ML20032C445
| ML20032C445 | |
| Person / Time | |
|---|---|
| Site: | Crystal River |
| Issue date: | 10/02/1981 |
| From: | Wrona T HENRY PRATT CO. |
| To: | |
| Shared Package | |
| ML111960137 | List: |
| References | |
| NUDOCS 8111100425 | |
| Download: ML20032C445 (61) | |
Text
'IT:I J-:l*l k l%I: :ll2*ti -H ER) TI:1J N "l"Jt i-1:21 PRATT
/,;
-HENRY PRN1'T COM PANY
~_
7401 MOL Til llIGIII tNI) AVENt'E AL:ltOll\\. I!JJN()lS fiO~/ r?
October 2, 1981 G
rr Q
'$a,..
r;,. k.
Mr.
G. A. Becker k
Florida Power Corporation 5
GCT li 1981> i'#
3201 34 th Street South g-7 P.O. Box 14042
?
G A BECKEn kd St. Petersburg, Florida 33733 H-1 b
7 D
U1
Subject:
Crystal River Unit _3 48" @ urge Valve Itnalycis
Dear Mr. Becker:
~
Per your request, cttached you will find revised pages to (n) subject purge val're analysis covering corrected total closure time for tie' moto.. operated valycs to 5 seconds.
Please substitute these pages for previous copies.
Very truly yours,
/h'%')c',4_
~~ -/
iJ T.
J. Wrona, Manager Contract and Proposal Engineering TJW:dg a ttachmen t cc:
Dave Straur, son.- M.P.R. Associates Roger Nelson
~- H.
Pratt Company
(\\
\\
V
~
8111100425 2
O.m,9,y,y, f.
nn:i nOsic ai2mi~u m.n:unO-i2.
PRATT,:
_i
{)
HENRY PRN1'r COAIPANY
.ns i.
IO1 sot"l'II IIIUIII.\\SD.WICNtII?
At'ILOIt.\\, IIJ JN(llS eK)~M V7 August 18, 1981 Florida Power Corporation 3201 34th St. South P.O.
Box 14042 St. Petersburg, Flori la 3 ', ; 3 3 ATTN:
Mr. Gary Becker
Dear Mr. Becker:
Pursuant to recent telephone conversations with Mr. Rod Cook, Mr. Bill McCurdy at MPR, and myself, attached you will find revised pages for the Purge Valve Analysis for the Crystal River Plant (Ref.
P.O. A-492100).
The following summarizes these revisions:
A.)
Cover page with revised dates
[;
B.)
Page 4 - correcting torque formula C.)
Page 5 - correcting torque formula nomenclature D.)
Page 6 - new torque calcul' tion using 1 second delay time (was 1.5) and 14.1 sq. ft. break curve E.)
Page 8 - revised operator analysis based on above F.)
cage 9 - revised conclusion based on above G.) - revised blocked angle torque calculcitions shorteninq total time proportionally to angle of opening.
Plerne substitute'these pages for those originally sent.
Very truly yours, d.,teAna-T.
J.
Wrona, Manager Contract & Proposal Engineering pq Tri:dg cc:
Bill McCurdy isogcr Nelson ihm3!?.4 enc.
~ - _ _ _
TEIJ01'll8 )NE 312*l1 -M M M ) TEIEN ?.20 -62 PRATT
(]')
HENRY PRATT COMPANY 801 sol'rII IIFGIII.\\ND.W10Nt'E Al'ItOllA, I!JJN()lS (Mrd F7 l
1 l
l July 9, 1981 l
Florida Power & Light Co.
3201 34th Street South St. Petersburg, FL 33733 ATTN:
Mr. Gary Becker SUBJ: Crystal River Unit #3 48" Purge Valve Analysis A-4 9210Q HPCo S.O. 9-2925ti Gentlemen:
Enclosed please find one (1) copy of containment isolation / purge valve analysis for 48" valves, tag number AHV-1B and AHV-1C.
,-3
'sj Should you have any qtestions, please feel f ree to contact us.
Very truly yours, HENRY PRATT COMPANY f
Roger D. Nelson Nuclear Proj ect Manager l
(
RDN/ cit I
Enclo sure cc:
Mr. Dave Strausson - MPR Assoc.(eith copy)
I 7
m
- - - 0."'.S!".4
CONTENTS k)
Page I.
Introduction 1
II.
Considerations 2
III.
Method of Analysis 4
A.
Torque Calculation 6
B.
Valve S tress Analysis 7
C.
Operator Evaluation 8
IV.
Conclusion 9
V.
Additional Information 10 Attachments (1)
Input Documents (A)
Pressure v.
Tim ( Graph
(
(B)
Pratt letter regarding additional information (C)
Customer / engineer response to request for information (2)
Valve Assembly Stress Report (3)
Operator Ratings (4)
Supplemental Torque Calculations (5)
General Arrangement and Cross-Section Drawings l'O 1
i
-p.,emw_.m.w--2pw->
yy..
-ar e-
.*t-ew w
c
+4
- m te*e*z+--a**=<+'M.W t'wP'U M M N-'W-WCDW'W'""T*M'WdwFT7*T***"'w g-v em w y ew-y-++-Narre---vwew7-v'"WN*r7gr*-PT
1
)
l.
O' I.
Introduction This investigation has been made in response to a request by the customer / engineer for evaluation of containment isolation / purge valves during a faulted condition arising from a loss of coolant accident (LOCA).
The analysis of the structural and operational adequacy of the valve assembly under such conditions is based principally upon containment pressure vs. time data, system response (delay) time, piping geometry upstream of the valve, back pressure due to ventilation components downstream of the valve, valve orientation and direction of valve closure.
The above data as furnished by the customer / engineer forms the k) basis for the analysis.
Worst case conditions have been applied in the absence of definitive input.
P 6
e 9
[O
2
()
II.
Considerations The NRC guidelines for demonstration of operability of purge and vent valves dated 9/27/79, have been incorporated in this ' evaluation as follows:
A.l.
Valve closure time during a LOCA will be less than or equal to the no-flow time demonstrated during shop tests, since fluid dynamic effects tend to close a butterfly valve.
Valve closure rate vs. time is based on a sinusoidal function.
2.
Flow direction through valve contributing to highest torque; namely, flow toward the hub side of disc if asymmetric, is used in this analysis.
Pressure on upstream side of valve as furnished by custcmcr/ engineer (O-is utilized in calculations.
Downstream pressure vs.
LOCA time is furnished by customer / engineer or assumed to be worst case.
3.
Worst case is determined as a single valve closure of the inside containment valve, with the outside containment valve fixed at the fully open position.
4.
Containment back pressure will have no effect on cylinder operation since the same back pressure will also be pre-sent at the inlet side of the cylinder and differential pressure will be the same during operation.
5.
Purge valves supplied by llenry Pratt Company do not normally include accumulators.
Accumulators, when used,
(}
are for opening the valve rather than closing.
9 g--
9y7--
-T
,-w q-,vg-y73wg7--@t y v w -w P9--rv-e w v W
7 y
-gvv--
g y
www---
gi--gmym~gr y-yWT'aye-4 4-g-Tg y
u ci+--'
p"W-+TT"y W
5 2L i
i i
6.
Torque limiting devices apply only to electric motor O
operators.
Based on findings in this report, motor I
a operator torque-switches shot 2d be bypassed or re-4 moved to eliminate motor lock-up during the LOCA I
closure cycle.
4 4
J i
i I
e
- (O i-j u
'i er 5
4 4
',. g
- O l
t 1
O f
..=.-.: -. -... -
~ ({])
7&8.
Drawings or written description of valve orientation with
(
respect to piping immediately upstream, as well as direction of valve closure, are furnished by customer / engineer.
In lieu of input, worst case conditions have been applied to the analysis; namely, 900 elbow (upstream) oriented 90o out-of-plane with respect to valve shaft, and leading edge of disc closing toward outer wall of elbow.
Effects of downstream piping on system back pressure have been covered in paragraph A.2.
(above).
B.
This analysis consists of a static analysir of the valve components indicating if the stress levels under combined seismic and LOCA conditions are less than 90% of yield strength of the materials used.
A valve operator evaluation is presented based on the operators Gl_)
ability to resist the reaction of LOCA-induced fluid dynamic torques.
C.
Sealing integrity can be evaluated as follows:
Decontamination chemicals have very little effect on EPT and stainless steel seats.
Molded EPT seats are generically known to have a cumulative radiation resistance of 1 x 108 rads at a maximum incidence temperature of'350 F.
It is recommended that seats be visually inspected every 18 months and be replaced periodically as required.
0 Valves at outside ambient temperatures below 0 F, i f not prnpa r1 r adjusted, may have leakage due to thermal contraction of the elastomer, however, during a LOCA, the valve internal temperature would be expected to be higher than ambient which tends to increase sealing capability after valve closure.
The presence of debris or damage to the seats would obviously impair sealing.
q
, (q )
t
,~e-,
_..,,--_,_,.._..__,p
III.
Method of Analysis Determination of the structural and operational adequacy of 1
the valve assembly is based on the calculation of LOCA-induced torque, valve stress analysis and operator 2 valuation.
A.
Torque calculation The torque of any open butterfly valve is the summation of fluid dynamic torque and bearing friction torque at any given disc angle.
Bearing friction torque is calculated from the following equation:
T PxAxUxd B
7 where P = pressure differential, psia 2
gg A = projected disc area normal to flow, in U = bearing coefficient of friction d = shaft diameter, in.
Fluid dynamic torque is calculated from the following equations:
For subsonic flow 3
4 RCR >
1 >
1.07 (appro.c. )
P
~
2 T
=D xC xP x
K xF D
Tl 2
RE 1.4 For sonic flow 1
CR
_2 3
T
=D xCT2
- 2*
f7 xF D
RE (FRE
'C)
Where T
= fluid dynamic torque, in-lbs.
D F
= Reynold number factor RE R
= critical pressure ratio, (f (d)
)
CR P
= upstream static pressure at flow condition, psia y
P
= downstream static pressure at flow condition, psia 2
D
= disc diameter, in.
Cn = subsonic torque coefficient Cg = sonic torque coefficient K
= isentropic gas exponent ( U l.2 for air / steam mix)
M = disc angle, such that 90
= fully open; O
= fully closed are a function of disc angle, an Note that C and C.g g
exponential function of pressure ratio, and are adjusted to a 5" test model using a function of Reynolds number.
