ML20035B214
| ML20035B214 | |
| Person / Time | |
|---|---|
| Site: | North Anna |
| Issue date: | 03/31/1993 |
| From: | Chapman D, Dziadosz D, Kohlroser W VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | |
| Shared Package | |
| ML20035B211 | List: |
| References | |
| NE-920, NE-920-R, NE-920-R00, NUDOCS 9304010036 | |
| Download: ML20035B214 (54) | |
Text
.
- . m gy.x.y 49.;,;.. c. y ).. y. _ :. :,.; 3 s ' $a.g' %;.n,g#+i 3.n.,$:$.y3:tMy n(o;.W.; 3,;.fv i:.,..
yqy 17 s
Mp iT E-f.D9 4..-
s
+p m e m-g,:
.n%m a n =m. %,,::pife;m. x;M. y.b:iT
,W.W.1:
T: -: /; :-
ea. 4
,c,'
i
.. ' 1
- i.
-'.q 3.a n
.A
- ' k. ; \\y
- k..
... ?}ds; khfkhN S gN4.g,.;:g ;&k.' 7;il?7.:.-
W Q-p q"%y.AGilW'nJ h'fifhfkNh:h
(
l f
f g(g..
g b x*., ;;Q:y.hyy&y'QftQ p./73.g y.phg%f L
W.-
^
Q
- g.._ ' %.
^
7 t.
m'N
?
' lkjf.hkphhh. m.v ~ c gg
.m.4
.h[m.::: u :..::g,
r%s.
'h f
hd
.][
I.);
m'.'
.g,l&.nDan.__,,
. n. n"r4[y,Q h. 4 g..., pf&,$ygff j}.s. w p
,:s.'N,,'.1.
% a../ _ },-lc
.nW;
. ch.
n..c a..
J 1. J.W'y ~ c..
C v...
. m w; "if a..,Q.(,%,s o W.
F 4v
...w'
.=
~.,.
- 7,.
z f ~ } p}
.s.
Qg...Q&...m..
a &; ::;n ;:; ;.w..+... : a[n:. f}fQ.f:::
l~
e w.Mm&..; lA m&.a 7 +,. >Qn:. ll,97, y l L,:.ji&q::: ' y "b-w
%p n
s.
6.
, ; Q
' L J,.
...g;
%w.~
- Qy...
...n v - w.. n.,, w. ~
~:$
l3 Q:.
p Q
L.%z Q: k f..m n.
}k ]Q.gh:&::ypGQlf f3:y}._l f-[. } -.
v E
bbbhkh N
- 9. Mh k 1 Q) 4. g, a y c. m.:~.h.h.:,,
r.. h: ;N.QQ }W(r.W:g}M k
- h.
y%%f, Q.n M,;
t,t 1
N
.. e. n:& :.
w.My
-J y}z.n?
J
= %.:
fg
?
f^ W %%.a:. %v:h& Y. a%.W,,.;. y;;;:?.7...:
h
- '; Yh v.,.4 3;; + Q.' $wo Q [. Q.
- . %.v MO.< f ?
y: O'-= n+ y]:
_. [.:.,.. ;;g.:
- ,y. q.
u a y
=
(
..a g; pg
- c; - % e
- :; 7;;; r.
- 3. Q ;
,g yn' j ;;(y.v.{_d.y.; ;.;;.;. ;3" (:'q:.K 7, ;'J f;". 2 ; Q L
,Q.
- ;h f.
>w 9 s
. '.: ;, y ',..
. ;. 3 s
/:,, + ^,
['
- Q.
6 y ;
f..x ;. [
- + a :Q.3.. w..;,w g ',w. 3 y (..; L.
f_:.,a Ly
+.%
4 r v.:t
?
<G
=
. -y
~....
.4.
.~.7 s.
lf 'f l,, '..'
4;l.?*
.NA M T f,
%.s
.,..',",'..a,.f,..,.,l{,'.'..,..
.1 g.
.r e
l V' l (,.n;. a
?
<_ }?-
,u. ?, 4}
+.
e.
c o X _;I,
,;., }. i '. g ;j((; :
p,., s[
y 7, 7 ? " m: y g 3 :.g3. g ;i: g.;; g g;;.:..
5-e ' y
~....
r ;..
3 g..
g.f 4 f.1:f.L'j p g.K W.QM j i f y "
L m Q
- u. w..... s
- ....:c-...,
,. r.,.,
n,,n:;,,.,
y
~.-
. s
- y;..y.,
/ a.~.
v c1
- - Q..;[s., ;.* [...
~
s
.. a.
n
.c
,;:s
.;... ' ' '. il *' ' :'.,'"
0
',.%j f '
_z
'..'.A~
.;l
.v m&a'ff h 'l.
. ' j ; 1..N.ll a
l N
'l r. ~.
.,g.
. ;.QU)y f.;;Q f ),.'~^
r b;
+~
3 5;...
. ;.... w ;
.h w9 3 c q~.. g..
w
. g.
c.
v+. ' "a. m s. s,> >..
.q D )
t.
- .. u.+
a.
w.
r y[...;Q gf.,
"Q:
. f, '[, 9j [ y.jj.,.,; 4 ).3 '.
v.s..w. m :.
.r
...... y k(,
.)m.3 sy:.4,Q[,, ; ' }ifi 7 h./; ; 3, ! y *. '. y [.
.. ; 5
.. J. j,1
.y
- ~
9
';j:'<
~
~. o ;
- g. &p
, m-
- e m. L. c ;..f:f..
n g % s y ' ^f q.Q*.
~'::.x w, _. 5 :;
3 ; s*
J4 r.p
,, j.
m y....
-a 3
k;lp y
.,.,c
- hh:h$k]fl,.. [$.[<.p..;3 :;,a +$c.? U
~ ~
e w
f[
"?
~
{p. g. m l Q Q : & g p :.. w ;>t m & ;f M '_ K.Q
... ; y kW QQ>jQ
?.
lJ.N.:wm., %,,, h..hUMM.Q.f 4.h5D0.e38U o
-)
M M
% : m1 b
a u.: :. ' ~.:
- .:.v % :n %
_me R,;Qg;" g '.;Q+,6;e.syif,4,Q.A e
Q}uun ~ wQ3; Tl.;_
?
x-
- y
+.f,.. '
7.6y g y.;
g:4.
7.;%w;yp n ;a.
w.
4,voy w
bkkh Nk,!.[gh N N 4' i
%pu}$h b
mwg
?; y. ?? y}.mg.x{Ag.
, a.. -g g g }.
. j' w;t m;:
s;.
a nmu qWn%g Q
c Q ~. y[.~ :.
a a
9 f
l f
-),
g k
m ygg v.a
- , w: s
'p'i i TQ.tl.h ~ 8 ' k ij ' ' ?
w 0,.y c.n&
u ?.(f
.i*
5 g7:.; ::
Q
% g.+:;R% % hp g V
- fg%pQR., l;f..
FQ ;Q p:.
fbm; ;;F L M il g
. Ah!3d%;.wp@3y[ '.- p$$$$8QT. $m@..
h bu N fh<. 4 a s ~ y&~l.;:
n, M..w$w:nhkh :v.c h lZf ~
&ggi%
1h
[
s.
,)f.;)4*.f}al.w..lQQj. jjQ}.
l I
? 1(
+
h.
ry
~.y
, y. 3,.
- . ' fs$@y.. @:.w::71 o u,,.Q;,: ].
N 9
m ;y:( Qq
./ M.
. h f
.r n
yp.
hadR$"~
{;;
DM u
W J g g;.; w.m 4' p,,.po. t.y-.
~~
m ymmy g
NNeww w
e=,-_
1; 4
.s 5
. gg!!d@ :D "n :" W. :g 9304010036 930329 7
?
?
(
e f
~ *MN E, U PDR ADOCK 05000388 f
6 i
3 _ f" f P
pop
y,e c e
w 3' \\f.
. t Yx
.,\\;;
't v
s k
, T.
j
\\
q8 ;
5 s
3 s
~
\\
~ (
l v
\\'
i s
4 A
s
,Y, N
i N
s.
North Anna Unit 1 Cycle 9 Core Performance Report Nuclear Analysis and Fuel
?
Nuclear Engineering
- l Services a
,1
- )
March 1993 y
s I
d i
h, I
i i
i 1
TECHNICAL REPORT NE-920 - Rev. O NORTH ANNA UNIT 1, CYCLE 9 CORE PERFORMANCE REPORT NUCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING SERVICES VIRGINIA POWER March, 1993 PREPARED BY:
- YM AR 93
' II. M. Chapman' Date REVIEWEDBY:kJ.O,1N4xv7 3
W. R. Kohlroser Date REVIEWED BY:
3-M7 T. A. Brooksire Date 8-//45 REVIEWED BY:
A. P. Main Date APPROVED BY:
Y///f3 D. Dzifdosz (/
Date QA Category: Nuclear Safety Related Keywords: NIC9, Core Performance Report
4 wa TABLE OF CONTENTS PAGE 1
Table of Contents 2
List of Tables.
3 List of Figures........................
5 Section 1 Introduction and Summary.
~
. 12 Section 2 Burnup........
. 22 Section 3 Reactivity Depletion...........
. 24 Section 4 Power Distribution...............
44 Section 5 Primary Coolant Activity.
. 49 Section 6 Conclusions..................
................. 50 Section 7 References.
NE-920 NIC9 Core Performance Report Page 1 of 51
_ _ ~ - - - - ~
~
LIST OF TABIES TABLE TITLE PAGE 4.1 Summary of Flux Maps for Routine Operation 28 l
l l
l l
NE-920 NIC9 Core Performance Report Page 2 of 51
LIST OF FIGURES PAGE TITLE FIGURE 8
1.1 Core Loading Map.
9 1.2 Burnable Poison and Source Assembly Locations.
10 1.3 Available Movable Detector Locations.
. 11 1.4 Control Rod Locations.
14 2.1 Core Burnup History
. 15 2.2 Monthly Average Load Factors................
2.3 Assemblywise Accumulated Burnup: Measured and Predicted..
16 2.4 Assemblywise Accumulated Burnup: Comparison of
. 17 Measured and Predicted..
18 2.5A Sub-Batch Burnup Sharing.
