ML20030D418
| ML20030D418 | |
| Person / Time | |
|---|---|
| Site: | 05000087 |
| Issue date: | 08/25/1981 |
| From: | WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
| To: | |
| Shared Package | |
| ML20030D417 | List: |
| References | |
| 2016C, NUDOCS 8109010367 | |
| Download: ML20030D418 (41) | |
Text
(
.. k O
l l
l EVALUATION OF THE 24 ELEMENT GRAPHITE REFLECTED CORE l
(
l I
r 1
~., ~
8109010367 810825' l
PDR ADOCK 05000087 P
PDR l
i
t s
l REFERENCES A.
NTR Facility License R-il9, Appendix A B.
Safety Considerations for the 24 Element Graphite-Reflected Core, December 3, 1980.
C.
O l
O 2
0216C
r s
LIST OF FIGURES 1.
Differential Control Rod Worth Vs. Rod Height for Rod No. 1 2.
Integral Control Rod Wortn Vs. Rod Height for Rod No. 1 3.
Differential Rod Worth Vs. Rod Height for Rod No. 2 4.
Integral Rod Worth Vs. Rod Height for Rod No. 2 5.
Differential Rod Worth Vs. Rod Height for Rod No. 3 6.
Integral Rod Worth Vs. Rod Height for Rod No. 3 7.
Differential Rod Worth Vs. Rod Height for Rod No. 7 8.
Integral Rod Worth Vs. Rod Height for Rod No. 7 OR 9.
Differential Rod Worth Vs. Rod Height for Rod No. 8 10.
Integral Rod Worth Vs. Rod Height for Rod No. 8 i
j
- 11. Differential Control Rod Bank Worth ex(%[)Vs.CriticalHeightBasedon
- 12. Available K Differential Bank Worth
- 13. Relation of Annular Supporting Ring to Top of Core 14 Moderator Differential Worth Vs. Water Level
- 15. Relative Void Worth Vs. Radius
- 16. Moderator Temperature Coefficient vs. Moderator Temperature O
-3 0216C-
_.,_,_.. _ ~ -,.. _. _.. _ _ _... _, _.... _.., _.,.,, _. _ _ _. _., _. _ _.. _.
i
- 17. Graphite-Reflector Rod in Core Position Shroud Tube O
- 18. Relative Position of Top of Control Rod Guide Tube to Top of Core Position Shroud Tube
- 19. Control Rod in Guide Tube 20.
N-37-S Confiouration
- 21. N-24-S Configuration O
{
l l
l O
4 0?l6C
a s
LIST OF TABLES O
Table 1.
Individual and Bank Rod Reactivity Insertion Rates 2.
Physical Properties of Type G-83 Graphite 3.
Measured Water Quality with Graphite Reflector Rods Installed 4.
Activity of Graphite-Reflector Rods After Irradiation 5.
Dimensional Measurements of Graphite-Reflector Rod After Immersion in Water 6.
Comparison of Core Data
/m l
[
v 5
0216C
r-4 s
A.
PURPOSE O
This evaluation was conducted in conjunction with Reference (B) to verify there are no unreviewed safety questions involved in the proposed operations of a twt.ty-four (24) element graphite-reflected core and no changes in the existing Technical Specifications governing the operation of the NTR are involved or required to conduct proposed operations.
S.
BACKGROUND Procedures governing the evaluatien were reviewed by f.ne NTR Reactor Safeguards Committee and approved by the NTR Facility Manager. Evaluation commenced in late January, 1981.
C.
DISCUSSION A twenty-four (24) element graphite-reflected core (N-24-5) was configured and taken critical in accordance with upproved procedure.
Initial testing indicated sufficient excass reactivity (Kex) was available to merit evaluation of the n-24-5 core.
l Data gathered during the conduct of experiments is available for inspectica upon request.
D.
EXPERIMENTS The following experiments were conducted on the N-24-5 core to ver dy predictions of Reference (B) and insure no margin for safety in any Technical Specification is reduced.
O 6
0216C
e s
1.0 Individual Control Rod Worth Measurement O
1.1 Purpose Verify maximum control rod reactivity insertion rate is less than 0.10$/S when K is less than 0.99 and less than 0.035 eff 3/S when K,ff is greater than 0.99 (Reference A, Section 3.1.2 and Reference 8, Section 5.10).
.2 Results Figures 1 tnrough 10 are graphs of differential and integral rod worths of control rods 1, 2, 3, 4, and 5 in the N-24.S core.
No data points were graphed below 3.2 turns for control rod 1 because the reactor could not be maintained critical with the remaining rods completely withdrawn.
Peak reactivity insertion rates are tabulated in Table 1.
i j
CONTROL R0D SPEED PEAK REACTIVITY INSERTION RATE R0D IN/ MIN
.01 TURNS /SEC PCM/.0lT PCM/SEC 3/SEC
/
1 3.76 1.333 18.2 24.26
.03 03 j
2 5.65 2.004 7.f 15.03
.0188 3
5.81 2.060 7.5 15.45
.0193 l
4 5.58 1.979 7.1 14.05
.0176 i
5 5.58 1.979 6.8 13.46
.0168 1,3,7,8 57.99
.072 TABLE 1 1
i i
i l O 7
0216C a
~
s 1.4 Conclusion The individual reactivity insertion rctes or any permitted banked combination reactivity insertion rate of control rods 2, 3, 4, and 5 are below the limits specified in Reference (A).
Rod speed for rod no. 2 is 5.65 in./ min. with a peak differential worth of 7.5 p m/.0li which rcsults in a reactivity addition rate of 15.03 pcm/sec.
(5.65f),)(4,7in.)I
"'II '0l pcm) = 15.03 IT 3[,.01883/sec.
P 6
c.
Reactivity insertion rates for the remaining rods are found in a similar manner.
(Data tabulated in Table 1.)
Control system interlocks prevent bank or group withdrawal of control rods when K s greater man M. he M ore, eff reactivity insertion rate is limited to the individual rate of the selected rod which is well belcw the.035 3/sec. limit specified in Reference gA).
The control kystem prevents withdrawal of any cther control rod when control rod 2 withdrawal is being accomplished.
Therefore, the reactivity insertion rate is limited to.0303 3/sec. which is well below the 0.10 3/sec. and 0.035 3/sec.
limits specified in Reference (A).
2.0 Control Rod Bank Worth Measurements 2.1 Purpose Determine the differentie) and integral control rod bank height above the critical bank height and calculate the excess reactivity (Kex) available in the N-24-S core.
(Reference A, Section 3.1 Basis, Paragraph 2, and Reference B, Section 5.9)
O 8
0216C i
e s
2.2 Results, The differential bank worth above the critical bank height is graphed on Figure 11.
Ir.egration of the data points obtained between 4.91 turns (critical bank height) and 8.35 turns (top of the core) results in points graphed on Figure 12.
The clean core excess reactivity available in the N-24-5 core is approximately 4400 pcm.
(5.55)(Reference B, Section 5.9) 2.3 Conclusion Control rod configuration in the N-24-5 core results in a shutdown margin of approximately 22.15 with all control rods fully inserted.
Evaluation of core data with the most reactive control rod stuck in the fully with:frawn position results in a core shutdown margin of 9.55 which is well within the 1$ Technical Specificatlan limit. (Reference A, Section 3.1.1)(Reference B, Section 5.8) 3.0 Moderator Differential Worth Measurement i
3.1 Purpose 4
i a.