Torque coefficients and exponential factors are derived from analysis of experimental test data and correlated with analytically predicted behavior of airfoils in compressible media.
Empirical and analytical findings confirm that subsonic and sonic flow conditions across the valve disc have an unequal and opposite effect on dynamic torque.
Specifically, increases in up-stream pressu. in the subsonic range result in higher torque values, while increasing P in the sonic range results in lower torques.
y Therefore, the point of greatest concern is the condition of initial sonic flow, which occurs at a critical pressure ratio.
The effect of valve closure during the transition from subsonic to sonic flow is to greatly amplify the resulting torques.
In fact, the maximum dynamic torque occurs when initial sonic flow occurs coincident with a disc angle of 72 (symmetric) or 68 (asymmetric)
,r s,
from the fully closed position.
f D-29254-1 JCP: FLOP.PupiCPYOT.PIY P2-VAPIRILE CIZE ADJU~;TED(PEYNLDO riu.FrtCTit!)
SAT.OTEAM AIP T11':TUFE tJITH 1.4 LEC OTEAM PEP 1-LE! AIP SPEC.GP.=.738255 r1DL.tJT.= 21.3872 FAPA(ICErtT.EXP.)= 1.19775 P= 72.1972 GAS COti:TAffT-C ALC.
!DilIC CPEED e r10VIrlG MIXTP.) = 1316.65 FEET /0EC AT 225 DEG.
CRIT.CA:E IriLET VELDCITY IS 1.4606 TIMES HIGHER Al AIP CRIT.CAIE ItiLET V1-Cr* 5 IriCH MODEL MAX. TCPOUE II AT THE CPITIC AL PFE!!.PATIC(.585-(5 ItD r10 DEL OP APPX
.695051
( 47.375 IID ulTH STMIX.)FIRST CCrilC(7 72 DEG.V. A.)
MAX.TDPOUE IriCLUDEC CIZE EFFECT(FEYrtCLDS ffD.ETC) APPM. X 1.37246 FDP 47.375 INCH FA:IC LIIiE I.D.
ALL PPE*SUPEG UIED:ZrATIC(TAP)PPECT.-AB~CLUTEiP2 IriCL.PECOVERY PPESC.
(TOROUE)C ALC' O VALILITY:P1 P2> 1. 07:
VALVE TYPE:
48"-PIAi1/6 CLAOC 75 DISC OICE:
46.718 IllC HEC OFF:IET A!YMMETPIC DIOC SHAFT DIA.:
4.75 IriCHES ERG. CDEF. OF FPCTri. :
5.00000E-03 SEATIfiG FACTOP:
15 IriLET PF EO;. VAP.t1AX. : 50.7 PSIA DUTLET PPE:~UFE*P6):
23.5 PSIA (72 DEG. ACTUAL FPE00.CriLY(VAP.))
f1A%. AMG. FLGIJ PATE:
527196.
CFM: 645142.
SCFN: 35465.2 LF/r1Iri e
CRIT.!D!ilC FLCid-90DG: 45093.9 LE/MIri AT 23.8381 IliLET P;IA
- VALVE IliLET DEri:ITY:
6.72714E-02 LE <FT^3-M I tl..14391 LE/FT^3-MAX.
FULL OPEft DELTA P:
3.62416 PSI SYSTEM C0fiDITIOrl!:
PIPE Irl-PIFE-GUT -AffD-AIP/0 TEAM MIXTUPE ~EPVICE ? 225 DEG.F MIrlIt10r1 0.75 DIAM. PIPE Duuri;TFEAT1 FFoti CEriT.LIhE SHAFT.
P1 ABC. PPE7IUPE <ADJ. )FDLLDu; TIME /PFE20. TPAri?IErf T CUPVE.
ABSOLUTE T1A::. TCPOUE II DEPEffDErtT Cri DELAY TIr1E ATID 3.43 TO 2.15-TH PDMEP DF (P1/P2)Iri uGPST PAMGE X L!rtEAP Curt;TAMT ' Duri:TP.PFE!!.
P6-AE ~.. (75-6 0D EG. )
Iti 00E:OflIC PAriGE lit 1lTO-DifLY: TEE FDPt10LAT IDrt. -FEP TE:TO H.PPATT THIS TO. AT 72 DEG. ~.Yrir1. DICC (68=0FF ET : HAFT)CT=T/D^3/P2<.AB0>
--5 Iri. t10 DEL EOUIV. VALUEI------ACTUAL O ICE VALUE2-AtlGLE P1 P2 DELP PPESS.
FLOu Fluu TD TE+TH T It1E
- LOC A -
APPPX.P~IA PCIA PCI PATIO (IC Ft1)
(LE tiltD
IriCHLES---- TD-TE-TH
- EC.
90 23.70 18.81 4.89
.794 645141 35465 59663 55 5960?
1.00 I
85 27.28 19.45 7.83
.713 737320 40532 120605 111 120494 1.42 80 30.07 20.07 10.00
.667 783456 43068 171107 159 170949 1.?6 75 32.51 20.25 12.26
.623 806358 44327 323497 299 323192 2.25 72 33.81 19.77 14.04
.585 CP 767504 42191 465275 430 464845 2.47 70 34.61 19.64 14.97
.567 CP 748916 41169 438358 405 437952 2.61 65 36.37 18.76 17.61
.516 CP 690090 37936 434405 401 434003 2.92 60 3'.77 17.84 19.92
.472 601228 33051 336144 310 335:31:
2.17 55 38.78 16.99 21.89
.435 511847 28137 293011 270 292741 3.35 50 39.39 16.24 23.15
.412 421302 23160 217958 264 217693 3.46 45 39.60 15.76 23.84
.398 418401 23000 190308 295 190012 3.50 o'
40 39.31 15.44 24.36
. 388 294358 16191 142612 327 142284
?.54 35 40.42 15.12 25.30
.374 222007 12204-96397 354 96042 3.65 30 41.41 14.93 26.48
.361 168176 9245 59081 384 58696
- .83 25 42.72 14.22 27.89
.347 120845 6643 41362 433 40929 4.08 20 44.27 14.76 29.51
.333 75650 115:3 31029 496 30533 4.39 15 45.99 14.71 31.28
. 32 0 43501 2391 11965 583 113?!
4.75 10 47.75 14.71 33.05
.303 2215?
1217 6409 6o.
- v. c l 5.14 5 49.42 14.70 34.72
.297 7269 399 4290 781 3505 5.57 0 50.70 14.70 36.00
.290 0
0 34398 732 33665 6.00 (D
IER TIr4G + IEMPIf 4G + HUI :EAL TCFOUE ' ti t1. =
34398 I ri-L E : a O DEG.
MAX. D'. fl..~IEAPIriG - HUE EAL TOP 0l_ E ' t1 ' r1 '.=.. 4 652 75-.
~
Iri-LE: D TO DEG.
9
7 1
[)
B.
Valve Stress Analysis The Pratt butterfly valve furnished was specifically designed for the requirements of the original order which did not include specific LOCA conditions.
The valve stress analysis consists of two major sections:
- 1) the body analysis, and 2) all other components.
The body is analyzed per rules and equations given in paragraph NB 3545 of Section III of the ASME Boiler and Pressure Vessel Code.
I The other components are analyzed per a basic strength of materials type of approach.
Fo* each component of interest, tensile and shear stress levels are calculated.
They are then combined using the formula:
(T +T )# + 4(S +S )
S
= 1(T +T ) +1,'
1 2
l 2
max 1
2 2
2 where S
= maximum combined stress, psi max T
= direct tensile stress, psi 1
T2
= tensile stress due to bending, psi
= direct shear stress, psi Si
= shear stress due to torsion, psi S2 The calculated maximum valve torque resulting from LOCA conditions is used in the seismic stre'ss analysis, attachment #2, along with "G"
loads per design specification.
The calculated stress values are compared to code allowables if possible, or LOCA allowables of 90%
of the yield strength of the material used.
)
8 C.
Operator" Analysis This analysis specifically evaluates the worst case, inside containment, valve with Limitorque operator.
The j
rating of the outside Bettis operated valve is included for informational purposes enly.
Model:
Limitorque SMB l-4 0/II3BC Rating:
67800 in-lbs.
Max. Valve Torque:
465275 in-lbs.
Model:
Bettis TS20-SR2 Rating:
225,000 in-lbs. (at full open and closed positions only)
The operators furnished were specifically designed for the requirements of the original order which did not include specific LOCA conditions.
The maximum torque generated during a LOCA induces
,(
reactive forces in the load carrying components of the V
actuator.
The Limitorque model furnished has a rating which ex-ceeds the calculated valve torque for the following valve angles:
40 degrees open to O degrees (fully closed)
The Bettis model furnished has a rating which exceeds the calculated valve torque for the following valve angles:
55 degrees open to 0 degrees (fully closed)
~
Listed in the attachments section of this report are the following documents :ised in evaluating the structural and operational adequacy of the actuators.
-Operator Rating (Attachment #3)
.r-)
-Supplemental Torque Calculations (Attachment #4)
L
9 IV.
Conclus1dns It is concluded that neither the valve structure (with present materials) nor the valve actuator are adequate to withstand the detined LOCA-induced loads based on the calculated torques developed in this analysis except for restricted valve opening as described below:
Specifically, the valve top stub shaf t and top disc hub blocks are shown to be overstressed except at yalve disc angles of 60 or less (see attachments 2 and 4).
In addition, the calculated torques exceed the manufacturers rating for the actuator except at valve disc angles of 40 or less (Limitorque Operator) and 55 or less (Bettis Operator).
(See attachments 3 and 4)
O y~s e
r-t.
g({}V.
Additional Information
'The following items are presented to describe how system factors I
cffect torques developed in this analysis for your consideration and cre informational only.
Further analysis by the customer / engineer is recommended prior to implementation.
1.
An important factor governing the magnitude of the dynamic torque t
is delay time from the start of a LOCA incident to activation of the pressure sensing mechanism, which in turn initiates valve i
closure.
Careful re-evaluation by the customer / engineer of the pressure sensing / timing sequence may render the present valve assembly functional through a significantly greater range of (g g angles.
d v
2.
Installation of a convergent-divergent section downstream of the outside containment valve with a throat area sufficient to allow unrestricted ventilation during normal operation, but which will choke LOCA-induced flow while the valve is closing, through the critical range of 800-600 open, could resultantly reduce the flow through the valve to subsonic levels.