. 19 2.5B Sub-Batch Burnup Sharing.
. 20 2.5C Sub-Batch Burnup Sharing
. 21 2.5D Sub-Batch Burnup Sharing.
. 23 Critical Boron Concentration versus Burnup - HFP-ARO.
3.1
. 29 4.1 Assemblywise Power Distribution - N1-9-06
. 30 4.2 Assemblywise Power Distribution - N1-9-19
. 31 4.3 Assemblywise Power Distribution - N1-9-29
. 32
~
4.4 Hot Channel Factor Normalized Operating Envelope.
. 33 4.5 Heat Flux Hot Channel Factor, F (Z) - N1-9-06 q
34 4.6 Heat Flux Hot Channel Factor, F (Z) - N1-9-19 q
35 4.7 Heat Flux Hot Channel Factor, F (Z) - N1-9-29 q
4.8 Maximum Heat Flux Hot Channel Factor, F (Z)*P, vs.
q 36 Axial Position.....................
NE-920 NIC9 Core Performance Report Page 3 of 51
LIST OF TIGURES CONT'D TIGURE TITLE PAGE 4.9 Maximum Heat Flux Hot Channel Factor, T (Z), vs. Burnup 37 g
4.10 Maximum Enthalpy Rise Hot Channel Factor, T-delta-H vs.Burnup. 38 4.11 Target Delta Flux versus Burnup
..............39 4.12 Core Average Axial Power Distribution - N1-9-06 40 4.13 Core Average Axial Power Distribution - N1-9-19 41 4.14 Core Average Axial Power Distribution - N1-9-29 42 4.15 Core Average Axial Peaking Factor vs. Burnup...
43 5.1 Dose Equivalent I-131 vs. Time.
47 5.2 I-131/I-133 Activity Ratio vs. Time
..........48 l
NE-920 NIC9 Core Performance Report Page 4 of 51
Section 1 INTRODUCTION AND SUtiMARY On January 04, 1993, North Anna Unit 1 completed Cycle 9.
Since the initial criticality of Cycle 9 on March 07, 1991, the reactor core 8
produced approximately 1.1927 x 10 MBTU (20,009 Hegawatt days per metric ton of contained uranium).
The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 9.
The physics tests that were performed during the startup of this cycle were covered in the North Anna Unit 1, Cycle 9 Startup Physics Test Report and, therefore, will not be, included here.
2 During Cycle 9,
a mid-cycle steam generator inspection outage occurred.
The additional steam generator tube plugging which occurred as a result of the outage impacted the LOCA analysis for NIC9. Following the outage, the NIC9 LOCA analysis limited the core to 95% of rated power, and the K(Z) curve for Fq surveillence was modified. North Anna Unit I was in coastdown from September 07, 1992, at which time the burnup was approximately 16,965 MWD /MTU. The coastdown secounted for an additional core burnup of roughly 3,044 MWD /MTU from the end of 95% power reactivity.
The Cycle 9 core consisted of 11 sub-batches of fuel: five once-burned batches, four from Cycle B (batches 10A,10B, IOC, and N2/9B) and one from Cycle 7 (batch 9B); four twice-burned batches, one from North Anna 1 NE-920 NIC9 Core Performance Report Page 5 of 51
Cycies 5 and 6 (batch 7A), two from North Anna 1 Cycles 6 and 7 (batches BA and 8B), and one from North Anna 2 Cycles 4 and 5 (batch N2/6); and two fresh batches (batches 11A and 11B). The North Anna 1 Cycle 9 core loading map specifying the fuel batch identification, and fuel assembly locations is shown in Figure 1.1.
The burnable poison locations and source assembly locations is shown in Figure 1.2.
Movable detector locations are shown in Figure 1.3.
Control rod locations are shown in Figure 1. t..
Routine core follow involves the analysis of four principal performance indicators.
These are burnup distribution, reactivity depletion, power distribution, and primary coolant activity.
The core burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the l
next cycle will be compatible with the new fuel that is inserted.
Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate at what burnup level refueling will be required.
Core e
power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specifications' limits, thereby ensuring that adequate margins for linear power density and critical heat flux thermal limits are saintained.
Lastly, as part of normal core follow, the primary coolant activity is sonitored to assess the status of the fuel cladding integrity and to compare the concentration of dose equivalent I-131 in the reactor coolant with the limits specified by the North Anna Unit 1 Technical Specifications".
NE-920 NIC9 Core Performance Report Page 6 of 51
Each of these four performance indicators for the North Anna Unit 1, is discussed in detail in the body of this report. The Cycle 9 core results are summarized below:
- 1. Burnup - The burnup tilt (deviation from quadrant symmetry) core was no greater than 10.44% with the burnup accumulation in on the each batch deviating from design prediction by no more than 2.70%.
The critical boron concentration,
- 2. Reactivity Depletion used to monitor reactivity depletion, was consistently within 10.54 AK/K of the design prediction which is within the 11% AK/K margin allowed by Section 4.1.1.1.2 of the Technical Specifications.
Incore flux maps taken each month 3.
Power Distribution the assemblywise radial power distributions deviated from indicated that All hot the design predictions by a maximum average dif ference of 2.1%.
channel factors met their respective Technical Specifications limits.
The average dose equivalent 4.
Primary Coolant Activity iodine-131 activity level in the primary coolant during Cycle 9 was approximately 0.00551 yC1/gm.
This corresponds to less than 1% of the operating limit for the concentration of radiciodine in the primary radiciodine and noble gas concentration coolant.
An evaluation of toa fuel rod was defective.
Ultrasonic in the RCS indicated at least cr e 10 refueling outage testing (UT) performed during tne Cycle 9 to Cycle two fuel rods in two fuel assemblies were defective.
confirmed that Page 7 of 51 SE-920 NIC9 Core Performance Report
Figure 1.1 NORTH ANNA UNIT I - CYCLE 9 CORE LOADING MAP R
9 N
M s
J N
F E
9 C
S I sa i sec 1u I 8 Mia i tre I scr6 I I
I I
I l arr6 I asa 1 att I ses I als I asa 1 Fa i i Its I s35 4 uF I Est I la3 i E33 I CIS I I
I i
1 I
l l
I I as I sas i las a sec I tas i sec att I sas I as I i ms 8 667 I ut i s69 I su I sF3 4 6&t I &at I one a i
I I
I I
I I
I I
I I sa luzies I its I les I sta i les i sta i tos I tas i ses I sa f l Mtv i a*4 I us I s&5 I us I B57 I tas I s6e i saa i s59 i es5 8 I
I i
e i
l I
i i
l i
I I Fa i its i Bas I ses i sta i sea a saa i nsa 1 ala i les 1 4:s I tas a Fa I i Ce6 1 6ae 8 ase I se9 I las I sts I 149 I arr a su I sh4 1 343 i sa4 I can i i
l 1
i l
i l
i i
i I
I i
i I tea 1 ass i Jos i saa 4 aos I saa i saa i sta i les I asa e ses I sas a nos I e att i Sat a sla i raF 1 #66 I sa I s 3t I tas I s39 1 166 I s55 4 su I sas 1 I
I I
I I
i l
l 9
l_I I
I I
I sa i its i sec 1 saa i sea i saa 8 asa i sta i sea i saa i koa i sta i sec 4 als I sa 4 a m19 8 3a6 i sal I eas I tre 1 212 I srs I las I st? I sat i 8 21 i sa9 1 867 i Sa2 i M16 8 l
l 1
1 I
i I
I I
a i
i i
I I
I i Asc los I als I nos I sta i saa i saa i es I taa a tsa e saa I aos I saa i les 4 sec I I s F1 l e st i 6a5 I s s6 i Sas I 8 34 4 las I anz I eas i s23 i fas I ss5 I sa? I see i E F6 I I
I i
i i
1 i
i l
i i
l i
i i
i 4 aa i las s sec I naa a sea a sia i nea i saa a les i sta i asa IJaa i sec I tas Iu 8 i MI2 8 4a5 I s F4 1 14F I s3e 1 2A4 i sne i Zal I sF9 1 the I are i fa9 4 sr5 l 54 9 l MIS l 1
1 I
I i
I i
1 1
I I
I I
I I
I I sea i als a tes i naa i les I saa i naa i 11a i aos I asa i aos i ses I asa i I ss6 I saF 1 s6r i sas I ses 1 3ar i sta a sa? I s61 I laf i 863 1 413 i s31 1 1
I i
i i
1 I
I I
I i
1 I
I I ra a las a las I ass a saa a asa i ala i saa a las I ses I ans 4 als i Fa l
lC% i 1A5 i sas I set a la! I s?4 1 146 I s36 I taa a a37 I 545 I u3 i Cle 1 I
I I
i l
I i
i l
i I
I 1
1 i es i las I als l les 1 asa j tot i !!a l les I las I tes i as l
l 8% F l 8 56 I sa9 l s58 l 2a3 1 553 I ear I she i e,u i 860 5 M11 8 i
I I
i i
l i
i I
I I
I I as I las I las I set I als I sec las I als I as I i H3r i See t &a6 i s F2 1 Saa i s6s i Sa6 1 sas I seu i i
i l
i l
i I
i i
I i FA 1 asa I als I tes i als I asa i Fa 1
i C50 t ar5 5 sat I s47 5 4a9 1 att I Ces I l
i I
i i
i I
I i &a i lec l sa i i
1--> satcM i Mit i sea i ees! I I
l--e 451(MatY ID l
l l
l l
4 FLKt a1SEMsLY C($1CN Paeastiffs 562-salCM Fa sa as 9a Isa Its leC
!!a las K2/6 lW2/9s 19t!!!at [NRIC#0( NT 3.69 3.6e 3.se 3.9e 3.se 4.00 3.62 4.01 4.39 3.6e 6.08 (N/0 U-235) aIst#Stv Typt 17:17 17s17 17:17 IFal?