Determine minimum critical moderator-shield water level.
l (Reference B, Section 5.13) b.
Measure differential moderator-shield water worth through i
the critical region of the core.
t c.
Measure the slow and t'ast fill rates and associated reactivity addition rates. (Reference 8, Section 5.10)
[
d.
Measure time required to add negative reactivity after initiation of the auxiliary reactor trip.
(Reference 8, Section 5.13)
!O l
9 j
0216C
]
{
m -
e 3.2 Results a.
A critical moderator-shield water level of 78.3 cm above the annular support ring was determined for the N-24-5 core as compared to 62.54 cm above the ahnJ!n support ring for the N-37-5 core (See Figure 13).
b.
Differential moderator worth in pcm/cm is graphed on Figure 14.
Peak differential moderator worth is conservatively 194.2 pcm/cm.
c.
The slow and fast fill rates are.0172 cm/sec. and 0.1542 cm/sec., respectively.
d.
Forty-eight (48) seconds are required to add negative reactivity after initiation of the auxiliary reactor trip (moderator-shield water dump).
3.3 Conclusion a.
The peak moderator dif ferential worth (Fig.14) versus slow fill time results in a maxim;m reactivity addition rate due to moderator addition of 9.17 pcm/sec or.0114 $/sec. as compared to.0228 $/sec. for the N-37-5 core.
(194.2 pcm/cm x.0472 cm/sec. - 9.166 pcm/sec. .0114 3/sec.) This is well below the maximum allowed rate of
.03's 5/sec. when K is greater than.99 as specified in eff Reference (A).
b.
The peak Moderator Differential Worth (Figure 14) versus fast fill time results in a maximum reactivity addition rate of.0374 $/sec. as compared to.0766 $/sec. for the N-37-5 core. The.0374 5/sec. reactivity addition rate is l
well below the 0.10 $/sec. limit specified in Reference A when K is less than.99.
eff The control interlock system does not allow fast fill to be actuated when K is greater than.99.
eff O
10 0216C
j
. -
Neither slow r.cr fast fill will result in reactivity insertion rates in excess of those permitted in Reference i
1 (A), Section 3.1.2.
j c.
The forty-eight (48) seconds required to insert negative f
reactivity upon initiation of moderator-shield water dump l
is well below the 1 minute time limit specified in j
Reference (A), Section 3.1.5.
}
l t
4.0 Void Coefficient Measurement l
l 4.1 Purpose l
Calculate *.he void coeffic:cnt for the N-24-S core.
4.2 Results i
a.
The value of percent void was calculated as follows:
i 3
volume of void tube 463.33 cm volume of core 4
3 6.785 x 10 cm
}
.683 % void The average weighted reactivity worth of void tubes is
-220.7 pcm.
k 4
-220.7 pcm 323 pcm l
.683 % void
,% void
.404 3/% void i
b.
Figure 15 is an experimentally derived graph of relative l
void worth with respect to core radial position. The worst case void coefficient value is:
l l
.41 $/% void as compared to.42 5/% void for the N-37-S core i
O 11 0216C
. _.. _ _ _ _ _ -.. _ _ _ _ _. _,. _ _ _. _. ~... _ - _. -. -. - _,,.. _ _ _. _. _. _... _ _ _ _ _ _, _,. _ _ -. -
o 4.3 Conclusion The void coefficient for the worst case is.41 $/% void well above the limit of.1 5/% void spccified in Reference (A),
Section 3.2.2.
5.0 Temperature Coefficient Measurement 5.1 Purpose To measure the temperature coefficient of reactivity of the N-24-5 core.
5.2 Results a.
Figure 16 is an experimentally derived graph of the change in reactivity due to a change in moderator temperature from the critical bank height of 4.91 turns, b.
The temperature coefficient is negative in the temperature range measured (67'F to 103'F).
c.
The increase absolute value of the temperature coefficient approximates a linear change through temperature range measured.
5.3 Conclusion a.
Extrapolation of the temperature coefficient to its zero point indicates the temperature coefficient would remain negative to a temperature below 50'F.
b.
The absolute value of the temperature coefficient at 80*F is 2.13 x 10-3 3f F as compared to 1.87 x 10-3 3f F for the N-37-5 core.
c.
The temperature coefficient is negative at temperatures greater than 80*F and its absolute value is well aoove the 1 x 10-3 37 F specified in Reference (A).
O 12 0216C
em A
aR+-
4J=+
'd m
m-,
--4 L.
u i
6.s Absolute Flux Determination and Power Calibration i
6.1 Purpose Demonstrate the characteristics of the instrument channels will be anchanged. (Reference B, Section 5.4) 6.2 Results
)
At an ind hated power level of 10 watts, the measured core power (by foil activation) is 3.288 watts.
a t
6.3 Cy clusion The higher indicated power is due to reduced core volume and j
lower absorption cross-section of the graphite-reflector rods i
as compared to water displaced. Instrument channels responded i
as expected.
i The higher indicated power provides a greater degree of conscristism in the N-24-S core than in the N-37-5 core (indicated 10 watts, actual 3.288 watts).
t 7.0 Graphite-Reflector Rods l
t 7.1 Purpose To supplement the comments contained in Reference (B) concerning the use of graphite-reflector rods in the N-24-5 core.
(
7.2 Results The results as presented are based on actual observations made before and after immersion and irradiation of the graphite-reflector roas in the N-24-5 core.
O t
13 1
0216C
g Taole 2 troulates measured water quality after installation of the graphite-reflector rods.
DATE OF RESISTIVITY ANALYSIS pH x 1000 ohm-cm 2-3-81 6.85 540 2-4-81 6.75 480 2-5-81 6.75 455 2-6-81 6.80 420 2-10-81 6.85 510 2-11-81 6.85 510 2-12-81 6.75 450 2-13-81 6.80 450 2-19-81 6.45 430 3-12-81 6.80 332 TABLE 2 Table 3 tabulates radiation and contamination of selected graphite reflector rods after immersion and irradiation.
GRAPHITE RADIATION SURFACE REFLECTOR RODS FIELD CONTAMINATION 5
.02 mr/hr
< MDA 14
.02 mr/hr
< MDA 25
.02 mr/hr
< MDA TABLE 3 Table 4 tabulates diameter dimension measurements of graphite-reflector rod number 14 after immersion and irradiation.
O 14 0216C
+
e h
DATE LOCATION V
MEASUREMENT OF MEASUREMENT OF AXIS OF TAKEN GRAPHITE REFLECTOR R0D 10P CENTER BOTTOM l-29-81 2.6!^
2.632 2.628 3-12-81 2.629 2.631 2.627 7-8-81 2.630 2.630 2.628 7-11-81 2.629 2.629 2.627 TABLE 4 7.3 Conclusion In the environment presented by the proposed operations of the N-24-5 core:
Water quality is not affacted by the introduction of graphite-reflector rods.
Activation and contamination of the graphite-reflector roas are insignificant.
The measured change in dimensions of the graphite-reflector rods within the accuracy of measurement methods used is i
insignificant.
The graphite-reflector rods are not subjected ta a corrosive or erosive environment and will not be moved after initial installation except for inspection. Therefore, " wear products" and accidentally dislodged pieces of graphite will be held to an absolute minimum.
