ML20043B703
| ML20043B703 | |
| Person / Time | |
|---|---|
| Site: | Perry |
| Issue date: | 05/31/1975 |
| From: | FRANKLIN INSTITUTE |
| To: | |
| Shared Package | |
| ML20043B699 | List: |
| References | |
| F-C4113, NUDOCS 9005310159 | |
| Download: ML20043B703 (27) | |
Text
.n~~+-~n-~~<+----nn-~e-~
w~~
v~~~~~~~~~--+,n~~- -n ~c~n~.. n j
. 4 1
)
~h e
F ii f
p fy i,
e
' l.s ts l
-f
. p t
't t
t k
'C FSe x'l e
PY-CEI/NRR-l173 1
.. Ls ATTACHMENT'I
- I C
<.u h
F.
.y h
i l-
- 4 l:
6 1
v I
1 t
L-
.i_
29 I
v
?
b l
i
'[/ t[)O i ) } 1[) l (i 9 9 #[)()(i {
PDF ADOct OT,000440 P
F Di:
s s
h
, n o,,
h,
.3 n 7,9
.. g
't i
rs
"e'9 m7..or,,m rgw9
i f.
e -
PY-CEI /NRR-l 173L i
Attachment-l i
e O
-1 f
i
\\. u.: :n.d...! '
1 Final Report'
... _..... j F-C4113 v.
t Report l
..4 QUALIFICATION TESTSLOF ELECTRICLCABLES O
FOR-CLASS 1E SERVICE IN NUCLEAR POWER PLANTS-f l
. Preparedfor l'
(
8 BFtAND-REX COMPANY '
i i
- .:an -br % re.-
wumume.cewacncut i
t ggg\\T10tiDN May 1975 t-i e
i I
t O,
k
/%.s
]
000ITilE FRANKLIN INSTITL'TE RESEARCil LA110RATORIES
..,n.
~...----.,-a.-
.. - --.-- - - - - - -.. - -. - - - - - - - ~ -
j -"
e -
F-C4113 Q
CONTENTS Section Title Page 1
INTRODUCTION.
1-l '
2-1 2
CABLE DESCRIPTIONS 3-1 3
TEST PROGRAM.
3.1 Thermal Aging.
"3-1
-y 3-l'
{
3.2 Radiation Exposure.'.
3-1 3.3 Steam / chemical-Spray-Exposure
'3-3=
3.4 Final Tests.
4 TEST RESULTS..
4-1
'l Ll O
4-1 4.1 Irr ai cien exe ure 4.2 Steam / Chemical-Spray Exposure
' 4.
4-2' 4.3 Data Acquisition. Instruments s
.g 5
CONCLUSIONS.
5-1 6
CERTIFICATION
. 1
,1 APPENDIX A CERTIFICATION OF ACING TESTS APPENDIX B CERTIFICATION OF IRRADIATION APPENDIX C LIST OF DATA ACQUISITION INSTRUMENTS k
r.
r
--I-l tLh
-F-C4113 I
l 1.
INTRODUCTION I
Various' insulated conductors and: insulated electric cable samples were subjected to nuclear irradiation'and' a simulated Loss-of-Coolant '
Accident-(LOCA) in accordance with procedures recommended in.
- IEEE Std.- 383-1974.* - The cables, which are-described in'dctail 1n Sec tion 2 and in Table' 1,,were energized electrically and ' carried '
specified load currents-throughout.the LOCA simulation..
i Pre-LOCA and post-LOCA measurements involved flexibility,.high.
[
potential tests, and insulation resistance measurements.
The qualification testing progra'm described in'this report was
- conducted at The Franklin Institute Research laboratories'(FIRL) during i
the period-February 10, 1975-to April 14,~1975.-
1 9
s<
s ji
C:@l e_s, Field Splice, and Connect ions for Nuclear Power Generatine Etations. The Institu:e of Elec trical and Electronics Engineers, Inc.,
New York'. N.
Y.,
1974 1-1
6 F-C4113
+
i O o
i t
\\
.l
^
2.
CABLE DESCRIPTIONS
.1j-j I
The cables tested are identified and described in Table 1.
Each-specimen was approximately 30-f t long with each. type. tested _in the aged and unaged condition.
l l,
l j
O q'4 P
.i s.li 1
s' I
I i
l i
s O
2-1
r' l
O I
1 3.
TEST PROGRAM I
I
}-
3.1 THERMAL AG!flG l;
The cable samples were thermally aged to conditions: indicated in t
T.ible 1 in a forced -draf t oven by the Brand-Rex Company. L The aging was-j l
perlotmed prior'to irradiation and steam /chemicall spray.
A~ certificationL
-)"
l (by Brand-Rex) of the aging is given in Appendix A.
3.2 RADIATION EXPOSURE All cables tested were subjected to. gamma irradiation flux from ay cobalt-60 source to a-minimum dose of 200;w garads.= Small-sections of color-coded multi-conductor = cables were-nnt lirradiated to permiti comparison -
of color retention after irradiation exposure. LA certification'of the 1
irradiation exposure is given in Appendix 3.
j i
Af ter completion of the irradiation exposure. the coiled testicables we re straightened and then recoiled on mandrels of' 20 ' times th'e' cable ;
j di mete r. - Single-conductor cables and mandrels were immersed iri' tap water for 5. hours at ambient temperature prior to application' of a test potentisl.
l of 60 Vrms per mil of primary irisulation.. thickness for 5' minutes before tc ting.
In the case of the multi-conductor cabless the test.potaritial was" l'
SI';'l led ses en times, in each instance between a single-conductor and-the re u t.itng six conductors as a group unt ti all conductors were individually-9 trated.
l i
I. 3 STEAM / CHEMICAL-SPRAY EXPOSURE The cable samplea were lastalled in a test chamber-on a perforated
~
- til shelf that simulates a cable tray. The ends of the cables were
]
~
- "ed through pressure sealing glands to the outside of the chamber.
I k;'ximately 25 f t of each cable were contained within the chamber.
Itsure i shows the cables installed in the c harahe r.
ggWhM 3-1
" _m e
i F-C4113-
-l During the entire steam / chemical spray exposure, each of the con-li ductors was' energized with the potentials and load currents given in table 1.
Energizing potentials on single conductor cables were applied b tween the conductor and the test chamber at ground potential. On multi-conductor cables the circuits shown in Figure 2 were used.
1 The cables were exposed to a steam / chemical spray environment for u
h 10 days in general accordance with the temperature / pressure profile 6
111ustrated in Fi ure 3 (see Section 4.3 for actual profile). Through-E o
[
i ut the 30-day exposure, the-cables were sprayed continuously with a
-}
chemical solution consisting of H)B03 (3000 ppm boron) bu'ffered with j
nodium hydroxide-to a pH of between 10.0 and 10.5 at room temperature (75 - 80F). The spray was applied at a rate that provided.0.15 gpm per.
l 1
a a.;w re foot of sprayed area.
Spray nozzles were positioned above the ~
i L
j c.ible tray so that a uniform spray pattern was established over the j
j$
c.ibles.
W
-j U
i O.*3.*
Fl'!Al. TESTS
- i Af ter the steam / chemical-spray exposure, the cables were removed
.i j
j from.the test chamber and subjected to high-potential withstand tests j
.o -
0.*' in Section 3.2 while wrappeo around mandrels of forty times the cable' i
-I y dt.trrters.
F a
.]
- i
.C e
b
- l 3
i i
1 2
c.
[
=.
g C
I R
l j
3-3 2-
.m.
,m-am--m-_.u.,_.
w--.--g-3----
o..
7.-.._
-l
? 4 *.
.t-A e I **tf J * ! *' + * *# 1 F A
. *.4
...e 3.. l u t s e,as
..... -.. :....... e se ho '. $ 00?, s s n 8,.-o,.,
i t t..daite e yd r.., ' de it' 4 P't
!... t v. e
/
\\
be s uce s. 10.0 avut 10 ', enw per square. foot 340 -
(
333.F/95 0sig 320 -
315'r/69 psig C
l7 h
we
\\. -
265'r/28 psig 2
$ 250-a u
w a
r.
280*F/ 70 pseg (men) ~
2 W THIN 'to SEC. . 212 *r/O psig 2OO -j i
1 i
t 40-
'I Z
g j-.. j 10 3
5-
--l g.
t-i m
8
'It,
15 I
~ 4 D AY S 30 N
DAYS g
Ti M E-E p
a
-1 M
Figure 3.
Temperature / Pressure Prof fie fc - :imulation of Loss-of-Coolant' Accident Environment Cg
.ss=
i V
4
,._ ~ -,_
=-.
x~
^- -
~
~~
7...
?-
,,,:,.~.........
=i nG F-C4113 4.
TEST RESULTS-4.)
IRRADIATION EXPOSURE l'
As the result of 200 megarads of gamma radiation, there was no visible or experimental evidence of significant deterioration' of the :
single conductor cables and aged multi-conductor cables 10-and-11.. Cable 9 l
-exhibited various degrees of stif fness in the outer jacket. There was no i
evidence of se'rious fading'of the' color-coded conductor insulations in the culti-conductor cables. The results of the post-irradiation high-potential
- l
[
l vithstand test are suennarized in Table 2.
1 4.2 STEAM / CHEMICAL-SPRAY EXPOSURE The actual temperature /pressere profile obtained.for simulation of the-l l.0CA exposure is shown in' Figure 4.- ' The results' of ~ the mandrel bend and :
1
, high-potential withstand test before and af ter the steam / chemical-spray tests are included in Table 2.
All cables-withstood, the bigh potential test..
l l
The results of. insulation resistance measurements made:before and:after the-steam / chemical-spray exposure are given in Table 3.:
3
- i Thesingleconductorcablesandagedcablesf10and11bintained their electric load in accordance wich'the energizing: potential'and currents indicated throughout the. steam / chemical-spr'ay profile. ' Unaged C.ihic 9 maintained its electric load throughout, the first dwell at 346'F.
D Ec load then was removed' temporarily (later reconnected).for reasofis utsociated with the test methods rather than the cabic. construction;*
Post-test inspection o f the cable samples showed that ~ there was-no-visible functional dacoge or noticeabic change in stiffness of the single
[
ennductor cables and cabics 10 and 11.
Although Cable 9 exhibited non-mi form stif fness and some jacket splitting during the mandrel bend test, i
there was no evidence of damage to the-individual conductors.
-p.
suppicmental letter report is available which discusses the test (f.
method and the reasons for intermittent cable de-energizing.. Inquiries abould be directed to the Brand-Rex Company.
INFORMATLON ONLY
~
l F-C4113 l
i Table 2.
High-Potential Withstand Te:t Data Post-irradiation Post-Loca
- i (able Conductor Potential Current Potential Current No.
No.
KV rms mA rms KV rms mA rms l
l 2.4 2.7 2.4 2.4 s
I 2
2.4' 2.7 2.4 3.6 3
2.0 2.1 2.0 2.6 4
2.0 2.0 2.0 2.7:
Single 5-Conduetor v 1.2 1.9 1.2 25 6
Cables 1.2 1.9 1.2 2.6 7
2.4 2' 9' 2.4 3.5 L
8 2.4 29 2.4' 3.2 9
s 1
2.4-1.5 f
3 2
2.4 l.7
' Odd Conductors 3
2.4 1.7 2.4-3.8-4 2.4 1 '?
4 5
2.4 1.7{'
Even Conductors 6
2.4 1.7 j
2.4-3.8 7
2.41 1.7' l[
10 1
2.4.
l.5 3
l 2
2.4 1.7 Odd Conductors
(
y 3
2.4-1.6
)
2.4 3.0 l
4 2.4 1.6 4
l 5
2.4 1.6 Even Conductors '
6 2.4 1.6 g2 '. 4 3.0 7
2.4
- 1. 6 '
il 1
2.4 1.5 3
2 2.4 1.7 Odd Conductors 3
2.4 i.6 a
2.4-2.9 i
4 2.4 1.6 L
5 2.4' l.6
.)EvenConductors 6
2.4 1.7
(
2.4 2.9 i
7 2.4 1.7 e
I.
Potentials were applied for 5 minutes while wrapped around mandrels of-the following diameters:
~
Cable No.
Post-Irradiation Post-LOCA 9.10.Ii 11.0 in.
24.0 in.-
1.2.7.8 3.1 in.
5.4 In.
3.4 1.9 in.
4.0 in.
5.6 1.9 in.
3.5 in.
Leakage / charging currents at the end of 5' minutes.
5 t
Conductors 1.3.5 and 7 were grounded with conductors 2.4 and 6 at
,-(
2.4 KV rms.
Conductors 1.2,4 and 6 were grounded with conductors 3.5, and 7 at 2.k KV rms.
INFORMATION Oli.Y 4-3 t
a.
~
j F-C4113 h 'f.
)
-v j
Table 3.
Sumary of Insulation Resistance (a) i
- .i: l e Conductor Post-irradiation (b)
' Post-LOCA(c) y g
v..
No.
(Ohms)
(Ohms) 11 11 i
l l.2 x 10 2.1~x 10 10-Il' e
5.0 x-10 2.3 x 10 i
7.5 x:10 2.5 x 10 '
10 I
I II i
Single Conductor 2.8 x 10 2.0 x 10 Cables 10 I
E 5 0 x 10 1.8 x 10 10' 11
'o t-9.8 x 10 1.5.x.10 10 11~
9 e
,1.2 x:10 2.4 x 10 l
b IO i
II i
- 1.5 x-10 2.4 x 10 E
2,4c6 vs. 1,3,5t,7(d) 5 3 x1 10 3.0 x 10 9
10-a I
1 8
,d 3,567 vs. I,f 4c6 ')
5.2'x 10 2.0 x 10 q
Id) 5.0 x lok 5.2 x 10 j
10-i 2,4c6 vs. 1,3,5c?
,t 3,5c7 vs. ' t,2,4c6(*)
5.0 xE10 5.0 x'10 a
9 to Id) 9
~
I0 j
'I 2,4r.6 vs. 1,3,5c7
- 8.8 x 10 "5.9 x 10 l
2 3,5c7 vs. 1,2,4c6(*)
8.2=x 10 5 ' ' 5.8 x 10 9
10 g
e.
.g l
[
N l! 5 : (a) Neasurements made with 500 yde held for one minute unless
~
L T
othe rwise no ted.'
1 i
l l
gg (b)
Cables installed in LOCA tes t chamber at. room temperature and wetted with; chemical spray, E
(c)
Cables installed in LOCA test chamber at-room temperature l
j
~
g before opening the chamber..
-l
-j f
(d)
Conductors 2, 4 and 6' connected.together with' conductors
~
- 1. 3. 5 and 7.at ground potential.
(c)
Conductors 3, 5 and 7 connected'together'with conductors I'
- l. 2, 4 and 6 at ground potential.
j l
a 1
woRtAm0HOff c.s
F-C4113
' O u
g I
1 l
S.
CONCLUSIONS i
8ampics of aged and unaged single conductor and multi conductor cables
..;;.11ed by the Brand-Rcx Company were subjected to environmental conditions e t.h are sore severe than. those that-are postulated to occur as the result-
- .i toss-of-coolant accident (LOCA) in a nuclear-fueled power plant.-
The cabics withstood accelerated aging.. nuclear irradiation exposure 6
u.'00 x 10 rads, and a steam /r$ emical-spray simulating LOCA conditions.-
Min latter exposure included two rapid temperature rises to 300'F, two;
- .c!!a at 346'F, and a continuing exposure.to steam and chemical-spray at
- c reading temperatures for a-total duration' of; thirty days. i This ' test -
f
- re, ram was conducted in general accordance with IEEE Standard 383-19741
(
Se single : conductor cables. and aged multi-conductor cables maintained 1
- '.ct r electric load throughout the duration of the steam / chemical-spray i r.it !Io. The unaged multi-conductor sample experienced 'some - dif ficulty in l
!. l !!ng electric load because.of problems associated with the' test. methods.
