ML20024D199
| ML20024D199 | |
| Person / Time | |
|---|---|
| Site: | Maine Yankee |
| Issue date: | 11/13/1981 |
| From: | Burns A, Habel J, Wynne E MCGRAW-EDISON CO. |
| To: | |
| Shared Package | |
| ML20024D182 | List: |
| References | |
| NE-155, NE-155-RC, NUDOCS 8308030293 | |
| Download: ML20024D199 (38) | |
Text
BSUDBS)BD NUCLEAR DIVISION PAGE 1 OF 27 TYPICAL BONNET STRESS ANALYSIS a
WITH z
E SEIS11IC CONDITIONS 6
IE 8s FOR 55 gg CLASS 2 & 3 VALVES 3$
iE z :5 o r k$
ES U U
? !*:
55 5E f
g/sg!'?[
5@
PREPARED BY f11/
/u, s Date j<
g-
- u. E o8 DU d * [~ [f REVIEWED BY Date
- /
Ga
$E d "[' 7[
APPROVED BY
//
Date EE
/##
e:
E5
!. C ei E
d<
8308030293 830728 PDR ADOCK 05000309 p
PDR 4
TITLE
. sgg 51ay 25, 1978 D ATE -
TYPICAL BONNET STRESS ANALYSIS -'C DOCUMENT 10
~
/'
WITH SEIS11IC CONDITIONS E./55 FOR CLASS 2 & 3 VALVES AS/AOVE D Masoneilan International, Inc.. Norwood, Massachusetts 02062, U.S.A.
EB.5DDBilBD NUCLEAR DIVISION 2
27 eAcE op I
e N
REVISION STATI'S SHEET Ew E ci
'z
.z e 8s eu d'E z$
REVIEWED APPROVED dE REVISION DATE BY BY BY DESCRIPTION z3 o r Pw GM l#'#
l gy/yg T) l ss Mry?:ss Munit.*: ::
z2
$f_
.,.G
- l. !.,.'.
h h
Q,. ? r-C S nW :-
.y/3/.
wz e Sz y<
- P****"
- O
,p hkby
'.*-~~P.j,lQ 5c wo
$9 e s Q. O E2 PwC w<
z2 Gw e c w>
=o z z 9$
-o I,
!s$
ea E
d<
l I
DATE. ay 25, 197S M
BY TITLE TYPICAL BONNET STRESS ANALYSIS c &
DoCUMENTID WITH SEISMIC CONDITIONS FOR CLASS 2 & 3 VALVES y/aovED l
Masoneilan International, Inc.. Norwood, Massachusetts 02062, U.S.A.
MCBREHDlllX 27 PAGE 3 op
.MSSODCilCM NUCLEAR OPER ATION TABLE OF CCNTENTS 2w C[
Title Page.........................................................
1 O
Revisions Status Sheet.............................................
2 m.
-c Table of Contents..................................................
3
'>. z z <2 Purpose............................................................
4
- c. w 2c Cz Methods............................................................
4 U C zg Assumptions........................................................
4 gz Nomenclature.......................................................
5
=
ms 3:[
Body to Bonnet Flange Joint Analysis...............................
13
<c
@o Maximus Bolt Stress................................................
17 or 2y Ac t ua t o r An a l y s i s..................................................
18 w
hii!
Analysis of Actuator to Bonnet Connection..........................
20
_o
>m c5 2O FIGURES
<z C
2w
$g Figure 1...........................................................
22
c 2 *O APPENDICES z_z w
t w
l C M w-2 Appendix I - Program Verification Calculation l
g 1
o=
l pQ Appendix II - Program Verification Computer Output l
2
=
Ow i
z i
l
.ai l
TITLE BY DATE May 25, 1978 l
TYPICAL BONNET STRESS ANALYSIS CHECKED A DoCUMENTID GN (~~
j WITH SEISMIC. CONDITIONS
- 1. 5 C
NE 2
j FOR CLASS 2 & 3 VALVES APPROVEDf i
l Masoneilan Division McGraw Edison. Norwood, Massachusetts and Montebello, California
)o.ies. ass s/si
RSRAW M IN PAGE 4
OF 27
- M a S C D'3i}8 D NUCLEAR OPERATION PURPOSE y
To calculate the =axi:u bonnet stresses due to all design load including Cz seismic conditions.