There is no forced and insignificant conductive flow of moderator. Therefore, graphite " wear products" or accidentally dislodged pieces of graphite would remain in the core position shroud tube a graphite-reflector rod is located in (See Figure 17).
Control rod guide tubes extend 20.75" above the tops of core position shioud tubes. It is extremely unlikely that graphite a
15 0216C
o
" wear products" or accidentally dislodged pieces of graphite would be transported up and into the control rod guide tube openings (See Figure 18).
When a reflector rod is removed from a core position shroud tube, accumulated " wear products" or accidentally dislodged pieces of graphite would fall to the bottcm of the shroud tube and through the 2.25" hole in the lower core plate to the bottom of the reactor tank w1ere they would remain until the moderator is dumped to tie dump tank (See Figure 18).
Wear products or accidentally dislodged pieces of graphite dumped from the reactor tank could possibly lodge in the seats of the fast or fine dump valves (Reference B, Section 3.6).
This is a fail safe condition.
A.095 inch clearance exists between the outside diameter of the control rod / fuel ela~nt follower assembly and the inside diameter of the control rod guide tube (See Figure 19).
A.031 inch clea ance exists between the oute ie diameter of the control rod shock absorber piston and the inside diameter of the controi rod guide tube (See Figure 19).
Concentration of graphite " wear products" in any one control rod guide tube to the extent to cause binding is extremely improbable.
That improbability coupled with scheduled inspection of all control rod guide tubes and graphite-reflector rods p aclF' the possibility of control rod impedement due to graphit' sa.
products.
Use of graphite-reflector rods in the N-24-S core presents no unresolved safety questions or requires any change in Reference (A).
O 16 0216C
~
E.
SUMMARY
Conclusions derived from the results of experiments conducted on the N-24-S core coupled with the comments presented in Reference (B) verify (1) the probability or consequences of any analyzed accident are not increased, (ii) there is no
[
possibility of an unanalyzed accident occurring, and (iii) no margin for safety in any Technical. Specification basis is reduced d rina the operation of the twenty-four (24) element graphite-reflected core.
In accordance with reference (C), the twenty-four element graphite-reflected core can be considered the normal configuration and will not necessitate an amendment to the operating license.
Table 6 is provided as a comparison of those features of the Nuclear Training Reactor that have changed due to the utilization of the 24 element graphite-reflected core.
I e
i
!O l
17-(
0216C l
1..
.~.
. - - -..... - - - - - - - - -.. - ~ - - - - - - - - - - - - -
- - - --~' - -- '
o TABLE 6 N-37-5 N-24-S Normal Core 28 fuel e hments and 19 fuel elements and Configuration 9 control rods and 5 control rods and followe's (See Fig. 20) followers (See Fig. 21)
Reflector Light water, - two feet Light water, ~ two feet thick thick, 20 graphite-reflector rods Reactor Control 3 safety control rods -
1 safety control roJ centered 5.413 inches centered 2.706 inch!s from core center in an from core center equilateral triangle configuration.
4 shim rods centered 7.812 inches from the 6 shim rods centered core center in a rectan-9.3 M inches from the gular configuration core center in a hexagon configuration Minimum Critical 24 standard elements 22 stindard fuel elements Fuel Loading loaded in best right loaded in best right cylinder cylinder and 20 graphite-reflector rods Kexcess 9.6 % /.K/K 4.4 % aK/K Shutdown Margin
- 11. ' % AK/K 17.7 % AK/K Peak Thermal Flux 8 x 1010 n/cm2 sec 10.9 x 1010 n/cm2 sec
/
/
at 10 KW at 10 KW Average Thermal 3 x 1010 n/cm2 sec.
4.08 x 1010 n/cm2 sec.
/
/
Flux at 10 KW at 10 KW Reactivity Worth i
Safety Rod 4300 pcm 10,060 pcm Each Shim Rod 1300 pcm 2700 pcm l
Average Void Coef-288 pcm/% void 323 pcm/% void ficient Temperature Coef-
-1.5 pcm/*F
-1.7 pcm/'F ficient at 80' O
l 18 0216C
t
/.~.,\\
\\
)
w/
bFFERENTIAL ROD WORTM CURVE FOR CONTROL ROD 'l-SAFETY ROD no I
I I
ie 1
1 I
1 1,
1 1
I 1
I is 1
1 I
1 1
1 I
i.
I 1
E R,
i it i
I 1
O I
I 1
i n
1 i
a n
5
\\
l 7.ss\\
3 s
to i
f a
1
\\
)
u 1
1 F
L/
c l
~
4=
e s
I T
s s
1
.1 1
1, I
i 1
I k,
I t
1 I
I I
h.
I 1
3 1
3 X
I A
I 0
1,
_w.
0 10 4D EO EO 7D EO SD miewt nun =si min-oes-i arvo a
-s
(
t
)
FIGURE 1 v
t
+
O INTEGRAL ROD WORTH CURVE FOR CONTROL ROD 'l-SAFETY RO N-24.$ CORE M
D. ;:;i ' - : 'i-4aWM pt+-Wr i i !
!!i _
' w m 'i:
ils p 4i I ' 4 ;: - : i
!;:ij; 1
= 1he+ 1 -
+;
I.
I 1
L
^=1
- u. i -:
+4m.
i L
6 i ! b-I g;
1 i.
-'I...
i
+4 Ii
- i{
M ijI-i
,y
- 1,-
1 t
.1
. i
^4 i ii
';W
,i 7 1
1 1 1.,
_i'
. H. i.
2.5
-bi; ii i i : i.
1
- i' I
_ l a
^-
I
]
1, '
T *M g
- 11 !
~m~
h
^
"T
~
'[e g',
1: 3 -
, i ii
'2 1
1 i !
- -i
..i
. 1 !
- _ ~.-,-
_ 1, " '---
22,
-. 4y.
i'
.2 '
2
- ;i 1 I
--~ R
"..~P't I
' - H - i' i
in 2D
- 1
>2+w1 3 i:
1 - -
-'fl1
---e 1
-m_.
. _ ;ii I
I tI
. [
'r i.
I I ~
. 1 3
- 1.
1 i i :
I I I
^ g M
- i +
- 1 i!
3 1 ;_1 i
g
, i 11:
m4 g
1 1
".,ii i{
j i:,
1 1 g
1 1!ll -
'. 3 t,I '
- , i ', 1
,.: r u:
. 1 :
1, n
2
- i :
14 i i
-++i
- l
i s:
M \\.,.T g
. i -
I ". !I f I' !
i
+
.,i it 1
l.5 i
i i
i 1 :. 'i.
iii 1;
.;T -![q g s
i ' '
- ii i ii.
i ele i i o:
i I i.
- i IT fMY"d"
.. : i i I iI I-l l l
'1
^
SlW i I '
{j i,
j j 1-
!}.
^
i M,
,i11 2
' ~ '
is 1 1 t i !i e
_! '. i _11.
i i
- 1 iii i ii_
i r
n
.g7 s
- 1
.,2 : >
i:
t ri i ii
--+-t i
m1
- a4+,11-1,-
rt*4-*
1 n
1i i t+~-
1 1 i -
_,44',r
- - 1 s ii:
1,1 1 3.0 H
-31i
. :i
.1
- ;.1
-,i,.