3.
An orifice plate installed similar to #2 above can also choke the system downstream and reduce flow through the valve to subsonic levels.
4.
Mechanically restrict or block the valve disc to a maximum disc opening angle.
(See attachment #4 for further illustration).
l O
~
4 l
ATTACHMENT 1A PRESSURE vs. TIMS GRAPHS
(
. ( 'p v
~ 'O G
e
,---,v---i--,e---w-w.,-..----.-e-%w.,-,,,wr,
,ww-,,.-ww--=,.
,,%..y~w.y--,
w,n,w,
-.. - - -,w+www.wmp-,,,..ry%-
N.),)
~
t' 10 f
l C3
?
I l
l I!
i
? C) i f
1.0
! /l 4
i b m
./
i i :
j
./
8 I
2 j 30
/
i c
- 'll l.g,i ti' j
i
[
l l
{ l'll I
20 i
i l
['
fl'
}
I-i i i
.i (m-i j
,T
! ;, j (.
!il
-- t i
i i f.
1 L
l I-i 10
},
i I
li
+
- i l'if l
l, l l !,
i:i.
I il t
0 !
' i 3
II*I 100 10I 102 10 Time Af ter Rupture, s
)
REACTOR BUILDING PRESSURE YERSUS TIME FOR 14.1 FT2 g.:p, HOT LEG BREAK l%. 'u.J CRYSTAL RIVER UtilT 3 gg, FIGURE 14-72B A
(AM. 27 6-29 73)
- p!
i'%.J 70
.-c
.l
.t l,
l
,l l
h I
l i.
l f
H l
I I
t l
1 l'
l t
,f 1'
I i
t I
I l
f E
l
{
l)f, if; 1
w i
i i
8 1
l l
l I
i 7.
1 u.
/
y 40
-- L. - -
I i
l i
l' l I
I i
l I
l l
[
II' l
'I
'I j
j 30 l
L.
a l
l I !
l il 3
l,
>[-
20 i
N l
t I
'(is) t i
i
'j 10
~ ~'
I 1
/
i.
i l
t l
,/
'i l
l
}
f..._
3 8
+
II*
100 101 Ig 103 2
Tles After Rupture, s REACTOR BUILDlHG PRESSURE VERSUS TIME FOR 11.0 FT2 e
4m HOT LEG BREAK
- v. '()
CRYSTAL RIVER UNIT 3
'2*t FIGURE 14-72C COe*08 N (AM. 27 6 29 73)
v 70
!I l
I l
I I
i 6
,i I
C I
l I
b i
e i
gg 4
\\
e i a\\
P, 40 I i j
[
l 3
I) l 1
I I t i I l
'l[l E
I I
i I
J 3 30 3
!/
i l/;
l l
' (c~.
/
+
l L)
/:
i
~
i 7
/
Is I
i
! I/
l I
l e
t a
8 i
eti t
0 __
1 2
103 0
10 10 10'I 10 Tiet After Rupture, s REACTOR BUILDING PRESSURE VERSUS TIME FOR 8.55 FT2 HOT LEG BREAK CRYSTAL RIVER UNIT 3 k *i*.' FIGURE 14-7 L
- '~ (A M. 27 6 29 73;
~
,ry
~
'd' 18 I
80 l
T i.
f l
I I
/
I
=
y I
i a
{ 30 j
i (l l
0 i
If I
/!
j
^#in.
28 I
1 l
[
t l
,h l
)
s
[
l I
j/
I
+f I
10*I I0 Time After Rupture, s
, REACTOR BUILDit4G PRESSURE A ',c 3 YERSUS TIME FOR 5.0 FT2
- - ()
HOT LEG BREAK CRYSTAL RIVER UtilT 3 FIGURE 14-72E
' "'""" (AM. 27 6 29 73)
g g
+
w g
O RO
~ ~
ATTACHMENT 1B PRATT LETTER.1EGARDING (O
aoorT1onAt ruronxAT1on i
'lO 3
4
~w v= vw www -
~wvrwwene-, w w w. -e ~ e-m
,we~r,--w--w er.----w-a w,a-e v e e,n ew wm m - em,vwe r w weww w-e-m m w w~'ve+----
r
,-,r--v-=w-we
[..
.l HENRY PRXPT COMPANY O
~
c'v i- ' '=i ' "' i"u r ' r i' " :
60i MOLTII IIIG4iLNND A\\*l:NLTI'
.\\t*I101t.\\. IIJ JNots iW A A17 December 3, 1980 Florida Power and Light Co.
P.O. Box 14042 S t. Petersburg, FL 33733 Atten' tion:
Mr.
K.M. Elder Project Engineer
Subject:
Crystal River - Unit #3 48" Purge Valve Analysis A-492100
Dear Mr. Elder:
Recent findings in the general analysis of purge valves sub-p) jected to LOCA conditions have necessitated a request for
- (
additicnal technical data from the customer / engineer.
Delay time, system back pressure and valve orientation have a significant impact upon maximum torque and resultant stresses in the valve assembly.
To properly complete the purge valve analysis referenced above, the following information is re-quired:
1.
The combined resistance coefficient for all ventilation system components downstream of the valve (one for each valve size)or A graph of back pressure vs. LOCA time at a distance 10-12 diameters A.ownstream of the valve.
Consider also :.he capacity of the piping, filter and duct work to, resist increases in back pressure.
2.
Maximum and minimum delay times from LOCA to initiation of valve rotation.
oO eeg
&p 9
- O.'".st?.4 L -
tPRATT.
Mr. Elder Page 2 December 3, 1980 3.
Drawings or written description of valve orientation with respect to elbow immediately upstream of valve (within 6 diameters), as well as direction of valve closure (clock-wise or counterclockwise) as viewed from operator end.
I In the absence of the above information, the following assump-tions will apply to the purge valve analysis; 1.
Back pressure of 19.7 psia throughout valve closing cycle. 7 Highcr back pressure increases maximum dynamic torque and valve stresses.
2.
Delay time from LOCA to initiation of valve rotation shall be chosen to permit initial sonic flow condition and critical valve disc angle to coincide, resulting in maximum possible dynamic torque.
3.
90 elbow immediately upstream, oriented 90 out-of-plane with respect to valve shaft, with leading edge of disc closing away from outside radius of elbow.
Such orien-
-,(.
tation and closure will increase torque values by 20% or more.
Your prompt response within 30 days would be appreciated.
Very truly yours, HENRY PRATT COMPANY
)
. Y/L d>cA T.J. Wrona, Manager Contract and Proposal Engineering
/sw l
CC:
R.D. !!elson e
u t
O!".'Y.A
,m. _,..__.
._____...,,_,,.,_.,_..,______.,___.,__,_.r_
- -=
O O
o.
O ATTACHMENT 1C CUSTOMER / ENGINEER RESPONSE
(
TO REQUEST FOR INFORMATION e
' O o
es.
.,-w, vm,,-
,,-,e.,
w,v,---=-w-w,er wn-,my,-n-gwyyww-g,y-,,-www,-
,-e-r-~%%w-
4,., y%
4-l
.Q*4.
- .ar e b
4{
NM er February 4, 1981 C O R P 0 m m v ec es i
Henry Pratt Company 401 S. Highland Avenue Aurora, IL 60507 Attention: Mr. T. J. Wrona
Subject:
Crystal River Unit #3 48" Purge Valve Analysis (AHV-1A,B,C,D)
FPC P.O. No. A-492100
Reference:
llenry Pratt Company ltr. Wrona to Elder dtd Dec. 3,1980
Dear Vr. Wrona:
In accordance with your request for additional information per the referenced letter, and our telephone conversation of February 2, please find the attached drawings which depict the arrangement of ductwork and components associated with the subject valves.
!!opefully this will provide enough data for Pratt to
((]
calculate the required resistance coefficients necessary for the analysis, v
Aln, please find the attached graphs taken from CR-3's FEAR depicting Peactor Actuation of
'ing pressure versus time following various LOCA break sizes.
Bu2 the valves will take place after the Reactor Euilding pressure reaches H psig (about 0.5 to 1 second depending upon treck size.).
In addition, there will be a delay of approximately 0 5 second for the ES signal to reach the actuator.
FCS-1442 dtd 1/8/81.)
(Reference P2W ltr FPC-80-016 dtd 6/30/80 and GAI ltr.
is shown on the he orientation of the valves and the direction of closure attached Pratt drawing.
f i t of It is understood that this analysis can be completed 30 dcys a ter rece p this information, provided it is sufficient.
If further delays are anticipated or if the information which we are sending you is insufficient, please contact me immediately at (813) 866-4419 mank you for your assistance.
Sincerely, FLO A POW'ER CORPORATION
~7 G.A. Becker Supervisor, Mech./Struct. Engineering GAB /jw
'q b
enclosure cc: E.C. Simpson P.Y. Baynard T.C. Lutkchaus F.J. Tomazic (GAI)
Readers File: EQ 3-5-31 w/ attach General Office 32o1 in.rty fourtn sirect soutn. P O Box 14042. St Petersburg. Florica 33733 813-866 5151
~
REACTOR BUILDitaq Q
WALL n
s
-s REACTO R
- t...,.
' [,7 d..I !
BulLDL t 3G
~
' ' A...}
I N T ER IO R s
u
, 4.. j).. $.-
~~
p-39
. b '. '. ' ' ' ' :
e b.II
.. 1 t
- A.i 4-H U E.
BLOC K
/
5 HAFT /
S I D i?
\\*
SHAFT
\\
c i O g-(VO l
- ~T
~~~} } # -
[-_
b,
'd '. f..,,
! b ii.
VAs.vc tac 3 A, *g..J.,'.
VALVE TAQ i,.,, ' ' ', ',$,'
Agy
]g A HV - I A g
, [/. j ' ' '. d,'i A H\\/- IC l
A r4 v -l D
.,esi (Bettis sprin opposed (LimitorqueOperators) 1 air operated
. 0" :
va've ^"v-'^ '.n'S
- \\ s ' " ' ' '
't i v. vid have operator r ntd n Ott:-'
M ACHINING TOLER ANCE S 4 46 t l$ so f Ht 4 # '18 s i c l 8
...c,c s., c., w s. tt ID 1%G65AL L, 4t hbeOlet 1.003 0
AL L A.se.L i b ' 9 s..eas ss. on co==on ce =re nii=L age to et cons s arnic th e% M.S.