I-a' At t he conclusion of the test program, all cables retaine' ehigh insulatio'n d
l l'" turance and withstood a high-potentf al withstand test while wound around '
P
- .mJtels having diameters forty t'ines the respective Jcable diameters. -
It is concluded-that all of the single conductor and mult'i-conductor.
j
. eles are capable of-demonstrating adequate performance during and af ter il j
t., t conditions simulating-a LOCA in a nuclear-fueled power plant.-
4 It :
- I l
l i
(a3 WF03ATL04 0'M 5-1
-l i
d
l'
.)
F-C4113 0
i l
U e
I 1
1 E CERTIFICATION L
l The undersigned certify that this report is a true account of the
- ,. ~ eenducted and the results obtained.
- d. [ '
s
'L. E. Witcher-
. Test Engineer m.
.s t
/- O&n gg.-
'w
. Taeger, P. W p (' W i
jec t - i.eade r :
l
(:
& d 4.ar---.
v D. V. Paulson. F.E.1 Chief i
Performance Qualifi' cation Seetion:
l' 1'.
' APPROVED-l; bl.h0(,) _qgjf l
n..n,. 7.udant. Director W. H. Steigelmdnn.
P.E., Manager
'"v.t ne =' ring Department Energy Engineering Laboratory I
l i
I l
~
6-1
!q
~
- o i
7 t
i' j
l J
=-
.3
't Appendix 10 A
CERTIFICATION OF AGING' TESTS g
- e h
.)
?
r-
-k i
I
. N O
MG##*
1
- 5 i
(kk E FRANKLIN INSTITI'TE RESEARCll I.ARORATORI
,,_....-w---.----....,
i O-BRAND-REX COMPANY RL'X wmi a~ tic.co tet. cut oeste taosi 4 a s.v t ti WIRE AND CABLE OlVISION CERTIFICATION OF AGING The following samples were oven aged in force draft oven for a period of seven days at tenperature of 136*C +
l'C.
Quantity Description f
I Length.
- 12 AWG Conductor 30 MI1 Wal1 XLPE 1 Length fl6 AWG Conductor 25.Mll Vall XLPE i
I Length-il6 AWG Conductor 15 N11 Wa l1 XLPE I Length fl2 AWG Conductor 30 Mi r Wall XLPE The above s a mo l e s we r e.a'co r o Y i ma t e ly 30 feet in l e n g t h..
'C Each length was made i nto a coll =and hung from-a rack in the oven' 9
.The following sanples were oven aged in a force draft oven i
for a period of-seven davs at a temperature of 121'C=+
l'C.
g',
QuantItv Descriotion j..
L l
1 Length 7 #12 AVG Conductors 30 MiI valI;XLPE
[
l Length 1 #12 AWC. Conductors.1 j
30 Mi1 Wal1 XLPE t
j The above s amp l e s we[e app rox ima t e ly 30 feet long.
A mini-mun of 10 feet in the middle of each length was coiled and laid flat on a rack in the o v e ry t h e rer a inde r-of the-sample ~was held out through a port at the top of the oven for future.use as test 3
- leads, g*
William G.r Wood Jr.
Supervisor, Product Ocvelopment Laboratory lHFORMXfl0N 030 nu 9 0. g. g,,a g e,y g
...g goggg ggg,..,,,,
g.,
,.g,,
,,,g,
.pgg.,,,,...., g.,,,, s e si f. g o w e. % s, g g ge.. e t h * ', e e e oppg a.gf es....
.I
",. <o,,,,...<.,
.....,,,s...s_..s,..
..,,,...............,,,c..,os-,,,o.,..........'.'oo.,............,
A-1 I
1 q
i t-O rw.mnra, :;,y i
i l
i
%..-................._J
"" man e-t
,l 1.
f i
Appendix i
LO a
o g
CERTIF (CAT 10:1 0F' IRRADIATION 1;
ii 1*
s Y
i
,i Qhh
.M)
O 4((....
I!!!
Tilf FRANKl.IN INSTITl'TE RESEARCl! l.AROR \\TORIFS
,4_,
m o
i
-[
q -.n.
l O E
w a,
(
8SOMEDIX e
i
{
March 25, 1975 i
Mr. *.41114.am Steigelmann Manager Performance Qualification Laboratory j
Franklin Institute Research Laboratories 20th and Cherry Streets Philadelphia, f'ennsylvania 19103 l
t
Dear Mr. Steigelmann:
This will. summarize parameters pertinent to the irradiation of 14* clectric cabic samples per. your project C-4113.
i amples were placed in a Cobalt-60 gamma field ranging in c
intensity from 1.0 to,1,15 megarads.per hour, 'for a period of 200 hours0.00231 days <br />0.0556 hours <br />3.306878e-4 weeks <br />7.61e-5 months <br />.
Cables-received a minimum. dose _of1200 Mrad,_-
w'lile the - maximum overdose to any cable wass 1 '.15 times : the d
dose specified, or~230 Mrad.
The samples were rotated and turned during.cxposure.to.obtain i
the dose distribution described ~.
Irradiation was conducted--
in air at, ambient ' tempera ture and pressure. _ Rad.ihrst heat -
o from the source heated the-samples-somewhat, but the: temper c
Tture-did not exceed 1100F, as indicated.by previous-measure-nents on an oil' solution in_ the same relative; position..
DosimetrywasperformedbsingaVictoreenModelSSS-Integrating Dose Rate Meter and Probe.. The unit-was calibrated on January 15, 1974 by the Victoreen Instrument Company,- using l
cobalt-60 and cesium-137' sources whose calibrations are traceable to the U.S. National Bureau'of Standards.
A copy of the calibration certificate-is available.
nackup dosimetry i
using a Red Perspex system confirmed the Victorcen readings.
.j Irradiation was completed on Starch 3,-1975, ramples were picked up by your personnel and transported-back to PIRL.
- The 14 cables consisted of the 11 described in the covering Very truly yours, report plus 3 others of a l
-different t ype and, r it described
,M pN in the report. M (
(
.h7f g'
"**][g, g
Manager, Radiation S vices
\\
l GRD:km e
Inomedlx inc.
25 Eastmens Road, Parsippany. Nevv Jeesey (7016887 1700 an...no aa...
,ii on. es. a i s,....c o.a v. m.= s...., o r o s.
']
J 1
l A
7 lO l
+-.n.,.<,,
1 e
]
i J
m.-
..a I1 Appendix
[
O 1
C-I LIST Of DATA ACQUISITION INSTRUMENTS
..g 4
3 l
l e
-l! !
l i
l.
t l
i: -
l l
1 l
1 1
l l. -i l
1 4
i h\\
00r ii ra,xxi,y iss7,717s assy,ac,,t,,3na,1oy,ns g
i I
.i e
r
~
LIST OF UATA ACCU 1SITION INSTRukEhTS C4113-01
' fo 31 Nt.N E h i N L.. c 5 H 44 P A M 6 4 I h S 16:.nhC NFk H0r.E Tv Et L-epCwh e FLLTIFelbT HECCHrEn
[
TTF6/600FL h t..s erH KY 151 1.87-C-11-111-106-tL2)
~
9 ffHIAL bukdER J2dO6330001 H/h(F/ FEATURE 5 0-300 CEGREFS F TYPF T/TC 12 F0thTS l
C A i r _L A.t. I E R A T L C 03 1.1 75 It.btutsfNf ht,.uFH A A 2 0 t.
)
tri'c Aht AFF rdTE)Lihr ehri C SERvc 11 Tv o P6 h urcewrts r
~"=
1 I Y'FUo'ULE L Abec H L11oj$
i SFhTAL hukBER 900A93 HAhrE/rEATLAES MV SPAN Ar l?ST WITF ELECTROAIC'1.C. PEF. at t-C T S
.c A lt C AL I b x A T ti.
0 3 Ob 7'-
t t\\
[
l' $ $ q.s F ht hl c R 15:277 r
~* ' " ' " - ' - ' '
16519 AAC NFR
.AFEIFK/LC C Ai oT TEST-GT C7 59EssiEr typr/FCCEL AUocER 4 1/2 th.
di9 tat hbkeFP 41.'.t F / > F A 1 t;9 L y e)-gela F L [
- r. g r t.L[F.wATeu 01 pj 7 t h S t o b sT"h i St.vefR 48283 l'S'D AhC NFW AFFTrK CIFCEochTIAL PRrscLPE TFAhCCUC[p f Y L /.= 0 C FA A US c F H 50G040,05Cpxpu "Jfa 'A h.b e F. R 410t t
t
'#.* *. 6 6 / 6 F ATLPEh 4-2 0 il FL I n-1.0VL'C (6040 cbMS
.L^I' L hl. I(,;N A l L t A b_In f L' Iha t *%' g, s T h, j ggggeg gggog q',
1*':1
ANC NFR Elpp$pN.,,AvvCTFR lis.I6.t-ogse H 70gp r
' e.. *
- e o k g.[ p i'AILPtd 11 - 1 4 Aa 0.92 A /': l u t
I
- ^1' C L'IANITtC REF 0 *. L )
. I '.'
- 3' ' INT huee R 1 A. 0 P 7.
r
.. N:
- s. r x S t,. :: S P h e A *Etro 1
r il r
et 6 tee g
. '.: t 9 7nto l
l
' ~ ~ "
(
,. I A i d ri -b 0-A.0 A AC
"*A
t
' ' ' ' ' 'l !! d AitC RFF ONLY
(
[ *,' f
\\
}
't ie T
~~~14103
^
fj f
sj;
'6k S l y n.3 r N v'tivrirw i
h i,,
l
,*. Ai.ecs l
.4
.(,,,y s s.. ' ' ' ' ' f '. 'd C S 0-75u VfC 10V/CIV
,,,, ' ' ' I E " '.1,t,q 93 gg 73 1
nUi j
i j
c-1 l
m.
.,a i
G~-
LIST OF VATA ACCUIS ! T ich INSTE N TS C41)3-01
, V A Nb18'US f h l Ale u N 182%$
r
' C# WHAL RAL10 vFCUFbwt.1FR thsto AbC >Fn i
_ IYP8'/AOPEL M' e H 1 ** b u r
5E H 1.it Abb t:EH 43o8-107b 4Ahrr./FEsTUREd Snn To ST OFvc 10-1600 V Cr.
.. J A1 F _C A.l l.F R A l e C 11 P.t.3 7 4 i
+
t i
t.;
.i
~~'
O
.,,y s
.s 4
e, l
1 l
uNFORMAIiON ONLY l
n
?, u$.
C,..
)
s I
t s
6-
~
BRAND-REX COMPANY l
l A ms or % w
- ggg, WILLike ANTIC. C ONNE CTIC UT 04329 4 (8039433 7771 WIRE AND CABLE OlVISION pg ]3 SECTION VI QUALIFICATION DATA l.ONG IERM IHERMAL AGING ARRHENIUS PLOT 210 YEAR LIFE GENERAL:.The following information outlines our approach and technique in verifying the 40 year service life of our T-162 cross-linked polyethylene insulation.
PURPOSE:
To establish a thermal aging point-in terms of short time and high temperature which represents.theilife of an insulation system over a period:of 40 years at
(
g the standard 900C operating. temperature.--
ARRHENIUS TECH'.IOUE :
The arrhenius equation is generally 3 consicered to be the best: method of approximating the relationship between. insulation ~ life.and temp-erature applicable to the service' life'of an insul-~
ated conductor. By selecting aging temberktures well above the' expected normal operating temperature (90 C).
C and establishing a failure criteria, a set of. data points can be plotted.
From t!.is plot, an indication of insulation performance at.90 C.for'40 y_ ears can 0
be extrapolated,by short-term (typically one week) i high temperature agings.
BRAND-REX APPROACH:
Sample Descristien -
IMOMMIM OU 1
The samples consisted of a 30 mil wall.of XLPC T-162 on a
- 12 AWG 19 strand bare copper conductor. The insulation was colored white.
~
Samples were prepared in two ways. Ten groups 7f three samples were prepared by stripping the insulation from the conductor to make standard specimens for tensile and elongation measurement. Secondly, four samples 8 feet g
g long were made into 6 inch coils for dielectric strength t
measurements.
i 43amo ets ci,igio=
...e c o mi c s i n g e n.c.,.= sui s tia r. f umini.
=o=viusa es=cesstuem.romena.e u=i= suis tic (cept s a t ueet s anici ieg 400019 4 C o (g t s te:C ag ma==t ssi g s om i=(, vile,
, e.i g
.s ve ag to.ea=, a g a c ia.( at. E t t C tto%eC C o*al tiong
=o e g a t te.c at t o= geog,c tion..ig...g g
n a
r P
h BRAND-REX CON PANY l
A PA8tf 0F M INC
- v g
weLLans ANisC. C ONNE CTsCUT 04338 13039423 7771 WIRE AND CABLE DIVISION
. pg ]h t
(
r BRAND-REX APPRCACH - cent'd.
[
Aging -
d Aging was accomplished by placing samples-of the insulation in ovens at four different temperatures and aging until failure occurred, j
Three Blue
'M' forced draf t ovens were used in this test.
One of the ovens was used for two different temperatures.
All three ovens satisfied the requirements of ASTM-D-2436.
l The air flow was adjusted to give approximately 150-air0 changes per hour.. Thg four test-' temperatures were 113 C, 0
121 C, 136 C, and 150 C.)
Failure Criterien -
i l
Testing for failure was accomplished by-two methods. At a
specific intervals one group of three tensile samples was removed frem the oven, cooled for.24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> at-room temp-erature and tested for tensile and elongation according.
~
to standard i.dustry practices.' Secondly, appr,oximately".8 inches were cut from each of two coils and cool'ed for 2u 4
hours at room-temperature.. Each coil was.then attached to l
I a mandrel whose diameter was eight times the di'ameter of l-the insulation while a 1.5 pound weight was attached to-the other end.
The sample was then wound.on the mandrel both clochwise and counte'r'-clockwise, twice.in:each direction'. Upon removal from weight and mandrel the sample l
was examined for cracking if none were observed it.under-went a dielectric test.
1 The dielectric test consisted of'a one hour soak in a '1% '
Nacl-h'ater solution. While the sample was still immersed l
4 KV AC was applied for 5 minutes. The voltage was applied at a rate of 150 volts /second. If no-failure was observed the voltage was increased at 500 volts /second until the sample broke down. The wall thickness was then measured at point of failure.
INFORMATION ONLY a t h
k h h l h h h
h.
hh a actt a (0 t t:( t wet at *=an'*f i'.f t t oo inc., niae. esi s =a sie=at : on eas.e a s e t te,s at t t t C laow's C o*iat (10% a=u t i e s inseist ( os.s tasts( titJn ana tt ees:(g v
ch BRAND-REX COMPANY Vy 3
.......m._m,...................
WIRE AND CABLE DIVISION PAC,E 15 l
BRAND-REX APPROACH - cont'd.
Tailure was considered to be the failure of the insulation to withstand the 4 KV-AC for 5 min'ates or if cracking were observed in the mandrel test.
The.ansile and elongation measurements were made only to correlate with the dielectric I
test.
They were not considered a criterion for failure.
j It is the opinion of Brand-Rex that a mandrel and dielectric test most closely simulates stresses found in actual use.
The failure times for this compound-are as follows:
Test Temeerature Tailure Time 150 C 3916 Hr.
136 C
'1068 Hr.
l I
N hbf y
ARRHEN!US PLCT (ATTACHED):
The above temperature and failure times wer.e'used on an Arrhenius plot in which the log of time to,. failure is plotted against the reciprocal absolute temperature. It should be noted here that the Arrhenius technique is valid if only one ch,emical reaction is controlling the insulation aging process...Our cross-linked polyethylene is formulated with many ingredients, each reacting dif-forently with recpect to time and temperature. On this 0
basis, we feel the two lowest aging points 113 C and reprerantationof90[ Caging 121 C) are the closest consequently our plot is a at to point and.not a best.
fit straight line.