1 : '
i
! 'i ri 1
1 i iii 1 1 M,M
, ; 3
,,. i
- 2.
I 1 i i ^
- ;1 i i i.
. i.
1 1 :
- ii-i t 1
1
- _4
- i -
~-
1 1
s-i t i '
i -
i i:.i
. is-.ii'
- 1 1 1
- i
. i ii
- 1, 1 - i ii
- 1 11.s :.
I'l 1
. i.:.
i i ii i i :
11.
-'. l 1.i i 1 i
1
~
i 1_\\I!
1 1 1 5 1:
. 11 1 1 :
ll i i
i
- j -
i
. 31 iit.
y i
i
~i
- x i-i 1
i i
i i 3,
r I I I
! t i
IINT
.iii:
i s
kI
^
i d -,
l l ': j' ij
}
i,'!
bbM [li i
!.i ii' i
^
i
~~~
x i 1-1 1 1
-a i
1 i
i i
I
- s
.. 1 ii
..i1 I I 1
1.
i,
1
- i 1
s ; i 1
i I, 1 i
I i
! i n M'y j 44 tu1L y.it M W~
l:li rii L
- _j
~
- 1 it w
i+
u, t '
li i 1 i i 1:
- i i-t
.; } :i , i ; ;j": m I 1; r r Jc-IL4 M l "I 0 1 1 3 4 4 6 7 8 g 1 i tu i i 1 x 1114..,!!l 0-MTR-OPS-2* REV-l ROD HOGHT (TURNS) O FIGURE 2
e ) ,g i t \\% G
- 2 OlFFERENTIAL ROD WORTH CURVE FOR CONTROL ROD 9
N-24-S CORE 10 w -s---~3 ~ T m+ 7.- ~ 3 ~-- i i r m ' r -< n smv +1 ~ -~ 3 ~ wy~r3 I .. I i I i I i I 1 ' I i i l 1 III I i I i. Ifn I I - 1 i I 1i .1 i ! f I a i l 1 i e !I 1 . 1 I
- I I
- 1 :
I I I i ! I : a I I 1 1 9 . i. ! ! : I . I. 1 I I I 1 i i i : 3 2 i 1 .1 i ! I i 1 i 1 ' I 1 - 1 . I ! I i i 2 . i i I ! 1 . 1I I . a. . 1 1 I i 4 ! I 1 i l i 7 I. I
- I.
T. I i 1 m i i I i i . I ! i i 'i 8 i i ,I i. I 1
- I i
. n I 1 1 1 t I 1 i , I I. i i t i. ., 1 1 ' I7 1 p 1 i i i I I. I I. 1 i 1 2 1 I I .. i Y Q
- I i.
. i. 1 1 1 i a ' I. ? y _ i : I I I . I l :
- 1 i i I I I.
i. _ a' 1 a g, .. i s i i ' / 1 1 _ _3 . i - i i _. . _1 . II 2 ' 1 I I I i ' ' i - I II 2 - 2 ' i.. 4 A 1 i i i. ' O. 1 i i.. 1 I i i i _ a e i 1 _1 ! I i i 1 i e a I _ i 4, \\, E eT T-- -/ 17 * : i - i i - ' - N%
- I -
t I : 1 -
- i
. i .. I i 1 1 i I i : 1 2 I i 1 1 . I 3 i f l i l a
- 1 i
1
- 4, I
I i i g I ia i 1 . I2 _ f,: i
- I i 1
i I i i
- i.I I
I
- 1 3
I 1. I 1 i i ' I _ I, 11 1 i n i 1 I I Ii II f k! i 4 i I Ik 2 1 F) 2
- I '-
1 I i 0 ,7 i r I i i - ' 't l - O, i i a i I. g 1 I 1 4( 1 i I I . i I I A i 1. l ' I i I t 1
- 1.
1. 1. I 1 _ i{,_ M, 4 3 7 i i i Y T 1 I I 1 I . i a iI i 1 : iI i 1 i lI 11 ' !$1 h. f a 1 ,i 1 . k i i I a "T I1 I l I I. i I j I
- M h
j i i a 1 i . i n r , 1 .m !i I fi a ibb*h . [. .i 1 WM i ; I i ii- ( 1 l1 l$h *. _m[i___.i !i ittr +_ i i I ii i i p_ j, ;! l ~M i E_i.___ ! i iii i i ^ w n i 00 1.0 2.0 3.0 4.0 S.O 6.0 7.0 e.0 ROD MEIGHT (TURNS) l NTR -OPS 4 REV-1 [ i y( ( ( FIGURE 3
t e . ~.. _ _,.. _.. e e e INTEGRAL ROD WORTH CURVE FOR CONTROL ROD *2 24-5 30 i li! . ! aj ; ; ! -' M i i"T7?M !P" ~~ 4-i~ fi h 5 ~7
- i i
i. i II I l i .. i T ,j ] 1 !k ].! . i !k h! . I1 I I ! II'I1I!. 'II . I: 'i.. M.,. i II f ' I I I ! !2 2 I, I. ,- 77 7 III: : I: I I I t 11,1 ! 1,. ,' I : _ y- .1 i i
- 1..
,1 i I. 7
- 1 :
I ! 1 : I I I! _ i. I i, e I 1,.. ,?I - 1. I 1 ' !I1 ! ~ k - rj i x i - j ' 7 i i l 1 , i 3 h i Y'e i r1 1 f 3 1 . i i i ! a ' !1 i i 1 i I ; I ' jr
- fI a
i e T i' 2. i 'N'N 7 i i. II
- I :
g 1 . i i 7 I l ' i ' I' ' I. 3 .. I 1 I
- 1 :
I I I i ,4
- 1 i
! : I 'il- ..+ 1 H' : I 2 W' ' I. j - I i 1 I n 2.0 I i t. i. i . IT t I T ! ] 1I i j a i. 1_ I.. . : 1. (f Ij I i I 1 1 ~.. 1 g O 1 I g 'I ^ {; j m. E w'* A !$Ii - ' i i- ^ ^ ^ ^ i q i i 1 i. 1.5 '. i 1 i . ! I I I ' 1 i!. 'I: ' h I i.Ii . Y f I! Ii I k I Ei !i^ i?7 ? i i i T r T 'i 1 :. Y . i ? i 1 'I I. I ! i 1 i
- I i
'j I I i : I ! T 1 7 I i ?I! . !i?'
- I i
' I : a I I 2 II I . i i 1
- 1 I
' I J 4,, ? 3. 2
- 1 1 '
I 4 1!
- 1I I
.I I i II 1. I f!'l 5!! y If Id ji f, - i I I I! E %6 J mt -+ : e-g y Q i 'I:i,[' ',1 I T . I I ...I 1 il2 i i z 1 1 ' g i ' i 1 I T i I. I 2 . i 1 iI ~
- i i
1 2 1 1 1 I. 1 '. i I I ' I I i 2 i ! I i'! I
- 1 !. ' : I :.
I 1 I Y 1 !I i. ' 2 1 I e s. I' i 'T I I I ! a . i 2 i . : II _iI 1 I I
- 1 1 ' : I :
j - -i1- 'y . 1 I..i
- I ! !
