ML20029A833

From kanterella
Jump to navigation Jump to search
Proposed Tech Specs Modifying Various Instrumentation Surveillance Requirements
ML20029A833
Person / Time
Site: Hatch  Southern Nuclear icon.png
Issue date: 02/26/1991
From:
GEORGIA POWER CO.
To:
Shared Package
ML20029A828 List:
References
NUDOCS 9103040341
Download: ML20029A833 (254)


Text

_ _ _ - - _ _ _ _ - - - _ _ _ _ - _ _ _ _ - _ _ - _ _ _ _ _ __ __ __- .

/

TJAStE OF CONTENTI Section Section g 1,0 DEFINITIONS 1.0-1 SAFETV LIMliS _LLM.111NG 5AF E!Y SYSTEM SE TTINGS 1.1. FUEL CLADDING INlEGRITY 2.1. FUEL CLADDING INTEGRiiY 1.)-1 A. Reactor Pressure >e00 psia A. Trip settings 1.1 -1 and Core Flow >10% of Rated B. Core Thermal Power Limit (Reactor 1.1-1 Pressure 5 000 psia C. Power Transient 1.1-1

0. Reactor Water Level (Hot or Cold 1.1 -2 Shutdown Condition)

B. Reactor Water level Trip 5ettings 1.1-5 Which Initiate Core Standby Cooling Systems (CSCS) 1.2. REACTOR COOLANT SYSTEM INTEGRITY 2.2. REACTOR COOLANT SYSTEH INTEGRITY 2.2 1 tlMITING CON 0l!'^N,1 FOR OPER ATION $URVEllLANCE REOUIREMENTS 3.1. REACTOR PROTECTION $Y$iEM 4.1. REACTOR PROTECTION SYSTEM 3.1 -1 A. Sources of a Trip Signal Which A. Test and Calibration Requirements 3.1 -1 Initiate a Reactor Scram f or the RPS B. RPS Response Time B. Maximum Total Peaking Factor 3.1-2 (MTPF) 3.2. PROTECTIVE INSTRUMENTATION 4.2. PROTECTIVE INSTRUMENTAT10N 3.2-1 A. (Solation Actuation A. Isolation Actuation 3.2-1 Instrumentation Instrumentation B. Instrumentation Which initiates B. Instrumentation Which initiates 3.2-1 or Controls HPCI or Controls HPCI C. Instrumentation Which Initiates C. Instrumentation which Initiates 3 . 2 -1 or Controls RCIC or Controls RCIC

0. Instrumentation Which initiates D. Instrumentation Which initiates 3.2-1 or Controls ADS or Controls A05 l

HATCH - UNIT 1 i Proposed TS/04554/052-27 l 9103040341 910226 PDR ADOCK 05000321 p PDR

LIST OF TABLES

-Table Title Page

~

-- 1.1 Frequency Notations 1.0-11 3.1 -1. Reactor Protection System (RPS) Instrumentation 3.1-3 Requirements 4 .1 -1 Reactor Protection System (PRS) Instrumentation 3.1-7 Functional _ Test, Functional Test Minimum Frequency, and Calibration Minimam frequency  ;

- 3 . 2 -1 Isolation Actuation Instrumentation 3.2-2 3.2-2 Instrumentation Which Initiates or Controls 3.2-5 HPCI 3.2-3 Instrumentation Which Initiates or Controls 3.2-8 RCIC-3.2-4 Instrumentation Which Initiates or Controls 3.2-10 ADS 3.2-5 11nstrumentation Which-Initiates or Controls 3.2-11 the LPCI Mode of-RHR 3.266 Instrumentation Which' Initiates or Controls _3.2-14 ,

Core Spray 3.2-7. -Neutron Monitoring Instrumentation Which- 3.2-15 Initiates Control Rod Blocks

-3.2-8 Radiation Monitoring Systems Which limit 3.2-18 2 Radioactivity Release 3.2-9-'

Instrumentation Which Initiates Recirculation 3.2-20 Pump Trip:

J 3. 2-10 Instrumentation Which Monitors. Leakage into- 3.2-21 the-Orywell 3.2-11. Instrumentation Which Provides Surveillance 3.2-221 Information-3.2-12 Instrumentation Which-Initiates the -3.2-23a

-Disconnection of Of f site Power Sources-3.2-13 Instrumentation Which Initiates Energization _ :3.2-23b of Onsite Power-Sources.

HATCH - UNIT-1 vii_ Proposed TS/0455q/052-110

- . -- . . . .- - . - ~ . - - -- . . _ -

Y LIST OF TABLES

.(Continued)-

Table Title Pace

4. 2 -1 Isolation Actuation Instrumentation 3.2-24 Surveillance Requirementt 4.2-2 Check, Functional Test, and Calibration Minimum 3.2-27 Frequency for Instrumentation Which Initiates or Controls HPCI 4.2-3 Check. Functional Test, and Calibration Minimum 3.2-30
  • Frequency for Instrumentation Which initiates or Controls RCIC 4.2-4 Check, Functional Test, and Calibration Minimum 3.2-33 Frequency for Instrumentation Which Initiates or Controls ADS 4.2 Check, Functional Test, and Calibration Minimum 3.2-35 Frequency for Instrumentation'Which Initiates or Controls the LPCI Mode of RHR 4.2-6 ' Check, Functional Test, and Calibration Minimum 3.2-38 -

Frequency for Instrumentation Which Initiates or Controls Core Spray 4.2-7 -Check, Functional Test, and Calibration Minimum 3.2-40 Frequency for Neutron-Monitoring Instrumentation Which Initiates Control Rod Blocks 4.2-8 Check, Functional Test, and Calibration Minimum 3.2-42 Frequency for RacMation Monitoring-Systems Which limit Radioactivity Release

~ 4.2-9 Check and Calibration Minimum Frequency for 3.2-45 Instrumentation Which Initiates-Recirculaticn Pump Trip

'4.2-10 Check, Functional Test, and Calibration Minimum 3.2-46

-Frequency forfinstrumentation Which donitors '

Leakage into-the Drywell 4.2-11 Check and Calibration Minimum Frequency for 3.2-48 Instrumentation Which'Provides Surveillance Information 4.2 Instrumentation Which initiates the 3.2-49a [

Disconnection of Offsite Power Sources 4.2-13 Instrumentation Which Initiates Energization 3.2-49b by Onsite Power Sources HATCH - UNIT 1 -viii Proposed TS/0455q/052-110

4 _

Table 3.1-1 (Cont'd)

. Operable Channel s

-Scrim Required Per Source of Scram Signal is jE Nuatber .

Trip System . .

Required to be Operable g _I d l_ . 50urie sf Scram Trio Sicnal . .(b) Scram Tris _Settino LeIEDLA1_Indialed Below x

12 Turbine Stop Valve 4 110% valve closure Automatically bypassed when

' Closure from full open turbine steam flow is belas c: Tech Spec 2.1.A.3. that corresponding to 30% of f3 rated thermal power as

-4 measured by turbine first stage pressure.

Notes for Table 3.1-1

,a . The (olumn entitled " Scram' Number" is for convenience so that a one-to-one relationship can be established between items in Table 3.1-1 and items in Table 4.1-1.

b. There shall be two operable or tripped trip systems f or each potential scram signal. If the number.of operable channels (annot be met for one of the trip systems, that trip system shall be tripped.- However, one trip signal channel of a trip system may be incperable for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> during periods of required I" surveillance testing and not be considered inoperable, provided suf ficient channels are available to ensure g- the Trip function.

CM - .

c. Within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> prior to the planned start of the hydrogen injection test"with the reactor power at greater than 20% rated power, the normal f ull power radiation background level and associated trip setpoints may be changed based on a calculated value of the radiation level expected during the test. The background radiation level and associated trip setpoints may be adjusted during the test based on either calculations or measurements of actual radiation levels resulting from hydrogen injection. The background radiation level shall be determined and associated trip setpoints shall be set within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> of re-establishing normal radiation levels after completion of hydrogea' injection and prior to establishing reactor power levels below 20% rated power.

Proposed TS/0425q/030-125

- _ . -- - - - _ _ _ _ - . _ . - _ 2

BA$l5 FQ& SURV[lLLANC[ RE0VIREM[N15 4.1 REACTOR PROTECTION SY$iEM (RPS)

A. Testina Reauirements for the RPS The minimum functional test frequency and allowable outage time specified for RPS instrumentation are based on the NRC-approved reliability analyses performed in Ref erence 1. The analyses considered the Hatch-specific design, including the ATTS equipment discussed in References 2 and 3.

Included in the Reference 1 analyses is justification to remove a channel from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> during required surveillance testing without entering Technical $pecificctions required actions, provided sufficient channels are availaDie to ensure the Trip Function. Single-f ailure considerations do not apply during this time interval.

1 1

1 HATCH - UNIT 1 3.1-15 Proposed TS/04434/029-103 1

.- . . .. .. . . = . - . --.-.. . . _ - - . - - . . . - . .. .-

Basts FOR SURVEILLANCE REOUIREMENTS (This page deleted.)

HATCH - UNIT 1 3.1-16 Proposed TS/04434/029-0

BASES FOR SilRVilLLANCC RE0VIREMENTS i

-(This page deleted.)

HATCH - UNIT 1 3.1-17 Proposed TS/04430/029-0

- . . . - - . _ _ . -- . . _ . . - . . . - . ~. . . . _

v

~~

,, BASE 5 FOR SURVElLLANCE REOUIREMfNIS 4.1.C. References

1. NLOC-30851P-A, ' Technical Specification improvement Analyses for BWR Protection System, March 1988.

2, NE00-21617-A, " Analog Transmitter / Trip Unit System for Engineered Safeguard Sensor Trip Inputs."

3, NEDE-22154-1, " Analog Trip System for Engineered Safeguard Sensor Trip inputs - Edwin 1. Hatch Nuclear Plant Units I and 2."

HATCH - UNIT I 3.1-18 Proposed 75/0443q/029-103

Figure 4.1-1 (Deleted)

?

HATCH - UNIT I Proposed TS/04430/029-0

l' y LIMillNG CONDITIONS FOR OPERA 110N $b5V[l(LANCE Rl0Vik(MENTS ,

3.2 PROTECTIVE INSTRUMENTATION 4.2 PROTECTIVE INSTRUMENTATION.

ADDlicability ADDlicability The Limiting Conditions f or Operation The Surveillance Requirenents apply to the plant instrumentation apply to the instrumentation which perf orms a protective f unction, which perfccms a protective function.

Ok11111Xi Obj ec tive The objective of the Limiting Condi- The objective of the Surveillance tions for Operation is to assure the Requirements is to specify the typt -

operability of protective instrumen- snd frequency of surveillance to tation. be applied tc orotective instru-nentation.

Specificationi specifications The Limiting Conditions for Operation The check, functional test, and of the protective instrementation af- calibration minimum frequency for fecting each of the following pratec- protective instrumentation affect-tive actions shall be as indicated in ing each cf the following protec-the corresponding LC0 table, tive actions shall be as indicated in the corresponding SR table.

Protective Action L(0 Table SR Table A. Initiates isolation 3.2-1 4.2-1 Actuation B. Initiates or Controls HPCI 3.2-2 4.2-2 C. Initiates or Controls RCIC 3.2-3 4.2-3

0. Initiates or Controls ADS 3.2-1 4.2-4 E. Initiates or Controls the 3.2-5 4.2-5 LPCI Mode of RHR F. Initiates or Controls Core 3.2-6 4.2-6 Spray G. Initiates tantrol Rod Blocks 3.2-7 4.2-7 H. Limits Radioactivity Release 3.2-8 4.2-B
1. Initiates Recirculation Pumo 3.2-9 4.2-9 Trip J. Monitors Leakage into the 3.2-10 4.2-10 Drywell K. Provides Surveillance 3.2-11 4.2-11 Information

,j L. Initiates Disconnection of 3.2-12 4.2-12

)- Offsite Power Sources M. Initiates Energization by 3.2-13 4.2-13 Onsite Power Sources H. Arms the low low Set S/RV 3.2-14 4.2-14 System i

l HATCH - UNIT 1 3.2-1 Proposed TS/0427q/052-103

Table 3.2-1 ISOLATION ACTUATION INSTRUMENTATION Required Operable Action to be taken if

Ref. Trip' Channels number of channels is 3$ No. Condition per Trip not met for both trip LAl_ Instrument Nomenclature System (b) Trio Settina systems (c) Remarks (d)
  • E}
  • 1 Reactor Vessel Low (Level 3) 2 1 10.0 inches Initiate an orderly Initiates Group 2 & 6-c: Water Level Narrow Range shutdown and achieve isolation.
the Cold Shutdown El Coedition within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> or isolate the shutdown cooling system.

Low Low . 2 1-47 inches Initiate an orderly Starts the SGTS.

-(Level 2) shutdown and achieve initiates Group 5 the Cold Shutdown - isolation, and Condition within 24. initiates hours. secondary containment isolation.

ca low Low Low 2 1-113 inches Initiate an orderly Initiates Group 1 p, (Level 1) shutdown and achieve isolation.

. the Cold Shutdown Con-

"3 dition within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

2 Reactor Vessel Steam tow Permissive 1 114S'psig Close the shutdown Isolates the shutdown Dome Pressure (Shut- cooling supply isola- cooling suction valves down Cooling Mode) tion valves unless of the RHR system. Also, reactor steam dome with primary containment pressure i 145 psig. isolation signal, closes RHR (LPCI) inboard motor-operated injection valves.

3 Drywell Pressure High 2 11.92 psig Initiate an orderly Starts the standby shutdown and achieve gas treatment system, the Cold Shutdown initiates Group 2 Condition within 24 isolation and second-hours. ary containment isolation.

Proposed TS/0426q/030-121

i-Table 3.2-1 (Cont.)

Required Operable Actior to be taken if Ref. ' Trip Channels number of channels is No. Condition per Trip not met for both trip g f al . lailryment Nomenclatur_e System (b) Irig_$eltina systems (c) Remarks (d)

~A o

x 13 HPCI Emergency Area High 1 1169*F Close HPCI isolation Closes isolation ,

c- Cooler Ambient valves and declare HPCI valves in HPCI

--4 Temperature inoperable. system, trips HPCI turbine.

~

14 HPCI Steam tow 2 1100 psig Close HPCI isolation Closes isolation Supply Pressure valves and declare HPCI valves in HFCI inoperable. system, trips HPCI turbine.

15 HPCI Steam High I f3037. Close HPCI isolation Closes isolation Line L?(flow) sated flow valves and declare valves in HPCI

< HPCI inoperable, system, trips HPCI turbine.

i Ib HPCI Turbine Exhaust High 1 120 psig Close HPCI isolation Closes isolation F Diaphragm Pressure valves and decla e valves in HPCI ro HPCI inoperable, system, trips b

os HPCI turbine.

17 HPCI Suppression High 1 1169*F Close HPCI isolation Closes isolation Chamber Area Ambient valves and declare valves in HPCI Temperature HPCI inoperable. system. trips HPCI turbir.e.

18 HPCI Suppression High 1 142*f Close HPCI isolation Closes isolation Chamber Area Di f f- valves and declare valves in HPCI erential Air HPCI inoperable. system, trips Temperature- HPCI turbine.

19 RCIC Emergency Area High I (169*f Close RCIC isolation Closes isolation Cooler Ambient valves and declare valves in RCIC Ternperature RCIC inoperable. system, t rips RCIC turbine.

20 RCIC Steam Su> ply tow 2 260 psig Close RCIC isolation Closes isciatinn Pressure

Proposed TS/04269/030-0 ,

Table'3.2-1 (Cont.)

Required Operable , Action to be taken if Trip' Channels number of channels is Ref. not met for both trip No. Condition per Trip .

Remarks (d) l Nomenclature System (b) . Trio Settino systems (c) si

-4 Ial_ -Instrument I r3 I

3C

  • .High 1306% Close RCIC isolation. Closes isolation 21 RCIC Steam Line 1 .

valves and declare RCIC valses in RCIC c: 6P (flow) rated flow inoperable. systee, trips 33 RCIC turbine.

-4

~

..High 1 120 psig Close RCIC isolation Closes isolation 22 RCIC Turbine. valves and declare valves in RCIC Exhaust RCIC inoperable, system, trips-Diaphragm Pressure .RCIC turbinc.

High 1. .5 169'F Close RCIC isolation Closes isolation 23 RCIC Suppression valves in RCIC Chamber Area valves and declare Ambient Temperature RCIC inoperable. system, trips RCIC turbine.

PCIC-Suppression ;High 1 142*f Close RCIC isolation Closes isolation 24 valves and declare valves in RCIC Chamber Area RCI". inoperable. system. trips OJ Differential RCIC turbine.

a Air Temperature w

CT Proposed TS/0426q/030-0

Notes for Table 3.2-1 ,

a. Ihe column entitled "Ref. No." is only for convenience so that a one-to-one relationship can be established between lines in Table 3.2-1 and items in Table 4.2-1.

r

> Primary containment integrity shall be maintained at all times prior to withdrawing control rods for the

-4 b.

[] purpose of going critical, when the reactor .is critical, or when the . reactor water temperature is above 2'.2*F and fuel is in the reactor vessel except while performing low-power physics tests at atmospheric 8

pressure at power levels'not to exceed 5 MWt. or performing an inservice vessel hydrostatic or leakage test.

C 35 When primary containment integrity is required, there shall be two operable or tripped trip systems for

-a .each function.

~

When performing inservice hydrostatic or leakage testing on the reactor vessel with the reactor coolant temperature above 212*F. reactor. vessel water level instrumentation associated with the low low (tevel 2) trip. requires two OPERABLE or tripped ' channels. The drywell pressure t>ip is not required because primary (ontainment integrity is not required.

c. A channel may be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing and not be .

considered inoperable, provided sufficient channels are available to ensure the Trip function.  !

With the number of OPERABLE channels less than required by the minimum GPERABLE channels per trip system og requirements for one trip system, either 3 1. Place the inoperable channel (s) in the tripped condition

  • within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> b

OR  !

2. Take the action required by Table 3.2-1.
d. The valves associated with each Group isolation are given in Table 3.7-1.
e. Within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> prior to the planned start of the hydrogen injection test with the reactor power  ;

at greater. than 20% rated power, the normal full-power radiation background level and associated trip setpoints may be changed based on a calculated value of the radiation level e=pected during the test. The background radiation level and associated trip setpoints may be adjusted during the test based on either calcolations or measurements of actual radiation levels resulting from hydrogen injection. IFm background radiation level shall be determined and associated trip setpoints shall be set within 24. hours of re-establishing normal radiation levels af ter completion of hydrogen injection and prior to establishing reactor power levels below 20% rated power.

"With a design providing only one channel per trip system, an inoperable channel need not be placed in the tripped condition where this would cause the Trip function to occur. In these cases, the inoperabie channel shall be restored to OPERAetE status within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> or the ACTION required by Table 3.2-1 for that Trip function shall be taken.

Proposed TS/0426q/030-160

~

. Table 3.2-2 INSTRtJMENTATION WHICH INiilATES OR CONTRGLS HPCI Required '

Operable g, Ref. Trip Channels

-4 No. Condition; per Trip LitL Nomenclature Svstee(b) Trio Settina Remarks Q Instrument

1. Reactor Vessel Water Level tow Low' 2(c) 1-47 inches Initiates HPCI; Also initiates c (Level 2) RCIC. >

2 Z 2. Drywell Pressure .High 2(c) 1 1.92 psig Initiates HPCI; Also initiates LPCI and Core Spray and pro-y vides a permissive signal to ADS.

3. hPCI Turbine Overspeed- Mechanical 1 1 5000 rpm Trips HPCI turbine
4. HPCI Turbine Exhaust Pressure High 1(c) i 146 psig Trips HPCI turbine
5. HPCI Pump Suction Pressure L.ow 1(c) i 12.6 inches Trips HPCI turbine Hg vacuum

. 6. Reactor Vessel Water level High 2(d) i +56.5 inches Trips HPCI turbine 7 (tevel 8)

<.n

7. HPCI Pump Discharge Flow High 1(d) 1 870 gpm Closes HPCI minimum flow bypass (1 9.04 inches) line to suppression chamber.

Low l(d) i 605 gpm Opens HPCI minimum flow bypass (1 4.36 inches) line if pressure permissive is present.

Proposed TS/0426q/0 W 121

.. Table 3.2-2 (Cont.).

.. Required Operable Ref. Trip Channels No. Condition per Trip .

Remarks fal '. Inst rument - Namenclaturg System (bi. Trio Settino jE

--4 o

I ' Condensate Storage Tank Low 2(c). 10 inches Automatic int?rlock s-itches

8. suction from CST to Ef Level suppression chamber.

je

-4 Suppression Chamber Water High 2(c) 1154.2 inches Automatic interlock s-itthes

9. 'with respect to~ suction from CST to

~-

Level torus invert suppression (hamber.

I Not Applicable Monitors availability of

10. .HPCI Logic Power failure power to logic systee.

Honitor w

os e

a. The rolumn entitled "Ref. No " is only for convenience 50 that a one-to-oce relationship can be established between items in Table 3.2-2 and items in Table 4.2-2.

Proposed TS/0426a/03G-121

.. . . , i

~ Hotes for Table 3.2-2 (Cont.)

b. When' any CCCS subsystem is' requi?ed to INe OPERABLE b' / Section 3.5. there shall be two OPERABLE 55 ' trip systems. ' If the required nomber of OPERABLE channels cannot be met for one of the trip systems.

place the inoperable channel in i.he tripped conditior or declare the associated CCCS inoperable

[] within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />. . If the requires 1 number of OPERABLF hannels cannot be met for both trip systems, declare the associated CCCS inoparable within I hou l c; c. . A channel may be removed f rom se vire for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for r= quired surveillance testing and not g; be considered inoperable, provided suf ficient ' channels are available to ensure the Trip Function.

-0

s. d. While performing surveillance during times when this equipment is required to be OPERABLE. the

. action statement should be entered since sufficient channels will not be available to ensure the Trip function.

. 00 ro e

N

.i Proposec TS/0426q/030-170

fable 3.2-3

' INSTRUMENTATION WHICli INITIATES OR COUROLS RCIC Required

-Operable fji :Ref. Trip Channels' >

-4 No. Condition per Trip

[] fa) Instrument Nomenclature System (b) Trio Settino Remark s e

c: 1. Reactor Vessel Water level Low Low 2(c) 1-47 inches . Initiates RCIC: also initi. Les ,

33 (Level 2) HPCI. -

-4

,, 2. RCIC Turbine Overspeed Electrical 1(c) 1110% rated Trips RCIC turbine.

Mechanical 1 112.5%' rated Trips RCIC turbine.

3. RCIC Turbine Exhaust High 1(c) 1+45 psig Trips.RCIC turbine.

Pressure

4. RCIC Pump Suction Pressure low 1(c) 112.6 inches- Trips RCIC turbine.

Hg Vacuum

5. Reactor Vessel Water level High 2(o) 1+56.5 inches Trips RCIC: automatically resets  :

ca (Level 8) when water dreps below level 8

, system automatically restarts.at e level 2.

to

6. RCIC. Pump Discharge Flow High 1(d) >87 gpm Closes RCIC minimum flow *

(1 10.6 incher) bypass line to suppression thaeber.

Low 1(d) 153 gpm Opens RCIC minimum flo-  !

(13.87 inches) bypass line if pressure ,

, permissive is present.

7. RCIC togic Power failure 1 Not Applicable Monitors availability of Monitor power to logic system.
8. Condensate Storage Tank Low 2(c) 20" Transfers suction from CST Water Level to suppression pool. '
9. Suppression Pool Water High 2(c) 10" Transfers suction from CST tevel to suppression pool. ,

i Proposed TS/04269/030-121

NOTES FOR TABLE 3.2-3

a. The column entitled "Ref. No." is only for convenience 50 that a one-to-one relationship can be established between itens in Table 3.2-3 and items in Table 4.2-3.
b. When any CCCS subsystem is required to be operable by Section 3.5, there shall be two OPERABLE trip systems. If the required number of OPERABLE channels cannot be met for one of the trip systems, place the inoperable channel in the tripped condition or declare the associated CCCS inoperable within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />. If the required number of OPERABLE channels cannot be met for both trip systems, declare the associated CCCS inoperable within I hour,
c. A channel may be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing and not be considered inoperable, provided sufficient channels are available to ensure the Trip Function,
d. While performing surveillance duru g times when this equipment is required to be OPERABLE, the ?ction statement should be entered since sufficient channels will nc c be available to ensure the Trip Function.

k l

HATCH - UNIT 1 3.2-9a Proposed TS/0427q/030-170

l Table 3.2-4 t

, INSTRUMENTATION WHICH INITIATES OR CONTROLS ADS l

Required Operable 5s Ref. Trip Channels

-4 No. Condition per Trip b$ IAl- la1LEumcEl HQmenclaturr $ystem (blic) Irio Settino Remarks l

1. Reactor Vessel Water Level tow (Level 3) 1 110.0 inches Confirms low level, ADS permissive c-

~ 33 Reactor Vessel Water Level tow Low Low 2 1-113 inches' Permissive signal to ADS timer

-4 (tevel 1) r.

2. Drywell Pressure High 2 11.92 psig Permissive signal to ADS timer 1
3. RHR Pump Discharge High' 2 1I12 psig Permissive signal to ADS timer Pressure [
4. CS Pump Discharge High- 2 2137 psig Permissive signal to ADS timer Pressure j S. Auto Depressurization 2 513 minutes Bypasses high drywell pressure i to tow Water Level Timer permissive upon sustained Level 1 '

3

6. Auto Depressurization 1 120 12 seconds with Level 3 and Level 1 and high

>" Timer drywell pressure and CS or RHR pump i CD at pressure, timing sequence begins. If the ADS timer is not l reset it will initiate ADS.  ;

i

7. Automatic Blowdown Control I Not applicable Monitors availability of power to Power failure Monitor logic system I i
a. The column entitled "Ref. No.* is only for convenience so that a one-to-one relationship can be established between items in Table 3.2-4 and items in Table 4.2-4.
b. When any (CCS subsystem is required to be OPERABLE by Section 3.5, there shall be two OPERABLE i trip systems. If the required number of OPERABLE channels cannot be met for one of the trip systees, place the inoperable channel in the tripped condition or declare the associated CCCS inoperable within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />. If the required number of OPERABLE channels cannot be met for both trip syst_es, declare the associated CCCS inon*-*51e within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.
c. A channel may be removed f rom service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing and not be considered inop /able, provided sufficient channels are available to ensure the Trip Function.

t Proposed TS/04269/030-170 ,

t

Table 3.2-5 INSTRUMENTATION WHICH INITIATES OR CONTROLS THE LPCI NDDE OF RHR Required Oh rable y Ref. Trip Channels per Trip 4 No. Condition.

[al_ Instrument Nomenclature Remarks Q lyi hm (blic)' Trio settino e

c 3. Eeactor Vessel' Water Level Low tow Low 2  :-113 inches' Initiates LPCI mode of RHR

$ (Level.1) ,

--a g 2. Drywell Pressure tiigh 2 11.92 psig Initiates tPCI mode of GHR. Also initiates HPCI and Core Spray  ;

'and provides a permissive signal to ADS.  !

3. Reactor Vessel Steam Low 2 2335 psig Permissive to close Retirculation Dome Pressure Discharge Valve and Bypass Valve Low 2 1422 psig" Permissive to open LPCI injection  ;

valves w

. 4. Reactor Shroud W#ter Level Low 1 1-202 inches Acts as pe missive to divert  ;

7 (Level 0) some LPCI flow to containment  !

- spray w

S. LPCI Cross Connect N/A- 1 Valve not Initiates annunciaCor when valve Valve Opee Annunciator closed is net closed e

"This Trip function shall be 1500 psig.

i i

i i.

r

.t Proposed TS/0426q/030-121

9 . .

.. Table 3.2-5 (Cont.)

IM5TRUMENTATION WHICH IMITIATES CR CONTROLS THE LPCI MODE Of Rtw Required L Operable..

Chancels 5;;; Ref. ~ Trip

  • Core, tion- per Trip

.S No._

' f a } ... Lnstrument Manentiature System ib1fri Trio settina Remarks .l i

8 Opens LPCI minimum flow line woon }

R5iR (LPCI) Pg Flow Low I 21670 gpe' C 6. (4.7 ir4hes) r*<eipt of low flew signal f rom 3

H both pumps and cieses LPCI minimum flow line when signal ? rom w either pump is not present 04tti second With less of normal power and

7. RHR (LPCI) Pump Start. Timers 1 open receipt of emer9eo y po wr.

I 94t<11 setends one EHR pump starts isenediately.

the other three follee in 10 seconds

. B. Valve Selection Timers 1 210 minutes Cancels LPCI inject 6cn velve instistion sigral I act Applicable Monitors availability of p w r 7

9. RHR Relay Logic Power Failure Monitor to logic systee Proposed TS/0426q/0 W 121

~

Notes for Table 3.2-5

a. The col wi entitled "Ref. No." is cely for convenience so that a one-to-one relationship can be y established between itees in Table 3.2-5 and item in fabie 4.2-5

-o When any CCCS subsystem is required to be CPERABLE by Section 3.5, there shall be two OPERABLE Q b.

trip systems If the required number of OPERA 8tE channels cannot be met for one of the trip systems,

.' place the inoperable channel in the tripped condition or declare the associated CCCS inoperable j c within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />. If the required number of OPERABLE channels cannot be set for- both trip systems,

$ declare the associated CCCS inoperable within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

--e

c. A channel may be removed from service for up to 6 howrs for required surveillance testing and not

~

be considered inoperable, provided suf ficient channels are available to ensure the Trip function c.

tu e

w l

Preposed T5/0426q/0 W I70

-....--..im_u_.

Table 3.2-6 INSTRtJMENTATION WHICH IftITIATES OR CONTR0ti CORE SPRAY j Required Operable y; Ref. Irip Chanaels y No. Condition per Trip r (3) ' 1rstrument Nomenclature 5xitein iblLd1 Trin Settiru N-merks l j '

1. Reactor Vessel Water Level tow tow Low 1-113 inches Initiates C5.

, g (Level 1) 2

, 2. Drywell Pressere High 2 1 1 92 psig Initiates C5. Also initiates HPCI and LPCI mode of RHR and provides

]; a permissive signal to AD5m i 3. Raattor Vessel Steam Dome Low 2 2422 psig" Permissive to open C5 Pressure injection valves.

4. Core Spray Sparger 1"' i 3.1 psid Monitors integrity of C5 Diffsential Pressure greater (less piping inside wessel (hetween the nozzle u d core shrst,d).  !

negative) than the normal indicated LP at rated core power w and flow. ,

5. C5 Pump Discharge Flow tow 1 2610 gpm Minimum flow bypass line is g (2 4 13 inches) clowd whes low flow sityial es not present.
  • t i

I i

6. Core Spray logic Power i Not Applicable Monitors availability of  ;

Failure Monitor power to legic system.

-T^nis Trip function shall be 1500 psig. y

a. The column entitled "Ref. No.* is only for convenience so that a one-te-one relationship can be established j between items in Table 3.2-6 and ' items in Table 4.2-6.
b. When any CCCS subsystem is required to be OPERABLE by Section 3.5. there shall be two OPERABLE  ;

trip systems. If the required number of OPERABLE channels cancot be met for one of the trip systews. [

place the inoperable channel in .the tripped condition or declare the associatef CCCS inoperable t l within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />. If the required number of OPERABLE cham.els cannot be met f or both trip systems. [  ;

declare the associated CCCS inoperable within ? hour. s ,

l 4 c. Alare only. When inoperable, verif y that the cure spray dif ferential pressure is within limits at least once per  !

, 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> or declare the associated core spray loop inoperable. l

$ d. A channel may be removed from service for op to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surweillance testing and not be considered inoperable, provided suf ficient channels are available to ensure the Trip Function. ,

! Proposed T5/0126q/036-170 i i

a r

-"% -.__ --- , _ _ _ . ~ ~, _. _ - _ _ _ . _ _ _ . _ _

- . = - _ _- - - . - - .. . . - - . ~.

L

{ t Table 3.2-7 NEUTRON MONITORING IMSTRtPfMTATION WHIC54 INITIATES CouTROL 200 BLOCKS i

1 Required  ;

y

! Operable 4 ef. Trip Channels Q Condition per Trip' l_ , Instrument Momenclatute system . Trio Smitin.2 Remarks i

' t c- . SEM Inoperative 2(b)(c)(d)(h) Not applicable Inoperative trip produced by l switch not in operate, power

} $

-4 ' supply voltage low, and circuit l

boards not in circuit.

het fully inserted 2(b)(c)(d)(h) Not fully inserted This function is bypassed when l the count rate is >100 cps  !

4 er the IRMs are on range 3 or i above. ,

i I

Downstale 2(b)(c)(d)(h) 13 counts /sec This function is bypassed when l )

i the count rate is >100 cps t I er the IRMs are on range 3 or  !

above.

< co 6 upscale 2(b)(c)(d)(h) 110' counts /sec i 3

~'

i

$ 2. IRM Inoperatf.- 3(b)(d)(h) Not applicable' Inoperatsve trip produced by [

switch not in operate, power l

- supply voltage low. or circuit [

boards not in circuit. J Not fc11y inserted 3(b)(d:(h) Not fully inserted Only required in the Reivet and f f Start & Hot Standby Modes. i i

Downscale 3(b)td)(h) 15/125 of full scale Trip bypassed when ism en Rang, 1. I High Flu = 3(b)(d)(h) 1108/125 of full scale 2 3. APRM Ineperative 2(b)(e)(h) Not applicable Inoperative trip produced by switch not in cperate. power supply voltaga i Iow. or circuit boards not en circuit.

Downscate 2(b)(e)(h) 13/125 of full scale Not reggired while perierwing low l [

power physics test at atmospheric i pressore during or after refueling I

' at power levels not to e=ceed 5 Nt. I i

!' 32% T1as 2(b)(c)(h) 112/125 of full sc. ale This fonction is bypassed when the l

tede Switch is placed in the Rum f l'

i position. .

t l

1 Proposed TS/0426q/030-105 j i

l!I[! [I[; [ ,!'f! L
i f :i

' ij rll 6 [ ; j(i){[ ,! jl ft n

m f

. .d .

t h s se. t n e r s o tt t l i eyn ;ept ep - y o t rn t o o ef gbi ctSar -

f eso s i n se p vi n ecayptiI 4w o - aTi e t e

h uery l e w t reb

) pfi t gl sssi l erl p tl ed ebee a pi - oss eaw ti oh

( r wsiv ne de yrl M psras ml - r l t cod oa pe

- c. T nt di cre ul ba o .P C i ra

- c draehP e i reett g5 w rir t reei d

t cit snil o n p ph v I. . eesd dbl L t -

cry r e l rga l n pi h H p oooT o A.aewprw w r i h ee ct uf ee m ; pi o l vl o ;p crr pp r

p ui n o eeeh t

s 1. d e- pe.sp uo du ocor aeat c muw aeehhl g hhtt ai sp t aess r 2nnr ;s rrt e sdraostT ch n hei e a ai et pi b pee li ds i et g m

e n

oWso-t era.p p csm. ud oihe l t rep n d . ;

cnpe avh oh pt raB nM R i iN gt i i ,l ne ep ahSas t t err tf wcnw reattfdc t epe tT tt t e ef v 1 aog c n .l oiiM rl a ee h rarsopw( eibiT rnenh e v sooreeh 4 1 ,

i si r ee5 er ,rl t sci oewo o o et swt gnpo f n t e gh u veti e i rll o pd p b 0 iot w n pf d i pi u s e gt eapt et . a n ei p o . 3

- ci e oi s e e etspmore a t ouq ced ren aniM bc swsl snd ei e t amr retl tM R

G

/

pi rm c rnrre e otBdpo p i e . c al P q Snl dot r= eii p cnar r

ryr aR eol rproit s c a e pl n rremaA 6 .-

i eef aee eol rn 2 ef vt r t ot el eI see - wt pi wf aege c eeeaetf o nonho hnpT ahh rsoepo onchih O Sdl rpaat I nitf TOoA pT t pi psap P est st /

S

- T e e d

- d a e l e

l a

c l

a c

l a

m l

a m

l a

m e

s.

- 8 5

l a

a c

s s r e

r e

r e

- c s l l h h h .-

0 s l l t t t P 1 u u

- l 1 f f e e e -

e l r r r 1 l e i f f o o o -

e 0 b f o o c c. c n 5 a f i c f o 5 5 d d d

) t + i o 2 2 e e e d t l 5' 1 1 t t t e e W p p

5 2 / / ar r c arr;' ar re w - S 2 1 2 e 8 a 1 / 4. ' - - w i .n 5 / 7 1 7  % 1 ; 1o t i t 4 8 1 3 0p 5p 5p n r 0 o 9 1 1 1 3 6 8 o T 1 N 1 1 1 1 1 1 $ r C

(

7 2

3 ) ) ) ) e h h h h l e desp ( ( ( ( b l ell i ) ) ) ) a b rbere e f f f c a ianT e ( ( ( ( i T wrn gears t )

b

)

e

)

e c(

)

tp l

e ph e y ( ( t op ROCpS 2 1 i 1 Na -

w v

r p e i

w

) r) ) ) o) )

P TP P P PP P S S S S S S T eT T P eP P r(H L tI H L tI

_e ( a( (' ( a(

r e i p e g

r i e u v pt dt it et dt wt nt oa i e i n en rn ns wn en on t l ri mi Ti at oi mi Pi il t c l e a r t a el T op ro ep hp o Rni Po p

ro ep hp o

pde in a c

ep s a wt t t gt ro ep oe wt ne tt gt -

n c oe ne i e i e i

roo nm s o w o

s LS I S H5 wt LS IS HS U

p n p oe TCN I D U PS t

n e

m u _

r _

t M s R M n P B I A E f .l .

eoa 4 _

RNf _

y, 453 '

54 ,

c3- , a c- ,***C" s

l i1;ii; iii i l ]i 3I ,;jil lj1 !i ]j{j ji!j;)j4 - . i!i; ',111! r

iLi ! Til:!* ;

ltilL :L {i!!?!f !, h[! tF IIt !i! II r b wwe-oey l nb _

tde -

eor sra 5 sms i up 0

1 mi -

s yi r 0

. k ant 3 r li 0 a

m d eme l

/

q 4

e erc ea 6 2

R i

mus sp 4

0 tsv /

s ae 5

T sol ati d p h . e yh wd s bg e o p

vt s Mons o Bnea r R emp P o s ~

n d s i a n

) t o o d t c l e e e l u S s a n g i o 0 t .i 8 n r 2 1 o T 1 1 -

C

(

7 2

3 e l

e desp b l elli a )

b rberm c i a ianT e i (

T urn qears t

tp l )

g e ph e y op i R OC pS Na l e

r e) m, u r nt id e oa Tt

(

t a

ii

.t t s sy w

.in l pd e aa he gv inm pl roo ye i e TCN BD ti L t

n e g

e

.m r u ae r mhm t au s rsl n ci o I SDV f 1 .

eoA 5

_ RN1 s n g4Q - ' c2 e .- y u.m*wco, i x ,  :,l;iii';i! ;1' , .!. Iii l i! $

Notes for Table 3.2-7

'a. The column entitled "Ref. No." is only for convenience so that a one-to-one relationship can be established between items in Table 3.Z-7 and items in Table 4.2-7.

r D b. For the START & HOT STANDBY position of the Mode Switch, theee shall be two operable or tripped systems Q f or each potential trip condition. If .the requirements established by.the column cannet be met for one of the two trip systems, the condition may exist for up to seven days provided that during that time

.the OPEEABLE system is functionally tested immediately and daily thereaf ter; if this condition lasts longer c than seven days, the system shall be tripped. If the requirements established by this column cannot be

$_ met for both trip systems..the systems'shall be tripped.

--o y c. One of the four SRM inputs may be bypassed.

d. The SEM and IRM blocks need.not be operable in the Run Mode. This function is bypassed when the Mode Switch is placed in the RUN position.
e. The APRM and RB84 rod blocks need not be OPERABLE in the Start & Hot Standby Mode (Emcept 12% APRM Rod Bloch).

~

f. The RBM is only required when core thermal power is 130% anc the limiting condition defined in Section 3.3.F erists.
g. This trip is OPERABLE in Power Operation > d Hot Standby Mode, and Ref t:21 Mode when any control red is w withdrawn. Not applicable to control rods removed per Specification 3.10.E.

'o r

e h. A channel may be removed f ree service f or up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing and not be C considered inoperable, proo ued sufficient chaenels are available to ensure the Trip Function.

i. The channel may be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing and not be considered inoperable. Wihdrawal of control rods is not permitted during required surveillance testing.

5 Proposed TS/04269/030-105

.th  ! l p s >tfi; ijj!l!!LI!!!lt>tf}! . ; ![l'I F  ! i5i s;!! 1IiLli{i t

=

3 _

f I3 aj Ia 0 _

7 _

1 y

e - _

t a 0 r y e a t - 3 e a b e l a ne e nt d oi wt wa n dt ns snt oaes p

s I ol s o ay i oi m. duhe. 5 k 1 doa cdt s cnse t t re 2 r

a r

od2i -

sc l ens t

l i at 2c gs an pd o 4 l sa l y 0 m n f i en i rd y r imm /

e .arlf weth e wanys el o 5 R s ol o h nt mt dab l Son T

- ee ,iwE et e en dt ei C r o ll aae A l mea l otna acnae a l wE i d _

ccl s1 aent e Rl t e ssae5 cti ar ceet m csCoa s saait ssmst seMrz pl o pncl owsae pl tt a n a uaenr ti p opch uonis sona v ei e e o

. h ah r ch ou r 2cust 2icig itttt I st cs p _

e l -

E b d .

S A

E f ee as rm - .

a s yt t

- ne-ae ytt o . o s

n L i pt rsrra r s si s i E

R n osw eeaae prdt r a yae t .

ctst v a0 eos o gn s t cr ni c Y

T n w o grcds oo oat oa i2 I t ati npena ct ncw ese f1 V

I eot t r i l n sag s m yt

.t rn o3 e

T bn ) ei e t ym etaae pd C d d'- u h nbe h nemw Sn A oee ( fftedt teri a 0

I D

t rs n

ac i ei r mns eray

.ti t s en ti s mt r pM a

to.

A oer esaas aaae r C.

R i rt snl t t l t gst e2 T

te chr

)

c aoonen eisoh e on s o yl e e on f1 I Ato ( CtI ct m I cbce R3 M

I 8 L 2 H t t C oef - l oef - 1 3 I a nh oe na nh oe na r H n t rtit t r t i t e b i e t i s e t i - t.

s / r udnk md ludnke e ci mde - -- ech r l t c r h b S t l eecie e e /r a M e ael alt - p acl al t ; p /

T E S vcat a eS vcat a;S r 5 T

S o aei

=vsecr siih aei

=vsecr siih e 1 0 0

o. -

Y i ueadvc ueadw( 0 S r t o qh e n n e t o qh e n n e 2 0 1 T At etl iET AtetliET 1 2 1 G

N I

R O

T )

I b N

O M

desp(

elli rberr ianT a '1 '2 '2 'l N urn qears t

O .

_ I e ph ew

. T R OC pS A

I D _

R A cu nt e e oa /l l il ea e e a itcn l c l l c _

as a a s _

pde cn c c n _

i om sw s s w rco po p p o i _

TCM UD U U D H r

t o n o .

e l t gt m m F n dn o t t e l e o n an g V *t BVn R n e

srir eos n iti r os . os r*ir os i r m l u aTt o l st o osto oet o r g at euat t uat rk at t - tii uaii caii taii s f sdn fhd n ahdn ntd n n f oao e=ao e=ao onao I OPRM RERM RERM CIRM f

.l . . . .

eoa 3 2 3 d RNf .

Ip4Q a c$4 y wfu* co

' j .f

Table 3.2-8 (cont.)

Required Operable Channels Action to be taken if f Ref. Trip there are not two operable }

No. Condition per Trip Remar6s Systee (b) Trio Settina er trioned trio systees

--e fa) Instrument .Homenclature c7 1

5. Main Steam tine Hi 2" 13 times Isolate the mechanical One trip per trip logic system will l

normal full vacuum pump and the Radiation Monitor power background gland seal condenser isolate the c '" .exhauster mechanical vacuum

$ pump and the gland

-4 seal condenser e enhavster.

a. The column entitled "Ref. No." is only f or convenience so that a one-to-one relationship can be established between itecs in Table 3.2-8 and items in Table 4.2-8.
b. Whenever the systems are required to be OPERABLE. there shall be two OPERABLE or tripped trip systems.

If this cannot be met, the indicated action shall be taken.

c. In the event that both of f-gas post treatment radiation monsters become inoperable. the reactor shal7 be placed in the Cold Shutdown within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> unless one monitor is sooner made OPERABLE, or adequate af ternative monitoring f acilities are available.

w r"o d. From and after the date that one of the two off-gas post treatment radiation monitors is made (the or found to

& be inoperable, continued reactor power operation is permissible during the nemt fourteen days to allowable repair time) provided that the inoperable monitor is tripped in the downscale positier..

e. Within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> prior to the planned start of the hydrogen injection test with the restter power at greater than 20% rated power, the normal full power radiation background Tevel and associated trip setpoints may be changed based on a calculated value of the radiation level espected during the test. The background radiation level and associated trip setpcints may be adjusted during the test based on either calculations or measurements of actual radiation levels resulting free hydrogen injection. The background radiation level shall be determined and associated trip setpoints shall be set within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> of re-establishing normal radiation levels af ter completion of hydrogen injection and prior to establishing reactor po=er levels below 20% rated power.
f. A channel may be removed from service for up to 2 hcurs for required surveillance testing ar.d not. be considered inoperable, provided suf ficient channels are available to ensure the Trip Function.
g. A channel may be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing n and not be considered inoperable, provi6ed suf ficient channels are available to ensure the Trip Fu ction.

Proposed TS/0426q/030-125

+--.% -__ . . , _

..A-.-

Table 3.2-9 INSTRUMENTATION WHICH INITIATES RECIRCULATION PUMP TRIP 1

Required y Operable Channels

-t Ref. Trip

Q N
3. Condition per Trip Instrument Nomenclature Svstenfhl Trio Settino Remarks i

4 .

fal. l .

I c 1. Reactor Vessel Water level tow (Level 2) 2'*"*' F 47 inches H,0 Power must be reduced and the 3-4 ( ATWS RPT)"' mode switch placed in a mode othee than Lt.e RUN Mode.

s- *

2. Reactor Pressure High 2'*'*' 11095 psig Power must be reduced and the

. (ATWS RPT) mode switch placed in a mode i

other than the RUN Mode.

3. EOC - RPT*** 1. Turbine Stop 2'*" 1. Stop Valve Trips recirculation pumps en valve Closure 19 % Open turbine control valve fast
2. Turbine Control 2. Control valve closure or stop valve closure Valve Fast Hydraulic when reactor is > 30%.'* *  ;

Closure press Trip '

. Point i

W i "o

r  !

4 (a) The column entitled "Ref. fe." is only for convenience so that a one-to-one relationship can be established o between items in Table 3.2-9 and items in Table 4.2-9. [

i (b) Whenever the reactor is in the RUN Mode, there shall be two OPERABLE trip systems for each parameter for

. each operating retirculation pusep. If the required number of OPERABLE channels cannot be met for one of the trip systems, place the inoperable channel in tta tripped condition or take the indicated action within 14 days.

If the required number of OPERABLE channels cannot be met for both trip syst es, t *

  • the indicated action within I hour.

(c) Anticipated Transients Without Scram - Recirculation Pump Trip j i

j (d) End of Cycle - Recirculation Pump Trip i

i (e) Either of these two EOC - RPT systees can trip both recirculation pumps. Each EOC - RPT system will trip if f 2-out-of-2 f ast closure signals or 2-out-of-2 stop valve signals are received.

(f) The requirement f or these channels applies f rom EOC-2000 MWD /t to ECC. If one EOC-RPT system is inoperable for

! longer than 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> or if both EOC-RPT systems are simultaneously inoperable, an erderly power reduction will be 4 immediately initiated and reactor power will be <3M within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

I

'; (g) Either of these two ATWS-RPT systems can trip both recirculation pumps. Each ATWS-RPT system will trip if 2-out-of-2 reactor low water level signals or 2-out-of-2 reactor high pressure signals are received.

(h) A channel may be removed f rom service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing and not be

considered inoperable provided sufficient channels are available to ensure the Trip funct'on.

4 i

Proposed TS/0426q/030-369

Table 3.2-10 INSTRilMENTATION WHICH IONITORS LEAKAGE INTO THE DRYWELL Ref. No. Required Operable y fal- Instrtanent (c) Channels eer Systeciff $gttina . Remarks l

-4 Drywell Equipment Drain Sump Tech Spec Q 1 Flow Integrator f(b)(d) 3.6.G.I.

The Limiting Conditions for Operation of the Leakage

' detection System are provided c- 2 Drywell Floor Drain Sump 1(b)(d) Tech Spec in Section 3.6.G.

$ . Flow Integrator 3.6.G.I.

-4

- 3 Scintillation Detector for 1(d) (e) -

. Monitoring Air Particulates 4 Scintillation Detector for 1(d) (e)

Monitorir.g Radiciodine 5 GM Tubes for Monitoring 1(d) (e)

Noble Gases

a. The column entitled "Ref No." is only f or convenience so that a one-te+e relationship can be established between items in Table 3.2-10 ansi stems in Table 4.2-10.

N b. Whenever the systems are required to be OPERABLE there shall be one OPERABLE or tripped system. If this cannot N be met. the indicated action shall be take+.

c. The two flow integrators, one for the equipment drain sump and the other for the floor drain sump, romprise one basic instrument system. T-o sodium-iodide scintilintion detectors one for monitoring air particulates and one for moni-toring radiciodine, comprise two basic instrument systems. A beta sensitive GM detector for monitoring noble gases comprises a fourth basic instrument system. An alternate system to determine the leakage flow is a manual system whereby the time between sump pump starts is monitored. This time interval will determine the leakage flow because the volume of the sump is known.
d. For administrative information; performs no control function.
e. High setpoint alarm will be set three times above background radiation. Failure alarm will be set below background radiation. Specific values will be established during system starterp.

f A channel may be removed f rom service for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for required serveillance testing and not be considered inoperable, provided suf ficient channels are available to ensure the Trip function.

Propesed 75/0426 ")30-42

, , l  ! i >'!t I  ? i*t ;f :l I;I!,c}  !>t!li!!hI {!t 4

2 1

0

- 3 s 0 i

t /

r )) )) )) ) ) ) ) )) ) ) ) )) q a dd dd dd d d d d dd d d d dd 2

6 m (( (( (( i ( ( ( (( ( ( ( ((

e 4 _

R 0

/

S T

d e

a

- n o

)

c e i )) )) )) ) ) ) ) )( ) ) ) )) ) ) p

. t cc cc cc c (c c ( c c) c c i cc f f e c (( (( (( ( ( ( c ( ( ( (( ( (

A ( P g

i s s g g g t p gi i i h r

  • 0" 7" i s s s g h 5 s

t 06 7" 1 sp p p i / 8 0 6+ 1 - p L R 1 + - 0 0 F F F

  • 0 t F T o o 00 9 * *
  • 0 9 g
  • a
  • A ot ot 05 + 0 0 0 0* + ni % 0 t

0 M t t 51 0 0 5 30 1 0 R

  • 1 o 5 5 2 3 o t 5 h 6 0 e 0 7" o t o t a o g 7 o 0" 5 7" 1 ot o ot o t o c o t i o M n 51 1 3 t 0 t t t 0 i t L t I a 1 - 3 - 0 1 0 1 d 1 R - 0 0 0 0 - n 0 g 0 ror ro rro0etr r ere re or re E r r I r n C d r ro i r N n et et t e e t e et t e A a da da da d d d d ad d l d da a d L rc rc rc r r r r cr r o ro rc c r o

L e p

oi oi oi o o o o io o V oi i c

I cd cd cd c c c c dc c c cd d E m en en en e e e e ne e 8 e en n e V I RI RI RI R R R R IR R 2 R RI I R 3 R 1 U

- S 2 .

S 1 3 E t1 D ni e I dees V R

l V el ml b O rb ue S a R i arn /

T P urt n qesa 12 11 12 2 2 i 2 22 2 1 i 1 1 1 H epnh C

I ROIC H

W .

N y O r I y a T r d  :

A ) a n _

T N

e r

S I

e e i m oc E e ut P t r e M r R sy P S U u a (

R t r S n n T a e p l m o o S r e e g i i N e m v t n t t -

- I p e e e s yr i i i m T L r e r s s -

l e e S z o o o e T r re s y t P P v

e r t e t s

e n o a nn l i e ev t i a a r i o v A. W W P t A M l l r a a a e

t l e

r re re re r e

mr n eno V V a e u b b b b o g i f f W v e e t m m m m f y t e e e r r a a a a a nI = a i i '_

) l t u u r h h h h 0 i l l

.b e s s e p C C C C d a

erer _

s s n on n i r s d R oR o s

e e e e r

me no no o n o i a R / t/t yaya t

n e

V W

t a

. r P

- P T i i i s s s i

s i n t A C

t ctc ei ei m r r l l s s s s s e O fdfd u o' d o l l e e re e o g L anan -

r t u t e e r p p r

p r

p P o SISI t c o- c w w r t s a r a y y p p p p d d s

.n I R e' h S R e r D D S r u S

u S

u S

u o R H y

P o )'

a

)

b f 1 eot 1 2 3 4 5 6 7 8 9 0 1 2 3 RNL 1 1 1 1 y4n - ' c$4 - . .

Fev no gr

!t j II)) Iij  ;!  ; j j ,ai ,1 ]

TABLE 3.2-11 (Continued)

INSTRUMLNTATION WHICH PROVIDES SURVEILLANCE INF057MATION Required Ref Operable -

Instrument f No.

fal ' In11mnt (b): Chanc.els f i t lyse amt Rane Action Egadris Z Recorder 0 to 250 psig (c) (d) 14 Drywell Hich Range Pressure 2 Indicater i to 30' R/Mr (g)  ;

c 15 Drywell High Range Radiation (g) 2 Recorder i to 10' RMtr 5

--e .

Recorder 5=10 to (g) (ht 16 Main Stack Post-Accident Effluent Monitor 1

~ IniO'uCi/cc Reactor Building Vent Plence i Recorder $ml0-' to (g) (h) 17 Post Accident Ef f1trent Monitor .iml0'uCi/cc

?

l m Proposed T5/04269/030-108

NOTES FOR TAatE 3.2-11 (Continued)

g. With the plant in the power operation, startup, or het shetdown' condition and with the number of OPERABLE channels less than the required OPERABLE channels. iaitiate the prepianned siternate method of monitoring the appropriate parameter within 72 heers and:

.3-+

either restore the inoperable charmeT(s) to operable status within 7 days of the event. or Q l.

' 2. prepare and" submit: a special report to the NGC persuant to Specification 6.9.2. withm I4 days c following the event outlining the action taken, the cause of the inoperability, aad the plans and schedule for restoring the system to OPERABLE states.

3"

-a g h. A channel contains two detectors: one for mid-range noble gas, and one for high range noble gas.

Both detectcrs must be OPERABLE to consider the channel OPERABLE.

i. Instrumentation shall be operabic with centinuous samoling capability =1 thin 30 minutes of an ECCS actuation during a LOCA. See Section 3.7.A.6.c f or the LIMITING CONolTrom Foe OPERATION.

J. A channel may be renoved f rom service for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> fe cept for Items 11.16. and 17. hich can de removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />) for required survelilance testing and not be considered inoperable.

w N

9 N

w a

J I

Preposed TS/0426e/030-TM

. _ -. .- ~. . _ -

5

'l i

i. TA8tE'3.2 12  !

i.

~

INSTRUMENTATION idi!CH INITIATES THE DISCONNECTION OF OFFSITE POWER SOURCES I

% Action to be Taken

-4 Required Channels if the NonAcr of Q Ref. No. Operable Required Required Operable  ;

^

e fa) Instrument (b) Channels (d) Te Trio Itio Settina Q)mnels Is Not Met i 1

c I 4.16 kw Emergency Bus' 2&s 2/ Bus greater than or equal to 2800 (c)

$ Unde voltage Relay volts. At 2800 volts time delay

--4 (toss of voltage - will be less than or equal to y Condition) 6.5 sec. j j

2 - 4.16 6, Emergency Bus 2&s 2&s greater than or equal to 3280 (c)  !

1 Undervoltage Relay volts. At 3280 volts time delay j t

(Degraded Voltage mili be less than or equal to j Condition) 21.5 sec.

} ..