IFa!F ifs 37 IFa!F 3FsIF 17:17 17:17 IFalF SAMBER OF a13t fSt!!5 7
s a
1 to FF tr 32 36 3
I ra t noos pre assenso r6 r.4 re.
re.
r r6 r64 r64 res ru r64 NE-920 NIC9 Core Parformance Report Page 8 of 51
s Figure 1.2 NORTH ANNA UNIT 1 - CYCLE 9 BURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS a
P m
n L
g J
M C
F E
B C
B I
I I
I I
i I
I I
I l_
l I
I 1
i i
I I
I t
I I
I I
I i
l i
le !,.P l-l,6P ivl i
3 l
168878 ISPit9 I l&PSE1 1 lbPlle ISP12) I i
l l,,P, l l,.P l-i.z.P
-l,.P, l l
I i
P..
i i m,,,
P.- i io. 8 i
i I,
l.,, l i, l l,.P -!
!..P i--!,.P -!
!,6P lvi I
l.P.
im.. i 6.P.95 I Im.9 i 1.P.- i I m.s i m,. i l
t 1
I t
i I
I f
3 I
i l
I i
i I
l I
i m 9.,1 1 24P, 1 26P teP 16P 5
) IhP 1 imi i I
imi, i i.P.9, i i.P.,.
l isP i
i i
i i
i m,3 1 I
l i
I
.I I
J
._ l i
i l
I l
l l
1 6
I I top I I s6e I I rep i i 16P 1 1 teP 1 I
I I
I I
I ISPov9 1 ISP872 i flP065 1 ISP873 i l&Pitt i i
i i
F i
1 1
I I
8 I
i 4
I i
1
.I I
i 1
1 I
i a6P I 5549 I anP i l teP I I top i i shP l $128 8 Imp I i
l 4
(bPE86 1 ISP074 8 l&PD66 i l&PS67 I ltPc75 1 18P487 I I
1 I
I I
I I
i
_f I
I 1
1 I
I i
i 1
I i
1 rop 1 e ihr I i rop l I itP 1 I 29P I I
l l
I i
i lErlet i 16Pt76 I IsPena i ISPs77 8 16Ptst i I
i 1
9 I
.. I i
.. I i
1 I
l 1
l i
I l
i I
i 7-P i
i 20P 1 I lbP 1 l l>P i
l FOP 1 I 24P $
I 1
tap 113 I lEptes I ISpera I
$$ PSF 9 8 ltP394 $
lSplig j 36 I
i l_
i l_
i l_
l l_1 1..
I I
I i
1
- P 1 noe i i rDP l 8 g>P l
{ 2pP l l 16P i 6P l 8
1 16P119 ISP6&& 6 l&P]Gb I
($Pt&O I
$DP396 8 ISP989 BDP117 1 1
II I
I I
i l
i
_l l
l l
1 1
1 1
1 I
i 16P 1 i top i i FDP $
i leP {
l I
I I
lbPs90 I ltple? I ISP3se I l&Pe9t i I
i 12 l
l-lw!
l, l
\\P lv!
l 13 l
188128 ISPil5 I l&Pt9? I 15P116 ftP118 I i
I l
i I
.I i
I i
i
__i i
i e
i i
i
)
i 16 i
I I
I I
I I
i I
I I
I I
I I
I e
I i
I i
l 1
IS BUPhatti Potson POD CtusilP i
_i I
l 6P - 6 36p - 36 BuPhaltt P0150m DOD CluSTIP
?pP - 70 kuRm&8tt PDI$0m POD CLUSTER FAP - te SUPm&6Lt P01$04 POD CLUS1t P
$1ms - EICON!sAFV $0JPCE Page 9 of 51 NE-920 NIC9 Cc.re Performance Report
- ^ - - - - _ _.., _ _ _ _, _ _ _ _ _ _
.A-
?
4 i
i l
1 Figure 1.3 NORTH ANNA UNIT 1 - CYCLE 9 AVAILABLE MOVABLE DETECIDR LOCAT.0 -
[
i i
i t
D P
N N
L E
J N
E
~F E
D C
S l
j i
i i
i I
I eI i
1 I
I I
I
~
I I
I a
l I
i i
t I
i I
i 1
I ei I
t-I I
I I
I I
I i
i l
l I
I I
I l-
-3 i
j I np i 1-1 I se 1 I
I I e 1 3
l' I
I I
I I
l' I
I I
1 I
e I
I I
i i
I I
I I
i i
i i no I i
I se i I e I i
I I
4 I
I I
'I l
I I
I I
i 1
1 j
i i
i I
I i__1 1
I l
1 i
3 i
i i se I i sep i i sep I I
i i se i e I.
I eI 5
l i
1 1
I I
I I
I I
I I
I
'I i
1 I
I I.
I I
I I
I I
I I
i l
i i
4 I
i se !
I I se I i
i i
i I
I 6
?
I I
I I
I-1 I
I I
I I
l' I
I i
i I
i l-'
8 I
I B
i 1-1 i
i i
I I
I se i I
i 1 se I i se a 1
i ei
! se 1 I
y-1 I
I I
I I
i
-1 i
'l I
i i
i I
I I
I l
I I
I I
I I
i l
i l
l i
I I
i I se I I se I 1
I I
I se I I
i se i se i I
a
. I I
I I
I I
I I
I I
I I
I I
I I
i I
l i
I I
I I
I I
I I
I I
I I
I 1
I I
I I se I I
I I
I se i 1-1 I
I se 1 9-I I
l l
1 I
I I
I I
I I
I I
I I
a 1
i i
i i
i i
i i
i I
i l
i Li i
I se 1 I
I I np I I
I I
I se i.
I se i le I
I I
I I
I I
I I
i 1
I I
I
?
l i
i I
I I
I I
I i
8 4
4 1
}
4 I
I l - se 1 i
i sed I l se. I e-4 I
i' l
11
}
l 1
1 1
I I
I I
i 8
'I I
I I
I I
I a
a 1
i I
i I
.I
-)
I sep 8 a
l' I se i I
I i
1 se I se i 1r I
I I
I I
.I I
l__ I I
I I
')
i l
i a
i i
i I
-I I
'l I
I I
i i se ' 8 I e.I i
1 15 1
t i
i i
i i
l' I
I i
i i
I I
I I
I I se i I
I i se i I
I 14 I
i i
i I
'l 1
1 MD - novasse Detector i
I l
l
')
I se i I
I-15~
'}
c I
i i
I i
5 i
i
-i
~!l 1
. t I
t 1
NE-920 NIC9 Core Performance Report Page 10 of 51
. 2 i.
.~.il
~
Figure 1.4 NORTH ANNA UNIT 1 - CYCLE 9 1
CONTROL ROD LOCATIONS a
P M
M L
K J
M G
F E
D C
a A
1se' I
teop c I
I I
I toe, a 1
m tiet i
I I
I Intet l[.
2 i
la I Ia I IA i I
I I
i I
i I
I M-41 l
l l
l sA I l sA I I sP l l W-41 3
I I
I I
I 1
I i
1I i
ic I la l l
I Is 1 Ic 1 1
4 I
I I
I I
I I
I I
I I
I 4
I se a i so i 1 sr I I
l I so l I
I I
5 1
1 I
I I
i 1
I I
I I
I I
I IA 1 Is I io i Ic i io I Ia l lA 1 6-Loop c
-l 1
1 I
I I
I I
I I
I I
I I
Leae S Inlet \\ l i
I sa I I
I i sa i i ss i I sr I i sA 1 1
1 j outlet 7
I I
I I
I I
I I
I I
I I
I I
v to'\\1
-l Io I i
i ic i 1
i Ic 1 1
I Io 1 27e' s
1 I
I I
I I
i 1
1 1
1 I
I I
I i
1 1
I sA I I sr I i sa i i se I i
l i sA I I
l 9
I I
I I
I I
I i
1 1
I I
I I
I I
1A I Ia i iD i ic I Io 1 Is i 1A a le i
I I
I I
I I
I I
I I
I I
I I
I I
I so I i
i i sr i I se I i sr I i
11 I
I I
i 1
1 1
I I
I I
I I
I I
sc I la i I
I is i Ic l l
u I
I I
I I
I I
I I
I I
I I
I sr I i sa l I sA I I
I i
13 N-44 I
I I
I I
I I
I I
I m-42 I
14 I
I I-1 I
I I
I A 15
/
I I
I I
Loop A l
l l
I toop A Absorber Outlet Inlet g
Material I
o' Ag-In-cd Function peusbar of Civsters CALLED se0RTM conteel ser* D s
centrol sank c s
control sank a e
centrol more A s
shute un s.* ss e
sPwidown sank sA a
sr is. ore med Leestlensi s
.I
.l' NE-920 NIC9 Core Performance Report Page. 11 of 51
-'~~-
1 Section 2 i
i BURNUP i
.j i
I The burnup history for the North Anna Unit 1 Cycle 9 core is i
i graphically depicted in Figure 2.1.
The North Anna.1, Cycle 9 core i
achieved a burnup of 20,009 MWD /MTU. As shown in Figure 2.2, the average load factor for Cycle 9 was 75.3% when referenced to rated thermal power (2893 MW(t)). Unit I experienced a mid-cycle steam generator inspection
[
outage of over two months in duration. Following the inspection outage,
{
the Unit I core was limited to 95% power due to the results of the LOCA
[
i analysis in conjunction with the additional stesa generator-tube plugging.
Unit 1 performed a power coastdown starting on September 07, 1992 until shutdown for refueling on January 04, 1993.
V i
Radial (X-Y) burnur distribution maps show how the core burnup is
-f shared among the various fuel assemblies, and thereby allow a detailed burnup distr _Nution analysis.
The TOTE' computer code is used'_to.
- {
calculate these assemblywise burnups.
Figure 2.3 is a radial burnup l
distribution map in which the core assemblywise burnup accumulation at
'{
the end of Cycle 9 operation is given.
For comparison purposes, the design values are also given. Figure 2.4 is a radial burnup distribution i
i f
map in which the percentage difference comparison of measured and
}
predicted assemblywise burnup accumulation at the end of Cycle 9 operat' ion is also given. As can be seen from this figure, the accumulated assembly-l I
burnups were generally within 13.82% of the predicted values.
In-j NE-920 NIC9 Core Performance Report Page 12 of 51 ~
.f
i addition, deviation from quadrant symmetry in the core throughout the cycle was no greater than 10.44%.
I The burnup sharing on a batch basis is monitored to verify that the f
core is operating as designed and to enable accurate end-of-cycle batch i
burnup predictions to be made for use in reload fuel design studies, q
t Batch definitions are given in Figure 1.1.