!II .i I ! [ i 1 i I h f'. Ii.I h ! r r I !: ] i I . I ' i I i 1 1 I' i 9' i i a 7 y 7 - ji r 7 liii
- /- Ti !
i i-+M-
- il-H !
!i . i i ~M ii a I. i i
- 1. 1 j1 i
iIM ( ' I i I i II! !J T I.1 Ii. p f ~ ' <~~N.i I A y y 1:
- ,1
-u x. i i i 4 i 1 4 ' a 4 1 4 1,1 L..J i - i i .i .1 i p . W-A.. 1: i I. _4_ a# e u LJJ J J. (..M, &<J .w-.ma. L -< J - .4 L. J < i 5 4J < a < -..J u.-J--+- lW . 4 14.L,. C I 2 3 4 5 -6 7 8 9 l ROD HEIGH.T (TURNS) NTR-OPS-4' REV-l l i FIGURE.4 1 L l
9 h /'h 4-. \\
- 3 DIFFERENTIAL ROD WORTH CURVE FOR CONTROL ROD N-24-5 CORE g
1 1 e i' ~ ~~ h i; i I'"N'
- J-
- ' 1 I ii
!If i .iI. iI!I,, 4, J[ 1 I T T ! I i: 1 TI: ! Tj 1 : 1 1 .'I 7 ! I f. ~ ] 2 1 I i... .1 ; . i i l I III II I' il I . 1 i i 1 ' (4 i ! ! 3 I i . 2 I 1
- 1 r
? I i I il i T i I I ?. II . i i
- I 1
,. i i I I ia T i l' I l ! I... ?I . ]
- 1 i
T 1 i i - ?I. 1.. .l 1 ...: l 1 ? ! ] ! I... 1 i. 1 - 1 ! I i
- 1 l '
I I I II1 I I I Ib 4-h d Eh 1 2 i . 1; i H ^ ! ' '. lify ' QA-li* 7 ( _, - ~ l, - i i i r i I i ! 5 i i,4 [m 1 2 t W-s.s z,- t i - i gg g ,1 -i~ ^ 3, iii 1 1.. i i~ i l ~ i 'i ';1 ' 4% , ii a . i : l. ,i q h t -M ii!' E j
- : - -f-i
'ti 'i! he 4 1 i i
- i m
n e m i si i 11 i {
- ,1 r i i.
i 13 q1 - 1 ,,r; ui. 1. i i : 1 ii. -h i-W i!' i,1 m- -et-am, i - -, .~ y .: 1 . z. i 1 - 11 _4 i 4 'T 1 ,; ii i ii is i i i : 1 A 44___.;, ,'i { - 1 g_.. -u ._y__ i ; o 11 i
%. h_M i1: m:
- i
' O i ; l: !.'/ ' 1, ff.j [f h!' II i ii! i i 1 1 i 2 __ J . I 1 1 1 1 ~1 l I 1 ~ l {
- T"~
j j 1 l .n... +- I I I N-~ -~ [w,. l
- i M_
!i I ! i 1.-. i g i 1 ..y.g 1 1, 1
- 1 I I I
i .g. i 4..w e,. I 1 a ] a i M-I d"lI I- -d =M<.M. Md e J y_.. i w 4 I I i j.,h- _I I 0 LD 1.0 3.0 4.0 5.0 6.0 7.0 80 S.4 0 CONTROL ROD (TURNS) NTR-0PS-S REV-1 b / ( )/ I FIGURE 5
a I 9 O INTEGRAL ROD WORTH CURVE FOR CONTROL ROD
- 5 N-24-b li:
e Mi i 10.,m-,,,<, i.,c, iii. i ; r"t*T & t-t' N wiiii..m"'.1 I I ;.. T T I iy ! i 1 T 1 : W .I7117 III 'TI j l! M a4-41 'l+ 9!. t ': L 'jp,7Ii] ~ I ! k ~- 1 9 -~ ~ ~ ^ ^ ^ ~ ^ - i r! pi 7' J bi i !h$5 i 2 E I I - ..' l ; i I 7 I I i 1 I I I - i I I 3 I I r i I ' fI y. I 2.5 }3_ II2f. fj
- r7 y 3
i 3 I i 1 T - a ! I I 3 I I : II. < '4 i - 2: 2 e I 1 ' ' 1_ .i. .1 il lll_ 7 5 Il a 7 1 1 III T i 1 11 i I 5 I i ~ - i 1 i [h +;- -. i i 1 r r j y 7,i ^ T L' - i 1
- I '
y T i I-1 1 i I ' 4 ; - y 7 4 0-+ - 1 i 1 i : I I1 :. r M< ' i - I ]d } - {I ' Ii,Md y 1 7,T T' 1 1 , i I 1 ! I i ; i i 2] ' '} fQ I N ' I I I I 1 : i 7,.
- ;I
- ,
.I1 2.0 i a I 'I . ;] ' ' l T ' 3 1 I f
- s...:
. ITI iil : 1 1 A I - a I i I o ! I ' I '-
- I :
i i ^M ji i T 1
- :~ '
f - ~ ? I ] I i p ] I t T ~7-7 7 . '1 I L) fj: 1 I : a 1 iiil ! l . ! I. ljlI 1.g _ 1, 1 i
- lij f
J a I ! I 1 .4 - I : I 1 ' ' IIl _' , i1, i
- *' I : 1 1
! 2
- 1 II' j h-3 I.
g t,+ I I 1 I "': I } gj{ _3 I 'I + - - ", i i .i 4. 7,-,r T M M , m: 1... 3 . 1 - 1 ,n-1- 'm, I I. 1. 2 4 - g - 1 -s1 ^ - / W-i .1 pi,- i . I g 1 I I , ; - j - j v 2 'I i __. j 1 m_ I. M -d l 1 W!,g 1. ~ 4 ~ _ ,j .a .~%. 3 ' f 14 - 1 '11 1 1 1 1 ,'1, - ;;i 2._ -q ; : - i --*++, 73 1 i - M, . ii 2, 1, 1 -
- 1 :
, pp j ;--. i;,M -h,4'-i+,+, < _e --e <&.4 -e-h 4.+3 ~; m -. = 1 ._n . ~--.i. I i-,;
- i. ^ 1 ni!
i
- i.
,. r /, - ~ 3 .. i: - I; i 1 i ; i j
- p, t
7 3 - 1 ! i 1 - [t ' ^, h; ,P ^ 4
- i
+ I i - I i _ - i i[ T _.fT h; ;* + 'd+u Lj L ajjid ;.iL.QJji6.Qi14CN b,dlm 2. a-JR L - _ 4+b $i i $a . i, , si E 1 e'* ,1 4 l 2 3 4 5 6 7 8 8 ~* 0-NT R -OPS -6 CONTROL RQD HDGHT IN TURNS REV-1 ~ FIGURE 6 O
O ~ DIFFERENTIAL ROD WORTH CURVE FOR CONTROL ROD '4 N-24-5 COME . Y" " 9 ~Pi i il
- W7
-l 10 ~T i1 i 1 i, I ~ j 4, 1. I i 1 I 'i - 1 i jv r - 1' [* f [ --h.. fI I I j. 4, i' 11 I i I i !i ' T I I _ I 11 Ii. i fI ~ i-If, [}jj .fjj j;j, 1 - ,ll' 'il, 'I i i 4 44Q- .JM., g ji I! ~~ j { a y il I j i, h iii i 1 f i k 1 iik .I ..j I 1 l I s 1 I I ! 1 1 '_ I . I 1 Y j J I 3 !2 I I I b a., ' I I II iI '- 1 4 l_' ' jg, ~l NM i ; 1 7 .i i i2 i I g i I 1 - jy ^ t i i ^ y 1, Y I khk. ) I i hi i . I j y i g - E IIII I i 1 1 iI i II i T 1 1 !i^ A I I j i Il I. 1 P s I,' {-lI
- is I i i
1 I I I I I I.. 1 1 I 1 m i- , o: o
- 1 m.