I i 4

3 t  ;

NOTES FOR TABLE 3.2-12 I

ca to a. The column entitled "Ref. No." is only for t.onvenience so that a one-to-one relationship can be established i

, /o 'between items in Table 3.2-12 and items in Table 4.2-12.

s os .

! 7 'J. This instrumentation is required to be OPERABLE during reactor startup. power operation and het shvidown. I n

c. With the number of OPERABLE channels one less than the required OPERABLE chanrels, operation may proceed J

until performance of the nest required instrument functional test provided a trip signal is placed in the  ;

i LOSP lock-out relay logic for the applicable inoperable channel. [

i

d. A channel may be removed from Service for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for required surveillance testing and not be  !

considered inoperable, provided sufficient channels are available to ensore the Trip Function. j i

f i

U i

1 I

I i

[

. i I

Proposed T5/0426q/030-108 ,

a

_ _ _ . _ _ . _ _ . _ _ _ _ _ _ _ - w _ _ . . _ _ _ - _ _ . +. _ _ _ . - w  % -__.e . - - . ,- , 2 v.-e ,

I!  ;!!j ,[,![e [;'  :;l + , 1r!- LIti [PlI f rt ilJ1[l  !!: 'f!!1Ii[:e l

_ l4 6 -

0 3

0 .

3 t 0 n /

- e kfl eN q .

6 aobt 2 T a 4 eee rrh 0

/

) .

bbps S o=OI t%ds (

c d

e .

E L

B T

d el h n A e nere s w dR s ohi n i o eE o, it un l d eP ,

t q. b t cO o cfeh a u o e r AiRC t h rn pa b P s s e 'y5 t

t e e o a4 e b h m .

n dn n

a d

n no oi no ai

. c a st t r 0 ) ic gc o 8 02f esa y

i p

n

. aa r nn i u a g n 83 o b ul h o ee pm tF n na2 oe s i s Y

i t

ih3t pl ed tt Ail n n

o t

a oa ep .

S t t o ri a e i r ,s ti r

N S e

ert . twtnim t a

e p se eT c

O .Se tl ssyat - l o lh et ne .

I c paattat e m s ah _

T i irrqoeenne ulil so. r r r l t A

Z T r

T gevwri( e ew aehh l

i e I

G n

o o cs er R -

p El i ve rs E o . L p ua NS t a 8m se EE n Ao i Rc

. C c t do 3 SE EL n

e r

a Pa Ec et r

1 TC sd t O i e 2

- AS I

l eo eri 3 a s y ul qb 1 da TR nir - t r el ea 3

IE NW nut aq i 2 h

a t

o rei r rl i

E IO heo 3 t c u ra L P ERT o

a ce ov B H A CE E e eh f a .

L s r rt ~

T IT B .

g eg se HI A e3 rr WS N

T n- inr c1 hn ti o ua NO

  • R e2 hs O
  • O i. 4 du nre l I

delle's F v

am 2e onn T h e A S .

e le tR T rbe E .l ta N i am T ob b s h E urr qea 2 O ca a s . pc P

U ep N . ron T r ee u e l s t R R O [h p a . rn T

S fi o +ct oe

'ys n i fi N e osu c I l m b tc ei ne si r cf ot o l r i if s

i t eec ne vu rs in c nrp e -

y r'

o e r hafi r sd e

i a

e-

".3 o1 i

u cdt e

md oi

.lCg N - q Ews rv iI e n

2 e L rt n f o l r Bei r.

url f3 Ae dp t aeo e s Rrn e, pr mvno n R e i E e v de em r ofi

  • l n

Psp oe ru) t f ct da b

o Oio cl eb i rb ts i eT i f yo ra ut(

qs rnsd l t oat r aasn t n a l ee en t roo ii t reg bp RI Stl c t.rs e n b ern i yn o

eee m m et ai nt u eha r ctr m d mi t e l e u s edp- er l n n heo ne.

oe i td nd .

ce i y ai o' w s h va hs -

et i t ol cn N h e h i re o

.la I Tb T wpr Ac .

ff e . . _

R b c d .

%*O^ e c$4~ -

w.NeNWO -

T1ji 4I* ;i l1!4iaI3y. ij 4;1 i.ijl . i i; l 5

Table 3.2-14 INSTRUMENTATION WHICH ARMS LOW LOW SET S/RV SYSTEM Required I Operable.

Channels 3

O Ref Trip Condition per Trip

  • Namenclature Systee Trin Settino Remarks h '*' Iristrument
1. Reactor Vessel Steam Dome High 2 51054 psig Z Pressure a High 2/ valve 85, +35. -5 The timiting Condition
2. Relief / Safety Valve Tailpipe Pressure psig of Coeration of tMse switches is provided in Specification 3.6.H.l.

c.a to e

to c.a O.

a. The column entitled *Ref. No " is only for convenience so that a one-to-one relationship can be established between items in table 3.2-14 and items in table 4.2-14 With the requirements for the minimum number of OPERABLE c.hannels not satisfied for one trip system. place the inoperable channel in the tripped condition or declare the associated system inoperable within I hour. With b.

the requirements for the minimum number of CPERA8tE channels not satisfied for both trip systems, declare the associated system inoperable within one hour.

c. A channel may be removed f rom service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required servelliance testing and not be considered inoperable, provided suf ficient channels are available to ensure the Trip Fonction.

Preposed TS/0426g/030-108

.i . --r

...e qgi., i...

1 1

i j~

i' Table 4.2-1 i

- ISOLATION ACTt!ATION INSTRtJMt5TATION SURVEILLANCE REQUIRUiMT5

'% Ref. Instrument Functional Test Instrument Calibration

-4 No.. Instrpent Chech Minieum Frequency Minimum frequency bst riaent Minimum Freauencv id Q [a1 (b)

[

I~ Reactor vessel Wter tevel Once/ shift Once/ quarter _ Once/ operating cycle c -(tevels:1, 2, and 3}

. :2:

m . .

Once/ operating c yle

-4 2 Reactor vessel Steam Dome Once/ shift Gece/ quarter y Pressure (Sht tdown Cooling Mode) 3 Drywell Pressure Once/ shift Once/ quarter Once/ operating cycle

, .. 4 Main Steam tine fsone Once/ week (e) Every 3 months (f) 4

Radiation

!. 5 Nin Steam Line None M/A Every 3 months Pressure l

i ~

6 min Steae Line flow Once/ shift Onte/ quarter Once/cperating cyc1=

1 m, l'  % 7 Nin Steam tina Tunnel Once/ shift Once/ quarter Once/eperating cycle Teeperature l 8 Reactor Water Cleanup Nore N/A Every 3 months System Differential

' Flow I 9 Reactor water Cleanup Once/ shift once/ quarter once/ operating cycle j Area Temperature l

l I

W i

Proposed 75/04269/030-121

i i i

i 3

Table 4.2-1 (Cont'd)

Ref. Instrument Fu ectional Test Instrument Calibration

. No . Instrument Check Minimum Fregtency Minimum Frequency j fa) Iglintment Minimum Freauenew- (D) fel Once/ shift Once/ operating cycle I 10 Reactor Water Cleanup once/ quarter 3 Area Ventilation j e

g Differential Temperature i A

' il Condenser vacuum .None vt/A Every 3 months 3 c

3' 12 Drywell Radiation Once/ shift Once/ quarter Once/ operating cycle

-a-  !

13 HPCI'Escrgency Area Once/ shift Once/ quarter Once/ operating cycle

. Cooler Ambient Temperature 14 HPCI Steam Supply Pressure Once/ shift once/ quarter Once/ operating cycle f

. 15 HPCI Steam Line 3P (Flow) Once/ shift once/ quarter Once/ operating cycle 16 HPCI Turbine Enhaust Once/ shift Once/ quarter Once/ operating cycle Diaphragm Pressure  ;

17 HPCI Suppression Chamber Once/ shift once/ quarter Once/oparating c ycle Aree Ambient Temperature a

L'

, 'ro 18 HPCI Suppression Chamber once/ shift Once/ quarter Once/ operating cycle f 4 Area Differential ori Air Temperature ,

i

{ 19 RCIC Emergency Area Once/ shift Once/ quarter Once/ operating cycle

! Cooler Ambient Temperature y i

i 20 RCIC Steam Sepply Pressure Once/ shift once/ quart er Once/ operating cycle  !

21 RCIC Steam' tine Once/ shift once/qu, rter Once/ operating cycle AP (Flow) j

22 RCIC Turbine E=haust once/ shift Once/ quarter Once/ operating cycle j Diaphragm Pressure 23 RCIC Suppression Once/ shift Once/ quarter Om e/ operating cycle

, Chamber Area Ambient q Temperatare' 24 RCIC Suppression Chamber On(e/ shift Once/ quarter O m e/ operating cycle

, Area Differential Air  !

l Temperature j

~

Proposed T5/0426q/030-143 i '

-, _ ,.w,

Table 4.2-1 (Cont'd) i Notes f or Table 4.2-1 e

a. The. column entitled "Ref. No." is only f or convenience so that a one-to-one relationship can be established between items in Table 4.2-1 and 'tems in Table 3.2-1.

-4 Instrument functional tests are not required when the instruments are not required to be operable or F

b. *

$ are tripped. However, if functional tests are m;ssed. they shall be performed prior to returning the instrument to an operable status.

C c. Calibrations are not required when the instruments are not required to be operable. However, if 5

3

-i calibrations are missed. they shall be performed prior to returning the instrument to an operable  ;

, status. .

r w '

d. Deleted. f ,

~

e. This instrumentation is exempted from the instrument functional test definition. This instrument functional test will consist of injecting a simulated electrical sigaal into the measurement channels.
f. Standard current source used which provides an instrument channel alignment. Calibration using a radiation source shall be made once per operating cycle.

Logic system functional tests and simulated automatic actuation shall be performed once each operating cycle f

. for the following: i rv k

cn I. N in Steam Line Isolation valves 8. Reactor water Cleanup Isolation

2. Nin Steam Line Drain Valves 9. Drywell Isolation valves [
3. Reactor Water Sample valves 10. TIP Withdrawal  !

4 RMR - Isolation valve Control 11 Atmospheric Control Valves  ;

I

5. Shutdown recling valves 12. Sump Drain valves
6. Head Spray 13. Standby Gas Treatment
7. Dry. ell Eqsipment Sump Discharoe to Rad.aste 14. Reactor Building Isolation ,

The logic system functional tests shall include a calibration of time de;ay relays and tirars necessary r for proper functioning of the trip systems. [

I t

t i

Preposed T5/04269/030-143 I

Table 4.2-2 Ched. Functional Test, and Calibration Minisuu Frequency for Instrumentation which Initiates or Coatrois HPCI Ref. Instrument Functional Test Instrument Calibration t I No. Instrument Check Minious Frequency Minimum Freovency 3

Ig1 Instriment Mini,um Frecuencv (b) fel l .

n

= O w e/ shift Once/ operating cycle 4 1 Reactor Vessel Water level Once/esarter I '

(Level 2) i c ,

5 3 2 Drywell Pressure Once/ shift Once/ quarter Once/op-rating cycle

+

--4 3 HPCI Turbine Overspeed None ft/A On(e/ operating cycle 4 HPCI Turtrine E=haust Once/ shift Once/ quarter Once/ operating cycle Pressure 5 HPCI Puep Suction Once/ shift Once/cuarter Once/ operating cycle Pressure .

4  !

(2 Reactor Vessel Water level Once/ shift Once/ quarter once/ operating t y<.ie ,

3 (Level 8) 7' HPCI Piano Distharge Flo. Once/shif t Once/ quarter On(c/ operating cycle i 62 i m 8 Deleted.

m  ;

w 9 Deleted.

' 10 Deleted.

11 Deleted. ,

i

. 12 Deleted. '

13 Deleted. r 4

l i

i Proposed T5/04269/030-121

I l

j i

i 1

Table 4.2-2 (Cont *d) -  !

Instruneet fon(tional Test. Instrument Calitration Ref. .

Minimum frequency Minimum Frequency No. Instrument Check- fcl Mini = = Freauence (b) fal Instrument None N/A Every 3 months Z 14 Condensate Storage 3 Tank level

-4 n One/operatiwy cycle

  • 15 Suppression Chamber Once/ shift once/ quarter
  • Water Level C Once/eperating cycle Mone 16 HPCF togic Power Mone

.$ F4elure Mon'. tor

-4

~

Notes for Table 4.2-2

a. The column entitled "Ref. No." is only for convenience so that a one-to-o :- relationship can be e5.ablished between items in Table 4.2-2 and itees in Table 3.2-2.

F

~

o N

W preposed 75/0426c/0 30-I21

9 .

tietes for Table. 4.2-2 (Cont *di

b. Instrsment fune.tional tests are not required when the instruments are not required to tw OPERABLE or are tripped. However." if functional tests are missed, they shall be performed prior to returning

% the instrumert to an CFERABLE states.

--3

c. Calibrations are not required when the' instruments are not required to be operable.toHowever, if Q' calibrations are missed, they shall be perforwed prior to returning the instruse an operable states. g c 3 3 d. Deleted-

-4 w

Logic system functional tests and simulated automatic actuation shall be performed once each operating cycle for the following:

1.. HPCI Sebsystem

2. HPCI Subsystem Auto Isolation
3. Diesel Generator Initiation 7 4. ' Area Cooling f or Engineered.-

to Sateguard Systems to The logic system functional tests shall int,1ude a calibration of time relays and timers necessary for proper fonctiseing of the trip systees.

Proposed YS/0A N /D30-0

' Table 4.2-3 Check Functional Test, and Calibration Minimum Frequency for Instrumentation Whicis Initiates or Controls RCIC Ref. Instrument fonctional Test Instrument Calit> ration g

y No.

' 1A1 Instrument Instrument Chec6

.Miniana frecuentv Minimus Frequency ib1 Minimue Freqscoty (cI c7

(tevel 2)

C z 2 FCIC Turbine Overspeed Q Eiec t rical/ None- N/A Once/ operating cycle Machanical None. M/A Once/ operating (ycle 3 RCIC Turbine Enhaust Once/ shift Once/ quarter Once/eperating cytle Pressure 4 RCIC Pump Section On<e/ shift once/ quarter Once/ operating cy(le Pressure 5 Reu tor vessel Water tevel Once/ shift once/qurter On(c/ operating tyc.le (tevel 8) 6 RCIC Pump Discharge Flow Once/ shift Once/esarter once/ operating cycle F 7 Deleted.

ru b

o 8 Deleted.

9 Deleted.

10 Deleted.

II Deleted.

12 Deleted.

Proposed TS/0426q/C30-121

-. . =. - -. ._ . . _ .

( Il j  :?,* {lt ,[! t.tItI[liIkii i<  ! t t i !5r[; Ir :?.  ! :

  • gg y

c n

s s e.

q h h 3 t t 2 to-n+ n o

n o

1 niF) m m 0 et m c 3 ea wri s(

3 y

3 y

0

/

rbm q tii a r r 6 sl n -

e e g 2 -

nai v n ICM N b E en i

4 0 -

/

- lt r S e t u T b at re d a

n er p e s

c oot o p

p e o

. i br r h o P s oi e n t r l o p y

c y

i d t ed c a re t-. l i n s g e ur e a T ;

n r qo i ef

t e rr tl r a n e naF) r O tp en moe(

b e p o o

)

d ui u o t neb -

e rt m / -

e u t ci n snn e

A c rl -

< A al i nui n / / = . a t IFM O N N 3 sh n a- t s o 2 n ey C t

(

h a3 me uh 3 te rt

- 3 l t 2 v - ob s ,

sa 4

k cn ee 2

4 e T

nd i e s

E L

h u Cc e cn ni hi es B e r . bl e t m A is T t. F a ns t eer ee w-rm su e n

o e.

c, e

n o

. T r

o c vt oi Was ti sn N n N f cd dt ni IM s

e o ran re es i t t f3 u o - ql N

l y2 ea rn.

n4 o ti e os e ott sl nca i b nt a eus

".T rf a fle -

on Ni sib t a eg .s s , r r a l f se ee ere t ep er _ r o Rt vo wo o t P o " i l ot a n t

Pi co n

S el nl oe di v ee l e i ohao n

n iM t e iv t w t e q av se i t c .t m oe se sl t e ndt u t r nl e nb uen r u e rr pe e f pe pm t Cl dk d s Ii nn pt ne ti u n Ca oa ua mh nrr I RF CT SW us ett _

l i m s ol cb uen rri

. a t a o et s e N h s nrh T e I ot

.la ff e 3 4 5 . .

R 1 1 1 a b

. I3Q ' c= Z a o a )a tt t ~

1 A i. - 41j!}!4 3]< , iij < ,, 4)1 4 {a-Iiii1 j !ii i: , * ' i

4 j Table 4.2-4

) Check, Functional Test, and Calibration Minimum Frequency f or Instrumentation

j. Which Initiates or Controls ADS i

! Ref. Instrument Functionai Test Instrument Calibration

-y No. . Instrument Check Minimum Frequency Minimum Frequency

--+ .131 ' _ Inst rument Minimum Frecuence (b) (c) i o a 1 "E I 4

I Reactor vessel Water level Once/ shift Once/ quarter Once/ operating cycle

{tevel 3) c

$ Reactor Vessel Water tevel Onse/ shift Once/ quarter. On(e/ operating cycle

- -4 (Level 1}

~

2 .Drywell Pressure- Once/ shift Once/ quarter Once/ operating cycle 3~ RHR' Pump Discharge Once/shiit Once/ quarter Ge e/ operating cycle Pressure 4 ($ Pump Discharoe Once/ shift Once/ quarter Once/ operating c yc.ie Pressure i 5 Auto Depressurisatien None N/A On(e/ operating cycle

}- Low Water Level Timer i w I

. r. , 6 Auto Depressurizatice None N/A Once/ operating cycle I Timer 1 w I w 7 Automatic Blowdown None Once/ operating cycle hone Control Power f ailure '

790,itor l Notes for Table 4.2-4

l. a. The column entitled "Ref. No." is only for convenience so that a one-to-one relationship can be

! established betwcen items in Table 4.2-4 and items in Table 3.2.-4 p

}

l 1

1 1

1 i

i j -Proposed TS/0426q/030-122 1

1

_ . ~ - . -

Table 4.2-5 i i- t Ched, functional Test, and Calibration Minimum freqwncy for Instrumentation i

! ' Which Initiates or Controls the LPCI Mode of RHR Ref. Instrument Functional Test Instrument Calibratico I

p No. Instrument Check Minimum Frecuency Minimum Frequency I' -4 igl in1* e nt Minimum Trecuency (b) (c)

O i I

1 ' Reactor Vessel Water tevel Once/ shift Once/ quarter Once/ operating cytte i (Level 1) e

) $ 2 Drywell Pressure Once/ shift Once/qucrter Oace/ operating cycle

! .-4

] y 3 .a. Reactor vessel Steam Once/ shift once/ quarter Once/eperating cycle

Dome Pressure
b. Reactor Vessel Once/ shift Once/ quarter Once/ operating cycle Steam Dome Pressure j 4 Reactor vessel Steam Once/ shift Once/ quarter Once/ operating cycle j: Dome Pressure [

i l 5' Reactor Shroud Water tevel Once/ shift Once/truarter Once/ocerating cycle i j (Level 0) 4 w

6 LPCI Cross Connect Valve None Once/ Operating cycle Mone [

e Open Annunciator I w  !

l 'en y a

7 RHR (LPCI) Pump Flow Once/ shift Once/ quarter Once/ operating cycle l

' 8 RMR (LPCI) Pump None M/A Once/ operating cycle Start Timers  !

I 9 Valve Selection Timen None N/A Once/ operating cycle [

10 RHR Relay 1.ogic Power None Once/ operating cycle mone -

Failure Mwitor 4

l 4

i J

4

?

1 I

!. +

1 Proposed T5/DC6q/030-121  !

Table 4.24

' Check, Functional Test, and Calibration Minimum Fre w y fer Instrumentation which Initiates or Controls Core Spray Instrument Tonctional Test Instrument Calibration Ref. ..inimus Fregoency . 79snimust frequency y No. Instrument Check (c)

Minisme Freovene, (b)

-4 Lg1 Instrument o Cace/ operating cycle Once/ shift Once/gwarter 1 Reactor vessel Water tevel (Level 1)

Once/ shift once/guarter Once/ operating cycle 2 Drywell Pressore

'Once/ shift Oace/cuarter Orae /eperating cycle

- 3 Reactor vessel Steam Dome Pressere Once/ day N/A Oace/eperating c'vcle 4 Core spray Sparger' Differential Pressure Once/ shift- Once/ quarter Once/ operating cycle 5 CS Pump Discharge flow e

m Once/ operating cycle None e 6 Core Spray toqic Porwer None y Failure Monitor Notes for Table 4.2-6

a. The column entitled "Ref . * ' ; only for convenience so that a one-to-one relationship can be cetablished between items e 4.2-6 and stees in Table 3.2-6.

l l

l Proposed TS/9426q/030-T21

Table 4.2-7 Check.. Functional Test, and Calibration Minison Frequency for Netitron Monitoring Instrumentation Which Initiates Control Rod Blodi r

> Instrument Check Instrument Functional Test Instrumect Calibration

--4 Ref. Minimum Frequency- Minirre Frequency Minimum Frenuency Q No.

(al Instrument (b) fel idl _

e c 1 Snt.gcE RANGE nc=;11 g z-

' 5/U"', W m U a. Detecter not full in LA NA 5/U"', W R

~ .b. Upscale S/U"' , W - ta

c. Inoperative NA NA 5/U" * , W R
d. Do.nnscale 2 INTERMD!!*T !#CE NorliTORS NA $/U "', W'** :nA
a. Detects full in 5/U " * , W ' *
  • R b, t*pscale NA
c. Inopera...e NA S/U" ' , W' ' ' NA NA S/U, W'** R
d. Downscale I 3 APRM l b a. Flow Referenced Simulated 5/U, Q R E Thermal Power-Upscale NA O b. Iroperative NA SN"', Q NA NA 5/U"', Q R l
c. Downscale S/U"*, Q R
d. Neutron Flux - High, 12% NA 4 ROD BtOCK Non! TOR 5/U, 0 R
a. Upscale NA 5/U"', Q MA
b. Inoperative NA

$N"', Q tt

c. Downscale NA 5 SCRAM DISOuRGE V0ttME R
a. Water Level-High NA Q Notes for Ta' 2-7
a. The column titled "Ref. No." is only for. convenience so that a one-to-one relatioreship Can be established between items in Table 4.2-7 and items in Table 3.2-7.
b. Deleted.

Proposed T5/0426q/033-163

_ _ _ . _ .a

GCwne "NTM. . .

.abse 3.2-8 .

Check, functional Test, and Calibration Minimum frequency for Radiation Monitoring Systems Which Limit Radioactivity Release Instrument Check Instruaent Functional = _ Instrument Calibration Ref. Minimue Trequency Minimum frequency No. Minimue Frequency jC (b) (c) id1'

-a IAl_ Instrument c7 U' Once/ day Di-c' month (f) Every 3 months 1 Off-gas Post Treatment

Radiation Monitors c: Once/ day 3nce/6 anti (f) .Every 3' months j5 2 Refueling floor Exhaust

-4 Vent Radiation Monitors Reactor Building Enh st Once/ day > e/,ont h ( f) Every 3 months j 3 l Vent Radiation Monitors Once/ day. Once/ month (f) 0 ery 3 months 4 Control Room Intake Radiation Monitors None Once/wcek (f) Every 3 months (g) 5- Main Steam Line Radiation Monitors Notes for Table 4.2-8 w

~

na a. The column entitled "Ref. No." is only for convenience 50 that a one-to-ene relationship can be j, established between items in Table 4.2-8 and items in Table 3.2-8.

ro

b. Instrument checks are not required when these instruments are not required to be OPERABLE or are trippeo. However, if instrument checks are missed, they shall be performed prior to returning the instrument to an OPERABLE status.

Proposed TS/0426q/030-0

~

Notes for Table 4.2-8 (Cont'd)

c. - Instrument functional tests are not. required when the instruments are not required to be OPERABLE or are tripped. However, if instrument functional tests are missed, they shall be performed prior jE ta returning the ins +rument to an OPERABLE status.

-4 E3

~~

d. ' Instrument calibrations are not required when the instruments are not required to be GPERABLE or are tripped. However. 'if instrument calibrations are missed, they shall be performed prior to return-8 ing the instrument to an OPERABLE status.

c g 33 e. Deleted. l

_a r y f. -This instrumentation is exempted from the instrument functional test definition. This instrument functional test will cons' injecting a simulated electrical signal into the measurement channels.

g. Standard current source uses .ch provides an instrument channel alignment. Calibration using a radiation source shall be made once per operating cycle.

Logic syster functional tests and simulated automatic actuation shall be performed once each operating cycle for the following-ta s3 1. Secondary Containment Ar.tuation' s

a to b

i l

l l Proposed TS/0426q/030-0 l

l

Table 4.2-9 CHECK AND CALIBRATION MINIMUM FREQUENCY FOR INSTRUMENTATION u!CH INITIATES RECIRCULATION PUHP TRIP Ref.

t j[ No. Instrument Check Instrument functional Test Instrument Calibration

-4 [A1_ 1,ns t rumen t Minimum Frecuencv Ninimus Freauencv Minimum Freauency o

1 Reactor Vessel Water Level Once/ shift Once/ quarter Once/ operating cycle (ATWS RPT)i'*

c 35 2 Reactor Pressure Once/ shift Once/ quarter Once/ operating cycle

-4 (ATWS RPT) 3 EOC - RPT Trip

3) Initiating togic None Once/ month None b) Breakers None Once/ operating cycle None e) Response Time None None Once/ operating cycle RPT logic , Breakers'**

$3 Notes for Table 4.2-9 a

a) The column entitled "Ref. No." is only for convenience so that a one-to-one relationship can be established between items in Table 3.2-9 and items in Table 4.2-9 (b) An ATWS recirculation pump trip logic system functional test shall be performed once per operating cycle.

(c) The EOC-RPT System Response Time shall be that time interval from initial signal generation by the associated turbine stop valve limit switch or free when the turbine control valve hydraulic control oil pressure drops below the pressure switch setpoir.t to complete suppression af the electric art between the fully-open contacts of the recirculation pump circuit breaker. The response time may be measured by Sny series of sequential, overlapping, or total steps such that the entire response time is meesured. Each test shall include at least the logic of one trPe of channel input turbine control valve fast closure or turbine stop valve closure, such that both types of channel inputs are tested at least once per 36 months. The EOC-RPT System Response Time acceptance criteria associated with turtine stop valve closure shall be i 155 milliseconds; the EDC-RPT System Response Time acceptance criteria associated with the turbine control valve fast closuie shall be i 175 milliseconds.

Proposed TS/G426q/030-169

t

+ -

Table 4.2-10 i

. Check,' functional Test, and Calibration Minimum frequency for Instrumentation -

which Monitors Leakage into the Drywell .  ;

t Instrument Check - Instrument Functional Test Instrument Calibration'-

'j Re'..No. Minimus Frequency Minimum Frequency. Minimum Trequency

--,. _,fa) Instrument" (bi' ~ fc) (d) ,

' O '.

I' Drywell Equipment' Drain Once/ day. Once/ month Every 3 months; i 8

Sump'fIow Integrator i =

$. 2- Drywell ricor Drain Sump Once/ day.

- Once/ month Every 3 months

--4 Flow Integrator 3 Scintillation Detector Once/ day' - Once/ month Every 6 months,  !

~for Monitoring Air Partic-lates , ,

l j 4. Scintillation Detector Once/ day ' Once/ month Every 6 months .;

for' monitoring Radiciodine.

i 5 GM Tubes.for Monitoring Once/ day Once/ month Every 6 months  !

. Noble Gases Notes for Table 4.2-10 I

a. The column entitled "Ref. No." is 'only for convenience so that a one-to-one relationship can be established between .

." items in Table 4.2-10 and items in Table 3.2-10.

to i

E b. Instrument checks are not required when these instruments are not required to be OPERABLE or are' tripped. . However. . ~

! - e if instrument checks are' missed they shall. be performed prior to returning the instrument to an OPERABLE status. *

c. Instrument functional tests'are not required when the instruments are not required to be OPERABLE or are tripped. i However, if instrument functional tests are missed.'they shall be performed prior to returning the instrument.to an OPERABLE status. -;

I i.-

I

-l 1-Proposed T5/0426q/030 l c

~...

, 4 7 y'--,-7'en--- p ..ei:s acy g ,

' Notes for Table 4.2-10 (Cont'd)

d. Instrument calibrations are not required when the , instruments are not required to be (!PERABLE or

.are tripped. However, if instrument calibrations are seissed, they shall be performed prior to

.g . returning the instrument to.an OPERABLE status.

~ l Q e. . Del *ted.

. I C

2 m

w l

& a I

b.

b N

t Proposed Ti"St26q/030-0

a BASES FOR LIMITING CONDITIONS FOR OPERATION 3.2 PROTECTION INSTRUMENTATION in addition to th'e Reactor Protection System (RPS). instrumentation which in-itiates a reactor scram, protective instrumentation bas been provided which initiates action to mitigate the consequences of accider = which are beyond the operators ability to control, or terminates operator errors before they.

result in serious consequences. This set of Specifications provides the lim-iting conditions for operation of the instrumentation:

(a) which initiates isolation. l (b) which initiates or controls the core and containment cooling systems, (c) which initiates control rod blocks, (d) which initiates protective action, (e) which monitors leakage into the drywell and (f) which provides surveil-lance information. The objectives of these specifications are (i) to assure  ;

the effectiveness of the protective instrumentation when required by preserv-ing its capability to tolerate a single failure of any component of such sys-ttms even during periods when portions of such systems are out of service for maintenance, and (ii) to prescribe the trip settings required to assure ade-quate performance. When necessary, one channel may be removed from service l for brief intervals to conduct required functional tests and calibrations.

Footnotes are provided in each LCO table (Tables 3.2-1 through 3.2-14) which dictate the allowable time interval. While a channel is removed from service for required. surveillance testing, it does not need to be considered inoperable (relative to Technical Specifications action requirements), provided sufficient channels are available to ensure the Trip Function. Singit failure considerations do not apply during this time interval.

A. Isolation Actuation Instrumentation (Table 3.2-1)

' isolation valves are installed in those lines which penetrate the primary con-tainment and must be isolated during an accident. Actuation of these valves is initiated by instrun.entation shown in Table 3.2-1 which senses the conditions for which isolation is required. Such instrumentation must be available whenever primary containment integrity is required. The objective is to isolate the primary containment so that the guidelines of 10 CFR 100 are not exceeded during an accident.

1. ' Reactor Vessel Water level
a. Reactor Vessel Water level low (level 3) (Narrow Range)

, The reactor water level instrumentation is set to trip when reactor water level is approximately 14 feet above the top of the active fuel. This level is referred to as level 3 in the Technical.Speci-fications and corresponds to a reading of 10.0 inches on the Narrow Range scale. This trip initiates Group 2 and 6 isolation but does not trip the recirculation pumps,

b. Reactor Vessel Water level low Low (level 2)

The reactor water level instrumentation is set to trip when reactor

. water level is approximately 9 feet above the top of the active fuel. This level is referred to as Level 2 in the Technical Speci-

fications and corresponds to a reading of -47 inches.

l This trip' initiates Group 5 isolation, starts the standby gas treatment system, and initiates secondary containment isolation.

-HATCH --UNIT 1 3.2-50 Proposed TS/0444q/029-121 1 . . . . .,

,- - .. - -- _ . - - . , . . - - ~--- - . - _ - - . . - . - - - . .

BASES FOR tlMITING CON 0lil0NS.FOR OPERAfl0N

~

3.2.A.7. Main Steam line Tunnel T?mperature Hich (Continued) with the resultant small release of radioactivity, gives isolation before the

. guidelines of 10 CFR 100 are exceeded.

8. Reactor Water CleanuD System Differential Flow H1oh Gross leakage (pipe break) f rom the reactor water cleanup system is detected by measuring the difference of flow entering and leaving the system. -The set-point is low enough to ensure prompt isolation of the cleanup system in the event of such a break but, not 50 low that spurious isolation can occur due to normal system. flow fluctuations and instrument noise. Time delay relays are used to prevent the isola-tion signal which might be generated from the initial flow surge when the

'leanup system is started or when operational system adjustments are made which produce short term transients.

9. Reactor Water Cleanup Area TemDerature Hich and
10. Reactor Water Cleanup Area Ventilation Dif f erential Temperature Hich Leakage in the high temperature process flow of the reactor water cleanup system external to the primary containment will be detected by temperature sensing-elements. Temperature sensors are located in the inlet ar.d. outlet ventilation ducts to measure the temperature dif ference. Local ambient temperature sensors are located in the compartment containing equipment and piping for this system. An alarm in the main control room will be set to annunciate a. temperature rise corresponding to.a leakage within the identi-

_fied limit.- In addition to annunciation, a high cleanup room temperature will actuate automatic isolation of the cleanup system.

11. Condenser vacuum low

.The~ Bases for Condenser Vacuum Low are discussed in The Bases for Specifica-tion 2.1.A 7.

12. Orvwell Radiation When drywell radiation reaches the setpoint (5.138 r/h), the purge and vent -valves are_ automatically closed, thus isolating. the containment atmosphere from the outside environment.
13. HPCI Emeroency- Area -Cooler Ambient Temperature Hich High ambient temperature'in the HPCI equipment; room near the emergency area cooler could indicate a break in the HPCI system turbine steam line.

-The automatic closure of the HPCI steam line valves prevents the excessive Lloss, of reactor coolant and the release-of significant amounts- of radioactive material f rom the nuclear system process barrier. The high temperature *'tting $ 169'F was' selected to be far enough above anti-cipated noruul HPCI system operational levels to avoid spurious isolation but low enough to provide timely detection of HPCI turbine steam line break.

HATCH - UNIT 1 3.2-52 Proposed TS/0444c/029-121

BASES FOR LIMlilNG CONDITIONS FOR OPERATION

.3.2.A.14. HPCI Steam Suppiv Pressure Low Low pressure in the HPCI steam line could indicate a break in the HPCI steam line. There' ore, the-HPCI steam line isolation valves are auto-matically closed. The steam line low pressure function is provided so in the event that a gross rupture of the HPCI steam line occurred up-stream from the high flow sensing location, thus negating the high flow indicating function, isolation would be. effected on low pressure. The allowable value of 1 100 psig is selected at a pressure sufficiently high enough to prevent turbine stall.

15. HPCI Steam line 6P (Flow) High HPCI steam line high flow could indicate a break in the HPCI turbine steam line. The automatic closure of the HPCI steam line isolation valves prevents the excessive-loss of reactor coolant and the release of signi-ficant amounts of radioactive material f rom the nuclear system process barrier. Upon detection of HPCI steam line high flow, the HPCI turbine steam line is isolated. The high steam flow trip setting of 3035 flow was selected high enough to avoid spurious isolation, i.e., above the high steam flow rate encountered during turbine starts. The setting

_ was selected low enough to provide timely detection of an HPCI turbine steam line break.

16-. HPCI Turbine Exhaust DiaDhragm Pressure High High pressure in the HPCI-turbine exhaust could indicate the turbine rotor is not turning, thus allowing reactor pressure to act-on the turbine exhaust line. The HPCI steam line isolation valves are automatically closed to prevent overpressurization of the turbine exhaust line. The turbine ex-haust diaphragm pressure trip setting of 5 20 psig is selected high enough .;

to avoid isolation of the HPCI if the turbine is operating, yot low enough

.to effect isolation before the turbine exhaust line is unduly pressurized.

17. :HPCI Suppression Chamber Area Ambient Temperature HiQh

-A temperature of 169'F will initiate a timer to isolate the HPCI turbine steam line.

18. HPCI SuDDression Chamber-Area Differential Air TemDerature High A differential air temperature greater than the trip setting of 5 42*F between the inlet and outlet ducts which ventilate the suppression chamber area will' initiate a timer to isolate the HPCI turbine steam

-line.

19. RCIC Emernency Area Cooler Ambient' Temperature Hiqh High ambient temperature in the RCIC. equipment room near the emergency area cooler could indicate a break in-the RCIC system turbine steam line. The automatic closure of the-RCIC steam line valves prevents the excessive loss of reactor coolant and the release of significant. amounts of radioactive material f rom the nuclear system process barrier. The

. HATCH - UNIT I 3.2-53 Proposed TS/0444a/029-121

___u_____..u____.-__._ _

. . - . . - . - - _ ~_ _ _ . _ _ . _ _ _ _ _ _ _ .._ _ _ . _ _ . _ - _ _ . _ _ .

4 BASES FOR llMITING CONDITIONS F0k OPERATION 3.2.A.19 high tempsrature setting of 1169'F was slected to be f ar enough above anticipated normal RCIC system operational levels to avoid spurious isolation but low enough to provide timely detection of a RCIC turbine steam line break.

20. RCIC-Steam SuDDiv Pressure low-Low pressure in the RCIC steam supply could indicate a break in the RCIC steam line. Therefore, the RCIC steam supply isolation valves are' automatically closed. The steam line low-pressure function is provided so in the event a gross rupture of the RCIC steam line occurred upstream from the high flow sensing-location, thus negating the high flow indicating function, isolation would be effected on low pressure. The isolation setpoint of 1 60 psig is chosen at a pressure below that at which the RCIC turbine can effectively operate.
21. RCIC Steam Line (aP)~ Flow Hiah RCIC turbine high steam flow could indicate a break in the RCIC turbine steam line. The automatic closure of the RCIC steam line isolation valves prevents the excessive loss of reactor coolant and'the release of significant amounts of radioactive materials f rom the nuclear system process barrier. Upon detection of RCIC turbine high steam flow, the RCIC turbine steam line is isolated. The high steam flow trip setting
  • of 306% flow.was selected high enough to 6 void spurious-isolation. i.e.,

above thelhigh steam flow rate encountered during turbine starts. . The '

setting was selected low enough to provide timely detection of an RCIC turbine steam line break.

22. RCIC Turbine Exhaust DiaDhraam Pressure High

.s High pressure in the RCIC turbine exhaust could. indicate the. turbine rotor is not turaing, thus allowing reactor pressure to act on the turbine exhaust line. The RCIC steam line isolation valves are automatically closed.to prevent-overpressurization aDf the turbine exhaust llne. The turbine exhaust diaphragm pressure trip setting of

_5 20 psig is selected high enough to avoid isolation of the RCIC if

" the turbine is operating, yet low enough to ef fect isolation before the turbine exhaust line is unduly' pressurized.

23. RCIC SuDoression Chamber Area Ambient Temperature Hinn n

As in the RCIC equipment room, and for the same reason, a temperature of line.$ 169* F will initiate.a timer to isolate the RCIC turbine steam

24. RCIC SuDoression Chamber Area Differential Air Temperature'High A high dif f erential air temperature between the inlet and outiet ducts which ventilate the suppression chamber area will initiate a timer to isolate the RCIC turbine steam line.

HATCH - UNIT 1 3.2-54 Proposed TS/0444q/029-121 e

t =e e w e.wr -- e ,-a-w~;- +

. ~ . - . ., .. .. .- -. - . . . - - . . . . .. - . - -

BASES FOR LIMiilNG CONDITIONS FOR OPERA 110N __

3.2.B. Instrumentation which Initiates or Controls HPCI (Table 3.2-2) l1. Reactor Vessel Water level low Low (Level 2)

The reactor vessel water level instrumentation setpoint which initiates HPCI is-> -47 inches. This level is approximately 9 feet above the top of the active fuel and in the Technical Specifications is-referred to as level 2.

The reactor vessel low water level setting for HPCI system initiation is selected high enough above the active fuel to start the HPCI system in time i both to prevent excessive fuel clad temperatures and to prevent more than a snell f raction of the core f rom reaching the temperature at which gross fuel failure occurs. The water level setting is far enough below nornal levels-that spurious HPCI system startups are avoided.

2. Drywell Pressure Hiah-The drywell pressure which initiates HPCI is 5 2 psig.. High drywell pressure t could . indicate a failure of the nuclear system process barrier. This pressure is selected to be as low as possible without _ inducing spurious HPCI system startups. This instrumentation serves as a backup to the water level instrumentation described above.
3. HPCI Turbine OversDeed The HPCI turbine is automatically shut down by tripping the HPCI turbine stop valve-closed _when.the 5000 rpm setpoint on the mechanical governor is reached. . A-turbine overspeed trip is required to protect the physical integrity of the turbine.
4. .HPCI Turbine-Exhaust Pressure High When HPCI turbine exhaust pressure reaches the setpoint ($ 146-psig) the HPCI turbine.is automatically _ shut down by tripping the HPCI stop valve closed._~HPCI turbine exhaust-high pressure is indicative of a condition which threatens the physical integrity of the exhaust line.

5.- HPCI PumD' Suction Pressure low The pressure. switch is used to detect low HPCI system pump-suction pressure and is set to trip the HPCI turbine at 512.6 inches of mercury-vacuum. This setpoint is chosen to prevent pump damage by cavitation.

6. Reactor Vessel Water level Hich (Level 8)

A reactor vessel water level-of +56.5 inches is indicative'that the HPCI l system.has performed satisfactorily.in providing makeup water to the reactor vessel. The reactor vesselLhigh water level setting which trips the HPCI turbine is-near the top of the steam separators and is sufficient to prevent gross moisture carryover to the HPCI turbine.= Two analog dif-ferential pressure transmitters trip to initiate a HPCI turbine shutdown.

HATCH - UNIT.1 3.2-55 Proposed TS/0444q/029-121

BASES FOR LIMlilNG CONDITIONS FOR OP(RA110N 3.2.B.7. 'HPCI Pue? Discharge Flow Hioh

-To prevent damage by overheating at reduced HFCI system pump flow, a pump discharge minimum flow bypass'is provided. The bypass is controlled by an automatic. DC motor-operated valve. A high flow signal from a flowmeter downstream of the pump on the main HPCI line will cause the 4 bypass valve to close. Two signals are required to open the valve: A HPCI pump discharge pressure transmitter high dif ferential pressure signal-must be received to act as a permissive to open the bypass valve in the presence of a low flow signal f rom the dif f erential pressure transmitter.

NOTE:-

'Because the_ steam supply line to the HPCI turbine is part of the nuclear system process barrier, the following con-

-ditions (8-13) automatically isolate this line, causing shutdown of the HPCI system turbine, 8, Condensate Storaae Tank Level low l.

The condensate storage tank is the preferred source of suction for HPCI.

in order to provide an adequate water supply, an indication of low level in the condensate storage tank automatically switches the suction to the suppression chamber ' A trip setting of 0 inches corresponds to 10,000 =

gallons of water remaining in the tank.

9. ' Suppression Chamber Water level Hich A high water level in the suppression chamber automatically switches HPCI

- suction to the suppression chamber f rom the condensate storage tank. ,

10. HPCI Loaic Power Failure Monitor The HPCI Logic Power Failure Monitor monitors the availability of power to the-~ logic system. In the event of loss of availability of- power to Ethe logic system, an alarm is annunciated in the control room.

C. , instrumentation Which initiates or Controls RCIC (Table 3.2-31

-1. Reactor Vessel Water level Low Low-(Level 2)

The reactor vessel water level instrumentation setpoint which initiates RCIC is ,t -47 inches. This level is approximately-9_f eet above the- top--of the active fuel and-is referred to as -Level 2. This setpoint ensures ._

that RCIC is started in time to preclude conditions which lead totinade- 4 quate core cooling. '

2. RCIC Turbine Overspeed )

The RCIC turbine is automatically shutdown by tripping-the RCIC-turbine stop valve closed when the 125% speed at-rated' flow setpoint on the mech-anical governor is reached. Turbine overspeed is indicative of a condi-tion which threatens the physical integrity of the system. An electrical tachometer trip setpoint of 110% also will trip the RCIC turbine stop valve I closed. I HATCH - UNIT 1 3.2-56 Proposed TS/0444q/029-121 l

._ . _ . . _ - __ . _ - _ _ , . _ . - - . _ . _ _ ~ . _ _ . _ . _ .- - - _ _ .

BASLS FOR limit!NG CONDITIONS FOR OPLRAll0N i

3.2.C.3; RCIC' Turbine r xhaust Pressure Hiah When RCIC turbine exhaust pressure reaches the setpoint ($ 45 psig), the RCIC turbine-is automatically shut down by tripping the RCIC turbine stop valve-closed. RClf, turbine exhaust high pressure is indicative of a con-dition which threatens the physical integrity of the exhaust line.

4. RC10 Pump Suction Pressure low One differential pressure-transmitter is used to detect low RCIC system pump-suction pressure and-is set to trip the RCIC turbine at 5 12.6. inches of mer-cury vacuum.
5. Reactor Vessel Water level Hioh (Level 8)

A high reactor water level trip is indicative that the RCIC system has-performed satisf actorily in providing makeup water to the reactor vessel.

The reactor vessel high water level setting which trips the RCIC turbine is near the ~ top of the steam separators and suf ficiently low to prevent gross moisture carryover to the RCIC turbine. Two differential pressure trans-mitters' trip to-initiate a RCIC turbine shutdown. Once tripped, the system.

-is capable of automatic reset af ter the water ~ level drops below Level 8. -  !

This automatic reset eliminates the need for manual reset of the system before the operator can take manual control to avoid fluctuating water levels.

6. RCIC Pumo Discharoe Flow To prevent damage by overheating at reduced RCIC system pump flow, a pump discharge minimum flow bypass is provided. The bypass is controlled by' an automatic, DC motor-operated valve. A high flow signal from a flow-meter downstream of the pump on the main RCIC line will-cause the bypass valve _to close. Two signals are required to open the valve:. A RCIC pump discharge pressure transmitter high differential-pressure signal must be received to act as a permissive to open the bypass valve in the presence of a low flow signal from the differential pressure transmitter, iNote:

"Because the steam supply line to the RCIC-turbine is part of the nuclear' system process barrier, the following conditions (T -~ 13) automatically isolate this line, causing shutdown of the RCIC system-_ turbine.

7. RCIC Loaic Power Failure Menitor Ti.c RCIC Logic Power Failure Monitor monitors the availability of power to:

the logic system. In the event of loss of availability of power to the logic system,:an alarm is annunciated in the control room.

j 8, Condensate Storace Tank level low j

The low condensate storage tank level signal transfers RCIC suction f rom the condensate storage tank to the suppression pool. The setpoint.was chosen to ensure an uninterrupted supply of water during suction' transfer.

HATCH - UHli 1 3.2-57 Proposed TS/0444q/029-121 i

.- - . .- , - - . .- - = --

BASES FOR LIMlilNG CONDITIONS FOR OPERATION 9, luppression u Pool Water level High A high water level in the suppression chamber automatically switches RCIC suction from the condensate storate tank to the suppression pool.

d 4

HATCH - UNIT 1 3.2-57a Proposed TS/0444q/029-0

(This page intentionally left blank.)

i l

l l

l HATCH - UNIT 1 3.2-57b Proposed TS/04444/029-0

BASES FOR LIMlilNG CONDITIONS FOR ODERATION 3.2.E.2. Orwell Pressure High Primary containment high pressure could indicate a break in the nuclear system process barrier inside the drywell. The high drywell pressure setpoint is selected to be high enough to avoid spurious starts but low enough to allow timely system initiation.

3. Reactor Vessei Steam Dome Pressure low I

With an analytical limit of > 300 psig and a nominal trip setpoint of 370 psig, the recirculation discharge valve will close successfully during a LOCA condition.

Once the LPCI system is initiated, a reactor low pressure setpoint of 460 psig produces a signal which is used as a permissive to open the LPCI in-jection valves. The valves do not open, however, until reactor pressure falls below the discharge head of LPCI.

HATCH - UNIT 1 3.2-60 Proposed TS/0444a/029-121 l

BASES FOR LIMITING CON 0lT10NS FOR OPERA 110N 4.2 PROTECTIVE INSTRUMENTATION The instrumentation listed in Tables 4.2-1 through 4.2-13 will be f unctionally tested and calibrated at regularly scheduled intervals. The minimum functional test f requencies and allowable outage times for selected instrumentation related to isolation actuation, ECCS and RCIC actuation, and control rod block have been revised.

The NRC-approved reliability-based methodology in Ref erences 1 through 4 provides a basis f or these changes and is consistent with similar changes to RPS instru-mentation. Functional test frequencies or selected instrumentation that initiates ATWS recirculation pump trip or an LLS logic have also been revised based on similar reliability analyses. The f requency of f unctional testing and calibration f or other instrumentation is based on historical methodology (Reference 5).

A. References

1. NE00-30951P-A, "0WR Owners' Group Technical Specification 'mprovement Analysis for BWR Reactor Protection System," March 1988.
2. HE00-31677P-A, ' Technical Specification improvement Analysis for BWR isolation Actuation Instrumentation," July 1990,
3. NE00-30.936P-A, "BWR Owners' Group Technical Specification Improvement Methodology (with Demonstration for BWR ECCS Actuation Instrumentation)

Part 2,' June 1987.

4. NEDC-30851P-A, Supplement 1, " Technical Specification Improvement Analysis for BWR Control Rod Block Instrumentation," October 1988.
5. UCRL-50451," Improving Availability and Readiness of Field Equipment Through Periodic inspection,' Benjamin Epstein, Albert Shiff, July 16,1968. page 10 Equation (24), Law <ance Radiation Laboratory.

HATCH - UNIT I 3.2-69 Procosed TS/0444q/029-103

Figure 4.2-1 Deleted HATCH - UNIT 1 3.2-70 Proposed TS/04444/029-0

. . - -, n . .m. ~ . . . . . . . + - ~ . ~ . . . _ . . - . . . . . . . - ~ . - . . . . _ . - - - - . - . . -_. _.

l

~

(IMITING CON 01110NS FOR OPf kA110N' SVRVfittANCt REQUIREMENis

~

.3.5 H. Maintenance of Filled Discharct. 4,$.H. Maintenance of Filled Discheroe:

Pjpegm PiDes Whenever the CS system, LPCI, The following surveillance re-. i HPCI, or RCIC are required quirements shall be performed to be operable, the -ditcharge - to assure that the discharge piping f rom the. pump discharge . piping of the C$ system, LPCI,'

of these systems to the-last. HPCl, and RCIC are block valve shall be filled. filled when required:

The su' :1on of the HPCI pumps.

shall be aligned to the conden- -1. Every month, the discharge sete storage tank.- piping of the LPCI and -

CS systems shall be vented from the high point and water flow observed.

2. Following any period where

- the LPCI or C$ systems

'have not been required to be operable, or have been inoperable, the discharge piping -of the system or sys-tems being returned to ser-vice shall be vented from the high point prior to re-turn of the~ system to Service.-

3. Whenever the HPCI or RCIC :

system.is-lined-up to take suction from the condensate-storage tank, the discharge =-

piping of the HPCl=and RCIC' shall be vented from the high point of the system and water flow observed.on-a monthly basis.

4. The level switches whic'h monitor the discharge lines shal1 be calibrated every l 3 months.
1. Minimum River Level-

-1. Minimum River level :

.The water level as, measured 1 .~ =lf the water level, as- in the pump well, and the-measured in the pump well, level =in the river

  • shall is less than-61.2 ft MSL, be verified,with the follow-the discharge.from each plant- ing frequencies!;

. service. water-(PSW)_. pump will be throttled such that each pump Qvel fMSL)1 Freauency-does not~ exceed 7000 gom.

1. > 61.7 ft . Biweekly.. -
2. If'the water' level, as measured in the pump well, decreases to- 2. -5,61.7.ft Every 12 hrs. ~

_less than-60.1 ft HSL. or if

-the level in the-river

  • drops.

td a level equivalent to less

  • 0nly pump well monitoring is required if a temporary weir is not-in place.

HATCH - UNIT 1 3.5-11 Proposed TS/04370/029-170

- . m .._ _ l . . - , ,. _ , _ - . , . - _ .. ___....._ __ _ _ ___ -._ _ ___

. . ~- ~ . -_ ____ - - . . . -. .-

LIMITING CONDITIONS FOR OPERAil0N $URVElLLANCE R[OUIR[M[NI$

3.6 H.I. Pelief/ Safety Valves 4.6.H.l. Pelief /$af ety Valvt,1

6. When one or more relief / safety a. End of Doeratino Cycle valve (s)-is known to be f ailed *" an orderly shutdown shall be initiated Approximately one-half of all and the reactor depressurized to relief / safety valves shall be less than 113 psig within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. benchchecked or replaced with Prior to reactor startup f rom a a benchchecked valve each re-cold condition all relief / safety fueling outage. All 11 valves valves shall be operable." will have been checked or re-placed upon the completion of every second operating cycle.
b. With one or more relief / safety b. fach Operatina Cvele valve (s) stuck open, place the reactor mode switch in the shutdown position. Once during each operating cycle, at a reactor pressure

> 100 psig each relief valve shall be manually opened until thermocouples downstream of the valve indicate steam is flow-ing from the valve, c.' With one or more safety / relief valve c. Intearity of Relief Valve tailpipe pressure switches of a Bellows

  • safety / relief valve declared inoperable and the associated The integrity of the relief valve safety / relief valve (s) otherwise bellows shall-be continuously indicated to be open, place the monitored and the pressure reactor mode switch in the Shut- switch calibrated once per down position.- operating cycle and the accu-mulators and air piping shall be inspected for leakage once per operating cycle,
d. With one safety / relief valve tailpipe d. Relief Valve Maintenance pressure switch of a safety / relief valve declared inoperable and the asso- At least one relief valve shall

-ciated safety / relief valve (s) otherwise be disassembled and inspected indicated to be closed, plant operation each operating cycle, may continue. Remove the function of

=that pressure switch from the low low- e. Operability of Tailoioe set logic circuitry until the next COLD Pressure Switches SHUTDOWN. Upon COLD SHUTDOWN, restore the pressure switch (es) to OPERABLE The tailpipe pressure switch status before STARTUP. of each relief / safety valve shall be demonstrated OPERABLE ****

e. With both safety / relief valve tailpipe by performance of a:

pressure switches of a safety / relief valve declared inoparable and the asso- 1. Functional Test:

ciated safety / relief valve (s) otherwise indicated to be closed, restore at least a. At least once per one inoperable switch to OPERABLE status -31 days, except that all within 14 days or be in at least HOT portions of instrumen-SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> tation inside the pri-and in COLD SHUTDOWN within the mary containment may be following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, excluded from the functional test, and

    • The Reflief/ Safety valves are not required to be operable for performance of inservice hydrostatic or pressure testing With reactor pressure greater than 113 psig and all control rods inserted. Overpressure protection will be provided as required by ASME Code.
      • The' failure or malfunction of any safety / relief valve shall be reported by telephone l within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />; confirmed by telegraph, mailgram, or f acsimile transmission to the Director of the Regional Of fice or his designee no later than the first working day  ;

following the event; and a written followup report within 30 days. The written  !

followup report should be completed in accordance with 10 CFR 50.73 or other  !

applicable requirements.

        • A channel may be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing and not be considered inoperable, provided suf ficient channels are available to ensure the Trip Function.

' HATCH - UNIT 1 3.6-9 Proposed TS/0438q/029-149

.. - . . _ - _ . _._. .. . ....m .. _ . _ _ _ _ _ . _ _ . . _ . . . . _ . _ -

. ~ . _ . _ . _ _ . -

LIM 111NG CONDITIONS FOR OPERA 110N SURy[lLLANCE R[0UIR[M(NTS

~

4 4.6.H.l. ' Relief /Sofety Valves (Continued)

e. Operebility of Tail Pipt Erg 11 pre 5 witches
1. Functional Test:
b. At each scheduled outage greater than

'72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />.during which entry is made into the primary contain-ment,' if not per-formed within the previous 31 days.

2. Calibration and verifying the setpoint to be B5,

+15. -5 psig at least once per 18 months.

3.6,H.2.- Relief / Safety Va?ves low Low 4.6.H.2. Relief / Safety Valves low Low

, -iSet Function het function-

'Ouring power operation startup, The' low low set relief valve func-and hot standby, tne relief tion and the low low set function valve function and the low low pressure actuation instrumenta-set function of the follcaing tion shall be demonstrated reactor coolant system safety / OPERABLC*** by performance of a: l reltaf valves shall be OPlRABLE with:the following low low set a. CHANNEL FUNCTIONAL = TEST,_

function lift settings: including calibration of the trip init and the dedicated Low Low Set. Allowable Value (psig)* high steam dome pressure Valve Function Qgia: [1g11 channels **, at least once per guarter.