As seen in Figures 2.5A, 2.5B, 2.5C, and 2.5D, the batch burnup sharing for North Anna 1,
Cycle 9 followed design predictions closely.
Batches N1/9B and N1/7 had batch burnups that deviated from predicted by 2.70% and 2.26% respectively. Each of these batches were comprised of single assemblies, and the burnup i
dif ferences decreased as the cycle progressed. The burnups for all other i
batches did not deviate from predictions by more than 2%.
Symmetric burnup in conjunction with agreement between actual and predicted assemblywise burnups and batch burnup sharing indicate that the Cycle 9 l
l core did deplete as designed.
\\
i t
i i
NE-920 NIC9 Core Performance Report Page 13 of 51 i
Figure 2.1 NORTH ANNA UNIT 1 - CYCLE 9 CORE BURNUP HISTORY lillI,
21tilj p
"*'"""^"""""""""""""""
)
18118 l r
/
lilli:
/
11188 r
Illit.
g 15828 l 7
g 14:18 -
)
13ttB :~
'f
/
12888 -
- 12. 11180 ~
l 3
/
2 Ittle.
E
[
D lits M
b
/
G ltti
/
U lits g,/
1858 4tte.
/
i
/-
Jits,
g d
Sitt,
j
/
lill El I
t i
as: :
=5:
"sESO~5: :
=. =.= = = =..= =.= =.= = =.= E.= 2 :::
.= =.2 :
M
- , a WAXIWUW DESIGN BURNUP -
20100WID/MTU i
NE-920 NIC9 Core Performance Report Page 14 of 51
p--
i i
l
d5E
100 -
l i
90 I
80 70 l
l l.~
e j
40 l
I 30 i
2o 10
~
NNNEENNNNNNNENNNNNNNNNN tsattungsstattatsligann s B
e www Page 15 of 51 NE-920 NIC9 Core Performance Report
=-
1 t
t I
i f
figure 2.3 NORTH ANNA UNIT 1 - CYCLE 9 i
ASSEMBLYWISE ACCUffULATED BURNUP
-MEASURED AND PREDICTED 1
(GWD/NTU) l e
e a
a L
r J
8 F
t 8
C e
a a
'i 1 as.MI 34. ell as. ell I m es mEs i 1}
I 38.348 33.441 as.nol I eWESICfES l.
.[
r i to.9el U.sel re.991 37.El 21.e91 SF.nel m.9el i
I 4e.4rl 37. eel re.96137.534 30.961 SF. sol 4e.418
'r; 8
3 146.Fel 21.611 r3.91141. sol es. set 42.ast M.eil 28.958 4F.ast si l 46.ul 21.448 M.361 or. eel M.36142. eel M.El 21.441 es.HI l
146.218 si.33125.643 46.848 'r6.Fri u.oFl M.5FI 47.3F3 fl.ast M.El M.6FI '
4l 4
l u.4FI 36.148 25.478 47.3e8 M.M8 47.stl M.6tl 47.381 25.47136.148 47.tel -
.j
-........=
5 1 39.928 st.nel ts.15146.491 M.791 es.Mi rF.5sl es.MI rF.368 u.951 M.MI 28.238 M.6tl 5;
I 44.4el 23.371 rl.39147.391 M.999 es.478 27151 es.471 M.998 4F.ml 25.3s8 21.3F8 so.4el t
6 8 37.495 M.258 47.e48 r6.6Fl 47.341 rF.73148.951 r?. eel 47.491 M)448 46.61123.978 37.578 ~ 6!
8 3F.71124.338 47.r$1 M.99147.478 rF.5el es.3FI r?. set 47.478 M.9914F.r9124.338 37.F11 -
F I 3a.398 re.69141.5el 76.21147. sal 26.941 es.e48 27.578 4a.9el rF.Foi 41.96 47.978 35.6sl 43.791 re.ul 37.Fel -
7+
l M.nll re.94... 8 26.6 1 es.528 27.3r1 te.53127.19144.53127.3r8 es.tri a6.688 41.961 re.945 se.111 4
a 133.96136.688 25.F614.83126.98147.831 r?.Eri 45.751 r?.Mi 48.708 36.sel M.468 25.58137.13133 i 13.461 17.478 M.e51 47.et t EF.tF144.Sel rF.19146,3812F.39148.388 rF.tFS.4F.011.M. ell 3F.4
~
8i 9
8 34.12120,14141.391 76.14144.378 r6.96147.551 M.398 es.oll rF.tel 44,Mt 303142.598 21.18134.351 134.11120.94148 %l M.6tl 44.5tl rF,Mi
.9>
48.538 27.19148.ul 27.328 48.5r126.61148.968 28.94138.111 Lto ;6 le 136.6el 23.4el 47.148 2F.32146.4el 26.448 47.Mi M.53147.est M.FFI 46.961 25.r4 8 37.Mi 1 17.711 24.338 47.29 8 76.998 47.471 !F.381 44.178 77.308 47.473 M,991 47.791 24.338 17.711
.... ~
la 1 39.671 rt.rtl 25.4614F.36I 26.est 47.378 M.79147.471 M.6tl 46.orf 25.Fel Fr.orf es.598
'3 I 4e.4el 21.371 25.391 47.391 24.991 44.474 27.151 44.4F8 M.998 47.391 25.398 21.37 8 48.481 11 tr 8 46.548 35.958 25.74146.95125.Foi 45.Fel as.ari 4F.s78 r1.151 M.148 et.Eri tr i 46.471 36.141 25.478 47.3s1 26.628 47.828 M.6tl 4F.34I 25.471 M.148 =e6.4F1 3
66.r l rt.Mi M.ist er.MI rl.461 u.tFl r3.Fri et.Mi 46.sti 13 -
146.51121.448 re.Mt 42.0s126.3614r.esi M.361 r1.448 46.518
}
s6 3 39.59137.948 21.223 37.9s1 re.Mi 37.118 3s.298 34 '
I so.ul 37.Mi re.wl Sr.nl re.M117.M8 4e.411 i
15 I u.eli 32.978 w.e51 I u.tel 13.441 n.e48
' e5 :
+
e e
e a
a a
J n
a F
t a
e a
6 n
{
i t
t NE-920 NIC9 Core Performance' Report Page 16 of 51
}
I i
i 1
i f
i Figure 2.4 NORTH ANNA UNIT 1 - CYCLE 9 ASSEMBLYWISE ACCUNULATED BURNUP f
COMPARISON OF MEASURED AND PREDICTED
.(GWD/NTU) e e
a n
t a
s a
a r
r a
c a
$Ss.MI M.nlas.nl I==== a t
i sb9 MPF l t 8.651
- 1. eel..e.131 j
a i es. Set 37.est re.9el 37.261 r1.e98 37.aol 39.sel 2
e.1&l -e.751 e.6tl -1.3rl -1.FFI
.l. 3.191 -4.918 3
146.rel 21.611 n.918 43.aol 25.781 tr.nl 24.ul 21.95147.asi 1
I e.nel s.793 1.ast.e.4al.t.431 e.911 s.rSt r.ori
- 1. eel 3
I 4
e u.rtl h.531 25.64146.ml M.Fri 46.e71 M.57147.378 25.65136.568 46.674 i -e.nl e.ul s.651 -l.134 e.351 -2.org -e.201
- e. col e.718 1.158 -o. set 4
5 1 39.921 21.06l 25.151 %.498 M.791 44.MI FF.581 44.F68 fr.16l W.938 M.998 23.23I 39.618 a.631 -e.961 -1.961_e.ul -1.961
}
5 e.598 I -s.tel -1.448 -e.938_-3.4e1 -e.M). o.191 1.578 r
6 i
1 17.491 24.r51 47.o61 26.671 47.MI 27.731 es.951 27.641 47.491 r6.441 46.631 23.978 37.5tl -
i 3 241.e.e41 +r.est -1.411 -1.461 -e.511 6
1 -e.598 -e.338 -e.498 -1.ast -e.r91 1.571
- 1. ret
- -... ~.. _
I 38.391 re.69141. Set r6.ril 47.548 r6.948 44.841 rF.578 44.988 27.7 7
7 I a.731 -1.17. -2.sel -3.511 -I.938 -I.4el e.641 1.398 r
~..-
...... ~
8
[
1 33.945 36.6e1 25.Ml 46.431 26.9st 47.ast tr.stl 45.nl 27.MI es.Fel
~.. I'.1.151 r.341 -e.ett _e.tel a
l 1.418 -2.3el -1.trl -e.3FI -e.rel -4.131 1.231 -1.154 s.233 e.6FI -1.M 28.14141.391 M.nel 44.371 to.96147.551 M.391 es.est 27.1e1 as.Mi M.318 4r.59121.14138.358 9
~ l i sa tri 1.5el 3.16l e.6a
- e. ort.3.stl.l.MI. nl.e.331..336.r.sti -2.978..e.sel -e.ast -e.531 -1.131 9
l i M.6el 23.nel 47.348 27.3r1 46.441 26.461 4F.261 26.531 er.sel M.FTl 46.963 25.248 37.795 le
_ -.... = _
3 -r.941 -3.all -e.r48 1.231 -2.r68 -3.est -r.5el -2.411 -1. eel -e.sti -e.7el 3.748 e.trl le t
-. ~
31
[
1 39.671 21.211 r5.468 47.Ml M.48147.stl M.29147.478 M.6tl u.trl 25.781 Fr.orf es.591 3.est e.4FI t -1.791 -e.733 e.tel -e.est -3.a91 -2,378 -3.168 -2.sti -1,378 _r.sel.3.pl 11 t
32 l
___ i u.541 35.951 25.741 46.951 25.784 45.?tt 25.62147.e71 25.158 36.848 46.521 r._
l e.nel.e.551 3.est.e.sti -3.nal -r.rri.3.est..=1.
.tri -e.eil
- e. net nr 13 25.468 41.178 23.728 tl.ett 46.811
~ ~ ~ - -
I u.MI rt.nel re.let er.rel I.e.531 2.e73 -e.nl s.671 -2.6sl -1.9si -2.611 -8 ast e.est I antisettic aus 1 33 Iocr ayy..e,ss8 -
l
~ ~.. - - - ~ ~. - -
1 39.593 37.961 21.2r1 37.901 Fe.M i 37.111 39.r91.
