ML20028D954

From kanterella
Jump to navigation Jump to search
Suppls 821101 Revised Response to NRC Structural Engineering Branch Action Item 10.Info Provides Justification Demonstrating Negligible Amplification Assumed in Vertical Seismic Analysis
ML20028D954
Person / Time
Site: Catawba  Duke Energy icon.png
Issue date: 01/18/1983
From: Tucker H
DUKE POWER CO.
To: Harold Denton
Office of Nuclear Reactor Regulation
References
NUDOCS 8301200127
Download: ML20028D954 (11)


Text

._ _ _ _ . _

DUKE POWER COMPANY P.O.Isox 33I80 CHAltLOTTE, N.O. 28242 11 AL II. TUCKEH TE1.EPHONE vies r.r.aDEWT (704) 373-4531

.mu. .. m - January 18, 1983 l Mr. Harold R. Denton, Director l Office of Nuclear Reactor Regulation

U. S. Nuclear Regulatory Commission Washington, D. C. 20555 Attention
Ms. E. G. Adensam, Chief Licensing Branch No. 4 Re: Catawba Nuclear Station Docket Nos. 50-413 and 50-414

Dear Mr. Denton:

My letter of November 1, 1982 provided a revised response to the NRC Structural Engineering Branch's Action Item 10. The attached information is provided as a supplement to that response.

Very truly yours,

^

l -

g _

Hal B. Tucker ROS/php Attachm8nt cc: Mr. James P. O'Reilly, Regional Administrator f U. S. N.sclear Regulatory Commission Region II

. 101 Marietta Street, Suite 3100 Atlanta, Georgia 30303 i Mr. P. K. Van Doorn NRC Resident Inspector Catawba Nuclear Station

?

Mr. Robert Guild, Esq.

Attorney-at-Law P. O. Box 12097 Charleston, South Carolina 29412 I

8301200127 830118 PDR ADOCK 05000413 A PDR

Mr. Harold R. Denton, Director January 18,.1983 Page 2 cc: Palmetto Alliance 2135 Devine Street Columbia, South Carolina 29205 t

Mr. Jesse L. Riley 4

Carolina Environmental Study Group 854 Henley Place Charlotte, North Carolina 28207 Mr. Henry A. Presler, Chairman Charlotte-Mecklenburg Environmental Coalition 943 Henley Place Charlotte, North Carolina 28207 I

t I

't 4

i t

i f

i r

I I

l gn.w gg-9, .,wy-.w.mi.., ,+-wy, + .ye.. .-- . . . 7%.-,., nepy ,e-- u,y e.+

4 - s. - #ewy,-*y---w rmr s , _ _ . ,ww,_y e y y, f y,,.-..

J l

ADDITIONAL INFORMATION FOR ACTION ITEM 10

10. Provide justification demonstrating negligible amplification assumed in vertical seismic analysis, j ~ Steel' Containment

- Previous submittals have described the methodol.ogy used in assessing the amplification of input vertical seismic excitation for the containment vessel.

The purpose of this additional information is to provide more detailed data at the request of NRC reviewers.

A review of the results of the analysis described in previous submittals

^

showed the maximum amplification of input vertical excitation to occur at the top of the containment vessel. The stick model data point at elevation 710'+11" (Approximately 10' below the top of the containment dome) shows the greatest amplification of input excitation.

Table 10.1 presents digital data used in assessing the amplification in the vertical direction. Columns (1) and (2) present representetive periods / frequencies on the spectra. Column (3) shows the input base vertical spectrum resulting from four synthetic time histories applied to the stick model (Spectrum "I"'from previoussubmittals). Column (4) shows the calculated spectrum at elevation 710'+11" resulti.ng from these time histories (Spectrum "N" from previous submittals). The structural amplificatior, factor for a given frequency is the ratio of these two values and is shown in column (5). Column (6) shows the vertical. ground response spectrum from the FSAR defined as 2/3 the horizontal ground response spectrum. The amplified spectrum at elevation 710'+11" is the product of the structural amplification factor and the FSAR vertical ground response spectrum and is shown in column (7). The magnitude of the amplification is shown in column (8).

Figure 10.2 graphically depicts the results of the analysis, showing a comparison of the FSAR vertical ground response spectrum, the amplified vertical spectrum at elevation 710'+11", and the amplification of the input vertical spectrum by the containment vessel. Figures 10.3 and 10.4 display the same information in tripartite format.

The frequency range of measurable vertical structural amplification is seen to be very narrow, and the maximum increase in acceleration of 0.06 g is negligible compared to the constant gravitational acceleration of 1.0 g experienced by all attachments to the containment vessel.