' Low _ s 1005- 's 857 Medium 5 1020  :$ 872' b .1 CHANNEL Call 8 RATION,: Logic"

' Medium High' 1 1035 1,887 System Function Teste and

High
$ 1045 5 897 simulated automatic operation of=the entire system at least
a. With the relief valve function:and/or once per 18 months.

the low low-set function of one of Lthe above required reactor coolant system safety / relief valves inoper-able, restore the relief valve func-tion and the/ low Inw set function-to -

OPERABLE status within 14' days or-be

-in at least HOT SHUTOOWN within the

-next.12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and COLD SHUTDOWN within the.following 24-hours.

  • The lif t setting pressure shall correspond to-ambient: conditions of the valves
at ' nominal operating. temperatures and pressures.
    • The setpoint for dedicated high steam dome pressure channels is 11054 psig.
      • A channel may-be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required

_ surveillance testing and not be considered inoperable, provided sufficient '

channels are available to ensure the Trip Function.

HATCH - UNIT 1 3.6-9a Proposed TS/0438q/029-103

,_ , . . _ _ - _ . . . _ _ ,. . . ~ . . -_ . , - _ - - _ - - _ . . _ - _

LIMlilNG COND1110NS FOR OPERA 110N $URVilttANCE RE0VIREM[Nis 4.7,0,1. Surveillance of Operable Va lvti (Continued)

b. At least once per operating cycle the reactor coolant system instrument line ektess flow check valves shall be tested for proper operation.' l
c. At least once per quarter, all norrelly open power-operated isolation valves (except for the main steam line power-operated isolation valves) shall be fully closed and reopened,
d. The isolation time of each main steam line isolation valve shall be determined to be within its limit when tested, pursuant to Specification 4.6,K.
e. At least once per week the main steam line power-oper-ated isolation valves shall be exercised one at a time by partial closure and sub-sequent reopening.
2. Surveillance of lines with an 3,7.0.2. Operation with inoperable valves Inoperable Valve Whenever an isolation valve in the event any isolation valve listed in Table 3.7-1 is specified in Table 3.7-1 becomes inoperable the position of at inoperable, reactor power operation least one other isolation valve may continue provided at least one in each line having an inoperable isolation valve in each line having isolation valve shall be verified an inoperable valve is in the mode to be in its isolated position corresponding to the isolated con- daily, dition.
3. Shugown Reouirements if Specif ication 3.7.0,1. anet 3.7.0.2.

cannot be met, an orderly shutdown shall be-initiated and the reactor shall be placed in the Cold shut.

down Condition within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

  • A channel may be removed from service for up to 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> for required surveillance testing and not be considered inoperable, provided sufficient channels are available to ensure the Trip Function.

HATCH - UNIT 1 3.7-14 Proposed TS/0445a/029-153

t lMillNG CONDQJONS FOR OPtR A110N SURyljg AN;f. klqulRlMEh?5 4.9.A,6. (matte,_nn ?$0 Y2 1 t.00 tg 600 Volt AC inverters (Continued)

b. Once every scheduled refueling outage, the emergency ?$0 volt DC/600 voit AC inverters shall br subjectra to a load test to demonntate operational readiness 3.g.A.7. Lg,Qic Systems a.g.A,7. Logic Systrn lhe following logic systems shall The Ingic systems $ ball be tested in be operable: the mar..er and f requency as f ollows:
a. The comon accident signal a. (ach division of the common logic system is operable. accident signal logic system shall be tested every scheduled ref ueling outage to cemonstrate that it will function on actua-tion of the core spray system to provide en automatic start signal to all 3 diesel generators,
b. The undervoltage relays and supporting system are operable, b.1. Once every scheduled refueling outage, the conditions under which the undervoltage logic system is required shall be simulated with an undervoltage on eath $ tart but to demon-strate that the diesel generators will start. The testing of the undervoltage logic shall demonstrate the operability of the 4160 volt load shedding and auto bus transf er circuits. The simulations shall test both the degraded voltage and the loss of off-site power relays.
2. Deleted l
c. The coninon accident signal logic c.l. Once per operating cycle each system, and undervoltage relays diesel generator shall be and supporting system are operable, demonstrated operable by simulating both a loss of of f-site power and a degraded voltage condition in conjunc-tion with an accident test signal and verifying:

F' HATCH - UNIT 1 3.9-4 Proposed 15/04400/029-88

INSTRUMENTATION RADICACTIVE LIQUID EFFLUENT INSTRUMENTATION LIMITING CONDITION FOR OPERATION ,

3.14.1 The radioactive liquid effluent monitoring instrumentation channels shown in table 3.14.1-1 shall be OPERABLE with their-alarm / trip setpoints set to ensure that the limits of Specification 3.15.1 are not exceeded. The alarm / trip setpoints of these channels shall be determined in accordance with the OffSITE DOSE CALCULATION MANUAL (00CM).

APPLICABILITY As shown in table 3.14.1-1, ACTION

a. With a radioactive liquid effluent monitoring instrumentation channel alarm / trip setpoint less conservative than required by the above specification, without delay-suspend the release of radioactive liquid effluents monitored by the affected channel,-declare the channel inoperable, or change to a conservative value.
b. With the number of channels OPERABLE
  • less than the minimum channels required by table 3.14.1-1, take the ACTION shown in table 3.14,1-1,
c. The provisions of Specification 6.9.1.13(b) are not applicable.
d. Hhen_the ACTION statement or other requirements of this LCO cannot be met, steps need not be taken to change the Operational Mode of the Unit. Entry into an Operational Mode or other specified condition may be made if, as a minimum, the requirements of the ACTION statement are satisfied.

SURVEILLANCE REQUIREMENTS 4.-14.1 Each radioactive liquid effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK. SOURCE CHECK, CHANNEL CALIBRATION, and CHANNEL FUNCTIONAL TEST operations at the

-frequencies shown in table 4.14.1-1.

  • A channel may be removed from service for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for required surveillance testing and not be considered inoperable.

HATCH-UNIT 1 3.14-1 Propoieo IS/C4410/029-Il0

' TABLE 3.14.2-1 (SHEET 1 0F 4)

RADIDACT1yf GASEOUS EfflufNT MONITGdING INSTRi>HENTAYION Minimum j Cnannels ..

.P g Im,trumeul 011EABLE ecolicabi1it', _d rm elff A,111DN x

l. Main Condenser Ofigas Treatment c,~ System Explosive Gas Monitoring C System

--4 liydrogen Monitor .(I)(b)

7. Hydrogen 106

~

2. Reactt,r Building Vent Stack Monitoring System
a. Noble Gas Activity Monitor (1)(b)
  • Radioactivity Rate 105 Measurement +
b. Iodine Sampler Cartridge (t)(a)
  • Verify Presence of 107 Cartridge F c. Particulate Sampler filter (1)(a) -

Verify Presence of 107

"" Filter 4

b d. Effluent System flowrate Measurement Device (1)(a) -

System Flowrate 104 Measurement

e. Sampler Flowrate Measurement Device (1)(a) -

Sampler Flo. rat = 104 Measurement 1

3. i Recombiner Building Ventilat on Monitoring System ,
a. noble Gas Activity Monitor (1)(b)
  • R&dioac*.ivity Rate 105 .;

Measurement +

b. lodine Sampler Cartridge (1)(a)
  • Verify Presence of 107 Cartridge
c. Particulste Sampler Filter. (1)(a) "

Verify Presence of 107 Filter

  • 104
d. Sampler flowrate Measurement (I)(a) Sampler flowrate l Device Measurceent [

[

i i

' Proposed TS/0442q/029-110

' TABLE 3.14.2-1 (SHEET 2 Of 4)

RAD 10ACilVE GASEOUS EfftUENT. MONITORING INSTRUMENIAIION1 Minimum' y ' Channels. _

applicability " Parameter ACT ICfi 1 -4 .Indtrument Qt[EnSLE n

r

4. Main Stack Monitoring System c '

I 3 a. Noble Gas Activity Monitor (!)(b)' '* Radioactivity Rate IGS '

--4 Measurement.+

b. Iodine Sampler Cartridge (t)(a)

Verify Presence of 101 (

Cartridge t

c. Particulate Sampler filter (t)(a)

Verif y Presence of 107 i filter

d. Ettluent System flowrate Measuring Devices (1)(a) "

System flowrate 104 Measurement

e. Sampler flowrate Measuring (1)(a)
  • Sampler flo-rate 104 I Device Measurement  ;

% 5. Condenser Offgas Pretreatment Monitor c3

      • 108 Noble Gas Attivity Monitor $(1)(b) Radioactivity Rate ,

Measurement t

i 1

Proposed TS/0442q/029-310 s-3 .. n. ._ _ _ _ _ _ . _ . _ _ _ . _ _

TABLE 3.14.2-1 (SHEET 4 0F 4)

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION Table Notations (Continued)

If the number of channels OPERABLE remains less than required by the Minimum Channels OPERABLE requirement for over 30 days, an explanation of the circumstances shall be included in the next semi-annual effluent release report.

ACTION 107 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE tequirement, effluent releases via this pathway may continue, provided samples are continuously collected with auxiliary sampling '

equipment for periods on the order of 7 days and analyzed within 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> after the end of the sampling period.

If-the number of channels OPERABLE remains less than l required by the Minimum Channels OPERABLE requirement for I over b0 days, an explanation of the circumstances shall be I included in the-next semi-annual effluent release report, j ACTION 108 - With the number of channels CPERABLE less than required by the Minimum Channels OPERABLE requirement, release to the environment may continue for up to 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />  ;

provided: 1

a. The offgas system is_not bypassed, and
b. The offgas post-treatment monitor (Dil-K615) or the main stack monitor (Dil-K600) is OPERABLE.

Otherwise, be in at least HOT STAN0BY within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

If the number of channels OPERABLE remains less than required by the Minimum Channels OPERABLE requirement-for over 30 days, an exp)anation of the circumstances shall be incsuded in the.next sed -annual effluent release report.

a. A channel may be removed fron service for up to 2 hor s for reautred surveillance testing ars not be considered inoperable,
b. A channel may be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> fer required surveillance testing and not be considered inoperable.

l l

HATCH-UNIT 1 3.14-10 Propwed T3/C441g/029-110 l

n

_ REACTIVITY CONTROL SYSTEMS CONTROL ROO SCRAM ACCUHULATORS LIMITING CONDITION FOR OPERATION 3.1.3.5 All control rod scram accumulators shall be OPERABLE.

APPLICABILITY: CONDITIONS 1, 2 and 5*.

ACTION:

a. In CONDITION 1 or 2 with one control rod scram accumulator inoperable, the provisions of Specification 3.0.4 are not applicable and operation may continue, provided that within 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />s:
1. The inoperable accumulator is restored to OPERABLE status, or
2. The cortrol rod associated with the inoperable accumulator is declared inoperable and the requirements of Specification 3.1.3.1 are satisf',id.

Otherwise, be in at least HOT SHUTOOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />,

b. In CONDITION 5' with a withdrawn control rod scram aCCuhiulator inoperable, fully insert the affected control rod and electrically disarm the directional control valves or close the withdraw isolation valve within one hour. The provisions of Specification 3.0.3 are not applicable.

SURVEILLANCE REQUIREMENTS 4.1.3.5 The control rod scram accumulators shall be determined OPERABLE:**

a. At least once per 7 days by verifying that P., pressure and leak detectors are not in the alarmed cond ition, and
b. At least once per 18 months by performance of a:
1. CHANNEL FUNCTIONAL TEST of the leak detectors, and
2. CHANNEL CALIBRATION of the pressure detectors to alarm at > 940 psig.

'At leas' the accumulator associated with each withdrawn control rod.

Not appl' cable to control rods removed per Specification 3.9.11.1 or 3.9.11.2.

    • A channel may be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing and not be considered inoperable, provided sufficient channels are available to ensure the Trip Function.

HATCH - UNIT .2 3/4 1-8 Proposed TS/0432q/030-55

x RE ACf1VITY CONTJOL SYSTEMS ROD _ BLOCK MONITOR (lMITING CONDITION FOR OPERAtlpN 3.1.4.3 Both Rod Block Monitor (RBM > + <nels shall be OPERABLE.

APPL,1CABiL] TY: CONLITION 1, when T4t- L POWER 's greater than or equal to 30f of RATED THERMAL P0HER anr when the MCPR 's less than the value provided in the CORE OPERATING LIMITS REPOR1.

ACTION:

a. With one RBK channel inoperable. POWER OPERA 110N may continue provided that the inoperable RBM channel is restored to OPERABLE status within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />; otherwise, trip at least one rod block monitor channel within the next hour.
b. With both RBM channels inoperable, trip at lea t one rod block

,aonitor channel within one hour.

SURVEILLANCE __ REQUIREMENTS a

4.1.4.3 a. With both RBM channels OPERABLE,' surveillance requirements are given in Specification 4.3.5. l

b. With one RBH channel INOPERABLE, the other channel shall be demonstrated OPERABLE by performance of a CHANNEL FUNCTIONAL TEST prior to withdrawal of control rods, rA channe! may be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required survelliance testing and not be considered inoperable, provided sufficient channels are available to ensure the Trip Function.

HATCH-UNIT 2 3/4 1-17 Proposed TS/0432q/030-106 4

}/4.3 INS _7RUMENTAT10N 3/4.3.1 REACTOR PROTECTION SYSTEM INJTRUMENTATIO!j LIMITING CONDITION FOR OPERATION. _

3.3.1 As a minimum, the reactor protection system instrumentation channels shown in Table 3.3.1-1 shall be OPERABLE with the REACTOR PROTECTION SYSTEM RESPONSE TlHE as shown in Table 3.3.1-2. Set points and interlocks are given in Table 2.2.1-1.

APPLICABILITY: As shown in Table 3.3.1-1.

ACTION:

a. With the requirements for the minimum number of OPERABLE channels not satisfied for one trip system, place at least one inoperable channel in the tripped condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />,
b. With the requirements for the minimum number of OPERABLE channels not satisfied for toth trip systems, place at least one Inoperable channet in at least one trip system
  • in the tripped condition within I hour and take the ACTION required by Table 3.3.1-1.
c. The provisions of Specification 3.0.3 are not applicable in OPERA-TIONAL CONDITION 5.

SURVE!LLANCE REQUIREMENTS 4.3.1.1 Each reactor protection system instrmnentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations during the OPERATIONAL l CONDITIONS and at the frequencies shown in Table 4.3.1-1.

4.3.1.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months and shall include calibration of time delay-relays and timers necessary for proper functioning of the trip system.

4.3.1.3 The REACTOR PROTECTION SYSTEM RESPONSE TIME of each reactor trip function of Table 3.3.1-2 shall be demonstrated to be within its limit at least once per 18 months. Each test shall include at least one logic train such that both logic trains are tested at least once per 36 months and one channel per function such that all channels are tested at least once every N times 18 months where N is the total number of redundant channels in a l specific reactor trip function.

'If both channelt are inoperable ** one trip system, select at least one inoperable channel in that trip system to place in the tripped condition, except when this could cause the Trip function to occur.

':,'CH - UNIT 2 3/4 3-1 Proposed TS/0421g/030-100

i 4 INSTRUMENTATION l 3_/ 4 . 3 . 2 ISOLATION _ACTUAT_IONINSTRUM!NT.ATJON 1

L1HITING CONDITION FOR OPERATION 3.3.2 The isolation actuation instrumentation channels shown in Table l 3.3.2-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.2-2 and with ISOLATION SYSTEM RESPONSE TIME as shown in Table 3.3.2-3.

APPLICABILITY: As shown in Table 3.3.2-1.

ACTION:

a. With an isolation actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Tabie 3.3.2-2, declare the channel inoperable and place the inoperable channel in the tripped condition
  • until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.

4

b. With the number of OPERABLE channels less than required by the minimum OPERABLE channels per trip system requirement for one trip system, either:
1. Place the inoperable channel (s) in the tripped condition
  • within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> OR
2. Take the ACTION required by Table 3.3.2-1.

The provisions of Specification 3.0.4 are not applicable,

c. With the requirements for the minimum number of OPERABLE channels not satisfied for both trip systems, place at least one inoper-able channel in at least one trip system ** in the tripped condition within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> and take the ACTION required oy Table 3.3.2-1.
d. The provisions of Specification 3.0.3 are not applicable in OPERATIONAL CONDITION 5.
  • WIth a design providing only one channel per trip system, an inoperable channel need not be placed in the tripped condition where this would cause the Trip function to occur. In these cases, the Inoperable l channel shall be restored to OPERABLE status within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> or the ACTION required by Table 3.3.2-1 for that Trip function shall be taken.
"If both channels are inoperable in one trip system, select at least one inoperable channel in that trip system to place in the tripped condition, except when that would cause the Trip function to occur.

HATCH - UNIT 2 3/4-3-9 Proposed TS/0421a/030-8

i i

l !NSTRUM(NTAT!@

l SURVEILLANCE __REQV!REMENTS j

] __ ,

i 1

4.3.2.1 Each isolftlon actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL

! FUNCTIONAL TEST AND CHANNEL CALIBRAi!ON operations during the OPERATIONAL CONDITIONS and at the frequencies shown in table 4.3.2-1 4.3.2.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated autom>'ic operation i of all channels shall be performed at least once per 18 months and shall

include calibration of time delay relays and timers necessary for proper functioning of the trip system.

. 4.3.2.3 The ISOLATION SYSTEt. nESPONSE TIME of each isolation function shown in Table 3.3.2 3 shall be demonstrated to be within its limit at least once per 18 months. Each test shall include at least one. logic train such that both logic trains are tested at least once per 36 months ar.J one channel per function such that all channels are tested at least once every N times 13 months, where N is the total number of redundant channels in a $per,1fic isolation funct',on.

1 l

1 i

1 HATCH - UNIT 2 3/4 3-10 Propsed TS/0421q/030-0 I

i __ .._ ._ . __. . _ _ . _ . _ _ _ - _ . - . _ . _ ._ . . _ . . . _ _ _ _ _ . _ _ _ _ _ _ _ _

3 1 1 1 I-1 3 2^11"$ 11 H&alla 8GatmJ2UWla'13 M112N ACt!ON ID - Be in at Itatt *0f THJtD0nN sithin 6 noort and in COLD SHutDOe4%

sithin tre eest 30 hoort.

aC1104 21 - Be in at least StaafuP eith the main steam line isolation valves cleted eithin 2 heurt or te in at least NOT SHufD0wh etthin 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in LOLD SHufDONN sithin the rigat 30 hourt.

ACIl0% 22 -

Be in at lealt $I4RidP eithin i hourt.

aCt!ON 23 - Be in at least St4RTUP with the Group 1 isolation valvet closed eithth 2 hourt or in at least M01 $NUIMN elthin 6 hourt.

ACTION 24 - tstabitin 5t00NMRf Cohtalkuthi !Nt[CRITY otth the Standby l gal treatment system operattng enthin one hour. '

aCilON 2$ . Isolate the reatter enter cleanup lytttm.

act!ON 26 - Cirse the effected system iselation valves and declare the ef fected tyttem tnoteraDie.

ACil0h 27 - Verify 90ser availability to the but at lealt once per 12 hourt or Clone the affetted taltem isolation valvet and declare the effetted lyttem inoperable.

ACT!ON 28 - Clone the shutdown Cooling tupply and reatter telle: held spray llolation valvel unlett featter steam dome prellure i 145 0119 ACTION 29 -

tither close the affected isolation valvet eithth 24 hourt or be lh HOT SHUIDONN within the eest 6 hourt and in COLD $HUIDOWN ulthin tot nest 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />, NQID Attuatel the Standby get treatment lyttem.

" nSen tendlleg trradiated fuel in the incondary contalement.

'" von performin0 tnservice hydrottette or lest testing alth the reactor coolant temperature above 212' F.

a. See 5pecification J.6.3, table ' a ' 1 for valves in each valve group,
b. A channel may be remed from service for up to 6 hourt for required surveillance testing and not te (onlldered inoperacle. provided sufflctent channels are available to ensure the frlp Fvartion.

C. With a dellgn providleg only one channel per trip lystem, an inoperable thantiel need not be plated in the tripped condition where thil would cause the Trip function to occur. In these cases, the inoDerable thennel thall be restored to OPERABLE ttatus etthin la hourt or the ACTION required by table 3,3.2.) for that Irip function shall te taken,

d. Trips the mechanical vacuum pumps.
e. a thannel it OPERABLE If 2 of a instruments in that channel are OP[e4BLt.
f. May te bypassed with all turbine stop valvet closed.
g. Closel only RWCU outlet Isolation valve 2G31 F00a.
h. Alarm only.

I, Adjustable up to 60 minutel.

j.  !$olatel Contelnment purge end vent valvel.
k. Within 24 hourt prior to the planned start of the hydrogen injection tett with the reatter power at greater than 201 rated power, the normal full-Dower radiation background level and allottated trip tetpoint5 may be thanged taled on a calculated value of the radiation level espected during the test. The tackground radiation level and allectated trip letpolett may be adjusted during the test taled on either calculations or measurements of actual rac14 tion levels resulting from hydrogen injection. The tackground radiation level shall be determined and attoctated trip setcointt Shall te set althin 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> of re-eStabillning normal redletion levelt after completion or hydrogen injection and prior to e5taDllthlhg react 0r power levels below 201 rateQ power.

HATCH - UNIT 2 3/4 3-15 Proposed IS/0421a/030-91

TABLE 4.3.2-1 ISOLATION ACTUATION INSTRUMENTATION SURVEILLANCE ELQQIREMENTS CHANNEt OPERATIONAL CHAN'4EL FUNCTIONAL CHANNEL CONDITIONS IN WHICH CMECK TEST CALIBRATION SURVEILLANCE REQUIRED TRIP FUNCTIOff 1

3 n

1. MitERLE0t!IAlt#1ENT ISOLMIDN
  • a. Reac*.or Vessel Water Level
  • 1. Low (Level 3) 5 Q R I 2. 3 c- 2. Low Low (Level 2) 5 0 R 1. 2. 3
3. Low tow tow (Level 1) 5 Q R I . 2. 3

-4 5 R I 2, 3 y b. Drywell Pressure - High Q

c. Nin Steam Line
1. Radiation - High 5 W'** R I. 2. 3
2. Pressure - Low N/A N/A Q 3 5 Q R I. 2. 3
3. Flo - High
d. Main Steam Line Tunnel R I. 2. 3 Temp /rature - High 5 Q l

" e. Co%$nser Va(uum - Low Pt. A N/A Q l. 2e 3e 4

a f Turbine Building Area Temp -- l. 2, 3 N/A Q R e High N

w

q. Drywell Radiation - High 5 Q R 1. 2. 3
2. SEC0!4DAftY C0!JTAINMENT ISOLATION
a. Reactor Building E=haust-Radiation - High 5 Q'** a i. 2. 3. 5 dad
  • 0 R I. 2. 3
b. Drywell Pressure - High 5
c. Reactor Vessel Water Level - R I. 2. 3 Low tow (Level 2) 5 0
d. Refueling floor tihaust N/A 0 f. 2. 3, 5 and
  • Radiation - High 5 "When handling irradiated fuel i n t he set oradar y (on t a irtsment .
  • May be bypassed ith all turbine stop valves (teted,
a. Instrument alignment using a stant!ard carrent source.

Proposed 15/0422q/030-78

q -

LABtE 4.3.2-1 iCoritinuedl ISOLATION ACTUATION INSTRUMENTATION SUR_YLILLANCE RE'JJIREMENTS CHANNEL OPE RAT IONAL CHAtaEL - FUNCTIONAL CHANNEL- CONDITIONS IN WHICH EMECK TEST EALIBRATION LURVEltLANCE REOUIRED z, TRIP f UrKI1Qt!

m 3. E[ ACTOR WAffR CLEANUP SYSTEM S 13DiallDN .

a. ~f Flow - High 'S Q R 1. 2. 3 C 1, 2. 3 Area Temperature - High 5 R

~4

' b. '

-Q

m. c. Area Ventilatien 3 Temperature - High. 5 Q R I. 2. 3 f
d. SLCS Initiation. N/A R N/A 1. 2. 3
e. Reactor Vessel Water tewel - 5 Q R I 2. 3 Low Lw (Level 2)
4. tt1Gttfg[5$!*B[ [QQLANT INltfl10t4 R SYSTEM 150t ?.?101

,4

a. HPCI Steam Line T!ow-High 5 0 R I 2. 3 g

, b. HPCI Steam Supply Pressure- I 2. 3 5' R y c.

Low HPCI Turbine Enhaust '5 Q

Q- E I. 2. 3 Diaphragie Pressure'- High

d. HPCI Pipe Penetration Room Temperature - High 5 Q R I 2. 3
e. Suppression Pool Area febient R I. 2. 3 Temp. - High 5 Q
f. Suppression Pool Area di - R 1. 2. 3 High . .

5 Q

g. -Seppression Pool Area Temp. R t. 2. 3 Timer Relays N/A SA
h. Emerganty Area Cooler Temp. - ,a 1. 2. 3 High '5 0 5 0 R 1. 2. 3
i. Dry-ell Pressure - High'
j. Logic Power M itor N/A R N/A 1. 2. 3 Preposed T5/0422q/030-39
  • L

f I"JtE 4.3.2-1 (Cetinuedl 150LAIID*LECIUAllQfLIN51EUMLt((AllQN_$UEyLlLLM!CLE(QUIElfG313 CHM #4E L OPERAiIONAL CHAT #4EL fuNCTIC+4AL CHuiMEt CONDITIONS Its wHICH LALIE.111DN $qTILLLLAfsCLELQU15[LD IRif_IUTELIDH _ft1LL. .__ TE3T.

_$ 5.

- EL6CIRR_CDEL1101&IIDS Q C00Lil!LSnILM ISDLallRN R 1, 2, 3 4 RCIC Steam tine Flow-H yh S Q R 1, 2, 3

' b. RCIC Steam Supply Pressure- $ Q c Lo.

RCIC Turbine E.houst S Q R 1. 2. 3

-4

(.

Diaphragm Fressure-High R I. 2. 3 y

d. Emergency Area Cooler 5 Q Teeperature - High I 2. 3 R
e. Suppression Pool Area S Q Avnbient Teeperature-H,oh I. 2, 3 R

l

f. Suppression Pool Area 21 - 5 Q High 9 Suppression Fool Area PS/A SA R I. 2. 1 leep. I smer Relays
b. Dry. ell fressure - High 5 Q E' I. 2. T l P4/A R t4/A I, 2. 3
i. Logic Pee r Menitcr w

w 6- SifuTDOW?LCL'QLII3G SY51L5_Jjdh Alls $

Y a. Reactor Vessel Water Level - 5 Q R 3. 4 5 l

[ to. ( t ewel 3 7 Q R I. 2. 3

b. Reactor Steam Dome Pressure - High S

l Proposed I$/0421g/010- N

INSTRUMENTATION 3!4.3.3 EMERGENCY CORE COOLING _ SYSTEM ACTUATION INSTRUMENTATION L_IMITING CONDITION FOR OPERATION 3.3.3 The emergency core cooling system (LCCS) actuation instrumentation shown in Table 3.3.3-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.3-2 and with EMERGENCY CORE COOLING SYSTEM RESPONSE TIME as shown in Table 3.3.3-3.

APPLICABILITY: As shown in Table 3.3.3-1.

ACTION:

a. With an ECCS actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.3-2, declare the channel inoperable and place the inoperable channel in the tripped condition until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the 1 rip Setpoint value,
b. With the requirements for the minimum number of OPERABLE channels not satisfied for one trip system, place the inoperable channel in the tripped condition or declare the associated ECCS inoperable within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.' l
c. With the requirements for the minimum number of OPERABLE channels not satisfied for both trip systems, declare the associated ECCS inoperable within I hour,
d. The provisions of Specification 3.0.3 are not applicable in OPERATIONAL CONDITION S.

SURVEILLANCE REQUIREMENTS t.3.3.1 Each ECCS actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST, and CHANNEL CALIBRATION operations during the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.3-1.

4.3.3.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channel? shall be performed at least once per 18 months and shall include calibration of time delay relays and timers necessary for proper functioning of the trip system.

  • Except for Low Low set S/RV System" instruments which are I hour.

HATCH - UNIT 2 3/4 3-24 Proposed TS/0421q/030-0

I ,

l  ! I l

5 5 5 55 5 5 55,

  • EALL L NN 4 44, 4

4 4 44 4 BOO 3 3 33, 33 3 3 33 3 AII CTT 2 2 22 22 2 2 22 2 IA1 LRQ 1 1 I l l l 1 I 1 1 I PEN PPQ AO 7

6 0

3 0

/

q 2

2 s 4 r 0 a /

s . ob 5 tM 3 f REE

d e

M J

MAY UHS s

p m

s 3

r n A NC * *

  • u ' ' * *
  • p u u n e p I P * *
  • b * ' *
  • 2 b o p o N MEI /

E M

ULR MBT

'2 '2 '21 '2 '2 'I '21 / /

I i

t a

e c

P r

t I A c n R lt RR i o T iEE f S MPP i t N O c s I e a p e

  • S l O

I r t T

A e

p a

1 U s

- T y E u 3 C L b A a e B 3 r v A e M l p ) l R h 3 E e S e a E t T v v V P E S i l i O o L Y s l s eg t J $, s e s e

) i ) w i r r y

] G N

I w 1 y r

m a a t t r h i 1 l e l D e c s l e P e P t

0 e

v M v

(

i s ') m e

i 0 n o

E e h g

n D F. t 'a C L ) T L c. s l

( S )( y E D.ti Y iH i

t c0 2

s i

a R w C. ce . S 0. w c r9 b v O o o - e i6 u a E t B. nj R C. L j tN s H ) n e- r Y

C o w AI

(

R B. w Ao 0 I

( R1 (2 . )) m e

ew N t 4 f 4t l 8 BA ) t o E 9w O 9 e w w 2 y5 5 6 s p G w 6o ). 6w v o o a22 2) y R o nt 8 E No e L - Ldl 1 1 I 8 s y E L - D - t L neKK K f M 1 - A O 1 () - - aR - A y i E - 1  ! M 1 - B l I a r .

Ee K E l e y11 l K r ee l

e 2r

( u

- N 2l e .r e r C. a E E E - p vl 1 O ( e vA e u8l22 2l s ,b v s 2 I v e5s s1 e a e hsge E T he t8s s4D . ,) .l E e er L 2 C gL e6 A38A2 r r)HP) i r (

J E d%e iHr) u P)P - m7777 r rNe0055( o c

l e b p ao te 0. - emCt 0o r N I

o1

- te D. r 2 e 0.e2T4KKK 1i

- - - o r

o rn ei p

Wa C. e o .i l l l l t w n

T N

ewa C.S 2 oh B m C. o 2m8l l l l i r

t om B. ur D B. o B. l (

D d. D ( t2222 EEEEn r. e l A ul o n it M

E eAsmAM t seAe) mAm) r((((M e s st sa0 0 ss1 sea 0aea h ny T s9ee9r 0 es9sve9evtABCDr w es S e6rt6e C re6eit6 tis e h Y

S VNPSN w

- - o E PvNVsSNSs

- s - sps amma o pppp -

l e we h r1l r1P R l r3 rir1 rimuuueP b ,t Y o2l o2 U l o2omo2omuPPPP a A tBetBc . S et8t rt8t rP ic c ye t

t R c2 wc2i . Sg c2 cec 2ce i l r 0 P a( ya( ya( aPa( aPR g na T

I S e R'

re' DR L oEPR re DR R e

R e

R e N)))) o R1234L l

p p

ol c

C J

t E

R W a me rd u . . , . O . . . a f G a bc d L ab c d e f

9 t

o l r M Ao P

I )

R I

  • a 1 2 (

g4Q ' 5c 4 -

y w) W N*

, ll tl! i!f!

i l

IABLE 3.3.3-1 (Continuedl EMLRGENCY CORE EDOLING SYSTEM ACTUATIOM INSTR'JMENTATION MINIMUM NUMBER APPLICABtE  ;

OPERABLE CHANNELS C"<ERATIONAL y-

-4 TRIP FUNCTION- .PER TRIP SYSTEM CE?Q11]QNi#

E} 3. HIGH PRESSURE COOLANT INJECTION SYSTEM g

4 *

a. Reactor Vessel Water tevel - tow tow (Level 2) 2'*' I. 2. 3 5 i c: (2B21-N692 A.B.C.D)  ;

f5 b. Drywell Pressure - High (2E11-N694 A.B.C.D) 2'** 1. 2. 3  !

, -4 c. Condecsate Storage Tank tevel-tow (2E41-N002. 2E41-N003) 2'*"** 12.3 ,

p, d. Suppression Chamber Water tevel-High (2E41-N6628.0) 2'*"*"** 1. 2. 3 ,

e. Logic Power Monitor (2E41-K1) 1**' f. 2. 3  !
f. Reactor vessel Water level-High (Level 8) (2821-M693 B.D) 2'** 1. 2. 3 l
4. AU10MA.IIL2LML11U_R1ZA110N SYSTLU i
a. Drywell Pressure - High (Permissive) (2 Ell-N694A.B.C.DI 2'** 1. 2, 3  ;
b. Reactor Vessel Water Level - tow Low Low (Level 1)

} (2821-N691 A.B.C.D) 2'** 1. 2. 3  :

c. ADS Timer (2B21-4752 A. B) 3 1. 2. 3 r
d. ADS tow Water level Actuation Timer (2821-K754A,8; 2B21-A756A.B) 2 1. 2. 3
e. Reactor Vessel Water level-tow (Level 3) (Permissive) I 1, 2. 3 [

([ f. Core Spray Pump Discharge Pressure - High (Permissive) >

(2E21-h655A.B; 2E21-N652A.8) 1, 2. 3

  • as 2'**

g, g. RHR (LPCI NODE) Pump Discharge Pressure - High (Permissive) a (2 Ell-N655A.B.C.D; 2E11-N656A.B.C.D) 2/ loop'** 1. 2. 3 r

[] h. Eontrol Power Monitor (2B21-KI A.8) 1/ bus ' *

  • 1, 2. 3 I 5. LQu_.LDM_SLT S/RV SYSTEM ,

, l 1 a. Reactor Steam Dome Pressure - High (Permissive) i j (2B21-N620A.B.C.D) 2'** 1, 2. 3 [

i  :

1 I

] a. Alarm only. When inoperable, verif y power availability to the bus at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> or  !

4- declare the system inoperable.  !

b. Provides signal to HPCI pump suction valves only. I
c. When either (hannel of the automatic transfer logic is inoperable, align HPCI pump suction to i I

to the surpression pool.  ;

  1. HPCI and ADS are not reouired to be OPERABLE with reactor steam doce pressure i 150 psig.

[

] d. A channel may be removed f rom service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing [

and not be considered inoperable, provided suf ficient channels are available to ensure the l

', Trip Function.  !

i e. While perf orming surveillance during times when this equipment is required to be OPERABLE. i

! the action statement should be entered since suf ficient channels will not be available to ensure the required function.

i Proposed TS/0422q/010-55 ,

i

= + - - -. -m . __ _ _ _ . . . _ _ . _ _

TABLE 4.3._L1 Lf1ELENCY CORE C00 tit 3G SYSTEM ACTUATION It1STRtMENTATION SURVElttAtKE RE021REMENIS CHAmEt OPERATIONAL CHAT #4EL ' FtrtCTIONAL CHA mEL CONDITIONS IN W4ICH CHECK .. TEST CAEIBRATION $URVEILLA?KE REQUIRED IRIP TUNCTION r

b o

1- [Q8L_iGAL3Y11Lf1

a. Reactor. Vessel Water level - R 1.2.3.4.5

' tow tow tow (Level 1.4 5 Q R f, 2. 3 c- b. Drywell Pressure - High 5 0 g

$ c. Reactor Steae Dome R I 2.3.4.5

  • Pressure - tow 5 0

-a N/A R N/A 8, 2, 3. 4. 5

.g d. Logic Power Monitor

2. LOM. FELS $UR[ CDQLAtll_lfMLCljQt!

ti)DE OF RHR $Y111tf R l. 2, 3

a. Dry = ell Pressure - High 5 Q
b. Reactor Vessel Water te vel - R l. 2. 3. 4*. $*

Low Low t o- ( L evel 1) 5 Q g

c. Reacter Vessel' Shroud tewel R 1. 2. 3, 4*, 5*

s (Level 0) - High 5 Q

  • Rear. tor Steam Dome d.

5 Q R I. 2. 3. 4*, 5*

w Pressure - low R l. 2. 3, 4*, $*

  • Reattor Steam Dome Pressure - Low 5 Q e.

N/A R I. 2, 3. 4*. 5-

f. RHR Pump Start-Time Delay Relay N/A
1. 2, 3, 4*, $*

N/A 2 N/A

g. , Logic Power Monitor
  • Not applicable when two (ore spray subsystems are OPERABLE per Specification 3.5.3.1.

I l

Proposed 15/0422g/030-t#7

I MBLE 4.3.3-1 (Continuedl-

[t1GSMLCORE'C00 LING SYSTEM ACTUATION INSTRUMENTATION SURVEILLANE REOUIElli!115

} CHANNEL . .

OPERAiIONAL

! CHANNEL FUNCTIONAL CHANNEL CONDITIONS IN WHICH i .

IRIP FUNCIIDN CHECK TEST .CALIBRCIQM $UEyILLLANE lLQU1_ REQ * .

i x 3

c)

L 11191 PRESLUELEDQ1Ald_IIMEJ10'4 SYSILt!

  • a. Reaktor Vessel Watee' Level -

i '

Low Low (Level 2) ' 'S Q R I. 2. 3 l c- ~b. Drywell Pressure-nigh 5 0 R I. 2. 3 2- 2 c. Condensate Storage Tank tevel - )

Z Low . ..

Suppression Chaeteer Water N/A N/A Q' l. 2. 3 3

d. g level - High 5 Q R 1, 2. 3
e. togic Power Monitor . .

N/A .R- M/A I . 2. 3 g i- t. Reactor Vessel Water Level-41sgh 5 Q R I. 2. 3 (Level 8) 4 AJIDMIIC DEPEES$URIZATION SYSTEM

a. Drywell Pressure-High . 5 0 R 1. 2. 3

'M b. Reactor Vessel Water Level - 3 A Low Low Low (Level 1) 5 :Q R I. 2, 3 1 w c. ADS Timer N/A N/A R 1. 2. 3 1

  • - d. ADS Low Water level Attuation Timer N/A N/A R I. 2. 3

) e. Reactor Vissel Water Level - tow 5 0 R I. 2. 3 I (Level 3)

f. Core Spray Pump Discharge [

Pressure - High 5 Q R I. 2. 3 3

g. RHR (LPCI NODE) Pump Discharge I

Pressore - High 5 Q R I 2. 3 l

h. . Control Power Monitor- N/A R N/A h. 2. 3 j 5. LQw LOW SET S/RV SYSTEM j a. Reactor Steam Dese Pressure -

j High 5 M R 1. 2. 3 l i

  1. HPCI and ADS are not required to be OPERABLE with reacter steam dome pressere i 150 psig.

i lr i

Proposed TS/0422q/030-52

~

i. _ -.

INSTRUMENVAVION 3 /_4 . 3. 4 REACTOR CORE ISOLATION COOLING SYSTEM ACTUAil0N INSTRUMENTATION LlHITING CONDITION FOR OPERATION 3.3.4 The reactor core isolation cooling (RCIC) system actuation instru-mentation shown in Table 3.3.4-1 shall be OPERABLE with their trip set-points set consistent with the values shown in the Trip Setpoint column of Table 3.3.4-2.

APPLICABILITY: CONDITIONS 1, 2 and 3 with reactor steam dome pressure 1 150 psig.

ACil0N:

a. With a RCIC system actuation instrumentation channel trip set-point less conservative than the value shown in the Allowable Values column of Table 3.3.4-2, declare the channel inoperable and place the inoperable channel in the tripped condition until the channel is restored to OPERAEll status with its trip set-point adjusted consistent with the Trip Setpoint value,
b. With the requirements for the minimum number of OPERABLE channels not satisfied for one trip system, place the in-operable channel in the tripped condition or declare the RCIC system inoperable within 12 hcurs. l
c. With the requirements for the minimum number of OPERABLE channels not satisfied for both trip systems, declare the RCIC system inoperable within I hour.

SURVEILLANCE REQUIREMENTS 4.3.4.1 Each RCIC system actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBkATION at the frequencies shown in Table 4.3.4-1.

4.3.4.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulatea automatic operation of all channels shall be performed at least once per 18 months and shall include calibration of time delay relays and timers necessary for proper functioning of the trip system.

HATCH - UNIT 2 3/4 3-33 Proposed TS/0421q/030-0

i ' - l li' - ,; ,: .

l? iif!![Il: iiiilI! E' ;!b :i[k yfl[ :

[LLt  :  ;-Ii!t;f l t 9

3 g 0 3

n 0 i /

t e q sr 2 eu 2 t s 4 n 0 N

O ee /

c 5 I

T ne T at A l d T l e e N il s E *

  • eb o p

M U rS va rl o R O L 'M ei r T EE sa P S RNT v N ENS da I BAY e MHS re N UC ) ) i r D N P a a ua 1 .EI ( ( q 1 LR A BT 2 2 7 es r rl u MA e T TRR rn C

A NEE IPP on f a 1 MO h 4

- M E

sc r

T ut 3 S Y

on he 3 S i E G y 6ci L N l of B I ) n tf A L 2 o ps u

L Q G l s u C e e d v v re N e l od D L a fi I ( v v T

. A w n eo cr L o o i p O t i v S t r ,

I o

w (

w ee sl E t s b R

O - p ma or

.C m re l u f p R e p o O v d r.

I e k C ei C t) n ) r I v A D a 1 e C od E

R r

e.

T 6 0

t a

R me er tC a e gw-N W . o re.

t dn WB. a0I r1S l

o )

ei o bsi

-l l

e ,

o E o B a nt t 2 P n yoc S sA S , g acn T s l , n A i m u I e2 ee0 oh2 s eF N V9 t v6 i g6 lb U 6 ae0 si0 - s e p e

L A

rN o-t1 slN n

erI

- eN sH rl 1 i

d nti nor ant n (2 d eS pe5 v h 0 a8 ntE pvE o cde I e2 oaZ ue2 r nh I R( CW( Sl ( P Aat CJ r

U . . . . .

F a b c a b c$}

=2 {

  • c34

- n Js 0 au Ow# 0eLz 4 i:::' - t! 5 )~ .

h &L!I.t;f p{l, 5;If!lq;; l i. t f.f[, ) * >?I. Iih- : [I-:FkIt!iI: +) k :ii[t! :'

le f tl 9

3 0

3 S 0 T /

N 9 E

P 2

2 -

( 4

~ E 0 1 /

0 N 5 0 O T E LI E KT d

e E t A R R Q Q s C AB o N t I p A

L OLA e r

L C P I

E V

R U _

S _

N

_~ O I _

T L A LA T

N KN' S OT A

/

A

/

E P IS Q N M M AiE U HCT R CN T U 1 S .F

- N _

4 I 2 N O

4 I T

E A L U B T A C T A L EK M 4

  1. C A A E F E ~5' / /

T AH N N S t C

Y S

O G

n i

L O -

O l C e v

N e h O l - o r I a e T r T t A S e a L T . t e g W O I a) i t 4

W2 a l -

L r c l_ ll o o-t ee t P L_

R O. a t

.sv se S

ew ehg C Q et

- I V( t o ii R I aL sH O C J

rw oo s

n-s e-T r

C i tL el' rl A f c de pe E aw nv pv R eo oe ue Rt CL SL -

a b c

~

- rp4- Q ' cZ~w y mNA-aWO

- . ' '4 .;i i

}' j ;j4a jj 3j;.; j i 5i . ji; ?< 1

!;i if .{ :l .I o t .ftt llll ,

I. I!r 1 i!;> >!t 4! >fgI.

l l 5

L 5 E.

t ma A ltL ,

2 4

B0Q 2 5 * *

  • 555 1 AII * * * . -

CTT . . * * ... 1 0 .

IAI 1 1 1Z 1 'l 2525252e 2222 3 LRD 0 FEN /

q PPQ AOC 2 2

4 0

/

S T

d e

s 1 o p

Q I e T FsM r A OtO P T

dIT t

l E

M rec Ef BAN U MHU UCF R

T S

N EP

'4 '4 '4 '4 s 'l 'l

'3 '2 '3'2 '3 2'3 'z '6 '6 '6 '6 I

- N MLI I UBR 1 NAT -

- K IR 5 r NER

- 0 . IPE 3 L MOP B

3 L

E A )

L w D B A A R ) .

T O B C I .

T d .

I l n B W a a )

m . H )

D r A A E O ) e . 3 R ( h M 0 G 1 t B 0 0 L . R 6 ' . M O E d

  • T -

R e 1 5 4

  • l T . t 2 0 8
  • 5 i t D a 1 6 5
  • R E
  • C 0 l C
  • O
  • 2 C . u . 4 2 n T . n (

C m h 1 4 i ID i i g 5 M E

. S i C 5 t D . l M B e M C U dl

. ea c H- G t i

0 l

e ' E .

l f

u L O i hg A E '

6B V H ms x D Mf t ' 8 1 t * -

5 epe u ] e o e

  • A . o e* E l 0, rivt l i v n ' v EA n v* G e e i ef n i e 'e ie R v t

E f

e tlaan U H -eaa 6 e e tl L r " i t

a l

a L1 I0 roeaa tl A H L e

8 R rrt o t rc r t A6 tl r( C 0

tj - 5 C

eesr wwpnt K

C aes t pa

?

A E

nia e t ep s n lK Q-( aes ecpn I

r e

I  ? ooowu l P noe 0 - pno so- Lt e s

p c n

wo 13 tepno sow D t a

T ( t5

- CJ 11 f - I Df t 1

B - uID C R

D u I D EC DUID t f W A

u f

t E

f . . . .

D O .. .

u 0 . . . .

lR

[

n .. . .

R C .

P a a~ bcd P abc 5 a d c d I abcd S a I

R . . . . .

I 8 2 3 4 S

. I3c>*

  • cZ U wN* w[3m

,I

.i?? Iijiii!i '

.  ; ' } {!I 5

~ .-4jj.. ..iIiI  ! 'i  ! 1 i,I l ^

P 1

TABLE 3.3.5-1 (continued)

CONTROL ROD WITHDRAWAL BLOCK INSTRUMENTATION NOTE

4. When the limiting condition defined in section 3.1.4.3 exists,
b. This function is bypassed if detector is reading >100 cps or the IRM channels are on range 3 or higher,
c. This function is bypassed when the associated IRM channels are on range 8 or higher.
d. A total of six IRM instruments must be OPERABLE.
e. This function is bypassed when the IRM channels are on range 1.
f. With any control rod withdrawn. Not applicable to control rods removed per Specification 3.9.11.1 or.3.9.11.2.
g. A channel may be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing and not be considered inoperable, provided sufficient channels are available to ensure the Trip function.
h. The channel may be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing and not be considered inoperable. Withdrawal of control rods is not permitted during required surveillance testing, s

l HATCH - UNIT 2 3/4 3-39 Proposed TS/0421q/030-106

Lt*  ;>i{ !f[*I [rhEi (( i[( ,.  !{- f[t[> {f [t :l I>? ,!! Lb> L}f!,I i[!- ;t t i g _

D HE CR II "

HV LW0 A E 5 'S r

NNs .

OI 2 5 5555 5555 2 I E * ** _

TSC . . ' . . ., .... .

_ A*

  • N 1 1i2 l 'l 'l 2222 2222 I EOA tIL 4 PTL 0 OII 1 DE -

N/ 0 i O C1 T. 3 0

$ 1 /

i q .

_ N 2 E 2 M 4 E 0 R / -

I S U - 1 T O a E f d

- R N e 0 s E L1 A' A A A A A o C ET R/RR R/R /s/R t

/ R/R R p M

A NA NR N N N N N n o r

t AD P t HI I CL E A V C R

U S

  • t O

1 I ' *

5

- T A " "

_ 3 T

N LA EN L

QQQQ QOQ WwWW w "W w "w E NOT ..,.

4 M NIS ' ***

E L

U R

T ATE HCT CN U 'U 'U 'U U U 'U

  • U U"**

'U 'U

'U 'U 'U 'U

_. B S U //// /// //// / ///

A N F 5$$$ $5S 555$ 5555 Q T I K

C O

t S -

L t EK -

A NC AAAA AAA AAAA AAAA A W NE //// /// //// / /// /

A R

Af HO NNNN 3NN NhNN NNNN N 9 C t

T I

W -

D d 0 e  %

t e 2  :

JL al l a 1

r s

. O uc ,

n o n R

T ip ms' h g

i t i

i N SU i  : t n l e O - H s i o l m h C dr' r u M u u g ee - o t f l cw no

t e o iH eP e u o m r e' i n

t o e g

n t

o- e v l v o n . v eg ev r l t v a n v eli eF i ie M itl e R i e f atl n tl r ' r' tl r e.

Remaan o eaa ra eeaa e oeaa a L -

rrco M l rt tl r t t tl rt h  :

_ eesr aes t aes ecpn ia caes c r N

wh pnt oT owu k.t c p n.

so. K re t s r,. w d ecpn t sow i s

t e

O l noe o pno epno e epno D a I F IDN l UID e DUID m DUID W i  ;

B ( r m Cr M r e a P R d t r t P . . . . o . . . w . . .. nI . ... c .

F A 'a bcd R abc $ abcd ebcd S a P

I R . . . . .

_ J 1 2 3 4 5

=Mn

  • cZQ .o t) e3 .

,!;< j \ljj1 l1i l !iIj:j1 iiiIiis ;iI1:i;i ;4:

',[fIi{p,ij;i!tttLi! f :-Iii[  !'; h , rth :li . [;!.

! l jii!f li' # . li l

~

U D

l 0 3 Q

A 5 5 0

0 3

0 .

. /

r . q s

p h

q 2

(

/

r n . Ok e i .

N ' t /

E ~

0 s S M 0 0 e T -

TC E

E UA SR 1

t o

6 o

t t

e

(

. e d

s A -

n o N E' ' 1 e a p O M 0 h l o I 0' t l P

r

. T 1 0 i A n e i i w M r E d o M e s ,

U . t R P r a d 1

T S

IL RM h

/ i c e r .

3 N TI r d i

. I /O l m n u 6 MP a i q G RT { I e 3 N AE t r 3 AL $, ,

i m r

. E M

1 - '

5 i

.l f o

L 1 B N L' . e s A

T O

N EA'$

LNJ 4 s a' r u

BOD ,

e o N AI1 3 l h O. CT1 e

} I A1 . r 2 T

A LRQ PE 2 2 k o PP . , c t' J_

D.

A_

AO@ 1 1 t

a pe L. s' t~

e r

. h o t . f S'

E L .oosn ec f

s i i J

PE tt v - ,

At na ee ec r .

HJ CA - l i af sl b

R.

Mf UP 2 2 vi i c ma or ND I

ue qp re f p N eS o I dn M' el ei ha v tc od i me er dn eh re

)

sB

) ec ce ei d

8

. t' r =T bs n , o. e ye n

e A mtA l

. M m

5 oi o n *~ ,

oa at t'. t t. m Q a 1 Ro1 . e

} es6 M6 t e l b l srrK l R o n ;-

e A aT o- oe- nt l G tl rk 1 o no l

i L

- tii t snD t a4 nt2 er ui anh 1

L f t ooZ on1 l v (d

! OPM( CI( an n E VE Aa 1

?4 . . . .

I l 2 a b

[4Q - ' g t

- y 1%* weaa

(

4

.:iL 1{ln I ,t+ ,jiN!iIi:.!$;l. ..j

IRLLLM 2-1 5(ISMIC MONJTORIN_G INSTRUM[NTATION MIN! MUM MEASUREMENT INSTRUM[NTS

[NSTDUM[NTS aND__SINSOR LOCATIONS RANGE OPERABL L

1. Triasial Time-History Accelerographs
a. Olesel Generator Sutiding El 130'0" 0-0.5g l

(2L51-N021)

b. Reactor Building 87' Level on Orywell Pedestal (2L51-N020) 0-0.5g I
c. Drywell - Feedwater Inlet to RPV 0-0.5g l

(2L51-NOO4)

d. Switchyard (IL51-N005) 0-0.5g l
2. Triaxial Peak Recording Accelerometers
a. Olesel Generator Base Support 0-1.0g (IL51-N007)
b. Intake Structure II.51-N006) 0-1.0g
c. Control Building Main (,ontrol Room floor'*81L51-N008) 0-1.0g '-
d. Control Building Floor El 112' 0-1.0g e'*

(2LSI N028)

e. Reactor Bldg Refueling Floor 0-1.0g l'"

(2L51-N029)

f. Reactor Pedestal Inside Bio'ogical k Shield (2L51-NO35) 0-2.0g l'
g. Reactor Piping - Feedwater Inlet to RPV (2Lbl-NO34) 0-2.0g l
3. Triaxial Seismic Switches
a. Reactor Building 87' Level on Drywell Pedestal (2L51-N022) 0.025-0.259 l
b. Reactor Building 185' Level Out-side Biological Shield (2LSI-N024) 0.025-0.25g l
4. Triaxial Response Spectrum Recorder
a. hatch - Unit 1 Containment 2-26 Hz l

Founda t ion E l 87' ' (ll.51-N105) 0-0.5g

a. With main control room indication and annunciation.
b. Witn main control room annunciation.
c. Shared with Hatch - Unit 1.
d. A channel may be removed from service for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for required surveillance testing and not be considered inoperable,
e. A channel may be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing and not be considered inoperable.

HATCH - UNIT 2 3/4 3-48 Proposed TS/0421g/030-Il

f l 4

~~ -

o-a 3

SE o

t P LL f, 0EE f NA 2

2 i hR 4 MAE 1 1 1 1 1 I i i g o I HP n /

MCO i t

5 T

s _

e e t e ,

3 e

(

. n g a l r in l _

d i l e i v u r B u s

s r

D' o d I t e T ( r A a i T

t e uq f R E e M e r J h R' t r T

" o S n f N i 1 I T 'e l

s

- UQ

  • r 3 G OI .

0 u t DT P P P P P P P 8 3 o _

6 I AA D D D D D D D D 1 h R EC $ S S 5 S 5 S S 3 O RO R R R' R R R A R n 2 T L o 3 I i o N t t E O a L P v p B e u -

A N l T W O

e ro

.D t f

. T e a 0 e r d c 9 t o e i t v E a a. .

r .

T r ) c ee 0 .l e ,3 o sl 1

t e p 07 l o E

F

.e v e e )

70 GR )

ee er l

l' T 3 7

&- -7 P D

re f p e r r 0 74 5 o v e e R 4T R dn .

e e' t t - T2 ( ei r t ' a a 8 Z v u .W W 4 ( , ) l . od s r T 2 2 ) e me e

s r r' 2 e7 6 4 n er e e e a re r" r0 40 0 t (

a b b uR P d P' W' m a m e t - R ei a r a7 2 -

n. bs l l h h o. r4 8 2 w n' e e C C- s - T 0 8 o ye s s .

s 2 C d a(

. 1 q e6 s) s) e5

- o0n) n) o2 e

r m2 e .

4 2

(

t u

m e

e V0 V0 i7 i7 P T1 w h lb t 0 0 s0 s0 7 o w S e rR rR s# sR 1 l 0 l o nt L o- o- e- e- l l R e-f l e no u

A 1

+

t2 c8 t2 cB r3 p4 r8 p4 w w7 C F t o

an h

0 aC aC p1 p1 y y4 I R m cd 1 e2 e2 u2 u2 r rT C H e n T R( R( S( S( D D2 R R R Aa C

4 t

R1 .

2' 3

4 5 6 7

B a b j*C-c54 y u) w'm"

,lii:)! 4i!;e ' , j r ii! 4 ;ijii!i:4.j,!j i e ilk1 $I:1il5

, jE

,Il Ij j Il i' lll l'll]I llli)I i i!i !i.

7

=

Ij I5 2

. 6 w_

o-s t

e c 2

u 2 ,

n 4 -

m i

o i -

0 r

. 3

) )

SE

  • {

l c

)

(

r.

i h

n' w.

o MLL L EB ) )

)

b b

(

b

(

t i o p

_ NNA - a a ( w r I NR 2 2 2 2 2 2 2 Z 2 ( ( 2 2 1 I P

NAE y .