%+ ' I
- 2_Q g
. r 1 p! j
- - ([ :, *ii l
'T4 l d 'i'i fi. i
- l'-
5 :i, tS E E_ i - ; - i tt'+ i i %N r . 1 : 1 g 7:;; ig; i s 4 ..I i IIi 7i 1. ' 'k-- I =,, 'I W-y ' t i fir : i, 7N i m
- \\-
li - i 2 - i 1 11 g i i ' ~* O ') 5 V Qg
- =].1k' n *%
rk
- h... ',
- 11 s
.g .c
- i, i i
!i'> N-+ i I .4 i_, i i: f [-ii ii: ! r 11 4 i ;
- x. x g.,
,..3 : 1 i .1 / w i i ii . i 1 i i .1 1, . i 1 -ig- 'T I .1 I,
- i
.o
- w
. 1 : r, .1 _ w 1 1 T t 1 1 g
- . itiii
- d, !; uo ua L u il;_, i __ _ b. jil & a. M. 4jl' - 2. 99 31. 9.g,:; g. LO 2.0 3.0 4.0 5.0 6.0 7.0 4.0 CONTROL ROD HEIGHT (TURNS) NT R -OPS-7 REv-i 1 l l t 1 I FIGURE 7 'N. i i t
4 e O
- 4 INTEGRAL ROD WORTH CURVE FOR CONTROL ROD N-24-5
_.,ii -tr't" -. i ii 1. 1 iii. i if iii. iiii i i i : ++- - . I '-~ 30 231: i: 1. . H'4 "' }9!4 1;44-. 11!
- l i i
1 1 ! ay!- I 7. > 1
- 4. w --
.g + .,'7 I
- i! "4"i
-d ii! i i t+%< .:!ij j! I ;- b
- ,Tt'"
mN , ~. iiii i i^ i i
- 1' 1
T1
- +*"
3l; 1; q y;1i .W M j - +-+++4 i-i I s.- .1 ;
- -.-+4 i;
i;i i, ,^< 4
- ;^
W M' A+'-,- +v .., ^
- ; ;
- i. 44.,i+i
. i. ;;. i i
- ~
i i 3, +,- t+ h M, 1 44,; - + i-.; rT* ' 1. .1 i 3
- 1 i 1 1 7 5 :3,--
iTi! 1 I i; -
- ~
- 3.,:,
i 1 -, , ; 44. % - m a4 1: 1 pr i 1. 1NtM M !i: !!!1 !i l' , + - 1 I 1 - 1. glT*,. fi, 1-1 1 i. 11: ,11 : l T' '1 M & +4 <.4A .!!1 1-i ' i ,4 4j ,,y l' 1*; ; ;- -+ i i ij; 9m .ii 1 w-1 -++y t y i .i, iiii E ~+, i i
- 1; r
i1 ! **r '-
- i..
!ii W 1 1 7 g 4g _'i' y "E I! tij! !!1 11 - y g..T._ "MM ii , !.1 1 ~-.'44 t*- 11 +++
- i. 'i !, ! 1..
i .1 i '+-t-i!!i . I i,1 .. + -. E 2 1 l <,-.C 4%._,.,c 5, :_ '1 2 4 +1,
- ,,z. -- -
- i 2 11 - 1 1 1. :, - ' i11 .. 4-m L +-44 4 -- t
- 4' E; - ' '
H ++P s l ', l.S f. -
- ;, i1 t
- _t
- i:
at; R 4-4: raa i ii;
- l
'!+ + ^ 1 1 +- 1;, 7- ' ^ m -+ - 7Tt i ii: / J11; 'i l: ,!Ij tet"~4; >!j i: ^ - !il .ii r ftT [' i;ii ij'! '1: 4iii !i %b @i i I'
- j!I II!,@
Ill! lii i : ( 4l' tjil 4 4-: ,; 4i .. - 4~ ....1: 1.,4 - 1 i i : i - th1 p-( 30 -.!} 1-1 1.
- Q g
11 - -p!-- M,---. . } - = -+Q: - I I If I ++4-. j !I 1 - : 1 : rit g 4 44 11 s i ~.- i-i,. ( ~~ +4t 4 + 1;! x I l*..+ t++- i I + I:,- 3 I +. 44- -t- -b fM 444? ./ ^ Ii 4+.,, ii! ^i
- i. w-4. 7w +,-.- W
-fis ! j ;^ ~'
- t+t+-
i +- +;: i, 1 1;i ~ t,- +4 1 , 4 ++; 1 1 - 1 r1 i ii 1
- f. i
- n-1 :i --m.- ;, .+,- i -4,44
- 3
4;.i I,-- - +-.+ - 4, - --*--+" l 4+c-- %.3, !1i a-l ^.i ~^ ii ~ 4 Hi: 1 1 i 1 +
- . t*- +'.>1 1
1 ... N..!..!a! 1 D 1. .d/.-. m! s-ik 1.. -a w -.. -.h I' iI =K-1 .+ I 2 3 4 5 6 7 8 9 0 CONTROL ROD HEIGHT IN TURNS NTR-OPS-R REV-l ww-l FIGURE 8
9 8 me m... ()
- 5 OlFFERENTIAL ROD WORTH CURVE FOR CONTROL ROD N-24-8 kI i !Ii ii i i
I I .i1 i .i1 i I i I I I = 1 I '- - l0.0 I ! I ' I ] l? I !. .' l. I1 i I i 1 I ~ I - 1 1 i i a I I]. i ! I I! II ! i 1 ' fMI ' Ii . i _. 1. I l 90 i i - i 1 1 5 i 1. II. 3 I II I I .. I Jill . : I i ! I ' I I I I' 1 I 'III II a I. ' li. l i I., ?] i I i I 1 i I I I i I I I I ~ lll I II Il! i I I a
- I i A 1 1 :
i i I I ! I 1 I - I N .. I _ 1. I 1 I. ] I ~ ] I ' i i 2 3 - 1 1 'i w. I I- ! ] I ' ' 1 : I .f - ' a 5 1 ' ii ' ' i t t ' ' i ' i t' mi 1 ; ; *. 70 li !_ '. . il.i b---p Q l!!'! ' i I i,- I '1 : i. 8 i ' i %-aaa-m N= l <> C'- _e,+a.
- p4 2.
i
- i:
n. -tt.%,,, .'.-p h., > > '1 > 1. --'4 ~ 2. ii;i + j t T+- 1 + 5 ..: 1 1m, 1.. y .11 ;i j l --+---
- 1 a
t i 1
- 1 m
- i
- '1
. i1. 1 2, u f.:>
- n1-.