As a result of this analysis, it is concluded that the assumption of negl.igible amplification in the vertical direction is justified for all attachments to the containment vessel.

TABLE 10.1 .

2 CATAWBA NUCLEAR STATION STEEL CONTAINMENT VESSEL

! OBE VERTICAL RESPONSE AMPLIFICATION INVESTIGATION ELEVATION 710'+11" 1% DAMPING (1) (2) (3) (4) (5) (6) (7) (8) i PERIOD FREQUENCY SPECTRUM "I" SPECTRUM "N" AMPLIFICATION FSAR VERT. AMPLIFIED AMPLIFICATION l

ti (Sec) ft (hz) aI (g) aN (g) FACTOR "H" SPECTRUM (g) SPECTRUM (g) (g)

(4)/(3) aA (g) (5)-(6) (7)-(6) i 1.0300 0.9709 0.1916 0,1920 1,00209 0.1079 0.108 0.000 0.4947 2.0214 0.4796 0,4846 1,01042 0.2266 0.229 0.002 i 0.3307 3.0239 0.4157 0.4250 1,02237 0.2266 0.232 0.005

! 0.2513 3.9793 0.3872 0.4006 1.03461 0.2266 0,234 0.008 i 0.2027 4.9334 0,4457 0.4743 1.06417 0.2206 0.241 0.015 i 0.1653 6.0496 0.4371 0.4752 1,08717 0.2266 0.246 0,020

! 0.1428 7.0028 0.4068 0.4593 1,12906 0.2012 0.227 0.026 0.1257 7.9554 0.3686 0.4265 1.15708 0.1820 0.211 0.029 0.1102 9.0744 0.3661 0.4437 1.21196 0.1641 0.199 0.035 0.0997 10.0301 0.2939 0.3703 1,25995 0.1516 0.191 0.039 i 0.0911 10.9769 0.2864 0.3744 1,30726 0.1412 0.185 0.043 0.0838 11.9332 0.2444 -0.3348 1.36988 0,1322 0.181 0.049 I

0.0776 12.8866 0.2247 0.3238 1.44103 0.1244 0.179 0.055 0.0706 14.1643 0.1780 0.2697 1,51517 0.1155 0.175 0.060 0.0661 15.1286 0.1418 0,2087 1,47179 0.1097 0.161 0.052 0.0622 16.0772 0.1257 0.1534 1,22037 0.1045 0.128 0.023 i 0.0587 17,0358 0.1187 0.1349 1.13648 0.0999 0.114 0.014 l 0.0556 17.9856 0.1196 0.1401 1.17141 0,0957 0.112 0.016 O.0528 18.9394 0.1194 0.1583 1.32579 0.0919 0.122 0.030 0.0503 19.8807 0.1171 0,1580 1,34927 0.0884 0.119 0.031 i

G

  • 9

' 3*001 E

d 30'00 m - mm 3

e-e 30'06 8 s 30*03 z s 30*0s

[ J / mQ (n C -

/ # -\ \

H g g m 0 c-W / A "

dE // A c g a*8 Z

~ ct $? E 3 1

\ i # 1 s @J t-WE D \

i d "** t; l

sM@E L 2 5

4 E *!l @ t fl \ sw sus aew e

n d=

A I

a:

LI-e b l mz F-- h c p C  % '

< mt x

X 0s 0 g

\ De*O

~

o c

5 c \, 0, 0 g g p

a-b d W 021*0 000'0 000*O EO 002'0 062 0 002*O Ost*0 D&O*C 9 NI NOIJ.89313338

--~_.__"-"-%-m_._

1 l

5 d

d l g -

A

    • '0 %3 so? gP s?

<3 +3 3 NNe\N 7 Nj5\\g/ / j//// of Cx' 4 "*

's N 4=mKY'v'N 4=mKY'vs 4% '/ '-'/

6 2x's.?$f2'MMN,K'x .?$f2'MMN K's .?$f2' < '[<'//

E <\ ugzu / xmx\ogzu / xmxugzu / / / #8

~

NWt>L'.K / MsW<>L '

K// MAW'>L K / /

f M2<d5/\/ NM2</$f\/ NM2%M/N[

i i C E M8bd55 MM8$ X 59dM8b155)d INN X Nj<s\\ X o$

Nj

~ ~

% q5NN m q@0- s es .mxvv as.,s ,s 4 t axvv <- s -s -s

.m muv je':?$GGM ss. wt 8 W

SW a-e v"x '