Since the Arrhenius plot is constructed from failure points, another line "uust be extrapolated to determine the passing 0
I 40 year 90 C insulation life and the cor::esponding short 0
term aging point. With the knowledge that the 113 C and 121"C aging points are more valid, the extrapolated u0 year plot was drawn parallel to both points and intersecting the 40 year 90 C-point. On thic prot lies the important short term aging point we have celected for our insulations,
.d I
168 hourc (7 dayc) at 1360C, s.
n e m. : i
...s...
......... i o i
..c..
..s,............ o........ < i... <. e o......... s.. n o c o..i.. c o.... i i <i.... e
...oi,. co n u..<...... a.S.e..........
,.o
....o...
..... uui..c.s.ioc.o.cco.. 09 5... ou..c.sco.si. cvio.
.n..a
.1
i i
ru.s BRAND-REX COMPANY
,j e
. u....~,,e e o m c,,c u,...... u... m.m.
WIRE AND CABLE OlVi$lON PAGE 16 r
LONG TERM THERMAL AGING ARRHENIUS PLOT i
40 YEAR LITE l
CROSS-LINKED P01.YtT1fY!.E':E INSULATIOt! T-162 1,000,000 e
i I
l 8 i 6 Q'.\\
1 1
I I
40 YR.
4 1
i i
3
, g i
1
\\\\\\
I 2
gg.- y:
100,000 i
t l
8 i
.. i, 1
6 i
i ie ii I
i
- AGING TAILURE POI:iTS y
4 q f F's i' SHCRT TER*! AG1::C' POI:iT 3
4 i(D H\\113*c
"~'
t FOR 40 YR 1.IFE i\\
6 i
tU l
r
.3. *
. 15.664 liR I l
l I
1 m
6-10.000
~'
8 7
i 6
g C."
l
.i t
,w\\".
- 2c.,43?n n'$
i 1
4
't'.
i i
i e
)
i i
e3 \\.
i i
i 6
CV
\\'
i i
i l
i
_$\\
\\i l l
l l
l l\\.,,136'C.106SHR l
1,000 8
\\
\\
i'
- -=
6 I-I\\
i i,,'
l.
i l
I L
8 4
I 1 *.0* C. 39f. IIR 4
i i
ii 3
i
\\
~9 i
i
- i 2
'\\
-l I
I i r i we. :..s a i i
5 i
l 100 i
90 100 120 140 I t>0 180 200 250 300 l
k TEMPERATURE,
- C
}g'g'g oom n.................. i,, s...e.,.. e i... u. u s... c.
w.,. v..... v........,. sn.....
....s.,...n,n.....,n........,....,
.. n o n. c o. <.......... i s, s........,,......i............... n i.... i i o.o..,
i v..s u o.s... i i s o...i ( o.s i ni,m.........
t 4.k.
BRAMD-HX C0fGPANY g.y, A PAfti 07 [b w.C weLLehaafv14C. C ONNL CisC WT C67 2 6 48 0314 7 3.?? ?t want AND CADLE DIVISIDfl Page 1 of-3 APPEND 1x A CROSS-Lil!KillG BY IRRADIATION L
l L
1 The objective of cross-linkin6 a material is to convert it from a thermoplastic polymer to a thermosettini; polymer and as a result inerense its resistance to heat coftening, low temperature brittleness and chemical solvents without de-grad!nc its cicetrical prop.trtist.
This can be accomplished by a variety of methods, howcVer, $rradiation and :hemical techniquet are the tuo most widely used.
l I
The Proce:s 1
The structure of polyethylene cont.ists of lonf.qbain molo-cules (:..ae romole c ule s ).
Where these moleculeb cone cloco tnccther, crysthis ferm in an ordered 0.rrangdmerit.
The nrocess of cross-linkinr, binds or tioc up these 3cnr.' chains into three dimoncional structures that-exhibit the preper-tien mentlened above. ' The process of' irra:liat!on aceemp-113het this by accoloratinc' elect ron.t that are c:.itted from a pm er source throuch a scanner that 10 directed en the wire surface, (see discram in f!. ure 5-1).
The conveyor rotatec the wire as it pacr.cs throuch so that unifornrdosi-metry of the innulation is assured.
^d va nt a c" MORMATION ONi.Y
' 'h i l e irradiat ten. offers many advantacps te t he manufacturer.
over ehem'cally crocs-11nhinc, come of the benefits that' may be re:411ced by the user are:
!'o innulat'on Icakar.c into the conductor st rands because e
P.ero prennure and room te:::perature cure een.!jtionn.
I Leakar." may cause termination failure, os..
.e.................................i,....
....o..........i..............,........<~.4,e,,,,,.....,...,
emie s t o i i i o..<.... s si
.n
..t
............os., u.... i s s o.... s i s i.. >.. i 1.w. u... $
o e i s...s. 6 c o s i us i o... i....,
-....J.
3 MND-R EX COM PMY
.f,.
[.
A Pnnt Or N %.re.NC wWheaNT.C. CONNE C t.C ut 06t # 6 It0314 2 3.???t WlRE AND CADtC Olvlbold Par;e 2 of 3 4
Irradiated insuintion 1a free stripping from the conducter. Irradiatics, is r erfcr:nd in normal room cond!;1er.s uithout hirh temperatures and pressuren.
The irr.:1ation vill not stic : to the conductor nor flo. ints the interstices between i
the condu;:t or strand::.
As no active catalyst is added to the'irisulatior.,
there is no dancer of resid.scs after cress-linking which may result ir loss of electrical properties.
Irradiated insulati:ns may be used with bare copper conductorn be ause there is no active catalyst to attach the conductors.
The wider variety of insuist 1:ns that can be irra-
{
}
diated, (i.e. Ter;:c1; FE?; F.ynar; Foam Polyethylene,et c ).
Tdo sing:
ad,'.autmen':. (enercy level and speed) precisely contro; ihe d.c,ree of cross-linh!nc, and-can be ear!17 ad,'.4sted from product to prsduct.
Extrusion in ne:cr.plished on standard equipNent, best suite;l f or the ; roduct being manufactured.
Irradiation can etenemically cross-link thin wall insulat i ons on sm*.1.1 N..'0 s1.e s.
There is no notice:, bio deterioration in color after cross-lin:;ing.
s Quality Cont rol There are tue Lanic tectn that are performed on lots of irradi e d ufre.
The first is a nolvent. c.v.tractj on test that ::.ea su re: t he.ie;'y..e of irradiat j on to not::e prenot. sian.!a:d T.e tha' p r.'d u c t.
The second in a hot r,ol.ter j ren (Or chine) poin:) tent performe.t around the ?!rcu:rference of the wire t o acnur0 unjform crosc-linkinr,.
i hiFORMAT!0N ONLY I
.........................,,,....,........s..
. z. v,...,,,,,............ m....,........
....s....s.,.....
,,,,,....,,,,,,.;.,o......................................,
1 1
GE.h BEND-LEX C0ff PtdV 7/y,-
4e*= tor /hrein.c wwwantec.cowe.s cticut osers isos 4 3.,,,,
WIRC AND CAULE OlV10 0N Par.c 3 or.
s SCIIDIATI C : MULTI PLU PASS '111111 liti ADI AT10N lt}c
!!LLCTRON SCAB!!it Ell.CT!!0N HUNT l' l l
l l
}
1elRE IN l
C 1
i O
I lik!VliS DitU"S I
h1RH CU*,
S I DF. Y ! r.ig I
l s'.
DK 1 Y E N ))!'.11,
i I
.e i
T.l.).CTRON SCASSl!!!
l I
i i
t lil; I VI..' Dl;t;,'.1 l
v JFORMAT!0N ONi.Y iena:
n:
(
)
top vltie
. d, j l
V a..s:
s..
..... in.
.i.....
.%...ir..
.r....~.
, s.,
...,....t.........
$$liPQ10 4 i ge jggg 5 6* e.;. 4
- .hkt
- ,$.,f,e ogsgeglwg 4 tg g g e l eg e%.g g 4 4e l'. h 4 $$$$ $D 4 %g $$$4 8. t e% q, g g.*e % $ g e g es., s k g; e g g g e g g, g g e.og *, p geg et j ee s, g e t t es 4& B ',
i L
A l'
1 3
(
' N
p.
r-$
s
!- N '
.k',,.,
p 4
1
\\
a
-o s
+
.(ii
, f, g5 u,
l l.--'
1
, h j h. ->,
4
...,.n
-t.'"
i.
+
i
!, ^ f -
F L
L i
s o
.,3. a s
a ht y
y i h )*
5-!:
't
~ii
') I ';
- a.
w..
e,
- p i
H t.
c ).0,-y
- s. v\\' f-
'b*!'.
,s'.'b-b
' l,p
' 1,l y
t
- z 1 -
1
- -.., m p-,-
u p.g.., 4 g ;t4 x.
. t.F
-t'3:e y 1.-
4 r
4 *ey
- +
.:v e_,
g j 1 JN 7.,\\ y;., =.
j_ t.
4 1-e.3 e.
-,+as t
k i _
.T3; t
si 5
v
- w it
-,.... ;.,, s
.j }'.'
x 1
PY-CEI/NRR-1173Lt ' -
4
+
,1
' ATTACHMENT 2! 1
~ i
-i -
f
.},-
.~ --
- . ;~"
a, I'l
. l{ d
- l n
-:a :
1 a
c l
g 3+
1i*
i'-Q c
s q:
.;5 4
t Q
.J _h lE l'. -$ '~r
- w.,
- 4. t _s:
g g-E L
-.'.l.-
m
- ;3-
' ; 4 ':.
'..rL.',t f g..
t i
\\
? f!_
c
+
Y
.')*
g 4
V k
_i-
'I
-q_.
e M
1
=
(
g
>k ;;
', Yj'..> j '., ?
1.-5; e
L f
- py
~
k 9-
,. j,
-p'v,"..,4,
![+ ' ;'
,.1,
+
F l -,.......
i I
/
5
-6
__.f ! [
Y
^
g
^
q
'L PY-CE1/NRR-1i73L i
O l
i QUALIFICATION TESTS OF ELECTRICAL CABLES IN A SIMULATED STEAM LINE BREAK-(SLB) AND LOSS-0F-COOLANT ACCIDENT (LOCA) ENVIRONMENT I
FRC Final Report F.C5120 1 g
Q l'/0IT GA1 4
l-m L
4 Preparea for Q
O e,
-BRAND-REX COMPANY la--
A PART OF ZDnO INC, arx
h, 1
- W
, on.
I IN,..
'W; I
i-August 19. 1980 fIEE0$ldS?!Cl?gy I
S P-5bi- 00 4 O
^
. Franklin Research Center A Division of The Franklin Institute r
G },1 (T[{
}Jfp 3
.h T-C5120-1 CONTENTC flt
$1etion Tltle
,P,a g a 1
SUMMARY
OF SALIElft FACTS.
1-1 2
IDENTIFICATION OF CABLES TESTED 2-1 l
t 3-1 i
3 TEST FACILITY.
3.1 Cable Mandrel.
3-1 l
3-1
,1 !
3.2 Thermal Aging oven I'
3.3 casuna " Irradiation Facilities.
3-1 l
3.4 Steam / Chemical-Spray Environmental Chamber 3-1 L
4 TIST PROGRAM.
4-1 4
4.1 Pretest inspection and Measurements.
4-1 I
I 4.2 Thermal Aging.
4-1
.=.
4.3 Gammaa Irradiation.
4-1 4.4 Preparation for Steam /Cheatical-Spray Exposure 4-2 i
v 4.5 Steam / Chemical-Spray Exposure 4-2 l
4.6 Final Inspection and Testa.
4-4 4.7 Acceptance Requiremente 4-4 I
t 5
TEST RESULTS.
5-1 t
l h
5.1 Insulation Resistance 5-1 5.2 Thermal Aging.
5-1 I
l 5.3 Gamuna-Irradia tion.
5-1 5.4 Steam / Chemical-Spray Exposure 5-1 l
5.5 Final Tests and Inspections 5-2 t.;
6 CONCLUSIONS 6-1 i '
p I
7 CERTIFICATION 7-1 APPENDIX A - LIST OF DATA ACQUISITION INSTRUMENTS l
APPENDIX B - CERTIFICATION OF CAMMA 1RRADIATION l ih
~
iii l
M&
.... FrankJm Rewatc.h Center i
a tm e tlene f RLet ) inentetten ud jocket tee estet tele of.Wrpalen en evitisenswetet s e61 n. A soeplete encription is ovev6eed as istle I bete 6n.
Elements of ptertee:
I the specimens wee 86,66ed into three growpe let thetoel esing:
i6.
e.te n.e of elpht. specimens aos One prov O
.ne,ed, e ee.end,t ne o f et.en e,nimens we e the,u n, e,ed f u e,e>ei n ec unen.
'Q and the thted prov, of then etee nene wee thereally seed fet let heute ti este) et M08C f 3 t ?'M.
All specimene were esposed to too need of gesme 6ttadiet 6en t oit natulent seee) tree e eeksit.6C soutee a
et a tote luo than I mrdth end then to e steselshesital setey env6teneent oiselet6m6 e toeb6med steee line Dent (SLS) and len.of coolent ee:6 dent ItDCA) and the teeldown follev6mg the SLS/LOCA. The s touteled SLt/LOCA espesure 6malweed two tapte tsees 6e tempeteture/ pressure to 305'F (194*C1/
64 168/inI tell hts), two itHniewte swelle et these poet toepete tores, felleved by setteesing tempet e.
tofu to e fanal to-est ewell at De*t fl10*Cl/10 lbf /6mI (64 kPa). The total elevleted SLlltDCA outet sen wu 30 esve. A encessen selvtin 16200 pee beton. $0 pee byereatne suf f 646eet eesim tet shoe.
phete se ettein a poi of 0.5. fellowed by owf fic 6ent eedium kveteeLee to obtain e pit of 10.0 et 'veen to -
pot e t ut e l we o pt a nd on the o pet ieene e t the rate of 0.37 et per ovete feet (1) L/ min set severe es tee l.I sletting et the tonelet6on of the 10-e6nute ovelle et 18587 fl%'C). ' the **bles were electri.
c ellt enetsteed with oc poteMiele of 300 end 600 v. ene tuttente of ID. 25. and 120 A f ee opproptiste) -
twe tag the 30-det SL8/LOCA espoeute. Ptnet teels comeneted of e 602 disester bend test and a $=etnote et high*potut telavtthetud test et 90 t per oil f 3110 v/seil ei enestation.
s Sweener e of test tesults :
$ 4 6 't f( A t epneute
- Four ten of the 40 s pecimene toes tned ener g6eed eateet fee shee t perlede. See beestee.
f inal ut an*>etential.Witmetene tes te. All specimene withe toed a hignepotentialawlthetend test with a leesapeltherging everent of lue then 300 mA.
See teostte.
Seesthe + f ailute et feve specimene to teoste energised dweing the SLlf LOCA espeoute (see abowel i
wee poseibly towo*6 67 problems with test vessel penettet tone n the problems were bel tentieeted to be nedntative of the toele per formente not of conditione in e nucleet powet generst6eg stetten.I ke t e tha t a ll e re t iment Wilhe lped a f 6mel hipn. potent ial-withs tead tes t e tvil sn'esticos ete ytevised to the test.
- ee bettnen 4.5 f*f West 6ptlen of s pr ey ete s teleute t ten.
5
> A s.pe,.
nt el,e t t.t t._t
,e e.e6,.,e.h..h o,ne....ee the t e e a u t,.ee.nd t he t e.s e..,-
.nteroitten... e seen.t.it.n..
i 1
INFORMAii0h DNLY l-1 l
.... FrankJm ResearCh Center A % w r t.
.l e
)
i t
'[
T-C$120-1 O
,f 2.
IDENTIFICATION OF CAB 1.ES TESTED i'
,4" Descriptions of the cable specimens provided by the client are presented in Table 1.
The energising potentials and currents specified by the client are also included in Table 1.
The total length of each cable was approximate-ly 30 ft; 15.ft of each specimen was within the test vessel during the steam /
chemical-spray exposure.