I HP t MCC i l

n e )

i b

N ) - 1 a O M- K 3 p I 6 a T K d s <

A n -

T d a 1 g N n 1 n E a H D i M - Z l U H A ( p R ) - ) m T 7 A 4 B r a 1 5 2 0 o s ,

- M 6  % 0: . t

- 4 I )

5 E

0 3

t A

1 i

n su _

6 G 1 7 N 3 0 o a N 6 4 - 2 6 M r 3 I R

R T

2 )

8 2 2 8 R

)

1 t i o _

3 O 1 9 8 ( 8 3 n t T 2 ,

4 2 t 5 e n o'

d E I B ) 6 t ) ( r T R c 4

2 B 2 D o 2 - i (

L B

A D

N . . R 6 J8 .

r o ac t

1 1

f f h _

T 0 A 7

- 4 C t ) B 0 E t T 1 I a i B ( i _

N 6 2 4 Z ) . d . t E a- 2 7 B ic n w

edn T . A r D

I

)

B 1 6

2 2

( 3

)

2 6 . )

d n

i A 3 t e E L

C 2 - 4 9 R A B I y 1 2 i i B _

C A

A

. B 8 2

( 1 4

e r

e t

S G

R o 7 4

2 2 A

. y r d R r

a 0

t' 6

- M o nA n A R'

E T 3 2 t 8 - T 6 a n - 1 - P

. S 2 l ( a 4 8 2 # 3 m o 8 1 t t O O 6 e r 1 7 - 0 i c 4 D n s P R v

e e l e p

2

(

1 2 6 i

. l 6 R P r eS T2 2

(

e u

oP e b .

1 L w m 2 D - ( l A

. 2 e' e e . 6 2 3 n n n f m l C B

2 r

e t

T. r e

G E ( 3 P

o o e o t e l O

o. - i i r i E n aL

( t r r t t 7 n 2 t t u t + h a et e s R 4 o ( i i s a t l sa e W t e - T i s s s i n P _

r a a r 8 2 t r o o e d e sg e W P 4 ( a e P P. r a d t r r.

s s

e rh e e e ww r r r 1

2

(

e r

i d

a l z

y e v

ev P

e g eg R i c

c Y ce ei zc yu r b'.b b u R a l l A l d P S m ,mama r a e t n a a a n - g a .

. l e

l h a

.h h u r r A f

V V bR a t s i o

n nn Ao s

e C s

C C s s

e p - O f

e e h f

h P d

l ,it s s n n n e m C - i i g g i 0a u

. e e a o o v v r e A

i l l i i k u i i i P T H e e H H c B ,t s s s C R R a Hc r r s s s l l O l / / l' l t r a o o e e er l e e l t l y y l l S o l t t r r - t t e e t lS 1 c a

c p p

p p

p p

w w t e.

e ef w w in c eC

! a y y s y f y y a wC 1 eR e R u e e r r o r a a r r a e y( .

S S S G D P D S S D D M R r _

M

! )

)

Dn a

. 1

. a. b e 58 . . . . . . . . . . . . hf.

. f 3 2 3 4 5 6 7 8 9 O I 2 3 4 T o I I I 1 1 1 "

jeQ ' c$4- y w} W

$i ;!1: ij 34i1 ) ;4 i 1f ii 1 (l3i44,i} {1i [  ! >

e

, . - . . -_ - ... . . - - . .- . .~ . . . - - -.. -. . ..~

-.y- . . ..- -.. - -. .

i-I j, TABLE 3.3.6.4-1 (Continued) l- FOST AECIpif1T t0MIIDRJ MG IMSTRUMENTATID4 l'

l'

) a. If either the primary or secondary indic.ation is . inoperable, the torus teoperatore will be monitored at least g once per shif t to observe any enemplained temperature increases which micht be indicative of an open 5/EV.

With both the primary and secondary monitoring channels of an 5/RV inoperable, either verify that the S/RY is

. .s

-Q closed through senitoring the bachup low low set logic position indicators (2821--M3C2 A-M and K-M) at least

once per shif t or restore suf ficient inoperable channels sodt that no more than one 5/RV has both primary and secondary channels inoperable within 7 days or be in at least HOT SHUTDOWN within the ne=t 32 boers.

c-I

$ b. With the number of OPERABLE channels less than required by the Minimum Channels OPEE28tE requirements.

I -4 initiate the pre-planned alternate method of monitoring the appropriate parameters within 72 heers aed:

N

1. either restore the inoperable thannetts) to OPERABLE status within 7 days of the e=ent. or i

j 2. prepare and si,beit a Special Report to IGC pursuant to Specification 6.9.2 within 14 days following

}, the event, outlining the action taken, the cause of t?e inoperability, ar.d the plans and sch* dele j for restoring the system to OPERABLE status.

} .: L A (hannel contains two cetectors one for mid-rang

  • neble gas and one f or high-rance noble gas. Both detectors mest be CPERABLE 'to consider the (W1 OPERABLE.

A char.nel may be remo aed f rom service for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> (escept ' for items 9,13 and 14 which ce 'oe

~

l d.

{4 w removed f rom service f ar trp to 6 t*ours) for required serweillance testing e A not be coesicered inoperaele.

4 *

! w

{ s

- <.n u

t l

i i

i I

i 1

1

{

i l

i i

i h

1 i

Proposed T5/0422q/030-45 4

9

+ , , s r w w.,,a w . - . ~ - - = . - .,.s . . ~ a u w - -=-.a --w,. , - , ., - -.s . - -g-+ + ., , - , .

_ _ _ _ _..- _ _ _ _ _ _ _ ___._. ~ _ _. _ __

.!NSTRUMENVAVION S_0URCE RANGE MONITORS LIMITING CONDITION FOR OPERATION _ ,

3.3.6.5 inree source range monitors shall be OPERABLE.

APPLICABILITY: CONDITIONS 2*, 3 and 4, ACTION:

a. In CONDITION 2* with one of the above required source range monitors inoperable, restore three source range monitors to OPERABLE status within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> or be in at least HOT SHUTDOHN within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.
b. In CONDITION 3 or 4, with two or more of the above required source range monitors inoperable, verify all control rods to be fully inserted in the core and lock the reactor mode switch in the Shutdown position within I hour.

SURVEILLANCE REQUIREMENTS __ __

4.3.6.5 Each of the above required source range monitors shall be demon-strated CPERABLE*** by:

a. Performance of a:
1. CHANNEL CHECK at least once per:

(a) 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> in CONDITION 2*, and (b) 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> in CONDITION 3 or 4.

2, CHANNEL CALIBRATION ** at least once per 18 months.

b. Performance of a CHANNEL FUNCTIONAL TEST:
1. Within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> prior to moving the reactor mode switch from the Shutdown Dosition if not performed within the previous 7 days, and
2. At least once per 31 days.
c. Verifying, prior to withdrawal of control rods, that the SRM count rate is at least 3 cps with the' de'ector fully inserted.

)

  • Hith'~TREs on range 2 or below, l
    • May exclude neutron detectors. '
      • A channel may be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required I surveillance testing and not be considered inoperable. provided sufficient channels are available to ensure the Trip function.

HATCH-UNIT 2 3/4 3-56 Proposed TS/0421q/030-0

TABLE 3.3.6.7-1 (SNEET 2 0F 2)

MCRECS ACTUATION INSTRUMENTATION ACTION ACTION 52 - Take the ACTION required by Specification 3.3.3.

ACTION 53 - Take the ACTION required by Specification 3.3.2.

ACTION 54 -

a. With one of the required radiation monitors inoperable, restore the monitor to OPERABLE statut within 7 days or, within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />, initiate and maintain operation of the MCRECS in the pressurization mode of operation,
b. With no radiation monitors OPERABLE, within I hour initiate and maintain operation of the MCREC$ in the pressurization mode of operation.
c. The provisions of Specification 3.0.4 are not applicable.

NOTES When handling irradiated fuel in secondary containment,

a. A channel may be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing and not be corsidered inoperable, provided sufficient channels are available to ensure the trip function.
b. With a design providing only one channel per trip system, an inoperable ,

channel need not be placed in the tripped condition where this would cause the Trip function to occur. In these cases, the inoperable channel shall be restored to OPERABLE status within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> or the ACTIONrequiredbyTable3.3.6.7-1forthatTripfunctionshallbetaken,l

c. Actuates the MCRECS in the control room pressurization mode,
d. (Deleted)
e. Within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> prior to the planned start of the hydrogen injection test with the reactor power at greater than 20-percent rated oower, the normel full-power radiation background level and associated trip setpoints may be changed based on a calculated value af the radiation level expected during the test. The background radiation level and associated trip setpoints may be adjusted during the test based on either calculations or measurements of actual radiation leveis resulting from hydrogen injection. The background radiation level shall be determined and associated trip setpoints shall be set within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> of re-establishing normal radiation level; after completion of hydrogen injection and prior to establishing reactor power levels below 20epercent rated power.

HATCH - UNIT 2 3/4 3-58b Proposed TS/0421q/030-96

.~ -

T ABLE 4.3.6.N1 1

!GC5 KI!JAl10tLIfGEi/iNTATIOf4 S$f((LLfs ((QUIE[fif(D CHANNE1 O? TEA!!ONAt C!iarcit FUNCTI0%L CHR.**5f ( CO?C7i105i5 IN Mi!CH CALIBRAT10?: TEV111LAPKE_RLej;jiggg

[R]P f L*rC712t4 _Qi[QL __ IESY

._r

> 0 a 1. 2. 3

-4 1. Reatter vessel water tevel - 5 Q tow s. 9w t o. ( t evel 1) l R f 2, 3

2. Drywell Pressure - High 5 Q 7

l c W'" 12 8. 2. 3 5

5-+

5 Main Steam tine Radiation - high R I . 2, 2

4. Main Steam Line Flow - High 5 Q m

M'** O 1. 2. 3, 5

  • l 5. Refueling Floor Are. Radiation - 5 H i gt.

N/A M'** R 1,2.3,5.*

(s . Cont rol Foom Air Inlet Radiation - Htgh w

N u

u

' l s

  • When nandling irradialed feel in the se(endary contairuneet.
a. Int
  • ranent alignet osmg a standard turreat source.

Preposed 15/04229/0 (G-%

TABLE 3.3.6.9-1 (SHEET 1 0F 2)

RA0!OACl!VE LIQUID EFFLUENT M0'!!]ORING INSTRUMENTATION i

Min 19ur Chtsnd5 Jn}trument OPERAJLi ' APPLICABILITY ACTION

1. Gross Radioactivity Monitors
i. Providing Automatic termina-tfei of Ielease

'i1al,l Radwaste Ef*N int Line 1 (a) 100

2. Gross iau'oactivity Monitors l not Provi.Ino Automatic Ter-mination o,' Release Servic" ater Sytten i fluent Line 1 (b, 101
3. Flowrate Heasurement Devices **

Liould Radwaste Effic/rt Line 1 (a) 102 Ot .ch trge <. mal 1 (a) (b) '. c 2

4. Service Water .yttem to Closed 1 At all tit.es 101 Cooling Water ' ystem Olfferen-tidl Prossure r*~P M 2 d1 may be utilized tc eFtimate flow; in such cases, ACTION s(c3 0erant 102 is not required.

(a) Whenever .hd radwbsf discharge valves are not locked closed.

(b) Whenever the ac>, :n water system pressure is below the closed cooling n=44* system pressure or AP indication is not available.

(c) A Channel may be remos3d from service for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for reautred surveills ce tetting and not be considered

inoperadle.

l HAN.d - UNIT 2 3/4 3-60b oroposed TS/0423q/030-48 l-L _

9 TABLE 3.3.6.10-1 (SHEET I 0F 3)

RADlQACllyE GASEOUS f ffluENT MONITORI6_11GIFUMENTATIQf!

Minimum j Channels OffRAELE aanlicability Drater ACII0ff

-d Instrutnent a

1 Main Condenser Of f gas Treatment l 1.

l

' System Explosive Gas Monitoring l c System

    • 7. M,droger+ 10#;

U Hyorogen Mrmitor (ll'*'

ro

2. Reactor Buildir.g vent Stack

.sonitoring System Ra.goactivity Rate 105

a. Noble Gas Activity Monitor (1)'**
  • Meworement +
b. Iodine Sampler Cartridge (1)'**
  • Verify Presen(e of 107

' Cartridge

c. Particulate Sampler filter (1)'*'
  • Verif y Presence of 107 w filter

)

y d. Effluent System flowrate Measurement Device (I)'**

  • System flowrate 104 m Measarement O

c

e. Sampler flowrate Measurement Device (t)

S e 'er flowrate 104 Measurement

3. Main Stack Monitoring System 105
a. Noble Gas Activity Monitor (1)'**
  • Radioactivity Rate Measurement +

107

b. Iodine Sampler Cartridge (I)***
  • Verify Presence of Cartridge
c. Particulate Sampler filter (f)**'
  • Verify Presem e 101 of filter
d. Effluent System flowrate (1)'**
  • System flo-rate 104 Measuring Devices Measurement
e. Saepler flowrate Measuring . (It'**
  • Sampler flowrate 104 Device Measurement
4. Condenser Offg.as Pretreatment Monitor
      • Radoactivity Rate 108 Noble Gas Activity Monitor (1)

Measurement Prmmsa,9 T'i/fM?h mTn .*o

TABLE 3.3.6.10-1 (SHEET 2 0F 3)

RADIOACTIVi GASEOUS EFFLUENT MONITORING INSTRUMENTATION Table Notations

  • During releases via this pathway. ~
a. A channel may be removed from service for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for required surveillance testing and not be considered inoperable.
b. A channel may be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillante testing and not be considered inoperable,

+ Monitor must be capable of responding to a lower Limit of Detection of 1 x-10** pC1/ml.

ACTION 104 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, efflu'nt releases via this pathway may continue, provided the flowrate is estimated at least once per 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

If the number of channels OPERABLE remains less than required by the Minimum Channels OPERABLE for over 30 days, an explanation of the circumstances shall be included in the next Semi-Annual Effluent Release Report.

ACTION 105 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue, provided grab samples are taken daily and analyzed daily for gross activity. With the number of Main Stack Monitoring System channels OPERABLE less than required by the Minimum

. Channels OPERABLE requirement, without delay suspend drywell purge.

If the number of channels OPERABLE remains-less than required by the Minimum Channels OPERABLE requirement for over 30 days, an explanation of the circumstances shall be included in the next Semi-Annual Effluent Release Report.

-HATCH - UNIT 2 3/4 3-60h Proposed TS/0423q/030-48

l l

i TABLE 3.3.6.10-1 (SHEET 3 0F'3)

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION Table Notations (Continued)

ACTION 106 - With the numoer of channels OPERABLE less

.than required by the Minimum Channels OPERABLE requirement, operation of the main condenser offgas treatment system may continue provided: (a) gas samples are collected once per 4 hourt and analyzed within the ensuing 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, or (b) using-a temporary hydrogen analyzer installed in the offgas system line downstream of the recombiner, hydrogen concentration readings are taken and logged every 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

If the number of channels OPERABLE remains less than required by the Minimum Channels OPERABLE requirement for over 30 days, an explanation of the circumstances shall be included in the next Semi-Annual Effluent Release Report.

ACTION 107 + Mith the number of channels OPERA 6LE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue, provided samples are continuously collected with auxiliary sampling equipment for periods on the order of 7 days and analyzed within 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> after the end of the sampling period.

If the number of channels OPERABLE remains less than required by the Minimum Channels OPERABLE requirement for over 30 days, an explanation of the circumstances shall be included in the next Semi-Annual Effluent Release Report.

ACTION 108 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, releases to the environment may continue for up to 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> provided that:

a. The offgas system is not bypassed, and b The offgas post-treatment monitor (2Dll-K615) or the main stack monitor (011-K600) is OPERABLE; Otherwise, be in at least OPERATIONAL CONDITION 2 within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

If the number of channels OPERABLE remains less than required by the Minimum Channels OPERABLE requirement for over 30 days, an explanation of the circumstances shall be included in the next Semi-Annual Effluent Release Report.

HATCH - UNIT 2 3/4 3-601 Proposed TS/0423q/030-48

'q 7 TABLE 3.3.8-1 DEGRADED STATION VOLIAGE PROTECTION INSTRUME NI AllON Required Channels Ref. No. .

Operable Wequired a.

T ~

-1pstrment Channels "-

8 To Trio Trio Settino p _Lal l

. -4 n

r 1 4.16 kv' Emergency Bus. 2/ Bus 2/ Bus' greater than or equal to 2800 volts 8

.Undervoltage Relay At 2800 volts time delay will be c (Loss of Voltage less than or equal to 6.5 sec.

5

.~4

-Condition)--

g 2 4.16 kw Emergency Bus 2/ Bus 2/ Bus. greater than o. equal to 3280 volts' Undervoltage Relay At'3280 volts time delay will be

'(Degraded voltage less than or equal to 21.5 sec.

.Eondition)

NOTES TOR TABtE 3.3.8-1

s. The (olumn entitled "Ref. No." is only 'f r,r convenience so that a one-to-one relationship can be established between items in Table 3.3.P-1 and items in Table 4.3.8-1.
b. A channel may be removed f rom service for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for required surveillance testing and not be considered inoperable; provided sufficient channels are available to ensure the Trip function.

W N

b G2 e

<n b

t Provnso*4 TSin37An/nTn ?]

TABLE 3.3.9.1-1 ATWS RECIRCULATIO?1 PUMP TRIP' SYSTEM INSTRUMENTATION HINIMUN OPERABLE CHANNELS PER g TRIP FUtJCTI0t1 TRIP SYSTEN'**

l

-4 Q 1. Reattor Vessel Water t evel - tow tow, tevel 2 1 8

2. Reactor Vessel Pressure - High I c-z

-4 ro I*

t u

N w

t os N

a. A channel may be removed f rom servic.e for up.to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for required surveillance tee +ing and not be ccasidered inoperable, provided sufficient channels are available to ensure the Trip function.

Proonsed TS/04749/ 010-M

TABLE 3.3.9.Z-1 END-0r-CYCt E RECIRCUL ATION PUf1P TRIP SYSTEM INSTRUMEt4TATI0f4 MINIMUM OPERABLE CHAf4NELS SE PER TRIP SYSTEM'"'

-4 JRIP futJCTION

' c3 x Turbine Stop Valve - Closure 2i"8 1.

e 2'**

c 2. Turbine Control Valve - Fast Closure z

-4 fu l

w

%s a

w a

sa DJ l

a. A channel may be removed f rom service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing and not be considered inoperable, provided sufficient channels are available to ensure the Trip function.
b. This f unction shall automatically bypassed when turbine first stage pressure is less than or equal to 250 psig, equivalent to THERMAL POWER less than 30% of RATED THERMAL POWER.

Prnnesed T5/6174a/030.54

REACTOR COOLANT SYSTEM 3/4.4.2 SAFETY /RELIEr VALVES L!MITING CONDITION FOR OPERA _110N 3.4.2.1 The safety valve function of the following reactor coolant system safety / relief valves shall be OPERABLE with the mechanical lift settings within + 11 of the indicated pressures *.

4 5afety-relief valves @ 1090 psig.

4 Safety-relief valves 9 IMO psig".

3 Safety-relief valves e 111) psig".

APPLICABILLTJ.: CONDITIONS 1, 2 and 3.

ACTION:

a. For low. low set valves, take the action required by Specification 3.4.2.2. For ADS valves, take the action required by Specification 3.5.2.
b. Hith one or more safety / relief valves stuck open, place the reactor mode switch in the Shutdown position,
c. With one or more S/RV tallpipe pressure switches of an S/RV declared inoperable and the associated S/RV(s) otherwise indicated to be Wen, place the reactor mode switch in the shutdown position,
d. Hith one S/RV tallpipe pressure switch of an S/RV declared inoperable and the associated S/RV(s) otherwise indicated to be closed, plant operation may continue. Remove the function of that pressure switch from the low low set logic circuitry until the next COLD SHUTDOHN.

Upon COLD SHUTDOHN, restore the pressure switch (s) to OPERABLE status before STARTUP,

e. With both S/RV tailpipe pressure switches of an S/RV declared inop.

erable and the associated S/RV(s) otherwise indicated to be closed, restore at least one inoperable switch to OPERABLE status within 14 days or be in at least HOT SHUTDOHN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

f. The failure or malfunction of any safety / relief valve shall be reported by telephone within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />; confirmed by telegraph, mallgram, or facsimile transmission to the Director of the Regional Office, or his designee no later than the first working day following the event; and a written followup report within 30 days.

The written followup report should be completed in accordance with 10 CFR 50.73 or other applicable requirements.

SURVE!LLANCE REQUIREMENTS 4.4.2.1 The tail-pipe pressure sultches of each safety / relief valve shall be demonstrated OPERABLE by performance of:

a. CHANNEL FUNCTIONAL TEST:
1. At least once per 31 days, except that all portions of the channel inside the ortmary containment may be excluded frem the CHANNEL FUNCTIONAL TEST,"' and 2.

l At each scheduled outage of greater than 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> during which

. entry is made into the primary containment, if not performed within the previous 31 days,

b. CHANNEL CAllBRATION and verifying the setpoint to be 85 psig, with an allowable tolerance of +15 psig and -5 0519, at least once per 18 months.
  • The lift setting pressure shall correspond to amulent conditions of the valves at nominal operating temoerature and pressure.

" Up to two inocerable valves may be replaced with spare OPERABLE valves with lower setpoints of 1090 and 1100 psig, respectively, until the next refueling outage.

"*A channel may be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing and not be considered inoperable, provided sufficient channels are available to ensure the Trio Function.

HATCH - UNIT 2 3/4 4-4 Proposed TS/04334/030-86

REACTOR COOLANT SYSTEM SAFETY / RELIEF VALVES LOW-LOW SET FUNCTION LIMITING CONDITION FOR OPERATION 3.4.2.2 The relief valve function and the low-low set function of the following reattor coolant system safety / relief valves shall be OPERABLE with the following low-low set function lift settings:

Low Low Set Allowable Value (psig)*

Valve Function Open Close Low < 1010 ~< 860 Medium Low i 1025 875 Medium High i1040 i890 High 1 1050 s 900 APPLICABILITY: OPERATIONAL CONDITIONS 1, 2 and 3 ACTION:

a. With the relief valve function and/or the low-low set function of one of the above required reactor coolant system safety / relief valves inoperable, restore the inoperable relief valve function and low-low set function to OPERABLE status within 14 days or be in at least HOT SHUT 00HN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUT 00HN within the fo! lowing 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />,
b. With the relief valve function and/or the low-low set function of more than one of the above required reactor coolant system safety / relief valves inoperable, be in at least HOT SHUTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTOOWN within the next 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

SURVEILLANCE REQUIREMENTS 4.4.2.2 The low-low set relief valve function and the low-low set function pressure actuation instrumentation shall be demonstrated OPERABLE"* by l performance of a:

a. CHANNEL FUNCTIONAL TEST, including calibration of the trip unit and the dedicated high steam dome pressure channels", at least once per month.
b. CHANNEL CALIBRATION, LOGIC SYSTEM FUNCTIONAL TEST and simulated automatic operation of the entire system at least once per refueling outage.
  • The lift setting pressure of the valves is defined in subsection 3/4 3.4.2.1.

The accuracy of the low-low set setpoints is defined to be the accuracy of the instrumentation controlling the setpoints of the low-low set valves.

"The setpoint for dedicated high sttam dome pressure channels is less than or equal to 1054 psig.

'*A channel may be removed from service for ur to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing and not be considered .noperable, provided sufficient channels are available to ensure the Trip Function.

HATCH - UNIT 2 3/4 4 da Proposed TS/0433q/030-33

l l

REACTOR COOLANT SYSTEM 3/4.4.3 REACTOR COOLANT SYSTEM LEAKAGE LEAKAGE DETECTION StSTEMS LIMITING CONDITION FOR OPERATION 3.4.3.1 The following reactor coolant system leakage detection systems shall be OPERABLE:

a. The primary containment atmosphere particulate radioactivity monitoring system,
b. The primary containment floor drain and equipment sump level and flow monitoring systems, and
c. The primary containment gaseous radioactivity monitoring system.

APPLICABILITY: CONDITIONS 1, 2 and 3.

ACTION:

With only two of the.above required leakage detection-system OPERABLE, operation may continue for up to 30 days provided grab samples of the containment atmosphere are obtained and analyzed at least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> when the required gaseous or particulate radioactive monitor-Ing system is. inoperable; otherwise,_be in at least HOT SHUTOOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

SURVEILLANCE REQUIREMENTS 4.4.3.1 The leakage detection systems shall be demonstrated OPERABLE

  • by;
a. Primary containment atmosphere gaseous and particulate monitor-ing system-performance of a CHANNEL CHECK at least once per-12 hours, a CHANNEL FUNCTIONAL TEST at least once per 31 days and a CHANNEL CALIBRATION at least once per 18 months,
b. Primary containment sump level and flow monitoring system-performance of a CHANNEL FUNCTIONAL TEST at least once per 31 days and a CHANNEL CALIBRATION at least once per 18 months.
  • A channel may be removed from service for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> for required surveillance testing and not be considered inoperable.

l HATCH - UltT 2 3/4 4-S Proposed TS/0433q/030-0 l-

EMERGENCY CORE COOLING SYSTEH3 SURVEILLANCE REQUIREMENTS (Continued)

2. Performing a CHANNEL CALIBRATION of the core spray header aP instrumentation and verifying the set point to be

( 3.1 psid greater (less negative) than the normal Indicated 6P at rated core power and flow,' l

d. At least once per 18 months by performing a system functional test which includes simulated automatic actuation of the system throughout its emergency operating sequence and veri-fying that each automatic valve in the flow path actuates to-its correct position. Actual injection of coolant into the reactor vessel may be excluded from this test.

C

  • A channel may be removed from service for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for required-surveillance testing and not be considered inoperable.

HATCH - UNIT 2 3/4 5-6 Proposed TS/04344/030-82

EMERGENCY CORE COOLING SYSTEMS LIMITING CONDITION FOR OPERATION (Continued) _

ACTION: (Continued)

c. With one suppression chamber water level Instrumentation channel inoperable, restore the Inoperable channel to OPERABLE status within 30 days or be in at least HOT SHUT 00HN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> and verify the suppression chamber water level to be 1 12'2" at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />,
d. With both suppression chamber water level instrumentation channels inoperable, restore at least one inoperable channel to OPERABLE status within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> or be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUT 00HN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> and verify the suppression chamber water level to be 1 12'2" at least once per hour.

SURVEILLANCE REQUIREMENTS 4.5.4.1 The suppression chamber shall be determined CPERABLE by verifying:

a. The water level to be 1 12'2" at least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />,
b. Two suppression chamber water level instrumentation channels (2T48-R607A,B) OPERABLE
  • by performance of a: l
1. CHANNEL CHECK at least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />,
2. CHANNEL FUNCTIONAL TEST at least once per 31 days, and
3. CHANNEL CALIBRATION at least once per 6 months.

4.5.4.2 The conditions of Specification 3.5.4.b.2 shall be verified to be satisfied prior to draining the suppression pool and at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> thereafter while the suppressic' cool is drained.

  • A channel may be removed from service for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for required surveillan~ce testing and not be considered inoperable.

HATCH - UNIT 2 3/4 5-10 Proposed TS/0434q/030-6

CONTAINMENT SYSTEMS SURVEILLANCE REQUIREMENTS (Continued) _

9. At least once per 30 minutes following a scram from OPERATIONAL CONDITION 1 or 2 with the main steam line isolation valves closed, and suppression chamber water temperature > 100*F, by verifying suppression chamber water tempcrature < 120'F.
f. By an external visual examination of the suppression chamber after there has been indication of safety / relief valve opera-tion with the suppression chamber water temperature > 160*F and reactor coolant system pressure > 200 psig,
g. At least once per 18 months by a visual inspection of the accessible interior and exterior of the suppression chamber.
h. By verifying two suppression chamber water level instrumenta-tion channels (2T48-R607A,B) OPERABLE
  • by performance of a: l
1. CHANNEL CHECK at least once oer 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />,
2. CHANNEL FUNCTIONAL TEST at least once per 31 days, and
3. CHANNEL CALIBRATION at least once per 6 months.
  • A channel may be removed from service for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for required surveillance testing and not be considered inoperable.

HATCH - UNIT 2 3/4 6-13 Proposed TS/0431q/030-102

CONTAINMENT SYSTEMS SURVEILLANCE REQUIREMENTS 4.6.3.1 Each primary containment isolation valve specified in Table 3.6.3-1 shall be demonstrated OPERABLE prior to returning the valve to service after maintenance, repair or replacement work is performed on the valve or its associated actuator, control or power circuit by cycling the valve through at least one complete cycle of full travel and verification of specified isolation time.

4.6.3.2 Each primary containment automatic isolation valve specified in Table 3.6.3-1 shall be demonstrated OPERABLE during COLD SHUTDOHN or REFUEL 2NG at least once per 18 months by verifying that on a containment isolation test signal each automatic isolation valve actuates to its isolation position.

4.6.3.3 The isolation time of each power operated or automatic valve specified in Table 3.6.3-1 shall be determined to be within its limit when tested purruant to Specification 4.0.5.

4.6.3.4 Each reactor instrumentation line excess flow check valve shall be demonstrated OPERABLE

  • at least once per 18 months by verifying that the l valve stops excess flow.
  • A channel may be removed from service for up to 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> for required surveillance testing and not be considered inoperable, provided sufficient channels are available to ensure the Trip Function, 1

l HATCH - UNIT 2 3/4 6-16 Proposed TS/0431g/030-0

IN_ST_RUMENTATION SURVEILLANCE REQUIREMENTS CONTINUED _

b. Performance of a CHANNEL FUNCTIONAL TEST:*
1. Nithin 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> prior to the start of CORE ALTERATIONS, and
2. At least once per 7 days,
c. Verify that the channel count rate is at least 3 cps at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> during CORE ALTERATIONS, and at least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, except:
1. The 3 cps is not required during core alterations involving only fuel unloading provided the SRMs were confirmed to read at least 3 cps initially and were checked for neutron response.
2. The 3 cps is not required initially on a full core reload.

Prior to the reload, up to four fuel assemblies will be loaded into core positions next to each of the 4 SRMs to obtain the required count rate. These assemblies may be any which have been shown to meet the criteria given in Section 5.6.1 of these Technical Specifications for storage in the spent fuel pool,

d. Verifying that the RPS circuitry "shortir.g links" have been removed and that the RPS circuitry is in a non-coincidence trip mode within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> prior to startlag CORE ALTERATIONS or shutdown margin demonstrations.

'A channel may be removed from service for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for required surveillance testing and not be considered inoperable, provideo sufficient channels are available to ensure the required functior..

HATCH - UNIT 2 3/4 9-4 Proposed TS/0435q/030-89

1 3/4.3 INSTRUMENTATION I i

BASES i 1

l It is permissible to remove a channel fron service for a brief interval to conduct required surveillance testing. Notes that dictate the allowabla time interval are provided in each LCO tabir. A channel that is removed from service for reautred surveillance tes'cing does not need to be considered inoperable (relative to Technical Specifications ACTIONS),

provided sufficient channels are available to ensure the Trip function.

Single-failure considerations do not apply during this time interval.

3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION The reactor protection system automatically initiates a reactor scram to:

a. Preserve the integrity of the fuel cladding,
b. Preserve the integrity of the reactor coolant system.
c. Minimize the energy which mus+ be adsorbed following a loss-of-coolant accident, and
d. Prevent inadvertent criticality.

This specification provides the limiting conditions for operation necessary to preserve the-ability of the system to perform its intended function even during periods when instrument channels may be out of service because of maintenance. When necessary, one channel may be made inoperable for brief intervals to conduct-the required surveillance tests.

The reactor protection system is made up of two independent trip systems. There are usually four channels to monitor each parameter with two channels in each trip system. The outputs of the channels in a trip system are combined in a logic so that either channel will trip that trip system. The tripping of both trip systems will pr(duce a reactor scram. T_he system meets the intent of IEEE-279-for nuclear power plant protection systems. The bases for the trip settings of the RPS are discussed in the bases for Specification 2.2.1.

HATCH - UNIT 2 B 3/4 3-1 Proposed TS/0436q/030-0

1 i

3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION (Continued) l 1

BASES-1

)

The measurement of response time at the specified frequer-les provides assurance that the protective functions associated with each channel are completed within the time limit assumed in the accident analysis. No credit was taken for those channels with response times indicated as not applicable.

Response time may be demonstrated by any series of sequential, overlapping or total channel test measurements, provided such tests demonstrate the total channel response time as defined. Sensor response time verification may be demonstrated by either: (1) inplace, onsite or offsite test measurements,'or (2) T.;111 zing replacement sensors with certified response times.

HATCH - UNIT 2 B 3/4 3-la Proposed TS/0436q/030-0

(This page intentionally left blank.)

l I

l HATCH - UNIT 2 B 3/4 3-lb Proposed TS/0436q/030-0 )

' t

lP
c. .

TABLE OF Co m WT$

t g

Section

  • Section . ,

b,, 1.0 DEFINIT!0us 1.01

. s W LIT LIMIT 5 LIMJIJNs SM LIl 5T&ILM 4LiliWs5 1.1. FUEL CLADDING IMGRITY 2.1. FUEL CLADDING !MGRITY 1.1 1 A. Reactor Pnssure >S00 psia A. Trip 3ettings 1.1 1 and Cort Flow >1Dt of Rated .

8. Core Thermal Power Limit (Reactor 1.1 1 Pressure 1 800 psia l C. Power Transient ,

1.1 1 D. Reactor Water Level (Hot or Cold 1.1 2 Shutdown Condition)

8. Reactor Water Level Trip Setti gs 1.1 6 Which Initiate Core Standby Cooling Systems 'CSCS)

C-1.2. REACTOR COOLANT SYSTEM INTEGR!TY 2.2. REACTOR COOLANT SYSTDI INTEGRITY 2.1 1 4

LIMITING CDCIT10N5 FOR DPEMil0N SUEVEILLANCE RIQUIREMENT5 3.1. REACTOR PROTECTION SYSTEM 4.1. REACTOR PROTECT!0h ST3 TEM 3.1 1 A. Sources of a Trip signal Which A. Test and Calibration Requirements 3.1 1

, Initiate a, Reactor $cras for the RPS

3. RP3. Response Time B. Maximun Total Peaking Factor 3.1-2 (MTPF)

-4.2. PROTECT!YE INSTRUMENTATION 3.2 1 3.2. PROTECT!YE INSTRtMEKTATION A. test v e':t! = S kh ht:0. W . D6;, .;.J;.;ia L".;3 ;M Z;n; 3.21 rj S:-t- "::::1 = f "-f = y

[dearter=#esset ...: f,-i Ca=tt' =;r.t-10:h t h- f *=+ h -t M ':t' = , ,

B. Instrumentation leitch lattiates 3.2 1

8. Instnamentation Which Initiates or Controls WCI er controls WC1

(. C. Instnanentation which Initiates .

l C. Instrumentation Which lattistas 3.2 1

. or Controls RCIC-

  • or Centrols RCIC D. Instrumentation Which Initiates 3.2 1 D. Instrumentation Which Initiates

. or controls ADS or Controls ADS

(%.

Iscic k n Acho.% d .

T~ns+tumete:eH ow 1

.Joendment No. 27 NATCH - UNIT 1

$ 4

' = = +.. . .. . . , . . . . . , . . . .

i

\** . . . ,

T solo.M or"\ kMMD\ L.1%hmdrdTLMbA.-

{- LIST OF TA8LES IAkl1 I1111

.. . 14.11

. t.

1.1 Frequency Notations ,

1.01) ,

C' 3.1-1 Reactor Protection Systra (R'PS) Instrupentation Requirements 3.1 -3 4.1 -1 ' Reactor Protection System (PR$) Instnamentation 3.1 -7 '

. Functional Test, Functional Test Minimum Frequency, and Calibration Minimum Frequency C '

3. 2-1 Et r:..".eM... ein ".1 Gate 54ssetor:#veet 3.2-2 eM "7'=ri =td.nnt4_seletier 7 3.2-2 Instrumentation Whtch Initiates or Controls 3.2-5 HPCI ,

3.2-3 Instrumentation Which Initiates or Controls 3.2-8 RCIC

3. 2-4 Instrumentation Which Initiates or Controls 3.2-10 ADS i 3.2-5 knstrumentation Which Initiates or Controls 3.2-11 the LPCI Mode of RHR

, .3.2k Instrumentation Which Initiates or Controls 3.2-14 Core Spray 3.2-7 Neutron Monitoring Instrumentation Which 3.2-15

.!nitiates Control Rod Blocks

3.2-8 Radiation Monitoring Systems Which Limit 3.2-18 l Radioactivity kelease ,
3. 2 Instrumentation Which Initiates Recirculation 3.2-20 Puno Trip

' '. 3.2-10 Instrumentation Which Monitors Leakage into 3.2-21 the Drywell 3.2-11 Instrumentation Which Provides Surveillance 3.2-22 Infornation 3.2-12 Instrumentation Which Initiates the 3.2-23a Disconnection of Of f site Power Sources 3.2-13 Instrumentation which Initiates Energitation 3.2-23b of Onsite Power Scurces l

(. .

l MATCH - UNIT 1 vii Amendment No.11, if 110 j .

e ,

e

' LIST OF TABLES (Continued) .

3 glh-Won /03ua.4 ion Table .T.it.1.t.

>/.s'I~n'AT Lhmo'WMwvq ancs s Refrem v

. A . 2-1

  • Gheck Ausc-t4+ae4 ?::t, =d C 1S. :t4en Mema 3.2-24 Jeeeumy-4cr4astrumentat4e MM:5 Irnut:s - - )

h actor ves+e4-end-#4 mary. Ovet.ainmenhi,+44tha

~. _ .

4.2-2 Check, Functional Test, and Calibration Minimum -

3.2-27 Frequen:y for Instrumentation Which Initiates or Control. HPCI ,

I 4.2-3 Check, Functional Test, and Calibration Minimum 3.2-30 Frecuer.:y for Instrumentation Which Initiates or Controls RCIC 4.2-4 Check, Nnctional Test, and Calibration Minimum 3.2-33 Frecuer y f or Instrumentation Which Initiates ,

or Controls ADS 4.2-5 Check, 'unctional Test, and Calibration Minimum 3.2-35 i re;co ., f or Instrumentation Which Initiates or Controls the LPCI Mode of RHR ,

4.2-6 Check, runctional Te'st, and Calibration Minimum 3.2-38 Frecuer for Instrumentation Which Initiates g

. or Controls Core Spray 4.2-7 Check, Functional Test, and Calibration Minimum 3.2-40 Frequera y f or Neutron Monitoring Instrumentation Which Initiates Control Rod Blocks l ~.2-8 Check, runctional Test, and Calibration Minimum 3.2-42 I Frequer,:y f or Radiation Monitoring Systems Which

. Limit Radioactivity Release-4.2-9 Check r ' Calibration Minimum Frequency for 3.2-45 Instru: r.tation Which Initiates Recirculation Pump Trip 4.2-10' Check, f unctional Test, and Calibration Minimum 3.2-46 F recue: .3 f or Instrumentation Which Monitors e I Leakagt into the Drywell l 4.2-11 Check and Calibration Minimus Frequency for 3.2-48 l Instrurentation Which Provides Surveillance g Inforw ion l 4.2-12 Instrut.ntation Which Initiates the '

3.2-49a

! Disconr.c etion of Of fsite Power Sources -

4.2-13 Instra' -tation Which Initiates Energization 3. 2-49 b by Ons . .e Fower Sources HATCH - tidIf 1 viii Amendment No. 11, 50, fs, 88, 110 9

Table 3.1-1 (Cont'd) 2 Operable Source er Screeg Signet is k

("3 Scram

$ource cr Scram Trip Slgnal charnets Scree irlp Setting iteratsIred to be Opereble 2

litebe r Regis I red Fe r Except es indicated Below (e) irlp System e

(bl C Atstnestically bypassed when 2

Turbine Stop Valve le sle'. valve closesre teerbine steam flow is below

~ 12 f rom resi l open H Closure Tech Spec 2.1.A.3. that corresponding to 30% ol' rated tfwreal power as

( w measured by tierbine first stage pressure.

Notes for Table 3.1-1 The column entitled " Scram Muuter" is for convenience so that e one-to-one relationship con be established s.

between items in Table 3.1-1 and items in Table 88.1-1. 4 ran s igne t . If the number of

b. There shell be two operable er tripped trip systems for each potentist ystem shall be tripped. However, operable : honnels cannot be met for one of the trip systems, that. trip "?F hours during periods of required one trip signal channel of' s ts*lp system mey be Inoperable for up to L _ ' ' ~ ~~ "

- ?? .N *.",#?b. _ ?.',_ ?". $ _b. ?5. .. . $ $. 5. . . , ? , I.? ?.

. 5. . ~ ., I, . 2 . l'. " ' '

. ~

injection test with the reactor power et greater then

c. Within 20% reted 218power, hotsrs theprior to the planned start of the hydrogersroll power redsstion beckground level end essociated trip setroints ser b normal F based on a calculated value of tle tsdistion level ewpected during the test.

assocles.ed trip setpoints may be adjusted during the test based nn either coletstations or meestarements ol' setuel 4 radiation levels rgsulting f rom hydrogen injection. The background hours redletion normal of reestablishing level shell be determined redletion levels after and associsted trip setpoints shall be set within 21 completion of' hydrogen injection and prior to establishing reactor power levels Selow 201 rated power.

S#b $3er PW CorJSs bE reb IMOPERAhtE Pt.Mi% StWfrgcew f

8 h (N AMPIEL3 Rtf AMItAM M o.

edsee.s T w. r eir Frese.rilmi.

hs r+

Z

.o

. t N

TV Un w

. ,m

,o Y O

\

I

' SURVilLLANCE Rt0VIREMtWT$

' ,. LIMITlWG CONDIT10Ns FOR OPERATION 3.2 PROYECTlvt 1NSTRUMENTAT10N 4.2 P'ROTECTIVE INSTRUMf WTATIDW Aeolicability Aeolicability The Limiting Conditions for Operation The Surveillance Requirements

{ ,

apply to the plant instrumentation which perf orms a protective f unction, apply to the instrumentation which perf orms a protective function.

Obj ective Qb.iettive The objective of the Limiting Condi- The objective of the Surveillance

( tions for Operation is to assure the Requirements is to specif y the type operability of protective instrumen- and frequency of surveillance to tation. be applied to protective instru-mentation.

Seteifications Specificatient The Limiting Conditions for Operation The check, functional test, and of the protective instrumentation af- calibration minimum f requency for fecting each of the following protec- protective instrumentation af f ect-tive actions shall be as indicated in ing each of the follpwing protec-the corresponding LCO table, tive actions shall be as indicated in the corresponding SR table. .

~

(, Protective Action LCO Table SR Table z A. Initiates R***&er-Wessv4= 3.2-1 4. 2-1 and= containment Isolat, ton Achuahon B. Initiates or Controls HPCI 3.2-2 4.2-2 ,

C. Initiates or Controls RCIC 3.2-3 4.2-3 D. Initiates or Controls ADS ' 3.2-4 4.2-4 E. Initiates or Controls the 3.2-5 4.2-5 LPCI Mode of RHR F. Initiates or Controls Core 3.2-6 4.2-6 Spray E. Initiates Control Rod Blocks 3.2-7 4.2-7 H. Limits Radioactivity Release 3.2-8 4.2-8

1. Initiates Recirculation Pump 3.2-9 .4.2-9 Trip

(, J. Monitors Leakage into the 3.2-10 4.2-10

Drywell f K. Provides Surveillance '

3.2-11 4.2-11 Information ,

L. Initiates Disconnection of 3.2-12 4.2-12 Offsite Power Sources M. Initiates Energitation by 3.2-13 4.2-13 C'- Onsite power Sources '

N. ' Arms the Lo'w Low Set S/RV 3.2-14 4.2-14 System HATCH - UNIT 1 3. 2-1 Amendment No. 55,103 4 i

u -

. ,,,,,, 3,,,,

IsoLATtoAl Ac;nAAT1oM ;I~AldTRIAAtEMTA-te MM t 7 M?T---

TlOld 4alssfissigsga?? e = ? m !sess4Ar

--sesstAs senest-690 tat te=r n RegeIred I

Trty crorebse Actten to tre tenen fr.

a mer. tendstlen Chennere Trte Setttnf ta'aber of ch*nnels to .

nose 6, (d)

- Instrueent not met for troth trty momenetetsfo per trip

@ see. (el System it) _ systees (et __

y _

Inttlete en orderly Inttfotes Cesep 2 h 6 j j Deeeter Westet low (Levet 3) 2 2 10.0 Inetres iestatIon.

w 1 sierfew Re"To eh"tdown end ochIeve  !

i s Wetor Lovei the Cold Shortdown '

.l conditten within 2EB

'g fooore er laetete the g

shetdown eee!Ing

,, systoe.

Starts the sett, g I 2-Ib7 taches Inttlete on ordoety tow Low 2 initretoe Creep 3

,"- shetdown end echieve (Level 2) the Cefd Shutdown aestatton, end

. Conditten within 2% anettstes secondery essetet**ent

. houre.

Isetotten.

2 2-113 teches falttete en orderly Inttistee Or g 1 {*

Lev Low Low shotdown end ochIeve IseIetIen.

(Lovei f3 the cold shutdows Con-

." WItten within 2e heere.

Y 11893 pety N teetetes the eherteswa g "2 flooctor Vesset Steen Low Peretestve Dome Pressure (Shirt-1

. coo &4ay, ecofing eeactten volves r down CootIng feede) of the Past system.APoy Inittete se et1Berty Starts the stendtry g tttgh 2 11.92 pstg geo troeteent systoo, 3 Drywstt Pressere shetdown end ochIeve Instantes Creep 2 the Cold Shetdown leetetten end seeend.

Condition within 2% ery contetement heere.

  • toeletten. ,

C6.% dd"*

y A nment-f; - .

y~R R4LT.- Cr_ iribo  :

o ,-

pt  ? I'(Sp3- mcrtor- _

4 qmuon wives.

.e l s ,

.v .-

Table 3.2-1 (Cont.) +

RegeIred stor Trly operable Actton to t>e taken ir h geo.. Instrument Condition Channeta Trip Setting enseber or channets le

. -4 teomencIsture per Trip not met for both trip flemarks (d)

@ (e) _5ystee Ib) systpos (c) e . * .

@= noin St.ee tin.

Itsdis t ion Migh 2 ss times nogens ful 8 power beck-initiene en enserfy so.d redectio*e end esose 9950Vs snits.t.. cros, ,

footetIon.

g round" ' within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />.

~

! $ Mein Stees Line Lev 2 2825 psig tattlete en orderly toed snitletes croup 1 Pressure . redection and close isotetten, onty i Pt3IVs within 8 hotas, regelred In pues modo, e therefore setsveted when teode SwItets 8e in Ruse positlen. ,

a *

6 feeln Stees Line High 2 51381 rated r2ew Inftfete en orderly feed initiates croup 1

. Ilow lift) psid) redesetion and efete ptStYs feetetlen.

within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />.

! 7 Main Stese Line Migh 2 st94*r Initiste en orderly toed Inittotes Croup 1 Teennet iempera ture reduction end esose testys footetten.

bs within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />.

79 w

flesetor Water Co em., system Sligh 1 20-80 spe teolete reactor water ele.m.,syst e.

TInst trip setting weIe e esten.ined DITforenttel ffew during startup test .

progree.

. y mesetor water stigh 2 st50*r :seeste reeeter water l  ; ,

Clemmay Aree elesemp system.

+

icopere tters  ;

2 Its Rnector Water tilgh  ? 567'F leoiste reeeter vetor g l CI ansep Arce e teem., sys ace. .

' Ve.ntltetten *

! Di rreteret f e l - I l tespe re tetre

",11

, Condoneer Vsemens low F 27" fog. voeune Initiate en orderly Iced tattlete troup 1 redesetten and close 9tStVs teetetten '

f

[

within 8 hrs.

t st38 R/teR.

f2 Drywell Redletion Nigh 1 Close the errected Isoletes .

w W

Isolat8en vetwes within 78e tsours er 9,e in teot contee.3, meet per9e owed veget velves.

d=

Stwetdows with9n the newt 6 hovers end In h ha I

" =

Cold sinetdown within the next 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.

u .

- o PQ &

ya . e-

4 a m. m a-- n 4--2 s.-- - 6 .:r- N_s1- a u -,,u- 2 A. a @ A. "'6.-,. .L.- 2 A-1 ilA!!$$$ill!!hhd#illbilEd 1 d d hl'i N

% u{ldararinreaitdu d li d d a h res ea r 8

ar 9 a i

1 m

0 5

i N $g m J J s

& 41

{$h w

g -

k - - - d

.tS [

1

.3 S

g e 'e 1

5a h a &

a 3

ti e 3

e

  • $ .1j(

<@f -

g 5{

.k f

4' S f .3 aj j.6 ft S

F e$:!kd$pnJ.ig[hj[1: Pd o emo z3 .

u ma g appet io 4 ed

, e Ce 1 e a e e ie a

i

~ ~ ^

3 .

, . R. .. . _ - . . . .

YF Y(#

f d h {c-EIlf$@1:f.3fktIh.pfl e.<_g s T $ c _ s eafT46.2.534

. I ' '

$ g$g

+1d'.eJz.!:aidtub@in

  1. 665g6 o%f ePW d! d"U 8 -

E85 l ik E d s 3.!e$ g e.d g 3W .c u. u.

g? o

[ o

,y a a -

r3 Z

? b 2 6 !se 2

3-Y g f 2 I 8 -

c -

9 1im

)5 2 g[ .s ad A s hm n su sg ,

  1. tr#)g het
  • % i lk.k) h  ;
a. a: . .

o a

9

Y llotes for Teble 3.2-1 _

1

s. The coIumh entItIed *ftef. feo.* Is on1y tor convenfeetce so thel s one-to-one reIotIonship ceft be ehtottIshed c between Ilnes in Tebte 3.2-1 and Itees in Tebte an . 2- 1.

2 5 b. Primary containment Integrity theit be meletelned et sit times prior to withdrawing control twds for the '

pterpose or going critical, wtten the reactor is critical. or when the reactor water temperature is above

" 282'T and fuel. Is in the reactor vesset except while performing low-power physics tests et steospheric pressure et power levels not to exceed 5 tWL, or performing en Inservice vessel hyt!90st' etic or feekege test.

When primary containment Integrity is required, there shelt be two operable of trippen trly systems ror each function.

When perforelpg latervice hytfrostatic or Ichkege tesung en time reactor wssel with the resCter coolant temperature above 212'T, t'esctor vessel veter level instrtsmentation sstocieted with the low low t (Level 2) trip retsulres two operable or t' ripped chstwiels The tirywet t pressure trip Is foot l required because primcry containnent Integrity is not rottutred. _ _

be me far b 6f the irly sy c-es , t tr syst ds C. fM of rebte hennet canno)t chenpmr of t4 tee me be Ino _reble or esp /to 2 s W@ing /be") /

tr ped. v one p sign fariods r req red ses leto test!fg f wit t tri ng Live ssoe's ed tri systed, prev tpist ttg sthyr

/

ree& Jn ng chswineJ(s) sonitori that flame paganceter ittnin t at tri syst.Q.c (ep) eper so. / /

. d. The velves associated with each Croup italetten om given in f aute 3.7-1.

te i s. within 28: heurs pelor to the ptevined start er the hytsregen injection test wstw the reector power et greater tt. n 20'. fated power, the normas rtit e-power redetton bechground levet end esoterated trip setpojnts may be changed based on o cettentleted veitse of the redletian levet owpec5*af during the test. The background radiation level-and essociated trip sets ints esy be adjusted during radiation f evels twstsiting free

  • the test bese<f on either estculations er meestoreesents of acttret hydrogen in f ection. The background re61stion levet shall be determined saJ eissociated tr#p l '

k setpoints shall tw set within 2It !.otsrs of' re-establishirig norest redletion levels ef ter coepitesten of hydrogen Injection and prior to establis8$1ng rs.ctor power levels below 20% rated power.

Cl4 AMM61, rW M P>E ' REmoVeb Flom SERVst.G. CDC UF TD fa M

m 2 1400f.5 FoC REotnRGb 30&Elli GMC6 TE5n o t, AMb NOT bE 5 coes.5cREb ruopERA!5tx Ptovited sc@l(Imi egnetts nRc 1

.o AVAetnSt6 *iD EN3cfA TME 7ts P FoxJc.Tt04).

w M

be k

~

E co% _

arloved oo m ir ,N roe 8 C w _

J W O ,

~

m ~ _ - - _ _ _ _ - - _ _ _ - _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - . - _ - _ _ - _ -

1 Add to '.:.' in W ,s for Table 3,21":

L 'dith the unber of operable channels less than required by the Minimum

  • >perable ChuoMs p

u

]

1abIe 3.2-2

  • titSTRtfMEMTAf tout taf f CN (Mif f ATES OR C31 Trots Mf'Cf g Rmutre4 Trty 9ttim Fame ries T r f r.

$ Rer, lets t rtet cmtttinn cpe r nts t e no, Mn- ane t a ttere chos e 1e (e) gier Trip c Systa= (l')

Z

.-4 te,'* tete, et~ * ; a s s. 1,tt t te s 3 2 (C : 2 'r t Ireb-s

t. *-weter v~t et Wat-- Levat lev te -

Fcit.

(trvat 2)

Stigh 2(C) 5 f.w? pelg initletes #5'Ct; Also Inttletes L 8'C 8 erwt Cere Spray eewt pre-l

2. Drywell Pressere vides e paretssive st9nel te ADS.

5 5000 rye Trips MPCf terbisee ItPCI Turbleue Overspeed Mechentest i

3. g 5 146 psfy Trips eteCf turbtree MPCI Turbine Ewheest Pressure High 1 (C)
4. g 5 12.6 Inches Trips WPCI turbine MFCI Pump Sect!og Pressure Low 1 (C)

, 3 885 vectnam S +56.4 tacties Trips sePCf terbivie

6. 80eector vessel Weter level Migh 2 (d)

(Level 8) <

9 i Migh 1 (J) 2 870 yys Cteses tePCt ein4 ,sitwas

,e f,few typese e-bor.

7. 8tPCI Ptsmo BIscherye F1ow v2 9.o. neees)  := te t l opens etPC* minIan= rtew typese {

Lew 1(d) s 605 yee ts an.36 snehes) eine tr pressues peroissiv. ,

Is pr*sent.

[1

  • Cth se[stedn tw 'td

-par #, Be I I

rl -

- -e -- <

ar 2 L yetsrc

> l E

5 N

=

N N

e M

ed

+

" ~

l Table 3.2-2 (Cont.)

h

-4 RettsI red

$ orecebte C too.

fte f.

Instrtsment Trip Condition peomenetetsre Chenneie per frfy System (b) Trly Settine [W) M g Moserks d a(e) '

/

-4 .

2 2700 psig Closes isoletion volves in [

" HFCI Steem Supply Pressure Low Hrce syst". tripe stPCt

k. teerbina.

1 5303% reted close Isoletion volves la

10. HPCI Steen Line AP (rfow) Migh riew MfCf system, tries terCS turbine.

1 520 pelg close footetten vetves in #

11. MPCI Turbine Exhevet Nigh .

MFCI system, trice ~,J4, ,

turbine. I Diephrego Pressure l

5169'T Ctc3* Isoletten volves in .

12. rossion Cheeber Aree Migh 1 MPCI system, tries terCt y.

lent Tempersture turbina, 1 J%2'F Close fooletion velves In g Suppression Cheeber Aree High HFCI system, trips MPCf F (13. Dirrerentist Air Temperstere torfInc. j to 2 (C) 28' Inches Autcentic Interlock twitchet

  • 14. Condensete Storege Tonk Low suction from cst to Level surpressten cheeber.

2(C), 5154,2 Inches Automette Interlock switches

15. Seppress'o ' Cheeber water High with respect to svetion free CST to Level t7rus Invert soepression cheeber.

8Fot Appliceb's. Monitors ovellebflity er 1

16. MPCI Logle Power Tellure power to 8ogIe systoo, Rml ter fe.

g

,,,e .o1 , r itte. - ,. .

s e.,1 , ,o , _ le.,ce se to t . e ,e-t _ re,.t.o.,s,,Ip es,, w estebtret between Itse. In Toble 3.2-2 stNI Items In Tebte %.2-2.

k

'r+

2

.O M .

  • N a

M TD w

e e

w .

W _

~

I Iso tes tee lebte  ? tient.)

I 1

x b. nfhen any SJ Msystee is gired to be operale by Settlea .t.5 there skett be two speedle 5f the requi W number of operehte cheanets teanet be met for one of the trip systees.