?$GGMv"x

>b *-* cx x xec :. - wswcx x xec w< wswcx vec .-- mm v II Nff ':?$GGMv"x v m

$U <\ \Mkzu / xW<\ \/>kZ LMk/ xW<\ \Mkzu / xW E-8 5 )E o.#' NW '>L'.K / MsW<>L Vs7L MsW<>L'.K / M ",' 3 C E M2$d/\/ NM2$iS2Mk NM2<i5/\[ N

a se! M8Ed59dM8E[55MM8E259d N $NN N $\N j0 W N <s\N 0-c d

- s t NN s t NN s t NN o

,. 'vN 4=mxxvN 4=mxxvwu=mc

?$f2MMN:K'x 35$2$$N

  • K'x . ?$$k'<7EN:K'x xuazu ' / xexuazu ' / xmxuazvoixw M(>k .K / MsW(>L .K / MsW(>L'.K /u M

////X$d54D 7 NM29/5/\/ NM2<i5/\N/N

=

'//// NOM M 8b25 9 d M 8bd5 W

$ $ $ a ' o

& l E Ei

% 33S/NI NI AJ.I3073A m W in K d u

9 .

5 s -

l $ 5 1 , +, p .,  % es  :

/d

// /

NRCNNN / RyS\N 7 / j h X X .4 ss ==vs , ==vs =-o -

,O dx'x )$fk' < ' .X$Nn'x .?$$k?'X$Kn'x .?IIV'[<'//

5 .x v>v,av / xxx v>/, av / xwxvu ,av / / / " .I

/ /

$ { #' \W(>/.X/

' M2</$/\/ NM2id$ /N/ NM2<iVN/

MAW (>/.X//

/

MAW (>/.K I

s M8d{29dM8N59dM85229d RepN x v RegN x RepN z / m SW w .a ~ d <x h 8, v"x s4 7,GGMv"x s4 r

ve<<.<vnwcx vec 5/

e'$UGMv"x

< rnwcx xWwh x

\/)VjCv m

v j':?$GGM

<.<.< wv

/ xW s

W m

M U *E wx \/Ji Gv / xWwh N/)/ C

[. b o#'

\W(>/.X / MNW(>/KY MAW N2iE\/\[ NN2IEYDN'NN2IE53D[

(>MX / M N 'g '

o

'aE -

t sb M8b{29dMCd12NM85129Sd j0w

$ d R{j$\N 7 R<pN R<j$NN o-

@ X X X .-

.. vs , ==vs , ==vu == .

  • E x.?$fk <

xvy,cv XENn's .?$$k< /' 'XENn'x xxx v>v,av'r, .?$f@EEI4 xW

/ xex v>/,cv ".

W>/.X / MAW (>/.X / MNW(>/.X /cvM

/////2</5/cD I NM2iiS/N/ NM29/5/VC>N l

O V///M9dM 8b22 9 d M 8d[2 9 (

m o o o a m l d 4

  • j d l $

$ 'd 1 c a 5 33S/NI NI A1I3013A t 1 in 5i d M .

e a

  • _-__---a -

w- -- e-m ---'w - - - ----+---p y---g--,y--w--------,q y- yw- wr - - ww-w

~, ,

QUESTION Duke Power's revised response to the NRC's Structural Engineering Branch Action Item 10, dated November 1, 1982, indicates that the steel containment vessel (SCV) amplifies the vertical ground motion. Does this nullify the use of 2/3 horizontal

, ground acceleration as the vertical acceleration in the analysis of piping systems attached to the SCV?

! RESPONSE Although the November 1, 1982 revised response to Action Item 10 s i did indicate that the SCV amplifies the vertical ground motion

! by 51% for some frequencies, the response also concluded that 4

this was insignificant when converted to a maximum acceleration

! increase of .06g's. Since the amplification of the vertical l ground response by the SCV was determined to be negligible,

, the use of 2/3 horizontal ground acceleration as the vertical

! seismic input to piping analysis is justified. Sections 3.7.2.5 and 3.7.3.9 of the Catawba Nuclear Station FSAR i support this conclusion. However, the following discussion i

is presented to provide additional justification for ignoring the amplification: '

, There are approximately twenty-five (25) piping systems for each unit located inside the SCV at the Catawba Nuclear Station. Of these, only the Containment Spray System (NS) has support / restraints attaching to the SCV.

l All other systems attach to the Containment Interior Structure which is a steel reinforced concrete structure and rigid in the vertical direction.- It is a design practice to avoid attaching pipe support / restraints to the SCV because it complicates the analysis of the SCV

, and adds LOCA input to the piping analysis. The Con-tainment Spray System was supported from the SCV because it is located at the top of the SCV with no other attachments available.

