ML20043B372

From kanterella
Jump to navigation Jump to search
Stability Measurements During Cycle 2.
ML20043B372
Person / Time
Site: Grand Gulf  Entergy icon.png
Issue date: 12/31/1988
From:
OAK RIDGE NATIONAL LABORATORY
To:
Office of Nuclear Reactor Regulation
Shared Package
ML20042D069 List:
References
CON-FIN-A-9478, FOIA-90-13 ORNL-NRC-LTR-88, ORNL-NRC-LTR-88-8, NUDOCS 9005290216
Download: ML20043B372 (19)


Text

'

.' i em L ORNL/NRC/LTR 88/8 ,

Contract Program: Selected Operating Reactors Issues i

Subj ect of Document: Grand Gulf Stability Measurements During Cycle 2 Type of Document: 1.4tter Report Author: Joss March Leuba Date of Document: December 1988 NRC Monitor: T. L. Huang, Office of Nucissr Reactor Regulation Prepared for U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation under DOE Interagency Agreement 0544 0544 Al NRC FIN No. A9478, Project 2 1

! Prepared by l Instrumentation and Controls Division .

OAK RIDGE NATIONAL IABORATORY operated by MARTIN MARIETTA ENERGY SYSTEMS, INC.

l for the U.S. DEPARTMENT OF ENERGY under Contract No. DE AC05 840R21400 hn >) ,,

w 1 k, J f l

6 1

, J

. .s. s-9005290216 900320 PDR FOIA HIATT9O-13 PDR

w i INTRODUCTION This report documents the results of our analysis of neutron noise data recorded from the Grand Gulf.1 boiling water reactor (BVR) during Cycle 2.

The main result of this analysis is an estimate of the stability of the reactor at the measured operating points, r On January 31, 1987, a series of tests were performed in the Grand Gulf BVR to determine its stability at the beginning of Cycle 2.1'8 These tests were performed by personnel of the Oak Ridge National Laboratory (ORNL) using a real time stability measurement device.' The highest decay ratio (a measure of reactor stability) obtained in the tests was 0.37, at test point GGTPB (46%

Power, 30% Flow).1 During Cycle 2, four additional noise measurements were taken using the CETAR plant system, and analyzed off line by ORNL using the algorithm of Ref. 3. The results of this analysis are presented here.

OPERATING CONDITIONS FOR MEASUREMENT POINTS Four test points were recorded during Cycle 2 of the Grand Gulf.1 BWR.

The tests were labeled GCM1, CGM 2, GGM3, and GGM4. Table 1 contains some relevant in'ormation describing the operating conditions at the time of the measurements. Appendix A contains more detailed information.

Table 1. Measurement Operating Conditions Test Power Flow Date Measurement point (t) (t) time (s)

M1 64 48 14.AUG 87 950 M2 57 46 14.SEP.87 425 M3 60 50 17 0CT.87 1190 M4 50 38 07.NOV.87 395 l

1 l

e .

i

. l 2 l ANALYSIS RESULTS The data was transferred in digital form from the CETAR format to one 1

compatible with ORNL'a stability measurement algorithm.: which was used to perform the analysis. Table 2 presents the main results of the present i analysis: the asymptotic decay ratio and oscillation frequencies estimated from the measured data. l Table 2. Analysis results  ;

hest Decay Oscillation point ratio frequency (Hz)

M1 0.42 1 0.04 0.54 1 0.01 M2 0.40 1 0.06 0.59 1 0.02 M3 0.48 1 0.03 0.51 1 0.12 M4 0.46 1 0.11 0.50 1 0.01 Figures 1 through B show the autocorrelation and power spectral '

densities (PSDs) of an average power range _ monitor (APRM) signal for the four measurement points. The relatively high degree of stability corresponding to the results presented in Table 2 can also be observed in these figures. The autocorrelation functions darp out fairly rapidly, and the PSDs do not exhibit ,

l pronounced peaks.

1 Note that measurement points COM3 and GCH4 were not completely at steady state conditins, and showed some drift during the seasurement period. That is I the reason for the DC component observed in the autocorrelation function, which may result in some bias and larger uncertainties in the decay ratio estimates.