1 t
O F
e 4
1 0
INFORMIEiON ONI.Y ;:
21 m
"r S,'s' E.ggter
~ ^
i
~
l Table 1.
Identification of Test Specimens and Related Data
- A
.,Ie
- > Agin, B
Published Specimen Teneeratore k?
n eer cf Insulation /
Insulation Outside (Meld for Electrical Enugiring 13 FRC u
M Spec imen Brand se Conductors and Jack et Thickness Olaneter 168 hoers)
Fotential Cuerent q
nuw,rr Designation Wire Site (AuG) Material (s)**
(in)/(sus)
(in)/(ass)
(or)/(oC)
(V)
(a) l C5120 1-1 5 1620162 1/C fl6 ILPE 0.02/0.51 0.10/2.5 mot aged 300 10 C5120 1 2 5-1620162 1/C.f!6 ILPE 0.02/0.51 0.10/2.5 not aged 300 10
$ 3, (5120 1-3 5-1620162 t/C-fl6 ILPE 0.02/0.51 0.10/2.5 277/136 300 to I
C5120-1 4 5-1620162 1/C-fl6 ILPE 0.02/0.51 0.10/2.5
'317/;58 300 10 C5120 2-1 5-1230162 1/C.fl2 ItPE 0.03/0.76 0.15/3.8 -
not aged e00 25 C5120-2-2 5-1230162 1/C-fl2 ILPE 0.03/0.76 0.15/3.8 mot aged 600 25 C5120 2 3 5-1230162 1/C-fl2 stPE 0.03/0.76 0.15/3.8 277/136 600 25 (SIto.2.s 5 1230167 I/C-fl2 tt PE 0.03/0.76 0.15/3.8 311/158 600 25 CSI20-3 1 5-0245162 1/t,. f2 stPE 0.045/I.14 0.40/10.1 Not aged 600 120 (5120 3-2 5-0245162 1/C-82 ItPE 0.045/1.14 0.40/10.1 277/136 600 120 -
C5120 3 1 5-0245162 1/C.f2 ILPE 0.045/l.14 0.40/10.1 317/158 600 120 C5120 4 1 5-12300t l A I/C-fl2 ItPE 0.03/0.76 0.13/3.3 not aged 600 25 (5120 4 2 5-12300tla 1/C-fl2 ItPE
~
0.03/0.76 0.13/3.3 277/136 600 25 C5120 5 1 1-IPal6162694 2/C-fl6 ItPE/Hypalon 0.015/0.38 0.25/6.4 not aged 300 10 05120 5-2 1-IPal6162694 2/C-fl6 11PE/H palon 0.015/0.38 0.25/6.4 277/136 300 10
/
q C
C5120 6 1 CFCl2162694 7/C-#12 ILPE/Hypalon 0.03/0.76 0.60/15.2 noe aged 600 25.
(5120-6 2 01C12162694 1/C-fl?
ItPE/Hypalon 0.03/0.76 0.60/15.2
/7/136 600 25 h
747 C5120 7 C57012162696 "
1/C-fl2 ILPE/Hypalon 0.03/0.76 0.66/IE.8 277/136 600 25 m
i.:n NF The prefin C5120 was omitted for clarity" in discussion of test results.
"ItPE Flame. retardant cronlinked polyethylene insulation p*
Hypalon - Flame-retardant chlorosvifenated polyethylene Spec imen 7 tontained a heat-shrintable splice (Rayches WC5f 4 - 500/1500 #3/0 - 250 nts sol)
.a:-
W
~
.?.
O O
O W
su mm e sus -
'n 6
T-C5120-1
- o 3.
TEST TACILITY 3.1 CABLE MANDREL At the start of the program, the specimens requiring thermal aging at 136'C (277"T) were wrapped onto a concentric arrangement of two stainless stosi mandrels visible in Figure 1.
The diameters of the mandrels were 16.2 in (0.41 m) and 19.8 in (0.50 m); the lengths were 33 in (0.84 m).
The mandrel was also used during gassna irradiation and the simulated SLB/LOCA exposure (Szetions 4.3 and 4.$).
3.2 THERMAL ACING OVEN I
The specimens were thermally aged in a forced-circulation air oven with interior dimensions of 3 ft by 3 ft by 4 ft high (0.9 m by 0.9 m by 1.2 m high).
The oven temperature was recorded by a self-contained temperature recorder and verified by thermocouples and another strip chart reco'rder.
.3 GAMMA IRRADIATIO!' TACILITIES The gamme irradiation was provided by Isonedix, Inc.,
a subcontractor to FRC.
The gammaa exposure facility consisted primarily of a large, flat array of cobalt-60 sources oriented in a vertical plane. The mandrel of cables is pieced in view of the gasuna source - and the mandrel is rotated periodically in 90-degree increments to obtain a uniform dose. Gamma irradiation is accom-plished with both the mandrels and the ganssa sources in an air environment.
1 3.4 STEAM /CREMICAL-SPRAY ENVIRONMENTAL CHAMBER The test vessel used for the steam / chemical-spray cxposure was a 24-in t
(0.61-3)-diam by 48-in (1.2-m)-long stainless steel cylinder schematically I odel POM-3660, Blue-M Equipment Company, Blue Island, IL.
I M
2A list of data acquisition instruments in provided in Appendix A.
somedix, Inc.. 25 Eastman 6 Road, Parsippany, NJ.
'~'
dNFORM.q!gy g;gy.
m
" e m en.e e
- i
.,l L
T-C5120-1 t
ThemandrelwithassembledcableswasattachedtotheO',
illustrated in Figure 2.
head of the vessel. An overall view of the facility is provided in Figure 3.
Steam was admitted to the test vessel through a central 1-1/2-in NPT (approx. 41 mm) pipe, which exce.a.ci tmm through the center of the cable man-drel. Several sections of the pipe were perforated with 0.25-in-(10-mm)-diam holes to disperse the steam (see Figure 2).
The perforated sections were sur-l i
rounded by concentric sections of 3-in (76-um) pipe to baffle the steam and' l
,I prevent its direct impingement onto the cables, j
d An array of spray noseles' consisting of two nozzles in each of four "1
quadrants was provided as shown in' Figure 2 such that the cables were sprayed with chemical solution at appropriate times.
I 1
l The vessel was equipped with several thermocouples to measure and record the temperatures of the vapor in the vicinity of the cables and of the fluids which collected in the bottom of the vessel..The vessel pressure was indica-i ted on a dial gage and recorded on a strip chart. 'A list of data acquisition o
i instruments used in the test program is provided as Appendix A.
- e. '
power supplies were provided to energize the test cables with the voltages and currents listed in Table 1 and schematically presented in' Figure 4.
The circuits included a circuit breaker which would disconnect the applied poten-j tials if the leakage / charging current exceeded 1.0 A.
i l
1
' Nozzle No. 1/8 GG2.8W, Spraying Systems 100., Wheaton, IL.
i
)
i i
'.?
INFORMATIBM ONIJ 3-2 a
.... Frankhn, N r.
. Center Research a s.w.
v.
~-
F-Ci'?C-:
I i
/
I e
i E'
- 1 e*-
gg, m-f I
i i
t
)
w f5W w--w r-
_w m l* R 5 !- S y'
va as maa1EFF4mr
.. g.Sh j'
th
.e e.
we 1 m
.aTM.
r 3
e.
y
.e
,s l
4 f
,se w
(*
V G
tv
(
f w#
s s
9 Fm
'e550 Eenetr3; ions 'T"iS view 'ncludes Sre:'nens
'^*
C'5:<5500
'r th's re; ort ;
s
- ..s,.-.
v:,. '
3,Vi -
l 4
,q.<
f
.Kv y J Q'. 4 ;.,2
'.7,
'a s ~ ' o,. e
_g
',my ifl
's,,&
'3' jsi
,I
.s
.t y
i
- yy g
s4 e
- A M: W:
.A, g JKa r;py.f. W;m h. f.' ;( g; n.
r qr
.s
- p s
>s, 9 #M1 34.
%s.'
r' v 4.M '
<J
- 9.. y e.
. M.," >
eU.
4
. y.,,
y At y aw a y,
+
a
.. g; %
f, &s g ss e gl.
l%g..
+
y 1;x ;,
&. h.a m;
~
~
~
s
- a. v pp LO
'f' jf h
f J.Q Q[..
,7 1
=l feMp.K R T'~.
~
i t
J%<
4
^w~ 4 p+
y
^
%. %-Q,!, 5
%n s..., aa,
,y p.
- '..., W,' ',
'10r 4'd?
+
It3 m
3
...r
+-
l(,
s o
't-uw w d'
d Q; p p ; ;),.,y,' 8;1;, \\ gy'.cn20.p,,n
,u e
9, 3, " i /y. M.., -q-2 4
fut ? v t
e ;-
d 7
g i
3
~
.e x
_,3,
,y I[.
'i.
b
- i h-' i 9
m, ;
i+ y y -
n, o
y
}; y5
~,
l.
h
- h,. :,,, (. qQv p ' W, _ 4: '.
2;y}:Q;
- , Wh 1' ? ?
u s
- p ' ~ [
v J.
,)
l
.L n
AT m.'"
j P;
\\
1, i p ?,,j. -
n q - ~
- k. #.. - -.
-. ~ -. --
4- --- -
~~.,?
.<z
[., l
, e.l n.m
, e.c. m
,6
'p 4
('MM
,s 4
L
' ph L
millist L;
n w,, wy:
e m
- 4 ;..
u
.,s, l
"6 l
-pd 3,
- y ty qa gn
- y$
w,_.
t h.
.e k h @_;
- ^ ', G -
k*'1N i
,. o :p h h M
?
4
(
+
?>
- w n1 s-
~
y q
~
~
.s m
Y 9
~ } f&I
>,pf(j l},Q,
-.. m
,e y-
. R,
[f t<
_w..., -
zkeep....
4-
_c q q.e_
.., 2. /
1 L.:- ] si$
y e
i g.
1 mn y
s n....
[en L.
W
%exw.~ i
~,
Pi' - gn, a ~ ~r
.y u, g,
,.m ma Y
- x.,
w3 +
e
~
Y. I,,
m s -
r.g n7,,W D +.-h.
'.t y"% -
)d 4
m,C.
- -. - - sT M, p'
~
.a*; -- ' M '.
el.imile
, 9j
. m#
x%m
~w m
p r
2 -
.s y:c m[
f1.
[*
4
..,j $ '
s
' d j[~ N u~, m,,+
4 m
m 1' n?
" %g; y& * >
4, %p 'i. r
- : j,
- svg', g, c, ^ ' s s 9.3 4 f:. wL w' +> < a, n p 4
ww c
a,
- ~ w
,.yn-
. > w 4
la h
7
/ s,G : ;I
- y m-
, ~, +e s
- s w
cy Q
y,;
% ', y[h
}<.,
%i r
y x4.
,1; I,- "..
' [k,. p l 48'h ? T j
.9
..,. s. m.- 4 x.
~.m
,Y c.
yies -; s;...
\\
^7 n.
,.p~
(-
.g 5
g.
f, b
't b
?
N qq <
...c)(
'-iU
~
\\
'y
. j'
.y
'.^ '.... _...... - -
i;' s;m y L
mb. L) ;.
.'?
_,l
+,
, s \\yt;.
u3 43w <:
wy ~
y, w.o; isu s
s -
y 1
~
L &.i hk I f Q ) m +
,Y
}yy/N QQ
~ :
y
.; p s q
y m~,,
y hTSM h1 G'
c, 2 4.__
%m 3x. y yE k('
%y,
f G%
/
[
M y 2,
' 3;:
'~
wA S
OM 4
p.t 4m4 w
m g' L..'
-.~ %#
e! M 2 3 '
m M' 9 I
- ay '
it n si o o
n T.4 v.
gir sumsr 1
J+
"T4 Vp@,3m i
~S
,qMG it..
y-Qy
^
k -
[,. ;
M'<ssfM W*
asaume n ' '
^
~
1 s
y;Q ;.
~
- s,
' t L l' S Q V4 M;
.+o w
aw.,
m
- M N,.h{ @Dewyk n$
.s
- hh f
qg,
.[*'t NE
' m{h M
M q.y.
i
. c \\ 1.;
f l Pretest [Viewsof Cables?!ris'talled onLMad m@,, w _
w.
m
. + ~,
,m n'. j.7 sv t,
wq ma.
y 3:< 4y g
A,,4 9 4-w g qr s g '..
...r.
. rolsMnd ofi s
.., g, a
7 uw N Mb
' ^%
f, -u 3
s or Ti _ur@l W Q P ',?
J ?,
T 9
M q,
N y Vesself Penetrations ;(Thisl viewlinc16 dest specimenst e,'4
, ' i W~,
- 1 I. MN
, Y p notEdiscusse'd in;thisireport.)J
~
3'
~'
@n..
q g
c a
w m
a gg p
j7 4 c g;;
ee yj a.C
' JO,.
"'r Q* '., ',i' 2
.:. p ' '
4.. Q[:
i i.- U
,, f;
/ c; 4
5 m
'p 4J f g.
s
.i
<)=3 e
m,,,,e. n.,wun, a ):._,
m, ~,
- m. t
-m
.c
$34 ' f :mly:psg] p{Qf{
- y M 4:Q gd@j jf,@yggg gy ip (
%u..
i m.
~
,c -
y
>. L, y, ' Q;[
g n,k
%y 3
s yQi' N d
m g
- ~ - - -
l t
i 4
i
- $PR AY
$ 0LUTl0N INLET i
STEAM INLET -
y
[
o VES$CL MCAD
//f////
/ / / /}&g vCS$CL l
YLANGC U 0N 7"
-INNER $NROUD s
fN pkATIONS g[
q
,K s
VESSEL WALL p
m
- g l
$PR AY N0ZZLC3" q
,,,f, D
E EXTERN AL STRIP 4
(2 DN E ACM l
'E D
)
p' ',
g l
ngATgn g
l
- QUADRANT,
's
/
p e
l E
8 TOTAL,)
g M
l THERMAL w
$PR AY CONE h-j'-h" 8
k l,, - -
-TEST C ASLES o
8 f.
c o '#
$UPPORTED ON e
INNER MANDRCL l
[] f MANDREL $
8 n
~3 r\\l e
x 8
OUTER MANDREL I.
ga g
p L,CUio LcvCL r
l SIGHT GLA$$
SOLUTION &
2 CONDENSATE SOLUTION P=
hp OVERFLOW TURE (wMEN PRESENT) h>
$0LUTION
}M il RETURN TRAP pg ;g FOR PUMP i
$UPERMEATED A \\
h;=$
- IMM E R $10 N HE AT E R t.
I Figure 2.
Salient Features of Steam / Chemical-Spray Test Vessel i
i e
IllFO M g g g g,, y
...r.ee.eeu. ce <,
s
v=
. =,
2 xy Th %:[
Q :- ~ n.^7-3
==
-hw.rM:f. v
- Q ?..
..g.&..
~
~..-L p;+ ;,3
, :R - t 2.._--
~-
-., - ' 2?
11, 57 ;. g.. -.M % -
,g
,... Q. v.**%
Lb ;r-J z :
3m ijc-
~ 3' "
W
~
. ~,.. ~, e gA. --
^ 'j ~ f
'f -c; 9--
3.. :.' -l[ ['? ~c".".
M-Q
^? N j ,
f;: ;y,. nw ~ ^;
- O
- A
, W :~
- 7,
- pw~ g'Lq AR' _,-
. +.
= -
_ ;. m.
e e-3
..m J.,
w
<a,,
m,..~,,.
~&
gw.
a.a
=
~;,, v.n r...
T '?... k T h,^ ",*' ? ' IQG3
& Ll'~O--.y
?_
- ./ G n, z
- .
M." Me. _-- i ~
~?: ; p....
?
n mz,~, -. = -.;;+ -
aw; m -
e c
u.
=-
~ '.