. n 3 trip syst:ss piece i laep4-stle cheaael la the tripped teadition er dettere the essettsted Etti laoperable ,

! "E within tf the required ausher of operakte the=nels teaaet he met f ee heth trip swste=1

, deciere !the es w.ietes ttts saepere6te -stwi. i heer.

l c P l

$ 37-

- i (c) 4 ggnN mA1 M IqrtupfEb Ftorn SERWice. FDL OF TD (p noxs rd. Rswiteb 5*M8H. Lades 7Estranii Mb der M CD;3SebsREb i m tpRxt P20fsbfb &#FICIEM t. wad >ICLS i

ARE MA8LAF!MS 70 EntSotG TM. TRsP Fs41cTsod.

tas

. I (d) (dni 4 TsRFocsvise4 W EILL d 6 MOg TWES ggd TW S EQUIPnf 8W1' IS Rep >r2fb 70 SE CP52s9PME, l Tns acrood STATENGMr SubdLb imE Editttb 5elCC j SuFFacetsW CNAdntt.3 80rLL Mor M AvnsLA PbLC 19 I-s = ,4 rue ra r w .noa.  ;

i $ S 3

L i

O r

U O

p I

f E

i Tebte 3.2-3 T

letSTRtpMEttTAf f 005 W8tlCM 891318 ATES OR CD8ttRotS RCfC n Trfp Stegis t red Trly Setting Romerers I he f*. Instrument -

e 98 0 . CondItien Cper3bie foemeneIature ChenneIs per Trte E (e) Syste= lb) y i

1. Iteoctor vessel Water tevet tow tow 2 (,C ) 2-q7 Inches inttletes PCtC else Inttletes g f4 (tevet 2) G.rc1.
2. RCic Turtine overspeed Electrical 1(C) 5110% reted Trips RCIC tertpine. ,

Meehenical 1 5125% rated Tripe RCIC ter1 Pine.

1* t:5 pelg Tetpe PCtc ter%fne. g

3. RCtc Tert,Ine twtieest Migh 1 (C)

Pressere t.ew 1 (C) 517.6 Inches Trips RCic tedine. g St . RCIC Pump Section Pressers ths vecewe S. Reector Vessel water tevet Migh 2(d) s*56.3 Inches Tripe RCIC: estemettently resets when wetoe drops beIew Ievet 8, (tevet 8) system estematicetiy stetorte et I sevet ?.

P Ctesee WCfC minte== riew 7 6. 'EtC Pump Discherge Flow Migh 1(J) >87 gre (2 10.6 inches) trypese line to eveperessten i . cp cheetpe r, opens RCIC minimean flew g tew 1(J) 553 gre (5 3.8T Inches) bypees line it' presswww perateelve is prwavet. l l _ I

,1 16 e=es.Isot tien tvep I 3

. SC Empfegene Aree i TC gYst . tr s R.CfC g I t er/Aatpl tT. r1P t

[ tertp % . I (

{ u.

g '

3 ibELETE

? >

.D N

1 w M

t F W W ..

e

~ q - ., ,

m Teble 3.2-3 (Continued)

Regelred SE Trly rebie nnels aeJE

-e Ref*. Conditlen per Trip / e Mamerlis Q Ro.

(s)

Instrument Neuencisture System (b) TRIP Setting / -~

2 260 7 19 ~Cicoes soot 5ETon veuves 4n' g c-z

{C RCIC Steen supply Pressore Low RCIC system, trips RCtc turbirw.

c-o l Nigh 1 53061 rated Closes Isoletion valves in

  • 9. RCic Steen L8ne ar (Flow) riew RCIC system, trips RCIC turbine.

High 1 520 psig Cleses isoletten volves in l

10. RCic Turbine ryheest RCIC system, telpe RCIC Olsphrego Pressure turbine.

Migh 1 5169'T Closes isoletion vetWe in

11. Suppression Cheeber Aree RCec system, trips RCic Ambient Tempe mture turbine.

Migh 1 542*F Closes Isoletten velves In ' l

12. Suppresslen Cheeber Arte RCIC system, trips RCic Dirrerential Air Temperature turbitw. ]

{ ~ "I teot Applicable teentters ovellebility of' t tas 13. RCIC Logle Powc Fellere power to logic system. I m Monitor -

20* Trentrers section From CST le e

  • 14. Condensete Storege Tonit low 2(c) to suppression post.

Water Level SO' frentrers sectlen From CST l

13. Suppression Pool Water Nigh 2 (C) to surpression pool.

Level

's e+

ey N

N.

s

NOTC$ FOR TABLE 3.2 3

a. The column entitled 'Ref. No.' is only for convenience so that a one-tc-one relationship can be established between items in Table 3.2 3 and items in Table 4.2 3.

.b When any CCCS subsystem 15 required to be operable by lection 3.5. there shall be two operable trip systems. If tne required number of operable )

channels cannot be met for one of the trip systems, place the inoperable channel in the tripped condition or declare the associated CCC$

inoperable within / hours If the required number of operable channels cannotbemetfor%othtripsystems,declaretheassociatedCCCS inoperable within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

I1 (c) A c,ggMgt, may M REmNrb Ftom StR.Vict. FDL VP TD b gegtg pot REQQlt.tb SUM 81LL.M4f.E WSTIN4 ANb M0f P4 co45 b6 Reb INorskePx.c Paevabab WFicirpf MAWELS .

A Rt. AletLANE TD EMSVLG TAC W oM F0Ht.r:0s3

(.d) SHg yenFoming sevglL W C boteg rimes sua ws ecvswear us n.novines ,o es oeuuy To+t A CYt os! $7A T*,N GNT 5N00L b ?>G EUTtkth 5 dc.c suFFic.staf* cHeaget.s taow yor y geogg y,g ye GassvLG yyl rksy gyge,,qog,

\

HATCH - UNIT 1 3.2-9t Amendment No. (df, 170 .

13bte 1.?-%

  • f M%TR1fMI N t Af itMt Wititti 14tfIAft3 Ulf CUelggots Ans y.

--4 Womerts Q Re r, ins t rtv=ent Trty Pevel reef f rly Settf rws wn, trwwt I t Ian fTe e s ti t e i '* **ww* I %

(n) **w- 8

  • t ** r**

per f r 4 e.

c Syite=_(h)(C) __

Z M lin n Inches C.,nrfres law level, tDS peralselve 1 F**eter vesse t Vwter level Iew (t m l 3) 9 w

.. sty g net.e. r ..I,.etve s19,et g , p M t ime r -

e-- e , - -tes ge s * % .

  • c tevet tw tev tew  ?

(levet t) flf gh  ? S t.77 psity t"er=3ssive stenet ts Af75 tierr

2. Dryweli Pressesre 2 2112 ps39 Permissive signet to ADS timer
3. RftM Pnep DIscherge ve rgh Pressure 2 2137 psig Permissive slynet to Atft tivier it . CS Pump tilscherge High Presserre 7 513 mirmtes Pypesses high drywell perstere
5. Aveto Depressterfretion permissive open avstoIw J teve1,1 low We te.- Leve f T lee t 1 170 f 17 speendr with levet 3 end Level 1 end higte
6. Auto Copresserfretton d rywe s t presswee m**d CS er enn pony w

. Yleer et pressere, timing segreence N

begins. f r the ADS tamer es feet reset it wit t in8tlete ACS.

o 1 foot erpf leeble Monitore evelf ebit tty or yever te

7. Automatic Stewdown Contret 809 t c system Power fe 8 lure Monitor
e. Ihe toIeven ent4 tf ed *ReF. Sto." Is enf y for convenience to thet e ovv=-te-ece reIetlenshIy con be estobIIshed between Items in Tebte 3.2-4 end items in Tebte 4.F-4
  • b. When any CCCS subsystem le requeired to be operebte by Section 3.5, there shef f be two operable tr the reevelred noober or operable chennets cenant be met for one er the trip systees, d3 trip systees.

piece the Inoperebte channot in the tripped condItlen er declare the estocisted CCCS Innperebte

  • within M,.e .fS fr a se .c..the ted regelred noobet'wit CcCS t e.e,ebte er .opere,b,te

_. chonne t s connet be met for both trip systees, dec,. rep

e 17.

o MS O bs (C-) $ gpapig rW41 P)E RernDfEb Fr.orft SrR.vice. FDL OF To Gr

[

NNh hIkkb Sb kb NIh Ak ND7 M 6048DsEEb INDNRAPxg P20iftbfb 5#Fic!EM CWAMMLS f

ARE MAstAPAK 70 EMSOCG THE TRrP Fs/Alened.

e

. p y . ,

m

. . p -

7 febte 3.2-3 INSTRtp4DeTATI081 %#fIC8f IMITf ATES OR CONTROLS T1EE LPCI MUDE OF Reeft g '

-4 Trly Required Trip settig Romeros o Mer. Instrument operable r seo. Condition e (e) Isemeneietwre chenneIe per Trly E System (b)(c).

~

-4

++ 1 Reector Vessel Water Level Low Low Low 2 2-113 Inches inittotes LPCI aswfe or R98R g (Level 1)

2. Drywell Pressure High 2 11.92 pelg Initletes LPCI .'de of' R98R. Aloe Inittetes MPCI M Core Sprey end provides e pomissive slynet to ADS.

I UN Low Pemissive 1 S 11 5 pelf With primary contelnment feele-

3. Reactor Vessel Steen tion signe s. closes smut (LPct) l Dome Pressure Indosed motor ocaroted lajectsen

( vstves J

3. 8'T MC *TNtN YNI b Low 2 2335 psig remissive to close Rect reutetten [

OIocherye veeve end eypese vetwe

h. IN YN4 Low 2 2422 psige remissive to open LPCI Injection g 3Mt Tre%tte veivos Low 2-202 Inches Acts es pemissive to divert

.y 4 Reector Shroud Water Level 1 some LPct flow to centelnment (Level 0) sprey

5. LPCI Cross Connect s/A 1 Vesve not instretes ennunetetoe when velve Veivo Open AnnuneIater eIosed ie not ctowed 5 *This trip f1tenctices shotI be $500 pels.

a et 2 ..-

e i

e N

e

~ .

e

~ .

%%%) =

[~ r.

  • Toble 3.2-5 (Cont.) '

IllSTRUNDITAf test 14ticfl tillflATES OR CSISTROLS T!IE LPCI MUSE Ol' RHR 2,4

  • o ther. .

Trly neewired Telp Setting Romerks

  • Coviditlen roble Ite. Instrement ie ItemeneIetwee e (e) per Trly -

e systee (b1(c,)

z:

U w

1 21670 tpe Opens LPCI sinlesse reew line upon RMR (LPCI) Psey Flow Low receipt er low flow signet tren

6. (ts.T inches) both pesops and closes LPCI minletas riew lisse when signet free either pump le not present 1 O<t<1 seconds with less er merest power ' end g
7. RMR (LPCI) Puey Stort Timers espen receipt er emergency power, 1 9<t<11 seconds one itsen peamp storts immedletery, teve other three retlow in te seconds
8. Velve Selection Timers rencels LPCI Injection volve

, o

" 1 210 einertes Inittetten signet l l

y feet App lcoble stentters evellebility er power lu 1

to 9. ResR moley Logic Power to logic tystem Fellere stenfter CL P. .*

?

M -

w

_ _. W _ ,

r Isotes for febte 3,2-3 .

$ e. The co'lume entitled *fter. 800.* Is only for convenience so that e one-to-one relationship con One established between S tees In Toisse 3.2-3 and itee In table 8t.7-3.

C b. N eny CCCS sobsystee 8s rep Ired to be operable by Section 3.5. ther,short be two operable trip systems. O r the regtelred pt-ber of operable channels cannot be apt for one of the trip systpos,

$. place t Inopersble thennet In *he tripped condition or dectore the essocietett CCCS Inopersbfe hour $ tr the rmf red ptsober of operable channets tennot be met for both trip systems, within[he declare the essecleted CCCS Inoperable wIthin 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

i II (C) M (!,pAMML r14A1 PMi Mrnt4Eb From SER#tC6 FDL tP TD 0 3 H M S Fet REGN Reb SudetLt.AAE. TEsrA 8% Mor M u

L.

M Eb I M Re h t MWebEb WFactrM CW##s3ELS b { f hYY(Oh ,

^

b O

o 9

febte 3.7-5 ItesTRtfretis1AtIett WetiCtt iItIT t ATts Cit Cost 79 tot 3 Coet SPRAY Q ReF. Instevennt Trip ReetnIred operobIe Trip SettIs'g M ds too.

Condition 8 (ej teomene ie tvere ChefineIs per frtp e SIstem (b h Z

! U 2-113 Inches Inftfotes ts.

M 1. Reector vessel Water Level tow tow tow (tevel 13 2 stigh 2 51.92 psig Instantes ts. Atee tattletes totCI

2. Drywell Presstere and LPCI ende of RWft swf provides e perintsstwo afgest le ADS.

Resetor vesamt Steen Dome Low 2 2472 pstg* Pernt s s t ve to or=n CS

3. Injection wetwes.

Presserve 1 S 3.1 peld ternetters integrity of CS

b. Core Spesy Sperger pa rtvig Inside vessel (bet **sen Offrerenttet Pressere grester (tems twga t t we ) than the nozzle end core shrovd),

the nor=st Indiented P at W rated core pnwer to and rtow.

tow t 2610 9pm estat===e riew bypess t Ine se

5. CS Pt*=p Discher9e tsow closed when few flow signet (2 4.13 Inches) is net present.

teot Apptteoble 9enntters evefIobttIty ol' g 6. Core Sprey LogIe Power 1 power to Ingle system.

K, istfore 89entter d

8this trip function sheft be 5300 psty.

n e colo.n . tttled . . . . t s .f ,or _ f e ce to ~ t e o.,e-t_ re tat t_,,lp ca., be estabt s, d 7-6 erut $ tees In Table 4.7-6.

3 g

2 between Stees Ivo Tebtr

~

b. When any CCC\ stsbsystem is I to be nyerable by Section 3.5. there shot I tro two operable trap systees. tf the regeet enseber of operable channets cannot be set for one or the trip systees,  !

y%

w gg ptoce tfie Inoperebte chonnet in the trtyped condition or d*ctere the essociated CCCS Invoyerable Oy wi thin .Vhoors if ttie regelred mistrer of operebte chefinets connot be set for both trip systees.

dects its essecteted CCCS Inopersbee within 1 howr.

Alore only. 12

~

C c. Mien !noperable, vertry that the core spesy differentfet pressere is within tief ts et toest once per l

, 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> or, dectore the sesociated core sprey toop inoperable.

I w O

~

Q'1 A c.pngm. ran1 se Rmweb rean SgRece. FDL 09 TD la  ;

g045 pot Rs00iReb SUME8Lt.MfacE. W$rs% Mb Wor SE f.ndStDsREb INDPERMPxg P'20fabeb SWICf EM NN3 5

,r

  1. ARL A%UPA6 to En$vlG Yn s T Rup F0 Men pA3, .

febte 3.2,J - o RElf tRost 8Fistl709tllgG tRSTRUpstMT AT Iost WhilCM tattTI ATES COstfRot. ROO BLOCats 5 -

1,1, ne tred **=ortis M

I t.e r.

Instrument condIeten operable Trs,settino ,

wo. Channets

, t.)

teomencietwre .

per Trip l g,

4 syste=

~s. snareretsve trip pa 44 by [

met praticehte  ;

snet inoper.ative 2th)(c)td)(h) switch not en escrete, power l

1. supply vettege low, end etreert boere not an es cutt.

feet rusty inserted This rwnction is bypessed weie., j  !

not rusty enserted 2(b)te)(d)(b) the co ns ret , s e e tr 3 c,.

er the istpos er, on r.ny, 3 er ebove.

i l Th8 s r"nct son t e bype some weieri g Downsce?e 7tb)(citd)(h') 23 counts /see the count rete se >t00 ces  ;

or tb. sness era en range 3 er {

etove. '

i l

specste Fib)tettd)(h) 510' cotets/sec Mot appesemble snecerettva teve produced by t R90 Ineperative 3tbitol(Q switch not in operate, power

2. suppsy vetteve low, or ce rcast l bos res not sa c a ree f t, y i m spot rut ty teserted only regetred in the pervet end [ l mot runty Insert.d 3(b)(d)(b)  !. tert a seot stenstry esodes. [

! Trip bypassed when tiset en stevige 1.

Downseste 3th)(d} @ 25/125 of* ratI scale Migh Flux 3tt itd)(Q 5106/125 or rett scete 4

Not opetteoble snoperative tesp p C 4 by switch  ;

3. Arm inopers t a ve 2tteltel (h) not in operste, powe sepoly volte9=

f i

tow. or ca rewst boerds not en b etreott.

i S '

il=  :

e+

2 i

1

[

w O ,

m j

h I

Tabfa 3."-7 ( Cem t i med )

X

>= e 4

CP X pegeni te<f pre r ste ve Tr8p Cnanaets c- Paf". Cnnditinn per ie c Trip *.etting ermo rt s 3 Mo. Instrtement W f atore System e (s) M*s t ev red e whi te r* ' r'tralr** iew

" t w scate 7(bitei(Q 23/ t.7 er rus t scate r ve- rhysseg test Pt els"'?rh* *ic a

L herM pre . re snei~r er e f t er rett +*46ews at en-cr trvels pet it rwceed 6 Pvt.

T Pw e s revne t Ion is bypersed when the 7(b){ e)[M 517/175 or rusI sesfe 9amf* %i tett as ptoced In the RJst 17% Fftew position.

see seeetriesteen 2.1.A.1.citt I 7(b)(al(G) 50.53 W + 50% - 0.58 AW Trs, rer [

Upseste derinitsens or w end aw.

seves settsag Is an pareegt er reted power. not reonsred w*sto perreru s t tew power phys ses tests  !

et stee=pweric pressure doesng or i etter ref ne s sag e t power seve e s ret l I

to e-e**d 3 rwt. l Yn3 sneveretsve tes, p w ueed by swlteh fnoperstive t(e)(r;/h}'

wot oppttesbee not in everste, eerev4t beeviss not

' * . It . RB94 sn cerewit, rests to nutt. tese

p. then reewa red ve+r er t.pRM enpots ror rod setected.

pawn,ess, f(eptr;g 294/125 or futI sense f.

P

$=

b

'.I OD M>

'm

" v.e Oe ;

a N

N e

Y Te e.

'M N

e e

J i

'2!: t,..

lj ;1 r gn[p:r?.! . l)[3 111 t.Li 3 K liit

(' I!n 'l 111 I! rl[

I Has .

,,a11. -l !!!,!!$.! fi t s s!3 t*

- l 5}\tp:ti 11 .I' p< > s .n.-

s . a f-

{:I;t,tle I i!! TI t  ! !}

t r sri;i t j i i "3

a. :I I", .

w rl :ti e di li Lil:,:iri,.i , ilt o,u t(

j!!Js! e;1i n

L s s ...

I!! lIl -

-ii

,3$ ss Ii!

I E9 R ss ii1j t' t: r ig

}

y 5 y g.I.I.* ,

1 t. . . . = . .

i.

. a c ,

!ittf r irr t t: a

-!n  : v Ildllp If Il  !

. a

z. - - -

e ;s l .

e .: - E e "1:at

~

!!1!!!

i l1<l.!l!I_!!i i ,i -

a

!* 5 jI!"3 II 53 li ilui!*333 il

( ,

. I .

l l

il Is{i -

t *

. 1 a..J

F a'

luTCH - UNIT 1 3.I'1 64 Amendment No.105

lentes For 1shte 3.2-7

-4 C e. The coltuun entitled 'Ref. No.* It only for c.pnvenleace se that a ene-to-ene relatitmshly can be eetebtIspeed between Itees In inble 3.2-T and Stews in tabte 84.2-F.

ther* thef t be twe everzbte er tefread syst*=s c b. For the STAsti & Mot STAsectw positten er the Nfe Switch,I F time ret *I re=*-ts estsht t stW try 19** rettaan enswet b* met fer gme Z rer cris potent tot tely condItlen.

5 er th* two tr8p systems, the cemfition ers/ eere st ter ey te sewm days reewided If that dertnf t ha s cond 6 that t sen2f0==

asts f ewaper the crersbfe systro is ftenttienaffy tested f ame-d8ately sad dally thewarter; j

~ than seven days, the system Shat t tre tricted. f f the regelve*ents established by this cettwwt conrwJt t*

    • t Ior beth tr9y syste*S. the systeos sh.atI be trIcred.
c. One of' the four SRet leputs seey be bypassed, tht s fwnetten is bypassed whm the 9%d*
d. The Setet end IR99 blechs naco not be operebte in the Rim Mode, SwI tet Is pIoced Ia the Rtrue cesItion.

es e.

The APRyt and Ren red blocks need met be Opera $le In the Start 8k Met Standby 8%de (Eveept ??% Arte pod ps e t),

r.

The Rfet Is enty regelred when core th*rwel power Is 23t4 and the f 8*8 tine conditten defined 8n Setlen 3.3.f est8sts.

and Rere*8 M&de when any centent red to This trip is Operable in the Orerstf on and Mot StPmfby Mnde.

wlthdrsvn. Not opplicsble to contres rods removed per specirlestion 3.to.t.

9 se h,

b CHAWp3CL flent PKr Reinofth reorn SEEvKe. Foo VP 10 6 140M FDL REGOIRED SL'UEILLANCE TESTi% AP3b M0r PJE

~

COSODGREb INDPERMPxt P2eftbfb SWFACsEMT CW4d4ELS ARE MM8LAPAK 70 EnfSuf.E VtE TRpP FvMened

{ (*) $ttE LN AM*Itt met be Eerstoverb FReen scuecar poc_ op yo (o Hospl.$ FDL kl.Qa/r DXb StMf68t.LnslOL TES Tis.1td AA2b aler PA~

s t.De35 s bE.R Eb I AlOPEtA btE. {OsTMbkne04L OF COnlitDL ZOb3 IS g Alor NLivis1TEb hs)Lonly REQUtRGb StilitiLLeslCE 7t$TsAns, 3 . .

,,._m. _

'r i

............6

.. l t .

2 feble 3.2-8

.c 9tAOIAf t0st "'Usti?ORitIC SYSitMS letlC88 L1889Y RAetOACTIVITY trtitASE

$ flamer 6s O

I Pef". Inot818eent Tr8y pageired Trfp Settiv'T ActIen to be teben if Opereble there are not two operebte .

s tee. Centfitten or tripped tr8y sy* tees t

(e) senmaneIe- Chenrie t s teve per irIy t z NX.Ste* $bE

G i* w At e weIvs= not (e) {d) 2 mesesfee, er 1 .
1. Orr-gos UpsceIef 1 (f) to ewered the teawnecote end 1 Fest treatment Dmetsco re esystete, er 2 down-egtstys tent er Redletten scotes watt teetete 94eni tors tPos* stsch re- the U AE err-ges lesse Ifelt trwtteeted 8n tavIrea=anteI Tech spres Ceet* reheat trug opere- 2 specote wtt8
2. Dertret trug fleer tPysemle 2 At e volt'e rset leetete the entendery

+ tufteest Vent te ewered the 18 ens, if in pregress.

IsoIeto the secondery cente8risent end RedIetIen etreeIve tent et' inittote the stesedlPF the stock re* centelnoont end stort

. De e n t tNs tense tielt the stendtry ges treet- goe traet - t erstem IeMIceted in ment systee.

  • fevvIrennente9 Teet* Specs e

tseIete the secondery 2 opeesle wIII Iseieto f y 3. Reecter 8849 9peceie 2(h SM er/tte centalesment, start stend- the serendery cen-

. . tutseest Vent t.y 9e3 gr,etaant syst**. telnennt east Infttete t to podtogten coese primary centeln- the stendby goe

E 9eerit ters ment end e t wetves. treetmant system.

storer to Speelficottens 1g9ecote er 2 dews-

! Centret Rece Depwnsesle 1@ 20.013 er/hr ecotes will metoote 4.

intene 3.17.C. end 3.17.D. the suCPTCS 8a the e 51.0 er/hr j Redfotten fit centree reen pres-94entters serIretle** mede.

1 *

+

  • O.
  • Z

' .O M

he o

M r.

O W -

d M * .,,,

I Table 3.2-8 (cont.)

r ,

aceir99ts n

3 SeeF.

tee.

Inottissent TeIy Conditlen inesse4 red Operable Trip Settlay ActIen te be tthen Ir 19eere ere net two operable E

(s) siguene s s- Chennels er tr*pped tr8p systees e tore per Trip ,

t Systee (b) e 2".

--e a g

% seeln Steos t.ine 38 8 2 ) 53 t ees f ootste tha eactionicet One trip per trip RedIetien seenIter eenrueI FwI3 escwee pump end 19ee eogIe eystme viet [

power becbgroused giend seeI condenser 8toIeto the

"* ewheerster m W eest woewum l pg end 19ee giend sael condenser ,

ew'esester. l

e. The coIwon ontItted
  • ster. see." Is onfy for convenience so thet e one-te-one retet8onship con be estokIIs* sed between stees in Totte 3.2-8 end itees != Tebte b.2-8.
b. tihenever ttee systees are regelred to be operette, there shell be two opereble er Et 8pped trip systees. .

If this connet be set, tfee 4redlcated oction shoti be tuben. i F c. In the event steet beth off-9es post treeteent redistion monitors become 8vesperoble, the reector shet t be i ro pieced Eve stee Cetd Shetdown within 2% feeers maniens one monitor 8s sooner mode operable, or edegeote sitere'ettve l eenitoring fac8 8 8tles are evellette.

d. Free and Mter the date that one er the two eff-ges rest treeteent redistion moniters Is mode or teend to be Inerereble, contlewed reector power operstlen is perelssible during tf*e newt feweteen deys (the l et te%ebte repelr time), provided that the f reeperable sent ter is tripped In the downscete positten. i t
e. tilthin 2b teeves prior to ttee plenned stort of 19ee hydregen Inject 8en test with the reocter power at greetee then 201 reted power. the nevnef 9eie power redIetien beckgreend eovee ead assec4eted trly setpoints soy be cimenged bened en a calculated ve toe ef' the rodietlen te ,el ewpected during the test. Tlee techgregend redletion levet ered essecleted trip setpeints soy ee edjested dering the test based on olther estestations se messerements er octest redietlen seve;ts resultireg Free .

hydre,en snjection. ttee beck,reisnd rediessen sevet shota be deteresised end esseeseted t-sp  !

setroents shot s be set within 2b hours er re-estett sshing normes redsetsen sevets etter ce=ptetten i ef* hydrogen eftjection efed prior to estebllshlfeg reecter power levels below 201 reted power.

(C) A C64AnJoltt st1As be REmc4Gb FtDn1 5GlieCG M C- up TO Z nocLS Fct kECV*2 G 30C2titi#C' TE%rtM% A Mb NCY M C*AS*bELO 'NW"W ' M C' # C**A*#"O MG

  • A # #

g es33stU T9G Tls P FvHcnod. ,

o i k 5 ( A C SI AstMEL. 11M t hG T.EtnOfCt Furrs sEf deLC enl. VP 79 & pcyg,3 pag _ ggny,ggh Sug ggtzgpegg g Tt3rtats A a3h am1r SE connahELEb IMOPG Unt G sMEe*bCb SoffgCogsyr tslnna n.1 ntc Avnttgehtf j

~

Ts GA!$Ut.h Tote TE t ? fildCT'ON. l 9,

o, .

e I

fable 3.2-9 IN57#UPtstTATIO'snat1CM IMITIA?t$ #ECIBCULATI(pt PUMP TRIP c7 I Ref. fastewment Trly me , wired Trip Setting Remarts' s No. Coadition Deerable c (a) Memenclatwee thanaels z

$ per SystemTrop (h) s.*

1. Ret.'er Vessel Water level Lew (Level 2) 2"*' ( 47 laches N,0 power mest be red,ced aad the f

t AIWS RPil"' mede s=4tth placed in a mode other than the RUN 9eede.

2. Reacter presswee High 2'*" Power mest be redwced and the (ATW5 RPT) 1895 1 psig mede switch placed is a mede l

other than the Rtpe feed,.

3. t0C - WPi"' 1 forbiae Ste , 2**"" 1 Stop Va1.e trips rectreviatica p=mys en
  • valve C1eswee s191 Open turbiae control valve fast i
2. Teebine Coatret 2. Centrol Valve efeswee er stee valve eleswee Va1.e fast Mydraelic when reactor is 9 30%.

Ctesore Press Trip point Y

?

N D (a) fu celwen entitled "Wef, see.* is caly for coa,eeicace se that a one-to-one relatieaship can Se established between stees in table 3.2-9 and itees la fable 4.2-9.

(b) Wheaewer the reactor is la the SUN feede, there shall be two operable trip systems for each parameter for each opes-ating retireviation pene. If the reewired member et operable channels caanet be art for one of the trip systems, place the laeperable channet in the tripped coadities or tate the indicated acties within 14 days.

If the regeired number of operable chaaaels cannet be met for both trip systaes ta6e the indicated action  ;

within I heer.  !

(c) Anticipated Transients Without Scrar - Setirculaties pony Trip a

g (d) End of Cycle - Retietolation peep frip 5 (e) Either of these t=e TOC - WFT systems can trip both recircolation pumps. Each EBC - WPt system .411 trip if ,

2 2-owt-of-2 fan tiesere signals or 2-est-of-2 stee valve signals are received. '

o (f) The cegelresent for these channels appfles free TOC ~M tee /t to EOC. N x , ' F --- ' t- '

N .0 1 . 5 4 0: ? ': _ ; t: r :t " : sm : 70 T "' ? ; n 4 :' * -- .. If one EOC-arf system is 6aepera63e for 7 feeger than F2 howrs er if both ESC-RPT systems are timeltanesesty inoperable, as orderly power red.ctice will hw l iMiately ialtiated and reacter pe=er well be c3tt within the sent 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

t vsm be (g) Either of these tue AfwS-#FT systems can trty teth reclecetatica pumps. Each AfwS-SPT systee will tr6p if 2-e t-et-2 reacter le= ester le-et siyials or 2-owt-et-2 reacter high pressere signets are recei co.

k i

NDdf3 M b@lReb SuMEILtA4cc v$r gg 4923 pos- E ,

tosoststeb suonsterxg r;teiskEb WFscswf CHna>1a.s

~

, ARE Me80AFNS 7D EM3t7f.G TdE TMe7* F @ jct 10a). * '

M Table 1.2-1p x

l'titRUME88i AT10'l W4ICPt Mostt TDRS tt AXAr.t IvtYO Titt tistvWEtt .

N o

  • x wen.e re,e ener.hte e ner een,  ;+ r_sy ,tc.. h ) _settImt, Pfoerbs f harma t '

J ej _ toitreem nt lc)

Te h spec Yhe limiting Cend8ttova. for f ( b)( 4f) operatlow or the teek gre

[ 1 Del t f re i r== -n t Drain 5eser Ttow int 7qratne 3.6.G.I.

Detection System fore **vfd M o Teeb *aec In section t.S.C.

DrywetI f t eor Pro.n Sew =p f(h}f 4) 2 trow gre ,.p.

3 <. f, , g ,

f(d) (e) 3 Scintillistion tetector for Monitoring Air Partictstetes (e)

  1. Scintilistion Detector for f(d)

Monitoring Radiolodine Cpt Tesbes for Monitoring 1(d) (e)

  • )

Proble Geses o.

The colteen entitled "Ref'. Sto." le only for convenience so that a one-to-one relationship con be estebtished between stees In Table 3.2-10 and items in Table 4.2-10. If" this connet b.

Whenever the systees are regeelred to be operable, there shal f be one eperable or trf pped system.

be met, the leidicated action shelf be taken.

The two riew Integretors, one for the egteipment drain sesor end the other for the rioor drein siemp, comprisefor onemonf-eesic N c.

Instriement system.

Two soditim-fodide scinti t tetJon detectors, onesensitive A bete for monitoring sir partictstetes GM detector and one for monitoring noble k* toring radiolodine, comprise two basic Instrisment systems.An e t ternete system to deterwipe the teokege rtow la e meneest getes comprises e fourth basic Insteoment system. This Else Interval will determine the leekage flow system whereb/ the time between step peep starts Is senitored.

because the vottene or the stamp is Imown.

d. For administrative information; performs no controt runetton.

re i t evre s t o rm w i l t be set be lev beef *gM

e. Illgh setpoint eiere witI be set three times ebeve background radiation, redtstion. Speelric values will be estebtished disring system startisp.

~ '

Hw.5 FWL Rsem.eb svuoru.mAE rssrs% Mb por mE

= CoctbsREb INC&GRAPx( P20fabfb 50FFff.IN1r CHA#hLS
k. ' au manand a mw.e = m,,. memo,

=

c-O Mi Ml .

a h

_ _ _ _ N

t i .

6 l

  • i i

l totte 3.2-19 tettmosEFWT3tttet tsutsce Peeft9t3 SeervttttjasICE teF9Eeuniteit

-4 .septeo.

g me. e,eeente 1 me. tenetnsenet teetes==et tyoe sad c>ea se mease mettee assocee g tes tel meeeter w .eet wet. ,teeet e sneer.ee -tse te see- ter ist i

-i

. e e fasteeter -95G" to *ee" tet get ,

5 Woesed teeter towel

^

f smeecese -3t?* to -St*

-l 2 9 t- tester -tet to -o,e tel e 1.d1

- e

~ ete

. j . .se - - ,9 t t m ee e to 13ee es tel e 11

i e aseeeeee -Se to a9e pets tel (#3 j j 8 e erysett pressere 3 errostt teseeeetwee r esewedee e to see*r ie3 e3

. t 6 sesoseestese tsiemeer air vesseeetere r eseecese e to see*F tei td3 a y 3,,,,, 9,,,gg,,,n,,gs,,,,9,,,,,,,,,, y -

meceeder S M 25e*r tel 881 S weseeless teusseer unter tweet t SWteetoe e to see* te) fdf I

  • eseeeeer e to Se* tettet (d) to

! h 9 eseecoestest tsuoster Prosesee 2 meeeeeee -Se to *9e pett tet (#I

'* 9e aos poef tlese feroversteo systee top 933 1 Pe west teleottg ttgeste tel (d) 11 seydesesse ord soyeese assetyvoc t poseeeee e to 3 (83 to) - l

  • poet tem Redlettest StuetterfM Sretene 1 #seseese tel 181
  • 12 t M teeter 1 to 19" R/9pe (el (d) ,
  • I3 e

el tofety/Retfor Delee 90ettlese Frtesey 1/ Wee tueteettg tight et 35 eetg (r) .

19 tweester b) teresproeller vetie peeltleue tooewery

  • masseeee e to ges*r try
  • k I *
  • 1

! tved teetoe

-

  • If I *:

".; U t

-W eew i' .

-4

- i *
  • 2 t i-i - .,
lCe ,,1 ~~

2 -Af. L4 A -ka.- 24k- --A,..,b--4+_k--n-.-A---*----+-n .JA"&a--6 - mam 4aA -

--exA- a s,2+ -4x& - + 4sa-y I............ .....e.......e.. . . . . . - . .

1 . . .. . . .. . . . .. .

C .

i ,

=

w e,

  • 6 e e

1 .

y : e.: : :

( ,,

I =

i ($ :a i -

r. s i I 8: . . Al Al kk ,

y

_ i ;i . ii i' h i*r t 18 a' a, ,

! j' , @ > e n

g-a t =.

g. 5 Ulj .

. i I

I I I e1e: l$i f

dI U I

,J"rli J I>

L .

( y-is

-a 11- 4 P

f**

i I . e i

\

hii KC t C mm - mi i 3.r.ru ment =, m.

ee 0

,e * , , eo em o e e . ee o e e *e se o e e e em =e+ .e se see - e * - ese e.,,, .we, e ge e n e e,s 9

f 9

,- _ , - . - - . - , - , - - , - ---._m , , - _ - , . -

. IBUTES Tost TASLE 3.2-11 (Contineed) i h tilth .the plant in the power operetten, storttep, er het ehetdown conditlen end with 19ee ceamejor er e j o g.

Z opertbIe channeIs test then the regeIred tporobIe chenneIs. InItIeto the propievweed e8 torneto

, method er senttering the oppropriate peremeter within 72 leoers and

C' 1. either resters the Inoperette ehennel(s) to operette states within 7 days er the event, er ,

-4 2. propero end debelt a speclo t report to tirs 8EftC perseent to Speelficetten 6.9.2, within Ste deys

p following the event eestliniseg the action token, the coese of the-Inepersbetity, end the piens ,

ered schedste For rostering the system to operable states.

h. A chonnel contains two detecterst one For mid-renge noble ges, and une Fer high reage voobie T**.

Dette detectors most be opereble to consider the cherwuel operebte. ,

i I. Instrementetten theiI be opero*eIe wIth centIsmees sempiIog copebIIIty wIthIn 30 minutes er en lg

' ECCS ecteetion desting a LOCA. Ms Sectlen 3.T.A.6.c for ttee t.tMfitEIG CD880 tit 088 F0st ertRAf tosi.

(j) A c.wact. <mre tw ectweven reem seu cc rec va w 2 nex3 (excen. ,,,  ;

Irrms 11,14 adb 17, eletd tsd BE 4 M d F et_ h O us2 tb SultWes u.anx.c 1 m<t% - ,,or = al tS.-> ,umtm..

s.s l

i b

i

. l. ,

  • {

w L

w- -~-

^

. O , .

  • TAltLE 3.2-12 8RSTRtps[ItiATt015 la?Iof fItiTI ATES TIOE DISCOspeECTI081

-4 of OfF$ITE POWER SO47RCES i

S .

' Aetten to be Tehoet moonIred Channeis Ir the s>==ber er e Trip setting **eeared orarebse

= ner. see. tastew nt operable (dI) segnired Che y tel s A Lfeej 5 tel (b) Channets To Trip _

e 1 4.16 kv toergency Bus 2/pos 2/ Bus greater then or ogwet to 2900 (c) ,

3 19ndervoltage Relay volts. At < W wolts ties delay (tess of Voltege wilt t>e less then er egeut to t p 6.5 Sec. i

. CondItIen) 2/nus greeter then er ogwet (c) o t. to, t 3290 2 Is.16 kv toervency set 2/ sten 1, ,er.otte,e ~ ,ey ,cits. At 328o dete ,

  • i will tre less then er equel to i (Degraded Volt *Te .

1 Corwis tion) 21.5 sec.

3 sectES FOR TA3tE 3.2-12 t

s. The toIseen ontIt ed "Ref. 800.* Is on5y for convenience so thet e one-to-Eve: mIetIceship con be estobIIetted between 8tems in Tebte 3.2-12 end Stees In Tebte 4.2-12.

se

h. This Instriesentation is req +etred to be operable disring reector startesy, power operation, and het stootdown.

U c.  % tith the nneber or operobIe chonneIa one Ieee thee, the regesIred operebie etteveneIs, operet*en sey p.aa f j w tentfl perroceevice or the newt requeir=d Instrtement rewictionet test provided a trip signet Is pieced in the >

tese lock-o t res.y logie ror the e,pliceble ie.operebse etie,inet. ,

b C.M493p3Et, F19AT M %fflDfCD FCOm SthlC6 F0s. OF TD [  ;

i

. 14004.S Fef. 5Q0tReb Suddff t.LM4ct. W$r:4 Ap3h Alor M l

j  : f.oceDsREb INDPERAP5eg P20fsbEb SUFFICIENT

  • CW4;fdst.S ,

I ft AR8 MM'tA M 70 tarSuf.E 74g mp FuMCrrea). l 3 t x

.R asume

~

i i

TAttt_E 3.2-13 j

g y

litSTRtSMEMTAf f ect WetlCM tellTI ATES tlIENCtZAf test WY 08tSlit POWER SOURCES I E Actlen to be Teben

, , BT the tensber er

Stegnired Regw8 red ChenneIs Rege8 red Tr8p Setting RagwIred operobIe j

f;ef. 800.

ta1 tnstresent ib1 operob e ChenneIe (d) To irle._ Chenndts ts_seet_l_eet ,

a -

i

- 1 Start tip newlt iery 2 1 Trip Setting (c)

' transformer 1C geester then er f less of westege egnet to 3290 g vetts. At 3790 conditten volts trip et' retey will be Instantenrees (no time deley).

N l'ofES test TA8tt E 3.2-12

e. The coIseen entItIed 'Ref. teo." Is enfy for convenIenee se thet e ena-to-one reIottenshiy con be estottIshed a between 8tems In Table 3.2-13 en Itees in Toble 45.2-13.

t i ,tas b. This Instrumentatten is required to be operable during reector startig power operation, end het ehetdow.

n ItIth the number ef operobte chonne19; one Iess then the regnired eparetIe chonneIs. eyeretien moy preceed

! e c.

y provided the retey 8e removed free its esse. Remov8pg the reley eccomplishes the some ection es en operebte o reley operating to open Its trip circult.

?

i (d) b CHAMML FW41 M %f31Dffb Fforn *ARVICf. FM. OP TD 2 I 4

,;as re. mooinen sousimme mn% +6 nor ex

todSebeREb INDPERAPxg' PRefsbEb WFICIEAff' CMddfLS  !

AR8 MM83 APJs5 70 EarSut.E TE TMsP Fv#c7 0A3

I
a * .

i E 1

M t

.M '

a

! 8 .  !

l _

- / v v  ?

. . w ,

a

febte 3.2-14 i IIISTWtpMfilf Afl000 DNtf CM Af985 Lett tett SET S/RV SYSitte ,

4 CD WeegoIr1MI operette

!- e IrIp ChenneIs g CondItIcn x Ref perfray(C) 1rly Sett I ng M*eerts ins t rtament 88amene t e t e*** System y seo . ' ' '

flemeter vesset Stese Dome Nigh 2 51054 psig .

l - 1 Pressure t

Reller/Sofety Valve Migh 2/vstve 85. *15. -5 fie. St=8 ting condition

2. er operetten er tfeeser initpIpe Presstere psig switches le provided '

In Speelrleetton 3.6.W.1 P

[

l o

Fo i e

to ta' ,.

E .

i l i j

I h  !

I

! a m Mh l

" , e. The toIsomes entItIed 'Ref. No." Is on8y for convenIenee se thet e one-te-ene reIatIonshIp con be est Ie8ted bi-} --

i Items in table 3.2-14 and itees in table 4.2-14.

l l z '

1 with the regalrements ror tw mansom en-ber er ortamatt ch nnst, not setssried ror one tesp syst

! b. sen w ann,ermiere etamne in the ws,ced condsteen er deceare the esseessted system anoceresse withs.

,g the regolrements for the siensene nn=her or ortmantt chancess not satesried ror t.oth tes, systems. Qh- '

3 . associated system snoperabic within one hear.

! g (c) A cM Aowet. afWe Be Wenesch Fhest SERF 8CE FDL W TD h N0d(3 Fet- EQue R(b Su&cn.t.palet

  • TESY**ta Anik der P)G Loasebg.1cb sdD>rRA W hWe b% WIC8W L*Massseu natt moneM  ;

l f

TD Epsof4 THE 71.t.se roascwoa.  ;

l i

.' t  :[ .

tl['l l lj I L P ,i,  ;

l g e n e

e e e e e e .

e ..

t l l l t l l t t e y cy cy e ) c y yc cy r y F a b m t

c c c ( c c c s g g g t g g g s s o

n a n h h a o h n wh C ee

,l i t

t t

i t

a o t

n t

n e

t t

e e t

t t

n o

i t

a m

ow .

tit eF w

a r

e e

r e

r e

m m r r ap pe m r e

ue p p 3 p r.

c t

nm ea o o o p 3

/ y 3

y e

/ /

o y /

o w A rar m e tt sn nI

/

e c

n

/

e c

n e r

g. ev r

e v

ec n

e c

n r

e v

e c

n

a. IM O O C E E O O E O wm ms, r.

e t

u

-=

u t _.

os I

su% l

-= t s

e

.=

.: T y x

a l

n E C LD f- f.

t

. o F E t E iy tc 1

F.

T LA J t

f. N 7

R R R T

.: a A cnL ne A0 U o )

A Ad f

V a u b_ 0 t Q g e OQ G

.=

T qI

t. F e

r >

s e

s

.* a e k m ee

(

4

" . et r

n A

^

e s- e o [l

_ =- ve

. /e /m w / [M i /m p

i e "e, e e e e [e e gO tt 1 ._8, sn c c c-c c c c

- .- nI n n - n n n n 2 .

IM O o C O O J O 4

e

..= .

l  :

b e a .

T - .n y c a.

e t h t t t t t

.m k C v tr nT e

e f

l h

/

s f

i h

/

s r

i h

/

s f

i i h h s s

/ /

f i

r h

/

s e e e c e e e

.. mme

, m i

rs ti s

e c

n O

e cn O O c n n oe l

e l

n o

e c n n O O t I

n e

c n

O

. sn

= nI

i* f

-=

g

. l e en

.=

v eI e

- c1 l Oo l w ne p

, r) mC o o e

. t e3 e en l om t nt os m

o m ad tw F 7 ei e Wn So e l t l e

~. a d r e e e e Cn Cr .

l l t e n n n n rre rt u

e, eu s s L I i L

i i L L ee ea s2 sh e s sS e tf tr t e, e( r n n n er af ae Wp A-n e

V1 V e

P en e eo ee e e s, ut Wi D m w m rs rr l ti tr t te r re r

u ol eu ts) l e

St So S Sr om e s s te ot t

te t cv tse w nl ns n np ctw cr s ee eed y id r se or e ee e yt l e i l m aso e er aM

. n eL ero e

. I R( RPs D nR MP M I et f RSF RA r .l

_ oes l e 1 2 3 4 *) 6 ? 8 9 fsi

- yP aau urte 0M* _

_ .hrx ,

, EU p ' rM O o O e

. . +r 7

1' . ,' i

-  % . ,~ p Tatile 4.2-1 (Cont'd) instrtement Chark t ns t res.arst r** net f ore f Test ,In,,.trymment

, Cs t Ibe. tion

,s.,,.,,,.,,,c, ,

3 m n ~- r r.,,-, .n..,c.. .<, t 3 "[- (N1 g3 _,

g 1,3, _

r x once/ shirt eaca/isont1T afMig *pne-/ ,p.retleg e> ele 10 ter r C ==nt?P e

$ Differentist T & rstore r -- n. f /1 I ,

f' 11 Co * *

  • Vertr --

Once/dsy onec/ g si-t 3 va/u i D One*/er.retteg t y r , l

  • 12 Drywell R.df. tion _

850te ror Table 4.2-1

-to-o-e rei.e..n.nri, e n be

.. nie coim entities =r. =. . onir orr con enience te t .

e.t.btl.h d between item. In T.ble 4.2-1 .nd it.o. In Tebte 3.2-1.

b.

In.tew.ent evnetlen.3 te.t. .ro not regoir=d when the in.trument. .re not re,tstred to be operette er

=,veve r. ir renetisn.: t..t. are .i..ed, eter .w.

to , error.ed eraer to ret ener ,the ,

.re tri,,e4.

e 4

in.tr ent to en ,or.. e .t.t .

in.tr nt. .re oot r.,, ired to n. o,er ... e.o r. er

! , .. C.iine. tion = m not ce,. ired e ti f - c.inir. tion. .r. .i..ee, t,,er .i i s me ,orror ed ,rior to retor, ie , te.e in t-t to . e,erente i 7w , p _ _

St.te..

cv I,og (Igts 4.1-1 w h .n terw. of te 10. I noneehtteto m th re

d. cit tty t-, ._ .

,e 1,. ...et . - .. _ . .... ,.t. t. ,_, t. ..n.ds

('3 UWm Osw[4M w( = nye ormfo & Q a

~~smwe wo n orcet+w L

15 u m n h Ure s'0 % 3) oncef w w oarscet__m =. _. yfw' g a ,c,c e ,g N D ,, e

- cefcoc,yenTey.ege It, MmrTu .et>M Ed,aus+

- a neel M P

  • O W ops,J-cyve_

g g

: :. x w oxeI*n ' " l ? " .-Emme omjevenLLma w Q+ 4 C' owetnsp,*r- cocefcpe,yu g 4i gq wrc. %

cmer^ %p+h g -ge Oreq%@*r ,06/g7& gncejepern epto 20 h h digsrp,tssum Orte/sWVi- ii

, Once (m.p+ Ore /cgwd*t D OK ^%y'Y .%rJ&

-. - _ _ - _ = __ _. .- -- - _ . .. . ._ _ .~ .

n b)) p.-)pv>& (c e  %  ; r> ~ ~ % ~> :

  • y ';c.,.;_i,,,f.> m i

.y *  ! c)r ckr e

.~.c.

i r=1:  ; -' ' ='{ .: sp . ,e

  1. ~

. Zi .

Wrn. h Ue AP Celouh

% f a s; 9 y oncefM e d f g w i w' ie l

i

-RcIcTuse Exkusi cue [shiC+ Once/,L"X" __O e e/ opera h ople. l 6 r g wekyT<essuse ""

mere e sk cwtswc+ orce once/ w h eg e -

4

. 13' ckamber- l<es ,l A* bien + Te@rc ,

N e/ N 7 0 " d @ V6j cwcephp ze pg*gsi*

,m u ur  :

_ . Temy> era _bm ._

O t I

i i i I r

t l' l L

i i 1

4 .,

I i

i j

l, t i i

i l

l s

l

. -- .- . . . _ , . . . . , I

Notes for Table 4.2-1 (Cont'd) - -. dg h rom other SWR's for which the same design Instrument o rates In an er:8 rtmeent simlier to thet of ' -

-4 M P- 1. ' The fsl f ure rate dets must tm reviewed and approved by the AEC s,: .or to any change in the j)

Q ' ' ~ ~ ~ ~

8' once-a-month - f rittuency. -

^

c~ This Instrumentation is exemptet* Free the Instrument functionst test definition. This Instrument

-2 e.

'fuactionet test will consist or Injecting a simuisted electrical signe t into the measurement channels. .

a L Standard corrent source used which provides an ~ Instrtiment channet st_ l gnment. CsIIbration using e l,

radletion source shall be made once per epersting cycle.

l Logic system ftmettonst tests and simuisted automatic setustion shsti be performed ence each operating cycle for the following:

8. Reactor Wate:- Cleonor, Isolation
1. Mein Steam Line isolation valve;
9. Drywe t i itois;fon veives
2. Mein Steen Line Drein "sIves Reactor Water Sample istves 10. Y t f wi thdrave l P 3.

90 45 . RHR - isolation Ysive Contml 11. Atmospheric Control Valves k

en Shutdcrsn Cooling Velves 12. Stamp Drein Vals ?s 5.

6. Heed Sprey 13. Utendby Ces Treatment
14. Reactor Building isolation .
7. Drywelt Equipment Sump ,.scherge to Rodweste ~

The logic system functional tests shotf include a esf f bration of time deley relsys and timers necessary for proper functioning of the trip systems.

e W' w g -

h

J j' l \j;l\;

}\\1lllj1lll l f J ,

jI l l l

^

V n e

e e y p t

t e l e e e l l l

' l l o

f ey c c c e cy y

  • s y y y Y

- )g c c c e c c c C y

c +P t .

g g g g f g g t , n n n n n n n et C et ee I

t i i i t

a t t t

t e

i t

a I

t e

d e ra r s

trt nF r r r r r ~ ~

e e ep -

pe pe e e w -

R ma t t rs ti p

o

/

e p

e o e

/ / /

e c ce ce

/

t e

e

/

p o

e

/

o e /-

M' h sn c c c c ni n n n n n n n n IM O O O O O O O t

e .

t o

t n

e m t u s

" , t r e T

I s

n l e py [-

n Q r

o f

y e

t oy tc en me1 at0 4

d

  • gt g "

y nI F e1 - -

eC e ni

~if  %

eP tr gM nF e

rs fl e

usu a

eu l

t n

e b

i. .

~

?..

9-

?

f~

c ru a ti rm /m e

/

e f

e

^

e

, /

e

/

e h

ut sn c c A c c c c n n mn ni 2 I o iM

- nC n

O n / n O M O n

O O o "/_

2 6

Mro i

n ., .

t e es t e b tt y e ee kc 1 rl cn .

bt ee Ii t n Cq hu t f

t f

t f

t r

t f f i

t

" fc eI e I i i i i h h

  • C h nF tr h s

h s

h s

h s s s 6 "'

dc e / /

e

/ /

e

/

e

/

e y ni eh uw mn e c c ne ce r c c t

s W ro tt sn' ni n

O O n e n l f O P

( O n

O n

%' h T

e IM l

e n

o f.

t e

I e

v l

e v w n~

u

~ f n

u t e.

r d

e f

e.

r l

f e

4,/=

~ ' ~

, e t e e k

h c

e W

o t

e s

r e

p s s

r o v x h u n o

t W

a h

g r

e 4; V C i c

I u O E t l e s c e s s s e e e s i e n n S s D r

t n

e m

u e

e V) P b br r i i r 2 i u ur ur r ei l T Tu sPu el re me p

P e

V1 p 8 m u

r s te eI te t ev I s I s cv I c

s ee C Ce Ce ee C I

n eL R( D M NP MP F Pr Pr eL F R( M Al' -

/ re0p.j I31 t 8 1 2 3 4 3 6 7 -

1 .

f e

u b. O.

h 3gn% s c .

l a- .

~.y!3 >d=f

= =.1l 3

lilll li

l' l I i,

n o e e i e e e l t l l l I a cy cy c cy cy b

i ry c c y

c c c v l g , g g s g a s- n " n n h n Cg i t i I t i e t t t t n t tr) a e a e o a nFc r r r r m r +

e e

( e e e e p

e p

p p p 3 mn ei* o o o o o rm / / / / y /-

ti sn ni e

c n

e c

n e

c n

e c

n r

e v

e-c n

e n

o w

iM O O O O E O N e

b n

o t c s p e -

T l

C i h

s e e n n  ; l o o 0 c y

i t

iy tc 3 c s cn 3 i ne 2f g e uu ( n r f ql -

i eb - t e h a n trI nf e

h t

n h

t n

h t

n h,

'n

[A t n

r ep o

mm o o o o M o o

o t u

) m m m m m t d rmti / / / / / / -

e e e e - e e e

't sn c c c c  ; c c n n ni n n n n d n n o.

o IM O o O O 4 O O e-2 C 2 .

(

t 2 2 a3

- - h 2 te l 2 .

4 y 4 ob kc sa e cn e T l ee . l e b hu t t t t t b cn o cq f f f F r e ni T e i i i l i T e tr h h h h h is nF s s s s s r o se nm e / / / / /

mm e- e e e e e e f vt uu c cn c c n

n o

c n s e aI

. rm n n O O N O n

M o

e cd ti O O n sn t o ra ni M o IM' f2 y2 l

n4 o

e sl Ib s e a e

r e r ~

".T A A on ._

t Ni s

ue er re er e r

e .s ar bu b g b r

rm ee hu mt e a m e xs ea e e r e er wo Rt _

n Es hr h r o h "i C ot ere Ce pt u ttt I

  • S Pi dn _

nP nm nsa nt n ee _

t m i oe oir el oe eo l e _

n e) te iv glM tw ew be iT I te e rg s snp ev se it m to ua st sem ne sL oe te u Sl Tr en ere ft i

e rr Lr u

nb e

r F h re ret pi pr e

dk pe d t- I( I p Il s C Co pb prr nn pt Ci ne _

n PP Pl um uii oa ua Pa mh _

I HA HD SA SDA CT sw HF us li ol cb a

et hs Te v

.) '

f eos 0 1 2 3 4 5 1

6 1 s

  • RN( 1 1 1 1 1

[

'otht o a _

  • gynx e ebH -
  • axPuG.s. _

,s p _

~~* - ~ m. -

,n tietes for table b.2-2 (Cont'd) .

E

-4

b. fastrissent Fteietlenet teste are viet roeuf red wInen the Instremente are seet resef red to be overable er 9 ere trfpped. flebever, if fossettenet teste are elseed, they shot f be porre-med prter te retservelsig

' tIso f#stetsment to en operable etstes.

. c. Cef 8Dretfone em seet regeIred whose the Inotessente are seet regesf red to be operobIe, feuwever, fr

-e eelfbrettene are elseed. they shaf t be perfereed peler to returnteig 19ee Instetsment to en operehte states

d. saftfetf once per mont e eecordtvig t ce b.f-f witte erwei er viet es then one month
e e.re t t ,re. _ . m .o If.tl.n fnett, nt F.If s. e det. y neyd.t.ett.f-etfue 9 Wet for wee ete the desigue Iset t ope tes fee est f rement e I se to that

. x.1. .. ...t. t. .e.l d by _ sst.. t. .4

.h.n In _

i

-e t .

f egIC system russettenet teste end sleestated esteestic acteetten shofI be performed enee each operettag .

Cycle for the telfewisug: .

f. IIPCf Seboystem 3. 91esef Genereter InItfatIen to b. Aree Cee8 8voy For t=ugIoueered
  • 2. terCf Seboystee Ante ftofatten Seregeerd Systees e'w .

e .

~

19se fogie eyetee ressetIossef teeta sheIf IvieItede e cef fbretfen et tIse reIeye and tIsees oiseeseery Per proper Flsnetteseffug of tfue trip systees.

