ML20027B722

From kanterella
Jump to navigation Jump to search
Advises That Board Notification Re Semiscale Feed & Bleed Experiments Not Recommended.Test Results Have Not Produced New & Unique Results Indicating PWR Would Have Definite Problem Re Feed & Bleed
ML20027B722
Person / Time
Issue date: 08/23/1982
From: Bassett O
NRC OFFICE OF NUCLEAR REGULATORY RESEARCH (RES)
To: Speis T
Office of Nuclear Reactor Regulation
Shared Package
ML20027A678 List:
References
FOIA-82-543 NUDOCS 8209290306
Download: ML20027B722 (22)


Text

-

s pa maC UNITED STATES

[c, NUCLEAR REGULATORY COf?MISslON

[(7g [ 3

, n g/. ;

WASHINGTON, D. C. 20555

'QW/

AUG 2 31982 MEMORAliDUM FOR:

Themis P. Speis, Assistant Director for Reactor Safety Di~ision of Systems Integration FROM:

0. E. Bassett, Director Division, of Accident Evaluation Office cf fluclear Regulatory Research

SUBJECT:

FEED AliD BLEED EXPERIMEl4TS IN SEMISCALE As you are aware, RES has performed a Semiscale feed and bleed experiment (S-SR-2) at the request of liRR.

Results of this test indicate that difficulty was experienced in maintaining a steady-state feed and bleed condition without uncovering the heater rod burJ1es.

Several members of your staff have had questions as to how this relates to the PWR feed and blFla operations being purposed for several plants.

These questions are now being addressed by EGSG Idaho, Inc., while taking into account the atypicalities of Semiscale, as they might affect the feed and bleed behavior.

As a start, EG5G have provided a letter report of several steady-state calculations tF.ey have performed in an effort to help understand the-l Semiscale data (see enclosure). - These calculations included a study of the sensitivity of the results to core power, break flow quality, surge line and pressurizer geometry, and availability of equipment,.and were extended to parametric values typical of a commercial PWR. The report concludes that there are large uncertainties in predicting the satisfactory performance of feed and bleed in the steady-state, but that the Semiscale l

experiment does not point to the existence of a definite problem regarding the satisfactory performance of feed and bleed in'a PWR.

The Semiscale l

results still must be analyzed to determine the extent that the atypicalities effect the results and to* put them in proper perspective.

This analysis work is currer,tly in progress and should be completed in September 1982.

The Division of Accident Evaluation has concluded that the Semiscale results have not produced new and unique results that indicate a PWR would have a cefinite problem regirding feed and bleed.

Therefore, we ce not recommend a board notification.

We.have concluded that the Semiscale resuits should be carefully analyzed to determine that relevance to PWR feed and bleed transients and this work is now in progress.

We

-h l

f.f, b

g p103p / -

=....:...:.

Themis P. Speis,

should be able to provide you witn a more complete answer to the relevance of the Semiscale experiment and our investigation into the feed and bleed transient-in a PWR by late September 1982.,

0~. O, /dA/-

. Bassett, Director Division of Accident Evaluation Office of Nuclear Regulatory Research

Enclosure:

Ltr fm North to Tiller ~dtd OB/06/82 i

cc w/ encl:

L. ti. Sullivan, EPB R. R. Landry, EDB E. Sneron,fiRR so-

~

i l

l 2

n -m m

=.-mmm g_g, n_

,, m..

~

L Gr G %. i, e.o. rex icn. tomo rAus. iomo sms August 6, 1982 Hr. R. E. Tiller. Director Reactor Operations and Programs Division Idaho Operations Of fice - DDE Idaho Falls, ID B3415 PRIJMRY C00tMT SYSTEM FEED MD BLEED PM-137.-E2

Dear Mr. Tiller:

At the request of the Nuclear Regulatory CocrdssTon the Semtsca.Te Prc.gesin recently conducted experiments designed to investigate the fcuibility of pri=.ary coolant system (PCS) feed and bleed es a n:cens e, of rejecting decay heat in the thsence'of stem generator had recoval.

A The results end pre!iminary analysis of the experiments suomtM that Y

Gasonib.Le uncerte.inty may exsst in the ability to effect stable PCS fted_and_hl**d.. Since current pressurizec wat.er reactor e ergency U ope _re_p,ing guidelines call for primry feed and bleed uncer certadn abnormal conditions, it was comidered of so:se importance that the general subject of feed and bleed be studied in some depth ac4 tta.t the hiscale results be carefully analyzed so that they might be inter-preted in the proper perspective. _ To this end, the Semiscale Program is cuer.ent.ly..e full-scale plangaged in an extensive analysis effort invoWirs bothnts TiB experim

' The purpose Tf'tX1s lHter irtb; gitwidr~a~ brier overYiew Of Our analy sis of feed end bleed to date. including the recent Semiscale results.

n..

~............. IR TP.0 D:iCT Ias-. ---

x.+- w +.. s n.-.

, w

..x w..z

.nc. ~ x-.--..

- w..u l

Pricary coolant systcc feed and bleed in a pressuriz-d water reactor becces a neecssary decay heat recoval rechanism in the un1 Rely event that all secondary heat removal capability is lost. While there exist l

the present analyses.is the.. feasibility of achieving a favor 2Fle cool *...

ntcerous scenarios that ca.uld lead to this situation, the focus of l

ent vid ene rgy b a l.ance..w..i t..h.i.n..t. he.. p.ri..r ary-.c.oola.n..t...s. yst.e. ;t..tu.e. der condi.-

.g.

1.

the reactor h.......es scrc=med.

l I

C.

the stee= generator s:econdaries are co=gletely deplete.d of I

coolznt

.....~r:y.'-

.. '. t -. s..

~~

.... =

~~..

e ?i %. %.. ?_- M,,.. k 21 %.. h_ i. M..,. 2 2.. 4 M... $ $.5.. k... 2. n $. $ i- ? i 5 Ei 2. M 1 9 5 5 % + R 1 2 R 1%_

c+-.....

. :.n..,7m.:.. w ::..-= =:.=-~n:- p+g m,...

hk$5l5.f f-h.hf!Y$W55-h?? fiW-W.

E. E. Tiller PK-137-82 (sugust 6,1932 Page Z

~

~

[ ',...

).,_

t.he hlgh.ptessure injectic::_::ystem (ECCS). fs. operative in-..._

an undegraded condition 4.

' the pressurizer healeriare inactive g

5..... the..

pressure-operated re. lief valves (s) (PORYs) are operative L

6.

primary recircul'ation purups are off Feed and bleed would coarsence when the PORY(s) were opened (bleed) and high the PORY(pressure injection began (feed).- The passage of steam out 3.-

s) provides.for tion of ECCS coolant pro..the, rejection of decay heat while the,introduc-;

vides makeup for the resultant coetent loss.

l The reasinder of this letter exmrines the general aspects of primary l

feed and bleed operation and the therr.nl-hydraulic phencce*4 that 1"-

ecrerd it.

ne piedicted sy stem rssponse is outlined first had the effects of uncertainties are illustrated with an example from actual plant parameters.

Next the key thermal-hydraulic phenecena that in-fluence the uncertainties are' discussed.

Finally, the data from i

Sexiscale exp!?iments is briefly presented to decranstrate system signe-l tures and response during an actus.1 exp:-ricant.

THEORETICAL FECD AN E2 EED DPERATING PRESStfRE R

(.

l A s'hgle examination of the cass and energy transfer pathways aEoct-i:ted with feed thd ble6d Vesulti'itt thitand16hT6i1 that' feed"E6d bleEE

'.T.M:' W, U. g.f s theoretically,poss,1ble withiri a certain bard of press y ' ' - *MEiy*Seit'16WTtit f6p't.hii'6%re d#df 'Keht: l HP Wf.1 W h tW%3 ' POW V WYiti i s n'd "eMhl:1 f9,'-ft f W Mte).' ~ Eide;

.?%'~

', s:eter.s are function'if 6r pr,iiQiry iPsted ppe.stitre7. We.t which h!-

tha' "6paratlog btnd presents the mintwurs presstrre a. Wer W5d 4f34~?"..