-- - - - - = - . _ _ - _ _ - _ _ _ _ - _ _ _ - -

  • i 3

CONCLUSIONS Civen the limited range of operating conditions, and the relatively large flow at which the measurements were performed, not many conclusions can  :

be obtained from the present analysis. It is clear that at the conditions studied, the Crand Gulf reactor exhibited a high degree of stability consistent with the results of the beginning of cycle tests. It is unfortunate, though, that a low flow condition was not available at the end of cycle to better benchmark code predictions, i

l l

w v

w- - - - - - - , _ - - ---a

i

. . . ~ . a  ; g B

. i

)

M R

. P A

(

r o

. t i

n o

m e

g n

a r

r e

w o

p e .

g

) a z r e

H

( v a _ _

' 8 y f o

0cn 1

e )

u D _

q S _

P

. e

(

r F y t

i s

. n e .

dI M

lC aC r

tt cn ei po sp rt en we om Pe r

u

.s 1 a e

g.m it 1 Fa b  : . . .

6 5 4 3 2 0 .

0 0 0 G 0 1 1 1 1 1 _

1 .

mko.< n.

tQ

O 5

, i 4

80 m

s u

8 a

- m 8 u

s*

H O t

8 a

D~

. -N ,5 au 85 88.

ta

<a I

u*

. 3 A *E G O D. *

  • G.

d BHudV / 8HudV N011V738803

e t e

1 6 ,

.a

.... .. , , , , , , ED

+4 se

^

v b

, O

.Me I

mD C

4 W

k L

- e.

N e I W G u

~ -

G o

, =H

, b u

k h a

wt C

ta 15 n.

U C R.

. "8.

uu

,I 3

m M 4 e-4 a

a . e.i . . n... .. i... . . l k.e O u

G O T M N E W

G

.G G

.G 4 W 4 .q 8WWdV OSd

o 1.8 - - -

m I

E j E 0.5 -

s in I

E Q.

4 1

Z O

~

& M C

-.s y e.e -

E O

O

-0.5 - - -

0 2 4 6 8 Time (s1 Fig. 4. Autocorrelation function of average power range monitor (APRM) B at measurement point CCM2.

_ _ _ _ _ _ _ _ _ - . _ . . _ _ _ _ _ _ - . _ _ _ _ . _ _ - _ _ =_---_ -_. _- - - . - - . , - - - - - - - - -

o 10 6 ig 5 - .

u. i I

x E 10 4 -

o so tn G.

103 -

182 - - - - - - - - - - - - - - - -

10-1 108 10 1 Frequency (Hz) i Fig. 5. Power spectral density (PSD) of average power range monitor (APRM) B at measurement point GGM3.

f r r

e

- - - - 8 .

t a

- B _

) _

M -

R P _

A

(

r _

o _

t i _

6 n .

o m

e g ._

n a -

r .

r e

w o

p 3 e

(

s g a -

r 4 e e v m a i

T f

- o n

o i

t c

n u

f n.

o i3 2 tM aG lC e .

rt rn oi co op t

ut An e

m

.e

_ 6r u

.s ga

- - - - - ie 8 Fm 0 8 6 4 2 8 1 B 8 8 8 0 .

s t IEQ< N u. IEn.< zO*n<JsE&oU a

t

9 8 e

S s',0-3 1

10 t

,, ... .. . . . E H so

. m s

u O

u M

h0 C

e W

W N

a e

I w w e h 8

- W

=

-l b

M 4,

L v k h v

w C

e *

%4 ed b ua O C GM 28.

ua

, C

~ 1 -

3

  • w 5e 8

~ Mu

,, , i. . . . . . . . . . i. I Ne LD D w M N HG H S S S

.G

-t .G

-t H H H H 8 HWdV OSd

4

  • s 4

-i 11

. . i u

W sQ m

s u

O G N C

k C

6 64 u

!~

  1. e to v .E 5 a >

H

  • w 0

C U

C b

8 m -4 U

W M

uC OM 4

u 5U 4 C-h 48=

  • W

, . a g yW G, W . G. T. N.

AI H G G G G 8 H8dV / 8 H8dv HOI 1V138803

o REFERENCES

1. "Crand Culf 1 and Susquehanna 2 Stability Tests." 'J. March Leuba and D. N. Fry. Oak Ridge National Laboratory Letter Report. ORNL/NRC/LTR-87/01. April 1987.
2. " Stability Tests in the Grand Gulf Unit 1 Boiling Water Reactor." J.

March 14uba and D. N. Fry. Trans. Am. Nucl. Soc. 55, 603 604, November 1987.