' M i
14 1 2.est e.4rl 3.Mi s.991 -r.931 -1.sel -r.7sl I avs ass act i 15-
[
8 3a.est 3r.971 39.est I strF = 1.2F 8
[
15 I stasease sty 8 l -e.tal -1.sel
- e. eel l
e o.as I
t t
P N
M L
E J
m S
F E
8 C
B i
i t
SATCif St% RIDE T
ifwD/NTUS I
SA7Cil NO. OF.
DOC SATCH EOC BATCM CYCLE ASSEfGLILS pumar allmar atmar M2/95 _
1 19,664 56,135 16,671 N2/6 1
33,962 48,899 6,957 BLeonF ULT 7
7 52,943 39,795 6,a52 SA 8
31,989 38,253 4,273 188
- 8.19 lIE a 0.35 at 4
36,876 46,623 7,M7
l-----
98 1
21,136 45,754 M,614 Sil s -0.43 i SE o -0.31 14A 24 25,491 44,EE6 19,966 les 27 22,854 44,227 21,377 16C 12 22,246 39,113 16,867 j
11A-32 e
M,779 M,779 118 Se e
23,263 23,263 CYCLE AVERACE ACCUMULATED Suasar = 28,609 i
i 1
NE-920 NIC9 Core Performance Report Page 17 of SI
.l
Figure 2.5A NORTH ANNA UNIT 1 - CYCLE 9 SUB-BATCH BURNUP SHARING 44 I
SUB-BATCH l0
.u 40
- ^N O
A LP W'
SUB-BATCH a <
MMNF 36
^
^
Mr N2/9B g
. rSY" nf a
&Q V
~
l 9'
SUB-BATCH 32 E
11B y
4 l i l I i
f y
~
I i
g k 28
&^
</~
b n
o 24 O'
V sg
--N
. E cf f
20 /
X.#
- ey r/
y
. fl 8'
8 16 i
M I
w J
. /
12
-,['
),
f; W
i 8
F~
f' 1
4 f '
f
/
u f'
n O
2 4
6 8
.0 12 14 16 18 20 CYCLE BURNUP (GWd/HtU)
UNES ARE PREDCTED VALUES, SYMBOLS ARE MEASURED VALUES.
NE-920 NIC9 Core Performance Report Page 18 of 51 l
i t
t I
i, i
Figure 2.5B NORTH ANNA UNIT 1 - CYCLE 9 r
SUB-BATCH BURNUP SHARING I
t i
SUB-M 48 ;
3 i
10A j
i 6L o
44 f
BUB-BATCH y
M 10C 40 y
a W
o X
~
n o
/
o
.l
^
4 I
W SUB-BATCH l
36 g,
g l
11A l
, f; '
pr 1
/r X
,5 i
/+
g n
y
_ g g 32 rv t
x
/J
.Jo h
/V
)
)
t 3
/"
28 JY J
{
_D JC
+
f t#
+
on y
1 fe
,y >
f.
+
24 j
/
t v
t 8
- s 20 g
J e
i VI
@ 16
. j
.j to pe i
iF W1 12 f
i JK f
i u
i 8
y
</
A s
If-4 1
3k f
t u
- p, 0
f 0
2 4
6 8
10 12 14 16 18 20 CYCIZ BURNUP (GWd/MtU)
UNES ARE PREDICTED VALUES. SYMBOLS ARE MEASURED VALUES.
l Page 19 of 31
-NE-920- NIC9 Core Performance Report y _..
_..y__,...
'I
I I
4 l
Figure 2.5C NORTH ANNA UNIT I - CYCLE 9 l
SUB-BATCH BURNUP SHARING l
l 60 i
eB l'
o 55 SUB-33@CR 1
pg 52 O
SUB-BATCH j
l i
10B
.e 4e M
S s%>
i j
. D$
k'
.MW
/NC l
4
..,4W
/f 1 AT'
/P a.
ff
~
/7 i
_,#6V Af b
/M~
/}%
i
~
/#
l l
5 H
i u
y il 3 8 p
l i
F m
4 i
/R j
j 32
},.1 F
.o -
A siW i
28 I
s#
/F i
Nf'
~m PF) i l
r -
20
]
0 2
4 6
8 10 12 14 16 18 20 l
l CYCLE BURNUP (GWd/MtU)
UNES ARE PREDICTED VALUES, SYMBOLS ARE MEASURED VALUES.
l 1
i r
NE-920 NIC9 Core Performance Report Page 20 of 51 r
Figure 2.5D NORTH ANNA UNIT 1 - CYCLE 9 SUB-BATCH BURNUP SHARING SUB-BATCH 7A O
48 SUB-BATCH 8x O
44
$a m
h
./
40 f f) a
/
c
/
v t
g U
j h
4>
h.
/
O
~
A
~
/
o y'
v g
,d
/. 6 j
36 v
f s
/y Af r.
/
Q f
i
/
-h,
~
E *K C00RD!mait SEstesATED IN & EIRILAR OWSCR). IN itt 't" SIREC110N INE CORE 1151VilES INTO 63 Ax!AL POINTS Si&pilHG FDon TE TOP GF TE CORE.
- 1. f-Otil INCLUDES A 101&L UM2Rf AINTY OF 1.05 E I.03.
- 2. COPE Titi - DEFINED AS IDE axlat eu4cRAKT DOER TILI FRON ItCORE.
- 3. MAPS 9 AND le WEPE IMARTED-COPE FLUI m&Ps 1&rEN FOR INCORE/EECORE CALIBRATION 81M CALIRRail0NS.
RAP 14 ha$ A FLUM MAP Ta&Est U DECK DETECTOR BRIFT. h__{'_PerformanceReport Page 28 of 51 Figure 4.1 NORTH ANNA UNIT 1 - CYCLE 9 ASSEMBLYWISE POWER DISTRIBUTION N1-9-06 P P ti p 1 5 J M S F E 8 C 8 a . e.30. 4.38. 6.34. PEE 33CTE8 . PsitalCitD. . 4.34 8.39. 8.38. st anqD 1 M&3URf D. .. PCT 81FTEMMCE. 1.8. l.8. 1.3. .PCI $1FFtM M E, . s.31. s at. 1.13. 0.95. 1.16. 0.61. 6.31. 2 . 5.32. 0.59. 1.14. 0.95. 1.16. 0.61. s.32. 3.0. -1.5. 9.2. 9.2. 8.3. 4.2. 1.5. . e.34. 1.18. I.21. 1.16. 1.33. 1.16. 3.22. 1.38. 8.35. 3 . e.35. 1.12. 1.22. 3.16. 1.13. 1.15. 1.22. 1.81. 0.35. 2.2. 2.8. e.2. e.e. -0.0. 8.3. 9.6. 1.2. 2.4. . s.36. s.Se 1.25. 1.17 8.28 1.9.1.28.1.17.1.25.0.41.0.34 4 0.35, 0.82. 1.25 1.20. 1.3s. 1.21. 1.28. 1.17. 1.25. 0.88. 0.34 1.9 1.7 2.1 2.3 1.5. 1.6 8.2. 8.2. -#.1. ~4.2. -4.6, c.31 1.89 1.26 1.15 1.28 1.16 1.38 1.16 1.26. 1.15. 8.26. 3.18 S.11. s.33 1.#9. 1.25. 1.37 1.31. 1.1 7. 5. 36 1.16. 1.28. 1.14. 1.22. 1.67. S.31. 5 . s.s e.8 e.9 1.2 1.9. 3.1. 3.1. 1.8. e.1. -0.8. -1.6. -2.1. - 1.3. c.60 1.21. 3.17 1.28. 3.19 3.38. 3.12. 1.35. 1.19. 3.28. 1.17. 1.!!. 6.68 0.68. 1.22. 3.18 3.39. 1.22. 1.35. 1.16. 1.36 1.28. 1.25. 3.14. 1.15. 0.59 6 0.7 S.7. 1.1. 1.5. 2.8. 3.6. 3.6. 2.7.
- 1. 8. -2.1. -2.1. -2.7. - 2.6 e.38 1.13 1.16 1.28 1.16 1.30 3.13 1.28. 3.13. 1.30. 1.16. 3.25. 1.16. 1.13. e.Se.
8.39 1.12. 1.13 1.25. 1.16 1.32 1.17. 1.32. 1.36. 1.33. 1.13. 1.23. 1.10 1.t9. e.29. 2 1.6 -0.5 -0.6 -9.2 e.1 1.3 3.5. 3.1. 2.3. 1.9. -0.9. - 3.8. -3.6. -3. 6. -2.9. . e.38 s.we 1.32. 3.19. 1.5e 1.32. 1.26 1.23. 1.28. 3.12. 1.30. l.19. 1.32. 0.96 4.38. 0.37 9.93 1.31 1.19 4.32. 3.15. 1.33. 1.27 1.29 1.13. 1.29. 1.16. 1.27. 8.92. s.38. 8 -2.5 -0.6 -0.7. 0.3. 1.2 2.3. 3.8 3.0. 8.8. e.8. -1. 8. -3.8. -3.6. - 2. 3. - 1. 5. 8.30 1.13 1.46 4.26 1.36 1.36 1.13. 1.28. 1.13. 1.38. 1.36 I.28. 3.36. 3.13. e.38 4.29 1.16 1.13 1.27 3.35. 1.33 3.12 1.!?. 3.13. 1.34. 3.16. 1.16. 3.33. 1.12. e.38 9 -2.6 -2.6 -2.6. -0.5
- 1. 5.