F'-

can' pass en6bgh stem:a (with the toolant replaced by no6 tent temperhttfr'*

> ~ ~ *

.. -.veter[:t0 recme Cuff 1.c.ientlW,er9y.~st 't3dftlonal ene Steady-sthte-:. '

f frgn the systea.-

{4' operstb b'eiost thit pressurs irithe rgy hiUpsths_* '

be m.s
possible. : Opeiatfo6 Fat.-s pressure ebove the-todr beemd wey& '.4 4.-

4 isAct

.plished by cycling the PORY open and closed within a des; ired f.

pressure band.

I An upper pressure bound to the steady-state operating band is defined by a balance bctween the PORY average. coolant removal rete and the RP15 coolant injection' rate.

1he aYerne PORY coolent reseni rate is simply defined as the core power divided by the difference between

. inlet and outlet enthalpies:

Base case conditions assu :e that MX quality st et.a is discharged a.

through the PORY.

The affect of reied quality is ext = ired later,

~_

[.

~

- -=, " w n ~

R. E. Tiller

~

PH-137-82 August 6, 1982 P age.3 AYG

  • Mo ut - h,)

core g

1y

.... -(This esstrzec that the coolant reemed throtr;h the PORY is replaced l

with t=5 tent tenerature water.

Actually a coolant deficit exists at pressures higher than the upper temd and a steady-state condition cannot exist due to a continuai loss of systes coolant inventory.)

Belcra the upper bound the system mass inventory can theoretically be maintained within a desired operating range by either throttling the sets or cycling it on and off.

UNCERTAINTIES ASSOCIATED WITH STEADY-STATE OPERATING PRE

..In PNCDIN5..the.cdrychI seulsedAb.evejfpp 4.Ud grea,nothg1,1,..deftnedf.ve-tar.%y W;G- &.'l66 vara 1.ImcerLaihties -wSbbject:

@d "P.tJC'tY rdss fi#cobfaftn'd:'6n'Ers:W.Ni:Kiv$FeuriESWN5Msf fTc4throbg test.'orcerta.inty: re thW=ricW a

l the PORY is dependent on the fluid conditions at the top of the pres-

' curizer.

If the pressurizer is near liquid full the flow through the PORY will be a utxture of liquid and YBpor.

At a given systes pressure thifresults in great'er mass flow than for saturated steam ficw through the POPY.

The result of having two-phase ficw through the PORY is therefore to lower the upper bemd pressure.

Uncertainty also arises in the PORY energy recoval curre due to two-phase flow.

With decreasing quality the energy rcooval per unit mass decreases while the mass discharge rate increases.

Espendire upon E

the quality the energ removal rate at a given pressure may be less than or greater than that for saturated stet =.

The lower bound of g.

the opireting. bind ut.11~TEr.y 'adco.rdingly..__._

~

Another significant variable that affects the width of the operating ber,d concerns the attual heat load that crast be rejected through the PORY.

Core decay heat decreases continually with ti:ne af ter shutdcun.

Also, if scxne additional heat sink exists, such as envirere: ental heat loss or residual water in the stea:n generator secondaries, the heat 1

load required to be re.1ected through the PORY will decrens.e.

}

to Figure 1, this results in lowering the core power line aM thus;teferrin2 lowering the bottcm: end of the operating band, and also 1cw: ring the PORY average rass ficy curve, thus raising the upper end of tfre operat-irs band.

=..._4.-----..---------

..- --. - ; - -,3.1

,- - - -- ~ - :

Er h

'IMM.t"C~NY.?T4_C3F'5T:H F T W #~5 O.

W

~~

... =

e 1

1

l P.. E. Ti fier

(-

I PN-13?-D2

)

l Augus.t 6, 1952 Pege 4

  • he finai uncertainty addressed here is the uncertainty associated t

l kith the HPIS injection curve.

The effeef.s here are rather cleart a lower injection rate will 1:mer the upper end of the oper4 ting band.

~

The quentitative effects of the uncerteinties anc/or variantes discus-sed above are illustrated in Figures 2 through 6.

For these exemples the curves Wern gg3ted using data obtaine from the Zion I r.uclear generating plant.

A 3411 Kd(t) pressurized water reactor.

Figure l.

2 shews a primary feed and bleed map for s 22 cecay neat po=tr level.

A steady-state operating band is seen to exist between 7.5 car 14 MPa.

l A decay heat level of.2X_of full power is typical of the tire. period frec:: about 10_ Din _to_20-EL n af ter shutdo,rn, Figure 3 is a similar i

curre, but here no makeup puwp injection is asstmed; only the HPIS pu ps wer; asst >ed to be operating.

lhe HP15 pusps are showr. to deed-i-

I he.3d at r.hnut 10.3 MFt.

For this chse no nperating riand crists, since at the crintemu pressure where the PORY can remove the energy there is a mass deficit between the PGP.Y coolant removal and the HMS injec-tion capacity.

l

\\

Ngur6 4 chown the primary feed and bleed map fee 1-1/2% fuit power, a crEdy heat level typical of the period frc::: 1/2~to 1 t7 after shut-1 down, and for only HPIS injection.

Cocperison to f3gure 3'sfas that the reduction in core power and corresponding PORY average rass flow both act to establish a steady-state operating band.

i

[

\\

The' above curves are based upon the assumption that 10M quality steam

~

exists at the PORY.

Figure 5 shows the sensitivity of the NRY energy b.'

remval curve to Icwer qualities as delemined i:ith the hfM flow encel.

Since the energy recoval per unit mass decreases while the mass flow rate increases the energy removal rate initially decreases with decreas-i ing quality.

H:Never, since the__ mas.s__f1Erste increase 33utst_antially l

wl,th_ decreasing _qualitFfhe__qnergy removal rate eventuany. Wecases.

The effect on the Icmer operating bound pres-sure is not tarp ; huwever

~

.the__large_ increase __i_rLPORY mass flow rapidly lowers the upper end of h-the b_and.

As an examp!_e, for the conditions __usAd in rigure 4 the ~

m operatlgure 6h_ingfband does not exist at qualities below approximateTF 755 P

s (see F

^

The foregoing analysis is usefui, in that it provides a basis for exmining the feasibility of feed hnd bleed and for quantitatively assessing the effects of uncertainties or variations in the bounding O

M

n ---

..m..,,,

U-

k. c. in ter V11-137 -P.7 August 5.19b page b

,. s...

4rimeteis.

However, {Ldoes not. ' address _ transient _ behavior that may.

baveJo_.irapott ant _bcAr_ing__DDh* "1ti-ate _ viability 4 pdaacyM arl b.leed.

In part.icular, it' should be evide'it that there exists scre' uricertainty regarding' the ability to safely bring the primry coo 1 ant system to within the ~ feasible" operating pressure cand without sustain-ing unacceptable coolant loss in the process.

Tactors which bear on

'~

this transient process include the primary coolant system state at.

the initiation of an attempt to. Iecd and bit ed, and the nat.ure of the t.volent discharged through the FORy(s) in ceoressur12 tng the system to within the operating band.

These questions can only be addressed threugh expertzcentation ond the use of ccnnputer code analyses, c

TACTCRS AffEC.T..ING..PORY DISCHARGE c-Of the factors previously distustod ino largest _uncertsjnty_sff,ecting the feed and bleed operating band ar,isf.s_fraLthe influenef_nf_tE:t-phase _P_'0RY fiev.