3. " Development of a Real Time Measurement System for Boiling Water reactors." J. March Leuba and W.T. King. Trans. Am. Nucl. Soc. 54, 370 371, June 1987.

12

9-4' O' -*

9 12 APPENDIX A OPERATING CONDITIONS

t f .

'. 13 6tAND6ULF 1 n 8733 87A4444 *133. 0 5152 HW8/RTW ttl64ttett38 ttt 8tP6:

C0kt PtA/0&kANCE LOS 48me tBlf C ALC'*.

. A11t* Mt ! EtNON F8LL C0WVttttWCL 1 f!8W1 STRRttRT I BUAR1(k 51 Alt Coutif!0NS FLOW Raft $ CDet PAkARifCkt NUCLEAR LIR118 LOCATIDW 2Ms! 722 2: et 54.4 Cels t.3*00 CRTF 2 284 35 18 *3 6MWT 2458 7 (64.11) W18U8 53 07 CAtB 0 1981 CULCPR e.937 73 20 FL 1005.9 WIFLAB 2 CADA 4.1032 CMLPB 0.512 35 58 19 tW5 32.16 WFW 10.00 C6VF 0.4485 'CRFLAT 0.700 35 18 95 W1 54.4 (40.311 VD 14.16 CAPD 34.7307 f tP/CULP8 1 253 35 58 19 kWL 33.17 CU DLAI 9.564 35 18 05 Cl.LF 4.476 CWKRC 0 164 35 18 05 DPCC 7.976 CTCtt (IPCSUtt 5149.6 IIWD/RTU KLFF 1 0027 LOCA110N 1 2 3 4 5 6 7 8 9 le !! 12 511 AL RL'. F0VER 6 561201221 10100 0.tl 47961021.091 141.04 0.73 Rt010*i Att PcWit 0.92 n.43 0.531031.:0104 0.921.03 4.91 timG Rtt POWtt 1001141.001171.161151110.41

  • PRP ttf5 0.tt 0.t!.0 95 0 9? 9.'t t.98 0.98 0.96 8:4888 tnt 12 20$f LIRlllWS SUuhts Illite FU3L 6 0f' Cdt ilm:il Flit LDC , LPli LIN17 :Att4T LOC LN6L L!n!!

t...~.. ..... ..... .....q..... ........ ..... .... 4..... ........ ..... ...

0.137 33 *0 1 553 1.456fe.512 35 58 19 6.46 11.4010 700 35 18-05 8 10 10.38 6.937 21 40 1 553 1 45410.503 27 34-04 6.74 13.4010.769 23-28 04 7.98 10.38 0.t!f I: 22 1.511 1 4!616.415 21 28 04 6 6412.4 tit.764 2140-04 7.93 10.30 0.933 3f 52 1 560 1 45410.495 37 56 19 6.63 11.40!0.743 49 20 04 7.90 10.35 0.*t o 1T- 4 1.161 1 456 t e.4t 25-3444 4 42 23.40it.756 25 30-04 7.84 10.38 t.777 3* : 1.!?4 1 454!0 473 29-32 04 d.41 13.4t'0.754 51 10-04 7.78 19.31 0.776 01-28 1.075 1 45410.492 49 14-04 6.59.13.40t0.732 49-16-04 7.79 10.35 0.774 *? 30 1.000 1 45610.489 51 20 04 6.55 13 4010.752 41 12-04 7.79 10.34 0 508' 41 28 2.864 1.4:410.486 51 16-04 6.51 13.4010.749 47 22-04 7.78 19.30

  • 0.447 1: 58 3.'258 1 45410.486 37-14 05 6.51 13.4010.744 45 12-64 7.7.1 10.36 9.01011 18 145 61.45410.485 49-10 04 6.5413.4010.738 3t 14-64 7 46 10.38 0.010 13 58 145 6 1 45614.483 37 10 05 6 47 13 4910.738 19 28 4 4 7 66 10 38 4 41518 W LIRITS 7 i FERI LOC' LN8R LlRITIFERC ' LOC LMSRLIRIT

.................... ..... ........ .. . .....i.....