.a :- w i,.i m
- m ir4PW -* + -i, j
,9 r3 i 1 a, (,,v ' - i i 1 1 4.0 7%Whah ,'l_- l1 e -fb j ~ 'I Ij i i I E 2' 1 t i - c_&m ;;31 . i i . i. = ii t i e i i 1 i. 1 t i i
- i
- i!1 ii!!
- i4 _ [ i -: ji i 10 i til! . i ii a: I I I 34 - ii i,
- i,f ' '
9 I I E I' I ,'_1 i. ' m' #' E '~ I I ii i ;I I' 1I g T } {, %i. ! %.+1: lW: to e-i, - i.I; I .1; I .p I 1 i 1 ,i i i I: . f! ^ ^ 7-f e. . *^ l i ' J1 tM w - i 1 . ii i 1;ij 1 p.M .. d' ~ L, sa W .) 44 41..J. uJJ-T 2JJE L A L +4-+. $ ,wp 'l-1 I 1 1 Mq I 1. I ! 12 -4 ] I II 4. - - J 1' LO LO 3.0 4.0
- 5.0 6.0 7.0 00 9.0 CONTROL ROD HEIGHT (TURNS)
I r NTR-OPS-9 REV-l i 1 i l I l a l t T p\\ ( l \\ \\ U l l FIGURE 9 1 i l n
s O 85 INTEGRAL ROD WORTH CURVE.FOR CONTROL ROD N 241
- 7,e.
++4,-e y-g; ; +-+t4 : r --.- +- i 1 7 ~ -M, i s--i,3M +im @p'y g; w 'ii 1 ;, 4;7 7 li
- i 1
2
- = -
- i i
- >1-
< ti mri;i iii+ +t 1 1 w +. 4--W:t'!' m. i,r r -- - r
- 1._;
--t*-+- ui iT3: 1: i h: t:; m..,i + 1
- 2: :
1i-m? y,m - E - i :i. i ~ *: i i "4 #4'i 1 M.> 1 11 '4 >i - i i ^ .i .3,..,.
- 4' 3 1
.<-.:i-d. h,...d -, d: ',M:i . - + *+4t+ , :0 b [****~ _! y i itiI i, 1 - 7 - > 1, i. r. * *. H M T,, r p +tt+- ,, ; My i !' -7 3, 1 i, I. i, ' *t* d. i +
- 4
..h *m
- Ah un ma au 1 u w uLa-.
W'~ w t a 'w 1 f w 2 3 4 5 6 7 8 9 u. 0 I NT R -OPS -10 ROD HEIGHT (TURNS) REV-2 1 i l l l 0 FIGURE 10
i / ,.J CONTROL SANK DIFFERENT!AL R00 WORTH N-24-5 CORE ~ \\.. ..u. a s-s e q .n ~ o, g 4._ s 1 ..u. z ._-3 p L - -... \\. _. .a q ...... _ = p ~. y W -w E .-_~k-- he m l g 5 A 1 4 5 6 7 8 CONTROL BAMK, MEGIT (TURNS) (] /' FIGURE 11 ( i i ,,m ~ m..
O AVAILABLE Ken (% AK/K) VS CRITICAL HEIGHT BASED ON DIFFERENTIAL BANK WORTH Nez 3.73 (8.35-M)2 i !I i 6 I i i I I t 6 i ! il
- ii t
) i !2 1 1_! _' I i +i i i 3 ie i ii ' ,t i . i < i i i i r i 1 I ia i i i i
- j i
i i ,. i i a i i i I I I i i t t, i i. i i e ' 6 i ii1 l 1 1 1 i f 1 i., i i i t ! Ii 1 i i Ii - a ii i i i t I i i i e it ! 6 ! t i I i i f ii 1 i t h I I i 1 6 1 I ! e ! I i i I i i !e i e a r , i I i e i i i i,. t 1 i e i I 6 5 ir i i _ ! i I i I ' y l 1 i i i i g t 1 I i t i e i. I e i q i i i I i g i i 6 i i i f I 1 i f i. 3 i i j l } '1 I i I 6 i i i i i ~ t O ! I i I ( l i l t - ii T g -,,, i_. i O c 11 i ! I fi 3 g @Q i I k I i i t t 3 1 g g i 1 1 i i n 8 i \\
- i i
i I e i i.. i 1 , i i se 1 i I 1 ., i, ! i . i ,== ,, i .g y .. 1 i i * . IL , i _t as 8 l } I i l I _t 1_. t I i ' 1 e. i i li* i I g
- ~
t11-. t t i a i I C i 1 i Il 1 il i ' 1) 6 i i p 6 i % i e i i i i \\ li f 4 i e t i e i f i 1 i .t i 1 w a i i e !\\ 1 I I . i 1 e i } 1 I i* ' i. i t g I r 1 l -+\\-41' e i wJ 1 , I ! ia e i 1A I i i1 3 2 Iil' I* ' gD !t i i a i gg 't . 6 i i i 1 \\ i i i i l i g tii i 1. 1 1 i i I s , i i 1 i h !i. I I f i i i 1 Y I i e i i i i t_ 6 i i I .5e i I i 1 \\ 3 t e ii i t \\ 1 i I , i1 1 I
- 4 i
i . g g. i i 1 \\ ? i 1 i i .\\ , i 1 e 1 x i i. j i .X ItV I i I i i t i.N ~~~ 4i i l i I I I I i_ 4.0 5.0 6.0 7.0 8.0 CONTROL BANK (TURNS) FIGURE 12 i
- es ene go i
9 9 O d4P 7 COR POSITION SHROUD TUBE CONTROL ROD GUIDE TUB l TOP OF CORE h ,g ,,,y I 9 O 5 3 i Y J l y 8 Y F e, ANNULAR ,_ SUPPORT IG ,) 4 63(, Na .lM ~ ~ FIGURE 13
O O e,,,qe ssee, se ne 'r i . 1,i h. r i p e.u =9*"-- l 'g p.!.,;d i me es 3 i ii 'll ,'l ! 9l' 'I 'i 9,..q
- l. I
,1l % as 'I i g'I' ',f gi l'n i;. l i; l inn f.f-7{..' i. .i, s. I ',i l it i ii, M li;.(: ll .61 l ', !i .l 4' 1 I. 7 W 1 i h I I ' i, 3 e , i i,1 g ' ii' l
- i i
'j, i I i ll [' I hi ' ll ',j> t'l lI-iiit \\> i q,'.' .1 n ol t-i
- ,i
'g 'l 'A ] .U! 1.- ..I, 'H; Mj@ SU '1. d' 1 'l ij' e il i' i 1 ,j 4 '
- l'i
. '*Li. i i j,. {i, l ;, ' lIl. ! '. -Il tes - i 1 .'j' .l t li t i i<. i.. -<;l.. ,, 4, g.. I, s., el
- e
.6, e ','.{' l 'j' l '. ! ',.,'* .-l! ,.#l i i -l-k ]' g11 ,'g ..l i !gI. I I i 9 .] ;l i. 's e ,1
- 6
',i i . as l,;\\, l; ,) l' ' I] .',. t m i]. .I l .i j. i q, N o i' o 3, o . if .i. a,.':-- g4 = 4 1 .,i.- ,u- . 'i,(. I, j-l I l s , e ,j i i, ] si. 1* J,j]. e h ' '.q". ' I I. .j,,j i: S'i.i j'h , i p .., ' o ' y i i.i,' 'gi. i U
- f L'. ', y t,
.~ ' 4 n. ,.i 'i ..!I. n .o l ei -i ', n i q= ,i l ;. y g i i 'I. li .'s p4. :. ~ i i.,, ~ N
- i, pi'tih(a.