The mass flon throtigh the PORY is de s!' ream fTuld conditions at the top of the pressurizer. pendent on up-Sever.11 factors contribute to establishing pressurizer fluid conditions.

The ones discus' sed here are:

transient vs steady-state behavior, primary cool-

,L.

antdystem conditions, pressurizer / surge line geometry, and surge line orientation.

i trevs (ent, ys Steady-State Conditions and Priniary Inventory If feed and' bleed is not knitiated soon after l'oosirrg the secondary heat sink the primary liquid seell will fill the pressurizer and col-l la sse the stee.m bubble, Several conditions r,ay form or sustain.a vapor bubble at the top of the pressurizer.

A vapor bubbie can be produced by loss of pressurizer liquid inventory, heating of the fluid to satura-tien, and/or depressurization.. In the present study the pressurizer p

heaters are assumed to be non-operitional and direct heating is there-

.n fore precluded.

In a transient depressurization, liquid flashing in the pressurizer will tend to create a high giality region near the

' top as long as the fluid in the pressurizer is'the hattest in t.he

- ~

[

system.

Hcuever, the liquid swell that accompanies bulk fleshing will F

tend to decrease the quality at the top of the pressurizer. For either 1

a quasi-steady-state situation, or in a transient once the original pressurizer inventory has been replaced with coolant from the hot icg, the PORY fluid conditions are dependent upon the conditions in the hot leg.

If the coolant lost through the PORY is replaced by 1cre quali-ty f1uid the mass discharge out the PORY will rescin fairly high.-

.This will occur until the pricary system inventory is, reduced enough to cause significant voiding in the hot l'eg..Once significant hot leg voiding occurs pressurizer / sur kccne into pley as described below. ge line geocetry and orien

..__ _. x _

i.

w R. E. Tille.r

~

PN-137 6 Auoust 6,1982

.Paje 6 c

>ressurizer/ Surge, tine de,ome_tri.

for d given' vapor volume i pressur'izer with a large tength-to-ciameter ratio would bsve & "tell" void height relative to e presswizer with a sr. aller ratio. in addition to also having a una11er cross-section.

A steam bubble of greater height woutc tend to enhence secarttion from the vapor of liquid droplets created by hubbles brearing throu_qh the liquid surf ace, due to the greater wall surfete area and reduced ootential for droplets being thrgwn upward into the high vapor velocity krea near the PORY line entrance.

Hnwever. since vapor nest by.

PC necessity pass through the pressurizer itquid from the surge line to the PORY a large L/D would tend to promote liquid swell and dreplet E;

entrain:ent due to the smal:er cross-sectional area, L

i In any case, the influence of the pressurizer geometry may be minimized i

by the preclusion of counter-turrent flow in the surge lir.e.

Even if a liquid / vapor separction mechanism did exist in the pressuri typical surge line velocities are wS11 above flooding limits.ger,Ther e-p fore, the liquid could not drkin back to the Icop and would crentinue le to be stored in the pressurizer in1Lil the PORY discharge quality self-4 adjusted to accommodate removal of the mass.

.t theref ere appears

~

'necessary to have high quality steam supplied from the hot leg in order to have high quality PORY discharge.

Shrge Line Orientation

~

~

If hot leg voiding does occur, the orientation of the surge line would influence the primary system inventor.r at which high quality steam-entered the pressurizer.

Surge line-to-hot leg connections of various '

orientations, from horizontal side entrance to vertical top entrance.

are used in current PWR's.

With the top entrance line, and quiestent hot c

leg conditions, minimal hot leg voiding is necessary to a)7ov high quality h

surge 1 t ne f. low.

With a side entrance line the hot leg pipe licuid level

'4.-

must drop much. i6eer before high quality f)ow begins.

In either case

' d-the surge )ine flow may still be varied significantly if non-quiescent H.~ e '

conditions exist that disrupt stratified flow, such as when primary recirculation pue.ps are turned on, or a transient depressurization is

?

occurring.

s.

for typical FWR pressurizer dimensions,the vapor velocity (due to an open PORV) in a vapor filled cross-section is on the. order of 1 f t./s which presents little chance or dropict entrainment.

g l

l

...a.....----

~

... ~.7.-... _:.

l-k. i. T i l j e'r

~

PN-137-82

~

August 6.1982 Page 7 5

=

~..:

CONCLUSIONS BtGED Oh SIMPI trIEu A!MLYSIS S

$ase3 6n the foregoing dlscussion it is concluded that a s}nlified approacn to chtemining the feasibility of primary feed and hieed in a pressurized water reactor lies in the mapping of energy and esss flows.

Moreover, i.his technique can be used to quantitatively assess. the sensitivity of the operating pressure trand ta variations in the boundary conditions of ECCS flow. PORY flow, and decay heat.

It is 1

evident that plausible variations and uncertaintics in these caremeters can lead to the r*1imination of a steady-state operating pressure range.

Principal among these uricertainties is the coolant discharge through the PORY.

The predictability of this single parameter is suf: Ject"to 1

) n:uch greater uncertainty than either decay heat. or ECCS flow.

Ii respective of tht-existence of a the'eretically feasible oper2 ting pretsure band, there remains tne question as to whether 1.he reg.t.or' sy. stem can be safely maneuvered into.this pressure range.

In this regarc it is clear that a deperrdence must be placed on computer cede analyses (with suitable verificat. ion) and adequate suppcrt.ing ey. peri-mental data..$vch analyses and/or expericents should examine the plats.tbie scenarios which lead the operator to counce primsry feed and bleed, since the initial condition of the primary coolant system

{perticularly inventory) will have a significant effect on the outcoce.

l-ur;thermore, it would appear to be a useful exercise to exa=ine the eperating~ c:ap that results for each set of individual Ph'R phret para. iier i

I reters.

The operating map represents an ultirate statement as to whet

.I feed and bleed is possih.le, And is the starting point for ext.msning specific design features that bear'on the operating bounds.

RTStrtTS FROM SEMISCALE CIPERIMENTS

[.

An experiment was condueled in the Semiscalc Hod-2A focility to evaluate 9

system behavice during primary fecJ and bleed operat. lens, figure 7 shows the primary feed and blee'd operating raap representing boundary conditions used for the experirdnt.

It is seen that these parameters define a steady-state operating band between 7.1 and B.2 MPa.

Several

'F attempts were cade to establish steady state feed and bleed within the operating band.

While it was possible to maintain pressure e.mtrol by cycling the PORY cc.u_urements showed a continuqws lote -d primary coolant (nxentory.due to a low quality discherce_oyt _thrs PAR g The s

phenocena that led to this behavior are described below.