-- 3.~.
p
- n* ~ - ~, 2 'h~^~ j,
T ^'
%.;4 -
_ y.,:.::
e;%.
e
^m-
.~- %
- R.';
- .. "%0 z
+'
m e:'
e mv _..m /
n.
- ^
s.:r. h u 7"~
"__"e
~ ' " ',j._,._,.*';...,,,
~ ;[
y kN
~,, y;.
~
f.%
aa
- ~ *D4
^ ~
'T_
} f ;,,
+M 4-Ogr% :
~ A
% -- m
~
e g; ma w 4.m; y33
~
g.m m. #
3
'N t
e=
'y
- M* $g-G. _ :2.n::a.-.-
~
.Q1=i :?
?'
QT '
=
, af e., n, -
c w_
~y. -
x=
1
-a n
3 :-LW.
, ~.. ~ -
a-ww
- n., q,,
a**~.
p k
- u
[~,,
,Y r,.
jf
}p=
w-m
& ^
g L - r O
e d..
.+.
+
=
n
,c ;
t
. ; ^$ n"
- j "el we p
I
= -.
O u.;'
[
]. :,
l 'L
. ll
' ~-
kk
-f i
g,4
.e.n w -
.-t
, w.
I l
- J-1
,, -j n. -
~
Y i
/a
. av 4-e 7
e
....n -
'~m m,-
s.
~
p-N.
e v -
e y
y 1-M-
[, -
I h1 %
- e u _...
l.
a.=
- y g
- g
~
..E EPA
.[
[ 'j d
' g4--
p,;
f_^
' ~'
. c p-l ?_
'Q r
l
^ - "-..
m'a M,
dgg g
..... ~,
~ ~ :..
e; n
z.w3 s.
. gw a 2
. W-ab pg L
4
,f
~
c ;)% ngq
~
wmn x - -
an
(.n xu mn:
v- -
A-2 i
4.99 7
,yoC%
(, W&.2 n..-
n,i 9
-yv w m _ypt:.M
- ==-
.;a
.m g.
~
y....x g^
.3m:
4 m.;;.
--"y-
- gy.; f f>:: ~,-,,
-n
'mr 2 e.
- vo - ~
.e - D L P s J ' :*j p g $. g ; l,r
,, _ r <.,.
, ; =.a
~
i l.
^;
- . s '"
x
'~~$
Of_~_.
s f. g ~' ] ' <
~
^ *
- L
= f n,;r. <: w 9 s._...
s
.M..
- n_
w rem e.he w'
~on_
n m = wn:/vL-
- ~ =,.
g
- u a w.+
w;,
m-
- r
_, a
~~ mgds u m _
amw
.. =;
-m+y
~ a v:
- p. ww ::,
xm
-e e >n,.
b N, @Mf M Wfigure(3G0vera111 View of;TypicalTacility[for Steam /ChemicalhSpray TestM M.
_"{
_ ~
3 0-f
~ TRW 9 SiofLElectricaECables[(Theltest?vesselfis: covered with2theP= -
T N f M M k) =f y J j @
i ltheneliksstation f#theiright foreground.)M$M M W
.T_~
~
C w = - y=gm e
- =w w w g; gw x vn w w my:g. =
amn v.
- 3 = gy y,.
3..
= m g g
.. ~
- a
,77-
.~
y
- -u
.~
^"-* W" ;f, D
1 Y,', = ~ -', "
' &~
ff
~ ' f
.'Y f
'Y Y
- 'p.!k
~
~
l<,
^ LX -
'3,.
g-_, _, ',
w
_ w
.:v
=-
z ':n w s..=,2 4.T 1.",
n~
p
,u g.
m
,., r ~,
- y:
2 i
? f;;, l}
~. ~ ? '"
..;)
}F l~
^
p+ & -
%.Y
~,
. w '( ;
7.
~
la -
& y.:
m
~
c.
z.
3
{L"
=)
cm m'nm m..
s..' " -' = 0
^%-
.' +
, ~,
w" l
4
~
>4 a
w
,_f+
( : }'". m 9 W, ~,. _ m.. -
+
g &. ;
W' '
?? '.
2f.2"
- ^; Q ~ " ',
, '~':
n'
~
- f
[:,:.
. '~
s -
l~
t;
^
L.
(;
m__
3;,
m
_7n
, Y
- 7. ' ".)
d...
r
,? 4'I,.
- - ~,.
.[ =.
=,
.mm--mm.mm._--.<-~~,--
.%.J'.t>n... - -w-w.,5.w.'
.S 72 m..'
T a
..M ww w...,- N d.*-.--.---.-m.,-o ~._m~..vmu.-..m_.1_.__,__----.i..- - m._m,,,*_.- - - - _._ ____s.m_
O O
O go
- -. _ w, i
8 T
'j I
2 r
QI d
9l
}
t
't I
g
'i'
(
.N
.. ~~
- i. il l.
f..
~
,a E
2
,.?;
3&y y\\
> 4}
j.'
- ^
g" a m I
m
$2
,I3
.h 4..,
r figure 3.
Overall View of Typical Facility for Steam / Chemical-Spray Test
~
2.
of Electrical Cabics (The test vessel is covered with the thermal insulation in the right foreground.)
{
3C C'
m j
_r
I T-C$120-1 i
CONDUCTOR i
l-M A N DR EL y,
i l
j eum ese eme
-men aus N i
i o
.- o
+
l Single-phase potential loading for 1/C cables.-
t 8
See Table 1 for potentials and currents.
40 o
DRAIN WIRE
/
CABLE fi s
f i
u CONDUCTORS MANDREL l!
1:
Three-phase potential loading for 2/C cables.
300 volts ac V
=y
=V
=
a b
c Current load = 10 A
)
sl CABLE 4
CONDUCTOR $ "
3'
^$
46
\\/7
/
\\
J V
a MANDREL I
l
~ V~
N 7
t l
Three-phase potential loading connections for 7/C cables.
V, = V
=V
= 600 volts ac Current load = 26 A j
- Except center conductor which did not carry current.
i Figure 4.
Electrical Loading Circuits for Energizing Cable Samples During SLB/LOCA Exposure INtotypyONONo,s i
3-s n
.. r,.n e n..a,e.,ts c n,,,
s
.i
T-C5120-1 0
4.
TEST PROGRAM The test program was designed to simulate a steam line break (St.B) and loss-of-coolant accident (1,0CA) and the cooldown period following the accident.
The program included thermal aging, samma irrediation, a 30-day steam / chemical-spray exposure, and a mandrel bend and high potential-withstand test. Selec-tion of the test sequence was guided by IEEE Std 323-1974 and IEEE Std 383-1974.2 4.1 PRETEST INSPECTION AND MEASUREMEh7S The cables were visually inspected and identified, immersed iu room temperature tap water for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />, and subjected to insulation resistance (IR) measurements at a de potential of 500 volts held for 1 minute.
I 4.2 THERMA 1. ACING Cables 1-3, 2-3, 3-2, 4-2, 5-2, 6-2, and 7 were wrapped on' stainless steel ndrels (see Section 3.1) and placed in a forced circulation air oven at 136 C j'
(277'F) for 7 days (168 hours0.00194 days <br />0.0467 hours <br />2.777778e-4 weeks <br />6.3924e-5 months <br />).
Cables 1-4, 2-4, and 3-3 were coiled and sup-ported on a hose hanger in the air oven at 158 C (317 F) for 7 days (168 hours0.00194 days <br />0.0467 hours <br />2.777778e-4 weeks <br />6.3924e-5 months <br />).
l
~
See Table 1 for a sununary of thermal aging. After the. mal aging the IR of the cables was measured.
4.3 CAMMA IRRADIATION The cables thermally aged at 158 C (317 F) and the unaged cables were added to the stainless steel mandrell all cables were exposed to an air-equivalent dose of 200 Mrd (minimum) of gansna radiation from a cobalt-60 source.
The average dose rate was 0.63 Mrd/h.
11EEE Std 323-1974, "IEEE Standard for Qualifying Class IE Equipment'for Nuclear Power Generating Staticas," The Institute of Electrical and Electronic's Engineers, Inc., New York, NY, 1974 21EEE Std 383-1974, "IEEE Standard for Type Test of Class IE Electric. Cables, Tield Splices, and Connections for Nuclear Power Generating Stations," The nstitute of Electrical and Electronics Engineers, Inc., New York, NY, 1974 4-1 r
m,
~b p
(
I
.. F.ranum R_esearch Cente'
'1[
6 I
i 1
+
I i
F-C5120-1 4.4 PREPARATION TOR STEAM / CHEMICAL-SPRAY EXPOSURE i
i I
the mandrels with cables were attached to the head of the test vessel, j
and the assembly was lowered into the vessel.
The cable ends were routed out 4
of the vessel through NPT pipe fitting penetrations;. the cables were pressure sealed in the fittings using an epoxy. A pretest view of the cables is shown-i in Figure 1.
l The ends of the cables were connected to circuits of Figure 4 to provide t
the potentials and currents listed in Table 1.
A siew of typical arrangements is provided in Figure 3.
l 4.5 STEAM / CHEMICAL-SPRAY EXPOSURE i
i 1
The cables were subjected to a steam / chemical-spray (S/C) exposure in accordance with the profile of rigure 5.
Tresh chemical spray was used for I
1/ hour minimum at 346 F (174 C); thereafter, the spray solution was recir-4-
culated from a pool of solution collected in the bottom of the vessel. The chemical spray consisted of 6200 ppm boron as boric acid, 50 ppm hydrazine, h, sufficient sodium triphosphate to obtain a pH of 8.5, followed by sufficient I
sodium hydroxide to obtain a pH of 10.0 at room temperature.
The spray was applied at the total flow rate of 3.5 gpm (13 L/ min), which was calculated to Provide a spray intensity of approximately 0.27 sps/ft2 (11 (L/ min)/m )
2 over the cylindrical area of an imaginary cylinder located midway between the inner and outer mandrels.
See Section 3.1 and Figure 2.
The pH of the recirculated spray solution was measured daily during the 30-day exposure; when the measured pH level decreased to 9.0 the pool of spray liquid was replenished or completely replaced with fresh solution to restore a i
pH of 10.0.
See Section 5.4 for a discussion of actual spray chemistry during the exposure.
i The cables were electrically energized with the potentials and currents of d
Table 1 during the S/C exposure.
If a cable caused the power supplies to be disconnected, the cable was removed frce the circuit, and the potentials and currents were restored to the remaining cables.
O NFORMAT10N ONLY c-2
... 1.mys rs C m.,
?
l i
e T-C5120-1 The IR of the specimens was measured prior to the start of the exposure e
and at intervals during the exposure (see Figure 5).
The measured IR during f
the 30-day exposure included the IR of extension cables and terminal blocks used to connect the specimens to the energizing circuits.
4.6 FINAL INSPECTION AND TESTS t
Af ter the steam / chemical-spray exposure, the cables were removed from the test vessel and wrapped around a mandrel having a diameter 40 times the cable j
diameter (see Table 1 and Section 5.5),
The cables were inspected for cracks and tears while bent.
I 4
k'hile coiled at bend test diameters, the cables were immersed in room
)
temperature tapwater for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> (minimum) and then subjected to high-potential-i withstand tests at ac potentials of 80 volte per mil (3150 volts per aun) of i
i insulation held for 5 n;inutes. At the end of 5 minutes, the leakage / charging I
l l
currents were measured.
4.7 ACCEPTANCE REQUIREMENTS The test specimens were considered to have met the requirements-of IEEE Std 383-1974,3 Section 2.4, if they (a) remained energized with rated po-y I
tential and service current during the S/C exposure, and (b) passed the final bend and high-potential-withstand tests.- It was assumed that the first cri-t terion was met if the total leakage / charging current of the specimens con-I nected to an energizing source did not exceed approximately 1.0 A.
1 i
i i
i 1
3See footnote 2 on page 4-1.
INFORMATion gigy,,
4-4 s**-
. Frankhn Research Center N s..w m.i.
c.-
w
'7 T-C5120-1 O
5.
TEST RESUI.TS 5.1 INSULATION RESISTANCE l
R2sults of IR measurements obtained during the test program are suammarleed in Table 2.
IR measurements made during the S/C exposure include the IR effects of extension cables and terminal blocks used to connect the specimens to ener-gieing circuits: the effects usually cause a small reduction in measured IR.
5.2 THERMAL ACINC The specimens that were thermally aged at 136 C (277 F) for 7 days appeared to be in generally good condition; there was no significant difference in flexibility from that observed before the thermal aging.
Minor blocking, i.e.,
sticking, occurred between turns of some npecimens.
The red-colored adhesive in the heat-shrinkable splice of Specimen 7 apparently melted, and some of the ad-hesive flewed out of both ends of the splice.
/ 3 The specimens that were thermally aged at 158 C (317 r) for 7 days were
% ) flexible.
stiIl Some loops of cable were sticking together but could be easily separated.
Minor impressions were lef t in the insulation of Specimen 3-3 where t h e-cable was supported in the aging oven and where fiberglass ties were used to festen the coils of cable. There were no cracks or other irregularities observed..
5.3 CAMMA IPJLADI ATION After being exposed to an air-equivalent dose of 200 Mrd, most of the 4
specimens appeared to be in good condition. The jackets of Specimens 6-2 and I'
7 appeared to be stiffer than the jacket of Specimen 6-1. (Specimen 6-1 was l
not thermally aged.) There were no cracks or other irregularities observed.
j 4
5.. f.
.STE,AM/ CHEMICAL-SP9.AY EXPOSURE i-The steam / chemical-spray (S/C) exposure was provided in general accor--
dance with the specified temperature / pressure profile illustrated in rigure 5 with the following comuentst IRFORMATION ONI.f A=.
3.,
- fi'"3'M.".i.'M.h C'at" i
1 F-C5120-1 l
The pressure and temperature histories for the first 16 minutes of e
cach transient are presented in Figures 6 and 7.
A temperature of 3000T (1490C) was achieverd in approximately e
8 seconds during the first and second transient.
A temperature of 3850F (1960C) was reached in 38 seconds during the e
l first transient and 35 seconds during the second transient. These I
temperatures were indicated by a thermocouple located approximately i
1-in (25 sus) inside the inner mandrel of cables.
l.
i l
a Within 15 minutes after the 12-minute superheated steam dwells, the l
minimum and maximum indicated temperatures were less than 100F (60C) l i apart. The average vessel temperature was maintained within 2100T I
]
(160C) of the required temperatures except for one overnight maximum i
drift downward of 300F (180C) from the required temperature of 3170T
{
and for occasional temporary downscale maximum excursions of 200r(110C)
)
at the times of replenishing the chemical solutioni the duration of any i
i one of the latter temperature excursions did not exceed 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> before l
temperatures were returned to nominal values.
j Fresh spray solution was used for a minimum of 1.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> for the two I
e dwells at 3460F (1740C).
Thereafter, the solution was recirculated as planned. The solution was either replenished or completely. replaced I
a Local of 17 times to restore the fluid level and/or the pH value. The 2
lowest pH value measured was 9.0 except for one reading of 7.0 which was obtained 3.1 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> af ter the start of the' first transient; a few minuten 2
thereafter the recirculating solution was replenished with fresh spray I
~
which was used to cool the vessel to 1400r (600C).
See Figure 5.
\\
i The specimens remained energized throughout the 30-day exposure except
[
during IR measurements and during short intervals to deenergize Specimens 5-2, l
6-1, 6-2, and 7 for reasons probably-associated with the vessel penetrations.
I l
1 l
l After the 30-day S/C exposure, the contents of the test vessel were exam-J ined, and although some cable jackets were split, the inspection report did not indicate that any cable materials fell off.
See also Table 3.
+-
5.5 FINAL TESTS AND INSPECTIONS Results of final tests and inspections are presented in Table 3.
I A supplemental letter report is available which discusses the vessel pene-tration methods and probable reasons for intermittent cable deenergizing.
(Inquiries should be directed to the Brand-Rex Company.)
O
'~
INFogwuim 0NU, r.... r,.. o e,... e c e,,e, n
. ~ ~.. -. _
F-C$120-1 i
e i
i h
.h k.