0.7 -8.8 -0.8. 8.8. *S.8. 9.2. -1.8. -1.8. -0.7. 0.5. 0.69 1.23 1.17 1.26. 3.19. 3.39. 1.12. 1.38. 1.19. 1.28. 1.37. 1.23. 8.64. . e.59 1.88. 3.38. l.33. 1.21 1.29 1.11. 1.26. 1.16. 3.28. 1.18. 1.23. 0.61. ls -2.6 -2.4 8.9. 2.6. 1.6. -1.0. -1.s. -1.3. -0.7. -s.6 e.6. 3.5, 1.8. ..................................................................................... 1.99. 8.31. e.31 8.09. 1.26. 1.15. 1.28 3.36. 1.34. 3.36. 3.25. 3.15. 1.26 11 s.31 1.18 1.25. 1.18. 1.28. 1.12 1.29. 1.12. 1.26. I.35. I.25. 8.18. 8.32. 0.1. 4.1. 0.8. 2.1 - 0. 0. - 1. 2. - 1. 2. - 1. 2. -0. 6 -0.1. e.2. 8.6. 1.2. 9.36 s.81. 1.25. 1.17. I.28. 3.19. 1.28. 8.17.1.25. f.83. 8.34 e.35. 0. 82. 1. 28. 1.18
- 1. 26.- 1.17. 1.25. 3.16. 1.26. 0.81. 8.34.
12 - 3.1. - 0.4. -0.2. 2.5. 2.3. 2.8 0.3 - 1. 9. -1. 9. - 2. 2. -l. 6 e.35. 1.10 1.22. 1.16. 1.33. 1.36. 1.22. 1.14. 8.35. e.35 1.!! 1.!!. 3.32. 1.38. 1.11. l.18. 1.68. 8.36. 13 1.7. e.9. -0.3 -2.2 -2.6. - 3. 9. -3.1. + 2.e. - s.2. 0.38. 0.61. 3.16. 9.95. 1.13. 0.64. 0.38. le 3.12. 0.62. 3.16 0.96. I.It. 8.59. S.38. 0.9 - 2.1. 6.3.-0.8.-3.0.-3.8.-3.5. St as@APD s.30. 8.35. 9.29. 8WERAE Ilfvl&THk. . f.38. 8.39. 9.28. .PCI B!FFT81[EE. Is . 1.5 .l.e67 3.6. e.5. - 2. 5. SumARY MAP MOI M1-9-06 DATE: 81/19/91 POWER: 99.87Z CONTROL ROD PC$1TIDH: F-GIT) = 1.922 FTR D Boat AT 228 $YEPS F-DHtMl s 1.413 led 1.3121 INE 3.9973 I FtZ) s 1.245 $W 1.0885 15E 8.99M FtKY)
- 1.422 BURNJP
- SOS WD/MTU A.O. s -3.861Z NE-920 NIC9 Core Perforniance Report Page 29 of 51
Figure 4.2 NORTH ANNA UNIT 1 - CYCLE 9 ASSEMBLYWISE POWER DISTRIBUTION N1-9-19 R P W R 1 E J M F E S C 6 Parenne. . e.n. e.3a. e.Se. ser:ICtre. . wansito. . e.31. e.4e. e.n. w -re 3 . PCT DIFTI.atNCE. . J.9. 3.9. 3.3. . PCT SIFTIEOG. . 8.33. 0.59. l.01. 8.47.1.0 8. 6.59. e.13. 2 . e.34 e.54. 1.82. 8.Se. 3.43. e.61. s.34 4.7 - 1. 7. 1.8. 1.1. 3.5. 2.4. 4.0. 9.37. 1.95. 1.21. 1.D6. 1.29. 1.06. 1.25. 1.05. 8.17. 3 . 9.38. 1.07. 1.19. l.96. I.29. 1.07. 1.23. 1.99. e.39 1.8. 3.5. -1.7. -0.2. -0.3. e.F. 8.8. 3.1. 5.7. 4.37. e.42. 3.27 1.13. 1.34. 1.15. 1.34. I.13. 1.F7. e.82. e.37. 6 e.37 e.52. 1.20 1.14. 1.35. 3.16. 3.35. 1.34. 1.F9. S.13. e.5e. 1.6
- 8. 7.
1.1. e.7 c.9 0.8. 8.3. e.9. 1.1. 1.3. 1.8. .....e.33. 1.05 1.27. 3.13. 1.37 1.13. 1.37 1.13. 1.37. 1.13. 1.27. 1.85. e.33. 0.33 3.64 1.25. 1.12 1.37, 1.16. 1.48
- 1. 8 5. 1. 34. 3.13. 1.25. I.e 5. e.M.
5 -1.2 -1.2 - 1.1. - 1. 0 -0.1 2.F. 2.1. 1.6. e.9. -e.4. -1.3. -0.2. 2.5. 8.59 1.23 1.13. 1.37 1.16. 1.38 1.13. 3.35 1.18. 1.37 1.13. 5.tl s.59. 0.59 1.28 1.13. 1.36. 1.19. 1.41 - 1.16, 1.45. 1.28. 1.34. 3.11. 1.29. 0.60. 6 0.2 e.2. -4.4 -1.0. 0.7 2.3 2.3. 2.1. 1.5. *1.8. -1.9. -1.8. 1.0. ........................ 3.13 1.34 1.14. 1.38. 1.44. 1.38. 1.13. 1.34. l. M. 3.08. e.34. e.30 1.01 1.ta. 1.34 0.D 3.01 1.06. 1.33. 1.13. 1.37 1.16. 1.41. 3.17. 1.41. 1.13. 1.34. 1.85. I.tl. e.38. F 1.6 -0.1 -0.1 -1.2 -2.2 -e.e 2.0. 2.0. 2.3. 2.4. -0.3. -2.9. -I.4. -e.7. e.3. 0.39 c.h I.79 1.15. 1.37. 3.13 1.38. 3.22. 1.34. 3.13. 1.37. 1.15. 3.29. e.M. e.39 p 38
- 4. h. l.79 1.85. 1.37 3.14. 1.48. 1.F5. 1.49 1.14. l.M.1.12. 1.27. 0.87. 0.39.
8 -2.0 -e.3 -e.3 -0.1 e.1 0.7. 1.9. 2.s. 1.3 1.1. -0.6. -2.9. -1.4. 4.4. 2.1. .....1.M. 1.33. 1.38 1.34 1.38 3.34 1.M 8.13. 1.34. 1.s6. 1,41. e.38 e.30 1.81 1.M 9.29 4.48 1.83 1.33. 3.14. 1.37. 1.13 1.35. 3.15. I.39. 3.14. 1.34. 1.64. 1.D4 0.31. 9 -3.6 -2.9 -2.9 -1.3 8.3. - 0.7. - 2.6. - 2.6. 0.5. 0.4. 1.0. -0.2. 1.?. 2.7. 4.5. 0.59 1.21 1.13. 1.37. 1.34 1.34. 1.13. 1.Se. 3.18. I.37. 1.13. 1.21. e.59. S.57 1.16 1.13 1.39 1.18. 1.3 5. 1. le. 1.35. 3.17. 1.37. 3.15. 1.76. s.63. -3.8 -3.8 -0. 2. 1.7 8.2 -2.5. -2.5. -2.2. -1.0. -0.2. 3.7. 4.3. 6.2. ......e.33. I.e5. 1.27 3.13. 1.37. 1.83. 1.37. 1.13. 1.37. 1.13. 1.27. 1.tk e.33. B.33 1.05. 1.27 1.34. 1.35. 1.38. 3.33. 1.10. 3.36. 3.14. 1.38. 1.09. e.35. II -0.4. -0.3. 8.4. 1.3. -1.4. -F.7. -2.7. -2.4. -0.6. e.7. F.3. 3.7. 5.5. 8.37. 8.62 1.27 1.13 1.34. 3.15. I.34 1.13. 1.27. 0.62. 6.37 e.38 8.64. 1.29 1.12. 1.31. 3.12. 1.38. 3.11. 1.26. 8.94. 8.5e. IF' 3.6. 2.5. 1.5. -1.0 -3.7. -2.6. -2.7 -1.6. -4.6 2.4 3.2. . 8.37
- 3. 0 5. 1.21. l. h. 1.29. 3.06 3.23 1.e5. 4.37.
. e.38. 3.08. 1.21. 1.83. 3.!?. l.94. I.19. 1.95. 6.38. 13 3.2
- 2. 6. - 0.2. - 2. 7.
- l.9.
-2. 8.
- 2. 8. -0.4.
3.8. . 9.33. e 59. 3.01. 0.87. 3.01. 0.59. 8.33. . e.34. 0.62. 1.e4 4.&&. 0.99. 6.54. S.32. 14 2.8 4.9 2.6. 1.5. -1.8. 1.8. -3.4. AWERAM . Sf ae&FD. . e.38. 8.34. 8.29. DEvlaillae . 8.32. 4.46. 8.29 .eCi SIFFERE*I. 15
- 1.8 7.2. 3.7. -e.1.
al.139 StP9uPY KAP MO: p(1-9 19 DATEI 12/17/91 POWER: 99.9&% CONTROL 200 POSITION: F-0(T) s 1.845 GPTRI D ELMK AT 228 STEPS F DHtMI s 1.457 IN 1.4819 i HE 1.8949 I F(Z) a 1.162 SW 8.9942 i SE 3.9991 F(KY) a 1.472 Bums.lP s 9642 PeWB/WTU A.O. s -4.911% NE-920 NIC9 Core Perforn:ance Report Page 30 of 51 Figure 4.3 NORTH ANNA UNIT 1 - CYC1.E 9 ASSEMBLWISE POWER DISTRIBUTION N1-9-29 e e u a t e a a e r c s e a a . ea m cita . e.x. e.44. e.x. eenterts ..nstso. . e.a. e.M. 2.a. w w =rs 3 .m sarnmocr. 4.4. 4.4. s.e. .ect strruoct. 8.36. 0.63.1.M. e.99. l.M. 0.65 0.37. t .. 4.30. 0.62.1.05. e.92. l.M. e.6%. e.39. 6.0. -1.9. 1.3. 1.3. 2.0. 3.5. 5.5. . e.41. l. M. 1.78. I.M. 1.30. l.M. 1.ft. 1.06. e.41. 3 . o.o r. 1. 65. 1.17. 1.05. 1.1'9. 1.0 7. 1.23. 3.18. e.M. 2.4.
- 2. e. - 2. 0. -0.6. - 0.6. 1.0. f.6. 4.3. F.5.
e.41. e.05. 1.77. 3.18. l.32. 1.13. 1.12. 3.10.1.2F. 0.45. e.41. 4 1.28. 1.31. 3.12. 1.13. 1.32. 1.12. 5.29. 0.8F. s.47. . e. 4 F., S. M. 7.8. 1.1 1.2. e.3. e.4. e.4. 4.3. 1.3. 1.7. 1.8
- 2.6.