900 f.s N ses ss.s. at a.i,uc =e is its..
.a.s.i.q....s..,....... s
...eo.
.s
..n,
.n
.y
- 'a.
a /v r,i-d
% M ATERI AL SPECIFIC ATION'.i y lif f1RY I3ll ATT COMI,AfJY
'~
q s
no-r
,K 3.;.\\,,r - 1 r>tj e
p n i,,,,,u.s iu.
k
' 6
VAtVE I i l'_',
n t L L A r i c, o,3 u
m--.
._m-m c
es 1-
,lj,. "
[QPt R A T C.Tf S b to T
- i H.'.sys t 1
/2\\
/
y
\\
[
~
F t.l>
C L A "C ) T V I
.- \\
4\\
O REV, 0,. i t fly APP.
Hl'V D til: l DY APP By }.,..L.
v.
Cmte Bf t wee i
: a t i
__! f, c e-d '. ? _
l b
- h ' ' ' ' ( ~ ~/.
~~ - - - - -. -
.Due Ar imo c i n~-
~
i>
4>
1>
4) i>
()
i l
I 4,
()
4f ATTACHM.ENT 2"
(,
4>
M MCD@a?
4.
4I fb ik I SQ7ees Go E
ETDEOUSUS
()
(k 4)
(I e
ik i >
45 i>
Af CO
{.
4) 0 /M. s-ft o
'3 e
/
2 s
b s
di I
~
O e
i 4
o I
s 9
6
.P SEISMIC ANALYSIS for 48 inch Nuclear Purge Wlve 4
me S
e O
4
(>
O O
l
't
- l. '
9
/
y t
9 0
0 4
e m
I e
1 e
s 9
i
.j.,
I o'
l
'/
l ij
- f. fbe' 1L. I 2.-h-
- o 2
F.
Prep: red by Apprevsd by g nh,2 /, o, _,x PROJECT - Gilbert Associates. Florida Pc>;er Corp.
hO PitATT ORhcrt rio.
7-3915 V
CUST0!d:lt O? Dell FC.
PR3-1783 0
~
VALVE SI7.E '
~
48 inch SEISilIC ACCELERATIONS 5 9's simultaneously applied in each of three perpendicular directions.
Sunsnarized in the foliot ng two tables are the stress intensitica i
Table I identifica Sody stresses and how they re-of primary concern.
late to the "Draf t ASME Code for Pumps and Valves for Nuclear Poucr" dated Nov., 1968.
Table II identifics stresses in other etcments of the butterfly valve arsembly, for which the puop and volve code pro-
. viden no specific nnalysi s procedure. All allowable stress levels are as specified in Intic A-1 of the code.
TABLE I - Body Stress Levcis Code Code Analysis Stress Allowable Stress N'nme Ref. Par.
Sym.
Ref. Pg.
Level Strenn Sm Primary !!cmbranc Stress In-452.3 Pm 5
1,025 18,900 sity Primary &_ Secondary. Stresses Qp 5
1.5 Sm iue'to finngc, prcanure, and 452.4c 5,177 28,350 nismic loads.
m S;condary Stresses Due to 1.5 Sm Pipe Reaction 452.4b
, Ped 6
3, 31 7 reb 6,896 28,350 Pet 555 12,165 36N00 Valve dody Second ry Stressec 452.4 Sn 7
l l
Fetinue Stress (Na2;2,000) 452.5 Sp 7
g,967 65,000 Notes: '1 Body material is carbon stee! per ASTIA A-516, Gr. 60.
- 2. Allowable stresses are for 300 F.
3
- 3. Valve Tag No 's are: AHV 1A
.AHV ID AHV IC AHV ID
..o J
/
~.,< '
1Atl.r II - tron-cod!fied r,tr_enn 1.cvein 9
I Stresa Analynis Itaterini Streno
/.11evabic Valve
!!nmc ite f, l'a.
Levol^
Strean Coa.ponent Aunt A-516 Sr.i
~ ~ ~ ~
DiLc 11axitium Dice Str no 8
Gr. 60 8,064 10,000' AS'Ill A-479
.9sy =
Shr.f t
!!nxir u Shcft Strees 9
Type 304 38,937 27,000 AST11 A-240
.5 S a Retniner Shear 10 Type 304 6,500 9,900 Strenn Retniner lleurinD 10 ASYl! A-240 Sra Tif e 306 l').700 1_9. EM Shstt' ltetniner Jtreon AS A-60 Sra Aaccably Delt Tensile 10 CL.1,Gr.B2' 38,700 46,200 5, ter.a AS1f1 A-479
.5 S i Shatt Groove 10 Type 304 3,400 9,000 Shear Stress ASTil A-350
.9 Sy =
Keyuny Lenring 11 Gr.LF-1 60,870 27,000 llub Diock Strean AST21 A J40 Sn Astiet bly lisx. Co.Tbined 11 CL.1,Gr.B21 30,640 46,200 Bolt Stress Silicon Lul T. Unsher Hor =1 13 415 1,200 aronro Eenrinr. Strenn Silicon Lut
.l l
T. liar:..r Seisciic 13 Dronze 2,075 8,003 Denrir3 Strec9 ASul A-479
.5 Sa Threst.
Adjucting Scecu 13 Type 316 6,150 10.0".0
_~
Per.rf r.s J enr Strean 74,TI! A-4/9 Sm Aoncrbly Adjustinr,Scr29 13 Type 316 11,200 20.033
_ Tensile Streco ASlil A-540 Sn Retnining Screw 13 CL.1,Gr.B21 21,100 46,200
~
Tencile Strcos
.isal A-265
.S La Cover Shcar 13
[ r.C 2,300 S,850 Stress R
CNot specified in pump and valvo code.
Note: Allouabic 9 tresses cre for 300 F.
iMLt/d ~DEGL/E = & R COG N " W.
W CSCL/D97*/OA)
~
e
- 9 e
e
\\
'; r
) V
~
HENRY PRATT CO.
AU::oza. ILL.
nLFERLNGE NQ P
}
, l e, (1. ' a <?. g FILE NO, PM EP Asq Lu pays
,'t y
o
- Q.
c.c.,,
t 9
M mummanus I
S N/
l l
e er 0
9
+ O t
I 9
0 l
Pr:ptred by I u,d k '7 -
Appr ved by,- /.
t i
V I
IlfrROIMICTION a
Described briefiv'in the following pas:cs is the analysis used in
~
verifying the structurnt adequacy oi the main elements of the butter-fly valve.
Each cicment is described separately in its own, appropri-
[
i ately titled, section.
.i Seismic loads were mado an integral part of this analysis by the Should they not be
-inclusion of the acceleration constants gx, g, g.
y g
present in any of the directions of interest, simply set the appropriate j
value of gg to zero, The symbols gx, g, and g represent accelerations in the x, y, and g
s directions respectiv ly.
These directions are defined w.th respect to the valve body centered coordinate syetem illustrated in the figure 1.
t is along the shaft axis.
y is Specifically x is along the pipe axis.
perpendicular to x & y and in the direction forming a right hand triad with them.
~
Valve orientation with respect to gravity is taken into account by adding the appropriate quantity to the seismic loads. The justification for doing this is that a gravitational load is completely equivalent to a 1 "g" scismic load.
As an example of including gravitational londs, consider a valve oriented so thct z is vertical and subjected to seismic loads G, G,
x y
V would be:
and G,.
The appropriate valves for gx, g, and g3 y
E
=C x
x g
=G y
y 8: "l+G z
Throughout the analysis, reference is made to a " banjo" assembly.
This is the assembly consisting of the disc, the stub shafts, the hub blocks, and the mounting hardware.
It is termed a " banjo" assembly sim-resembles a banjo in appearance, and this is an easy way ply because it The main elements of the bpnjo assembly are identified to refer to it.
in figure 2.
t s
/*
Par.c 1 Of l'.
HENRY PR ATT CO.
VAINE BODY CEllTEftCD Co-OftDTtt\\TE Au:;oaa. su..
pyr,g;ng l
,,,,,,,c SYSTI'.it FOR DEFit!INF. ACCEL.ERATION j '*
DIltCCT tofl';
FILE hD.
PH LD' A H L D DAIE r -
't j.. /,.,
r.
8' M O'
U S ' E-m C M ' t 8' ' (7
./
I i
i 1
ene JL
^
-\\
e-Y X
/
/
I. O 7
l 1
l l
(
,e--
l 1
l I pas
'tO
/
w.
2 o r v.
HENRY PR ATT CO.
Aurost A. ILL.
y La LaLnLL No g ure 2 - Cesentint Features F
.f, \\)
- OL Danjo Assembly ii t
,,u no.
,.,a.m o naw 4,.
i o,
c~...n.
R TOP STUB SHt4 r
~
OPERATCR KD. V.sY HUS E LOCK v4YWAY ts 011 OOKE OF TCP Hue.
,. -' 'Q
/
Q 'N BLOCK CNLY s
/'
O O
N N
/
/
O O
'x
/
13l l[ N s,
,O
/
N x
t SHAFT RETNt4ER SHAFT HU B-
- gege, RETAunRL BLOCKS mI I rn >
[O__
10.
DtCC
\\.
E A
'\\,
Q
'C j
's G
Q,,
BCrFT O t41"T U"., 5H AFT w-
=Y
/
X O
V Page 3 of 14
- l. l.1
~ -
Frspsred by.J.li'..t u i
i e '
i - <,
Approved by 4
I i
1 FI.ANGE AtlALYSIS
=..
f~
The finnne analysic la in accordance with Appendix II, Parn. VA
',6 of Section VIII, Division I, of the ASME Codes for Pressure Vessels and e
AWA C-207.
9 1
f u
4 0
e
(
O i
i l
l e
l F
l
.a O
(.
e e
I Page 4 OC l'.
8 l
Approved by 1
.- i BODY ANALYSIS O
the body analysis is in accordance with " Draft With one exception, 1968. This ASME Code for Pumps nnd Vnives inr Nucicar Power" dated Nov.,
execr> ion is in the calci Intion of valve body primary plus secondary in section stress due to internal pressiire, a quantity inbeled as Qp The formula which is specified in this section and 452.4a of the code.
considers only stresses induced by internni pressure is not used.
In its place has been substituted a more complete formulation which considers stresses induced by intcenal pressure, finnge moments, and scismic loads.
All other body stress calculations are exactly per the pump and valve code.