j P

P ppMW

~~~

g

[ wth 5"'"

U;r?

w-August b 1981

  • 4

>sge 5

((ngie-phat,6, liquid full conditir.ns were established at 6 pressure of 15.2 MPa.

At initial conditiont the pressurizer heaters were used to lontrol pressure' with a small steam bubble in the pressurizer, Some Bubcooling existed in parts of the loops due to the lack of natural circulation resulting from having tcpty secondaries.

At 15000 seconds (Lest tinte) pressurtzer heaters were turned of f and the PORY was latched open.

Figure 8 shtms that the system rapidly depressurized down to approx. irately & MPa.

Thitcorresponded closely to the saturation pressure tf..the. ccidest fluid in the 13blis -Is scen from the pressurizer co11apsed liquid 1eliel curve, flashing of the hot' pressurizer fluid initially t esulted in tubstantial voiding of the pressurizer, Re. ferring to Figure 9 it is seen that this is reflected in the PORY mass discharge rate.

f ollowing a brier initial mass flow surge the flow out the Pogy agreed elesely with the predicted steam ficw rate for_.100'Lquality.

Ibe_.sigam bubble depleted ef ter__approximately 250 s (rigure 8) and_the_PARLeass N t-ate increasetto. approxicately~5 Times lhe_sle_as. ficne rete (FtgLee 9).

As teen in Figure 9, the cacs~ flow rate out the PORY appeared to be dependent upon the conditions in the hot leg.

Once substantial voiding of thejatjeg_gcurred t.he flow out the. PORY began to agree with the rMeted._s_ team _ flow _r_at&f n'5pite of-r6r.Hned_nearly liquid full (Figure 8).'1.he tact that the pressuri'fiir i

(The pressuriter surce Fine ih tWe'd-2A system is connectes tu the side of the hot legd At th6 ti=e den bufficient. pr{ mary coolant inventory was finally lost to as to void the hot le-g tfie core was still adequately covered end I ' cooled.

As teen in EJgure 10, there was sfill_a_soa13_ deficit in the nr.ss injectid iKo the system wlTh ifD_J32ela.the_to thefP'ORDass

~

~

P di.scharoe~rit e.

The result was then a_rery_1]m_ccatinue.d loss of mass,

Which" led to evential uncovery of the. core at ab_out_11000_ seconds.

th inpor{

e_b f_lh e-$e=I s cal es r e s y.i.t sjle.s_.i n_ demo ns tr_ ating_the_dmi n anc e

%l

/fl

c..

V l hl[he_PM ischarge rate on pr%ry feed endRe.etcapability-and tise' h

j/* dependente_o.fJhTPORY di'sch7 e on_ hot leo conditions, end_c.onsequently 9

j

/U.

Syste= inventory.

The inabTHty to' maintain sy'sta inventory once the I

i PORY bass ficw rate dropped to reflect steam f1w is subjets to e'xperimental bncertainties, since the steady-state operating band of Tigure 7 is tather narrw.

Uncertainties 6xist in the actual PORY orifice charactegis-fics HPIS injection rate and the mea.surement thereof, systes heat loss,

knd fluid leakage.

N chserved PCRY discharge relation to hot leg conditions however, ites f outside the effects of uncertainties discussed above.

The questions

/ that need to be addressed in interpreting Snd extrapolating the results tre largely t elated to the geometry effects.

The Mod-2A system has a thort pressurizer relative ta the desired scaling of t/D.

The t/D effects on liquid vapor separation must be analyzed.

The sur9e line needs to be evaluated also, mainly witn regard to the influence of the side entry to the hot 1s g as opposed to other designx.

s 1

Core pwer was augmented to ca:pensate for the best estimate systesa heat loss.

g ;.

  • k.E.Tille.

l l ',.: ' -

M -137-R7 s

p. -

A0 gust 6,1982 l.

Psat 9

. ~.

CO:itLUSI,0,115,,B, ASED 0:1 SEMILCAtE_ EXPERIP.r!,TS 1

s

,'...[. -'

of Ahecseives,'the rhulk Nor. the semiscale e>:,erimts do '

In an not point to the existence of a definito problee. regarding primary feed and bleed.

By Lthey_do_.te.nd to-Aupport a_ r-nneern Ag_p3_ thy reld_t_lve tenuousnes!; of the process.

Further analysis attecpting to quantify the potential er. parte.entil distortions ar.c their effect on the results is noir in progress.

These analyses, along with the results of analysis of e/.istent LOTT data, and computer etfe calcula-tions of the Semiscale experiment and a full-scale plan

  • w.i;I tie

~

documented in Septeciber.

\\

Very truiy yours,

\\.. ~ -

y,, g,.y.

,. i t

P. Erth. Hanager Water Reactor Research int Facilitics D1yis. ion NS:ld k

CkMikI

~

As. ctated

  • i R. '. Barber, DOC - $

d cc:

R. R. L andry, liRC 2

W. R. Young, DOE-ID R.

W.' l'idhn, EGLG Idaho,

L I

I.

j.' -..

e

~

9 s

e

'%s

T

.l

.i I

f 1

n, 4,

t b

F 0

f

)? '

6 M.t

'4 o.

4

//

%~

e 0

0 l'

x s

a.

cn h,...

^

.m PORY v

c uoss low

.c:

.l3 : v:-.

-id s

.a s.

.m

..w y). _ '..::;....

o. "... - :

Core'Powar

/

\\

io

.. c ;:,.

O f :. :.' :: ::,;: ?...:.

m J n..

g

,c w...:..:.

4y n.., :.,. e...

e e

.......y::.,-

e e

a.,.:.p....

.c e

m p,...

.J.

1 y ' ', l,1

.;; 'h..

)

n

.. -j i, e..

... ~..

... ~..

9,

  • 1... :.'. y... -

.t l

l.

1, t

l o

a 1a.....c:

1..

w 6

s.

'3..

... n..

. ~...

1

$2.:l.L.':'

h :.. :.m.%:'. ' n;.Q.:.'??llj%..0 Systembpressur'o (MPa)-. '12