Ti:M 4 0.566 35 !8 15 8.7415.43!0.364 35N0-65 0.74 53.40 FLP9 9 0.560 23 28 04 8.46 15.4810 162 23 30-04 8.44 53 40 APRAt t 4.555 21 40-04 8.57 15.4310.161 21 46-64 8 57 53.40 F DLRI e 4.555 49 20-04 6.53 15 3710.160 49 26 4 4 8.53 53.40 FDLRC 0 0.551 49-14-04 8.47 '15.3619 159 25 36-04 8.56 53.40 0 548 25 30-04 8.50 15.5610.159 49-16-64 8.47 53 44 0.547 11-18-44 8.37 13.3110 157 19 29-04 8 41 53.44 0.546 41 12 04 8.40 15 3714.157 41 12 04 8.44 53 49 8.543 19 28-04 8.41 15.4810.157 51 18-94 8 37 53.49 0.543 47 22 04 8.34 15.4110 157 47 22-04 8'.36 53.40 0.540 52 20 04 8.*f 15.35fe.156 43 22-04 8.33 53 40 0.540 4! 12-04 8.30 15 3810.156 33 20-04 8.33 53 40 Fig. A.l. Operating conditions for measurement point M1,

0

  • q 14 00AmptWLF.I WE.0738 978L4&4;)l;69.49 8982 MWD /MTW Tel84th*W8th . StV*StP06 Coat PE ATORMANCE LDS -** Leut Ellf CALCULAfl0W TYPE I N0kRAL CONvttetWCC 4 116MT STMMETRY I SUAkitt FLOW Rafts C0tt P&kAMtitt$ NUCLEAR LIRlf8 LOCAf!Du STAit COND1110NG SMWE 438 69 WT 82 2 Cnte 0.2988 CMPF 2.439 28*10 03 CAtt 0.8784 CMFLCPR 6 061 11 38 SMWT M S 154.026 W19U9 vtFLagS0.03 2 CADA e.9841 CRFLPD 4.478 23 10 63 Pa 1900 7_

DMS -30 73 WF W . 6.00 C6vF 4.4537 CMPRAT 4.749 25*l6*$4

'W 1 52 7"l44 43) WD 13 14 CAPD 30.7895 FRP/CMFLPD l.197 23 16 03 RWL 32 90 CMFDLRI 0 837 28 10 64 C DLP 3 917 CMFDL8C 0 175 29 10 03 SPCC 7.524 CTCLE (IP05Utt $t84.4 MWD /nfU ELFF l.0037 2 3 4 S e 7 8 9 it it 12 LOCA110M i AtlAL DEL POWtt 6.44 1 32 1 29 1.t 4 1.e4 0 97 0.94 8 00 1 66 1 63 9.92 9 42 atGION Rtk POWFR 4.91 leet 0.91 1.08 8 08 1 44 0 93 1 04 0 92 klhe 8tL POWER 9.99 1 44 1.99 1.84 1 47 1 20 1.89 0.45 A8 RR O AFS 9.92 0.93 9.95 0.99 0.93 1 01 9.96 1 00 stette TMt 12 MO$f LIR11tWS DUNDLtl 888888 FLCPS LOC CPR LIRift FLPD LOC LPD LIM 111 APRAf LOC LNOR LIMlf

..... ..... ..... .....I..... ........ ..... .....l..... ........ ..... .....

t.061 11 39 1 730 1 49000 478 23 10-03 6.34 13.4010.749 25-10 94 7 40 30 14-8 048 3t+S4 1 738 1 49610.473 25 08-64 4 33 13 4010.748 09-40*04 7.56 10.1S 0.048 33*34 8 733 1 49019 472 09-43 63 6 33 13.4000.739 11 30 64 7.S3 19 88

.0.785 18-34 2 094 1 49010 472 25-12 43 4.32 83.4014 738 27 12 64 7.40 10 17 0.750 35 S4 2 697 8 49619.466 ll*40-43 4 28 13.4010.731 23*l2 03 7.45 10.19 0.447 37*42 3 192 1 49006 444 1t*14*03 4.22 13 4006.730 1t*42 93 7.48 30.20 0.487 64 30 3 289 1 49010.442 27-10 04 6 19 13 40le.78t 19*l6-03 7341929 9 030 29-S4 149.9 1.49600.468 67-40 04 4 10 13 40le.78T' 19-12*93 7.31 10 19

-Gitle 11-30 149.4 1 49010.440 21-12*43 6.16 13.4610.715 29 10 08 7.25 10 84 0.010 13-58 149.0 1 49000 4St 18 34 94 4 44 13 4000 718 13*36 44 7.29 19 19 0.416 15-30 149.0 1 496l9.450 33 10-04 4 13 13.40lt.712 21 14 43 7 26 19 26 4.elt t?*S4 149 0 1 49010 457 29-12,=04 4 13 13 4914 710 33 00-64 7 20 10 15 0 AllTS W LIR118 > 1 F DLRE L DC LMtt LIMlflFDLRC LOC LM60 LIMlf

.................... ..... ........ ..... .....l..... ........ ..... .....