The specific formulas used in calculating the body stresses are listed below.
Primary membrane stress - The following formula which satisfies the 1.
intent of section 452.36 of the code was used.
Pm = (Rm/h + 1/2) p where:
Rm = sIncil mean radius-inches
= internal pressure-psig p
h = shell thickness-inches Valve body primary plus secondary stresses due to internal pressure, t
2.
flange mo: cents, and inertial loads - This is the quantity which re-It is calculated places Qp as defined in section 452.4a of the code.
s for two sections on the valve body, the section where the flange joins the body, and the section defined by the centerline of the vnive shaft.
The formula used The largest of these two valves is then taken as Qp.
for calculating Qp is:
2 Qp = 1/2 P + 1/2 (Qpt + Qp2) + 1/2 (Qpt - Qp2)2 + 4 y Y = sum of shear stresses due to inertia torques and inertia where:
transverse shear.-psi Qpt = axini stresses-psi p2 = circumferentint ncresses-psi QP = internal pressure-psig-i The quant'ities, Y, Qpt, and Qp2 are calculated from the following for-mulas:
2 E gx + b IU
+Kz )1/2-Y =.2WRo_.4__Ri c
y
_3. _
77(Ro -
)
~
4_ p, y' + g 7)1/ 2 +A,
2 2 +.X "Roi, (
HP 2amly 77
,_Ro Q,1 = PRm/2h + 6M/h 2
Q 2 = cam /h + 6vM/h.,gf g, p
bo Panc 5 Of I'.
-e.,
,_.,,,,,n n.-
,,.-~,,,, -~,,,,,.,-
..,,,,,w-
Fr.p. red By J. I t' Apprevsd by ~,../.
J L where:
P = internal pressure-psig W = valve veight-pounds Ro = outside radius of valve body-inches Ri = inside radius of valve body-inches
~
L = valve icngth-Lnches Ee = valve body eccentivity-inches Rn = mean radius of valve body-inches h = valve body thickness-inches E = younC's modulus-psi ir= poicson's ratio
= accelcration constants g,, q, g w = cef cctior of valve body-inches M = local bending moment per unit circumference-pounds W and 11 are calcul,ated in a separate analysis, Note:
the details of which are not included here.
Secondary stresses due to pipe reaction-These are calculated using the More speci-3.
equations of section 452.46 of the Pump and Valve code.
fically, these are:
FS
~
d Ped =~d ~
d Feb = C F S
%y g Pet = 2 Q
^ >(O at Ped = direct, or axial, load effect-psi where:
Peb = bending load ef fect-psi Pet = torsional load effect-psi b = bending modulus of standard connected pipe per figures F
452.4b of pump and valve code-inches d = 1/2 the cross sectional area of standard connected pipe-F inches stress index for body bending secondary stress per section C
b = 452.4b
~
S = 30,000 per section 452.4b 2
d = valve body section area-inches Ge = valve body section torsional modulus-inches 3 G
3 b = velve body section bending modulus-inches G
Thermn1 Secondary Stress-This stress is calculated per section 452.4c More specifically, the formulas used were:
4.
of the Pump and Valve code.
~
QT = 17.5 h for austenctic steel 2
QT = 50.0 h for ferritic secci 2
where: QT = thermal secondary ctress h = thickness of valve body
\\ ($)
)
Page 6 Of I'
Przpsred by J.l.'s..til
'/. 0 - /..
Approvsd by t'
5.
Combined Stress Inten-ity-Thin <inantity, no specified in section 452.4 of the Pump nnd Valve coile is r,Lven by the formula:
Sn = Qp + Pc + 2(?T where:
Sn = combined stress intensity Qp is r.iven under number.2, above.
Qr is y,iven under number 4, above.
Pe is the largest of Ped, Peb. Pct as given in numbcr 3, above.
Fatigue Stresses-The value taken for comparison with figures 452.5 (a) 6.
and 452.5 (b) of the Pump and Valve code is the larger of the following, as given in section 452.5:
p1 = 2Qp/3 + Pcb/2 + 1.3 QT S
Sp2 =.4Qp + Pcb where all terms are as previously defined I
r
(
l I
~~
/
l Page 7 Of l'
.___.__,._-.u.,_.-._
Pr: pared by_
..e.t
- )1 l/.*f (/-
js
'1
/.' /
f/ 1 /1.1 Approved by' ff ;,,. ' 1. '
DISC ANAT.YST*;
V
.n load combination which occurs is combined at For an air purge valve, the worstThe highest magnitude stresses are present the result of simul-pressure pliis seismic loads.the center of the disc and can be considered i and the z axis. The taneous bending about two perpendicular axes, the y ax s i
magnitude of the stress is given by:
(.125 Ta +.113d)2 + g 1/2
~
0=
(P + Pe) d 36 4
(tp 6
equivalent seismic pressurc = wtgx - psi Where:
Pc =
3
=.weig'it density of disc - Pd/in w
thickness.of disc - inches t
=
acceleration constant gx =
applied pressure - psig P
=
,()
diameter of dise - inches 1
d
=
unsupported shaft length - inches a -
i uirements It usually occurs that disc thickness is dictated by deficct on req l
and that disc stresses are well below code allowabic icve s, t
(D (V
/
page 8 of M N
e
" * ~
, - > =
/. h' -.il b, i - J - / U Pr:p; rcd by Apprcved by, I 'j., <'
/,
,/ /
SHMT MIALYSIS
~
'y_./
Because of the mannne in which the purge valve is used, fluid dy-Therefore, the worst loading condition namic loadings can bu neglected.
on the shaf t will be either a combination of torsional plus seismic loads Both of these condi-or a combination of pressure plus scismic loads.
Columnar tensile and tions were checked using the formulas listed below.
compressive loads on the shaft were not considered because of their ob-
,viously small effect on stress icvels.
Shaft Stress due to torsion plus scismic loads.
1.
1/2 O' = -f 0~B +
+4 B
2 2)1/2, Q = bending stress = 16W(gy gy 4
where:
D d3 '
2 q = torsional stress = 16SDT Hd W = weight of banjo assy. - Pds.
s = unsupported shaft length - inches D = disc diameter - inches S = scating f actor - Pds/ inch I,
' h d = shaft diameter - inches 8xeSy " accelcration constants Shaft Stresses due to pressure plus seismic loads. - Both shear and 2.
However, they are not combined since bending stresses are calculated.
their maxima occur at dif ferent locations on the cross section.
2 1/2 3 =-h
( D D P/4 + Wgx)2 + (wg )2 0-y 0=
0x2 + c 2" 1/2 3
y 2
where:
0~, = 32(.125 77D p + 5 vgx)n
'[Id3 0 =J_6Wgya 7
Ud3_
2 A = cross sectional area of shaft - in P = opplied pressure - psig D = disc dLameter - inches d = shaft diameter - inchen W = weight of bonio - pounds a = unsupported shaft length - inches Ex,Ey = acccleration constants (V
Page 9 Of 11
7 pper,ved by,
w,, / c,. f
./
Y SilAFT ltETAlti14 N;SE101LY es
(\\/
For purposes of convenience in description, the shaft retainer assemb!y is considered to consist of the shnft retniner, the shaft re-The nhaft retniner tatuer bolts, and the c.rouved end of the stub shait.
The shaft retaitier was checked for chcar tear out and bearinn stresses.
i botte were checked for tensile stresses assuning all four retainer bolts to be equally loaded.
The grooved end of the shaft was checked for shear tear out and bearing stress.
Formclas for calculating each of these stresses are listed below.
1.
Shear stress in retainer 0FSr " 3EEI 77dt 2.
Bearing stress on retainer and groove OD " 8WS fi($7;dr7T 3.
Tensile stress in retainer bolts Ot = Ug".
~f^
4.
Shear tear out of shaft groove k[ )
Oss ".?W Ft 77drL where: U weight of banjo - pounds d = shaft diameter - inches dr = diameter of retainer bore - inches t = shaft retainer thickncss - inches 2
A = tensile area of retainer bolts - in L = icngth of shaf t after groove - inches g = acceleration constant g
L-)
/
Pcge 10 Of 14
Apprvedby,j.f,,...,.t.
.... i.
/
Illlli llLOCK ASSE!!!lLY i
Yhe hub block asserbly in consi!cred to consist of the hub block, the hub block retaining bolt.s, and the hub block keyway.
The two stresses of primary coaccru in the luib block assembly are the keyway stresses and'the combined tensiin plus shear stresses in the hub block bolts.
The analysis of each of these is explained below.
1.
Ilub Block Keyway - The hub block keyway can be safely designed by keeping the compressive bearing stress on the keyway face below the allowable stress icyc1 for the hub block material.
The bear-ing stress is calculsted using the following formula:
% "----- X Tg /
where:
d = shaft dicmeter - inches K = key height - inches
~
L = key length - inches
'T'ex = toAA 2)ytist4ic 'mRede-C^4M000#9 2.
Hub Block Bolt Stress - The hub block bolts are sized and located such that the maximum combined shear plus tensile stress does not exceed the code allowable value for the bolting material.
Stresses are combined in accordance with the formuin:
O-2 1/2 0 = _Or 2 + 40s g
where:
O'= combined stress level 0~t = tensile stress Os = shear stress The value for os is obtained by evaluating the following formula:
0,=,jpgg_
3A where:
W = banjo weight - pounds A = tensile area of bolt - in-g, = accelcration constant l
The value for o is obtained by evalunting the formula given below.
g
.This formula is the result of an analysis which considers the effect
~
from these or pressure plus scismic londs in the x clirection, moment loads in the x direction renulting from unsupported shaft icngth, and j
moment and wedging cifcets from loads in the Y direction.
i l
{
p.-
\\
l t
Page 11 Ot 14
Pr:ptred by 4 M.w.o' M l- /"/
Apprcvad by -J :
- ~
Y
- L
_ H z. 1 +.C.( A + F-)2l+W 2
3r.
'!5 +.d,
,. r3 O'g' = 1 770 P +
W Cy 2 2 12A A
8 2j,6 2(A +g iC )j 3 11 g
t
(_)
2 where: At = bolt tensile nren - in D = disc dirimeter - inches P = applied pressure - psig W = banjo weight - pounds Ex.Fy = acceleration constants A = distance from hub cdge to first bolt pain - inches B = distance from hub cdge to second bolt pain - inches C = distance from hub cdge to third bolt pain - inches d = shaft diameter - inches a - unsupported shaft length - inches H = distance between bolt rows - inches J
(.N%.