,r i'.1 9, gq. ', ' l.@ I
- ,j g
.i' .i. ai i
- 11 'l.. h' l
.'g \\ Ji'n .i ,[ .l L " to i' . i i i \\ M p p.* *i !.I P,i ai i:h .i -;p N; ; ,,q i;.aoi.i,W @' in :M..u
- c I,.,l ' -
A w .I'{11i-ti ihl lii' 8,i' i*. g., .p-t i m it.l' bdd 'E I n h.-I, ol'- 11. ' til J 'i I*' -[1 - I .i l J
- m.
- q. j
. ji ; i i i lg - i-i ,,e.qr m. ,l ' h,. ' l'.I i ', w! .t' },) ,, ' 1 ; p ', ' ' ~ in , '. u. ii,1;pn I ic. giilpn.., h, ' ,u. , q- = a= s. en ee i e EM g '-- et W site tan ame 4 O FIGURE 14
e e m RELATIVE VotD WORTM VS RADIUS 98 74 5 to#E t e .i-. .- J...... -1 ll ~.- 4 t eeers s-s i e a.a 04 = e i 10 i ..e... ..l. ..s... .g e. (... e .5 e ..e g. 4 j ...g.. 9.. ..e.,.. a. .s. ,2 J. ,7 . ~ l .~. .' t . I . s 1 4 a y M,, l 7' l I. e .3 e .e. .e w j .e.- e a e e { l, l ~ l ~~ O De sa -e " CORE MADrVS .3 j... .. g.. _ ' ' ~ ~ ~ i ~ ' '. t e e l I i-i .I _..-J'.__ j _..4... O t i e a e a a r e o RADI AL POSITsces mm. Ops M WEV.2 FIGURE 15 I ,----..n-- e. Lw,. , -. -.,,. ~ - - -, --,,s. av e n.-, --,.,--,c.- ,,.---m.
e O TEMPERATURE COEFFICENT VS. MODERATOR TEMPERAT'JRE E t au6 h-4.0 / C 1 o e e i w e a i e s g -30 k' i f_ w e i r e w G / E i 1 / E .e wC -2.0 l / W 7 n / n D I / s / 1 E s w g -ID we W 2: i y w g 60 70 to 90 100 11 0 o m MODERATOR TEWPER ATURE (*F) 1 l NTR-OPS-24 nEv-J l l l 1 FIGURE 16 l 0
o -.097" CLEARANCE BALL JOINT HAND;.ING + ADAPTER 7... NUT-g\\\\\\\\\\\\ kj- ' \\\\\\\\ (I H K) / 8 i SUPPORT SPACER !4 j (2.65" O.D. ) ll I i l1' I I l I l-l l! CORE POSITION i SHROUD TUBE ALUMINUM ROD Li / (2.845" 1.D.) (.5"D1A.) {l / ll q \\s ,l GRAPHITE-REFLECTOR ROD i' (2.65" O.D.) p s ee ll: ll ll ll l:l / d l' LOWER CORE PLATE ,l (6" THICK) a SUPPORT SPACER u (2.65"O.D.) \\ %i \\ f - = l \\ ' ~E i l .875" DIA. 2.2 5" D I A. --91 4-1 GRAPHITE REFLECTOR ROD NTR-RX -lO FIGURE 17 REV.I
.-/ 0 O E R .4, FOP UASTE W DISPOSAL ' h NNNM x x x x N. N N k N x N N N x N x k N x x N D N x N ao.,5 x N D \\ N v x g N N N N .i CORE F JSITION N - ~ fl 'h CONTROL R0D rSHROUD pmr 4 --\\ j8 GUIDE TUBE N N 10" DUMP ~ )x / ' " M [ f.a / N N .m. y N it k \\ N r ma-QMg/ 2" d=*~ x N s N - N N -Er N NN xx C0n[rT N O FIGURE 18
FIGURE 19 CON TROL Roo I:. Q NL STO P CA P GUIDE p-TUBE F a ~ 1. '4 5 C.D. TUBE g[ GUIDE a i Q 2.69 0 T.D I i i i I I I s 'g g I I t I N n-i i e -o i N i I i UPPER CORE I .+ + e x '/, 4 C ADP4104 SECTION ~ ~ ^ - y .^ v y m .^ .N/ v OI = ,a
- 2. 5 0.0.
A i LOWE R CORE P LATE P FUEL FOLLOWER ',i s/ w y -^ ^v v o I PISTO Wu 2.632 O.D o y h // S40CK ABSORBER SECTiON O l O y CONTROL ROO IN GUIDE TUBE (TEd!$fto')
o H-37-S C08E CONFIGURATION I N h O O Sa a 2 Cunit Puse NguTRON ScumCC O 1 O O l DEftCToms mwowsus CM. A. E. F. SP e CIC St0E o 3.12S*. CN. B-l. B 2 e gr3 mlNom Aart o 3.12 S
- CM. C-l. Ca t s esel l
esAJ0m Axis e S.413* (LOCATED UNDtm m00 Omtyt PLATF0mm) FUEL ELEMENT CENTER DIWCNSIONS 3* EIFf alWCMTAL CONTROL aco eso. I wiTN FUEL ELEMENT PC$1710N WIT M FutL (LEWENT INSERT ACAPT(4 FOLLDwEm O 5;tc= m. @ =:: - FIGURE 20 )
NTR CORE DIAGRAM O N k 6m v pus TRON l o C* b2 I RHObBUS GRAPHITE REFLECTOR DETECTORS SOE : 3.125" ELEMENT CH A,E.F.SP : CIC MINOR AXISs 3.125" CH. B-l. B-2 s DF3 MAJOR AXISs 5.413" CH. C-l, C-2 Not FUEL ELEMENT CENTER DIMENSIONS E ELEMENT POSIT N WITH FUEL FOLLOWER ELEMENT INSERT ADAPTER POS Tl IN ROW X* E EMENT NUMBER Y i NTR-RX-l l REV.3 FIGURE 21
l l i l i 9 4 I f l l l P i REFERENCE A i e l l 4 fl L I L ? l h 4 1 4 I r i [ i i l I l i t ,!9 i-I .i i I l l I I. b
i NTR FACILITY LICENSE R-119 ({})) AMENDf1ENT RECORD NUMBER DATE PAGE COMMENTS 1 10/21/75 R-119 Changed authorized amounts of uranium 2 and plutonium', item 2.B.(2) 2 4/4/76 Tech Spec Reorganization of WNTC personnel 19 includes the Coordinator of Training Systems position, Table 3 SAR Reorganization of WNSD and the WNTC, 5-1 Figure 5.1.1 3 4/6/76 R-119 lChangedauthorizedamount of plutonium, 2 item 2.B.(2) R-119 Authorized up to 200 millicuries of any 2 by-product materials as sealed sources. item 2.B.(3)b 4 11/1/76 Tech Spec Cle arly define the frequency required 12 for surveillance, item 5.1.4 f} 5 2/10/7] Tech Spec Revision to moderator temperature and \\.)- 8&9 void coefficients, it'em 3.2 1 O a .}}