.......................................................................................1.11. 1.33. 1.11. 1.27. l.M. 0.3F.
- 6. 3 F. I.e4. 1.27. 3.11 1.33. 1.11. 1.35 e.37 1.e5. 1.25 1.09 1.33. 3.12. 1.37. 3.12. 1.35. 3.11. 1.25. l.M. e.34.
5 - e. 2. - e.2. - 1. 2. - 1. 5. -0.6. 1.5. 1.5. 1.3. I.3. -0.F. -1.3. 8.2. 3.5. ......................................................................................1.35. 1.15. 1.33. 1.11. 1.20. e.63. 0.63. 3.28. 3.11. 1.33. 3.15, 1.35 1.11 0.63. 3.28. 1.10. 1.33 1.15 3.37. 1.12 1.37. 1.16. 1. 38. 1. 64. 1.19. e. 64. 6 0.5. 0.5. - 0.5. - 1.6. - e.e 1.5 1.4. 1.3. I.e. -2.0. -F.1. -0.7. 2.0. 1.11 1.35. 1.!!. 3.15.3.13.3.35.1.11. 1.3F.1.M.l.M. e.M. 0.34 1.e4. l.M. 3.12 7 . 2. 84. 3.33. 1.1F. l.M. 1.13. 3.38. 1.19. 1.24. 1.05. l.M. 8.35. e.35 1.e3. 1.05. 1.30 3.3. -e.4 -0.3. -1,6 -2.4 -1.5 1.1. 3.1. 1.5. 1.6. -1.0. -3.2. -1.2. -0.3. 0.9. .................................................................................................1.35. 3.!!. 1.35. 1.13. 1.79. 0.90. 8,45. e.45. s.9e 1.79. 1.13. 1.35 1.11 1.35 l.Is 8.44 p.no. 1.29. 1.lt. 1.34. 1.11 1.%. 1.39 1.35. 1.11. 1.33. 1.09. 1.28. 0.92. e.M. 4 -2,1 -0.5 -0.6, - e.5. - 0.5 0.0 0.9. 1.8 e.2. e.3 - 1.4. - 3.1. - 1. 2. 1.5. 3.4. e.34 3.e4. 3.06. 1.3r 1.11 1.35. 1.11. 1.35. 3.11. 3.35. 1.11. I.37. 5.06. 1.e4. 8.34 e.13 1.91. 1.93. 1.30 1.10 1.34 1.07 1.30. 1.13. 1.35 't. !!. 1.32. 1.46. 1.8 F. 0.M. 9 -3.7 -1.6. -F.6. -1.4 0.7 -1.4 -3.7. -3.7 -e.4 -e.5. s.5. -0.1 2.8 3.5. 5.5. . e.63 3.te 1.11. 1.33 1.15. 1.35 1.11. 1.35. 1.15. 1.33. 1.11. 1.20. e.63. . e.61 1.36. 1.18. 1.36. 1.14. 1.31. 1.07. 1.31. 1.13. 3.33. 1.5 2. 1.26. e.M. le -3.7. -3.2. -0.1. 1.6 -0.2. -3.5. -3.4. - 3.1. - 1. F. -0. 6.
- 1. 7.
5.0. 7.4 B.17. 1.06. 1.t?. 3.11 1.33 1.11 1.35.1.11.1.33.1.11. 1.!F 1.06.0.37. 0.37 1.06. 1.28. 3.13. 1.33. 1.07. 3.38. 8.07. 1.32. 3.12. 1.30. 1.le. e.39 Il 9.6 0.6. 3.0. 1.6. - 1.9. -3.5. -3. 5. -3.3. - 8.3. e.6. 3.0. 4.7. 6.9. e.41. e.85 1.77. 1.10 1.32. 1.13. 1.32. 1.3 0. 3.27. e.45. 8.4 8. 12 s.43. 8.64. 3.79. 1.09 1.78. I.e9.1.78. I.ps.1.F6. 0.64. 8.45. 4.4 3.0. l.6. - I. 2. - 3. 2 -3. 2. - 3. 8. - 1. 8. -0.6. 3.3. 4.5. . e.41. 3.06 1.78
- 1. M. 3. 29. l. M. 1.20. l. M. e.41.
e.43. 3.10. 1.Te. 1.e7. 1.27. I.e4. 3.le. 1.05. 8.43. 13 4.4 4.5. e.4. - 3. 2. -1. 9. - 1.6. - 1. 3. -0. 2. 4.3. . e.37. 0.63. 1.M. e.98. I.M. 0.63. 8.37. le e.38 0.67. 1.07. 0.97. I.e2. 0.67. 8.36. 4.5. 6.5. 3.2. 2.1. -1.4. -1.1. -2.9. $f6MDeP9 f.34 4.44. 8.34 4WERAM . ervlaimm. . s.37. s.47. e.34 .ect Str7pocz. 15 2.1 = =1.696 . s.6. 4.s, e.s. $Mtity fuP 9831 K1-9-29 DATER 89/81/92 POWERI 94.91% CONTROL 300 POSITION: F-QtT)
- 1.74 9PTRI D EAJE AT 224 ST[PS F-DHttti = 1.464 Isg 9.9997 l IE 1.0661 I
FtZ) = 1.158 sw 8.996 i SE t.9997 F(KY)
- 1.416 16858 PWD/MTU A.0.*-2.407%
SURt#JP = A Figure 4.4 NORTH ANNA Unit 1 - CYCLE 9 HOT CHANNEL FACTOR NORt1ALIZED OPERATING ENVELOPE 2.4 PRE-SGTP IQ-LD(IT 2.2 :_,,".~~ POST-SGTP g _ FQ-LD(IT 1.8 t< w b a
- 1. 6 O
1.4 1.2 1 0.8 O 2 4 6 8 10 12 CORE BEIGEIT (FT) NE-920 NIC9 Core Performance Report Page. 32 of 51 Figure 4.5 NORTH ANNA Unit 1 - CYCLE 9 HEAT FLUX HOT CHANNEL FACTOR, F (Z) g N1-9-06 2.5 pgg_g:3TP FQ-LIMIT O tas 2 - g , = = = =........ ". ".. a = g g 1.5 a g s c 1 b a g p O.5 6:c t 1 5 1 1 1 60 50 40 30 20 10 0 DOTTCH AXIAL POSITION QCDF.S) TOP NE-920 NIC9 Core Perforrance Report Page 33 of 51 i L---_---_---- Figure 4.6 NORTH ANNA Unit 1 - CYCLE 9 HEAT FLUX HOT CHANNEL FACTOR, F (2) q N1-9-19 2.5 pgg_ gary FQ-LIMIT G H e [ 2 c: .e a se," R ..,....,e e e e s 's, 4 e a W 1.5 u ,= H e O s m e 1 m H e h = 0.5 60 50 40 30 20 10 0 BOTini AXIAL POSITICH OCOES) TOP NE-920 NIC9 Core Performance Report Page 34 of 51 ~ Figure 4.7 NORTH ANNA Unit 1 - CYCLE 9 HEAT FLUX HOT CHANNEL FACTOR, F (Z) g N1-9-29 2.4 POST-SGTP FQ-LDET - 2.2 G w -y [ 2 1.8 .=8 es,**8 e**e* e E a M 1.6
- "s s
e .e e. a ,e ,o U 9 1.4 e s -o* s e 1.2 a e e 5 1 -s 0.8 60 50 40 30 20 10 0 BOTTCH AXIX, POSITION 000 DES) TOP NE-920 'NIC9 Core Performance Report Page. 35 -of 51 a--__-__-__ Figure 4.8 NORTH ANNA Unit 1 - CYCLE 9 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, F (Z)*P, vs. AXIAL POSITION g 22 % e.. ee, 1.8 ~., 1.8 1.4
- n. 1.2 1.0 0.8 0.8 0.4 0.2 0.0 M
M 4 M E N 5 2 2 8 1 AXIAL POWTION 900DE) FQP UMir i
- WQGMUM FQP BOTT0W Of CORE TOP Of CORE NE-920 NIC9 Core Performance Report Page 36 of 51
_J Figure 4.9 NORTH ANNA Unit 1 - CYCLE 9 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, F (Z), vs. BURNUP g I I 2.3 2.2 2.' l l l h I f I!! I i M 2.0 ' l, a M M l 3 ++ l l
- 1. 9 4 4l ;++
o 8 ' ' + + + + = + 1.8 g d 4 e d 1.7 = = 1 g1.. 1.5 1.4 1.3 0 2 4 6 8 10 12 14 16 18 20 - - _ - - -*'? 20 NycyconeurormanceReport Page 37 of 51 ~ Figure 4.10 f NORTH I,NNA Unit 1 - CYCLE 9 i MAXIMUM ENTHALPY RISE HOT CHANNEL FACTOR, F-delta-H, vs. BURNUP 1.65 mg ~ TECE SWBC LZbEE1 m 1.60 g i M i i i 954 POER wo i nCu SPEC Lntri 0 1.55 Powsm comsman d TECH SPEC EDEIS u = $ 1.50 l = W Og u 4 + k + 4 4 +$ 1.45 + i w + + +- 4 + 1,,, + + + 7 k 1.35 0 2 4 '4 8 10 12 14 16 18 20 CYCLE BOIOUP (GWd/MtU) i ] J 1 NE-920' NIC9 Core Performance Report Page 36 'of 51 ~ l~ l Figure 4.11 NORTH ANNA Unit 1 - CYCLE 9 TARGET DELTA FLUX vs. BURNUP l l I I O 14.0 12.0 i + 2o o i l , jr l ll l' Il' i 1 8.0 i l l } i l l Il E IIiiii!il1-W 6.0 i l1l l 4 O l u E l l 1 l 4.0 l l l l' l 2 II i li l l l 2.0 g l l ll. I I a oo e i ~ I, I I l !l I I i 11'l
- 9,+* 4L,4.e
,- +. 7 -6.0 -0.0 l -10.0 0 2 4 6 8 10 12 14 16 18 20 CYCLE BUIGIUP (GWd/MtU) E -_ ___ _ __ __ NE-920 NIC9 Core Performance Report Page 39 of 51 i f Figure 4.12 l NORTH ANNA Unit 1 - CYCLE 9 l CORE AVERAGE AXIAL POWER DISTRIBUTION N1-9-06 -1 t Fz = 1.245 j AXIAL OITSET = -3.8617. j i r i I 'I e i .j 1.4 l l t ..= = =,....,,* 1.2
- .s*
se,e, s - m e e .a y a 6 s O W w H i 0.8 i a a
- e e
usa. 0.6 e e e-O.4 ~m e 0.2 60 50 40 30 20 10 0 i BOTTO( AKIAL POSITION 0000E8) TOP j i !i NE-920 NIC9 Core Performance Report 'Page 40 of'51 1 _ _ _ = - - _ _ _ _. _.. _ - -. _ _ - _, i i Figure 4.13 NORTH ANNA Unit'l - CYCI.E 9 i, CORE AVERAGE AXIAL POWER DISTRIBUTION i N1-9-19 e t Fz = 1.162 AXIAL OITSET = -4.931% i ) ? I t ~ ? r { . i F l t 1.4 i i 1.2 - ,a e's ess 8 f .a mes = e,* s i 6 1 = 8 Isa a e N m e = == 0.8 .i e a 1 1 w j c 0.6 s [ 0.4 - 1
- c 1
t I f 0.2 60 50 40 30 20 10 0 BOTTOM AXIAL POSITION 0000E8) TOP i NE-920 NIC9 Core Perforwance' Report Page-41 :of 51-1 I ( \\ l Figure 4.14 r NORTH ANNA Unit 1 - CYCLE 9 CORE AVERAGE AXIAL POWER DISTRIBUTION .N1-9-29 i I l Tz = 1.138 AXIAL OFFSET = -2.407 i i t I I ) 1.2 1.1 - 1 - 1 o d 0.9 w ag g 0.8 l m !i 0.7 n Ins 0.6 j .) 0.5 1 i ?- t O.4 60 50 40 30 20 10 0
- t BOTTC3(