' _)
\\
\\~
Page 12 OL I-
i Prepsrdbyj.l,...J(,l
[ 9-7d Appr;ved by, '.. u,.. -
1 TIIRUST 11 EARING ASSEMBI.Y
=>
[
The thrust bearint; assembly provides restrnint in the z direction for the banjo ansembly, thus assuring the disc edge remnins correctly positioned to maintain scaling cnpability.
Structural adequacy of the assembly was checked using the six formulas listed below. Specific c1cments of the thrust bearing as referred to below are identified in a
figure 3.
1.
Normal bearing stress on thrust washer.
Obn " V-At 2.
Seismic bearing stress on thrust washer.
Ob s " _Er.".
Al 3.
Shear stress in adjusting screw head.
Esn "._8z"__
77Dt 4.
Tensile stress in adjusting screw.
p.
U s.
R W F
t a " _A.z__
2 5.
Shear stresses in cover.
W O,e = Jz
.9 77Irr 6.
Tensile stress in retaining screws.
OEr gW_
where: W = banjo weight - pounds 2
At = bcaring aren of thrust washer - in gz = acceleration constant D = diameter of adjuating screw - inches t = thickness of ndlur. Ling screw head - inches A2 = tensile aren of adjunting screw - in.2 T = cover thickness - inches 3 = tensile area of retaining screws - in.2 A
((:o
_)
Page 13 Of 1-
HCNRY PH ATT CO.
Auns::A. ILL.
4.LE LH LPe C E PeQ.
Tj giire 'l - Essentini Features Of
') ~ -, Iy c-Thrust licariny, Ansembly 7
a i FILE #40.
pret te* Asa L O DAIE
, /j,.',g I c.
( O
,,,,.. o.
VALVE.-. BODY SHAFT TH_R__U_S.T VlEMER (L/
1 e-
[
't.0
/
.J l
ch ex x_
==
- -5=
j-
'=E
'{ gi ^ j6-l ~$9,j y
.5 p
wL n.,
=.
i
=~. d(
lA V:eE;.
R<'sf i n
a t[rg' w
=.
s -]..p 2
-. - =.= = =, - h y
N.k -
_.5 RETNt4 t MG_ G_C._REW COVER ADJUGT.i.t.lG. SC..R. E'.d Pnge 14 of l'
/
1.17 e
n,,
-a-..
-~_, _.
u-_.--.r-.
-w>
-, ~. -.. _ - = _
.,u_,
1
- _ _ -..a
._us,.
A.an-A
- w..s
..a s
a l
2 t
f
(,
e i
I t
i k
ATTACHMENT 3 OPERATOR RATINGS (9
1 1
i i
4 4
4 8
.s I
i h
i 1
e f
e v
P
)
s-w e r e ec
- +-w 'w w reseeew ww www w*usw m
O Cr-LDPJHTOROUE VALVE CCNTROLEB j
2 a
v 4
fa
/
4
-; C. ?
g
.\\
Q
\\. j #
f j
MANUAL TYPIE HBC P
6 [x I, N;
s 3
f, w
j N Uk i
.t is a-i*
\\
g
=,.\\
.<p
\\,,
_ {
Butterfly Valve manual
\\*
operator size H3BC.
i H
- v. au w.%N scl
'y
- h.
\\
,/
t..
' /J
- p,)
?
G
(.-
Q s
o gl.,
~x M:
(\\ s A
- 4. Qh Kg
\\i 9 4 n
2.
Motorized Limitorque Valve Control [
hgh
,I6
' f type SMB with H4DC manual.
}l*
)$V
/
f, j /'
L 1
.V The hand operated type II-BC unit is a worm gear drive Handwheels are optional and can be furnished in sarious which may be used for any valve or desice requiring a 90 sizes as an extra.
movement. The H BC manual gear operator is especially All units are built to meet the requirements of A.W.W.A.
designed for operation of butterfly plug and ball valves.
specifications and when spur gear or besel gear attachments Every li DC operator has an adjustable mechanical stop are used, the maximum input torque is less than 80 ft.-
limit device to prevent mosement of the valve beyond 90 pounds to develop the maximum output torque rating of the unit with standard or optional gear ratios.
of travel. Instructions for setting these limit stops are All sizes of units can be furnisheJ wa. h I imitou m s.u,.e described elsewhere in thn bulletin.
controls or can be readily converted for motor operation in
'Ihc manual li BC operator has an alloy sicci worm shaft the field using Limitorque salve controls. 'I he speed of cnd a bronte worm gear. On all units, except for buried operation of butterfly, plug or ball vahes. when motor service, a vahe po ition pointer is furnished as a standard operated. is usually 20 to 30 seconds, howeser this can be part of the operator. On buried and submersible units.
saried user a wide range limited only 'n motor speed ano stainless steel non-corrosive input shafts are furnished.
available gear ratios.
m A PRODUCT OF LIMITOROUE CORPORATION m e
=
INFORMATION NEEDED FOR ORDER To slic c manual operator, we necd:
l'or motor operation, in addition to the those, we need:
l.-lorque at valse shaft,
- 2. - Valve shaft and Leyway size.
- 6. - Operating times.
- 3. - Degrees of tras ci..
- 7. - Voltage, phase and c)cles (or DC volts).
v'
-h
- 4. -T)pc of enclosure. wcatherproof, horied or
- 8. - T)pc and frequency of setsice, d
submersible. (If submersible, describe depth
- 9. - Masimum ambient temperature.
and time) 10.- Ces desired, weatherproof. explosion.
- 5. - Position of av.cmbly.
proof, or submersible.
11.-Type of motor startcr enclosure.
- 12. -lype of pushbuiton station enclosure.
SELECTION CHART FOR MANUAL OPERATORS UNIT SilE OUTPUT TORQUE RATING WORM GEAR SPUR OR BEVEL GE AR TOTAL H W TURNS FOR 90a INCH POUNDS FT. POUNDS RATIO ATTACHMENT RAfl0 WITH ATTACH.
SPUR OR BEVEL HOBC 5.340 445 71:1 1:1 (bevel only) 17.7 H1BC 15.600 1.300 70 1 2.86.1 50 H2BC 26.400 2.200 70.1 2.86 1 50 A
H3BC 67.800 5.650 70:1 2 86.1 50 H4BC 153.600 12.800 60.1 12.0 1 180 H5BC 235.000 19,583 65:1 12.0:1 195 H6BO 552.000 46.000 66 1 38 9.1 641.8 H78C 760.000 63.333 69.1 38 9.1 671
' ALTERNATE OPil0ML Rail 05 AVAILABLE ON REQUEST.
e (a3 HOEC-H7BC STANDARD WEATHERPRGGF UNIT C W.
C.w f
f e
CC*
~~
C*9
-t M'O Oj'n'Otis""'S
^
f h
POS *8
POS "A" MtNh i
!p L
g p
1 ~P z
18 C.
'l
- NOTE--
Ext [RNat $f 0PS ON g
/ _of-WORM SMAf f. 0% M 0.
ll g
gni Mi M 2 & H 3 BC ONLY ll s
STOPS 09 C# VE $l VE
\\
M 00-A g
I h-(was)
N Sil! 0F IttY
'kk c
- mkf
-,L--
l eyo _
9 Y@2 s
, O O
0, LD h-N A
fs"-Silt & DEP1H
- jJ*
-l Of TAPP[D HOLE l
8 H,,,*
r 8
l C
-G T
=
02-440-0167 2 FOR INSTALLATION PURPOSES USE CERTIFIED DIMENSIONS ONLY.
UNif $llE A
B C
D E
D C
H J
ft L
M N
O P
R 6hPUT $14FT $PLl%li i
M C BC m
th 7W 11 I
?W 6"
3 1
i%
8%
b
- r. s '6 :3%
b 13 4
3%
IS T lsv SPt '* v D P
. 16 a $
9%
__.t'.
_ _11 g_d ';.,
( p.I t'.f i
" '.. I I I'_
3lh..
] I:.
i.,
- 4. Q.J a I.
l(,
11 _.
S ~.
F.
MiM a
v.
< i
- n. i.
o ie.
. n.
n i....>... i2 v.
i m i. o 3:a a n.i iv.
i n/a n
n.
.n e
i,
. e.~ i.".
W - 8 8m j 4.-. ji l
O p s ec 46 i D,.
w.
- t. l.s S.
( Kt (,q',.
. 3 t
(/
M t 8C D.
e..
n.
3 I.
3 im.;4.lt-4.
it-y.
r.'..".
a.
io e
D.
g
' IJ F
>>a t is mor d.'.
m 's Ec 9.
3 0 '/.
14 3
1.
s 11 *.
l t-
- f.
- 3 l i n.
?!
It:.l.*.
=_. Is,We.tili sh iB ( $ ~
~
ti.'.
7 -l n w.
- r..i'.. ic e
- n.,
P iv M 6 BC 13 u,
ir.
24 s a,
tyv.
., s i:.
g,
,g e n s.
in.
n, m,,
2n.
- n....... :.
1..,
... p. s.s.. m
.. no oC i.
m.
i,%
2 NOTE: FOR SilE H-7 BC WITHOUT SPl!MD ADANIR YulMUM BORE IS 8'a" WITH 2" 1%" KEY.
Copyright Limitorque Corpora
~ " ' '
}
7031 Grander d v
-* N P.o somiases "g
l Mouston.Tesas FFC21
$14T43143 fosseF62Ff3 A Ghton Houuon Company
,'0
'A 77*s1CHMEA/~7' 3
January 15, 1981 Henry Pratt Company 401 South Highland Ave.
Aurora, Illinois 60507 Attentica:
Mr. Ted Wrona
Subject:
T-5 Actuator Yoke Assembly Torque Absorbing Capabilities
Dear Mr. Wrona:
This is in response to our telephone conversation of Janu-ary 12, 1981 concerning the torque absorbing capabilities of T-5 actuators; specifically a Model T516B-SR3.
(
Attached is a typical set of data for a Model T-520B double
,(])
acting actuator.
Please note that the yoke assembly mecha-nism for both double acting and spring return actuators is identical.
Consequently, the torque absorbing capabiltiy of a spring return actuator is the same as a double acting unit (i.e., 225,000 lb-in at either the full open or full closed (0-900) positions).