14 2

"T

.2

-4 6

8 10 i 7.

4. "... ;:. :. r. -

e ?.@;..

y ',~P.:,,.?

if '

51.gure 1

.7.yplcol primary 'f' sed and..biced oporcilnD : map.

~

.t.ts 7ss.4 i.

r.

.. ~.,....,..... :....

..7.:...

.. t....:

l,... t..t S i.'.

lcr l 1, t -... -

.,... s.. o '. '.} ;. -

  • ~**....,r.

.e

.~

s.....,

.Iv,

.y; e.

,. < c, g....a(_ _ _ _ _..

.f

, -l.

... g.

...'"c..

.. s.

r o

s.

.~

. ~..

.m.-

o

. n,i.

.e.,e.....,.

..c.

.....a...w,..,,..

....a..... i w

. +.

, u,.........

? N M:..,...

n..,.

. M. q,;'f. g... u.,.. ;..;.-(n/. B:d N.6J e u

  • Sort E

.i.g f.

,......, v, ;.:.,.,..

y

....,.. ~ :. n :....

c3 e

es e

,k."-k,*;f.'.7,e'.p...;:.. :..p. :..:.-i.h...l.

N 3

M M

W N

O 3h

t <.

e

~. ;,...

, a

,u..,..,., o g

s s

1

.. ~

..(,....

.a m.

,.,~..;

s s.

v..., ;..

_....i

,...y.,. 1

..... a. ;..

+......

..v

. g.

.,. n..;:.

..,~..

c..;.n.....

<. n :

'.w, :: ;.,.... :........,

~...

m

\\

l

..v.".:?,... M.. :... ty.

. -; c..u

..,. ~..;.:e.v., e..;:~ ::.9,n. <.,....

,v:i.:

,..,.o.....,..

...,w

...a....

n..,. s...,.

~.,y-..a....

i.

. y... ;.t.

............,<.v...~:.-.,,

.....?..

...., ; n... s :.,,. :....:..,

j

..... e.r.

.,~..:... <,..,,..

O a

. a n.,.., :<.,.. v..,.. > v.,.v...

.e.

o

....,.. ~... - ~. y. Q

. u ; c.

l

..m

...,....~..'..s......... g.

.s

.c.,.,....._..u.,.,.

s ee

....... n... w 1

..:. ~,.... 1

}

d.;'. q.y ga cg M

~:,' C..h.,..y.1 '.\\ : ?.

. Q Q.,

X.;,.;4.n. ':.l:q....a'., E',y.5;.T.

79j%.7 y, 'v.'

o

,y[a.%~:{

Q P

yS p,......

.....v... 1:: *..

2

.>:..e.

CL

,,.y.

.s.,o,.,....,....n.........,m..,.,....t...v.,....

ss

~

2~

i, 3.., ;.,.....,.

.~a t

D

...a......;,...

1....

...s.

.., s.

Q

.=.. -.*

s

' ':..,C,'.~':.

%s.1 N.

i

>t

.~
>q... *..

...w.

L=

l W

L

.(

L~-

.- : 1 p

  • 3

\\

,L M.D l,..

.,s....'*:s
.sj rs I

l QsJ L

m m

w h.,

.s

... b. -.: '.. ;..

A z..

o

... n. ~

.:-:.5.y.,W: ::q, ' c. -

CC

  • (

A CL h

...s. c.. -

4.

s

.a Q (1, c

. n e.;,

. 1

.. :.: J.

. W :...y... p..

3 s

sr.

g

... s.,.,. ?.

.s-

,.:..b.:.n M'..::.. ";...

y >i e g, s

.l.

4

.. :. 7.7.

4

~

- m a,. d. _- -

4.:.n.

Q n.

JU.:'

~

o L

f,r3

.:,l.

-f Z ';;:

,[

D i

~'

~

g

.. G) 9

$s,.

t u

og s.

,n.

......a.,.

g

..z..,.....as.,.,..

\\

..~..n..

,hti gg i,. ;. ;.,.....,.., ;,..

f.

. o;..:.;..%.:[ g t

4 1

,.. s n

.. f.;,,..s...

3;.

.,y....

\\

1

....c

.r....,

.s

. l l

l 1

I I

1

. ~~

  • O

. ' ' :'. CM d

6 y

c e

e o

n a. >

W1 e

< c.,....

ed

.o p.

m M

~: ?

.. M. r.*s.'.:. * :. t,.*:n,.b, :., 4......,,:, ::..,.,...,.,..y.

. c..m, @... N,..:~s'.t..

H......

\\

l

. x...;

g.

.,.a........:

.q jg3

. J.R.

..,4 :

.,:. a.

. c.t :.,y.:

.. i.,

..:.. s,..

. s ";:.i :';; M. u' 2lt.... < m.

.m :,..r. W

, e p ;'

&;" p.;.,.. Q'..: ?:.., C.~.. * :.:..3 y?.

" t:

-; -.1; '-

.G W:d;;.y*;g?yC g.

....: ;h

.:1:

. H r v,;..:. n..:,;4,3 z., 7..

.~ 4,,: u.:.

.7

., o.g..,., f*:,..;

,3 i

,,.. s....s

. v <,,

l

.3.

.." ;..~ ;,. ;,,. x,.,

3.,

{.;. :,,....."...i..'*"5.'.'.

.n.

s

..,. "... '.., ~....

.....~,. ~

', ' '...-. :Ws.,.'n.2. *W,;?';

/ s:

  • ?

.i..

1 4

,s,,.

--: f

..~:.e.j,...' ;w.?*....,..

g.,,

..,..:...s.r<.'..=.o..,.L...,-...

4

  • ,. s
. n. g

... ' *.. :r.~,....,.,.~. s. g.3. =.=.. * %:.

\\.= ?r?.

~.. e.. :. 4 ;..n... =

.%..y..s*q

.:... t... r

c..u.s.. : ~; ;=. ::yy
s. =,.-< p.. \\. #:,'. ;. '.
  • .-...=

~,

4 l

+

9... * ;

1

- w.

s:. ~.

n..
u.. :

.;.::. w 2:,.. :?.

. -. r

...e...,m.....e

=-.

  • g

...:A e

o.

..; %;. ~,g.. c. y.

. wy

.v,.,

..*.=*"

. :. s...

.............?2.. -:... w...

.s. : c... e... v :

.*.. ~....

4 *..:.*.s..

  • -:l;g.

, o. t.

. ~.

.s*

3...e,

. *;.14.,. '.g * * * *l ;.* * ;... al"....';..

  • 's

.o.

a

.. *:,s,l: y._.

0

......... ~......,....

. ~...

I,I ",..h..

OhE$

h

. W:..

. ~

m.-, ' %c, n..p

.j M

O W5 C

tn

'T av gr) 3r>

N e

sn3

.l.

. t..

Ti

. u;. ;...; d;

' n,.

i 6

,f l-.

.s.

... r :...

... :..n. s,.

s.

.,,:y.

c..:... e.

..e......

.. c..

.v...

s

..o....,,.,.,.......

u.

.... n..

i v.: ::.. :...~. r... :..:

.a

(

~.. < y u.,.y:m...

..: : e..:

..8 -

..: e:w..., :

.., ;. ;w.:.~.y...-

f. : t::.'.':..u : :+' ;::m.~.

n... R cc 19-w o

U.
n.' M..?;%.

M=G6.:

3:

}J

..., % G... @ r y.

r; co

.....g.

g w a,

.'.. %.y-l:; -

v.*

..:rw..

w m

_ su

  • s../.,..

4 Qg

,,,,,,, r.

O e

if v

-. r* v

....:.1;:.::.c..

n,.::..

n.

u,

..f

.~

N

.... ;. m..

i,.,

.. ~....

w

n
f..

n.a

(.

a

u. e se a

R q

w 0

w

,9 3 b 3

7,.

h..-

.~:.

Er s

g

...s...,..s.,.

m,

.s-:...

..s.

c.

~2

.......,,...s.

...,,,,,. r 9m oc s

. :Q p

o x

z O

,,t, y,,

,g $

x o ).-.

A Q

~ re N

'L y

,N'-.*,,

?

x l,. :

  • C.

N l*.

. ~....

C,.

C

?,...*,.:,+.

,. y O

e*

.s, 1.s.. :.,..~. '

L g

..>.,.s..

......s.,3...~..-

.~

s,

... ~....

.. ~.

G Q.

,- t

+ :,..

.. ~.