9 + '

e S

9 O

_ _ . _ _ _ _ _ . _ _ _ _ _ _- _ - _ _ _ _ ____i . _ _ _ _ _ _ ___ _

Table 8t.2-3 Check, ronctionel Test, and Cet ibration Minletse treguency For Instrumentetten '

Which-Initletes or Controle RCIC '

snetrewe,- Ce t t her t ien Instrarment check Ins t rement retne t t ons i Test O pa r, Mintme I r egt.ency Minimm Fregesency Nintmm '

es,.ency

. c. I

, wo. Inatrtroent Ibl -

L*1 Once/opa mting cyrle 1 Reactor Vessel Water level Once/ shirt Once/manter- N / /Q d ( I 7

l ,

-4 {tevat 2) 2 PCIC turbina Ove rs paed Once/ ore sting cyr te Mone N/A Once/ operating cyt le E1ettrIceI/ M/A Mechanicsi None 3 RCIC Turbine E2eust once/ shirt once/- -' /Gh6f once/operatlig cycle 3 Pressure once/ shirt once/ -..r. A ffl g once/ operating eyete l in RCIC Pump section Pressure 5 pesetor vessel water Level once/ shirt once/u nt .

(RdfF once/operettn, cycle (tevet 8) Once/operet ng cycle 6 RCtC Pump Discherge FIow once/ shirt once/ M @ ,

OM/mooth O G.,(/ ope ti le

/ MCE de onbe/shi t Geole ency tent % retdre one et cyc

!stCIC/stese $bly F s ou r,' onee/ month

$d .fshirt ' / / t /

p//

~ / .

h .

0

. 1 I

a e

.b.s

~

w -

< W <

~

4 ,

TABt.E 4.2-3 (Continued)

Instrument

  • fMetetament Ins t r*esent ' Check functional Test Cqllbretton e >r Ref. No.

Mini Aum Frequency Minimum Fr1Myuency Minimuur Fregtsency M (s) Instrument (b) (c) 1 , -

RCic Steen I.Ine- Once/ shift Once/ month once/ operating cycle "

e f9 l AP (flow) c fi ,

d3 10 RCIC Turbine Exhaust Once/ shift once/ month Onen/ operating cycle .g.

-4 Diephrego Pressure 11 SuppreseIon Chember Aree once/ shift Once/ month once/operetIng cycIe Ambient Temperature 12 Suppression Chsaber Ares , Once/ shift Once/ month once/opereting cycle i Olfferentlet Air .

L Tempera ture _ ,-

13 RCic 1. ogle Power llone once/ operating cyese None g ,

reIture Montter leone Every 3 months l*

14 Condensete Storege 1 .. 2 'y Aj#/A Tonk Level 15 Suppression Pool Water Level None  % ^?'r/q/A Every 3 months la ta

- Notes for Table 4.2-3 b e. The column entitled "Ref.100." Is only for convenience so that e one-to-one relationship con be established between Items In Toble 4.2-3 and Items In Table 3.2-3.

1

b. Instrtsment functional tests are not r1Hlutted when the Instruments are not regelred to be operable

! er are tripped. Howeve r, If functional tests are af sted, they shell be perforined prior to returning the Instrument to en operable status, i

t

.E Q.

=

r+

2

? . i

~  :

W t t

4

. ^ ..

~ , - .m p

,R p *

~  ;

Totto 4.P+e

[e .

Check, Fenettenet Test, and CalltretlSe M6ntese Freewoney for Inetrumentetten Q tmich instistes er Centrets Aes Snettement Fenettenet Test inetcoment CoI84retten Inste Choeft teinteens f regeeney fetatmee Fregeessey

  • c flor. Pinleue Fresyvency ist

$ Iso. feetroment tti a Le_j ence/operstlny eyeto

" Roseter vessel tfeter towet Orsee/shf rt Once/ M W A M 1 /

(Levet 37 Once/sperettsup eyete Once/ shirt t>ce/eenttF~

Stoecter Veteel tfeter towet ' _.

lievel 1) Once/sperettag eyete Once/ shirt Once/spettf P 2 Drywell Pressere r t>ete/ operating eyefe 9 3 95W1 Peep Discherpe Once/stelFt Once/g M

. Freesere Once/sporettng eyete

  • 4 CS Peep Ofsetterye Once/ shirt OnceM[Mr Proctore Once/operettng eyete 81 tune N/A

$ Ante 9epresserirstlen tent tester tevet 1 teor Ones/ operatives eyete itssw N/A

6 Aete Ospresserftetten fleer
    • IIene Once/eperettng eyete IIene a
  • w 7 heteestle Stowdown e contret Power Fellere 68 90sseIter so
  • W For Totte 4.2-4 8.

19eo ee?oest eest#tted *Def. IIe.' le saty for eenvenience se that e one-to-one reistionehty een be estettlehod totesen items in fette 4.2-4 end Stoes In Totte 3.2-e.

6

. 4 i

. .E M

w e

. 7 P4 e

". m m.

p .

. Table al.2-3 h' Check, ronctional Test, and callbration Minimuur Fregesency for Instrumentation-y Which Initiates or Controls the LPCI Mode or RtIR ,

. Rer, instrtusent Check Instrtament Ftmettonel Test instresonnt Calibrat ion Minimum Frequency Minimum Fregtsency Minismise F regivency Mo. Instrtueent Ic3 C jsj lbi Once/ shirt Once/monete @Qr~h Once/ operating cycle U 1 Reactor Vessel Weter Level ,

y (Level 1) ()

2 Drywell Pressure Once/ shirt once/me e ar-fer Once/opersting cycle l

3 Q, Reactor vessel Stese Once/ shirt Once/someh- m ar-jeg~ Once/ operating cycle Dome Pressure [

11 Reactor Shroud Water Level Once/ shirt Once/moeter @. th Once/ operating cycle l (Level 0) 0 LPcs cross connect Velve none onee/ operating cycle wone 5

Open Anntencletor e 6 R!A (LPct) Pump Flow onee/ shirt once/ month- un d r onee/opersting cycle RifR (LPCI) Pump Mene M/A Once/ operating cycle to 7

m Start Timers N/A Once/ operating cycle g h 8 Velve Selection Timers None

.RHR Reisy Logic Power Mone Oncefoperating cycle Mone g 9

Fallure Menitor ,

I

^{] gpy M h k Tome Treewce g

?+ .

E et "M ~

h3

,l\

el e

e e t

t 8 e t e e l t t .

e c e e t

e, r

y

, e e

y y y e c y

e r

e

'w s .

t e

. t ne e

e v

go ,

e e ,

C s t t t t t

.  : e t t t t e e s e r re e

^ .t r r r r m

e p e y ee e

r e

e e o o c e e

/ / f

- ts sn e /

e e

e e ec ee /.e e n Y nie r n n i r n e n I s t e O o o I I

t e e t b e e v

- e e

t s

e t e .

t T h s s n t e I e e o .

n l t r e y cy t e

r y en t

te 4 c f e

e je ne

_r

_ p F ee

_S emn

+t r

f v

yt w

t p

e e

e r

c; tt g wd r

-r

_e t

n <e e  :

rC

.o se .m te su

/

e ph o

s o e

/

w e

/

p o

ec t

n en e e c a e  ; .

6 ir et mo ni SM n

o mnO t

/

n e

s O

n e -

6 2

- nt t 2 i n a 3 tse 4- ht 4 C e n

t e ere t 2

e lb b t y 4 e a e ee k T T ro ee e ec e bt l e w t t t t r

t t n o e l

lt h C :e r r r y T e

- . at e o i o e

l e

Ct tr h hs hs ih. e o -n.

s d r di n it / / / / / - t n e e e e e e S e f -.

eh

,e c .uo tf o e

n c c n n e O o n -

e t s

n o s i d e n r e tw s

e ta al tM t

t S

a o f 4 -

T y 2

. l l e n 4 n o e t

o e l t t l b e ev e o n m

  • T e e o e r W n r t D s p e W i -

, r m r i e . s e e rse r k e e t o P f e e s e

t es se ,e e N e ot h t e r

S rr e l r ' I C ge t o l eP s e s s e e t ot d n o e s see es tt e ee t

e e

e s r e yt i yeen t

t s n v)1 F v et o e9 t t rre pe rn e r t o m r s ,

t pe n b e ol t oe sre em Sr e r te e ts o e d e

t s

cv ee y weecs errt e ef rI s o e

eo e t e

n oL e or oe s t -

I p( s BP Ce C Ct t e

l t

c t e

e e

t t

l Y eN fieeg 1

.l t 3 4 s 6 .

- tsi e e p

%4 e dY NoO n . , +e O. ta Ie N

,.;*- & g e

. * ' - . - . It

  • , *; . . 4

[ \If1ll l)1 i1j

e 4

Tobte 4.2-7 .

! Clueen, Fenet teneseri, t fe.t.,,an.detCe- t brotlen 9t.f.ala.sse

. e , enFreque..ney rec

5 t- s.,n ces,tro. d .t.t.eei.e een t . .

Sef. Instrument C9teck Waeteismoest renettenet Test feetroment Cot tbretlese Minleum freggoncy Mingmuun fregeeney setnlous Frequency e C Ite.

  • set In urysset 861 fet a $ fet 1 -

1 gqqng(LeastCL,ft3stlfgets 90 4 W na _ _

.e. Detect.or v,.e. . not ruft In na S/w""',,

s/w w .

g .

anoperettve na s/w"', w na

c. s/w"', w st
s. Downeeste sea 2 IIITtvest9f ATL ftastM.topullfens
o. Detector not toIt in sta s/v" ', w"' sen syseese na s/w"
  • w"' n
  • D. s/v"', w"' son
e. sneperet tvo na
d. Downeesto mA s/v" *,, w"' n 3 M8WI 1 y e. Flow neforenced Steelsted s/w"',e a -

Tamorest Power-specese na ma ensperetsee na s/w" ', na

, 6. n Downecese na s/w" '

. 1-o e.

d. neutron Fism - mfgpe,121 sta S/w"' e R 6
4 Egg _9L9CM 140't1Yest upecese -

s/v"', e a

  • e. sen
  • S/w"', e see I b. enoperative  !**

n I c. Downeesee na s/v"', e 3 ggtset ptscsensept votypet

e. water tevel-wis. e na e a

}

,f . -

y .etes ,.e . te .. -,

I I a. 19ee esfuess titled

  • Pef. the.' le esity For cosevenience se 19ist e owte-ene rotettenehlp een be esto6t telted

?

[ totween Itsee in Totte 4.2-7 and Stees In Tasse 3.2-7.

~

.e.et.d.

I M

o ..

. & ~

w ew .

  • e tabt* 9 . 7 - 89 c,.ec . r in.iesete aney en ,e distion

- r, ii,...

g

.t e.en.. net tes..o.e

. orin,sys e.nd ca f.e.re..

. u ..t e. .e.

n Opetriment fewuettenet test feetroment Coffbretten _

  • % her, testa *=ent CStock seinesse rrogessary Stents _me frequency Minimese frege*ency

, see, inettement 169 In tet

. hl.

-e t err-wee poet treeteent medentsen seensters onee/dey 0,,,rg/lyt tel tvery 3 monthe

.. o tvery 3 eenthe e rteer t=howet eersetagettenHonfters Vent Red onee/ der 4 $(/t,( t rl Ie 3 asectee settoeg twhewet vont medeotten Monttore enee/dey

,/^ / ,[f g trl twory 3 monthe ence/dwy _ / ff M trl tvery 9 mene9te s 4 teatret Stuem latene I medletten saunttere UAr#/4#4/

. ence/seet Irl Every 3 onw4 fee 193 g 3 statn Stone Line Ebene modsatten Stenttere asses r. , rest. =.r-e

.* e. Tfue estmuse ontILted "Def. Re.' Ie setty roe eenvenIonce to thet e one-to-em toeettondtIy een De estettfahed beteesse items in febte 4.7-9 end stese in Totte 3.r.4.

. b. feetroment cheche are seet regef red eenen t9tese teettmente are seet resef red to to operette er ero re

,. 1 selpped. tassover, f t feetreont checho ero eBooed. they shots be perfwand peter to retornteig the ,

" tesetrisse=et to en operette stetee.

i-I B

h

.R *'~. ~

r p P. .

notes for f ehle II.7-p t rent'd 3 g c. Instrtment finnetlenet teste see set retyvelred when the Instressants are not replred to be operable er -

e.. be ,rere.d ,,ier M

Z

.ro triseed. i.e.,e.o r, er In.t - i r n.eti - , te.te e,e si...d. t y .

, in rettw'stfug t8se Instressent to en operehte etetwo.

.a

Q d. Instetsment cet tbrottens are emot regnetredo w wn the pnetressents are not regelred to be operebte er ere N tripped. Stews.or, fr Instetement cellbrettens are elseed, they shott be perroceed prier to rotern-

-' leg the Instrissent to se opereble stettes.

[ e. Inittet ty enee per month er seeerdirg so i; , 6 1a.1-3 with en Interval e not sess eness one ,

eentle seer more then ree months. The I tst f ose er att t telles re e date 1 bey tenetesde N date 4t ed e d et or e re, w.t . - de, , In. h e.at etes en Li - t .

esis to t te is .. rm ore rate d., be e. d re.e4 e = pries.

ony change In t9se once-a-senth cregveency.

F. This 8. strtementottose la e empted f ree the Instrement resnettenet test definttless. Thle Onetriment etenettesial tett will contlet er Injectlesg a sleestated elDettlest ef net 9 late tfie messerement choeusefs.

9 Sterederd cerfeest meereg esed is#ilele providee en Instrissent ehene,et ettg=usent. Cesthrotten estng e

,o redtattese eseece thef t be made enee per operating cycts.

1. _.

w Logle systee finnettenet tests esud steeleted statematic octtset w steelt be perfereW oen ed opersting 8

cycle for the tettearlongs

1. Seeendary"Centelsesent Aeteetten t

w- .= I -1 fee- g ~

  • a,s
  • e;#. .

=5. ,. M J, x

e *

. e a ,

e e

4

/

V e

q -

  • m g ,A p ,

s Table 4.2-9 Ottt Af5 (Mfenef ftge estutsepe tet9EElett fem feitetztWTAffeur teeltn IWITIAft$ St(19CtR.AlltlBt ptpF TetP o

1 foste= meet Chett testrument Fenettenet fest fasteement Callbeetles e htf. sh*6ese tregme.cy soleless reoweary es. testrement se6si=== reegee.cy b

1AL

" 9#efshift Smee.M de Shace/sperstle, tytle f I seertoe hs%t unter towel '  ;

- tam setre- / _

03ceschift - #=ce/sperettag cytte 2 15etSee Pressere h,/ Week tatwy apt) 3 EK - tyt Mp f* sat, h ere==th samme

  • wp hit set tet try,c th=ce/operetleg cycle esae t) )* sakis meet Once/sperellag ert f
  • al Ces %fr , hee serie WS togle 4 3ress e rt*"

3 So .

n E slotes ier f die 4.7-9 58' I

(8) The colomo entitled =tef. no.* Se oat, for come*elemee se that a one-tem reistiansbsy con te estahtished netween Stees la f atte 3.2-9 ame Stees le table 4.2-9 (t) An A?WS rottreetettee peep trip togic systese feattlensi test the11 te performed este per speestleg cycle.

(ej the ter 8PT System aesponse fler she11 to that flee toterest from lettlet signal pseerstles by the associated tertime stsp walee fleet s Itch or from =Aes the tev$les coetml we1.e byeeselic contret all prettere i

deeps below the pressere switch setpolet to templete sopprestles of the elettric set tetuses the

folly-eyee teatects of the rettetstette pump circett treeker. The rescense timer may be messere4 by f3 any speles 99 segmeettet, overlappler. ee total stees seth that the settee response tSee is seesered. Tech test shall lectose at feest the logic of one type of chamael tapet, teettae teatrol g wa1=e f ast closere er tertlee stop welve elesere, sect
  • hat both types of thenne: lasets are tested g si leest once per 36 months. The (9C-8FT Systee tesponse flee acceptsete criterte essettsted with
s

tortime step walee elesere shall be E 155 millisetenes; the (SC ept Systee Seepense flee ecceptance 2 telteels estattated with the tort 6ae control waive fast closeet shall te 1 IF5 ellliseconds.

-o g .

e.

=

l

~

g .

y
  • s 4D

lt\ ;fI fi. ) .l 1jf ,!!;,

J

. - , 9*

n te,

  • t .

e e s e g e n s

_m s

t r l t

e h

t h

t ee t

h t

. r. a.u 8 .

n n n n n o. a 8 : o o o e o t .. d. o t 5

CFW 9

m m m m m

.e -

- t. e st I 3 3 6 4 6 - = s n

. ' te ns y y y y y . = ee ee ms r r r r r .

.e ,o tc ua rf t e

v t

e v

e E

v

(

ev t

e v t e.r ee ee et r

tn rsn Q

s e o s s.

ep e r

t s

e t t. to e e eh t

t en re s, st e .e e e t

a rt o rn c e. a s

e t

s n. e e; .nr eee r e s t

e T

y o _ t.r e t e o mt f sa e.

to

c. l ae g e. .o t

e.

e s

t r

F t

to er l o e d.

e e le

y. nFl e m o. er o e fes

) )

n t ) ) , .te .p g e_

n 1 P t o

r.v t, ee w

s ( ( t ( t e ta n n e

.ee

-t a e- e.,ne oe ts r

- s p e se . ne F

.u t. g er t

.t

u. e t p o. e.r. re ep 0 loe e p s e

a_e m 1 t to 2- 8a M.

.n e e t 9 t r

~s t

4 g 1 e e n - e e et .e 2 t mtr .en t

b o

t e

t y t e 4 e

.a te ey ts e

t e cn e s t e

t. oe iv t

se n o .,

et h

a .r l

t e

Cg y y r y y c.re h,

- c.t .

trt e e e e e f

. r t

d d

. net E e

d f

d

/

d

/

d

/

d

/

r --

o .. s.

n e, e

n

n. e e e e e o e me et re e c c c c f

-_t s

e mt a.

t.

, tg sn o n

e n

O n

O n >

t i

s te ; r.

.s e

o e s

e. iM n8 e r3 ws ot wet r
  1. ,o te sa f e n o e.gs t

s e

n

.o y

nt o y rset e e e oa n tt t

o t

e e

- e n 9

.s e.e nt e

n e n n

l i e ee en r i e S u rr eo t

ro n ol i d g

.o s.v

.e s st t

<a

, t rr tF te r .est .s se k n Det a c ci o e tn c e t er ee t .e

-e, , se se mu t.

n.

e r

ti to i em no rn eo er e.o Dre S eAg t i i t f D t t t g M - o tn e

e m, t. rt ns e na es r r.

e eo.

t e ee er t r el .t - so nm.

t g l g te l r os te Fe .o r. ..

c e.e t e E.

tt ,0 Te ot I

t n ln ti et tt t n ec

.sa .t= nn te s ee tee t s. .

lI a ee ie t ue ae ot m ean t.

e e eno cne r r we

y. ww ye eltsrt es ts el r Tg g

D r rf Df coo co Sft SF p t (e

n. t t.

n n.c otne,e.,e I o. t or.

e .e o

. _ e.

e e

t w;.

e t ._

nl e

e.s t nr Ie s-_

a eme n ,

,t r

p o 1 2 3 4 $ . . .

8 m e e e

  • gE' -" y bf,a

>I

=

m4 O Sv

.! +* * . .*, , 0*

, * *  ;. ,- . - , . . i; 1.-

t i!!( ji: 1,-

1 I1

.L.*.., . + . I ' .I

. I c

s. . s r

r t e e f o

n we f

/

t e e t l .e b r e a e e e n d o

, c i e, r p

o e

d

t. t _

e e e d ml t dl.J, e _. .c b er e I l r

o e s e y t f d e r v s u

m=

o e p t n r o ot e t e n t n b ,

e I e ll r

c. e e .

a t e d t h e t e o s r e e

)

n y r er d e e t r h n e

't a t i t .

n . e n ,

t t e et ,

e f e .

(C n ed m

- 0 m s i e s h t a t n r 1

b 2

- rt m a s

n r e

i e e mu

, r t

tb e

n ,

e e

I a o n gnr e l e e i s

b h n e er e re a t T 8 r o ne e , - o t t s

o r -

f wb t

=

e r

t e.

s d t . e e e e t

e i r c e t

rt , p t

i h e t

e d

t 0

8 u t s . m y q *i r s o h e c e e e c ei n e

r m e e u

r o u

aT W.r t h q o t n e n ee e o f

e r

f o r . t n t . i i a r s ,s t s

O a h t

t s 'R n

e n , -

a o f a

,o, e o r . m S , e i e t v .- .r i i -

a e t r wte e r w s c b o te nh t t t n

- t t

S t_ .

e t e . e n n e no e e e e c . h h d t . h v t t e p g y t ,

n p n e s e

. nI r

m i i t -

u r n i.

r t e i l o ;

e m t r

t t e

o r e n e t i t

. ^

-. t a r i t d . .

gh7 g.4 . -

. u.s m w:,

8 f

. k jJf8i l I I j. e!.* .* 6 . . 4 4

- **i. . . - . . 4 ill , (!l -

V Tabte t..% 14 m coet t u, t r%f w* At. f r e t , m e a i. ima t t e P' ~ t*"-* re

  • r'f m i'7n T M f f"M * ! Af f N Mif C's Arn3 titt LOf (W St I $/RW SY5 tim n

x

, feef fnoeremnat thecet ietetrament esonetleneI leet . Inetriment to9IttotIe9 hdnisee F regemessey* *

  • Mineone Fregeanney MInInum Freesseeney8 **

see. I * ' \ tnetrement ,,

-4 1  %.eeter ve.s.t it.

Pressere os e oneef.nirt oneef g eri d oneefe.oreten,e,e.e .

~

2 Dotter /Sofety Velve Telfptpe N/A Jruesi-- .=i Once[operetlft$ eyele{e) {. ,

Fressere mi - - --u.-

,,ra  :,

= e e

9

.. esi- entitied =r. . is e 'r ror e-'eaee se t'st e e o-t- re'es sene'a eea *e esto*'leed *eto-o '

Ite.s In tetle 4.2-14 end Itsee in teofo 3.2-14.

- b. Geotrement funettenet toets are feet regtelgest when the Snetremonte ore feet required to be operetle er ere tripped. .

to teowever, f r fesnettenet tests are .tened, ttwy. shot t spe perrerees prior te retervete, t9to lastrument to se ee operette

, etetus.

In e. Colleretteste are seet togestred dwse 19te Snetrimente ere smet regelred to to operette. Slowever, tr cettbrottene g m .s e d. t,.ey .nosi no weremed ,rs.c se roter in, une en.s ,-ent te o e,orsese .sete..

d. See seetlose 4.6.98.1.e.1 For eweeptlene to thle pressere siritch tunettenet test Frognoney.
e. See seetfore %.S.95.9.e.f. ,
  • e I

X

.o SuuO

  • s

" w _ ,

- * -"- . i

. e

l r .

Easts foa suevt1LLANtt stouletMENT5 4.1 REACTOR PROTECT!DH SYSTEM (RPS) *pM d

. A. Test _k !_'"_ n'S heavirements f or the RPS * -

t m .- ,__..___..__.u_ , _ _ _ _ _ _m n m._ __a. . . . _ _ , _ . .

e a reliability analysis using the concepts developed in Reference 1 and t e '

sur 111ance f requencies f or ATT$ equipment approved by the WRC in Refere e

. 2. est concepts were specifically adapted to the one out of two taken twice gic of the reactor protection system. The analysis shows that he sensors re primarily responsible for the reliability of the reactor tec-l' tion syst convention

. This analysis asket use of unsafe failure rate experi ce at and nuctoar power plants in a reliability model for t system.

An unsafe fa lure is defined as one which r,egates channel operab ity and which, due to its nature. is revealed only when the channel is nctionally I

  • tested er att ts to respond to a real signal. Failures suct as blown urdon tubes, faulted amplifiers, faulted t les, etc.,

l fuses, ruptured i which result in u cele or downstale readings en the reacto instrumentation are safe and will b easily recognized by the operators e ing operation be-cause they are revet d by an alars or a scram. .

The channels listed in ble 4.1-1 are divided inte f r groups for l l

functional testing. The are:

a Group A. On-Off Sens that provide a scr a trip function.

f- Group 8. Analog device coupled with bi- ble, trips that provide

( a stres functi .

Group C. Devices which on serve a u ful function during some restricted mode o operett . such as startup er shutdown.

or for which the on pra ital test is one that can be performed at shutd Group D. Analog transmitters a trip units that provide a scram trip function.

  • The sensors that make up Group A e speci itally selected from among the whole family of industrial on-of sensors t t have earned an excellent reputation for reliable operat n. During de ign, a goal of 0.gggge probability of success at the 05 confidence 1 el was adopted to assure that a balanced and adequat design is achieved. The probability of success is primer 11y a fun ton of the sensor fat re rate and the test interval. A three-month est interval was planned or troup A sensors.

( This is in keeping with ood operating practices, an satisfies the design goal for the logic to iguration utilized in the teac r Protection System.

To satisfy the 1on ters objective of maintaining an ade ate level of safe-ty throughout the lent 1tfetime, a sintaum goal of 0.ggs at the g55 confi- .,

dence level is p oposed. tiith the one out of two taken tw1 logic, this ,

= requires that ch sensor have an availability of 0.gg3 at t g5% confidence j

1evel. This evel of availability may be maintained by adjust g the test i interval as function of the observed failure history (Ref. 1). To f acili-tate the i lesentation of this technique. Figure 4.1-1 is provi to indi-cate an propriate trend in test interval. The procedure is at lows:

1. L e sensors are pooled into one group for the purpose of data

[,, fcquisition.  ;

n / m . a ., u = . . ,..... :..:. ..: u . , ) u = , .. = a ..:... ,.

HATCH - UNIT 1 3.1-15 Amendment he.103 4

6

., , 3 -.~ , _ , - = + ,

. I. . . . . . .

' Ins.-4A {4 p3 3. I -i s' M- i 'r r]

Fd

.g l m . . , ., ~

"T ht w- b 4i...t 4e 4 ft 9v g .ame& 11.4 L,

, . .,4 e,y 4', e spee,&, A f. ,- RPS int 4e smv b s bad

'es %t i relesbald, a . s t, ses p erl.ne d e's Pe4<rm t.

e' # : k - t. , The on. /p .i<r c u s,Je ,J /At /,/4 4-elst.0 m , e se t J. s 4k clawn,o s eet. L'e A TT t ef > M

.~ R<fww.,3 A -4 3. Lel-1 4 (a et. R e fuce I /

ano,res sa pi 4. 4. c. 4 .- 4- f ee..vc c.k4 J 0% racw'u fv v,. 4. s e e. 4.s r., Jurqa rers cts r r.it.'l(Anu 4 <s 4.'aD i

.s e Jk e S e+ 4 <r,' p .Teits < wl .Gou.o f sA 441 rey,e,)u<J acf.sr+ + 4,,A '.~.

p 4 ,etes t e u1-ou t,s a r::e. av4 saw -4 esset po),4 ) my : - : =

_= ;t h 1 W ' . ;. ,, Am t,9 Entes eus .J ** s +.ees de e.L 931 dar.m S'a 44 mQres\.

4 l .

I

, I l .

.a. .

4 .

l 1

1

h 1

i * . .

&kt h$5

  • W BA,$ts FDP SUlvilldWtt R100letutut$

4.1. 2. Test and talibration tenvirements for the t?S (continued) in a groep, e, times the elapsed time T, therefore M e a T.

3. e a n u.uisted nu. e, of ou afe feiiurei is ,ietted n .n edi te )

e inst M as an abscissa en Figure 4.1-1.

4. A te interval of one result will be used initially v 11 e trend is

. estab shed.

5. After a end is established, the appropriate test' nterval to satisfy 3 the goal 11 be the test interval to the lef t of he plotted points.

Group 5 devices 111 e en analog sensor f ollowed an amplifier and a bistable trip cire it. The sensor and amplifier e active components and a f ailure is al st always accompanied by an lern and an indication of the seurte of trou le. In the event of fait re, repair er substitutten can start immediately, An 'as-it' failure is ne that sticks mid-scale and is not capable of g ng either up or d in response to an out-of-11mits in-put. This type of fai re for analog de ices is a rare occurrence and is detectable by an operator o observes th one signal does not track the other three. For purposes e analysis, is assismed that this f allers will be detected within two h rs. ' .

The bi-stable trip cirtutt which is part of the troup 5 devices can sustain

  • unsafe failures which are reveale ly on test. Therefore, it is necessary - *3 to test then pertedically. -

.f o'

. A study was conducted of the in rumen ation cknnels included in the Group B devices to calculate their

  • saf e' f ilure rates. The analog devices (sensors and amplifiers) are redicted t have an unsafe failure rate of less than to a 10** f atium / hour. The bi table trip circuits are pre-dicted to have unsafe fail re rate of less n ! x 10** f ailures/ hour.

Considering the two hour nitoring interval or the analog devices as assumed above, and a we ly test interval for e bi-stable trip circuits, the design re11ab111ty oal of 0.9333g is attat d with ample margin.

The bi-stable devic are monitored during plant e ration to record their failure history an establish a test interval using he surve of Figure 4 .1 -1. There a numerous identical bi-stable device used throughout the plant's ins unentation system. ant data en the failure rates r the bi-stable devic,Theref es shouldore, besignif act sted rapidly. )

The frequen of calibretten of the APRM Flow Referencing twork has been establishe as ente per operating cycle. There are several struments which must be c ibrated and it will take several hours to perform e calibration '

of the tire network. While the Calibration is being perfome , a sere flow s nel will be sent to half of the APRM's resulting in a he stram ')/

and r block condition. Thus, if the calibration were perforised uring ,

+ eper tion, flux shaping would not be possible. Based en esperience t et r generating stations, drift of instruments, such as those in th Flow

'~R erencing Network, is not significant and therefor'e, to avoid spur 's

- crams, a calibration f requency of once per operating cycle is estab$ d .-

)

MATCH - UNIT 1 3.1-16 G

]

-' BA$t$ 50e $Ueytitt AN t et0Vletathi$

4.1.A. Test 44 Calibration Reevirements f or the 9PS (Continued) l

- k our t devices are active only during a given portion of the operati a1

/, c a. For example, the 14M is active during startup and inactive ring

\ ful vover operation. Thus, the only test that is meaningful is e one peric9ed just prior to shutd Nn or startup; 1.e., tSe tests th are per-f orme : *st prior to use of the instrument.

Calit rtion recuency of the instrument channel is divided nto two cate-gerie- They re as follows:

1. Fassive type dicating devices that can be c ed with like '

utits on a cent vous ref erence. )

it, b:wum tube or ses nductor devices and de ctors that drif t er lose sensitivity. -

Experience with passive type struments i generatir.3 stations and substa-tiens itdicates that the speci ed calib tions are adequate. For those cevic e s which employ amplifiers, tc., rif t specifications call for drif t to L: : ss than 0.45/ month: 1.e., he period of a month a drift of 45 ccs1C occur and still provide adequate margin. For the APRM system, drift of electronic apparatu$ is et t only consideration in determining a calitration frequency. Chang in powe distribution and loss of chamber .,

senst Nity dictate a calibra 1on every se n (1) days. Calibration on -

. this irequency assures plan )op ration at or elow thermal 11mits.

The sensitivity of LPRM etectors decreases with uposure to neutron flux at a slow and approxi tely constant rate. This empensated f or in the

- AHM s ystem by cali ating twice a week using heat ante data and by calit .ing indivi al LPRM's every 1000 ef f ective f u power hours using TIF traverse dat .

Grou; D devi s consist of analog transmitters, master trip nits, slave trip e its and other accessories. The general description o the ATTS devi: . 1,s provided in Reference 3. As evidenced by NEDD-21611 , the vipment:

NRC Qs 4pproved the following surveillance f requencies f or ATTS

1. {:e per shif t for channel check 2 Ct:e per month for channel functional test

. Once per operating cycle for channel calibration i

B. karif Freetion of limitina Power Density fMFle01 TMs- : tion deleted.

e C .

p..

. y.

~

(' .

' HATCH - UNIT 1 3.1-11 Amendment No. 73. Tf 3

  • 105

-- ~ . . - . . _ . _ ,

-}

I i

BA$ts FOR iutyt1LLANCE kt001ptmENTS 1

. 4.1.C. Ref e renc es_ .

. t. M. h;.t;. "ttt
0t? tty f S;ta::r:d t?;;; *::tr;; 0; O h :tt:e :! -

- ** M4*g in;; ::y." 5::10:r uf:ty, Y:!= 0, n. ', hly ',;;;;, t0Zr

:
  • 1 .

.}

!. 'WE00-21611-A, ' Analog Transeitter/ Trip Unit Systes for Engineered Saf t-guard sensor Trip Inputs.' .

. 3. NEDE-!!154-1, ' Analog Trip systes for Engineered Safeguard Sensor Trip Inputs - Edwin 1. Match Nuclear plant Units 1 and 2.8

)

7

{l. d E bC. -3015 I P- A , " Tu kMe s l Spec.4erska~ t ums m+ l Analg s es .for swr Pr=4cc.4 e a Cys4c% Marc h 19 8 B

)

s

.I

.e

)

.- f-

. . Y. .

)

HATCH - UNIT 1 3.1-13 hent to.103

.. .__ _ . . . . _ _ _ _. ._.....m _. . _ _ _ _ _ . . . . _ . _ _ _ . . ,

l

. . . .. ......m.,.. .

belete +h;s Fye g\ >

  • e7 . .
  • trVtatt R OS IDEWTICAL COMPONEWT5

("e '0

~

T INSThuantNT OPERATING MOU48 i

g 3. _ .

  • m

(  : ,8 _

ONTM 10 -

g s

3 MONTHE 1O 8 -

4h80WTMS a _ .

3 880NTl4 2

-[ 0 5

f L '~ I I I 10' I I  ! I I ! !!

7

. .. 10 10 MFACTOR FIGU 4.11. G.RAPHICAL AID FOR THE SELECTION OF AN ADEQUATE ERVAL .

BE1 WEEN TESTS.

r.

+

9'

. V. . .

e I

4 0

e 6

4 .

O e .

EtASES F0E tlMITlhG CONDITIONS FOR OFIAAllON

$ "2 i m it +* 3 3.2 FPOT!CTION INSTRUMENTATION 5 h *b 3#

In addition to the Reactor Protection System (RPS) instrumentation which in-

@UeC9 itiates a etector scram, protective instrumentation has been provided which initiates action to sitigate the consequences of accidents which are beychd V8 g the cDerators abilhy to control, or terminates operator errors before they 4R4 *;j } }(. result in serious consecuences.. This set of Specifications provides the lim-n iting conditions for operation of the instrumentation: P

! ly C g( (a) which initiates isolation,

  • (b) which initiates or controls the core and containment cooling systems, 3 g S (c) which initiates control rod blocks (d) which initiates protective action, o dg (e) which monitors leakage into the drywell and (f) which provices surveil.

T U lance information. The objectives of these specifications are (i) to assure the effectiveness of the protective instrumentation when required by preserv-4 i *E 5 ing its capability to tolerate 2 single failure of any component of such sys-

  • f tems even during periods when portions of such systems are out of service for maintenance, and (ii) to prescribe the trip settings required to assure ade-(z 3 g 3 .i Quate perforn nce. When necessary, one channel may bt :" ":;: nM f or

&g!$$ t brief intervals to conduct required functier.al tests and calibrations.N umwto ra4m WW

%iE3g W# ISosnop /4c.tvar.oa lewres arAneJ

  • v--; t '. -- W e I '444 c  ; a c t e r '1;wi ed * '-c

, W W w t A, .

3 iaEv

.N

+t4t++* ( l a b l e 3 . 2 - 1]

1 solation valves are installed in those lines which penetrate the primary con-

  1. fiEd/4 h$( tainment and must be isolated during anhn of :^^4-t accident :: t':t -

t'-

.r4414t444-405e Itat ts-ar4-not-. esse +444-dur4Sg : Ou t d:r t ::-f i t hn . Actua-C $ "it ( g tion of these valves is initiated by n iett Ne instrumentation shown in Table f4 w 0 gc$$g 2 3.2-1 which senses the conditions for which isolation is required. Such in-strumentation must be available whenever primary containment integrity is re-quired. The objective is to isolate the primary containment 50 that the "d'{4i

  • a 4 ;t fS$g,j guidelines of 10 CFR 100 are not exceeded during an accident. N :::-t:

>**4 !e4t M* 4i re:uir44-ar4 discut+4 4t; A;; nd1- C ef the F!'? "-

wj$t 4 M t e e n te t t e r ut i 5 4 - 4 t iate s-pr4aa ry-4ystte h:'i t h n H ::=::t e d " :

o A d3 M i tut s ~en;:-^nt, d $hk Reactor vessel Water level 3 y 4 1.

h a. Reactor Vessel Water level Low flevel 3) (Narrow Rance) 3k #$

u4 o The reactor water level instrumentation is set to trip when reactor water level is approximately 14 feet above the top of the active dOij$ fuel. This level is referred to as Level 3 in the Technical Spect- '

g fications and corresponds to a reading of 10.0 inches on the Narrow 4{Ig;a 7

k- g N

Range scale. This trip initiates Group 2 and 6 isolation but does not trip the recirculation pumps.

gA$

M g b. Reactor Vessel Water Level Low low flevel 2)

Thereactorwaterlevelinstrumentationiskettotripwhenreactor o5E{ c water level is approximately 9 feet above the top of the active )l id

$92 6 g *= % fuel. This level is referred to as Level 2 in the Technical Speci-g33h9 fications and corresponds to a reading of -47 inches.

This trip initiates Group 5 isolation, starts the standby gas l

gaf#$ treatment system, and initiates secondary containment isolation.

\

HATCH - UNIT 1 3.2-50 . Amendment No. 52, 723, 121

  • O e ,

. _ . - - -. . - - - - ~ - . - - . - - . - - _

l . . __.._ .....

RA5[5 FOR LIMITING cDMDITION5 FOR OPERATIDW 3.2.A.7. Incin Steam Line Tunnel Temocrature Wish (Continued) )

with the resultant een1) etlease of radioactivity, gives isolation hfers the guidelines of 10 CFR 100 are escoeded.

8. Reacter hinter timanue tvstem Dif ferential Flaw Wish .

~

tross leakets (pipe bmak) free the reactor wter cleanup systee is )

estected by asasuring the dif f ersace of flew entering and leaving the system. The set point is low enough to ensurt prenpt isslation of the cleanup system in the event of such a break but, not se low that spurious 1 solation can occur due to normal systen flew fluctuations and instrument noise. Time delay relays are used to prevent the isole-

  • tion signal which might be generated free the initial flow surge when the cleanup system is started or when operational system adjustments are ende which produce short ters transients.
g. Reactor teater cleanun Aree Temperature Minh and
10. Reactor teater tisanue Area ventilation Differential Tomoerature Hinh Leakage in the high temperature process flew of the reactor w ter c15anup systen externc1 to the primary containment will be detected by toeparaturt
  • sensing elements. Temperature sensors are located in the inlet and outlet ventilation ducts to measure the temperature dif forence. Local ancient temperature sensors are located in the compartment containing equipment and piping for this system. An alars in the main control room will be set to annunciate a temperaturv rise cor *sponding to a leakage within the identi-fied limit. In addition to annunciation, a high cleanup room temperature  ;

will actuate automatic isolation of the cleanup system. .

i . 11. condenser vacuum Low

' The bases for Condenser Vacuum Law are ""; cussed in The lases for specifica-tion 2.1.A.7.

B. Instrumentation Which Initiates or controls MPct (Table 3.2-21

1. Reactor vessel teater Level Low Low (Level 21 o

The reactor vessel water level instrumentation setpoint which initiates HPCI i

is 1 -41 inches. This level is approximately g feet above l the top of the active fuel and in the Technical Specifications is refer-red to as Level 2. The reactor vessel low water level setting for N9CI system )

initiation is selected high enough above the active fuel to start the NPCI system in time both to prevent ancessive fuel clad temperatures and to pre-vent more than a sea 11 fractio 9 of the core from tveching the temperature at wnien gross fuel failure recurs. The water level setting is far enough below nones 1 levels that spurious MPCI systen startups are avoided.

2. Drywell preasure Minh ,l' The drywell pressure which initiates HPCI is $ 2 f psig. High drywell pressure could indicate a failure of the nuclear systen process barrier. This pressure is selected to be as Jew as ponicle without inducing spurious HPCI system startups. This instrueentation ser-above.

vos as a backup to the water level Amendment instrumentation describe (11L/,121 J 3.2-52 100. Ar, MATCH - UNIT I 4

0 en e

wsst b l *A . br 1(t EA DAM * ^
when a@t . . J. a ., e- n ,e n , a a , u p m t%t
  • s A vo A % \ni en s A A~utt y g qq,4 % ,

l

+tM C% h. W e#=d a b*Jp404 Oom N . .t 4- #, Q g o ,ro , , q

  • j g.g. MPCI Ememency Area Cooler Ambient To eerstreg,Jigh l H16h embient temperature in the HPCI equipment room near the emergency area cooler could indicate a break in the HPCI systes turbine steen line.

The automatic closure of the HPCI steam line valves prevents the ex-cessive less of reactor coolant and the roless) of significant amounts of

- radioactive material from the nuclear system process barrier. The high l tomoersiurt settint $ 16g'F was selected to be f ar enough above anti-cipated normal HPCI systee operational levels to avoid spurious isolation but low eiough to pr$ vide timely dstection of HPCI turbine steam line break.

l l

l p( p.' NPCI Steam Supolv Pressure tw Low pressure in the NPCI steam line could indicate a break in the NPCI steam line. Therefore, the HPCI steam line isolation valves are auto-matica11y closed. The steam line Iw pressure function is provided so

. in the event that s gross ' rupture of the NPCI steam line occurred up-i stream f ree the high f1w sensing location, thus negating the high flow .

i indicating function, isolation would be ef fected on low pressure. The allowable value of 3,100 psig is selected at a pressure suf ficiently high enough to prevent turbine stall.

sf M. HPCI Steam tir,e 69 (Flow) Hiah HPCI steam line high flow could indicate a break in the HPCI turbine steam line. The automatic c16sure of the NPCI steam line isolation valves prevents the excessive loss of reactor coolant and the release of signi-ficant amount of radioactive asterials from the nuclear systes process ba rrier. Upon detection of HPCI steam lins high flow the HPCI turbine steam line is isolated. The high steam flow trip setting of 3035 flow was selected high enough to avoid spurious isolation, i.e., above the high steam flow rate encountered 69 ring turbine starts. The setting

, was selected low enough to provide tingly detection of an itPCI turbine steam line break.

l 11,4$'. HPCI Turtine Exhaust Diaphraam Pressure H1+2h High pressure in the HPCI turbine exhaust could indicate that the turbine rotor is not turning, thus allowing reactor pressure to act on the turbine

  • exhaust line. The HPCI steam Ilne isolation valves are automatically closed to prevent overpressurization of the turbine exhaust line. The turama ex-haust diaphrage pressure trip setting of 5 20 psig is selected high enough to avoio isolation of the HPCI if the turbine is operating, yet low enough

- to ef fect isolation befort the turbine exhaust line is unduly pred&uriced.

Suceression Chamber Area Ambient Temperature Mich .

[ A tencerature of 169'F will initiate a timer to isolate the NPCI turbine steam l line.

I

i w as u m.1 h sa & peression Chamber Ares eif f enetial air Tem 6eratnte.g tilg 3.2./.M. hyL A dif f erential air temperature granter 'than the trip setting of 5 42'F l brtmen the inlet and outlet aucts which ventilate the suptression chamber J trat will initiate a timer to isolate the NPf! tsetine staan lim.  !

/'IM MIC Emertenev Area tecier Ambient _ TMoerature Nig l l

NE ambient temperature in the RCit equipment room near the imergtncy aree cooler snuld indicate a break in the RCIC system turbine $ team Itne, i lie automatic closure of the RCIC steam ling valves prevents the exces-sive loss of reattor coolant and the releast of significant amounts of j re-icactive material f rom the nuclear system process barrier. The high

- te :erature setting of 1169'f was selettro to be f ar enough above arti-c

ted normal RCIC system operational levels to avoid spurious isolation tu;t low enough to provide timely detection of a P. tlc turbine steam line break.

2e# { Steam Suco1v Pressure Low Lov pressure in the RCIC steam supply could indicate a break in the RCIC steam line. Therefore, the RCIC steam supply isolatten valves are stvto-r tically clo ad. The steam line low pressore function is provided so i

1. :t in the event a gross rupture of the RCIC steam liu occurred up-st ream f rom the high flow sensing location. thus negating the high 'llow ir4icating function, isolation would be effected on low pressure. The iso-letion setpoint of !. 60 psig is chosen at a pressufJ below that at which the RCIC turbine can effectively operate.

21 I:!C Steem time fael Off Hich FCIC turbine high steam flow could indicate a break ici the RCIC turbine steam line. The automatic closure of the #EIC steam liee isolation valves 7 vents the excessive loss of reactor cooiant and the release of signifi-r:-nt amounts of radioactive materials from the nuclear systes pro (ess Larrier. Upon detection The of RCIC turbine high steam flow the RJ1C tv-tine high steam flow trip setting of 306% flow steam line is isolated.

vis selected high enough to avoid spurious isolation i.e..The above the letting was

' Mh steam flow rate encountered during turbine starts.

selected low enough to provide timely detectitan of an RCIC turbine steam itne break.

11 M. F 10 Turbine Exhaust Diachraem Pressure Mich high pressure in the RCIC turbine exhaust could indicate tha txhaust line. The RCIC steam line isolation valves are automatically The tur-closed to prevent overpressurization of the turbine exhaust line.

'ine exhaust diaphragm pressure trip setting of 120 psig is selected high enough to avoid isolation of the RCIC if the tureine is operating, yet low

  • enough to effect isolation before the turbine exhaust line is unduly pres- i surized.

ropeession* Chamber Area Ambient Temperature Hicn

.U t 6 .

As in the RCIC equipment room, and for the same reason a p erature of 5169'F will initiate a timer to isolate the RCIC turbine neem lin N. Suporession Chamber Area Dif f erential Air Temetrature Nich l l

A high dif ferential air temperature between the inlet and outist ducts  :

wnich ventilate the suppression chaeer a en will initate a timer to l isolate the RCIC turbine steam line.

l

',=.'- ,

e EASES FOR LIMITING CONDITIONS FOR OPERATION _

( 3.2.8.3. NPCI Tuttine Overspeed The HPCI turbine is automatically shut down by tripping the NPCI turt,ine stop valve closed when the 5000 rps setpoint on the mechanical governor is reached. A turbine overspeed trip is required to protect the physi-cal integrity of the turbine.'

- (,

HPCI Turbine tuhaust Pressure High

( ,

4. ,

When HPCI turbine exhaust pressure reaches the setpoint ($ 146 psig) the HPCI l turbine is automatically shut down by tripping the HPCI stop valve closed.

HPCI turbine exhaust high pressure is indicative of a condition which threat-ens the physical integrity of the exhaust line.

5. tLPCI Pump Suction Pressud 1.kd The pressure stfitch is used te detect It i HPCI system pump suction pressure

.and is set to trip the HFCI ttrtript at i 12.6 inches of mercury vacuum. l

  • This setpoint is chosen to prtrvent purs damage by cavitation.
6. RJ,g,(or Vestel 6 ter level Hith_(Level 8) s A reactor water levea of +56.5 inches is indicative that the HPCI system-has perforised satisfactorily in providing makeup water to the reactor vessel. The reactor vessel high water level setting which trips the HPCI turbine is none the top of the steam separators and is suf ficient to pt event gross moisture carryover to the HPCI turbine. Two analog.dif-f erential pressure transmitters trip to initiate a HPCI turbine shutdown.
7. HPCI Pumo Disetgge Flow Hioh l a puaq)

To preventminimum discharge damage by flowoverheating at reduced bypass is provided. HPCI The system bypass pump flow led by is control an automatic, D. C. motor-operated valve. A high flow signal f rom a flow meter downstream of the pump on the main HPt! line will cause the bypass valve to close. Two signals are requirsd to 9 pen the valve: A HPCI pump discharge pressure transmitter high dif ferential pressure signal must be l reseived to act as a permissive to open the bypass valve in the presence of a low flow signal fros the differential pressure transmitter. I MIL:

Because the steam supply line to the HPCI turbine is part of the nuclear system process barrier, the following con-( ditions (8-13) automatically isolate this line, causing shutdown of the HPCI system turbine.

8. 4M' O.; r;. .. . MthraM Ez; r;;- "hh "beled-d l*

High ambient temperature in the HPCI equipment room near t.he emerg6e f- area cooler could indicate a break in the-HPCI system turbine sted

( The automatic closure of the HPCI steam line valves prevents the el-cessive loss of reactor coolant and the release of significant emotnts of pW[1 radioactive material from the nuclear The systen proce h

( HATCH - UNIT 1 3.2-53 Amendment Mc. Id2I,121 i

. l

I BASES FOR LIMITING COND1110NS FOR OPERATION 3.2.8.B. "?M RG;m Pr*=lar *-':"t ' ; Mturer.464L 'C:44=uedL.~ Dele-hBCl. )

" temperature setting $ 169'F was selected to be far enough above anti-f cipated noMal HPCI systern operational levels to avoid spurious isolation

.but low enough to provide timely detection of HPCI turbine steam line breaky

. )

9.t9C! O h 0. d "..,,. ; L s- W efed.

Low pressure in the'HPCI steam line could indicate a break in the HPCI steam line. Therefore, the HPCI steam line isolation valves are auto-

. natically closed. The steam line low pressure function is provided so

( in the event that a gross rupture of the NPCI steam line occurred up-l l

gg/ stream from the high flow sensing location, thus negating the high flow indicating function, isolation would be effected on low pressure. The allowable value of g 100 psig is selected at a pressure auf ficiently Jigh enough to prevent turbine stall. ,

10. !!!p'~!!:; :14ne4A4+k.4 "Sh blekecd .

f HPCI steri line high flow could indicate a break in the HPCI turbine steam line. The automatic closure of the HPCI steam line isolation valves 3 I  !

/[ prevents the excessive loss of reactor coolant and the release of signi- J l

ficant amount of radioactive materials from the nuclear system process (

/ barrier. Up .) detection of HPCI steam line high flow the HPCI turbire '

A[bg{1, was steam line is isolated. The high steam flow trip setting of 3035 flow )

selet'ted high enough to avoid spurious isolation, i.e., above the -

' high steam flow rate encountered during turbine starts. The detting l was selected low enough to provide timely detection of an HPCI turbine l t_ea g ne break. j W  !

11. 4+Pob4eee9e ';h:::t OS;b;r "r: mr; "4d leleted.

High pressure in the HPCI turbine exhaust could indicate that the turbine rotor is not turning. thus allowing reactor pressure to act on the turbine e,thaust line. The HPC steam line isolation valves are automatically closed

/ '

to prevent overpressurization of the turbine exhaust line. The turbine ex-haust diaphragm pressure trip setting of 5 20 psig is selected high enough l

to avoid isolation of the HPCI if the turbine is operating, yet low enough j to effect isolation before the turbine exhaust h line is unduly pressurized. i
12. t r:::';n the,Go ~ 6 W ei-i- F4vi e 3+elele.M, ftNperatureof169'FwillinitiateatimertoisolatetheHPCIturbinesteam]

line, r *

)

)

HATCH - UNIT 1 3.2-64 Amendment No. $3, 70s, 121

  • e

l .

l . .

' ~

BASI 5 F0k LIhlTING C0hD1110N5 FOR OMR ATION >

3.2.t.1J. -$wesogneesritissubentr16T"tiifi4447,,""*.a A N- Me/4 -(fd; Tdif f erential air tessersture greater than the trip setting of < 42*F l f

k (between the inlet area wi)) initiate a timer and outletthe to isolate ducts HPCIwhich turbine'ventilate steam line.the suppression cham

14. Condensate sternae Tank tenL1,gg Tre Cf . it the pref erred source of suction f or NPCI. In order to provide an adtQuate water supply en indication of low level in the C$f automat-ic411y switches the suction to the suppreJsion chamber. A trip setting ',,

of 0 inches corresponds to 10.000 gallons of water rematatng in the tank.

( 1$. Svooression Chamber Water level Hich A high water level in the suppression chamber automatically switches HPCI suction to the suppression chamber f rom the C$T.

1 C, . EPC1 Locic Power Failure Mnnitor The HPCI Logic Power Failure Monitor monitors the availattility of power to the logic system. In the event of loss of availability of power to the logic system, an alane is annunciated in the control room.

C. Instrumentation Which tr.itiates or Controls RCIC (Table 3.?-3)

1. Resetor vessel Water Level Low tow flevel 2)

The reactor vessel water level instrumentation setpoint which initiates RCIC is 1 -47 inches. This level is approximately 9 feet above the top of the attire fuel and is referred to as Level 2. This setpoint insures that RCIC is started in time to preclude conditions which le.d to inade-quote core cooling.

2. RCIC Turbine Oversneed The RL.c turbirt . automatically shutdown by tripping the RCIC turbine stop valve cir e a shen the 125% speed at rated flow setpoint on the mech-anical governon a reached. Turbine overspeed is indicative of a condi-tion whict, threstans the physical integrity of the system. An electrical tachometer trip setpoint of 110% elso will trip the RCIC turbine stop valve

. closed.

(

3. RCIC Turbine tahaust Pressure Hich When RCIC turbine exhaust pressure reaches the setpoint (< 45 psig), the I RCIC turbine is automatically shut dowr by tripping the Rf!C turbine stop valve closed. RCIC turbine exhaust high pressure is indicative of a con-

{ 4 dition which threatens the physical integrity of the exhaust line.

RCIC Pumo suction Pressure Low One dif ferential pressure transmitter is used to detect low RCIC system pump suction pressure and is set to trip the RCIC turbine at 1 12.6 inches of mer-

.- cury vacuum.

HATCH - UNil 1 3.2-$$ Amendment No, if, 303. JoA.121 l

s__ ,

e aA5[5 F0E LIMIT 16 CONDITION 5 F06 05EGATIOh 3.2.C.$. Pestter Vessel Water level Hich (level ti A high reactor Water level trip is indicative that the RCIC system has perf ormed satisf actorily in providing ukeup water to the reatter vessel. -

The reactor vesse) high water level setting which tript the RCIC turbine is near the top of the steam separators and suf ficiently low to prevent gross meisture carmver to the RCIC turt>ine. Two dif f erential pressure trans-mittet trip to initiate a RCit turbine shutdown Onta tripped the system is etnole of automatic reset af ter the water level trots below Level B.

This automatic reset eliminates the need f or manual reset of the system bef ore the opera *.or can take unus) control to avoid fluctuating water levels. i

6. PC1C Pume Discharat Flow l To prevent damage by overheating at reduced RCIC system pump flow, a pump discharge minimum flow bypass is provided. The bypass is controlled b an automatic, D. C. motor-operated valve. A high flow signal from a flow meter downstream of the pump on the main RCIC line will cause the bypass valve to ciose. Two signals are required to open the valve A RCIC pump

( discharge pressure transmitter high differential pressure signal must be )

received to act as a pernissive to open the bypass valve in the presence of a low firw signal f rom the dif ferential pressure transmitter. }

Note:

Because the steam supply line to the RCIC turbine is part of

  • the nuclear system process barrier, the following conditions ')

(7 - 13) automatically isolate this line, causing shutdown of the RCIC system turbine.

7. 4Clf-tmeron:;47:-teater-4mbient 57: :tp: "Y h ie.M , l I

@gh ambient temperature in the RCIC ecuipment room near the emergency area cooler could indicate a break in the RCIC system turbine steam line.

The automatic closure of the RCIC steam line valves prevents the exces-

/sive 1r5% of reactor coolant and the release of significant amounts of

  1. radicantle material f rom the nuclear system process barrier. The nigh .

- temperature setting of 516g'F was selected to be f ar enough above anti- }

' cipatednortta1RCICsystemoperationallevelstoavoidspuriousisolation]

but low enough to provide timely detection of a RCIC turbine steam line _

break.g )

8. EM-St e:: 0.;;4*ec: 'F D e M ec$.

ILow pressure in the RCIC steam supply could indicate a break in the RCIC, \

steam line. Theref ore. *,he RCIC steam supply isolation valves are auto-that in the event a gross rupture of the RCIC steam line occurred up- )

[/- matica11y closed.

stream f rom the high The flow sensing steam location, line the thus negating low highpressure flow fu indicating f unction, isolation would be ef f ected on low pressure. The iso-lation setpoint of 160 psig is chosen at a pressure below that at which l the RCIC turbine can effectively operate. f I

HATCH - UNIT 1 3.2-56 Amendment No. 63, 103, 121 ]

l

i

~ '

ll BA5t5 F0F LIMITING C0hDIT10ks FOR OPJA ATION

3. 2.'C . 9. Wikh U : ir; '4421# b- Deles tb. ~

l 1

lRCIC turbine high steam f1 w could indicate a break in the RCIC turbine stene line. The automatic closure of the RCIC steam line isolation W ves

. prevents the excessive loss of reactor coolant and the release of signifi-

- cant amounts of radioactive materials f rom the nuclear system process barrier. Uron detection of RCIC turbine high steam flow the R.CIC turbine

('c '

stras line is isolated. The high steam flow trip setting of 3061 flow l was selected high enough to avoid spurious isolation, i.e., above the high steam flow rate encountered during turbine starts. The setting was selected low enough to provide timely cietection of an RCic turbine steam line break.