From the graph or tabulated data the per-centage of torque outputs at 150 and 750 positions with respect to 00 and 900 torques is 74.5 and 72.6 percent each, respective-ly.
Based on this, the yoke assembly (rated at 225,000 lb-in)-
should be capable of absorbing at least 163,350 lb-in at the 750 position.
r O
- k. (_)
S 4
l
~52B o
bn w
~
CYLlHDER DIAMETER Cin)=
19.58 l
CENTER OR TIE 8AR DIAMETER Cin)=
1.000 PISTOH ROD DIAMETER Cin)=
1.750
^
i HUMBER OF PIST0HS =
MOMENT ARM Cin)=
5.500 SPRING LOAD A CIbs)=
0 SPRING LOAD 8 (Ibs)=
0 8REAK EFFICIENCY (1).
70 85 RUHHING EFFICIENCY (1)
=
74 ENDlHG EFFICIEHCY (1)
=
40 60 90 90
~
PRESSURES (psi)
=
ACTUATOR TYPE,C8=1,HD=2.T,TR=3, =
3'
~
YOKE ARM SPRING PRESSURE PRESSURE PRESSURE PRESSURE EFFICIEHCY ANGLE TORQUE TORQUE TORQUE TORQUE TORQUE SPR.
PRES.
(degrees)
(in Ib)
C 40) psi
( 60) psi
( 80) psi
( 90) psi 1
1 0
0 91515 137273 183030 205909 74 70 5
0 81533 122299 163066 185449 77 73 10 0
73965 110947 147929 166420 79 76 15 0
68195 102292 136389 153438 81 78 20 0
63811 95716 127621 143574 82 80 25 0
60533 90799 121065 136199 83 82 30 0
58170 87255 116340 130883 84 83 35 0
56595 84892 113190 127339 85 84 40 0
55727 83590 111454 125385 85 85 45 0
55523 83285 111047
'24929 85 85 50 0
55975 83963 111951 125945 !!/f2 85 85 55 0
5710G 85660 114213 128489 r 84 85 60 0
58975 88462 117949 132693 83 84 65 0
61681 92521 123361 138781 82 83 70 0
65379 98069 130759 147103 80 82 75 0
70301 105451 140602 158177 78 81 80 0
76785 115177 153570 172766 76 79 85 0
85340 128010 170680 192015 73 77 9'O O
96745 145117 193489 217675
/0 14 k
Ig.15209. Pa90 8
- a 7. ' _,
C' 3
(
.N j
J........ 4......n 4 ou..-4 -... 4..=... 4.a.... 4....u. 7....... 7..... 3
.........,..........,........,.....f.........f........f......
......J c
.........................q....a9....u.9.......t.........p.........p....
..................m...
...e.
EFFICIE Y PLOT
.........$....4.*.a..=
.uu....
.........g.......go.....,a...........:....:..................,..
N.
.*m.a ia..m = $ mam.
.a
- g.
c
.o.uf naam h
g 7s..
aaam 3
.g......4.......s..............:..................:....
9 I
sua e
amn e
e amo e
m e
m N
m w
n m
E m
C n
3888E........................
g i
.......4...........9...........4.........,..............4n.........p......mi.
C, i
i i.
i i.
i.
i i
C ygggg..........i.........i...........:.......i.....
.,.........................,m....m:
i 3
g CJ i
i.
i i
i i
....u...g.....~......i.....u..,.p m.
..u.
g.......n.
.u I
i i
i i
.i
.i G
i i
e 240020.
...........i;.........2..............i..............!..........i.........i..............i..............l.........i i
i i
i i
i i
i i
i i.
i i
i.
e.
8
......n.......................t.......*.....................4...........g........................4l 9BP$li ei l
l l
l l.
........4...........
4 2
-.p...........a.........,........n.4.......g-
.ou 3
5
.....9.........................4...
c.
... 3..
i
.......p...........9...........
i 2
i............i. _ _
I.........._i............i...........i..........!
c',
(7 182222.
i i
i i
i i
C,~
6 n o..omm.m
.m.
-ga.
m.o...
(.
...o= 4 o -o m.~ g ou u.o.
..m
...g--
.i i.
i i.
( e 15 3
............... +...................................... +
g
(
l 1
~ ~ ~." :" * * * * * *: * *
- t.
(
......***t."m"
"""**f."""""***!.""*"*m""*-
- * * " " * ~
4
... 8 12
..g..
...............g.
4BPSli ha i
........ gi
...i..
..i..
i m.dLLLw.
-.i.....
..g..
..4..
3
...a.
..m.
g I
--4.............;..........................q...............!..............!......
-g
.I I
,o..
.............!,.......7..
I BI 68228
..t.....
.................7.............!
m
.n
,-..o
.............4...u..
,.9....................................p............g..*.........
j i
j I
i C
8.-..........i............i.....o.......i............!..m..a.~.a!
a m.u.- m m m. = =.mgaun mam.:a we a.mn.!
g 3
g i
i i
a
.O N
A-l
~
n._
\\O l
1 1
1 ATTACliMENT 4 I
i SUPPLEMENTAL TORQUE CALCULATIONS
'O 4
9' d
~=
(v
.m.--,
-..w.m..y_._
__,,-a__,,-
r,.w-
%-wwwvy--c,v,,-.----wwww-~w-.-
i I
O arracantur 4
'The following pages illustrate the combined effects of disc r
blockage and delay time on dynamic torque.
In each case, the delay time is fixed at that which produced the worst case torque for the i
fu.~1 open, unblocked condition.
The initial disc angle is reduced by blocking to illustrate the resultants of several different initial angles of opening.
i t
(O 0
4 ro
4 6
.,Ci If D-29254-1 JOE: FL DP. Pf.'F :CFYOT.P!V P2-VAPI AELE C IZE ADJUITED
- PEYriLDC fiD.FffCTff!)
SAT. ITEAf f AIF TIIXTUFE WITH 1.4 LE. OTEAf1 FER 1-LE ; AIP SPEC.GP.=. 752255 f1DL. blT. = 21. 2872 VAP A (I C Ef f T. E;'P. ) = 1.19775 P= 7d.1972 GA; Cart:TAflT-C ALC.
SOff!C ", FEED < MOVIffG MIXTP. i = 1316.65 FEET / CEC AT 225 DEG.
CRIT.CA~E IliLET VELOCITY IS 1.46694 TIME 5 IfiCH f tCLEL HIGHER AO AIP CPIT.CAIE INLET VI-CF MAX. TOGOVE I: AT THE CPITIC AL PFEI'.F ATTO(.5?5 t5 IfD MODEL CP AFPX.695
< 47. 375 Iff *MITH OTf1D.)FIP?T Dff!C oD 72 LEG.V. A.)
Arrot, f tAh. TGF Ol_tE < F I P;T :Cf fIC) AT 72-68 DG. VLV. AfiG. = 171488 Iff-LEO.9 35 DEG.
f1AX. TCPOUE IfiCLUDEO OIZE EFFECT <FEYriCLD: fiD. ETC) AFPX. X 1.16482 FOR 47.375 INCH IA: IC LIf4E I.D.
ALL PFE::UFE; U;ED: 0TATIC(TAP)FFE00.-ABIOLUTE:P2 IffCL.FECOVEPY FFE00.
(TORQUE)C ALC'; VALIDITY:P1 P2> 1. 071 VALVE TYFE:
48"-PIA:1/6 CLA;? 75 DISC OIZE:
46.718 IffCHEI OFFIET A;YMMETPIC DIOC SHAFT DIA.:
4.75 IfiCHEO EPG. CCEF. OF FFCTff.:
- 5. 00000E- 03 CEAT! rig FACTCP:
15 IffLET FFE :.VAP. MAX.: 36.8224 PIIA OUTLET FFE!!UFE*P6):
23.5 PSIA (72 DEG. ACTUAL FFEIO.OfiLY<VAP.))
MAX.AriG.FLOU PATE:
98904.2 CFri: 121031.
OCFM: 6633.43 LE filff f
CPIT. Offic FLOM-90DG
- 36162.3 LE-MIfi A T 19.1166 IfiLET PCIA
^
~,/.
VALVE IriLET IEf t:ITY:
6.72714E-02 LP FT ^ 3-f1Ifi..104519 LP FT^3-ffAX.
l FULL CFEfi LELTA P 262 PCI SY;TEft C0fiDITION::
PIFE Iff-PIF E-3UT -AfiD-AIF/: TEA *f MIXf 0FE CEFVICE 9 225 DEG.F MIfilMUf1 0. 75 DI Af1. PIPE DDuri;TFEAM FFOTI CEf tT.LIffE CHAFT.
PI REI. FFEO UFE <ADJ. )FDLLDuO TIf1E/FFESI. TF Art:IEfiT CUFVE.
ABECLUTE MAN.TCFOUE 10 DEFEfiDEriT Cf t IELAY TIME AfiD
- 3. 4 3 TO 2.15-TH FDUEP OF (P1 P2> Iri UCP;T F AfiGE X LIriEAP CCff;TAfiT P DMft:TP.FFE ;.
P6-AFO.'75-60DEG.)
Iff CUlf0f TIC F AfiGE LIr1IT!-OffLY:CEE FCFMULATICft'.-FEP TECTC H.FFATT THIS T0. AT 72 LEG. Y!1f1. DIIC (68=DFF:ET : HAFT's C T= T D"3 P2 AF i
--5 Iff.MODEL EOUIV. VALUES------ACTUAL CIZE VALUE!-----
Af fGL E P1 P2 DELP F PEI S.
Fluu FLCu TD TE+TH TIME (LOCA' APF PX. Fi! A F C : A PII FATIO i:CFM>
(L L - f11 t t ) ~~--IttCHLES-~~-
TD-TE-TH CEC.
35 23.70 15.?4 7.86
.669 121031 6653 262?6 115 26180 1.00 30 26.92 14.30 12.12
.550 106355 5374 22622 187 22434 1.42 25 29.u2 14.76 14.26
.509 86530 4756 18309 235 18073 1.76 20 30.12 14.72
- 15. 39
.489 525e1 2889 14270 273 13997 1.95
- 5 30.46 14.71 15.76
.483 28632 1574 7030 311 6718 2.00 10 31.??
- 14. IO 17.23
.460 148/3 217 4733 384 4399 2.18 5 34.49 14.TO 19.78 426 4t ' 3 254 3856 445 34!0 2.52 0 26.22 14.70 22.12
.399 0
0 34116 450 33665 2.94
- E AT
- !. ~
FE65IfdG + HOP :EAL TCCOUE < f1 m =
I4116 Iff-LFC G 0 DEG.