- m. i i b E
n
. ~
a a
a
. ~~.
~
k i
i b1
's i h-t 5
n
~
)
a
~
i I
)
i b
's b
- bi b 5
la 3
..: ~
s a
~
~ ~..
.Ii i
- 1 e
r
'e
'e 's
's S1 1 5 i
4 n
m a
a
~
~ ~
k b
5k k
k k *:
't kk k 5 a
~.
.n
~
.e.
a e
2e e
a e
e hh g :
~
e I. ; ~,
I
.~
i
,!i, 1
}
ib i
's i i r i b b 5 3
I
.e.
t~
j.a
-3.
(
e.
- s..
n 7
.?
~
3 i
11 i
. b 1
b b b s Lb 1 5 js
.e 4
i g,
e,l ' ii.
g.
~
w
~
~.
.e.
.e e
.I i~
s
~
. g
.ib i
b bb
'e bb 1 1 28 2
9
~e e
}
l-g si a
,5 2
e t
.r 2
. e.
ea sr
.5 g 3
,5
}
51
)
b bi
'e 11 1 5 II I b,.
4 3I
.N, I la 3
l s
g e.
~. m.
n.
g yp }
.J.
g at
.s l a, 8
t 5
n t.
s s
r s.
s.
3 a
I-u
~
s
.-t s
~
s a ea a a
l sg 5
3 e.
- D,.I
.it-s.t;
- i
>ja,i ji 2
1 5
,e r e a
ee
~
, E p-si p
pA g
i
.F i,
- .t: iF. !.g.i I:
1 1.
E'
. 3 g
.. E
.R..R
)
~B
[
[
R R
1 ((s
~jj IS g
% !g 3 tt h. ::i j
!i i
i.
s a '
1 il
~ d }.
si f
a:1 n
e s I st i.i
'i e r ::
e 122 1
1 a
s -[3 i
tst
.t 2-)
x1 s-
.r ;
(,5
{gg 3,
g 3'
,P
'l 2 3..
- J k1 I:
..&,i.,I j,,,.
i p g.
- K 1
.t.
. I t
5-3 t-
-ice.
4_._
5 MDU~n', ).
U I
..;.. Frankhn Research Center a t.- e t %
=.a.
s
~
~
_ f( i I
T-C5120-1 O
i i
> 6 6 >> > Is '!
'r g
1 i
i n
> 6 n>>
b
's e
1 y
i.
i.n i.
1 6.
n
- t. >._e
- . I.= I.: != k i
g e e 3
)
k.
}
}
}
b,,
n ) i.
k,, b,, 6,,
'{ s 'r, 5
e e e t k
i g
}
}
11 1 S1 Is. Is I
I r
- :E
- : : ; ; ;- ;s !
i.
e, 3
ga
)
- h. l b.
- i. $.t 1
- b. b. ::..,5,i 5
3
- s : :
e h
i n
i i i 's a '! I
'r, s
5 5 5 3
E 5
5$
$$$I o
e 73 l
It i
n 1 )
i i Im I: It I: Itl l
t 1
..;:;:;i i{r i'
l t
5 k
}
k ni i iiin1
)
k E
3
}
ag i
II 3
1 3
sr r si) > >
i
,I s ;
I*
11ll i
p*.s p..
Y0 i.
i.
Ir 1 1
- 1. 's.. 's.
1r 1 i n
I I., 4 }f l l.I.,I.I, i
b
.t (' 3 1 :.:-:
55-e l
k.
I I
I.
- n. ). *. 'e.i. I i
I.I I I l l'
.i i
a lg g:13
+]
a 3
{3 ] )
gg i
(
Ih
~ *}E I ' ' '
h I
,j I 13 I l!12 2 ii.. 3 1 1.1#
r 1
4 j
e e e e e r
in I
i i lii!! ! jt
- ~ -
l
!{ 16 1111,I:!
111 y
f 11 1
- l J :.,)
.J
-i te' j3 s p
- s i i :] :; ; ; ;
is i d i l ll i. i!
i s
i 4
4 its111,ii.
g 2.31 ttifIlJ lll f}! ljj 1l [t 3l 5l !
IIICelllife+ig s
s
.o sisig i
e 5-4
?\\[.RCapa a
n Sk i
. g[$, V
-~
UltinN [
g 4'
... Frankjin ~Res.earch Center l
.i
~ ~.
I j
l
--~
1<
t l
i T-C5120')
)
O a i PRE 35URE IIDf/in 8)
E O
S C
E O
I o
,%l l
l 1
I I
t P
~
1 i
d 4
t s
I
/
i o
i' o
/
t' i'
tI /
O b
b U
i I
l j
)'
I
(
dCA 0
~
4
~
8 8
E.,
h J
0 d ol A i=
o a
i i
ag e
t l
?.
\\
We
- a d
e 3 0 s'
58 1
\\
c e
bO b
-O hy
- W lI gs
~
ua w
y?
y 5
8-og
?
d 2
a f\\
si "d
W s d',we,lo el!"
W"a w
V I
o
& =
We
- W WA l
y3
- a. x l
f En*
O JY a,
u
-53 E*
M" 4
N 3
8
\\
d D
R $ }i mW
' I s g$
h G
g5 6'
i 4
a I
s
[$
~
o
,4
~
\\
/.
BC XC o
l
..s 8
\\
te N
- c.,,0,7 i
e b
O~a__,a g
)
g
- n-c.o T
l
)
t
~
$3 WnlyW3dW31 AS313 wow I
I o
o o
o o
o c
c e
n 0
a e
e l
td.)3WnivW3dW31 i
1 I
I i
1 1
0 8
e_
R_
0 8_
e g
~
~
( 0.) 3 Wniv W3 d W 31 O
WFO M IJON ONLY s.,
a
.... Frankhn Research Center a ww w w e,-
i 0
i
)
l T-C5120-1 i
i el t
PRCssunt titif/in 3 I
o g
o e
o n
1 e
9 e
N O
+
i k
l 1
1 I
I o'
D*W I
i o
,o, 4
9
)
1 l
l O
i
,/
,s
]*
g
>~
N
\\
3 7
Y l
e I
w m
o e
e j
O s
W s
E-
/
4 E
g= ao9 w;.
ao t
g w
e za g
8 e I t
a
~5 I.3 Wg q
to qo gg o
ug WE EU 5
a 13 O
j
'8m I
g %s p.
8" o
g
- E w
o 84
!!f, y
s)<* !
- b
~
e' up OE 4
WH"$
Q DW
" 8 c' 24 Q
$m i
1 II E E g
3 8
f
/
~ a$ M O$:
N g
a si
=
4 33
-8 l
$E f
EN O
E$
~
,e
<o O,,
9 a
N s
'd;.: 4 l
"N 3
o_ 9 w o
>/p I
w
--O
- o
'i q
l l
?
l I
S3WA1V W3dM31 1$313WW M l
1iM l
1 l
l l
R 8,
8 8
R 8
R' 8
e m
~
N (d.) 3W A1TW3dM31 I
I I
I I
I I
I i
0 8
0
-R 0
8 0
R
~
~
l tD.)3Wn17W3dM31 I
INi~0RMata>0y> oAl n
n.,r
.... Frankhn Research Center a w w N r.m.
.,w.
r
l.
ll I
Ta'ne 3.
Suunnary of Bend and High-Potential-Withstand Tests t
i einsestL/
aat tt t LlaaA&ts annacets taet t ansete aa tteaat ser.
(naesler, set:tg e tiesitige Diawitt es taa61 pofistlate cuente1 C.se te vigua, apelaaantt 0(f0er amb lNelet, stee f tp*
t ealslei natic tvust (t) lea p steisets I.
1.1 ensae evil.seiege mereings esta easte enesical l
seesitt eventi no easevat tense en tous.
4/102 to E
11 teme es ese seer *=ea 11 e stof ea t
estanteae setenties tem
.50 0 ttoesseems seanettee b3 kome ei fee eserieen 61 4/1g; 40 3
te,etwe ese test.i l
i..
t e s..ee.e. i-a i. i 4,it, 40 0
l 4
bt tear en fee seeoera bl 4/162 40 6
e i.2 iPile casettel oesentti overall. es esecent estatteet setential creces se tes en 4/1$3 40 7
7400 10 0 lisetieras teaaettes towtaer fee tanti b)
See, et s e asoc iera 1. )
6/1$2 40 6
e b4 taae as fee seeones bl.
4 /1 62 40 0
b1 pile caseiset seeestle evere11. as senecoat teeten e' tes't 16/406 40.
I estattees este*tle) 4 lek
- 10.0 tieer ** tosiaett ee b3 taae et for secossa b1 14/400 40 i
teve, e telt b3 tem 46 fe' seepeen bl 16s406 40 I
i
- 4. '
4.st.setene eseeings seeeesientele t is 160 est se leaet e cite camiset seess ets avecell, as seeeee=t les*1 e+ testen
, 6/127 le 6 4
[
estantees esteattet j
plex 10 0 liset iaa 42 sette caestee t seessite everell as esservat j
u,epe, n temaattee op g,gg. ;
I testen e' tout
. 6/127 34 4
-?
['%
6.i Owie miet eistiaq s, esveeteniele le is -
o 4 1% e t 38 neatta et eae ene e teele me eenevat testa tag o' coasutta.slasetetten uhlte estantees estential
\\
tweentei eeeotits oveelt h)/?S4 40 4
IPOC
- l0. 0 (inote ()
i b:
L.e.eB..,,,e.seeva,
- 2
.ie. 3st.et e,i. tin..eep one.sie e. we.e= tesa iea u One speeses e, i
.eae ei.suies S-
.ini sim >
s esi.
- e. 4
-i bt 10/F%e 40 4
trot.
eeee ee s
..ee,e se m ei es...
y one.gae,.e.,eesee ge ev.
e j
estaiag e sia ine seto r
f tiet est saintaines.
j inste ()
- 6. I
.a.eit e,ae) centi, se oute* Jacaet along eettre.
estantees estential secta ne seeseeat cenetag ee seas,ete, tase.
tente a) le tie
- setw casa.cel essestas eveett.
74/610 -
40 2
260C e 10.0 6 -J Sese og seense 6.) esteet e,* pe seestion et gee.
bitastsee seteattel.
I t ese'e*ea t ia l teetes se tae evner Jettet, titl10 40 3
7400 e 14.0 tente e)
'?
Owne* Jettet etettag seen eest teeticoat. tenews.
ettestees seteatosi ta= ist.naties seeeen satact. tae enes se the 74/410 36 e i
740C e 10. 0 tante op a et tariaseele sollte sees tragtes let tne leef acel
'e a sisteme of 7 la etc set. tente op ar't1 e f eet isees we*e etee ed f ree tae test settel et cetttat tee teetiesag eN Jus t es ion ' t ao oe d tw settei praetectioni viseet innsattoa sae aiga.coteatial w tanteae test ces.elts se aet lativos eeetteas et seeoseas teate**e4 entain ine eene t es t ions 6. e temosta ese'ies fee i eie af tee sowseras aos seen iesiones in team.
I a
ee 1 0
- staisar fae grevae teestaat o' tae test teaseesten ses estee s
I instweat ws seanettee te e seg topop te<uivcte* to tee este*
l t
esteoel apehee to tenevsten i ene I coaaottee togetae* esta tav eceia este
.ae.e te. et g ov s set eat ie' a
l 4
e treisi,ei ese hee,e
- t sie to elle*aste outer teaewcteas (i.e. 3. 5.
s s
I see ' :aaaertee togeta *) e ta einee seanws ters (i.e.
- 3. 2, 4. ene 61 al s
two potentie' fee tae esteatiet wt eeMiet to tae eensionat evte' seae.or te's f t e, t. 4. ead 4 teanettee togetaee t otta ell et*** te<ievt te*1 et t seae seteatief tone.ato* I ses eiwst at growits enteattel.
..ca...i....a_,i....,,a.i..
. -. -..a.,,e i....... t.e.t.e.e..i t e.e,.. t
.c. ee _.
,e.e.t..
....t.i....sa._.....te-ta-.e.ti..,. o, it.
t...e
... e i.
.i
..e u.a.e es vinowi sea m.e de W n'D
5-7 tad E
f 4h i
... Frankhn Research Center 3
A Dr.nece cd The P rensa inemuse
'f n
1 F-C5120-1 j
6.
CONCLUSIONS j
Eighteen aged and unaged insulated and jacketed-electrical cables sub-citted by Brand-Rex were subjected to a test program based on the guidelines
{
of IEEE Standards 323I and 383,2 including 2 x 10 rd of gansna-irradiation, 8
and simulation of a combined steam line break and loss-of-coolant accident (SLB/LOCA). Throughout the SLB/LOCA exposure, the specimens were energized 1 *'
(exce'pt those specimens which were removed from the circuits) with maximum-roted potentials and currents. At the conclusion of the simulhted SLB/LOCA g.
_p expo su re *, all specimens were subjected to a' mandrel wrap test and high-
[I potential-withstand test.
All specimens, except 5-2, 6-1, 6-2, and 7, remained energized duringithe SLB/LOCA exposure. All specimens, including 5-2, 6-1 6-2, and 7, demonstrated I
a substantial margin of life remaining following the SLB/LOCA exposure by re-
.i taining a hv'- levet snsulation resistance and withstanding post-LOCA bend l e,p4, high po t u.t..
astand tests with the specimen insnersed = in-water.
l The need to remove Specimens 5-2, 6-1 6-2, and 7 before the. conclusion 3
! of the SLB/LOCA exposure was probably due to faults that developed in the ves-sel penetrations which were not representative of an actual installation in a
-nuclect power generating station.
These specimens performed' satisfactorily l]
lfor at least 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> of the SLB/LOCA exposure and the post-LOCA ' bend and 1
Lhigh-potential-withstand tests.
Based on this and'further analysis-reported
'i
!in'a supplemental letter, it is possible that Specimens 5-2, 6-1,-6-2, and 7 would have performed satisfactorily throughout the SLB/LOCA test if the pene-(<
ltration faults had not developed.
.t 1
l j5ee' footnote L
1 on page 4-1.
footnote 2 on page 4-1.
s RMpJION ONLY-ee : footnote 1 on page 5-2.
6-1 f;.h---
. Fiankhn Research Center a c or T* a, a
,w
(
I
-t:
'f.
l T-C$120-1 7.
CERTIFICATION l
The undersigned certify that this report is a true account of the tests conducted and the results obtained.
AQt W
$f$
b D. V. Paulson
/
'Date Project Engineer APPROVED:
_1 l
d h/kb m.w C/IC /W S. P. Carfag
, ynager
/
Date Performance a1Kfication f /// /D M. M. Reddi, Vice President Date Engineering C')
INFORMIGioN DNLY 7-i e
-"" Fggin,3es, catch Center
-4
~.
1 J
1 l
i F-C5120-1 3
g.<
LIST 0F DATA ACQUISITION INSTRUMENTS 1
q
- APPENDIX A-
.m ii i
i 1
- t i O
1 a:j e
- I INFORMATl0lf0NLY io
-fs u
. Franklin Research Center A Division of The Franklin institute:
The benoemn Frankhn Portmey, Phaa. Pa 19103 (215) 448 1000 j
1 :.
GENERAL FRC PROCEDURE FOR CALIBRATION OF INSTRUMENTS TO
' ME ASURE TEMPERATURE, ELECTRICAL CURRENT AND LlOUlD FLOW RATE A Lest of Date Aceuisition Instrumena ihereetser consed Instrument List) used to measure or record data
@tteened durmg thes test proprem is appended. The following romerks are offered to assist the reader in understanding FRC proctice for calibrating instruments to measure temperature, electrical current and leguid flow rate.
g
- 1. Temperature Measurement in generol, environmental temperatures provided during even exposures and simuisted SLB/LOCA condition le.g., steam exposures) are sensed by thermocouples;their signals are displayed and recoeded by
-l strip chart recorders with appropriate electronic toforenceiunction compensation. FRC vees thermocouples cnd thermocouple wire purchased from - vendors who comply with ANSI Stenderd MC96.119?S,
Temperature Measurement by Thermocouples, fof limits of error (e.g., a 3/4% over 200*,to-700*F range tst ANSI type TI. FRC maintains its temperature recorders through a servies contract with recorder supphen who routmely clears, service and calibrate the recorders, treceable to NSS, e mmimum of once every four months. The reports of calibretion are on file et FRC.