AXIAL POSITIOtt DIODES) TOP NE-920 NIC9 Core Performance Report Page 42 of 51 'l Figure 4.15 NORTH ANNA Unit 1 - CYCLE 9 CORE AVERAGE AXIAL PEAKING FACTOR vs. BURNUP .1 1.4 l I + 1 1.3 j i i i 4 i i c: l O g W++ i o Z ' 4 4 j 1.2 i m A N + +e + I b e A M l t i + i 4 1.1 i ? 0 2 4 6 8 10 12 14 16 18 20 CYCLE BGOIUP '(GUId/MtU) NE-920 NIC9_ Core Performance Report Page 43 of 51 Section 5 PRIMARY COOLANT ACTIVITY i r The specific activity levels qf radiciodines in the primary coolant are important to core and fuel performanco as indicators of failed fuel and are important with respect to offsite dose calculations associated with accident analyses. Two mechanisms are responsible for the presence of radioiodines in the primary coolant. Radiciodines are always present due to direct fission product recoil from trace fissil A materials plated onto core components i and fuel structured surfaces or trace fissile saterials,eristing as impurities in core structural saterials. This fissile material is generally referred to as " tramp" material, and the resulting fodines are referred to as trasp iodine. Tission products will also diffuse into the primary coolant if a breach in the cladding (fuel defects) exists. Tuel
- defects, when present, are generally the predosinant source of i
radioiodines in tre primary coolant. North Anna 1 Technical Specification 3.4.8 limits the radioiodines in the primary coolant w a dose equivalent I-131 value of 1.0 pCi/gm for l modes one through five, inclusive. Figure 5.1 shows the dose-equivalent 1-131 activity history for Cycle 9. These data show that the dose equivalent I-131 activity was substantially below the 1.0 pCi/gm limit for steady state power operation. The average full power equilibrium dose NE-920 NIC9 Core Performance Report Page 44 of 51 1 I equivalent I-131 concentration for the cycle was 5.51 X 10-3 pCi/gm which [ corresponds to less than 1% of the Technical Specification limit. Correcting the 1-131 concentration for tramp iodine involves calculating the I-131 activity from tramp fissile sources and subtracting this value from the seasured I-131. The resultant is an astimate of the I-131 activity resulting directly from defective fuel. The magnitude of i the tramp corrected I-131 can be used as an indication of the number of defective fuel rods. The cycle average tramp corrected iodine-131 ~3 concentration was 2.58 X 10 pCi/gm with an average desineralizer flow rate of approximately 99 gpm during power operation. 'This magnitude of tramp corrected I-131 typically indicates the presence. of defective fuel rods. Another positive indication of defective fuel is the presence of spikes in radiciodine during large or rapid power transients. Several iodine spikes can be seen on Figure 5.1. i 1 The ratio of the specific activities of I-131 to I-133 is used to characterize the type (size) of fu'el failure or failures which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days). For pinhole defects, where the diffusion time through the defect is on the order of days, the I-133 decays leaving the I-131 dominant in activity, thereby causing the ratio to be roughly 0.5 or more. In the case of larger leaks and tramp material, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than 0.1. The use of these NE-920 NIC9 Core Performance Report Page 45 of 51 I ratios with regard to defect size is empirically determined and generally used throughout the coseercial nuclear er industry. Figure 5.2 shows the I-131/1-133 ratio data for North Anna 1 Cycle 9. Aside from the large increases in the ratio during the time when the defects occurred, the 1-131/1-133 ratio settled out below a ratio of 0.4 to 0.3 toward the siddle and end of cycle. This indicates that the defects in the cladding were likely to be small to moderately sized. Fuel ultrasonic testing was performed during the Cycle 9 to Cycle 10 refueling outage. Two fuel rods in two fuel assemblies were confirmed to be defective. The two fuel assemblies are IA9 and 3A4. Both assemblies are from the new fuel batch for Cycle 9. Evaluation of possible failure rechanisms is currently in process. These fuel assemblies will be rer;tricted from further use in accordance with the Zero Defect Policy pending any repair projects to replace the defective fuel 28 I rods. NE-920 NIC9 Core Performance Report Page 46 of 51 l i l i Figure 5.1 NORTH ANNA UNIT 1 - CYCLE 9 i DOSE EQUIVALENT I-131 vs. TIME l i 1.00E + 01 i j 1.00E + 00 - ? y 1.00E 01 4% C) x LLJ Q., _A h 1.00E 02 i p.a../ n_ 2 1.00E 03 w P o A -100 1.00E - 04 i, T7 I I l-l g. -m
- i y
- 20 h e 1.00E - 05 31AUG90 19 MAR 91 050CT91 N WN t DATE Page 47 of 51 NE-920 NIC9 Core Performance Report sans aam samos. Figure 5.2 NORTH ANNA UNIT 1. - CYCLE 9 I-131 / I-133 ACTIVIn RATIO vs. TIME -m 1.5 1.4 1.3 1.2 1.1 1.0 = s O p 0.9 08 O 0.7 s .6 l 0 0.5 O.4 I 0.3 Il 8 "' l p.m
- m i.?
'M C= ==1 0.2 O.1 ~ ~ ye ~m O 0.0 00DEC9019 MAR 91 27JUN91 050CT91 13JAN92 22APRMt 31JUL92 OSNOV921WEBSS DATE NE-920 NIC9 Core Performance Report Page 48 of 51 N - ~ -. -. - q I l i l Section 6 l CONCLUSIONS i The North Anna 1, Cycle 9 core has completed operation. Throughout ji this cycle, all core performance indicators compared favorably with the design predictions and the core related Technical Specifications limits were met with significant margin. No significant abnormalities in reactivity or burnup accumulation were detected. Radiolodine analysis l -p indicated that there were apparent fuel rod defccts during Cycle - 9. During ultrasonic' testing of the' fuel, two fuel. rods in two ' fuel q assemblies were determined to be def ective, where both of the fuel I assemblies were fresh. These two assemblies will.be rastricted from .l further use in accordance with the Zero Defect Policy 28, pending' repair.- '{ i 'I i.i I i ? i i I 1 i ) .NE-920- NIC9 Core Performance Report. '. Page 49 o f. 51 -. Section 7 REFERENCES 1) A. H. Nicholson,. " North Anna Unit 1 Cycle 9 Startup Physics Test Report," NE-840, May, 1991.
- 2) North Anna Power Station Unit 1 Technical Specifications, Settions 3/4.1, 3/4.2 and 3/4.4.8.
3) T. W. Schleicher, "The Virginia Power Fuel Assembly Burnup and Isotopics Code Manual," Technical Report NE-679, Virginia Power, February, 1990. 4) D. L. Gilliatt, "The Virginia Power Follow Code Manual," Technical Report NE-679, Rev. 1, Virginia Power, April, 1991. L 5) W. D. Leggett, III and L. D. Eisenhart, "INCORE Code," WCAP-7149, December, 1967.
- 6) Memorandum from R. G. McAndrew to J. R. Hayes, " Core Operating' Limits Report (COLR) Tech Spec Amendmeri-146/130",' July 5, 1991'.
7) D. M. Chapman," North Anna 1, Cyc.le 9 FOLOW Input and Calculations", PM-371, Rev. O, Addendue D, January 1993. 8) R. T. Robins, " Reload Safety Evaluation North Anna 1 Cycle 9 Pattern R8 Restart and Continued Operation,~ Appendix A: North Anna 1 Cycle 9 Core Operating Limits Report Revision 1".. NE-879, Virginia Power, February,1992. NE-920 NIC9 Core Performance Report Page' 50 ofl51- REFERENCES (cont.) 9) T. S. Psuik, " North Anna 1 Cycle 9 Design Report" NE-824, Virginia Power, February,1991.
- 10) P. D. Banning, " North Anna 1 Cycle 9 TUTE Calculations",
PM-369, March, 1991.
- 11) D. A. Trace, " Evaluation of North Anna 1 Cycle 9 Movable Detector Flux Maps", PM-370, March, 1991.
i
- 12) Nuclear Standard, " Fuel Integrity Monitoring", ENNS-2904 Rev. O, 5/26/92.
NE-920 NIC9 Core Performance Report Page 51 of 51 ,