FLCPR 9 6 837 28-14-04 8.22 18 3114.178 28 19*93 0.27 47.29 FLPD 9 4 536 99-40-44 0 22 15 3310 174 69 44 04 0324729 -

APAAT 4 4 527 27-12 04 0 16 15 3610 172 27 12 03 0.12 47.29 FDLRE 4 0 827 11-30*04 0.10 19 3784 171 11*38 64 0.10 47.29 FDLRC 9 9 526 23-12-03 8.99 15 3019 871 11 42 03 0 10 47.29 0 924 29 10 64 8.00 15 34l0.171 23 12 93 0.09 47.29 9.525 11*42-03 8 80 19 4410 171 29-14*64 0.00 47.29 0 523 33-00 64 8.01 15 3114 169 33 40-94 0.01 47.29 9 510 11-34-64 '7 95 15 3319 169'19*14-03 7984729-9.517 19ata=43 7.90 19 4510.160 11-34*64 7 9S 47 29 9 517 19-12 93 7.98 15 3919 169 19-12 93 7.98 47.29 9 984 13*34 44 7.93 19 3010 860 27 60 04 7.93 47 29 Fig. A.2. Operating conditions for measurement point M2.

,o

f. 15 WO 8742 870 Cit?.01.21 10 4708 8WD/MTU 18184ttoult0 8tveStP84 j eftAN06ULF 1 Cett PIRFORRArtt LOS - - LON8181T CALCULATICE ITPE I NORRAL C0xvtestatt I f!8NT STMMtity l SUA8fft

$fAft CONDlfl0kS FLOW RAff8 C0rt PA8&ntitWS #UCLEAR Lintf 8 LOC 4110N GMWE 702 22 vf 55.8 Cnt0 0 2937 CMPF- 2.430 13 44 03 GMWT 2309.9 860.at t WISUB 55 55 CAF8 0 1781 CMFLCPR 0 874 18 42 PR 1003 7 WTFLAG 2 CAQA 4.9497 CMFLPD 4 499 21 14 03 DH8 -30.13 WFW t.39 CAVF 0.4468 CMPtAT 0 774 .13 40 03 WT 55.8 149.41) WB 14.71 CAPS 32 4290 FAP/CAFLPD 1 200 21 16 03 RWL 33.32 CAFDLet 0 548 13 40 03

' CptP 4.493 CAFDLRC 0 174 13 40-03

. DPCC 8 195 CYCLE trP05URE 4788 0. MWD /MTU REFF 1 0050 LOCAfl0W l 2 3 4 5 6 7 8 9 le 11 12 Atlet att Powtt 0.731 351 751 331.e41031 061 041 02 0.94 0 810.54 REGICN RfL POWER 0 89 3 03 0.901.051 101.05 0 90 't.04 0.90 RING ttL P0 Wit 0.99 1 07 1 12 1 19 1 17 1 19 1 10 0 58

.AFRM GAFS 0.f 4 0.89 0.96 0.93 0 95 0.97100 0 92 sstias THE 12 MD$f Limit!WG )UNDLt$ 383888 FLCPR LOC CPA LIMiff FLPD LOC LPS LIMlflAPRAT ' LOC LH6R LIMlf 0.074 15 42 1.484 1.47480.499 21 14 03 4 48 13 4090.774 13 40-03 9 10 10.47

'0.070 23 16 1 694 1 474!0 499 11-40 03 4 68 13 40'0.773 11-34 03 0.09 10.44 0.070 $1 A0 1.494 1.47480.4tB 11 34 03 4 68 13 4080.771 .11 38-03 8.07 10.47 0.649 21-18 1 696 1.47480 494 33 38 03 4 45 13 40:0.769 31 12-03 8.04 10.45 0.848 17 4 4 1.698 1.4 7410.4f 6 13 42-03 4 44 13.40 0 0.746 23-14-03 0.03 10.47' O.721 17-40 2.043 1.47410.495 29 32 03 4 43 13 40'0 746 15-42 03 8.01 10.46 0.717 25-18 2 055 1.47410.492 27-14-03 4 40 13.40f0.765 27-12 03 8.00 10 46 0.717 21-14 2 057 1.47480.490 41-52-03 4 54 13.4080 759 39-52-03 7.92 10.44 0.716 21-38 2.059 1.474t 0.489 33 10-03 d.55 13 40 8 0.?S7 21-10-03 7.94 10.49 '