To further substantiate the vedidity of temperature measurement by thermocouples, FRC maintains special calibreted thermocouples (calibreted et 32*,212* and 400*F) which am used encording to the following procedure:
On the dey a test is started, e celibreted thermoeouple is substitueed for one of.
the ANSI standard guelity thermocouples et the epocified oven or test vessel
- location. (The thermocouples are connected to the recorders with AN$letandard thermocouple extension wires: Jones. type terminal strips are oecesionally i
included with appropriate thermocouple metal sonnecting links.) The cali-breted thermocouple is placed in a dewer both of stirred isegester for approxi-
)
mately 30 : and then into en insulated fleek of eetreely boiling water for appron-imetely 30 s. If the recorder indicates the temperewees of freeting and boiling water within a tolerance of 2 2*F, the temperature measuring / recording system i
is considered adequessly calibreted for the purpocos of the test program. The above system ce/ibration procedure is repeated after nornpletion of the oven aging or SLB/LOCA esposure.
- 2. Electrical Measurement All electrical measurements are made by instruments with celibrations troosebne to NSS.Special circuits ere frecuently provided to supply current lesels requiring power current transformers, in these cases, sostrument current transformers are used in conjunction with 5 A movement emmeters to indicate the i
.l i
currents present in the test circuits. These panel mounted emmeters are cellbrated on a proprem by program bests against calibrated emmeters of higher quality, i
i j
l l'
e
.)
INFORMATiON ONLY 3
I 1
l l l t O
' 3. Liquid Flow Rate Measurement FRC calibrates its liquid flowmeets escording to the following procedure:
1-
- L The floweneser is insteiled in the FRC flow celibretion station, which has pro.
violons for adjusting and controlling the flow rete of top water through the l
flowmeter. The water is collected in a tank which rests on a beam belance. After l
L steady now is established, the time for a predetermined mens of water to flow t
through the flowmotor le memured; time measurements are made with en auto.
l metic electric timer. -
t Most FRC flowmotort ero of a consentric oritice, lese type (e.g., Daniel Flow Tube) with e differential.
pressure monometer le.g., Berton Dial Menometer). The ' orifice and monometer are calibrated as a system.
-1 l
although the instrumente see identified by esperate FRC item numbers. Both the monometer and the orifice -
ero lieted in the Instrument List.
- 4. Strip Chart Recorciers As noted in Section 1 above, strip chart recorders are serviced and relibrated a minimum of once overy four months. Some recorders respond to voltage inputs other than thermocouple signals and the amount of -
pen response can be controlled by ediustment of frontponel controls. For these recorders, pen response calibration is obtained on a program 4y-program beeis for the specific parameters being recorded. For l
esemple, to record prosaure the pressure transducer and the recorder are calibrated as a system by applying
~
known levels of pressure to the sensor and then recording the amount of recorder pen response. After g
calibration, the recorder input smplifier controls remain undenged, exeopt for oocesional minor aero<$ rift '
I adjustments. The actual calibrations appear on the st ip chart. The full span calibration level (e.g., O to 200 Poig full scale) is included among the'esete provided in the Instrument List.
INFORWl@ON ONLY l.
v=
i
~
I LIST OF DATA = Acoll!SITION INSTRllNFNTS C5t?0 16 STRUT f:P. T hilWHEP 18369 STF AND 6FE P ECOliv w C T ER G F P.
FAD
{
F/60 DEL P.UMhfR 1864
- 1 Al. NUMPEP 3137 HANGE/FEATlikES
$0 KOHMS TO 5 TOMMS & $00 F0HMS TO Sr.0 TOHMS l
ACCLIP ACY 5.0% or INpICATInu 0F SFTTFR l' ATE CALIBPATED 7-4-79 CAllbRAT30f4 DUr 7-4-p0 IASTRUkEllT NUbuCR 1A292 INSTF /ND "FR GE AveETER 1
TYPE /PCDEL htlHBER PAKEL W '!TH CllRPENT XI WR SERIAL Ntl>LEp Not E 1
FANGE/FEATt!WES 0 TO 100 PCT. F.S. ? PC1./P.IV.
'~
ACCURACY 2.0% OF F.S.
DATF CALibHATED p.30-79 to A F.S.
CALIPRAT30h BUE 2-30-80 It STFll>EliT NUwRER 18268 INSTD ANP FFF GENERAL, ELECTPIC AC ArbETFE
=
TYof./MODFL NUMBER PANEL
- WITH CURRENT XFmp SEPIAL NUMBEF
%ONE
=
F A'GF./t t.&TURES 0-100 PLHCFNT 2 P CT / Lil V ACCbhACY 2.0 PLRCFNT OF F.S.
II PATE.Cel.It4RATFD b-30-79 10 A F.S.
.CAI.IPRA710F r. U F 2-30-60 j
1 TDUPEAT h tim or p 18260 TF AND iTk GEi!FF At. elf,CTRIC AC Am> FTFH TYDE/W(iDEL >Ukrrk P A NEl..v W1TP CllRFE*.'T XFM5 StGIAL Nbvi'EP BONE i
RANGf/tEATllPES 0-100 PERCEhT 7 PCT /DIV ACCU 4ACY 7.0 FERCE4T OF F.S.
DATE CALIBFATED E-30-79 25 A F.S.
CALIFFATIch 1UL 2-30-80 T hSTFUk El.T P!U
L, ATE CAL]HRATFD F-30-70 25 A F.S.
CAlliRATIOP DUF
?-30-60 5
i t.s T idf u Et. T Numpro 3g793 INSTF A N E.
wrp GE ApunTow TYPE /80DrL NUml4FP t.u tJ E SE. m un m,
N o,, r JNFOREsiON ONI.>Y y
C A'JGF/FE A TU A LS 0-5 A8PS F.S.
100 l'I V ACCUCACY
? FERCENT OF F.S.
(
L DA7E C Al.IhP AT EP B-30-79 25 A F.S.
CALIbk'ATION Pt!E
'2-30-No
_j O
.h:
LIST OF DATA. ACollISITInk INSTHliMENTS C512n I ASTFilNE'!T NUMbFTP 18272 INSTP AhD "FP GE AC AMMETER g-l
'YFE/MieDFL NUNFER AO*91 FS 5A T
SERIAL NUMkFC A0bE
(
AA"GL/FEATtikFS 0=100A F.S.
2 DIV *ITH CI:RRFh t X 5'Mb ACCdFACY 2% OF F.S.
l DATE CabidRATED F=30-79 120 A F.S.
l CAL 16 RATION DUE 2=30=80 P
THSTRUHENT NUv9ER 19219
-j k INSTD AND-MFP SIMPSO4 AC VOLTMFTFk
{
TYDE/MUDEL NUMBER MD j
S E Q 1 A f.
NUMBER 294W2 j
RAHGE/FFATURES 0-750 VAC l
ACCLIPACY 2,0 PERCENT OF F.S.
I DATE CALIBFATF.D 8-30-79
{
CALIBRATIU!. DUE 2=30-80 t
INS 7PU.wENT NUw9ER 19372 1*STF AND kFD CIAl. MANOMETER ITT PART0!.
TYPE /40 DEL NUMBER 227 j
SEPIAL NUWHra 227.g95nt RANGE / FEATURES U=100 IN WATER ACCUPArY 0.75% OF F.S.
DIFF PPESSI'RE DATE CALIBRATED 9-25-79 WITH 19192 l
CALIBRATION DUE 9-25-60
=
INSTHil>ENT NUMBEH 19037 I '4 S T R AND kF9 NORDEN ' KETA Y PRE 3SURE (:AGF i
TYPF/PfiDEL NUMBER ACRAGAGE AISI 316 TUBE SE4fAL NilMbER A6
]
kANGF/FEATUuES 0-200 PSIG 1 PSI /DIV i
ACCUDACY 1.0 PERCENT 0F F.S.
DATE CALIBRATES 0-19=79-CALIF #ATION DUE 9-19-80
{
l IhSTDUFEHT Nt'vHER 18145 1ASTC AND "FF
~ESTERLIhE AhGUS w il L T I P P I r T RKCnRI)EF TYPE /MPDFL PUrkF.R L1124S SE:1AL NUMAEC 950436 4A\\GL/ FEATURES 0-500 DEG F TYPE T T/C 24 PO!bTS 3
ACCUPACY 0.25 PEPCENT OF SPAN FATE CALIPPATED 9-13-79 1
CALIHHATION DilE 1-13=P0 th5TRUMENT NUW9EP 1P267 INF.TF-AND *FR ESTEPLINr,.AhGil5 TWC PEb WECORDEP TYPE /*0 del. Nt'k8ED SERVn II bl192S i
SEkIAL '. UMBER 40HR$9 F A N G F / s r A T U p r,s.
wy span >ADJLJST WITH ELFC1WDNIC T/C RFr. J u t# T.
j Acr.UHACY 0.25 PFRCEr.T OF F.S.
DATE CALIRRATED 9-13-79 0 TG 200 PSIG F.S.
C AL IF R ATION DiiE 1-13=E0 0 TO 400 DEGFEFS F F.S.
MGRMMION ony l
1
~
LIST OF DATA ACQUISITION ft.STRI'pFNTS-C%120 ItSTRUMEFT NtMBEP 18253 IhSTP AhD MFF WULTIAMP IFSTP. CORP.'W11.LIA6METFR I'dIA1.AtlNBFF NE/r00EL'NUm"EP.
165 5
h-
-2104 J
RAr'CE/ FEATURES 0-10,000 PA ACCUFACY 0.5 PERCEt:T OF F.S.
p DATE CALIBRATED 12-10-79 CALIBRATION DUE 6-1D-RO IhSTPUNEl.T NUMBEk 18281 f
INS 7P ant ufP AMETr> PRESStlkE TRANSDUCFR
' T.Y P F / M 0('E L NUMBEF 50G0200PC2 SERIAL h0NBEF.
41296-1 FANGE/ FEATURES 0-200 PSIG 0-1 VDC
= ACCURACY 0.25 PERCENT nF T.S.
4
-DATE CA1.IbkATED 12-14-79 WITH 18037
' C Al.I E R A710h 011E 12 19 80-i I NST R U FLt;T NU" REP 18290 t
INSTP AMD *FR TAKEDA RIhEN MULTIMETER l
TYPE /MODEL'NUMPER TRI 6355 DIGITAL j-SEFIAl. NUMBEF 54721122 4AAGE/}EATUPES 0-1000 DCV ACV-OHN DCI ACI l
ACCURACY 0.5'PEPCEhT OF'F.S.
TATE CALIBPATED 5-16-79 C A111'R ATION DUF 5 16-80 TF ANDfMFD DANIEL' INDUSTRIES FLOW _
f TPUMEf.T NUMBEP 10192-SECT!nN 4 PE/MODEL NUMBEP' STAINLESS STEEL 3/4 IN l
SERIAL Nt!MbEP t'O N E i
FANGE/FFATUPES 1440' PSI b,
INcI.D.
ACCL'R ACY 0.75 PERCEr.1
+ INDICATION l
DATE cal.IBWATED 9-25-79 "4ITH 0.375 URIFICE PLATF CALIBRATION DilF 9-25-60 i
IfSTFUptNT hU*BER 4217507 IhSTE AND HFK BECF,WA?: INS. AND BPEAKD0hh' TEST SET TYPE /mODEL N tlW b E F 1600 h
SEWIAL Number 77145 ll R A AGF /FEATUDES 10.EV-AC/DC 10 wA AC/DC sq ACCURACY 3.0 FERCENT OF F.S.
-)
DATF CALIBRATED 10-15-79
-CAlloMATION DUF 4-15-80 j
IhSTkUMENT NUSHER 1R299
.INSTP AND ufR HIPOTpnHICS AC DIELECTPIC 7EST: SFT TYPE /*UDFt. NU*iiEH 715-10 d
5EPIAL NUdHER' 76-76306 FALGF/FEhTURES 0-15 kVAC-750 MA
.ACCUPACY 2.0 PERCENT AT 2/3 OF SPAk' l
'D ATE C ALIBR ATED 1-21-90 CALIHRATIO?: DUF 1-21-P1 O
INF0f&i/GBN ONUf A-5
-LIST OF LIATA AColl!S1710N It.57RUhENT5 C;120
! NSTRt!"EN T NI8MBFD 1933R INSTS AND "F#
PLUE M CVEN a/ PARTI.OW R f C('P D E R L
TYPE /wr:0LL NUMRER POM-366 g,
SF. RIAL Ntl*REF PC-1502
.T -
PANGF./ FEATURES AWRIENT TO 600 F 36 Ctl FT YOL ACCUPACY 5 F/3 C l
DATE-CAI.IHRATED 5-23-79 CALIHWATION DllE 5-23-80 I h S T d ?!" E fit P.U w 4 E E 19213 INSTP ANP NPR SIMPSON VOLTMETER TYPE /df1 DEL NUMBEF 59 PANEL SERIAL NDM6EP 04309 rat 2GF/ FEATURES 0-750 VAC ACCURACY 2.0 PERCEdToOF F.S.
TATE CALIMPATED 12-1R-79 CALIBRATION DUE 6-1R-RO IP.STF UHFt T Nil **ER 4217601 INSTD AND EFD HUNEYWFLL-RROwN-RECOROFR TYFE/MODEL NU4RER MULTIPOINT SEFIAL NUdPER 665217
- R AI.GF /F E A TI'RES 0-500 DFG F ACCURACY 0.25-PERCENT OF SPA 14 (ATE CALIBPATED 9-27-79 C AI.IBR A TION DUT 12-27-79 i
O l
l l
kEE0h 5b!k E0 b 0$kh O
A-6
~
u
'Q F-C5120-1 ij i
CERTIFICATION OF GATA 1RRADIATION
-j APPENDIX B
]
^\\
O l
I '.
F i
.5,i
\\L 1
INYORl'0RT.lG?IGNLY O
-.A
. Franklin Research Center A Division of The Franklin institute The Benpenen Frenhen Pennsey, PNw.. Pe 1910.1 (21M 4481000 A
J gIR j
o saammoix i
November 28, 1979
{
Mr. David Paulson The Franklin Institute 20th and Cherry Streets Philadelphia, Pa. 19103' 4
l
Dear Mr. Paulson:
This will summarize parameters pertinent to the irradiatinn of one (1) mandrel wrapped with cable samples, as per your Purchase Order
. h No. 49029-A, dated August 17, 1979.
This is FRC Project No. C-5120 d \\
See attached sheet for specimen numbers.
The mandrel was placed in a Cobalt-60 gamma field and exposed 1at
')
each of 4 quadrants,.as marked on the mandrel.
By integrating the dose rate at any point on the mandrel ~during its 4 position exposure, an average dose rate.was obtained which, when multiplied by the total-j exposure time, yields total dose, j
The mandrel was exposed for a period of 328 hours0.0038 days <br />0.0911 hours <br />5.42328e-4 weeks <br />1.24804e-4 months <br /> at an average dose rate of 0.63 Megarads per hour.
The calculated-dose based on g, dosimetry is 207 Megarads.hosimetry system;.therefore the reported minimum d j
p Incorporating the 13% accuracy of the q
i Dosimetry was performed using Harwell-Red 4034 Perspex dosimeters
- J utilizing a Baucch and Lomb Model 710 spectrophotometer as the readout instrument.
This system is calibrated directly with 1BS, with the last calibration being May 30,~1979. :A copy of the dosimetry correlation report is available upon request.