+
MAX. 0, r+.
- I EM IrdG - HUE :EPL TGFCUE <M'tD
_=. 26296..Iff-LE? ? 35 DEG.
-e.*
e
- "N.
l
%./
-. - -., =..-
I
.. ++++..............+......++>....
SUNt1APY TDFOUE TABLE-VALVE ILDCKED TDs 40 DEG.
MAX. AffG. FLOW F ATE:
133998.
CFMi 163977.
SCFMi 9014.24 LB/MIti SEATItfG + EEAPIrlG + HUB !EAL TOPOUE (M/M)=
- EEARIllG - HUE CEAL TDPOUE (M M) 34147 Iti-LE 9 0 DEG.
MAX. DYti.
42734 Iti-LES 9 40 DEG.
=
AT 1 SEC. DELAY TIME TD 3.22222 CLD ED VLV.<LDCA) TIME ( 23.7 70 38.357 P SIA UPOTR.PPESO.)
REYllLDO FID. FAC TCP (MULT I PL. ) = 1.31493 TOTAL TDPO. ItiCPEASE-FAC TOP (TD MODEL EASIC)-F(PE) +(P6eP2) l
++..............++....++..........
SUMMAPY TOROUE TAELE-VALVE ILOCKED TD:
45 DEG.
4 MAX.AllG.FLDu FATE:
166950.
CFMI 204300.
SCFMI 11231.
LB/filti SEATItiG + EEAPIrlG + HUE CEAL TOPOUE (M/M)=
34172 Iti-LBS @ 0 DEG.
NAX. DYti.
- EEAPIrlG - HUB SEAL TDFOUE (MeM) 68232 Iri-LES & 40 DEG.
=
AT 1 SEC. DELAY TIME TD 3.5 CLDOED VLV.<LOCA) TIME ( 23.7 TD 39.6 PSIA UP STR.PFESO.)
PEYliLDS ffD.FACTOP(MULTIPL.)= 1.34352 TOTAL TOFO. IllCFEASE-FACTOR (TD MODEL EASIS)-F(FE) (P6/P2) +J9
++.......+....+.+++.....+.........
SUMMAPY TOROUE TAELE-YALVE ELOCLED TD:50 DEG.
MAX.ANG. FLOW PATE:
205708.
CFMi 251730 OCFMi 13838.3 LB/MIts SEATIriG + EEAP1tlG + HUB SEAL TOPOUE (M/Mi=
34201 Iti-LBS 3 0 DEG.
MAX. DYti. - IEAPIriG - HUB IEAL TDPOUE (M M) 89725 Ill-LEO G 45 DEG.
=
AT 1 SEC. DELAY TIME TO 3.77778 POIA UPCTP.PFESO.)
CLD;ED VLY.(LOCA) TIME ( 23.7 TO 41. 0175 FEYtiLDO IID. FACTOP (MULTIPL. ) = 1.31623 TOTAL TDFO. IrfCPEASE-FACTOP (TD ttDDEL EA0!S)-F (PE) +(P6eP2).J
++++..........................+....
SUMMAPY TOPOUE TAELE-VALVE ELDCVED TO:55 DEG.
s' MAX.AriG.FLDM PATE:
253653.
CFM: 310407.
SCFM3 17063.9 LBe MIti CERTIriG + EEAPIffG + HUE CEAL TOPOUE
- M/M)=
34229 Iti-LE! 9 0 DEG.
MAX. DVit. - EEAPIlfG - HUL CEAL TOPOUE (MeM) 113972 Iri-LEO ? 45 DEG.
=
AT 1 CEC. DELAY TIME TO 4.05556 POIA UPSTP.PPEIO./
CLD:ED VLV.'LOCA> TIMES 23.7 TO 42.4 069 FEYtfLD: ifD. FAC TCD (MUL T IPL. ) = 1.30717 TOTAL TOPO. ItfCPEAIE-FAC TCP ' TD tiDDEL E ALI; > -F iFE) + <P6/P2).J9= 1.43693
(:7
6 gf s
SUMMAPY TOPOUE TAELE ' VALVE ILOCFED TD: 60 DEG.
MAX. AfiG.FLDbi F ATE:
303125.
CFM3 370942.
ICFMi 20391.7 LE MIri SEATIfiG + EEAPIfiG + HUB CEAL TOPOUE (M M)=
34257 Iri-LE! S 0 DEG.
150034 Ill-LE!'S 55 DEG.
MA:?. DYfl. - IEAP!IiG - HUE :EAL TOPOUE (M/N) =
AT 1 IEC. DELAY TIME TD 4.33333 CLOOED VLV. (LOCA) tit 1E( 23.7 TD 43.7646 PSIfi UPOTP.FFE00.)
. PEYriLD~ fiO. F ACTOP (t1 ULT IPL. ) = 1.29943 TOT AL TCPO. ItiCF E AS E-FACTCP /Tu r10 DEL E AIIC)-F (PE). < P6 P2).J9= 1.42848
+.............................+.....
t SUMMAPY TOROUE TABLE-VALVE ELDCKED TO: 65 DEG.
MHX. AriG.FLDbl PATE:
362164.
CFMi 443133.
OCFMi 24363.3 LE/MIrl SEATIriG + EEAPIriG + HUE CEAL TDP00E (M/f ti r 34284 Ift, LEO S 0 DEG.
O 183248 Irt;LES S 55 DEG.
MAX.DYri. - EEAPIltG - HUE SEAL TOROUE (Mer1) =
AT 1 SEC. DELAY TIME TO 4.61111 CLD ED VLV. (LCC A> TIME ( 23.7 TD 45.0568 PSIA UPSTP.PPESO.)
PEYitLD: IfD. F AC TCP ( MULT IPL. ) = 1.28947 TOTAL TOFO. IrtCF EASE-F ACTUR (TD MODEL FA0 !O)-F (PE). r F6 P2).J9= 1. 4175 3 SUMitAPY TDPOUE TF.FLE-VALVE ELOCVED TO: 70 DEG.
MAX.AriG.FLCu FATE:
405523.
CFMi 496253.
SCFMi 27230.4 LE 111rl l
CEATIrfG + FEAP! rig + HUF TEAL TOPOUE (M M)=
34310 Irl-LE S. i) IEG.
264620 Irt-LE: S 65 DEG.
MAX.DYri. - EEAPIllG - HUE: EAL TCPOUE
- f1/N ) =
AT 1 SEC. RELAY TIME TO 4.88339 CLO ED VLV. (LOCA) TIME ( 23.7 TO 46.367 P SIA UP:TP.FFE::.>
^
PEYriLD O fiO. F AC TOP <t1UL T IPL. ) = 1.26626 c
TOT AL TOF O. IfiCF EACE-F AC TCP '.TO f10 DEL I A!!!)-F
- PE) + (P6 P2) *J9= 1. 39201 I
r 4
e s
b
(,
~
b W
....................+...............
OUMMARY TOROUE TAILE-YALYE,IL'CLED TO:. 75 '
DEG.
t tt h Af fG. FLO!J P AT.I:
476489.
CTH: 533090.
OCFM:
320'.,4.1 LL/MIri EE'APIreG + HUL MEAL TOPOUE ' M ti) =
34325 Iri-LL D 0 DEG.
@ A Tl t H.'
+
s MnX. D.':1.' - EEPf'Il!G - HUP CEAL 70FOUE (t! Mi =
331197 Irt-LLI.D 65 LEG.
AT 1 IEC: M t AY T!ttE TD,5.16667 CLOIED VLY. (LOCA) T It1Ei 21. 7 TO 47.5964 PSI A 1.'f5TP.fFE;3.) -
RCYriL Df' tfD. Fff.10R+0L T I F L. ) = 1.25693 i
TO'AL 70RC.. lPCt IME-FAC TCP i TC t'ODEL I A:!D -F ' FE). ' P6/P?).J9= 1.08101
.................................+..
SUMt1APY TOPiiUE T All E-VALVE ELOCLED TU: Sb PEO.
e
~
NAX. Af fG. FLOR,i F A TE:
496742.
CFM: 607375.1 CCFil: 33416.5 LL/flIrf SEATIFIG + FEAPIrfG'+ HUF EAL TOPOUE
<M M)*
34359
[
CPU C TEP lit 1I T OF 20 FXCEELED Itt :TEP VAPTUFL1 EttTEP t;E'J LIMIT --35 Ifi-LL, ? O DEG.
b f4AX. DYri. - EEAPING
.H'JL CEAL TOPOUE. < f1'M) 4 337114 I f f-LE : 4 65 DEG.
s fit 1 CEC.IELAY TIME TO 5.44444 CLO ED VLY. < LOC A) T It1E '; 23. 7 TO 43.7609 POI 6 UPCTF..FFE!;.)
FEYriLD: fiO. FAC TOP (t10L O PL. ) = 1.25024 TOTAL' TOPO IrlC F EASE-FACTI $ (TO tt00EL E AS ID -F (F EN + ' P6/P2) +J9= 1. 3744 I
!.UMt'APY TOPOUE TAILE-VALVE FLOCFED TO: 85 0.- G.
t MAX. ArfG.Fluu PATE: '
526939.
CFM: 644029.
IC F"1: 35447.9 LL/ Miff
,'41 +. 5 7 6 CCITT!rtG + FEAPIt4G + HUE EAL TOPOUE 'ttero
- 4381 Irf-LE:.D 0 DEG.
' H X. b Ytt. - LEAPIf4G - HUL :EAL TOFOUE < ti M )
Iri-LL: D 65 DEG.
W1 IEC.FELH) T!:*E TO y
pol A f tFIT P. PFE!;.'),
5.72222 CLO ED VLV.iLOCA> Tite' 23.7 TO 49.G~.22 PEYiLL: f tD. F AC TCP a t10L T IF L. ) =' I. 2454 3 TOTAL F cpi 8 IttCF E A;E -FAC TOP ( TO tt00EL E A;ID -F (FE).
- P6/P2).J9=,
- 1. 36912 1
s V
D
/~
/
4
\\
w
g
.M b
4 I
h o
~
4 ATTACIBIENT 5 GENERAL ARRANGEMENT AND CROSS SECTION DRAWINGS wa h
O w
---w
_ _