The containment Spray Piping was seismically (OBE) analyzed for all modes with frequencies between 0 and 33 Hertz. The spectrum shown in Figure 1.0 for t elevation 710.85 of the SCV was input in two orthogonal horizontal directions simultaneously with 2/3 hori-l zontal ground spectrum (Figure 2.0) as the vertical input. By comparing the two curves, it is seen that the major seismic input comes from the horizontal SCV floor spectrum where the peak acceleration is approximately 12.2g's compared to approximately .23g's (2/3 x .35) for the vertical input. A review of the piping analysis results. revealed that the maximum ratio of actual stress versus allowable stress for

I .

Page 2 occasional loads described in Paragraph NC-3652.2 of the ASME Section III Code is only 0.39. Since the actual stress is developed from the combination of pressure, dead weight, OBE inertia and OBE seismic anchor movements, it can be seen that a large margin exists in the seismic contribution to enable the i system to absorb the 0.6g increase discussed above with negligible impact.

i i

l i

l l

g i

l

\

, CATAWBA CONTAINMENT VESSEL -

SEISMIC ANA RESPONSE ACCELERATION SPECTRR, ORMPING= 0'010

[ .

B CONTAINHENT VESSEL RESPONSE TO OBE (.08G ) AT EL 710.8S 5

CATAWBA NUCLEAR STATION g

CNS-1108.00-00-0002 4 r" 1 Figure No. A-l 8 l I . . .

I C l l

.I zg l l NOTES:

"a n a
1. See Table 4 for additional I

3 $ f' 'I information Design envelope indicated by Q g 2.

g -ig dashed line og ' l .

r r i I i

'o @ l l Sa I l ==

Ma  ! 21.

u l 1 -

n l 8 I

M=a .Y z i l -

I \ -

gy I

0 \

\

SG gn

\

c f)

E

/ / t\ P

'\, yh~

f j

i g f)Y k'; '-- -

_ _ - - - ~ ~ - Q

~ w ~_ o

%.as o.io a.no o.so 1.oo z.co s.oo io.oo

! PERIOD IN SECONOS a

'30'^ '-

Q -

)(- ' -N f 7 M'>( ,/'/ Vj(g'/,Y 2 V '

N. x I' sA@e . /,

fx;X

- >9' \ y\3M4RfKM)M

\  !

\ \ [ {

l 10 XNN I /u -

N'//X/X/A AV.xx.

e Y v Y'

x :/ / x /x 5 3

g \ \,

f3 , ,/V/ /\/ rA /s!/v^- _ (Y s M Nt.W X 'V Y V 5Xl VN/X' [N Revision 3: July 1, 1982 'f. %

i 6 N' M '

7' 5

-N X T . L X#N X A 4 K $:'4 M6 A&'xM2 % t' M s / N )

i X8I>'29M' M>(')d82938tl6z'['>i^>

s3 >vxmvam x .wovx :x w m a x .'h /Y . Ys Y _. /

  • ' Y'X?+) X

'i k'XR>6MEEx'/' s > O M x]' M -

g _

gg ,,\

r 7

c m, ~

., . , / .,

=I

.9

[ .. s XNN:/w i V N v/X / x vs x NA AN P~i he w //A/. W: 'N

. .N D[ Y k 58 - N 'A \ #N^^ W' " ' A \ # # # ^

s Nk^Ud>/ X/VV V X AX\'x^t N)d I X/ 1 /Y V >K VN g X'N\//N// / LX /x\/ x Y 24 y

$ $ '/ V Vfs /

-W4H//x' X /\ X Y**M&# 6(IX /N N Yib Y\

/

s

/\ / 'o, kNYb8

/XANI X 'x^sXN # \ /N s/

>^:

N I d .s s /

'/X/Y X\X\\X A DESIGN RESPONSE SPECTRUM,, .

//Xfs/s95'*;o o89 2/

p/ / /

/

/

x Ap i,'d 'o,o,*0,g .

CATAWBA NUCLEAR STATION ,

o, .- CNS-1108.00-00-0002

/ 8 ^ Figure No.1 B o, ,

N j/ 7

/ / 'o,#

X j[ / A, i k, x NA ! i^! .A l ha ' M A -

l ,,.

0.050.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 Undamped Period (Sec.)

FIGURE 2.0

\

___ -