-. : s..

Q

...:c.&T:is:.~.:

L f

1 1

1 1

9 1

....f,.ll.t *.j ;.,1

.W..
l

~-

ah C

V5 c

gg

,.... +.

... ~..

,..:.J..s......'..

.r..:

.r.... e..,s....~ t.c..

.s..,. :. r.a. >.

N v,.3 o

.. e.,.s v-p

. r,.

...... =

.....1...

w.

.,.e%...a. a. i........ g

..w..

.,... i.y....

o..

4.

e

p K) AS nu

....n

.,. I

...~.,,. 4

..,.7 i.,..,... r,.....:.., o......,..

1

..,..s..,.

., x;...

y..,,.,..,.

..~...,.s..,.,

,.. u.

s..,.

3.

.....,.,......n...

..~.~..~.'~.f.....,.,i.,.:.v.;;.....~..4

..s...

c

. t..

s. 4.........s..%.....

........v.

.r.

. >.,c :.,...,.~...,........

.p. ~\\.,..

.u...,. :

a.,

.:r.....

.p5. v...,v,...-

..w:.

... sr..: -

.. :r......,. M.t. :. e...v. ;.s ;...:.,.

. :. n

.:.v - - ::. a,......a.......

e

..e..s.. -..~w.,

...e r.:. :.,.

v

. x..

.;:. u.

.-.. e.- :.

,.. >..;;u....~. m...... n,......,.,. y a w..

... :.3.,'!sk::*...*; -.e, *..;..,..,,

.-f

u..:-
  • g *t.

a

-. s s.',p'.;,b..'.. :.%. v.

e.a. -

sygs4.\\.{ p.,.'. h:u M,.,.Y. :..,q f g :;

e",..a,. ;.. :.<. -Q*.i

'f.

jg e, A~Q*n,z.N g Q.c.'..s
,a. <. ; ?.~. 1. 4_5.. :.. :::4..,....

Ji t.<:: /,,;.

.. ' ~.

,..,.r.s:

. y; - 5. ~.., ; g '.

.. -..L. s

?.

.,n.

s

,t

. :., p,.

...r. y.:...

.,.. t.

4*

. c.... %..,

.-.~.,.<;.,-

.o.... j<~. e j.

.s..,...

,.. pg M'.

,m

_y, t -- _.

....m

,,p.

m me.

~w

3.

.h..

v..

u.,... - ' '. / '.% : --

e W % *P' m N ycn. y;.i.@...nx..y..f,e n

~'='f o

a.....-

m o

m o

n n

n.n n3 o

. a

.e W

4) g' I

I I

j

\\

\\

l.

,{

77

., ~

\\.

c q

f 1

L.a m

......c. :....

. w y

...,,.<;:.m.

O

.?:.Q.r:

.';.. lM.:%..',;

x..r.:. ?.:::.*..:(

OG

- y..;,n % '.

.. b
.2 Gj v e.,' r-

..:. % s. =...

. :x..,...

LL.1 LJ

'. j' N.Y.'-[F.b.

fl

., d;j

~

~ U -[.Qi.;.';.

. 0....i....,h.,

, e.&.,,,: y

,J

./

P

... q...,

,,...2.-

Z L.

,.y LQ

...a.

4

.,..r.

. g.,.....

s..

Q Q

!=as c.

s D-s,,,

" ? ~~

o e 'n.

.2 1I

v...s.,s

... v m, -..f C

4 L: ) 1.0

. j 9.

-..t e.

  • e, m. a.

s

. s'.

f' s

y,--

f g.

. ' ;;;.;y ;,;

. :a

.. :.2 ;,

1 ~.. -....;..

b.,

f.

,s,

>- O

~ J'.c.W 2

V u

gg

...;: u d 6s 4s

.m 30

  • C

%g E

v>

t'!

v.

T =e

~

g===

. c..

... ;.y

==

Cs

...~. -

'>g qr

a. -

-s Q~_7

.r Q-

. s{..-.'

. i.

. M

)-

..y...

N.4

s. *;.k.l t

.. b *.'.*,.

M g

a W

. i L

.(,,. &.

3.:.

g N

. y.* ;,:.~....:r:..

O

4. {

.y

....... r.a. J,.

... e.,..:.-.,...

v..

..n. _.

.>y

,. d,.",, *.:.

M.

.. f. 4.'..,. 1.,7. 6i'. Q.

s..

, :. :..~,.

f...:..

... :...., t

..c.........

. ':'<: m

.:.~.:.. :d. 'r.::#.:

..-<.....".'...:e.:~,....

~.

1 1

1 q

.p

-p a.,.. -.,.... '

.r.,,.,.

s

........,..;,:., p.,

9 8

R g

p...,.,9. ;a. 7.e,L.

e o

m e

vi.

p.

n.... y;
.wm: :

=.

n

......g,...c..-.

a (M)ASn631.1...%..;';.6py. #...,... 4. %,...

. ~.... -.. e..

tif

..l.... ~. 0,y=.Q,: 'i. ; ;* ;e..?..; W.n* ' W.c. W ba/%.t V

,;y:y.e,.:....:

e.

.n?.

': s.

. ~,,. - :."o r:

s -. >.r...

  • e.<.

1, s: :,t.

C,.:#$(., y y....

a

q ;

. :.g.....

. %

  • c.,,:.

. y:

.,.,:,y '.,: Q.,s..~. ?;e.,..

...:. ~ -

.'!'[~. :;', ;t.::.~v: s."

t *.M. 3.:.:.:..y.. ts.y.,;4. ;.. ? r.

?

a t, s.

., *;s., '.

_.v. g. y,,w;< f., a.

v..er.

4

. :.u:. o...,.~ p.... y.c....'. t., a. Ly..X.. 1::,,.

..s...,.

..e #,

, >.s- : :a.

.:.. n.'...,,.4,..o,

.. * ^

..,u.. c m.*, t.,.'3..,. ~ ~

....y e.,

.... c....'

g. e

.e 4

s,...q...s ;M;. L.,. :......

.p.t.

c er.v.i. gw;'i, :J.3:.:f * ).. s.n..

.. e.: r y;...;e.;:. s.t.

..;..:',..,.:..f. :...,. :*)
  • _.n(:..

f-

?.

e.

.s a

. e..t

  • ? ;. =

,.:. o..e 3.,*:~,.:

-r..

c

..... ;.-.,a v.-.

.s

.,..:.0.1.t... ;.. e, pI 4.o.e...

9*

<.a

Q ;

. ~ " g a;': \\.;:,.*:'.'O

...,.. %... y.-=i,g5

.s.,: &.?* 6..,.':.'sv,. D.&,,*:. *: ". :'"

4"u 6. *. y.

.' '... : h*:: ;..'.... -.. * :*'..;

ic

~.g..

  • 1...,.

.e.i.;

f. pele,r

,4,.

.e,.

.o.

s..

,,.g

"*-*% e n--- a " h::.8' Wr-"' r i - M.'

r go p-

-m. * -m r-gs-m_gb_, wg,ey m -

s s.d '%=sg*

g.mgp:3

.\\

1-

-s r

......-e a

...-a...~-,~ ws~.

.x.w1 a.. m.....r I n...

.. 4,........f.',.....,...o.*

I.**.v g,

8.1;... } g... L.U 8

A o

. - -. 24-

= *

.*." -+

.6 1..

a:.:."l*.!.t.L:t..,."

".& e.:

.a t..p.

4.... a.;1.i:

.. P....

. f...

- g.

' u ;.: t..g..

...i 3.. :.).

1.. i v r

g g

g

,.g.c l. i4 I...
1.. h. 8.. :...

......__:.5.-..---.....:.-

-. 3'1:.' i

'3 i l

8 i.' F*.$,'.y P 6:

8.

. i. (

..;. 4..,.
a. 6.:..L. L...

-i

.. ~

.... r :....~.:..- :..~.- - - -. ; -- :-

.s.::

i.j..;.I :.

a.;,;.;.... -

.I

...t.6 i....f. s t...s. 14..:. l.;. !

. s Is si - ;.i.l-

s..r :~... l.... 8

,j

.:..... :........... - - -............ ~. -......

i,, ::

.e...

l

-.ss.... t.,a,4.t.'r.

... s !.

.4.. s.

... l... s 2 s:

..f

.~ 3.

1 I-

~r

- -a.......

.4 1..

ma

... - ~ ~..

. e..

. l..~

..:.....!..s..,.

t d

1,...,.,

s

~

}.. s...

1.,. g s : *........ a s.... t.."...*.; * ".,. r ". ;; : 3..g.

. ~. *. ; ",.t. '.. t....,' "..,.,, ; s i.. '. =J '. p "... '.