- 10. ""*-"' " "^4.r . . .atrei v. , F.e& M e-t-c.cd ,

-High pressure in the RCIC turbine exhaust could indicate that the turbine rotor is not turning, thus allowing reactor pressure to act on the turbine

- exhaust line. The RCic steam line isolatien valves are automatically

/ closed to prevent overpressurization of the turbine exhaust line. The tur-gQb bine exhaust diaphragm pressure trip setting of 120 psig is selected high enough to avoid isolation of the RCIC if the turbine is operating, yet low l

enough to effect isolation before the turbine exhaust line is unduly pres J (sur,i ze d , f-

11. typr:W :n
  • C M :e=**ee=AmHet :Tw. .t w e "' 2 ',[a' de,;hacd , ,

j j i As in the RCIC equipment room, and for the same reason

(-

gg 5169'F will initiate a timer to isolate the RCIC turbine steam line.al te

12. Sweeressie W :t :r * :: 0"ferentialrair= Tear +eeture:mten Dejedet-{ , l A high differential air temperature betwern the inlet and outlet duct D A tch ventilate the suppression chamber ar'a will initate a timer to " ! l

. . L isolate the RCIC turbine steam line # --

13. Rf1C tooie Power Failure Monitor The RCIC Logic Power Failuri Monitor monitors the availability of power to the logic system. In the event of loss of availability of power to the logic system, an alann is annunciated in the control room.

14 Condensate Storace Tank tevel Lo,w The low CST level signal transfers RCIC suction from the CST to the i

suppression pool. The setpoint was chosen to ensure an uninterrupted supply '

of water during suction transf er.

l r 15. Suporession Pool Water Level Hich

(' A high water level in the suppression chober automatically switches RCIC suction from the CST to the suppression pool.

N .

(

HATCH + UNIT 1 3.2-57 Amendment No. JCI, 103, 121

.- . - - . . . _ , .--,,.,_n . , ~ . . - - __ ,_ , , , _ _ . , , , , _ . . _ _ . . . . , , ,

I O

.B UI5 FDR LINITlpE cDMDITIDN5 FDR DPIRATIDN

2. trweii Pmatum Minh .

Primary sentainment high pressure resid indicate a bmak in the *

)

euclear systes process horrier inside the frywell. The high crywel) pressure setpoint is selected to be high eneveh to l avoid spurious starts het few oneogh to allow Waely syntas initiatten.

3. Beatter Vettel Stean dome Pressure Law

)

e Bases fot Aesc'ter Pressure (Shdown Coelt4 psede) are dist the leset for Specification 3.2.A.t. j wits an nairticai ii.it of a w 0 ,sig and a . .insi tri, set,. int of i 370 psig, the retirculatten discharge valve will close successfully during l 4 LOCA tenditten.

Once the LPCI system is initiated. a reacter low pressure setpoint of 460 l plig produces a signal which is used as a permissive to open the LPCl in-jettion valves. The valves do not open. however. until reactor pressure falls below the discharge head of LPCI,,

1

)

)

- E .-

. f" .

MATCH = UN]T 1 3.2-60 Amendmentme.al.18f.III y

1 ,

BAlts FDa Llul11hf COnbl110nh FDe OPISATIDa 4.3 ptettetivt instauntwutinu 2 404 C ,

The instrumentation listed in Tables 4.1-1 thrv 4.t.1 wii) be fonctione11y

  • tdsted and (blibrated at regularly scheduled intervall.) W ::r f::'.; . =

Ce s i;~ Oe ;;ei Iieteiiivi- Or f strt,Hty Teoations of one-out-of te taken twice legit.e;ee all applic TherefM ore, 0.0;;;; '; FZT;Mi on-of f  ;;;ed sen rs are tested once every three months, and bi stable trips associated with slog sensers and amplifiers are tested ente per wek. The AT18 ins unents

. are te ed ente per month per Ill00-21611 A. .

(' These inst nts which, when tripped, t*sult in a red block have the tentacts arranged in one-out-of n legit, and a11 are capable of being bype ed. For such a tripping er n esent with bypall capability provided, there is optimus test

interial that s Id be asintained in order to assinise the reli 111ty of a given channel (Referent 1). This takes acteunt of the fett that to ing degrades re.

-11abtfity and the e inue interval between tests is appresi 'ely given by:

1 11 .

r Wheret i . the optinue into al betwen tests.

t = the time the trip to acts are disab) f ree perfereing their 5 function while the tes is in progre .

( r the .. etted fsiiure r.se the iers.

, to test the trip relays requires that th channel be bypassed, the test ande, and

. the system returned to its initial sta . t is assumed this task requires an es.

timated 30 nihutes to templete in a t rough nd workmanlike manner and that the ralsyl have a failure rate of 10

  • 11vres heur. Using this data and the above operation, the optimum test terval ist

,.p .10. m, 4, d.,s -

A test interval of once orgsenth will be used (Attially.

The senters and elet enic apparatus have set been included as these are ans.

<*' leg devices with r deuts in the tentrol room and the sensors a elettronic ap-paratus can be c sked by comparisen with other like instruments. The checks which are made a daily or once per shif t basis are adequate to a ure oper- l ability of th sensors and electronic apparatus, and the test intory given above previ a for,eptimum testing of the relay circuits.

The abov talculated test interval optteises each individual thanne), cons ering it to independent of all others. As an esseple, astues that there are C thann s with an individual technician assigned to each. Each technician les his hannel at it optinue frequency, but the tw technicians are set a11ewed t

,e unicate se that one can advise the other that his thannel is undeg test. Un-

.'. '. 8. . .*_?,".N.!. I'""L.. !$. _

'!..'1.8 b.... .!. !!..!. .. ..,..... . t ye..} sy enderyggjggny-( . .

MATCH - Uelf 1 3.34g Amendment Ise. S8,103 4

- - - - - - - - - _ ~ - .----,..n-,-.,,,,mu - ,_ ,_ , , , ,..-.m.

-_1~ ~ _ _ _ _ . _ _ _ _ _ _ . _ . _ - .-

I j .

bhh bJ

! f4

- s . )

, T RAili FOR LIMITING CDhMT10N1 FM Cels& TION

4. DTttilvt tersteuerriatitE (Continued)

~

  • t nets are never tested at the same stes. ,

l Per61 tot simultaneous testing intreves the evallability of the systes er that )

. which' uld be achieved by testing oath thannel iWependently. These out of a trip s teos will be tested one at a time in erWor to take advantag of this in.

herent top evement in availability.

l Optteiting es thannel independently may not truly optimite the stes tensider-ing the overal rules of systee operation. However, true systes ptteltetten is .} ,

a comptes prob 1 The optinual are broad, not sharp. end optl . ting the individ-pal channels is e erally adetsate for the system.

! The femula given ab e sinteises the enevailability of a s gle thannel which must ,

be bypassed during tel ng. The ministsatten of the emay lability it illustrated by Curve No.1 of Figure 4.t-1 which assumes that a than 1 has a failure rate of 0.1 a 10**/ hour end.th 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> is required to te it. The unavailability is a miniews at a test into al 1. of 3.16 a 108 hour0.00125 days <br />0.03 hours <br />1.785714e-4 weeks <br />4.1094e-5 months <br /> '

. lf two steller thannels are es in a one-out-of- configuretten, test interval for einimus unavailability chan s as a function the rules for testing.' The simplest case is to test each one ' ndependent of he other. In this case, there is assumed to be a finite probabt1L that both y be bypassed at one time. *,This case is shown by Curve No. 3. Wete t the availability is lower as espected for a redundant systee and the minimum oct at he Same test interval. Thus if the )

i two channels are tested iMependently, e ustion en the preceding page yields

.the test interval for minimus unavailabil v.

A more usual case is that the testing i not one independently. If both thannels are bypassed and tested at the same t . the suit is shown in Curve No. 3. Wete that.the sintaus oc,turs at about 40 hours , th longer than for Cases 1 and 2.

Also, the sintaus is not nearly as el Case I ich indicates that this method of testing does not take fu11 adv tage of the red ant channel. bypassing both channels for simultaneous testin should be avoided.

The most likely case would be e stipulate that one the el by bypassed, tested, and restored, and then immediate fellowing, the second the el be bypassed, tested, and restored. This is sh by Curve No. 4 Note that th is no true sintaus.

. The curve does have a def ite knee and very little redutti in system unave11abil-

. ity is achieved by testi et a shorter interval than tempute by the equation for  ;

a single thanne).

The best test preted of all these esamined is to perfectly stag r the tests.

That is. if-the tes interval is four months, test one er the other hennel every two months. This s sh6wn in Curve No. 5. The difference between to s 4 and I e is negitgtble. ert may be other arguments, however, that more stren support the perfectly a opgered tests, including reductions in human error. )

The conclusi s to be drawn are these:

  • 1. A one ut-of-n systes may be treated the same as a single thannel b tems f .

chee og a test interval: and y. . -

),

11. ethanonechannelshouldnot,bebypa'sledfortestin(atanyonetime.

NATCH - UNIT 1 3.3 70 .

,,...._,._..,,,--.-.--.ypw,,,,,_,...p.,,-.*y. .,,y, gy--.mye.,,,.mmm.-.y. g, m .,...,m- , , . ,,,m.., m_ , m.,., m.,-,,,m_m .--,_,.w. . .._.m. ,-..s-.-.. .

0

.T ^) v4- C { b* fy . 9/ * $.*f L4 ~ i w .

~,_ La. ,a to -% ,~ , , , .. uz., s . ..

o J 4. e- 4. m.4- G-e- t< le c.ht ( . m a L e o re c A -., b 1 s e e la le 1 4-e n /4 4,,, e o e 4 -. 4, ' ,., . Cc 4.f u4 8- C t C _. e .h. . .in ._,.p 4 c,bt

c. A 1.1.t. k hm r6e l,. 6.. L,'#p- a d.,Q1 ws a

'"1 k t, pt.C. s p g4/ ret A A.l.3$ A Or.Ctrhu I \~ N M_._

A. .b4-sh- 4. ' ANji < c %s e ,%4 sa e s s,1 kn 4 s.h .i ,4. /e ah it 4 S88 i a & Leo w ( *. 4 A . /ju6.di M Ay e,,,,__

ae sh (1. 4 4 .o fr e t 4 r. o k A .mk sons M . O AtWd I -

r ex .re .il s 4, . .n > og L,-;p ee se~ LL L I kna ~ lt o le t en reaqLL cn;ls #

L 9,A .4 ,%e..' on y te Ian L L 4y w k t.e s : .7 % 0rp<~c; is f .Pu ro. lir t 4 cJ 4, $__ e,4 t ~ I . b + 4, = a [eer wdh f n_t M -

m eA 4.'e a . }Su d an hn /

  • rL1 & n da lap.y Cfeltwo e b.

A, )a le u s r . '

t. NfDC.30851P A, *8WR Owners' Group Technical spectfIcation improvement
Analysis for BWR Reactor Protection Systes'. March 1988.

1

2. WEDC.31677P.A. ' Technical specification ! reyement Analysis for BWR .

isolation Actuation Instrumentation *, Jul 1990. '

8. NEDC.30936P.A. '8WR Owners' Group Technical Specification leprovtment Methodology (with Demonstration for SWR ICCS Actuation Instrumentation) i Part l', June 1987.

i 4 Nt00 30851P.A. Supplement 1, ' Technical Specification Improvement q

'l .

' g, apetL-50451, taproving Availability and Readiness of Field tevimt Threven Periodic In 1 aosi ospection.

3, u r Senjamin e distitestein. All. ort Shiff. Avly 16, IMS, pope 10, a w r. .

i s

  • * ( ,

M

.. I .

1 c

s . .

( e

. (.

N '

/

N 4A$15 F04' LIN1f thL tbhbtflDh1 FOS DPik&flDN /

4.9 P90Tt $1RONEWTATIDN(Continued)

  • The redtatten een {ntherefueMagfleereshausteenttia dott dich initi.

-' att building 16eletten etensky gas treatment ePerstlen e arranged in M ene.

evt.ef etwo legit systees. bases given for the red cks apply here else and were used to arrive at the funt I testing f reeve . The ef f ges post treatment

, mentters are tennected in a two-out 4 we legit angement. based en e:Perlente with instruments of sin 11er design, a te erval of ente every three months has been found adequate.

(

The automatic pressure relief instr stien ten be e dered to be a one-out.

. of two legit systes and the distus n above applies else.

A. itf e rent es .

1. UCRL-504$1, I ving Availability and headiness of Field toutpoent uph Periodit In ellen Senjamin (pstein Albert Shif f, July 16,1963, page
i. ation a), u werence a.distien a boratory.

. bf.fCk .f It o fs'r-e

(. .

e C .

=- . h-

- k . .,

(

DLA1CH** UNil 1 3.ga71 ,

. . ~1==----~~~******1-*

l

. ...... .. . . . . . . . . ~ . . - - -

, ,.4

. P e

h(\c)C.

  • bd l } e/f L 1('
  • IfI
  • y

,q5 .

I ,,. - . ,

E

' b gg5 ,

l ,

,g1 =

l af t

e / i i 8

o e

/s 10 8

10 T88T INTi kv a L

- 7;O0'": '. ". CYOT f M

I 9

e t

. De. tele 4hu Epn

)

/

,e = .

y I,e *

,(8 " '

3 b

I ggt - p 4

1 1 1 1

/

vastiwtan m .cowova A,

e

-vvIw ==.$e -

w Y wI, w r, e

0

- s..

y. . . .

. 4 e

e

  • .* *. .* m ano e , e e . e a.. . ee,.... .. . , , . e e ee ... ,

e

j OI6m rpmlas m Unida __ m vin w :t r i c' m r.t m 4.l W. 4,tle%pte of t'illed tittu*ve

..;.h.

hateter.arte of Fiitef tittutte OLLA LP f re l't .T.1he 0,0.e18 l ,.l evi,htLeve e ase i,l la nt e, e .

  • mtherer,
i. e the Cl lyl,lesni ere , eaee,Ci. te silvre tut the silsur,.

u be operene, tu siisurie Pipteg f ree the punt giltharge pipthg of De CS system. trII. l ef w,le inte te th, ialt m i. e u ::: er, plect valve su n be fillet. filled whee e,estros lhe tuttlee et the RPCI twel (vtry eneath. the (tlthergt lhall be allthef to the teh8te* 1.

[. pipshi of tu tetl ene lite iterese urt. (5 lylttel thall be teeted f ree Se high pelet thd weler flev Hierved.

2. f elleging eer Peded where the Lf'Ci er Cl lylttel l t,.ve ut beta novires

( to be operable, or have both theterable the filtherte l pipint of the lyltre er Syl*

teel teiet rotermed to ter-tite shall be veeted f rom the high point prior te re*

tere pf the lyttee to Stevite.

3. Whenever the HPtl er tttC lyttM il 11hed Wp to tele lettien f ree the tenser.nete sterett tent, the sistharge plett.g of the Hett end 8t!C thall t.e vented f ree the high potet of the lytt a '

she water fle9 Miraved oh '

e monthly tialis.

4. The level switthel which

- monitor n e sitt u q e n oti /

i u ti 6e m a , :. n.:

L:7 1; ^ . .: (4116r.100 overy . . tu . I

1. Pteim p tiver level 1. Pimissa piver Level
1. If the water level, el The water level el mellWred mestured in the pow well. ie the punt wl), one tu il tell thsh 61.2 ft M1L. level in the river
  • thall the filtharge f rom esth plemt be verified with the f e11ew-Servite water (P$W) pump will ing f requentielt be throttled luth that seth piApp Seel het estee01CCO spe. Level (P3L) freevtaty g

!. If the water level, el mealpred l 1. e 61.1 ft Slwetly.

in tu pump w11. setrialet to tell than 60.1 f t K5L. er if f. g 61.1 ft (very 12 brl.

the level in the river

  • erert to e level envivalent to tell e

knir paw w11 monttoring 45 roovired if a toeparary wir il het to plate.

tsitM - Unit 1 3.5 11 Asst.caent No. TI. I'5(.110

,, L18111% C0= TIT 10n5 F05 OHIATION hLluA*n atETTriiTITs _

3.6.M.1. Relief /iaf ety valvy 4.6.M.), te11ef/1afetyVa(vy

a. When ene er more N 11ef/ssfety a. Led.st,Dpettiina tyt13 7 valve (s) is khwn to be f ailes"* an l

, erverly shutdwn tha11 be initiated . Apprestaately one-half of si) and the Featter depresluftled to N 11ef/ safety valves shall be tell than 113 plig within 2a houn. benchthethod or replageg with vrier to reetter startup from a a benchthettt6 valve each re.

cold tendition a11 relief / safety fueltog outage. All 11 valen valvet shall be operable." will have been thetked or re-

+

pie ed open the csepletion of every totend operating cycle,

b. With one er more relief /saf ety b. f ach Goeratine tvtle valve (s) stuck open, plate the reatter mode switch in the Shutdwn polition. thtt duttog each operating tytle. 41 e reatter pressure

> 100 plig each reitef va),e shall be manually opened until thermotouples downstream of the valve indicate stete is flow.

ing free the valve.

C. With one or more taf ety/ *11ef valve t. e critv.ef Relief Yalve tattript pressure switch.. of a '

safety / relief valve declared inoperable and the allotiated the integrity of the reitef valve safety / relief valve (s) otherwise tellws shall be continuously indicated to be open, plate the monitored and the prvsture reactor mode switch in the Shut- switch talibrated once per down polition, oper6 ting tytte and the attu.

muistors and air piping shall be inspected for le4Lage once per operating cycle."

d. With one safety / relief valve tailpipe d. Relief valve Maintenance pressure switch of a safety / relief valve declared inoperable and the esto- At least one reitef valve shall tiated safety / relief valve (s) otherwise be disassembled and inspected indicated to be tiosed plant operation each operating tytte, may continue, temove the function of that pressure switch f rom the low low e. Drierabilinv ef Teiletoe set logit circuitry untti the next COLD Pressure lwitchen 5HU100m. Upon COLO $ HUT 00w, restore the pressure switch (es) to CP(RABLE 1he tailpipe pressure switch status before STARIUP. of each relief / safety valve shall be demonstrated operable O
e. With both safety /rettef valve tailpipe by performente of as pressure switches of a safety / relief r valve dettered inoperable and the asto- 1. Functional Tests ciated safety / relief valve (s) otherwise -- f - -- '

indicated to be closed, restore at least a. At lasst onc one inoperable switch to OP(RABLt status within 14 days or be in at least HOT CAle#vV p5rtions of instrumen-t-4 SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> tation intide the pri-and in COLO 5HUTDChat within the mary containment may be follwing 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, estivded f rom the ,

functional test, and

( **The befitef/5af ety valves are not required to be operable for performante of inservice hydrottatic or pressure testing with reatter pressure greater than 113 pitg and all control rodt inserted. Overpressure protettien will be provided as required by A5Mt Code.

. *The fativre or malfunction of any safety / relief valve shall be atported by telephone within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />; confirmed by telegraph, mat 1 gram, or fattintle transmission to the

  • Diret%r of the Regional Offite or his designee no later than the first working day follwing the events and a written follwup report within 30 days. The written f ollowup report should be completed in accordante with 10 Cf t 60,73 or other k applicable requirements. '

OM6 4 (4Appet enA5 Pas p.KMerrb Ftan St&Mt #ct UP w (*/ HDelt Fea keDuittb SkdatiotadcJ Te$re w 6, y our se ceas,ygnes ovetskaka N.oMeb **mutur d ondat'> Akaf Wh M * * *%" ' "! *

%P Pvaltele=L HATCH UNif 1 3.6-g Amenchnent No. H,7J.Jpj,U1,149

,,, , , , , . , , - y ._,_._,,y., - , _ , _ . , , . - . . _ -

LimitlNG COND1110Ns FOR Okta A110N $UkyllLLANtt StoultthtNTS

  • 4.6.H.1. Relief / Safety Valves (Continued) l -
e. 1)cerabitinv of Tati Pier l bressure witches

, . 1. Functional Test: l

b. At eeth scheduled out- l }

oge greater than 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> during which en.

try is made into the primary containment, gg, ) ....

if not ner s.niiid' ith-u-

p be.tv.R .'

2. Calibfatiofrend verif ying l the setpoint to be 85, +1$.

-$ psig at least once per 18 months. .

3.6 H.2. Pelitf /$af etv Valves tw_L2g 4.6.H.2. l1 1Jtf/$afety Valves t h kRE let Function Set funttien During power operation startup. The low Iw set relief valve func-

  • and het standby, the relief tion and the 1 w low set function valve f unction and the Iw tw pressure actuation instrumenta-set function of the following tion shall be demonstrated OPERABLt ' '*

reactor coolant system safety / 4 performance of at relief valves shall be OPERABLt with the f ollowing Iw low set 4. CHANNtt,f'UNCT10NAL TEST, function lift settings including calibration of the trip unit and the dedicated Low Low set Allowable Value (psig)* high steam dome pressure valve Function 92n Unf. channels", at least once per mo%auenagg. rrwnN Low $ 100$ 5 861 Medium 5 1020 5 872 b. CHANNEL Call 8 RAT 10N, Logic Medium High 5 1035 5 891 System Function Test, and High 5 1045 5 897 simulated automatic operation of the entire system at least

a. With the relief valve function and/or once per 18 months.

the low low set f unction of one of the above required reactor coolant system safety / relief valves inoper.

able, restore the relief valve funt-tien and the tw 1w set function to OPIRABLE status within 14 days or be ,

in at least HOT $ HUT 00WN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and COLD SHUTDOWN within the follwing 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. 4

)

  • The lif t setting pressure shall correspond to ambient conditions of the valves at nominal operating temperatures and pressures.

Mhe setpoint i for dedicated high steam dome pressure channels is 51054 psig. )

      • A c.etauaev trev br Ltraend F 4 m Se L u r. e+ L ve tv te Hove.s fat, trou,2th S ucri,am pu Twstoa% A9b vor bt LaessbcRA.k ouettLA%d Pt.wbek bvWedtM4" t.eendarts Att A rn M h L 6' 10 tv3ve.t Wt TO P Prdt.fies).

l MATCH UN11 1 3.6-ga Amendment No. 77, 57, if,103

LIMITI4 [0kDITIDh5 FDR Uff e ATIDb EUPi[IllahU BIOUIDEM[hT5

~

4 .1. D .1. Svevetilante of Operable 1Altri (Continued)

6. At least once per operating sytle the evetter toelent

, systee instrument line estest flow theck valves shall be

, tested for proper operation.+

c. At least once per guarter.

aii no - u ,en ,o.or- l sperated is lation valves (estept for the win steam line power operated llolation valves) shall be fully closed and reopened.

d. The isolation time of each m in steam line isolation valse shall be determined to be within its 11eit when tested, pursustyt to Specification 4.5 K.
e. At least once per week the main stese line power-oper-sted isoletten valves shall be esercised one at a time by partial closure and sub-sequent reopening.
7. hurveillance of Lines with an mnocerable va],y1 3.1.D.2. Operation with inocerable talvet .

Whenever an isolation valve In the event any isolation valve listed in Table 3.1-1 15 inoperatile the position of at specified in lable 3.1 1 becomes inoperable, reactor power operation least one other isolation valve in each line having an inoperable my continue provided at least one isolation valve in each line having isolation valve shall be verified to be in its isolated position an inoperable valve is in the ac,de daily.

torresponding to the isolated con-dition.

3. $hutdown Recuirementt if Specification 3.1.D.I. and 3.1.D.2.'

cannot be met, an orderly shutdown shall be initiated and the reattor sha11 be placed in the Cold shut-down Cnndition within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />..

  • b C. HANSEL fMA4 M Ref? loved Fm StMict FOL OP 704 H 00 LS Fc4. Rs00ited suusit.t.Agr.c Trswg ut, Nor M )

+ 604$lt4 reb INDPEkAl%E' Mt0Vibsb MWhtlE W CHAddtLS AM MedAM 70 INSVLG Tilg TRift FOMt.7104, .

MATCH - 00111 1 3.1-14 Amenenent ho.163

LlulTIWFCDNDIi10NS h09 OPES &T10N 1URvIILLANtI aEDulAlmtNT1 4.g.A 6. Emereenev fl0 Veit DC to 60 Volt

  • . At inverters (Continued) )
b. Mce every scheduled refueling outa , the emergency 250 voit i

! . DC/6 voit AC inverters shall be eubje ted to a lead test to demon (strate operationaf nadiness.'

-)

3.g.A.h Lenit Systems 4.g.A.7. Loeir Erstems .

The fo11eving logic systeel shall The logic systees shall be tested in

' be operable: the manner and frequency as follows:

a. The conson accident signal *
a. tech division of the conson logic system is operable. attident signal logic system shal)
  • be tested every scheduled refueling

- outage to demonstrate that it wil) function en actuation of the core spray system to provide an

' automatic start signal to a113

- diesel generators.

b. The undervoltage releys and . b .1. Once every scheduled refueling supporting systes are operable. outage. the canditions under which the underveltage logic system is required shall be simulated with an underveltage en each start but to demonstrate that the diesel generators will start. The testing -

I of the undervoltage 10 it shall demonstrate the operab lity of the 4160 volt 1644 shedding and auto but transfer circuits. The simulations shall test both the de raded ,eitage and the iets of hg ,

gfg-sitepowerrelays.

2. One,/per nth the 'elays
  • iitiateeneMtat n of th rgen busea b the Die 1 nera es when oltage i lost e the rgency b ses and ta rt-up transoorwer it wi)) be f uncf onally yested.

I The cowson attident signal logic c .1. Once per operating cycle each .*

c. diesel generator shall be dem- +

system, and underveltage relays enstrated operable by simulating and supporting systes are operable.

  • both a less of off-site power and a degrad4d voltage condition in conjunction with an accident test signal and verifyingt . I i .

3.g-4 Amendment slo. 51. 48. 88 NATCH - UNIT 1 '

. ~ . ~ . . . . ,

m INSTRUMENTATION RAD 10 ACTIVE L10010 EFFLUENT INSTRUMENTATION LIMITING CONDITION FOR OPERATION 3.14.1 The radioactive liquid ef fluent monitoring instrumentation channels shown in table 3.14.1-1 shall be OPERABLE with their alarm / trip setpoints set to ensure that the

. limits of $pecification 3.16.1 are not exceeded. The alarm / trip setpoints of these channels shall be determined in accordance .

with the OFF$1TE DOSE CALCULATION KANUAL (ODCM).

APPLICABILITY As shown in table 3.14.1-1.

ACTION

a. With a radioactive liquid effluent monitoring instrumentation channel alarm / trip setpoint less conservative than required by the above specification, without delay suspend the release of radioactive liquid ,

effluents monitored by the affected channel, declare the .

channel inoperable, or change to a conservative value.

4

b. With the number of channels OPERABLE less than the minimum channels required by table 3.14.1-1, take the

. ACTION shown in table 3.14.1-1.

c. The provisions of Specification 6.9.1.13(b) are not applicable.
d. When the ACTION statement or other requirements of this LCO cannot be met, steps need not be taken to change the Operational Mode of the Unit. Entry into an Operational Mode or other specified condition may be made if, as a minimum, the requirements of the ACTION statement are satisfied.

SURVE!LLANCE REQUIREMENTS e 4.14.1 Each radioactive-liquid effluent monitoring h instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION, and CHANNEL FUNCTIONAL TEST operations at the frequencies shown in table 4.14.1-1.

& A CMeMC% MR4 M RCMWCW fhM MQ h'E FCL VP Tv = 2 HpA.s HL . AEGustCW

$0ttt M.nMLt it'sTt 04 A ub Maf M tcasobtRgp suctra. Arc, i HATCH-UNIT 1 3.14-1 Amendment No. 110

. - - , , , , _ - - _ ~ , . _ . . _ _. ___.m_., ,.. __m._ _._,_ . . _ _ . , _ _ - ., - _ , . . _ - . _ . . .

e n (3 3 3 m b, n -

2 .

O YAett 3.14.2-1 (SeetEt 1 or 41 n

R ADIOACT 4Vt QSt_UUS_({_{1_RM_f _ MOM t.1pR LMC_t MSTWtfMEMT AT ICej

. . e E

Minleese CremaneIs Instevee_nt, OrtRAe(f, [typt{cebilIty MJer ACTIM e

1. Seein Condoneer orryes Trentment .

System tryIesIve Ces 9eenIter6ng '

i Systoe mydre,en soonster (tth ** 1 wyeregen tos

2. Isoector Desilding Vent Stock peenItering Systce i s. Igetrie Ces Aettvlty Denniter (1)(
  • fledleectlvity Rete feessereennt
  • 105
  • 107
b. ledleue Sempler Cortridge (1)(0) vertry Presence of Ca rt ridge tD .
  • 107 am
c. Portletstete Smerter Titter (1)((t) Vertry Presence ef' 18tter
d. trricesnt Systee flewrote peuroenreuent Devlee
  • Systee rtowreto 10%
( f ) (CA) 8mpeenreuent
e. Sampler Flowrote stesseerweent

, Device (1)((A).

  • Smerter flowrote 100t e faseserement .

e 3. Docentsiner DelEdIsus VentiIetIen

-j 9eenstering systee (t)(b)

. o. sesente ces Aettvsty seeneter

  • nedteectivity note 105 .

so,esare-ent +

  • **rfry Free *aee er ter
t. seelsee sempter Cortridge (t)(CL) Certrad,e

,t i~ .

t c. rt celet. Sm ler r. iter i,,ce> - ver.r, - ., ... -

189ter k, d. S.e, (si cod - Semener rI-te sw oes.rierr - te eese. - t ee m s-

  1. 9 .

g a

es. .

O s

O

E

-4 Tastt 3.14.2-1 iSutti 2 or 4) ,

E ftmosencitVE CAstcars EFrtetstT_mosettestIwC_tstsinuuttstTATtout ,

+

g wintene Chennefs .

m j -4 instrimment OrtstmeLE epeticolpirity Pe rseeter eCTit>t

'; ~* .

-* 4 seeln Stock Moniterleg Systee j .--

3 s. II trie ces Activity fannitor (1) b)

  • Itodleectivity Aate Depesurement
  • 105 I ,

I

~

. b. fedine Sempler Certrlt99e (1)

  • Vertry Presence ef" 107  !

, - *; Certredse .

e. Particolate Sempfer Titter (1)(N_ ) Derfry Presones of 10T . ,

FIIter

  • 7
  • d. Errissent Systes Fle. rete

. Steeserir.g Devices (1) Systee Fle. rete 104 9e.esweveent e.

e.,c,*r

.e. e ,,e.r.te r. g it) (4 - -.or r, e.e _ t te = .

g 3. Condoneer Orrges Protreeteent 9eontter 1

a t ie ca. activity noniter (1)@ - neeseeetivity vote no...,*.e t fee  :

1 s

  • s I i

-t -

j '

i . !  : I ar ,

v. .

4 * *

[

3 Q.

E

= -

. v+ .

M d

o -

l er W g . e.,

I TABLE 3.14.2-1 ($HEET 4 0F 4) ,

RA010ACTIKGASEOUS EFFLUENT MONITORING INSTRUMENTATION hbleNotations(Continued)

  • I If the nu-ter of channels OPERABLE remains less than recuired by '.he Minimum Channels OPERABLE requirement for over 30 cay',, in explanation of the circumstances shall be included in tha next semi-annual effluent release report.

ACTION 107 - m h the number of channels OPERABLE less than recuired t-y the Minimum Channels OPERABLE requirement, effluent rtleases via this pathway may continue, provided sa ples t t continuously collected with auxiliary sampling ecui pent for periods on the order of 7 days and analyzed within 4! hours after the end of the sampling period.

If the ne-ber of channels OPERABLE remains less than required ty the Minimum Channels OPERABLE requi-* ment for over 30 crys, an explanation of the circumstant;t shall be included in the next semi-annual effluent release report.

. ACTION 108 - With the number of channels OPERABLE less than recuired t:y the Minimum Channels OPERABLE requirement, release 1: the environment may continue for up to 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />

. provided:

a. The effgas system is not bypassed, and
b. The ef f gas post-treatment monitor (011-K615) or the main sta:6 conitor (D11-K600) is OPERABLE.

Otherwist, be in at least HOT STANDBY within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

f the nu~ber of channels OPERABLE remains less than required ty the Minimum Channels OPERABLE requirement for over 30 c rys, an explanation of the circumstances shall be included in the next semi-annual effluent release report.

M CHAL90L MA4 M REMWrb Ftom MMIC6 FDL VP TD 2.

HOVLt f:4 REQQtttb SUAVelLLM4ct. TEST Ng AHb #0r M 64 Sib (J.Eb lNp?gtM A (, g N A CHAgnEL may M RemNrb Ftom WWIC6 FDL OF To b

, H0VLS f:' REQVIReb SVAVglLLM4cE TEST 144 AHb 40r M 64bibr.cb INDPgkAhs. I HATCH-UNIT 1 3.14-10 Amen 6er.t No. 110

f .

- =

REACTIVITY CONTP.0L SYSTEMS

>v... .s-w. :.::.m - -

f e s.., ,, .

CONTROL ROD SCRAM ACCUMULATOR $

LIMITING CONDITION FOR OPERATION

.3.1.3.5 All control rod scram accumulators shall be OPERABLE.

g APPLICABILITY: CONDITIONS 1, 2 and $*.

ACTION:

I

a. In CONDITION 1 or 2 with one control rod scram accumulator

)

}

inope ble, the provisions of Specification 3.0.4 are not applicable and operation may continue, provided that within 8

, hours:

.I 1. The inoperable accumulator is restored to OPERABLE status, CT b

, 2. The control rod associated with the inoperable accumulator is declared inoperable and the requirements of 5 cification 3.1.3.1 are satisfied.  :

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

]

b. In CONDITION 5' with a withdrawn control rod scram accumulator ineptteble, fully insert the affected control rod and elect:itally disarm the directional control valves or close the withdraw isolation valve within one hour. The provisions of Specification 3.0.3 are not applicable, ,

SVRVEILLANCE C UIREMENTS g 1.3.5 ThecentrolrodscramaccumulatorsshallbedeterminedOPERABLEb'

a. At lu st once per 7 days by verifying that the pressure and lest cetectors are not in the alarmed condition, and
b. At least once per 18 months by performance of at -

(

1. CONNEL FUNCTIORAL TEST of the leak detectors, and l

CMNNEL CALIBRATION of the pressure detectors to alam * "]

2.

at a 940 psig. -

l l

i

'At least the t:cumulator associated with each withdrawn control rod.

I Not applicabic to control rods removed per Specification 3.9.11.1 or 3.9.11.2. -

)

Y N0?$b$ $f c$?t$bWes$ $$ hey sYeNWh?!.fh?Ufh%'$"?rYbst

[

  • M CH' Y ~NI'T U 2 3/4 1-8 Amendment No. 55 l

}- ,

..s--

j .

l ,

. REACTIVITY CONTRDL $YSTEMS ROD BLOCK MSNITOR I

LIMITING CONDITION FOR OPERATION

(' 3.2.4.3 Both Rod Block Monitor (RBM) channels shall be OPERABLE.

APPLICABILITY: CONDITION 1, when THERML POWER is ';teater than or equal to 301, of RATLD THERML POWER and when the MC)R is less than the value provided in the CORE OPERATING LIMIT $ REPORT.

ACTION:

a. With one RBM channel inoperable POWER OPERATION may continue provided that the inoperable RBM channel is restored to OPERABLE status within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />; otherwise, trip at least one rod block monitor channel within the next heur. ,
b. With both RBM channels inoperable, trip at least one rod block monitor channel within one hour.

i SURVEILLANCE REOUTREMENTS e

4.2.4.3 a. With both RBM channels OPERABLEf surveillance requirements are given in speen . cation 4.3.5.

b. With one RBM channel INOPERABLE, the other channel shall be demonstrated OPERABLE by performance of a CHANNEL FUNCTIONAL TEST prior to withdrawal of control rods.

p* *

  • A c.9499et. ma1 M Rernewb reory) StRNict. Foo OP To 4 '

( -

900s.s ru. momes suusumme nsn% ags uor u 604t t*R Eb (ND? tit A Px.( PRehbib WFKIEM CHAddst.b

  • AR.L MAtLANE To EusvlG THC TNP FUAtn04, f:

aATen. unit 2 3/4 2-17 Amend.ent no. w , 20s l

I .

3/4.3 INSTRWrRTaTION

( 3 /4 . 3,1 REAtT0e PROTECTION $Y$tru tw$TRWIWTATION

},,1w1TINOCONDITIONFOROrfRaTION

  • b ~

3.3.1 As a sinimum, the netter protectien systee instrunntation channels shown in Table 3.3.11 shall be OPEMBLE with the REACTOR PROTECTION SYSTEM RESPON$E TIME as shown in Table 3.3.1 2. Set points and interlocks are 81ven in Table 2.2.1 1.

ADPLICAP1LftY: As shown in Table 3.3.la1.

I.

ACTION:

a. With the requirements for the minimum number of OPEMBLE channels not satisfied for one trip system place at least one inoperable channel inthetrippedvenditionwithIn12 hours. l
b. With the requirements for the minimum number of OPERABLE channels not satisfied for both trip systems, place at least one inoperable channel in at least one trip system
  • in the tripped condition within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> l and take the ACTION required by Table 3.3.1 1.
c. The provisions of Specification 3.0.3 are met applicable in OPER.A-

, T!DNAL CONDITION 6.

SURVE!LLANCE RE0'JisEMENTS pnctionL.

4.3.1.1 Each natter prot:ction system instrumentation channel sha11 be demonstrated OPEMBLE by the performance of the CHANNEL CHECK. CHANNEL C#:C"M TEST and CHANNEL CALIBRATION operations during the OPEMTIONAL i CONDITIONS and at the frequencies shown in Table 4.3.1 1. j 4.3.1.2 LOGIC SYSTEM FL'WOT104AL TESTS and simulated autoestic operation of a11 channels shall be eerformed at least once per 18 month end shall include calibration of time deley relays and timers necesst..;. for proper )

functioning of the trip system.

4.3.3.3 The REACTOR PROTECTION SYSTEM RESPON$t TIME of each reactor trip function of Table 3.3.1-2 shall be demonstrated to be within its limit at least once per 18 months. Each test shall include at letst one logic train such that both logic trains are tested at least once per 36 months and one

(' channel per function such that all channels are tested at least once every ,

N times 18 months N is the total number of redundant channels in a specific reactor t fynction.

Me4

'If both channels are inoperable in o9e t'rlp systes, select at least one j

( inoperable channel in that trip system to place in the tripped conditio@.

except when this could cause the Trip Function to occur.

HATCH

  • UNIT 2 3/4 3 1 Amendment'No. S. 100 '

q eesse , q- * * *

  • INSTRUMENTATION .

r ,, 3/4.3.2 !$0LAT10N ACTUATION INSTRUMENTATION

} - (-.

  • LIMITIE CM0! TION FOR OPERATION __

I -

3.3.2 The isolation actuation instrumentation channels shown in Table

.).3.2-1 shall be OPERABLE with their trip setpoints set consistent with the f '\'"""'"'"'a5a'"' ' "*" ' ' ' ' ' ' 2 3 ' - 2 "' " ' '"

C.  !$0LAT10N SYSTEM RESPONSE TIME as shown in Table 3.3.2-3,

.i .'

y g l APPLICABILITY: As shown in Table 3.3.2-1.

ACTION: . .

e. With an isolation actuation instrumentation channsi, trip setpoint less conservative than the value shown in the Allevable Values f column of Table 3.3.2-2, declare the channel inopersble and place the inoperable channel in the tripped condition
  • until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.

p

IWitfthe not-satpinth i utre nts for he myinum n Mber of PERAB T changris iedfronetrpsyptem,pl<3featIastoginopeyabl l' h C$ b g @ , h 9 anne) tripped condition' within ong our # 4 M c. With the requirements for the minimum number of OPERABLE chan'nels Q not satisfied ior both trip systems, place at least one inoper-f[N

~

able channel in at least one trip system" in the tripped conCtion within one hour and take the ACTION required by Table 3.3.2-1.

d. The provisions of Specification 3.0.3 are not appitcable in OPERATIONAL CONDITION 5.

t

, $URVLiLLANCE REQUIREMENTS h ' 4.3.2.1 Each isolation actuation instrumentation channel shall be

  • ( ' demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST AND CHANNEL CALIBRATION operations during the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.2-1.

r

  • With a design providing only one channel per trip system, an inoperable

( channel rted not be placed in the tripped condition where this would cause the Trip Function to occur, in these cases, the inoperable channel shall be restored to OPERABLE status within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> er the

' ACTION required by Table 3.3.2-1 for that Trip Function shall be taken.

(

I e.

"If both channels are inoperable in one trip system, select al least

( (' ' one inoperable channel in that trip system to place in the tripped condition, except when that would cause the Trip Function to occur.

HATCH - UNIT 2 3/4 3-9 Amendment No. B i

r .

3/4.5.2-Mea wcMew_ b. +o add:

!3 IN 4e. humber of OPERASLE Omnels less 4ha.n rytred by de Alininunq OPEPJPAE Genne\s per D-ip 6ysfeg repiremen+ for one. -rf P S/5 e%)

eM,er

1. place de inopera.ble clunnel(s') (A 4e 4 tipped ODVdiD# WINh

\1 hours '

l DR-

2. hke 4he AGTLd yirec! Dy Tb\e S.%1-l-T,g provMiDi% CM 8 P e0I@i0a YIC11 304 are. ne ayticabl8 ,

Y b_ _ _ _ - . _ . _ _ _ _ _

e T Att! 11t 1 (C:ntu.afl ,

150tattow ArTpAtl0w ]k$ttMdatl0N

$.'.,1h ACTION 20

  • Se in at least NOT $HVTDM withla $ hoves and in COLD ENJTOM within the uit 30 heves. .

ACT!DN 21

  • Se in at lust $fARTup with the male steam it, isolation ulos clo ud within 2 howes of be in at least NOT SH.ff0 M within 6 hevo and in COLD $NWTOM within the most 30 hoves.

. ACT!DN 2)

  • De is at least $TARTUP ytthis j hoges.

ACT!DN 23

  • Be in at least STARTyp with the Grove 1 isoletten valves closed within 2 howel er in at least HDT $HJT0thm witnia $ hoves, e ACTION to
  • Establish SiCONDARY COWTAllMlWT Ilf7(GtlTY with the stedby su treatment systee operating within ene hove.

ACT!DN ll * !solate the reactor water clun@ systee.

ACT10N 26

  • Close the affected systee 16 elation taltes and peclare the af fected synee inopereble.

ACT!DN 27

  • Verify power availability to the bWs at lust once Ht !! hewn -

or close the affetted systee isolation valves and oeclare the affened systes inoperable. ,

ACTION 23

  • Ciest the shutdown cooltag supply and P*atte? vessel head spray H olation valves unless nactor steaa eene pressure s 146 psig.

ACT10N 2g

  • tither close tu effected isolation valves within 24 hewn of be in HOT $HVf0CWN within the nest 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLD SMUTOM within the nest 30 howes.

3 3 .

mu gg2e5o a in wnes the sued , gas treet.o e,nes. ,

& t#

g , g'E ,- no handung innin.d f.ei o the m.n ary cenuin.ent.

79 F ,3 won perfereng inienice hyd.ruuut er int t.iting with the nector cooiant te.,ernure abo.e nr r.

4. See Specification 3.6.3 Table 3.6.31 for valves in each valve group.
b. c ay At p ed i en operab)4st W fet @ tel how fo g aggwE res%nnel wired s eveilla e wt out ac he t tp S U undia

, ( tystes(16nmoniteHngo. ..d n tMeti fe rne etJteo,r'thedisysein/the(..eTri,

)nparamete6 ~

cu ei '

ge, _/ .

E (A 'I) c. With a design providing only one cho nel per trip eystes, an inoperable CM channel need not be placed to the tripHd condit'on where this vow 1d cawse D 'g the Trip Function to occur. In these cases, the inontable channel s411 m 1N $g be restored to OPttABLE status within 2 howes or the ACTION nquiret by Table 3.3.21 for that Trip Function sha11 be taken.

Y 3 ME (v d. Trips the mechanical vacuun pumps, h e. A channel is O'EMBLt if 2 of 4 instruments u that chan.~i en OPluBLE.

(4

f. stay be bypassed with all tuttine stop valves closed.

3 y EW g g. Closes only RW:V outlet holation valve 2G31*F004, g D -g h. Alare only.

g h 1. Adjustable up to 60 singus.

d E2{8 m J. J ulates contatement purge and vent valves.

  • 6. Wnm ,. hown ,rior is the ,ianned su,t of u,e h,dr ,en u3en,on ten

. . t wah the manor ,0.ee n grener ton m ened ,0we,, the moresi fun.

T o $w power radiation background leni and associated trip setpoints may be I 9 choged based on a calculated value of the radistten level espected durint e ftn the ust. TM background radiation level and associated trip setpotets may 5 t-U"

&Y fti be adjusted durint tu test bued on ett4r celeviations or measurements of actual radiation levels resulting from hydropp injection. The bacsgrowed p ndistion level sh:11 be t.etermined and associated trip setpoints shall be us within 24 houn of n-usa 14shing normi redtation tenis afue completion of hydrogen injectten and prior to esta11shing nactor power lents below 20s rated power.  ;

, idTCH = UNIT 2 3/4 3*ll Amen $ent No. 9:39.U e78.88.91

l -

D, g stat,z_1 g ISetATIOM ACTUATIOM iMSTRUMEMTATIOeg __SURyr,1(LAgCE REQUIRQuGES n OPERATiettAL

r CHAMMTL

, Ft!n0TICMAL C18AMMEL COMOITIONS IM Wollt**

CUMMMEL $UR_Y([LLAMCC,R(QUp (Q TEST CAltBRATICM

_CHLCIL l @

TRIP FU?tCTIO?!

a

-4 1. PRIMARY COMTAIMMEMT IS01.AXO3 4

n. Pa*ctor Vettet Water level S ,, T G R 1 7. 3 Ifw (tr<ct 3! 3 7 3 1.
7. l_ow l_ow (teve1 2) S AC R 1 7 3 Low Low Low Itevel 1) S X R 3.
1. 3
b. Drywell Pressure - High S gg R 2,.
c. Mein Steem Line W "' R 1,2,3 Redletion - High X,5 1 1.

Pressure - Low stA ,WN[4 0

1. 2, 3 2.
3. Flow - High S pg R
d. Meln Stoes Line Tunnel S EQ R 1. 2. 3 Temperature - High c i rs. 3s
e. condenser veen . - tov nA pn/A w

N f". Turbine DulI< lng Aree. Temp. - 1. 2. 3

  • Migh '. MA SQ R 1

w R 1, 2. 3 l 4 9 Drywell Redletion - High gd [Q

2. }{gosl0(JtY CrlelTAlfpIE98T ISOLATI0It Reector Building Exheast ~ 1, 2. 3, 5 and *
s. nedletion - Migh 75 M(p) R S fQ R 1. 2. 3
b. Drywell Pressure - High

^

c. Reactor Vesnel tester Level -

to t o itevei 23 s yq a i. 2. 3

1. 2. 3. , se -
d. ys -

3

,, Re. edl fuel.in,g l- Floo,rIIEx,hevet

, ,%g .

E 6- < * *

  • *uhen hondiEng ire 73Ieted fuei In the secondery etmteInsent.

w turtrirse stop volves closed.

, 'FMey be bygessed with Cl* talsnstrument ellgement using a stenderd current source.

w M .

  • l N  ;

N O

i

\

3 4t e.3.2-9 treatt W ) * '

IsotAf tee ACTeef f tet ta'Tesset#Taf test seovtttuuuCT efceteTT'E9?S SPtwatteem t M mett e - telt.es te .tetc,e S ca. sert PwTim ca.e=t CMitteAf ten SU8tvEtttfduCE Pityttet1P I

, Cerica TEST T*tP FWeCTigst

3. WEmCT9Et teltTta CttassWP SYSTtse egetAttest *
9. 24

. w g

9. #Fleur
  • Wig 89 f'$ [Q R l

= 1. r. 3 A .4eee toupee tere - wegen s f fGJ a ..

R 1. r 3 l

e. f feeTempeestere vesstitotten &

- 8ttg8r 5 f(QD I 11 4 R Rn 1. 2. 3

4. SLCS telttetlest 1. 7. 3
e. e veeeet water tese

- s pq =  !

tow tow (Leset 21 88 . EfB _ fWitM . e a lose sys t L=4 e

t. r, 3 l
  • 8.
  • t#Cl stese Lismo Flear-ettget s Q R

. D. M S Stoom Susety Presse's- S XQ e v. 2. 3

1. 2, 3 tear S .pr g a t eso - e.- meelTertine Esteest e P9ese,e-ete
{
4. A s Teu ess.e.tece teneteetten

- wie Deem s xQ = s. 2. 3 y 9. M eeselon Peet Aree Achsent n 1. 2. 3 I ,

T = . - as s srQ  !

t

=

sSueereesten f Afee ST *

=o = .. r. 3 [ t ele s -

,. e.,e,eeste. eget A.se vos,. am 34 m

~

1. 2. 3 i spese mettys A i M peney Aree Caeter Tengt. =

sQ e v. 7. 3 s

et, R 1. 2. 3 l

8. *S$yeset t Preteere
  • M9988 S f(4 '

tut 1. 2. 3 NR 9t i J. Legle Peeer h ttet '.i E. .' I X

?

w W ,

, I t

i f.

18

  • gl- _et . .. . .

llj asaaaa das ia ggy .:.? .? .? .: J. .: a .:

ll c '

i -

I

~

B I I

{ j

.I .

b

~

i

s i. 1. .; p* ee w
  • p* n. & ee s

i r g

x f -

  • 5 1 '

W 5

...... .g .g ..

g .

5

{

!e '

c ils K ,1 1

.g.r. .i!, wg..n.. .i i. -

2 e .

b< ;

,.t..)l:tE. y 3_ }

m' - =

C -

$!l!

E 1: :!I 1.jI'l ! gi ',

.!..! t n: . .e ., ,i. .

oul n g d 2 ,t 1:

p

' f[u. .[ I gf -

( is i 4 i a a A

  • i i

. % .. , at '

Ea J ,

ETCH . UNIT 2 3/4 3*23 Amenknt 4. 39 -

< 1 L

INSTRUMENTATION ,

3/4.3.5 FN;RGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION . .

[. . , aceley't LIMITING CONDITION FOR OPERATION  ;

~

) 3.5.3. The emergency core f.coling' %' stem (ECCS) actuation instrumentatic,

shown in Table 3.3.3-1 shall be OPERABLE with their trip setpoints set

l consistent with the value: shown in the Trip Setpoint column of Table

. 3.3.3-2 and with EMERGENCY CORE COOLING SYSTEM RESo045E TIME as

  • shown in I Table 3.3.3-3. *

, ]

- APPLIC ABILITY: As shown in Table 3.3.3-1.

ACTION:

i

a. With an ECCS actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.3-2, declare the channel inoperable and place the inoperable channel in the tripped condition until the channel is

-restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.

b. With the requirements for the minimum number of OPERABLE channels O not satisfied for one trip system, place the inoperable channel in the tripped epndition or declare the associate 'CCS inoperable

-)

  • wi thi n **e hourf.T
  • 12 a
c. With the requirements for the minimum number of OPERABLE channels not satisfied for both trip systems, declare the associated ECCS g

inoperable within one hour,

d. The provisions of Specification 3.0.3 are not applicable in

, OPERATIONAL CONDITION 5.

SURVEILLANCE REQUIREMENTS 4.3.3.1 Each ECCS actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST, and CHANNEL CALIBRATION operations during the OPER/TIONAL CONDITIONS and at the frequencies shown ia Table 4.3.3-1.

4.3J 4 LOGIC SYSTEM FUNCTIONAL TESTS ard simulated automatic operation of I all channels shall be' perforced at least once per 18 months and shall include calibration of

  • i.ne delay relays and timers necessary for proper functioning of the 6 rip system.

% by.tsk & na h 5lN b5 '

)

7 HATCH - UNIT 2 3/4 3-24 ,

k 6 1

~~ - - -

4

. l

k. k k.

.li e

a. .a se s 5

.a a a a:

k.s.d..55 s

)

- 5 4

5. E. 4 .4 4.4

. . 4.4 ... 444.4 1E5]

)

.t u -

21 "IE y @  : 4e

-i r 'N 3$$ 5E

[g3 . . . 33ESE!.

s g

. age

_i 5l

. l!

E-

t. :

I ~l

. E. - _! Ig  :

i E I I* t' 'i 2 E!  : I EIE la e ae r

s,p

s

!r 0 8:

s Ii j r$[:gaet _ A _gi I:t:

b.i t u.

-v  !

a 4:.

g ets -

. y* .

gi, g

.- I ,[-

E p

l

--,l!:I a

.< :a ! ! !g!e-,

.g vv va

:s

,la$B 5:E e, _

gi gl n g l [ erne :

!!  !.4s 5 E-

-1.; il ; gj8.allfe-s,._l

-A Ig!I za. . t a.

E!!,jtsu.e 4 es-

.sHj jE:.:vevet a:g . -

1((

E

, tr.;.

11- .l.::::liti!xteeg te-t.- sri ll =:=11111

!!!i

1 G l . ..5

.I a .I -

)

s{ j-R Ei r; E

' 2 I 2,2

=_ieii :IIIEIls . . .s. _

, g, i di 4 h is i 4 4. 4 s l g e a 1 WTCH - UNIT 2 3/4 3-26 Amendment No. Jf, 67 e

9 9 g **'9 # 9 .9

  • 9

i'

, l L7 EA5 3 33333 3 3333 3 33 3 LI 9 R O' 0 , , , ,,, , ,,,, , , , ,

Al1 2 22222 2 2222 2 22 2 CYi -

IAt LRO FEM 1

11111 1 1111 1 11 e N

O pro AOC D C

A 0

f r

o b E

s o Rr r t u ff o n S

LM h o .

i g O E

M O

REE EMT BMS

)@

d(

h"

(

C 2

1 t i c

u p s R I MAY ' ' p r s T

A T

M E

UHS MC MEI ULR P )db"'")

(

C

(*

2 2 '2 2'I 2 8

(e )d

( )d 2 2121

(

) )d ou d[ (

2 21 l

o 's

//

b

)

d(

2 e

p e

c u

p 5 m

p 5 0

1 C

H T

M MB1 n 6 U iA o I e R MRR C r P u (, 2 T iEE t s

v S MrP H ss $

M O s A

)

d I

N l

e i

gn eD p T *4 S r L E

E,

(

E e O t l h D u ) a a e mP r n

I T 8, s oO o M T i

t A

U A u e d l f

8 A . S E M s i C_

c n 6 b Wti O $n fh T l N )

C

(

o C A

)

)

5 7

K

)

e v h t

e b

a r

ep s eeob C s

t oF N

(

i V P t M

E 3 D, )

- i s A T T

  1. e 1

1

- T S

0 8 D.

2 ) s o o n r e, e b A.