0.715 15-44 2 060 1 47480.489 09 34-03 6 55 13 4080 756 09-34-03 7.90 10.46 O.432 41 28 3.413 1.47480.489 3b54 03 d.55 13.4080.754 29-10-03 7.90 10.47 0 429 37-62 3 433 1 47480.485 27 36 03 6 50 13.4080 752 11-42-03 7.85 10.44 0 AISYS W Lin!TS > 1 FCLRr LOC LWGR LIMtflFDLRC LOC LH6R LIMlf

.................... ..... .... ... ..... .....e'..... ........ ..... .....

FLcit 0 0.548 13 40 03 8 74 15 3880 174 13-40-03 8 74 50 17 FLfD 0 0.547 11-34 03 8.71 15 3680 174 11-34-03 0.71 50 17 APRAT 0 f.545 33-12 03 8.47 15 3410 173 11-38-03 8 48 50.17 FDLLI e 0 565 11-38 03 8 48 15 3780 173 15-42-03 8 67 50.17 -

FDLRC 0 0.545 15 42 03 8 4715 24to.173 33-12-03 8.47 50 17 0.543 23-14-03 8 46 15 3880 173 23-14 03 0 66 50.17 0.542 09 36-03 8 42 15 3410 172 09-36-t3 8.42 50 17 0 540 27 12-03 8.60 15 3680 171 27-12-03 0.60 50.17 0.559 29-10-03 8.60 15 3780.171 29-10-03 8 60 50 17 0.557 39 52 03 8 54 15.33:0 170 21-18-03 8 55 50.17 0.557 11-42-03 0.53 15 3310 170 39-52-03 8.54 50.17 0 555 21-18 03 8.55 15.40f0 170 13-34-03 0.54 50.17 Fig. A.3. Operating conditions for measurement point M3.

i

a y 4.

16 theleD99LF-1 UK 9748 $7N9969-10 14.ne P399 teW9/MTU TR1994R*U988 RtV*SEP94 CORE PERFORMANCE LOS ... L9We ED1T 84LCULeT1981 TYPE 1 IIORRAL' COWYER980ect i TISMT StaustTRT 1 90eRTER e f e ft C teltif l oset FL9W RATES CORE PasAsetTERs se9 CLEAR L1MITS LeCAftom esRIE See.97 WT 42.0 Cute eetett CNPF 1.996 09-3444 9earf 1929 7 (84* 45) WTest 40 30 CAEG 0 1944 CnFLCPR cotes.18-42 PR 994 93 WTFLAS 3 CADA 0 0143 CMPLPD 4 394 SS-34 Best 34 45 WFW 7 78 CAVF 0.4293 CMPRAT 0 548 11-30-44 WT 42 9 (39 18) W9 9.44 CAPS 97.3993 FRP/CMFLPD 1 318 25-34-16 RUL 11 45 CRFSLRX 9 369 49-34-04 CDLP 2 424 CAFDLRC 9 137 99-34-64 DPCC 4 141 CYCLE EXPOSURE 7399 3 MWD /MTU REFF 1 6054 L9 CAT 10# 1 2 3 4 9 4 7 8 9 to 11 12 AI1AL Rtb POWER e.54 1 95 1 00 1 97 1 67 1 49 1 14 1 17 1 14 1 90 0.94 9.65 DE91988 Rtk Powat 0.99 1 63 9 90 1 04 1 09 1 68 0 91 1.e4 0 90

- Allee att POWER e.98 1 64 1 12 1 17 1 14 1 19 1.11 0 59 APRM SAFS 9 99 0.99 0 99 4 97 6 90 0 99 9.90 0 90 988888 feet 13 nest LIM 171W9 DUNDLte sesess FLCPR LOC CPR L1MSTI FLPD LOC LPD LIM 1TIAPRAT LOC LMGR LIM 1T

..... ..... ..... .....g..... ........ ..... ..... ..... ........ ..... .....