  • _,,...,...

. aA

s. -.4

=

    • ..o... 8..

g,......w

. ~.., -.

g,

  • 41.=. 4 :. 4

.7 8.

T
i J I.

i

. *...".y'."..

...g...g........ 3...

~

e

.g

..y.

.d... t.n,L g.

l k...... r.........g

.l.......g. g.3

....t-~...-..

r -- : --...

.. ga.

. ; s ;.,..,

..t g

....s-

...s..., L.....

.r

(.....,

j.'...s..

. -.... I I..

..e'..

... '.e.

4....E.

8

-e - ~~. - ~ ~ * * * *

{,. 1 kw4. *.-

f I

.,t. j I.I..

g

....l.I 4...

?j

-.I !!... ~..:. 4 *...]' I ti 3.A.s 6 8.1. g n. )

.a t

4

4..

.i

.s e

s i

l

.:i.

i I d

r NJ.,

1.j a a 4

6 4

4 5

a.

t. 6 e.7 13. #.

t...g... #.. le

  • s i

.6. f J..

j,. s..

4 L.

,.1. 4.... s..i.

1:;.g la...

. 44s. :s 4.11

!4 1.

.. :: 4:. : f.,.g._; g L..............

s a

t..

.t.-

i.:.. t a...

.:.g

.a.,.2 ; :.

.t r p,,,,,

, s..,,

..r.......u..,..u.. ;.. :. r: aa ::.....r.- _ _

~...Ls".:.

~

t. "

.v n.w.

2..

w.

. n:v..

...t.

.~

. :.n._.::n._u.:ni:::v. :.:.: r. ::.-.... :...:. :. n.. :: q.....:n......s....

....}....

t.~:. :

..e

.a f...

e..-...

~.. _............r......:

_,. s. i. i..:=..;..

3.

. i.n..

_1 4

~. ir

.~.. : :". :I:....... a..: p: i.2 4.....;..

.-.r. ::: :.:lt.::..

I..2:.*.....4.I.

.....Q.................i..~....f.~..I.--.*

.... t.. 4.I..:..8.

e 4..a. -

r

.. l.1".A t

r.

=. =.

. =

I.....a i

...**4

i,;~ l.

-rg-

.":.tuu.s.w,.

W+.. %. g r.

i 4.t

~.

.v5 s.-

~

h 3r.

D'

.' g..

. S w.. h.:). 1_

s..'1.f..-.a.1.

].Q.

.g..l.a.l 11. %.,g..I q l -

1.

7 3..

,a

. -tr..:3.......- Q _. :..

..a......

-.- _. 9....

..a.

A4.14-f..

g.

.4--..

M....

-.4 l.:

4

~

v s

J i

s

.;". :s. a.

.j

,.4

1. l : W. \\

. ~..;.s. l...

t."...

...J.*.*.

g

....._.~.2.-...

. ~..

.e

.s

.-*;t.:

~

1...

r..::"i.::

s..n.:..t...J.

.....3 a.

. s.

4.

p.

s.

g

...r......,_

..."........ :. :.:..................1............

s.r.. 4 l~~~~

e

.,u....,.

.t s:.

. t. :. s...

- su s -.

'.g N..y' --

s..

. -.~. ;

. :.:.. :.. s..

, *...l.

ar..n...:.. :n..t...* a r 1..t?"..r..,,. r

.*,~...N..-

--5

~.

i,

.r

........ 4 s

.... i.. Li n_n........... ~

s....p......N

~.... ~.........

, s.

g,.,g;.. j.g*.c;;C.. 6,

i. -

.. en

.~

". n..... y s. u..,...,:.::... -

s.

.~

\\

g.

.. 4-s;

........ : : ; J *.

8

.. ~,,

a. g. -...

1..

1

...3:. L.,.,. t.........~.s.

. i.

sn

. s 4.4 I t. 5-.

.. ul,,...

~..

.=

j.... i.

,4 1.:..a.

.g.

,.... j. 2. ; > r...s,,,.. 8 :

f._.... q.

- g g

p

q. 5..... );. :.-

s es

..1...

  • .li":.h.....

2 ti.l. : :.

J.

J... -,-

b

  • 84.4 61 2..

'- E--:8.

4-

. n... -. ;,

. ' i;

!. :;.."r* !:

6.6 iii! L. :::*i.!: lise ri*.!j. t !.!.fibi:..! '

21. Ar.-j :... ".:". ~

""..,'..i.-4. h.. f..!n. n..i !::i:"... i.!:

c re.-

. N.e.*..

-.a_.

...n..... : d.... A. '.i... - "- ". "8. s,

._2.....

..t_.... -...,.

.\\:

t

.....i.

V...

.....Qg

... c.. i,.... _ - d..

g.

- 1:n

r.n: ::.l.. t !:... :. p...t.:. !.. i::.t_r :...i ~.in.p.n. g....

.,. :..ri. :.:. *.... i i:.

.k'.....-.-

. t..j. y -...

g

.i...

....;-~.~...

u ~ A

- ~.

.. - -H... t... >... '

i

...... ~

~..:

s...,,.n.,: ~..,

. u..,. u_ :. 4..a.... -.m........._._o...............i...... :

....9..

. p,..

.............:1...

.. i.

n.

i.,

. s i:

q 19

l.... a -.\\.-.

.Q ' :.. :i i

. :d :

s.". *-t..l:".... 4: :

  • , a..,ln..-

6

.. -.--.- - r.

..

  • t.a a.1 :--- ~t ::1.s t,

~+~

.. g.... s.i :. a...

}:

n

. t..

4

.~..

f.

  • .... s.

~. -..

.n

..... j...

..:...:.."!. ):. i.... [. 1..1. i.

L.

... :.:;:;.;.. :.... r..... !. :- :. :....r:.*tt:- ::; g:,;- ;;,,.- : 4 I -.

i.

l

.- - -.....e

= *Q....... :;;u:

.."..i*

g t

,... g.

4*

  • a r....: 7

== 6

.,,,,,.. :~i. : =.

=.

g

., g. **. '":.I

....,.. :..:.. r..,'.'. '*.". 'I=,..

::-- 3...

{.

.--=

~..l.--a ~.*--J~.

. -.I----

*.... a.

8 A

8P

,. " ~.

l. ::.

!! ti.!~.?".ht.:;l:

( 'I *: "

t.-

  • f.

=

.._',,,_a 8

e., :~-

...e..<

,. w....i * * ":. *... 1.

' y g*

3..43 p

8 g*...

,6a

. ::.. t' !.. !! *!

..:...6.

... :- :.:- n:- {,7..-,.

l.

t..~..."*

1

.--~

1. ss. -l f..

e

  • .~ - - ;*

..,,,,._,..4..~_

l.J(.r

..s:.:::..*

.t -

.~

._ t., _ _

. ~. u

..a w -

4 t.a__. _.7s.._

4

.,-.,,,l.,..,,,,............,....t.. : D,i 1": :.:.:. :ne..g:.....:

k;.... 7

....y..a::.::n=:::::.:- -

1

...:- :... : i -

j.c4 1

e..:=. : ::+.. c..!:n: :: :::.:...~i -:.::.si.rre. } :..."::t:.r:::: :.

.: :.n:s.

.....:.:.. :.:. a.:.:.4 2.:-

.... : rn ".: -. r :. l.s-. ~ 1.......

l

..T..

v.:. : &.:.

""":-r.

_.$.o -

(,.

e e

t

... g c.

.....a

.A.==y:L. i.o.c....

n.

.s.

o.

.:.:.. t

: :: :.: :

y.:..,..,.

~

~.. -

.s y::. --br. 21:.-

~~.s 1q.

. ~;

-..n :...:... :

44,

. -.;_a

  • Z M # N dip.

.e

- - a-1

  • T ',i.lE. I."..i,:Ey!:.j..;I? *.,: :.1.

.*:.l". " T"'8 " i [MW ~

f...

.. Is: ":.

. ~

  • t.

F

  1. - ~ #--""
  • i.
i..

1

(. a-s. g. :lu:...-..n::.:..". " ':-"f T..n: "j. -::t.t.

"",.y g

-s.

a.

- [:i:

.:.p.

g.