3 3

Y S

0 M

-)

3 9 C, 8)e 2ev m vi i

r t

y I

s oc t i 4

M E

f W40 P EMtM a

J e 6 ;i s e t I F Y 3

E G

N 1

4 D, E8 M

B,)

A 1

8, s i Aim ss P

(

)

i l

i c

cuf a

e r t $ F s CI 9

1 9 07 S T

A A

I 22 1 4t 4mr h e i

b P b E 6Ib L

B L

O 1

2 ,6 6 2 B

9e 6v 5re ig v a i

. g h S E F U

r b A O C

2M 2

)3 -

Me L

7eP KP( H i

s l yo t T S R w nr T l ( l ll i E

e v 0,M O14

)

1(

1 1

-(

h - i s a n v ore E E, TGC f 2 M R e C,12 E 8 Ew 2)g e

m r

e sf L f o c b 3 s *T O

C L

( 4(

2o (L

83i 2 H r) e r es 2 F 4 G E 9 O O bV HTtA.f AL b M l

B,E e (l P e vn t Y

C w A2h v o (

)w eo rv o- u D.

s ( w l a R o or E > A. I eee es C.)

t N M L 4 9 whig (Le vL hg p vt P t L O t R d L E

C E i sw mLr r PB,B, i(u y nc D E I R

s E D Ls 6o-eWSM T w i R S o MLl h so T s AA H f oi P S t 0

E M

Y S

L 1t v)i e g M

i L ws)e61 noe9g5K -

i r ta it b v

r G.

f 4

L I 5 QL w- e cm oE U E 1 ee1H E oLr r6-gS uSIT Q

- r M EvlK- T S

e i PAaM1 e r

v uo t R 6 T 0 2e Pl )tl 2h 2 st A M 3t l t

(

3 e (Lrt e Y (e 8aee5c18 u ,e u d 5 t n

T v etv S v u v g6 s 12 s el pa e F E sp 8 G e C e hktEe he .terMiE( s t be e r i

_ E L gna2L M gL AcLe D2 e bat e i A b A t f I t s

_ J )i rD ,H oW( r 0 I ) A h1 -

rc2p;o r

P r e r ph re .uqe P e i t

D 9 P/

t t s

_ N e T rre t H er D,2 t R t t a eesEsD.i 5l t M e pt f 7 I l l u

tC, eeot A taC,7 t i P2 tC,n E e) poCror 1 I nU T A RA T

M A

a gb t a Z W B,r r a nesmiW I

R e KvaD r W 8,1 LeW p 5,E) 8,M o S T

Y o D.

m D C, i onPoo naH pt t

o V MO Q mE L t

OT C L l Aet ohol U ulA2 l o s

S moenn T t s I t O B S O e stCMe S se 8retADAr n B, netno i h F O s2sS s S ss12 esp 5O5e Y e et nis ,

C s9e nrs E es9(ts 5M5w R eA hst asr t bA R S d e6reoee R re6 aey6 6o /

PVMrWVaMIMP S t0 W yeh s e g snceg rS g t E t EYH O )

I M

_ - E vMPti wV P

- aso e r S2 8 c

6 e Es &

R E C-U r1l ssPr D t r1 mrrp1P1l T rM .eirpD g p T TC S

S o2l ne o t8eeret C I o2ieoS2L1o E et8Ttt E(Er S o-t1 yhsepA l t hu a ta n stsd p AG L 0 A s

, gbdD ER H 4 E c 2 w d pl c I wc2 ce2 2t c2 0 R a(ynpga T ye(SSar(R(n W a8 oeei rdees n g S t

F

_ 1 P e rotsoe A re DDeo H o O e2 I E F R DCSLR M DR AARC R C L R( uai h C T 4 AbthH SU C H O rl vntI t M C T W acoe C U

F t

t i

s bcdef A

. . ... U . . . . . . .

ab c d e f' g h

. O L e

. t erhoP 4g AdPWtH

f. l T P

t ) ))

R . a bc )t

  1. (4 T 3 13 5 ( (( (

gN%t E4 m- ()

d Yt N o *$f A xF U. $ "I

l

% y - - -

m -

_TA8tt 4.3.3-1 tuttetutv_ tent teot.tme SYSitM Actesteen terStausstetaf test SURvtttDtfuCE_RtgesnOESTS -

a c, e.m t t- .

, C80AINIEL FWests tout 4L Cnasett. CUIIDttleets ser tMstW TRIP FWWCTlest _ CseECR ttSt catetsstAt eest SussvttttMect stostate .

  • h, *

- 1, teett SrstAY SYSTt3t

-4 ~

. e, Ae eter w. tw setstent wter te,sel -

. to. tw 1 s st G = s, r, 3, e, 3  :

D. It Pressere - Nigen S ,g Q R 1, r, 3

. e. &mooctor Steen some Fressors - tow S ,3rQ a 9, r, 3, 4, 3 *~

d. togte romer sesntter an n an 1, r, 3, e, 3 g
r. Lew PREstunt COSUtsti ttJtCTiet fiOst 9F tWWt SYSitst .

s pQ a I

, s. . W it Proceoce - # feen 1, r, 3 ,

D. +me.ctor woest taster levet . .

tow tow tow (tevet t)

e. Mter weeel Shroud tweel S )(Q R 1. F, 3, 4*, 38 e ttews es
d. Absector Stese Sune S s(Q n 1, r, 3, 4*, 3* l
  • Pressere - tow S pr a t, g, 3, to, Se
e. vDeeeter Steen Does Pressere - Lew
  • Jr a t. 2, 3, e*, 3*

e, sont Peep seset-tsee Detey metey 24 an a 1, r, 3, 4*, 5*

R g. togte reser teentter een a na t, r, 3, 4*, 3* -

=

Y

.w

" *sist oppliceste 39eest tue sete sprey se%teme ete opt 9tAptt per Spectrecettese 3.3.3.1, 3

s1 *

.E 3 .

    • t at

.o M .

o O

M 8

1**U at.3ALicoattW1 k E"t*9tT7__Co*LCootd*0._SISitS_ ACTUAno't_13slawta f Alt?4Jtmytittaact_*tev1*IM'in ,

s- .- eA1,-

c===tt . cs.o At c,.Amett co .. r. es . .c.

  • TRIP TVu! Gile _L'tLCA_ ttst CA Q9RA,QOEl S M 80Q ( R[qqlR(S(_

E 3. E19st rettgestt togLsit_LeutcTtout sysitit .

-e .

i y e. Vfteoctor vessel isster tevet

  • tow ten (teves 2) S gG R 1, 2, 3 .
b. /DryweIt Pressure-Migh S pf Q 8t 1, 2, 3  !

i e. y conseneste Storego tenet tevel - g tow IIA fN4 4 1, 2, 3 3-s i ,. /9ereceseless c9eseter teater e.

tevet - Nis's Legse Power pennitor S

MA ff'Q R

R sea 1, f, 3 t , y, 3

-l.

g F. yMeneter Vegses water Level-Higes 5 ,st"G R 1, 2, 3  !

ttevet e)  !

!  %. MT9MRIIC 9trett33guilZ311gst SWTEN

s. v6ryweII Pressero.ntgh 9 ,pt g st 9, F, 3 8 t D. gaeoctor vesset 18 ster tevel - R f, t. 3 g

. tow tow tow (teve 13 S 38' Q a 1, r, 3 w e. SPS fleer sea mA e w W. A wel Aetse n 1,,, 2,,,3 3 l e,

e. ..os tow test.er,to.eter to t. ten

-- ooeter o se i -t 18aer mA, s,eA o . .

ttevel 33

  • F, vCore serey Peep Slecherge M Pressere - stages S gG R 1, f, 3
  • 9 e4 Inst (tPct tueett Puey Olecherge
  • ls.

Prosaure - selgh Centret Power Stanf ter S

80A

/GR R

MA 1, F, 3 1, 7, 3 ,

S. LM 13tL3EL3d!Ltr31ER ,

8. oRoseter Stees Some Presser. -

, S q ff =

1, r, 3 i t.

y > ,,.c. - .ro et -i .e t. .e .Pt t . t. -ter e- - .- ,13. ... .

k i A 1 E

M .

U

<r.

h3

  • - _ "._. _ v w e

INSTROMENTATION p 3/4.3.4 REACTOR CORE ISOLATION COOLING SYSTEM ACTUATION INSTRUMENTATION y .

LIMITING CONDITION FOR OpERATIDH

,C h 3.1.4 The reactor core isolation cooling (RCIC) system actuation instru-e sentation shown in Table 3.3.4-1 shall be OPERABLE with their trip set-

[. points set consistent with the values shown in the Trip Setpoint column t

of Table 3.3.4-2. ,

' f- - APPLICABILITY: CONDITIONS 1, 2 and 3 with reactor steam dome pressure

> 150 psig.

ACTION:

a. With a RCIC system actuation instrumentation channel trip set-point less conservative than the value shown in the Allowable l Values column of Table 3.3.4-2, declare the channel inoperable

!. and place the inoperable channel in the tripped condition until .

the channel is restored to OPERABLE stitus with its trip set ,

point adjusted consistent with the Trip Setpoint value,

'b . b. With the requirements for the minimum number of OPERABLE channels not satisfied for one trip system, place the in-operable channel in the tripped condition or declare the RCIC system inoperable within ee-houg.

/2_ e

c. With the requirements for the minimum number of OPERABLE channels not satisfied for both trip systems, declare the

-[ RCIC system inoperable within one hour.

SURVEILLANCE REQUIREMENTS

  • f s

4.3.4.1 Each RCIC system actuation instrumentation channel shall be demonstrated OPERABLE t,y the performance of the CHANNEL CHECK, CHANNEL .

FUNCTIONAL TEST and CHANNEL CALIBRATION at the frequencies shown in g Table 4.3.4-1.

l 4.3.4.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic. operation of all channels shall be performed at least once per 18 months and shall include calibration of time delay relays and timers necessarv for proper functioning of the trip system.

{ ,

1 (-

HATCH - UNIT 2 3/4'3-33 i l l

L. .

1

)

)

E C

  • 5 m .S 5 -Q E

-w" f! E $W d5 E 555

~

$$5.

I 25 S. .

E . .

~

l$5

~

f@b C u =I*

E5" G* Ee' e A 5 3

i

- s.

  • 1 3 *( sw?! , .
  • 5 W I L

- 's &

a )4 N' i g -

i i s Nyu E j N

!5 5 g g ;h

. R a -

E

{>EwW wWo w

s 3 a g

I e= a 8 2 $4 e

  • g } r 52S

$ k$

t . '~ $

t

  • * &g E
  • g
  • ig4 esa 3s - -

3 Ea g~y T. Si% 2 * - i 3'

45 5 :""_.e 4 j ss $fS S52 C

hj*wf*q

  • 2 e:

6F :32 Nig c) o$ e.

2 i

E SA LA 2AA WE ISC RfC j < p/n O t n .

  • t t- tow
e. Suppe.s.l.se P t tiet.e 38 4 X 4/ O _

i t.v.t Miyte a -

I

5. I e

o

? M .

3 N

. w on e

e G n e

. E.- .

3 *

. e+ -

2 -

o 2

N to

TABLE 3.3.5-1 E CONTROL ROD WITHDRAWAL BLOCK fMSTRUMENTAff0M N MINIMUM MUMPER OF APPLICAGLE .

o .

OPERAMLE C18AMMEt_S ~ ~

OPERAYIO80AL Z IT R T R I P f tJNCT IOM C08808TBOMS e

TRIP FUffCT4OM

1. 'APRM (2c51-k605 A.-B, C. D. E. TI

~

E 1

  • 3 riow Rercrenced Simi tated itw rina s as (ce) '

.O .

ro P e r - iso scate inor m teva EDA s. 2. 5 d.

vnw scase us ,3Y t 2, 5 c.

d. Metstron T itex - Higft, 12", is ( hj
2. ROD BLOCK MOMtTOR {2C51-R605 RBM A and B) l t '1'** -
n. 'upsesle 1 t

l anoperative b.

c. Downseste 3 ) 1**'

B. C, DJ

. 3. SOURCE RANCE MONITORS (2C51-k600 A.

3 (3) 2

a. Detector not ft 18 In

.2 5 3  ?

b. 'Josca le" 8 2 5 3 2
c. Inoperative 5 g

. 2 ( 2 3

  • d. Downscate'*8 2 5 ua y 4. letTEpe,EDI ATE RAftCE 9000tITORS .

7 51-k60t A, B, C, D, E, F C, H) -

6 2, 3

e. Detector not frif f I n" ' 6 2, 5 tp . Upscale . 6 2, 5
c. Inope ra t ive - 6 2
d. Downseste
5. SCRAM DISCHARGE VOLUME _(2C11-M013E)

! 1,k,5"'

s. Wster Level-Migts O.

n s, O

TABLE 3.3.5-1 (Continued)

CONTROL ROD WITHDRAWAL BLOCK INSTRUMENTATION NOTE

a. When the limiting condition defined in section 3.1.4:3 exists.
b. This function is bypassed if detector is reading > 100 cps or the IRM channels are on range 3 or higher,
c. This function is bypassed when the associated IRM channels are on range 8 or higher.
d. A total of 6 IkM instruments must be OPERABLE.

This function is bypassed when the IRM channels are on range 1.

e.

f. With any control rod withdrawn. Not applicable to control rods removed per Specification 3.9.11.2 or 3.9.11.2.

9' b 0,HAWNEL. fYlAN IM REmWrb Ftom SEMICf. FDL OP TD k HOOL'a FOL REQVIReb Sudelt,L.Apac,g, TESTi44 AtJb 40r P4 UAbl web IN0?GRAl%G' YR04s>Gb WFICIEM MAMts.%

A M M AILA M TD EM59LG tag insp Fohlt.noQ

h. Inc MAuuct May bii A6Moveb F24m 5EA4 c5 Fot up to (,

Hovl.s foL REDus tLb SULs'CIL*L W5'104 % dot BC Cou$sb6LEh Iu oPiLA M . (,NsiNd.AWAG Of C.oDTt.bG R.0,b3 85 UVf" MLm svgb buloQQ pg40 ggb SVCVOL.LAdad TE3rs cle. '

4 HATCH - UNtT 2 3/4 3-39 Amendment No. 39, 106 l

j

- (. , .

g .

. E I.  : a.  ;;; .... .... .:

l, -a  :- eaaa .:.:aa .: .

l

s== "s= a=a= s's=

b $f!; .' I

>=.=,

5.5.51

~

k

[* k.k.)k. k.W.. Y5.k. k.k.Y.5 .

"e Egli lg 815 1885 IIII 5

1.  :: -

is i 2 52 f5. E: 1:2 15

2. 2 ,,

,..t.5 t

-. I .. It ter. g, i ( ,irii t '

1 sti I er i

!!11illi11!'gli!~j!

i A44 444 sisi - 4d44 a

i

(- ..t l E: a A J A j mTCH - UNIT 2 3/4 3-41 ht 100. Id.104 i . . . . . . . . . . .

l - * ..

i 1

? q l I 1 1

TABLE 3.3.6.1-1 ,

_RADI ATIOM MOMITORiftG iMSTRtfME9tTAf toft g .

  • APPt.tCABLE e MINIMUM CHAMMELS MEASUttEMENT  ;

e INSTRifMENTATIOft OPERABLE OPERAT COMDITIONSf10 mal,b) ALARM / Tit t P SETPotMT RANCE ACTl088 2 -

~ 1 Orr-Cas Post-Treatment -

N Monitors 2 1, 2 (s) 10 ' to 10 cps $0 (2011-K615 A. B)

2. Control Room Intste Monitors 2 1. 2 3 , 88 5 1 mr/hr 0.01 to 100 mr/hr 51 (1Ztst-R615 A, B)

'" value not to exceed the eateivstent or the stack retesse t imit Irwficated in the Environmentet Technicas Specifications.

Y (b) M c.HAN#EL MA1 M RENEb Morn MRecB FDL OF To 2 sea.s ra. assoinen svuesu nas wr,m, .93 not u todSit* Reb iNDPERAPx6.

s W g & 6

g TABLE 3.3.6.2-1

)

B l* SEISHIC MONITORING-INSTRUMENTATION i

! y MINIMUM l'c:l s - -

-INSTRUMENTS AND SENSOR LOCATIONS HEASUREMENT RANGE INSTRUMENTS OPERABLE 3

g E

1.

I h Triaxial

a. Time-History Diesel Accelerographs(a)

Generator Building El 130'0' (C) 0-0.5g 1 (el j g (2L51-N021) 3 '

3 b. Reactor Building 87' Level on f{ c.

Drywell Pedestal (2L51-N020)

Drywell - Feedwater Inlet to P.PV 0-0.5g 0-0.5g

) (e )

{ N 1 (c)

W 4 (2L51-N004) l 1 4

  1. d. Switchyard (C) (1L51-N005) 0-0.5g 1 (e) g ,

.j 4

2. Triaxial Peak Recording Accelerome nts
a. Diesel Generator Base Support (ci o.l.0g 1(d)

" E (IL51-N007) hgg b. Intake Structure (C) (IL.NN006)

c. -ControlBu)CpinoMainControl 0-1.0g 3 ( il)

L"

-z Room Floor 4 1

(AL51-N008) 0-1.0g 1 (,d ) )

p a *

d. Control L11 ding Floor El 112'I ) 0-1.0g 1 (g) g E

(2L51 028) i o e. Reactor Bldg Refueling Floor 0-1.0g 1(d) l  % (2L51-N029) l :yg- f. Reactor Podestal Inside Biological l k Shield (2L51-NO35) 0-2.0g 1(d)

) , g. Reactor Piping - Feedwater Inlet 0-2.0g

{ j -to RPV (2L51-NO34) 1 (d)

( h 3. Triaxial Seismic Switches (b) l 0 E

a. Reactor Butiding 87' Level on l a. s Drywell Pedestal (2L51-N022) 0.025-0.25g 1 (d) g I b. Reactor Building 185' Level Out- Ig l g side Bielogical Shield (2L51-N024) 0.025-0.25g 3

b $ 4. Triaxial Response Spectrum Recorder (a) h 'd a.

-Hatch-Unit 1Cogainment 2-26 Hz 1 (d)

M)> g ) 6% Foundation El 87' (1L51-MP5) 0-0.5g. l, l TI y )

L: E3 g 3 l

i k0 3% }J 0 aWith main control room indication and annunciation.

[ bWith main control room annunciation. T l

.f - J cShared with Hatch - Unit 1. ,

4ATCH - UNIT 2 3/4 3-48 Amendment No. 11

^

,, p- . ~ .. ,

TABLE 3.3.6.3-1 .

g REMOTE SHUTDOWt MOMtTORINC INSTRUs9ENTAf test ,

n Z MINIMUse e READOUT e FUNCTtOMAL UM1T LOCAT:DM'*? CHAMet[t.S(b)

OPERA 8tE b

1 Reactor vessel Pressure RSDP 1 (2Cs2-R006) to

2. Reactor vessel Water Level RSOP 1 (2C82-R0051 RSDP 1
3. Sempression Chamber Water Level (2T46-R070) 1
6. St9pression Chamber lister Temperature RSDP (2T48-R072)

RSDP 1

5. Drywel Pressure.(2T48-R071)

Drywell Temperettere (2T47-R070 RSOP 1 6.

2T!s7-R071, 2T4'-R072, 2TII7-R073)

7. RCIC ' Flow (2C82-R002) R$0P 1 RSDP 1
8. RHR Flow (2C82-R004) w MRemote Shtitdown Panet (RSDP) located at Elevation 130' In the Reactor Bu.tding (b) $ &pgSMg, (1SM P)E RI'aisNo; rtan Sapice. Foo 09 To 2 HOOLS Foo RsociReb svue)L(.M4cE W$rs% at3b Mor M

. ' CDdSebsREb INDPERAPbtf. .

e m

4 t>

h

TABLE 3.3.6.4-1 e

POST-ACCIDENT MONITORING llISTRUMENTAYlolt , -

--t MINIMUM

~

a Or(RABLE CHAMMELS(d) c INSTRUMENT *

z: 2 ,

y 1. Reactor vessel Pressu e (2B21-R623 A, 8)

Water Laval (2821-R610, 2B21-R615) 2 N 2. Panctor Vesse t Shrot 2

3. Suppression Chamber Water Level (2T48-R6?2 A, 8) .

Suppression Chamber Water Temperature (2T47-R626, 2T47-R627) 2

4. '

suppression Chember Pressure (2T48-R60s, 2T48-R609) 2

5. .

2

6. Drywell Pressure (2T46-R608, 2T48-R609)

Drywell Temperature (2T47-R626, 2T47-R627) 2 .

j 7.

Post-LOCA Comme Radletion (2011-M622 A, 8, C, 0) 2 . ,

8. '

2'  ! .

9. Drywell He-0. Ano tyzer (2P33-R601 A, 9) 10.e) Safety / Ret ter Velve haltion Primary Indicator (2821-N301 A-H end K-M) (a) ,
  • . b) Safety /Reller Velve Position Secondary Indicator (2821-91004 A-H end K-M) (e) w 2'  :
11. Drywell High Range Pressure (2T48-R601 A, 8)

& 2(b) h

12. Drywell High Range Radletion (2911-K621 A, 8, 2T48-R601A, 8) .
13. Main Stock Post-Accident Effluent Monitor (D11-R631) 1 (b)(c) .
14. Remotor Building Vent Plenue Post-Accident Effluent Monitor (2011-R631) 1 (b)(c) ,

. j N *The Drywot t H,0, Analyzers shall be operable with continuous sempting copsbility within 30 minutes l  ;

)

g, of en ECCS actuation during a LOCA.

e

. . i

& i

.O ;

9 r

.e' ." s' .

' TABLE 3.3.6.4-1 (Contlnued) .

l POST ACCiDERT MOstiTORIIOC IRSTRtN9ElfTATIDet .

o 3) .oncelf either the primary or secondary Indlcation It inoperable, the tortes temperettere wlli be monitored at least 2 per shif t to observe any unexplained temperattere Increases which might be Indicative of en open S/RV, With both the prienry and secondary monitoring channels or en S/MV inoperable, either vertry that the S/RV le s few set logic M attion Indicators (2821-N302 A-H snd st-M) et least ]

closed once throtegh per shirt monitoring or restore the sufficient backtop lowinoperable channels such that no more than one S/RV has both primary and ,

l E

w secondary channels looperable within.7 days or be in at least hot shutdown within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

H b) With the noober of operable channels less then required by the m!nimum channets opersbre regtsf rements, l ro inittste the pre-pisoned siternste method or monitorfng the appropriste parameters within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> and

1. either restore the Inoperable channel (s) to operable stattre within 7 days of the event, or
2. prepare end stabelt a Special Report to IIRC pursuant to Spectriestica 6.9.2 within 1se days following the event, otitlining the action taken, the cause of the inoperability, and the plans Jend schedule for restoring the system to opersble stettes.

one for mid-range noble gas and one for high-rsoge noble 9ss. Both c) Adetectors channel contains two detectors:

most be operable to consider the channet opersbfe, w . b A CdAMEL.M41 8% RE Mwet> FOM SEMsC6 Fof_ 't1P 10 2, goop _3 w UEFCtPr FOL $TEms 9, 83 9db ik IA}etlCss CAA OG L Mbuts) FOL.

EtQvullel> SUUElu.mc.s 1EWsua Aub Asar TsC Lons,unch saopewsts, s

o n

a Ut e

~ ,

.. =- - -

4 INSTRUMENTATION I

SOURCE RANGE MONITORS LIMITING CONDITION FOR OPERATION 3.3.6.5 Three source range monitors shall be OPERABLE.

APPLICABILITY: CONDITIONS 2*, 3 and 4 ACTION:

a. In CONDITION 2' with one of the above required source range monitors inoperable, restore 3 source range monitors to OPERABLE status

- within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> or be in at least HOT SHUTDOWN within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />,

b. In CONDITION 3 or 4, with two or more of the above required source range monitors inoperable, verify all control rods to be fully inserted in the core and lock the reactor mode switch in the Shutdown position within one hour.

SURVEILLANCE REQUIREMENTS ,

4,3.6.5 Each of g above required source range monitors shall be demon- -

i strated OPERABLE by: eut

a. Performance-of a:
1. CHANNEL CHECK at least once per:

(a) 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> in CONDITION 2*, and (b) 24' hours _in CONDITION 3 or 4.

2. CHANNEL CALIBRATION" at least once per 18 months.
b. Performance of a CHANNEL FUNCTIONAL TEST:
1. Within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> prior to moving the reactor mode switch from the Shutdown position if not performed within the previous 7 days, and .

-2. At least once per 31 days,

c. .Verif' g, prior to withdrawal of control rods, that the SRM count I rate .> at least 3 cps with the detector fully inserted.
  • With Ilifis on range 2 or below.

"May exclude neutron detectors.

)

(a HoVO fef REGWRic> Sub8WWC4

. css AWedAweet

$flut MAN P4 ArmWED Fram ssuW ect. OP TDA4b Wor 04 f,,04% bELED #9oPsi.APA.gr Pt.0/ bsb %W m ra.sp mcma.

HATCH-UNIT 2 3/4 3-56

l T AELE 3.3.6. 7=1 QH(ET 0 Or y MCRECS ACTUATION IN5'RWENTA*:0N )

ACTION

' ~

ACTION 52 - Take the ACTION required by Specification 3.3.3.

ACTION 53 - Take the ACTION required by Specification 3.3.2.

ACTION 54 --

. a. With one of the required radiation monitors incoerable, restore tre monitor to OPERABLE status within 7 days or, within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />, initiate and maintain operation of the HORECS in the pressurizaticn mode of operation,

b. With no radiation monitnes OPERABLE, within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> initiate and maintain operation of the MCRECS in the pressurization mode of l operation,
c. The provisions of Specification 3.0.4 are not applicable.

~.,

NOTES When handling irradiated fuel in secondary containment.

)

  • a. hypel fmay be.piacet! in,,.anlnoperet'le stat 0's for up)to 2 hou fj) regt(ired ydtvet,11ance without placing the trip ysteml4n the tppet condition ,pe,ovided at least one other OPERABLE

" agnel in# t e sas4 trip dyste,m 1's inonitoring 4 hat parameter. k

b. With a design providing only one channel per trip system, an inoperable channel need not be placed in the tripped condition where this would cause the Trip Function to occur. In these cases, the inoperable channel shall be restored to OPERABLE status within hours or the ACTION required by Table 3.3.6.7-1.. for that Trip Funesson shall be taken.

g

c. Actuates the NCRECS in the control room pressurization mode.

i

d. (Deleted)
e. Within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> prior to the planned start of the hydrogen injection test with the reactor power at greater tt.an 20-percent rated power, the normal '

full-power radiation background level and associated trip'setpoints may be changed based on a calculated value of the radiation level expected during the test. The background radiation level and associated trip setpoints may be adjusted during the test based on either calculations or seasurements of actual radiation levels resulting from hydrogen )

injection. The background radiation level shall be determined and

. associated trip setpoints shall be set within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> of re-establishing normal radiation levels af ter completion of hydrogen injection and prior to establishing reacter power levels below 20 percent rated power.

HATCH - UNIT 2 3/4 3-5Bb Amendment No. 7), 48, 9( )

A t,annatt. (T\M % Rsmot9p F Acts SitM4 foL Op To b nout$ FcL taureAb suueuauce restm4 uo or at eaas,deu.> sworum iwan sor-emear-t,HAusnS 616 6MMrM to D'NRG TN C TPJ P P ud t.Tio 4 . l

' ) i w

U HJR C

  • I t
  • t f_ .

ttq at 3 S

- a E sRR t . .

Oe 3 3 3 3 3 3 f

. Aoe 2 2 2 2 2 f sW 2 RD f:

P: L i 1

f 1 t

f O I sE sv e

os t CU S

J t

a i

f t

R Lt t

8 8

q 0 t tf R tf eA s

E #R C

I uD r t.

R R R R u R M CL E A 1

i C

1 7

6 y-t s L t

=

m um 3 tAt 1

3 1 T 0tseoT n

Q k'-' Q ** '

e A SIS .

t t

t f

s e

mTE eCf e

e s / 'V # 'M 'M t ne i

A 1 3 Cef t

r t m a

r R i .

e e S

1_ t r t

s n r e

I o t s

c os u e

. C y 8 r t 1 t ,

3 a n A iW J. e S

tC A r

[$ g8 t s 1 eE t s S S t emr Q AH u A t C 3

s s c

. C s 5

C e rd h a t

R h - t d C g n M i n n at H o e s

- i

- hg a t l s e a n i i u

e. o H d -

r g n

e h g t i e t > d t - M i

) I e e e s r1 H l w s t n

t s

t e e d o le r D - e I i t I t. el R F A d a e n

T C

vve er e e r i rh g r m I

iL u n n o Aii r ng M

t F

e( s i i s s L L i o- m l

t i

P sw eo e r n e ma g r o-o g

n s t

I vL P Rn i R e et n o e t i rw oo t

I t

S S i

t li ot d

n e n

tt e e ra e m c h ur ew y w al n vh ti i rg nd eo r a a ei oa CR n

e s t

nL D M M mtI h n m w t i 2 3 It 5 6

  • s h4n= - e e2;- ot sta $"

e > 3s a 3 s e3 +e

9s 2O. w* m

,lf l!Ifl: '

4-TABLE 3.3.6.9-l'($HEET 10F 2) f

. RADIDACTIVE L10010 EFFLUENT MONITORING INSTRUMENTATION

~

Minimum -

' ~ Channels Instrument OPERABLE l ') APPLICABILITY ACTION' g

1. Gross Radioactivity Monitors Providing Automatic Termina-

. tion of Release:

Liquid Radweste Effluent Line 1 (a) 100

2. Gross Radioactivity Monitors

.. not Providing Automatic Ter-mination of Release t.

Service Water System Effluent Line 1 (b) 101 3 _ Tiowrate Measurement Devices ** ,

s Liquid-Radwsste Effluent Line- 1 (a) 102 3 Discharge Canal 1 (a) (b) 102 14 Service Water _ System to Closed 1 At all times 103 Cooling Water System Otfferen-tial Pressure, 4

- ** Pump curves-may be uttitzed to estimate flow; in such cases, ACTION statement 102 is not req'uired. *

(a) Whenever the radwaste' discharge valves are not locked k closed.

'(b) Whenever the service water system pressure is below the closed cooling water system pressure or AP indication-is not available.

HATCH - UNIT 2- 3/4 3-60b Amendment No. 48 (t) _O C.HAMEL.- May bc REM 0feb FhM SE2/ttt FDL VP W 2 Out.t ML esoo,up we u.mc usrau up aos w un>oss moosume.

+ r. -

s - -.

. '^.  ;

r = r

. t 1aptr J.1.6.10-9 f *"' ' ? t OF 11

~

ItAD8OAC51Yt_CAstDUS_If f(Uf 4t Mr14If es f MG t#11MtMMT AIt_Ost s . .e . e.se. e C,se-Inot resen3 gr_13ADL1 AppIIfebItIty es reenle_t [hQt{eI) , ,

I

.E t. tesla Cesseeneer Orr,em treeteent .

-'8 System tuptoolve Coe scenitoring a

m System 1

e prere,oe sieneter i (b) es s eyere,e= nos  ;

r. nooet.r o.iseen, wns steen -

l

- plon g terles, Systee - -

E e, nebte ces metivity seentter t11 (b) e medioecttwity Rete emeemeremone +

tes =

b. todfree seepter Cartridge (1) (Q)
  • w esry Presones er Certredve 907
c. eartteeiet. s e,ser rnt,r :1: (a) e verary r,e - er F99ter ter treteent system riewrote R

a -

d.

oneeserement sevtee s t3 (a)

  • system reewrote toes .

sneeserement .

En e. sempter rtowrote -

g = eset - t oe see (in (CL) e see,s.r reevrete to=  ;

meserement .

3. femin Stock Seentterin, 9Fotos e, seette ces metsvity seentter til h ~ senesenettwety mete

== .e-t .

tes

b. fedine sempter cartrid,e (1)(a)
  • vertry Presence er Certree,e 197 h 2,

ititoQ e  :

.. ,ortteetete eeie ,rtitor o

er .rtr.y t e r-,re -

,e,

=

d. =.r.w,..t,'c.te.mriewrote tr imen e e.e (1)(h
  • System rterrete sie.se - t tot -

m a

e. sam oe.e.e.

ie c reewrote semeeeren, st)(Q .

+ see re wrote

.sene.e

. -t te=

g e. cone..no.c amen cor err,s. erstreate.nt 1

g see6 e ces Aettwity seontter is)

(@ = modeactivity mate onesowresent tes .

f 6 I e

tot. UP TD 2. % L1, % t KE % Ebb butit4 M 4T1ndy

.f (%Fub &c 60 CD&Neth A UQud% W4mopsthML.

M PGm0<tb Ptam setAct lb) A tmuGL. M4 24 PErnotCb Florn SgtMM f%f- UP 'To (o %L% v4L ys%tsk MMtsunkLi TDieu4 Mb Hor N ynMb'b IMOPitA rkt.

TABLE 3.3.B.10-1 (SHEET R OF 3) ,

)

f RADIDACTIVE GASEOUS EFFLUENT MONITO. RING INSTRUMENTATION Table Notations

+ Monitor must be capable of responding to a Lower Limit of Detection of 1 x 10" pC1/m1,

'During releases via this pathway.

"During main condenser offgas treatment system operation.

"*During operation of the main condenser air ejector.

ACTION 104 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue, provided the flowrate is estimated at least once per 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

If the number of channels OPERABLE remains less than required by the Minimum Channels OPERABLE for over 30 days, an explanation of the circumstances shall be included in '

the next semi-annual effluent release report.

ACTION 105 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue, provided grab samples _are taken daily and analyzed daily for gross activity. With the number of Main Stack Monitoring System channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, without delay suspend drywell purge.

If the number of channels OPERABLE remains less than required by the Minimum Channels OPERABLE requirement for over 30 days, an explanation of the circumstances shall be included in the next semi-annual effluent release report.

ACTION 106 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement,

  • operation of the main condenser offgas treatment system may continue provided: (a) gas samples are collected once per 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> and analyzed within the ensuing 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, or (b) using a temporary hydrogen analyzer installed in the offgas )

system line downstream of the recombiner, hydrogen concentration readings are taken and logged every 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

If the number of channels OPERABLE remains less than required by the Minimum Channels OPERABLE requirement for over 30 days, an explanation of the circumstances shall be included in the next semi-annual effluent release report. }

HATCH - UNIT 2 3/4 3-60h Amendment No. 48 l .

~ . .

l TABLE 3.3.8-1 ,

~

DECMADED STATloff YOLTACE PROTECTION litSTRtfMEMfAf f 0M Regsired Channei.

Instrument Regtelred

.Q Ref. No.

operable Channets ( b) to Trio _ Trio SettIne tal c '4.16 kv Emergency Bus 2/ Bus greater than or equel to 2800 volts 2 1 2/ Bees At 2600 volts time delay will be

[ Undervoltage Relay (Loss of Voltsge less then or equal to 6.5 sec.

N Condition)  !

4.16 kv Emergency Bus 2/Btes 2/ Bus gre: iter then or cotes t to 3280 volts 2 At 3280 volts time detsy will be Lindervoltage Relay less than or ege'ai to 21.5 sec.

(Degraded Voltage Condition)

NOTES FOR TABLE 3.3.8-1

m. The column entitled "Ref. No." Is only for convenience' So that a one-to-one re f nt ionship can be established between items in Tshfe 3.3.8-1 anet items in Table 4.3.6-1.

M Jh Y b. A c pAWdet, twny PME RersledEb Froen Sepice Foo WP TD 2 Hoot.S For. RsQOtReb SUMEILLMW.E TEST 8M4 ANb Mor M csg>ebsREb INDPERANC P20fsbtb WFICIEMf ONAMN'S ARE MA:LAPA6 70 assutG TN6' 790 P A1Alen e d .

e n .

x P

- ~_

b _ ,

s -

s

1 t

. . ==

4 -

C. .

v

( '

[5 .Ah h o

[ 1p 3

~$r g , -w

{4

.h e

sj 3

(

  • 5 I E g .

4 S 8 .

( R 8w 8 t

11 $

! !-1

( .:

ff A HATCH - WIT 2 3/4 3-69 h t h 69

. . . . . . . . . . . . . . . ~ . - - - . - . - - - - . . . . . . . . - - . - - . . - . - . .

l z

t Dv 5

E wh

.t p

-I E

E I

E 3

=

i er; I

e i a 82 a. . -

i

- k41 D2e 5I

. l.

$fhI g

- o u E

l u h

  • h ea&

.& dhE

! a

! 5-az

!* g'

[5Ew t Ea1)W9

"- 34 =*

v ga V

_= .

ya -

32 a

f3

.u - a & '4* E. ,

5I ii Iy*k a <

. g

>g >g eyc$

R 2 0 t g tt

a ii 7

v .

. +-u

! HATCH - UNIT 2 3/4 3-67 Amendment No. 69

1 w

S'* .

L' -

f*

f 9 L -

RI MAS f

Uf Y eMCS ' '

I ' ' -

NEP I LI '2 '2 MBR V AT R

ER PE O I' N

O w I

T A

T N

t M

U R

T S

N I

M E r T

S Y 6 A, d eE gW R

S sE 1

2

- P WaS L rL e

tR eA aO tP s

h I

R t fq L P

AT

- t tA 3 P O on Aa l 2r O

tM rR M

U o l i

)

A ce IE h_

E t

n OI P

N o

F eC n

0 1

T Ml(

g om e

f!

e no T ,

C A e t it b

1 T A

L c

e u,, 'fmM U ss ry s

rt un U t v l

c F i

a te l

C dip na i

R P ev I

(C wmA n

F M W f

,r t

hi wuq de o e f

ee e, Q(

C enb r f 6 t

6t Wo l s sg ai Y l ps b ub

) s C fs 7 e yp e h b F

O e

r e l R

t y5E0R

- u G t, l2W D

N

[ l C

s o weuP r

e g$ U

f. dhte t sopO et e

R s l a f r'de f

f' tt A L

r t

s e P E l

5, d nnM oa R m ne s t u a osE s

o F

t Mict6 t

teH u

l -

t n P g 70 ar ar T C i e oD l p a

- ve w wND p bnT E -

r mI M aA l

e a lh R v v . l t l

e l a E y8 e8 a r hs ss o pre. bE6 U V or p I n4 h p t

/>mv nle%

o n er o'0 u s D N e

]

t o e tu it3 S C tI en f

0 1,

T Q i M b b e e n in ca$ U 4nD l

s s

er v

uth rut ee s

U r r ess F u u l es T T hre w P T pl I

R T 1 2

U 6

(

4

/(

5aQ 8 cz5 N k* YM !3$o5 &. r -

_ .. _ _ . - . - ~ -- -. - . .-

RE ACYOR COOL AN?. SYSTEM '

3/4.4.2 1&FtTY/RtlitF VALYt1 LIMITING CONDITION FOR OPERATION

' )

3.4.2.1 The safety valve function of the following reactor coolant system safety / relief' valves shall be OPERABL! with the mechanical It/t settings withth + 15 of the indicated pressures *,

A Safety-relief valves # 1090 psig.

4 Safety-relief valves 9 1100 psig**.

, 3 Safety-relief valves 0 1110 psig**.

)

APPLICAPILITY: CONDITIONS 1, 2 and 3.

ACTION:

a. For low-low set valves, take the action recuired by Specification 3.4.2.2. For ADS valvn take the action required by Specification 3.5.2.
b. With one or more safety / relief valves stuck open, place the reactor g mode switch in the Shutdown position,
c. With one or more $/RV tallpipe pressure switches of an $/RV declared inoparable and the associated $/RV(s) otherwise indicated to be coen, place the reactor mode switch in the shutdcen position.
d. With one $/RV tailpipe pressure switch of an $/RV declared inoperable

' and the associated $/RV(s) otherwise indicated to be closed, plant operation m y continue. Remove the function of that pressure switch f rom the low low set logic circuitry katti the next COLD SHUTDOWN.

Upon COLO $HUIDOWN, restore the pressure switch (s) to OPERABLE status before STARTUP.

e. With both $/RY ta11 pipe pressure switches of an $/RV declared inon-erable and the associated G/RV(s) otherwise indicated to be closed, restore at least one inoperable switch to OPERABLE status within 14 days or be in at least HOT $ HUT 00WN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTOOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
f. The failure or malfunction of any sofety/ relief valve shall be ')

imported by telephone within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />; confirmed by telegraph, mailgram, u' facsimile transmission to the Director of the Regional Of fice, or his designee no later than the first working day following the event; and a written followup report within 30 days.

The written followup report should be completed in accordance with 10 CFR $0.73 or other applicable requirements.

SURVtitLANCE Rt0U1REMtWTS 4.4.2.1 The tail-pipe pressure switches of each safety /reitef valve shall be demonstrated OPIRACLE by performance u of:

31 da

a. CHANNEL FUNCTIONAL Tf5T: @s-
1. At least once per M C., except that all portions of the channel inside the primary containment may be excluded f rom the CHANNIL FUNCTIONAL TESTTtHL W
2. At each scheduled outage of greater than 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> during which entry is made into the primary contai nt, i f not performd within the previous " :,:. db .\ 3l c g t;.

CHANNEL CALIBRATIOW and verifying the setpoint to be 0$ psig, with an allowable tolerance of +15 psig and -5 psig, at least once per 18 months. )

  • The lif t setting pressur9 shall correspond to ambient cor$ditions of the valvis at nominal operating temperature ano pressure, i
    • Up to two'inoperablu valves may be ' rep 16csd with spare OPLRABLE valves with lower setpoints of 1090 and 1100 psig, respectively, Entil the next refuel 119 outage. ~)

HATCH - UNIT 2 3/4 4 4 Anenent No. 3), 86 AM A t.f Audek (TM bE. Mtt\ovsb FRgrt <sct hc4 Foe. up n G H00Ls FeL rec ust @

weve n t.un act 'itbn % dab N OT W t.00s M Ro b M ope 2,9 W Pt.04, c4k buFFa t tMY unpacco 46 MAiLAN to p%EE TW TLP Fvdetio 4

REACTOR COOLANT SYSTEM I

SAFETY / RELIEF VALVES LOW-LOW SET FUNCT!0tj _

LIMITING CONDITION FOR OPERATION 3.4.2.2 The relief valve function and the low-low set function of the following reactor coolant system safety / relief valves shall be OPERABLE with the following low-low set function lift settings:

Low Low set sJlowable Value (psig)*

.. Valve Function OpFn Close Low s 10,10 s 860 Medium Low s 1025 s 875 Medium High s 1040 s 890 l High s 10LO < "M ,

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2 and 3 ACT10N:

a. With the relief valve function and/or the low-low set funct' ion of one of the above required reactor coolant system safety / relief valves inoperable, restore the inoperable relief valve function and low-low set function to OPERABLE status within 14 days or be in at least HOT SHUTOOWN within the next'12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTOOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />,
b. With the relief valve function and/or the low-low set function of more than one of the above required reactor coolant system safety / relief valves inoperable, be in at least HOT SHUTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the next 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

SURVEILLANCE REQUIREMENTS 4.4.2.2 The low-low set relief valve function and the low-low set function pressure actuation instrumentation shall be demonstrated OPERABLE by performance of a:

4 l a. CHANNEL FUNCTIONAL TEST, including calibration of the trip unit and the t

dedicated high steam do,me pressure channels", at least once per M g g- e

b. - CHANNEL CAllBRATION, LOGIC SYSTEM FUNCTIONAL TEST and simulated automatic operation of t.he entire system at least once per refueling outage.

i The lift setting pressure of the valves is defined in subsection 3/4 3.4.2.1.

The accuracy of the low-low cet setpoints is defined to be the accuracy of i

' the' instrumentation controlling the setpoints of the low-low set valves.

i **The setpoint for dedicated high steam dome pressure channels is less than or -

equal to 1054 psig.

HATCH - UNIT 2 3/4 4-4a $

<s+ h supHL. wny M tLUkW6b FLDm %gLpLt. Fot. # TO M Ho4LS FOL REQv,tch Amendment No. 33 W6 Lt 49c4 Te5nw4 AW.b. Nor 6e e,epMEl.Eb (WoPSP.N pg.c( b rb %dfElCid #

,_ gg y ,15 ALE MAIL.Albt6 *r0 sjSuCG Tus ibP F04 cried, I

l ..

REACTOR COOLANT 5YSTEM

/*

  • . 3/4.4.3 REACTOR COOLANT $YSTEM LEAKAGE LEAKAGE DETECT 10tL5fjpMS LIMITING CGNDITION FOR OPERAT10 3.4.3.1 The fo11owing reh int system leakage detection systems

. thall be OPERABLE:

a. The primary cor.tainment atmosphere particulate radioactivity monitoring system,
b. The primary containment floor drain and equipment sump level and flow monitoring systems, and

-  :. The primary containment gaseous radioactivity monitoring system.

$PP;.RABILITY: CONDITIONS 1, 2 and 3.

ACTION:

With only two of the above required leakage detection system OPERABLE, J operation may continue for up to 30 days provided grab samples of the

containment atmosphere are obtained and analyzed at least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> when the required gaseous or particulate radioactive monitor-e 'ing system it inoperable; otherwise, be in at least HOT SHUTDOWN within the next 12 he'.'rs and in COLO SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

1 SURVE!LLANCE REQUIREMENTS

. 4.4.3.1 The leakage detection systems shall be demonstrated OPER.\BLE k by:

a. Primary containment atmosphere gaseous and particulate monitor-ing sytten. performance of a CHANNEL CHECK at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />, a CHANNEL FUNCTIONAL' TEST at least once per 31 days and a CHANNEL CAtlBRATION at least once per 18 months.

b, Primary containment sump level and flow monitoring system-performance of a CHANNEL FUNCTIONAL TEST at least once per 31

( days and a CHANNEL CALIBRATION at least once per 18 months.

gm pot. moomb suunt.a*s ruim Mb wor u 4 (

eunm> wwwa.

MATCH - UNIT 2 3/4 4-5 gg. ,

I EMERGENCY CORE C.XING $YSTEMS I

$UhEll.U W F A!0VIREWENTS (Continued)

2. Performing a CHANNCL CALIBRATION of the core spray header AP instrumentation and verifying the set moint to be g s 3.1 psid greater (less negative) than tie normal F indicated AP at rated core power and flow.W
d. At 1 cast once per 18 months by parforning a system functional test which includes simulated automatic actuation of the s/ stem throughout its emergency operating sequence and veri- '

fytt; that each automatic valve in the flow path actuates to its correct position. Actual injection of coolant into the re ntor vessel may be excluded from this test.

A cuw9tt mA1 M RemNrb Ftom WMC6 Fat OP Te l-H00Lt fc( Rs00itab sum 88LLAAE TEM 44 ANb Mor M LodS t 4 fb INDPskn A r.

h 1

HATCH - UNIT 2 .

3/4 5-6 Amenchent No. 5, 82

l -

l EMERGENCYCOREC00LIN6)YSTEMS 1

LIMITING CONDITION FOR OPERATION (Continued)

ACT193: (Continued) g

c. With one suppression chamber water level instrumentation channel inoperable, restore the inoperable channel to OPERABLE status within 30 days or be in at is$st HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> and verify the supp'ession cFsmber water level to be k 12'2" at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />,
d. With both suppression ch:.mber water level instrumentatiun channels inoperable, restore at least one inoperable channel to OPE uBLE status within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> or be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> and verify the suppression chamber water level to be
  • 2 12'2" at least once per hour.

SURVEILLANCE REQUIREMENTS 4.5.4.1 The suppression chamber shall be determined OPERABLE by verifying:

a. The water level to be k 12'2" at least once per 24 Sours,
b. Two suppression chamber water level instrumentstion channels (2T48-R607A,B)OPERABLEgyperformanceofa:3
1. CHANNEL CHECK at least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />,
2. CHANNEL FUNCTIONAL TEST at least once per 31 days, and
3. CHANNEL CALIBRATION at least once per 6 months, 4.5.4.2 The conditions of Specification 3.5.4.b.2 shall be verified to be satisfied prior to draining the suppression pool and '

at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> thereafter while the suppression pool is drained.

I

  • A c,HA99tt, MAN M Removrb Ftom wk.vict. F04. OF To 2

' Hogg pot, Rspleb suusu.t4A.E TEP% Mb Wor M t 0 @ E x 2 E b I N o? s t A h u. f .

)

i l

HATCH - UNIT 2 3/4 6-10 Amendment No. 6 l l

l l

e CONTAINMENT SYSTEMS

(

$URVEILLANCE REQUIREMENTS (Continued)

- e. At least once per 30 minutes following a scram from OPERATIONAL CONDITION 1 or 2 with the main steam line isolation valves closed, and suppression chamber water temperater: .- In0'F, by l verifying suppression chamber water temperature < l't0'F.

f. By an external visual examination of the suppression chamber after there has been indication of safety / relief valve opera-tion with the suppression chamber water temperature k 16u'F and reactor coolant system pressure > 200 psig.
g. At least onct. per 18 months by a visual inspection of the accessible interior and exterior of the suppression chamber.
h. By verifying two suppression chamber water level instrumenta-tion channels (2748 R607A,B) OPERABLE 4 by performance of ai g
1. CHANNEL CHECK at least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />,
2. CHANNEL FUNCTIONAL TEST at least once per 31 days, and
3. CHANNEL CAltBRAT10k at least once per 6 months.

M M C. NAN #EL, MA1 M RfmNr> Facm WAec6 Foo OP To i HwtS Fet R6Waub 59&V81L,s.Mcs item 4 AHb #0r M LDe> >sktb IMotstn M .

HATCH - UNIT 2 3/4 6-13 Amendment'No.102

l 1

CONTAINMENT $YSTEMS

)

l

$URVE!WNCE RE0'J!RfMENTS 4.6.3.1 Each primary containment isolation valve specified In Table )

3.6.3-1 shall be demonstrated OPERABLE prior to returning the valve to service after maintenance, repair or replacement work is performed on 2

the valve or its associated actuator, control or power circuit by cytling the valve through at least one compl ete cycle of full travel and verificatu n of specified isolation time.

4.6.3.2 Each primary containment automatic isolation valve specified in Table 3.6.3-1 shall be demonstrated OPERABLE during COLO $HUTDWN or REFUELING at least once per 18 months by verifying that on a containment isolation test signal each automatic isolation valve actuates to its i solation position.

4.6.3.3 The isolation time of each power operated or automatic valve specified in Table 3.6.3-1 shall be determined to be within its limit when tested pursuant to Specification 4.0.5.

4.6.3.4 Each reactor instrumentation line excess flow check valve shall be demonstrated OPERABLE ast once per 18 months by verifying that the

, valve stops excess fl 4 CHAW 4tt, reA1 M Remove'b Feawn StRect. FDL OP 70 4 swa.s % m a no u u m.u me w uq .95 a r u 604Nt* Reb INorsknPxt MtevMb WFicerw MAddet.b ARL MetLehd TO Susult TAC TN> FMenDJ,

  • 1

)

4 e 0 e

HATCH - UNIT 2 3/4 6-16 l

y,v_,-v--_,--,y. v. _,.,_,-,-m.- c . y ~, _ , m -- , . ..,. -.

i e

l f

1

, JNSTRUMENTATION SURVE1LLANCE REQUIREMENTS CONTINUED

b. Performance of a CHANNEL FUNCTIONAL TESTb
1. Within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> prior tu the start of CORE ALTERATIONS, and )

[ 2. At least once per 7 days. l C. Verify that the channel count rate is at least 3 cps at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> during CORE ALTERATION $, and at least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, except*

i

1. The 3 cps is not required during core alterations involving only fuel unloading provided the SRMs were confirmed to read at least 3 cps initially and were checked for neutron restonse.

4

2. The 3 cps is not required initially on a full core reload.

Prior to the reload, up to four fuel assimblies will be loaded into core positions next to each of the 4 SRMs to obtain the required count rate. These assemblies may be any which have been shown to meet the criteria given in Section 5.6.1 of these Technical Specifications for storage in the spent fuel pool-

- d. Verifying that the RPS circuitry " shorting links" have been removed i and that the RPS circuitry is in a non-coincidence trip bode within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> prior to starting CORE ALTERATIONS or shutdown margin demonstrations.

A c,NAWgtL MAN -M RemNrb Fictn WAvict Foo OP To l-H004.5 FoL R600:14b SuMelLL.AAE 7tM 44 ANb Mor M t.cMibeJttb INoPateht Prev Mb WAcitW 4WA#dtt.S AEL AVA8 LAW 70 4Wwas ng yme n#cnoa, i

)

d HATCH - UNIT 2 3/4 9-4 Amendment No. fs, if, 89 e

wy--er_., , , , - . , , , -

,,,-_,y-

,_r-m ..._ ,,. y s,,,g.y,., , _ . . ,,. , ,. ,._m,c .m y-.,

I .

3/4.3 IN$TRUMENTATION .

l BA$E$

1 L -t o(3 . - .

(,O f 3/4 .3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION I

Ths reactor protection system automatically initiates a reactor scram j tot 1

a. Preserve the integrity of the fuel cladding.
b. Preserve the integrity of the reactor coolant system,
c. Minimize the energy which must be adsorbed following a loss-of-coolant accident, and
d. Prevent inadvertent criticality.

This specification provides the limiti.ng conditions for operation necessary to presstv: the ability of the system to perform its intended function even during periods when instrument channels may be out of service because of maintenance. When necessary, one channel may be made' inoperable for brief intervals to conduct the required surveillance .

( tests.

The reactor protection system is made up of two independent trip

  • systems. There are usually four channels to monitor each parameter with two channels in each trip system. The outputs of the channela in a trip system are combined in a logic so that either channel will trip that
  • >ip system. The tripping of both trip systems will produce a reactor scram. The system meets the intent of IEEE-279 for nuclear power plant protection systems. The bases for the trip settings of the Rp3 are discussed in the bases for $pecification 2.2.2..

i The measurement of response time at the specified frequencies provides assurance that the protective functions associated with each channel are completed within the time limit assumed in the accident analysis. No

( credit was taken for those channels with response times indicated as not applicable.

Response time may be demonstrated by any series of sequential, overlapping or total channel test measurements, provided such tests demonstrate the total channel response time as defined. Sensor v*sponse .

time verification may be demonstrated by either: (1)inplace,onsiteor

( offsite test measurements, or (2) utilizing replacement sensors with l

l certified response times. .

l f I l

HATCH - UNIT 2 8 3/4 3-1 1

l

I w

n-+ s Cn.Q3/y7-f ,

oi-L ,

.c . ..

. . . . ... s ..

. . . . W  ; .1. - .

.,.,a Ar2/[ f - - - . .?--d :!!u c.4*

l ga l;3 4.m - y  ?.O ^* #8j 1^. [m 8 -., ""

- ij

^

4tc1,, r c a L,  :- ' = ! ;- ) -

'_ ' N b - : = t Ltd , .

W e.l,'-  !.:, ,= ^- : ;.. d, !; ' , N- 4 .

i'." 0 sg,.s e &

r . ' i . '. . : . l 7.c. 4 -- ge--A m /-

14r-Ze m (- %' .y to 1 r p ,e n . a . n 4.s te n.st a sass . t 9' fr. ree du. .f.e s krost .Joesnt 4* e.eds s+ rog,s,ent sv vt .ll46 h* *.*ac M* &eJ .es. pr se,ded A' "eb

~

e

.4 C C 4=4% h.i w

  • 2.s.4 sk, Ne all ab's 4. A't. .64erv4.

W ( k

  • s.t.4 % 4,A 44 et a.dd (com ser ru, (.c cry ,,e J

. T# ret.'ll4*es /*J 0osp , 14 d.rs nei stronf de At t*M./. s e niet Akk (ttla bt 4 istA a m l h ee f.c4 4 . .: 48.tseAJJ),,

fe <.1ea s.a % w A a.s.s m t <rs a + .'s < s u d e ens < w

$lt. :e ( ut.*. . S',e3 k (s. ti.. $ e m i. J s 4..a J. a .+ ppi ,

dvr.5 %'. 4. - enk~ 4,

, ,, , ... .. ... .. . .--. . - - ~ ~ ' * ~ " ' * '

l I . ... . . .. .

IN$teLMEWTATIDW -

F$rs '

}f4.3.9 1 i R! Cit *UL.ATION plMP Ytf > ACTUAT!DN INSTALMfh7ATION (Co valves and a 2-evt-of=2 legte for the turbine step valves. The operette

(*

i . either legit will actuate the E00-RPT system and trfp both ncfrsulatte

+

is acktnistratively controlled. tach to: RPT system asy be manually bypa Operating Bypass a The manual bypasses end the automatic .

,i

  • the control rose. t less than 30% of AATED TMilu%L PDv!R are annu -

9 1l 1.NTDC 30851P A. '8WR Own '

roup Technical 5 e Anslysis for $WR Reactor Prot atton leprovosent n systes' arch 1988.

' 'l HIOC 3167?P.A. ' Technical Specific 64 on ovementAnalysisforBd Isolation Actuation Instrument flin', July 1

  • 1 NEDC 30936P.A. '8WR ' Group Technical Spectfica nleprovement Methodology (with Part 8', June .

nstration for BWR ECC8 Actuation in ntation) 4 Nt0C 30J1 .A. Supplement 1. 'Tochnfcal Spectffcation leprovemnt AJn ysh for BWR C6ntrol Red Block Instrumentation *, October 1968.

l i'

l L, -

.

  • 1 l

I p% .

(. .

M TCH - tMIT 2 , 'S 3/4 > Sb Amendment alo. 59 4

4 .

, e O *