Irradiation was conducted in air at -ambient temperature and pr. essure, i
Radiant heat from the source heated the samples somewhat, but the temperature did not exceed 85 F, as-indicated by previous: measure-ments on an oil solution in the same relative position.
Irradiation was initiated on October 13, 1979 and was completed on November 4, 1979.
Sincerely yours, ISOMEDIX, INC.
Yk M
David P.
Constantine Productior. Manager DPC:vt CC: G.
Diet O
INFORMKil0g agty
y-4 o
3 9:
'LO-b i
(
iso ms:oix November 28, 1979 Franklin Research Center
.The Benjamin. Franklin Parkway
. Philadelphia, Pa. 19103
Subject:
FRC Project C5120 Specimen No.'s s
1-1,-1-2, 1-3, 1-4, 2-1, 2-2, 2-3, 2-4, 3-1, 3-2, 3-3, 4-1, 402, 5-1, 5-2,-6-1,
)
j 6-2,' 7, 3-1, 8-2, 9-1, 9-3 and.9-4
.r O
b tLq r
1 i
INFORMAil0N ONI.Y L O
....,,,...,,,...,s...._.-.
I u
- - - ~ ~
~
~ ~ ~ ~ ~ ~ ~
3
(..)
i
.... ~U.1,.
. u.
1 6,
l t
6 t u o M t.; u lM l
l ! i j
'.hih:N.orv $UCACC h 0s5{R Uh'n LX1.., jug UGWdp Qg[s&W L..'.:. t su O.tD.'d:
P'Ibl9 /P tjf[M
\\
..;f DATI-: EX1'OSUHU CO?'L1:'!! D ah.f p? * * / ? >P t I' lb"'.
C'S //.o TOTAL llOUl(S OP th'DOSUlU:: - Sdd s
.:u:at3)
- /nmasw w.nno.wd w, rs, u,L,L-sm/,e<-
rr I
i i l
S,d c
L
/Q U
.J
~ p.
4,1v d s,,,d l'
- g. s pn p
Y i
(0 /
cs o(
i j
M
{s f,,s fi n
d..
I r
.. ~.
s t
i l
(
,bg #
\\
\\
s i
. 31.!CU 3 :
liettrte 9tt ar d tc la.3 d su ttat, ul LULL ltuta
[-
e i
'ti.
k i
'uutce guard tu elt.,v.,L putut ul tuut i tel'i:
R i' lit.
J l
. ource gua:d to lart.ltvet point of - tus;( i tvin g S P.
1 11.
i L :.r$1.?u titut test item was ruLulud trJr innprovcd ultif Crmity i
.1' O.
I
- c. - ( ue.
/,, g*3 1
(Calculu u.d)
)
Ulut.aine - 1;xlio ;ure fica Ltit ud A ve r s a.,.
j
'..Y :. Stifit t.
1)w., e iii. t... t
- J o <.u. i e d
'I nieu Ix,.v Du ', e 1:a '; +
'i c. n
'A y - :
llo.
(en)
( ti. ius a)
( +4 : e t )
(net!/t.;;
!: 28
+
lJ 1;i. leil lu:d
/.
3 4,,_
_329
/
I 3
t r ' ',3 I
15
() K
'!< l'ut u} sex C
~~
~
i D
~_.~,
~
)
l i
i t
P1 L.'.itCD b? tg y,rg yg
_~
DATt,7[g,w,,j.h.,,,
"fyjy l
I l u Ofvly.Q..I X lisj C.
.ian-
.i a--.ien ira i
L
-L i
,O i
q v
'. ~.
i-
~
- >; u l
r,
. - l_.
x.'
)
l
\\
1 t
4
~
._3,,..,
. c TV.. ' '
-...eypeyA%rehe....
- /..
MSW.@U
' 4;g.( x' mwC.x/,..
q 3' 4 -
d pr 5-1>=
~
CD '
- i e
g
]
e n
x en
,a et t~
c:?.:
'. can re.-
' CC, ^
n n
1, em
- t w
gr:*.
d D
The Franklin institute (TFl)is a not for-profit organization dedicated to the solution of techno a not-for profl' division of TFl. engaged primarily in appHed tw3earc to serve IM.,stry, particularly in programs of a proprietary nature.Researc a,-
The principal areas of effort at Franklin include mechanical and electrical engineering; dev msnl and application of sophisticated analytical methods; electronk: design; failure analysis; pro-duct and process development; acoustics; energy conservation; design of data processing a
systems: Information services; market and economic analyses; and a broad spectrum of research
]
in health and safety.
. FRC maintains full support services, which include a publications group. photographic la l-computercenter, instrument calibration and repair shop and a machine shop.
s 1
- ln addition to the headquarters in Philadelphia. U.S. offices are maintsine
- l in Washington maintained in Tokyo, Munich, and Luxembourg, Silver Spring, Maryland; Jeff I
a l
e, m m w ?m m m Jtif@?Ql[,lY_k$. --
WD &f <l~yY'Q@$(W,th &,q~w'
.m u
- wa
]f't).'
- 'N k;h y y m $ -h ll,+f &*l &m ? e W
mq y@r% R t w
u yfl4 h ;
- ry a n kn J w!P p n WWWm;% a m-,-
y o m v n +;h; pm,-%w e m,,k f
- h,f; s?f h i]kNhsk',f0;G Wh m
e cn n;WyA W
f@khh$&h0h$$$$hj1fl.$hlm ?wl m >
nu q
g
%.hfk
[ 4, c.glmdgwy,:
y 9ww 4
auen
,e a,
w<
- m 4
w m m fc vw 9 9.L ' m > >
u r
u< _s, w
m w1 -.',
l:f W' M: @a@g &g.,g f f m; g w p ?<
4:-- wm,,< +;m u wem
.m m
y v
2 p ~W. n+t. '..'*s c. 2i ja -
=
1.b %y &~ m i p a.wa.
s o.
s/h
'y >
q W. ab 4 *
.u 8,
+8
+c w..
%p..
+ L w
". w:
.a>
u v
-v L.,;.e: ',Y'*
C QN,;
hg E.y ( ' ?< lg n
.7
?%pi Qjf...
s.? A ':u
- g m.
u., i, a.s;m. p.
q ):-
7c, p, sb
. k, ;.
3'^
5 W
s M g.
v-
, p.[,,.
.f ft
- ij~....,, a
- R.
., m. 1' s
. i.
t.
3 2 (< o m
- 4., b
+
, g..- y{Q'}-4, g g.u., - d a [ '
iv,
%g +
I
. hg
[ [f, i q.
t id. t l3, m,:b,'
t
,,"w y [1/,, g,yy f ; -
M ' ~#
[
1 y [.
- q,q
- c - fish; gly Ng -
h f,
s z
4 m'
Mqo j.,b; p%,,.h h y D,W M u.,
y e.
3, t ip so gn U-
.n y
,R :. Q N g
3 1s Ms
.g q
%g. n m w, S t M bl g f
h, x:
.g% n.;;h @ &.g 7 x. s w,w je cE j$ '
?,
du qw, g(.
%q F
Mf,CpOff;M@ :.,
a.i j W '
>f E q b i O) <,.
o ~ M. p,n,4.h h 3%u' fw' m\\yl9, 9
bi; m v l u m. M< p w,, @ ?,f:
M.
v-v m,7 _$y h [qd e.w (> W
'- ~
'o s
w; y
"4 vQ o-R9M.
% yh; s" s k : %:W O W
,a
., <.y4
+
.o._;L 4
v.,n FrM v
p:) yf*>Si Y
?
, yQ. - b \\y:: u.z w %,
1M d
,' v. a& tQi1
- pM s 4
4
- v l.'
r w
7%; L et i f
'L M. W e r #e@ s i>> n s
s b.
g & n. e> %.w -S.y@q ^c
" 3pg@y. ',,
gi, h;w a' M b~*
4'-
[WH t < > g,,. w @c hwp.h. '.g f g$Qgg<t.#,f.g g p 4%gg.Sy g,m..'
o ' ^ W.h %x m
qq.
A f. v >v 1 : 7. h +
m+
i
- 4 9.s
h 4
t agg s *1:
s n f( W-G
.,Wk
.-gn cp J o
),yh x
~ -V
,a w
a Qj sg3l Am
...- ca
- wn, 2.~,#
w n.4a.g.w c
l,k ww n
- w... h.
.m:
- a r.
,1 Am.em
, r h w u e, o.4 n s. e:. %,n,ra.,r <
pl.ll % W _ p, : i n n? u -D Qxy L, g *~' N '>
a et m
m
- )
s m
~ ~. -
,. Tw s9.,6 w
j f Wf* > e g' '.
g b g sw,m'w w
>> w 4
s & 4. &a&
m, W.?G t w%pp:QWQ..W;<
v e r.-
'~ m[ GG Q c h a.% *Aa.
e t m ya w v
O.)O,$y ;J-p, M:p y 4, ;,
4 M p %m e w [.s &n/ % +;,V'j#
p
..w
,v up p " 4 w* r w TMU M, c
+ w. p;.f:e o n)My 4
-p
.j \\:lP jhf t l 6 in'y)
L f g :n w E. ;~y pa @'M A M b d W 9 M
- n % m,
s a my%gw w mmw n,p &pn y %gf.g 9
gg s
7 '
n r
4J W j ' W O.
Ef %w n,d a n
a scq Ay Qh
%W ' lN miQMW &M%acmW w. m 3 W,+ w w p, a% q:
WT9 W4i 7 nypy!'M;,Vc@A N.
oi
.w
- n ggg m
M E ~h M !- %, % d;
- g%
9 $Q W %W@7(#8 &w%g=;W@m&;;&
Nww%pa g y 4q:p paq d
K d 24 s
p ys:s -
w w-
,e
&y%n% jQQg ?+Q J 'g y % w.Myi%;
saa 44 ye
% wy Q a, eu g,
y: Q W g Q Q M %, u,y
.,g p y 9w r
.c 4ww
_, M M ;W W +p,o %m@pp%g%:gl?p&p p q Q W W;,
w
& y, ' y%<
p@
t 49 q
p
. M WQ
)
m. :
W@:-;x lj 9., c W
4:
n 4::
J % P/ -4, t i
rqwgg/%w
? m x tm e
m b
qa4,-hkIh s
Q, m h<& pm# $-[ $o,O'ga g, A[:[
' " Mk[ N.. ;$p g ' mn:
M g.@.t#-;g% p-A ##wqrh$yn'n hbE h
W %
N c
-. M,y @<M @S.h Q$$ @D e zw iM i
h h h h :k k M h @ p[ h h h Ihk
]
D M
4@
.w. g T n,a.M #"m w@ q 'W %+Q V%yy.M y,b m
%,; rs o 3,, W^RphM sn; y< M GO %
mg
,u, P ;@l '
cn
?2 &,
WW WP.m F M d= %i % M ppWMaMy e Qi W
W L (,
t=.
,3 4
.m.
fe vXsAg g y..wlg & M
?
"f jf h.
kh, hAM@hh.h~
yfN Nh k_ A k ?
WNhY,h,,
M@W u
vs Y
e, e n w$,m;w:x& _'w)4.Y_?
N a g g w le? $d l>= s m M m
h h
ks r
.. L, we 3
w
- yk N h g w&,
M7tawa. WMA K' k, g%lgn W
s
. %ypy f.
Mgdg& Jq%ng: 4;ga
~
4 f W:my~%u %yQ~W p$ g &hC W M N k g &
2 j
ps a%m --
u e
}jQh? g %.
e+
s a
fa""&,i. ~y
. hs s QN '
%q?g. a4;wCa yvm a
g n
?m w z,g%,WQ~mQ ;yQ'W L%
on ylm ml QfQoxls&
- [r' t
$m g, Q
y 3 w%
M. htf 4 li,.h4M.,_MQf%
,W N
F '; %,
1QL a s,.. :'n : s, :m, y s en,:
m
&WC w
w
~4 r
N: ',i %'., f::->Yh Y ' yp:
J' t i
p % p %y @c &.tema s< 4 :;g g e. <w Ql9;7 C
s t
A(y $ pk gn
- j,-
wy m^
w, a
-r.w,, A9 vv+, ' '
W w;W$A';t 4j Qe. L; f 4
s a>
~,,Y
\\ ;
Qy l.ym
~,N%
dy&
Emeugsy
- n A;q ",
v
' 'wyAn m&y (Sy e m, o_Qg mf
+
f3.2 M,'p;x i s yg: A m.m y
',yfw,w %po 4 y* W(79' (4 '
fg}g LL Nt -
N,a n
y w
w y q.;
6 3._
An@%(M, g?"b',3
- sew?
C f hH
'O td i
x n s s
y, gg 9v 93,3
. g 9 Gg 3) y?
'Off i & Q QQ w
f, C jpg+f < @>%,Qr@%ydw
$$ % ', ' yhb,' i
- MP 'e s
- n wp.
.; h 4qsqL mg;wg n N Nd dN dhMMN$M%yyJygy?gj[d M
- n }wy;'
9:Q8 QhgG.&y};; g h
a.ht Q" y'A
~
w >O a ~,;
,v gf~
$ @fA M w"y;pd,i" WM,.yl$$mg T 7MN J
~
7 5
i chr n m.sm t
4 L,n 4 N'...@ $ M g @"g s
M
~
c g
$ iyhi Q 3 c g @ W Q M @ f n
's Ma
_Q W mJ.
e3
$% <liT$l ranklin,lnatitute (TFI) is a not-for profit organiza i
4. ", sroblems throu'gh basic and appl _ led eseearch end engineering. Franklin Messef dQg
< #not-for profit:divisionlof TFl,"engsigedLyrimarilyMinfappned$research3The~
Eby SResearch Laboratorp, inc, (FIRL)'is a wholly owneditorproht sube6 diary o
$ sto serve industry; particularly in programs of a proprietar
$7%The. principal' areas % d.M OMn &k%y, nature @Mh LMWI MyNN@008%MMR i; is4 93 WW.
of eff N2Mk
@ f; ment and application of soort atfrankli_n include. mechanical and electrica phisticated analytical methods;. electronic design; JN@edductEandfprocessidevelopment;[acousticanonergy! conservation;jdesignn; fai W Maystemsfinformation servicest} market and economic knalpses; and a offdatanprocessingl m%y Qn health and safetyi y?
'W ip f SP M, j
Q M,, m $m $u m y. h,v w:s (Q
w MtgWMg 4n a s w. 4,..
ng m
um,.
w.u m nw
,a
'W
_1.n. m y m.m t u.a;g,t s
OL ;FRC maintains fullsup.
wm c port services which include a publication. em wg
+
, z.a ma a a
%dcomputer center, instrument calibration and r.epairshopiand a ma,ch, ine:shopM 7. W 4
f 3; M@
s e-Myk:u
? 30%
2.
4
- :a
-,,m
~
m TC 91n'[ addition to'the' headquarters in PhiladelphlafU.S; offices'are m, aintainedpg,d
%'., ' a 1%
M4 -.
..--W/mf$S.!
.. J J B !,. M !< / ! Tr S ON.[.
, e.d.97c m og 2
,n
$@b MSilver, Spring,KMaryland;lJefferson.(Arkannes;Larid' oak RidgehTent.e@
in WashingtonrD.C.;i i Wmaintained in Tokyo? Munich,' and luxembourg.'
"c" 'QK ' 5 2@N 'MC
- 3
- A L
s h
Ml. l%wWW ' '
f8m @a @e - %T
-a' g
am
-4 M Q Q M '9 W N m y $m
%@p q 4
mz -
g WG,
} gn y ' j.,
c&
c w
syn 4;14 _ gypsy g m www p p mh;;ggy%ay,b :ngw m;gMarQaM w
~ ~ yM h. h~ w e g w~.Nb N
- WW -
v m.
A A pm m
c w w> c a;>. m~ s. ; x;.4w;aym a Mmlyg q (q
- h. y~
~
yb p a m
NbN
- M nna 3q 3,yv n.c,.ny v
~w v
' ~
e PY-CEI/NRR-il?3L ATTACllMENT-3 4
-