.r -.,

.. ~. ::l.*\\

s 6..s s..

~.-

  • . - - ~ ~ *.

= ~ -

.'T~-.... i n. *. I........ c...

" " }r " " " ::...*.

L..: g

. :.:._. ?

..~f;".

g

.... s s,

............ = ~

t M.!!:!..ii M.?!~*i".T e~ t :*..:3!P::.i:

.q......

[

l:

1.

8.t:nt.,Vtp n! d.n'F.:. t " " i :

.n.:.;:::i :re... :r s

~... <.

. >...... :.c

;.- ~~~

. ",....~ c w..;..~

r-

-9 g

t

-?

__,9"__

e

. = -

.......n,................1,.

..v.

i

.,........... ~.

..s..

y.....

4..

l :-?..?... n...

....<. r..

g/ y y6.1 Ao g ssM g

...,.,..'+:

.a

.,, /. '.. ~.

..'s.

N N

W O

p

, p3,.

... s.. :...

.....ht O3 3

a.i.

i

.i

.J i

I 8

e

...z....

.:. s:... v

i..

v,... :q.

. n x.....' w. w:-

..~

..,.s.

..v.,

.i

.. ~..

y f

a

-r

. ::.. n.

2>

.m r.

..... y,....,:.

r..

z n

c.,. s. -

. ;.. c.. :

r..

H a:

-c 4C n.

",. :. 2 ::.. '.;-

l "e

~

'_p==--'"-"

\\

C,,

o_

,. c

, =. hv t

I 9

.c.,)>

u

,s _.

r\\-

2 Go.

s./

4 c

g y

e.

g, gg g w

.r.

3

r.,.. kn

%J g

g r.

l D

.c.

i

\\

w Q

{.

e.

a 2

n m

^

LL. <

be m

g c:: w w

< p>

p,

+

Z; e

yo

, :p.

s 1.

_ a,.

.. e 4.*,

a_ LJ

}\\-

l

. CC N

l 20 1

OU Oh.

1

~H 1

N

\\E "q t 1

i i

i i

i L

o I.

  • 6 A

B s

ei c

o y

o R

. C:

. 52 ti.

S 5

..4...:

.S./... 7.'j Y.

M,,)[.d5JgU3 1

....e

.4.,....... e..

c s

.......<....,..;w..

i

.m......,.......

..... t. i....,.

.....v,.

~:...

........,; >;.. u.: ;..

.s.s......,..

a..a..,..... :.

a. l..,,1 c... ;..

.y.,.,

..*~ *.- e

.,3

..,* =*

g 1

..,......geu.

.a.

e-

\\

  • g h_6[ M &/ $ 4 6) #Ae g ssort

}

4

.2..

g t:

9 no

. f.;'.r n

.e.

s e p...

~ ' t,'.. U.'

c 3

3 i.

4 4

...~'..
..

.Y

.a ds o

5 C.

c:d

  • ~*

4 J..

t!

3 Ct

n...

gh mQ c

av

.8..

~

n.

n i

~

s..,-

f.

.. ',.. ~ '

.g. - <.-

i-

<s.

y

','.'.7,'

C n.

e R

g:-

/7-o e

e 3

i k

  • %a 0

/

e J

u C' ~4 o

W s

\\

m a

u so g

n g

a

,;g j

' C2.

h,

~

C 4

\\

w h4 4

g

    • e s@

O o

i

~

g o.

QO W

d D

c l

  • U ATA c

i t

(

W MJ CD a.?

y m

WM m

g.

\\.

u A

6 aq

\\

N p

M J.

I l

i i

2 c

0 6

6 e

C 9

c3 w

4 N

c.- -

}hh, A s eu3

,s 8

,..,*s.

-.~.

...;,...7.'.,, :....

.,.,.s

.. : '. -s ',,. -

.4..-

..s... u

.s..

.,..=.. I.- ;,'. '

2. -

g c

0 * * * *.

?- -

4

, _...-~ ~.'.-- -.

n o.

m sunsssaq nug.us 3

3 8

a e

a e

e.

o, a,

a, o

o e

n m

.r,

  • l 8,

=

a o

o, nn rt rt 9

9 D,

q e

o 1

I i

1-4 e

e n

a

r _-

a.

M O

o a

ng l

o i

j p

$~.

o 4-r7

.a

.n..

m,

t

=

-e m

mo n

t) n C,Y*N t.

n "a e

to 2

1 w

wa.

/..>

1 n

e

. u tA t c-R o

e.

1*

4,.

., ed, a

,\\

s.

w,..

,t r= g:._

o n,

=

o Y

6

  • J 4J N

s'

  • 7 3

]

Qv "I

3 y

e.

f a"

n =n m

.p M

L t,r*

(1

-w r

=

=

8n i

m.

.w=

In J

r1 45 n

a w

o

-:"g s.

ta i:

4(

o n

a o

y

. m, u.

s.-

n.

~

t n

<c n

u

-v a

n.

1 a

_- rs i

t

~

o 2

7' p

G s

g 2,,,

A "l i >>li iilie r r 1,,,, i, i, #,1,,,,

8 "Y

{

b m.

om A

a

e. -

e w

a m

e-w m

Q 1.

pc

....:,..../>.,.....:- :.<

.,...~....

g n

n c.:., ;< :+ :.cgy.,:.:

.v:

' r...

..... n. -..

...,..* ' =l :, m.!. '.y..,......,,...,,.u...e mi IU} I4411 gj.,)l]

  • 4

.. ' #j* W. ?/ 7 2 '.:(-7

. ' h.... -.,...1....s.c

%;y.. : :... q

', ?iy 2....

..... ; :. :w...

.;,...._ :... y:

=m
-

.. si./.)v. ;,

..r; * * ^ ~ e s.

- l-x, ?.s

,i..;

F

.r::

L._

m._.

-m

. ~..

.g m

m=-.gm.M.*

iI 9

g g

L.

.- d ee...

.8 t?e y..,

l,

~

.s z.

. 7. ;

s t.

s.

e, l

L 100$

I t.ts L

L l.

L 1.

L I-I L.

. c.

s

.?,

. p,14

'*j WP Hot leg;densi d '

[

'l j

i attt

~.

.I

.i..

(

. eam.

{hs:.-

m

=

n

.~:..;

a

'~

w,0i.08' B

calculated:por 1

Heasured.Popu fTone.

508 stew ricw.

b

~

\\-

9 o-

/

.a.06 t

l n

1 O 04 a.

p 1

k

,,_, [ M N

0.02

~

0,00.,

\\

n.n -

_m..

m-l 0

-0.02 3

14000 14500 15000 15500 x16000 16500 17000 17500 14250 14750 15250 15750 16250 16750 17250 Yuai co)

F1

..e e

e i

g>

(

l f

i i

i I-t

~ee q

g n

e t-I 5

k 1

s y

o r-a t

e n

l v

1 i

e 3

1 l

0 2

=

a i

..a 4

n 1

g 3

r a

n n

)

i vi e

m c

,~,

f

)l t

8 2-

. i

=.

i n.

. s y,

e

.a I

e

.,s..

a a

M y

ers r-

%a q.

y s-1 t

d s

n

\\

i i

l 1

i i

I 1._,

I l

i

.g1 i

. ~.

3 1

=

A b-l

's-e

..s v

?

t i

i

,j :. -

o.

15/ 3'j ) H (.:{ f f!y p.s..,.

s 1

' ' ~ ?..;+..

.s..

... e:.

,s

. * *'. h 's 6.

g j g

Lm.

=t M b*

Jh.A I O M b P.'#

e.A.-'A

r

-_-_---------------7--------------------

.mmM7:- C r

-ItttiREtiCE5

r..

\\.'. 4. '

'L.:.

{i kilon h Leepany,tallon [Iltil halely Ansiy:;It keport. Commonwe 1th Edison

,1973.

i la il6n hyllb bslet Ipklonis bemonwealth Edison teepany.

Y'

},

}nfoma{loh 6hla$ned drte lhe reference file from the BE/EM study Et t.he Idaho flationai tngineering 1.atoret.ory.

k.

b. b. Wa)$ }t. bne-dlinen,.honai Two-phase flow, McGraw Hill Book to:npa ny.1969 k.'

~

up s

  • ~.

".?

3.., =

n t

_ _ _ _. _ _ _ _ _ _ _ _ _ _ _. - - - _ _ _ _. _ _ _ - _