?S"*!C'0$lfs',l"

! PL 4

6 O T5F--M:in UHh GENE-123-E070-0493 40- _ L- Mar 1, ' . 19u. -

'------L--------'----- '----- ---l------ --'---

20 -

l f ')

')

j', 0-m i

I't i

l-1

..)

t 's i _yo -

r3 it -

'tl 3

'5 L Figure A-5 :

Force time history for 5th pipe segment I

r r- --

r-- T -

T--

0 100 200 -- T -- -- - r-300 1100 500 GOD 700

,,% tsu s

- THOUSANDTH,a, 3:,u s ,n.o.n,-e. nrs,m t"

tun i 2.o.m a unirsem

Y

, TSF-MSA BHK GENE-123-E070-0493 80- ' ' i i NHT 12. 19A'-

i J. t_ _

tl0 - _

u, O

UE O

~~

~

w 1 -

a O

I H

l tio_. ,

01 L:h) 5 o

(L tti (J

(C o -120-u_ --

Figure A-6 : Force time history for 6th pipe segment

. iso -

,__ L U 1UU .UO juu t100 ' 00 UUO '/l 11:1

%t wo -

THOU3RNDTHb Tlu l ,i.:l" DlE,'lll PL 6

  • . ~.

} bf-MUO [iljl\ ' "

' Mil i 1, * . ] ' r.J.

100 - ' i -- - 1 ------L------------J ---------'-

50 --

,r, t .6

.M

.r

.o 0 -

~

1 t,

I-6-

I r.1

's-100-r3 -

O I Lj

'.)

r-

.j -150-r IL -

Figure A-7 :

Force time history for 7th pipe segment

-200- i i i i i i -i 0 100 200 JUD tl00 500 600 700 m,u two - THOUSANDTHb. wu3 x o.ouii '

wo 1 5.on o %ensnu sn u

7 GDN&l23-E070-0493 TSF-MSA BBK MGI 1?. l'N '

100- ' ' ~~ ' ~~~

- ' - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ '~ ~ ~ ~ ~ ~ ~ ~

50- -

tn C3

z ct U3 0- f N ._

D D

I F-I (D

C3

$ -100 -

O

~

CL ItJ l L) i (C I o LL

-150 - -

Figure'A-8 :

Force time history for 8th pipe segment

-200- i 1 r r -

r- r---- - r- -

0 100 200 300 400 500 l500 700 so,is , n.o.m onnsnn Tiet (sn t - THOUSANOTH5 usw 1s io aunnsnu PL 8