0.999 15-43 1 987 1 51910 384 23-34-14 5 15 13 4010.540 11 30-94 8 31 9 35 9.903 13 46 1 992 1 51990.379 31-24-16 -S.97 13 4000 347 11-34-64 9 36 9.33 9.799 21-18 1 902 1 51910.372 23-34-14 4.99 13.4016 544 69-34-04 5 37 9.34 6 799 23-14 1 963 1 91910.344 31-24-14 4.91 13 4010 542 13-46-04 8 26 9.34 4.eet 21-16 2 278 1.51980 344 29-20-17 4 44 13 4010.558 25-34-14 8 23 9.30 0 447 13-42 2 27/ 1 51919.344 27-30-17 4 44 13 4000.539 11-43 4 4 9 19 9 33 9 448 17-40 2 293 1 51919 345 23-34-14 4 42 13 4010.354 09-40-04 9 17 9.33 6.448 15 44 2 205 1 51986 342 27-32-17 4 59 13.44te.593 31-12-04 5.14 9 33 9 491 41-20 3 347 1 91996 341 27-28-17 4.57 13 4010.552 27-12-64 0 14 9.35 9 440 37-42 3.393 1 919t9 340 29-34 17 4 56 13 4010.949 29-19-94 9.14 9 35 4 419 11-58 131 9 1 51996.340 31-30-17 4 95 13.4010.549 13-34-94 S.14 9 37 9 919 13-99 151 9 1 51990 330 21-32 14 4.53 13 4010.949 15-43-04 5 13 9 35 0 A99YS W LIM 1T8 > 1 FDLRX LOC LM6R L1MITIFDLRC LOC' Lle64 L1MIT'

.................... . .. ........ ..... .... 3..... ........ ..... .....

FLCPR 4 6 300 99-34-44 9 78 19 1419.137 99-36 9.75 42 13 FLPD 9 0 378 11-34-44 S.74 15.1410 134 11-34-44 9.74 42 13 APRAY 9 9 377 13-40-44 5.73 15 1910 134 13-44-94 8 73 42 33 FDLRX e 4 377 11-30-04 5 72 15 1810 134 11-30-44 5.72 42 13 FDLRC e 9 374 09-46-04 5 47 19.1410.139 09-40-64 5674213 0 371 11-42-04 5 42 15 1496 134 25-34-14 9 44 42 13 0 370 25-34-16 5.44 15 2210 134 13-34-94 8.43 42 13 e.376 13-34-04 5.43 15.2000.133 11-42-44 8.42 42 33 9 349 29-16-94 5 41 15.1996.133 29-10-04 S.41 42 13 0.*.;49 33-12-64 5.50 19 1410 133 15-42-64 8 99 42 13 0 369 15-42-04 5.59 15 1910.133 33-12-04 9.59 43 13 0 344 27-1244 9 54 15.1416 132 23-14 4 4 S.54 42 13 Fig. A.4. Operating conditions for measurement point M4.

. i I -

6.

o 17 ORNL/NRC/LTR 88/8 INTERNAL DISTRIBUTION

1. E. D. Blakeman 10. Central Research Library
2. N. E. Clapp 11. Y 12 Document Reference
3. B. G. Eads Department
4. D. N. Fry 12. 160 IPC
5. J. March Leuba
13. Laboratory Records Department
6. O. B. Morgan 14. Laboratory Records, ORNL RC
7. P. F. McCrea (Advisor) 15. ORNL Patent Section
8. J. G. Pruett
9. J. B. Ball (Advisor)

EXTERNAL DISTRIBUTION

16. S. Bajwa, Division of Engineer and Systems Technology, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, P-522, Washington DC 20555.
17. T. L. Huang, Division of Engineering and Systems Technology, Office of Nuclear Reactor Regulation, U. S. Nuclear Regulatory Commission, P 1022, Washington DC 20555,
18. Amira Gill,' Division of Engineering and Systems Technology, Office of Nuclear Reactor Regulation, U. S. Nuclear Regulatory Commission, P 1022, Washington DC 20555
19. L. E. Phillips, Division of Engineering and Systems Technology, Office of Nuclear Reactor Regulation, U. S. Nuclear Regulatory Commission, P-1022, Washington DC 20555
20. NRC Central File

_. .-. _ _ _ _ _ _ _ _ _ _ _ _ - _ - - __ _ _ _ _ _ - _ - _ - _ _ - _ - - - _ _ _ _ - _ _