-w C
u 5
METHOD u
$ d
/z z<
Stresses due to, operating internal pressures or to gasket loading
<E
$E (bolting) are combined with the stress resulting from actuator loading and c) z Oc seismic acceleration.
The basic procedure is per ASMI Boiler and Pressure a c-Vessel Code,Section III, 1977 (Winter of 1978 Addenda), Appendix XI, oc w:
except as follows:
sw
<=
$*C 1.
Additional stresses due to seismic acceleration (external forces),
uEr 2$
have been computed using the ru:es of NC-3658.1 and ND-3658.1.
G=
5S CU ASSUMPTIONS 20
<z s<
.o 2e 1.
The force developed by the horizontal seismic acceleration acts at the oh center of gravity of the extended structure (comprised of the E2 e go actuator, yoke and valve bonnet).
U U
=8 E c.
2.
The valve is mounted in a horizontal pipeline, in an upright position Cw l
=0 and the seismic loads act in the 3 orthogonal axes.
l W 2 l
9E l
2g 3.
Maximum static actuator loading (force acting on the yoke) is z
Ei
- determined by one of the following methods:
r 5E
=s
- a. For the direct actuator (air to close) =axi=um static 1cading is
(
g equal to the pressure difference between the supply pressure and 5
spring final range pressure ti=es the final diaphragm area (for #37 I
h l
actuators), or times the f orce in lbs. per psi (f or Sigra F J
l p
Actuators).
l Af lDATE May 25, 1979 TITLE B
i
""YPICAL BONNET STRESS ANALYSIS CHECKED DOCUMENTIO WITH SEISMIC CONDITIONS C-M E 155 C
FOR CLASS 2 & 3 VALVES APPROVED l
l Masoneilan Division McGraw-Edison.. Norwood, Massachusetts and Montebello, California I1o 195-353-3/81
McSRA1HMSON PAGE 5 QF 27 hlaSCMCIIBM NUCLEAR OPERATION
- b. For the reverse actuator (air to open) the taximum static leading is equal to the inital spring range presr.sure times the initial a
w 5g aetuator.
zo i=.<
b (In.2)
Actual total tensile area (mini =al stressed cross-section) gC A
c=
p5 of body to bonnet flange bolting.
E g
'c O 37 (In.2)
Actual tensile area of one body to bonnet bolt.
A g
5 g (In.2)
Actual tensile area of one yoke to bonnet b'olt.
A r_ <
w2
- u A (In. )
Total cross-sectional area of bolts required.
A equals g,
2@
the larger of A or A w
ni m2 w
I 5E
=s yg Ad (In.')
Total bolt area required for Design Conditions. W /b M b E
2 9
A (In.')
Total bolt area required for gasket seating. W,,/S g
3 n
a3 E
d<
l TITLE BY DATE Mav 25, 1978 TYPICAL BONNET STRESS ANALYSIS g-gj DOCUMENTID WITH SEISMIC CONDITIONS
,] j C FOR CLASS 2 & 3 VALVES APPROVED f
Masoneilan Division McGraw Edison. Norwood, Massachusetts and Montebello, California
PAGE 6
OF 27 229MC539M NUCLEAR OPERATION
.a 4
o A, (In.~)
Effective shear area of yoke spud nut.
A (In. )
Total cross-sectional area of both yoke legs.
-y (See Figure 3, Section A-A).
2m 9wzo B (In.)
Inside diameter of bonnet flange.
u
", c'
>2zy By (In.)
Ba go (for integral type flanges,when Th 1).
- c. w 2O ozje bb (In.)
Effective gasket seat jcint width for bonnet gasket.
c3 (See ASME Section III, Appendix XI, Table X13221.1-2).
$z OC w3 Nw b, (In.)
Effective gasket seat joint width for seat ring gasket.
eO j"
(See ASME Section III, Appendix XI, Table XI 3221.1-2).
zS, O
Gm 3 ;;
C (In.)
Bolt circle diameter of body to bonnet bolting.
59 zC J, <
Cy (In.)
Distance from neutral axis of yoke leg to the outer edge of
<z
.C f,'
the leg for calculation about the x-x axis. (See Figure 3).
S
- O
<2u
$ 6 C2 (In.)
Distance from neutral axis of yoke (yoke (_) to the outer j
edge of the yoke leg for calculations about the z-z axis E E (See Figure 3).
=C r<
l D (In.)
Spud diameter for spud mountec actuators or center of bolt w2 i
r w
l G[
(See Figure 5).
5 12 t
=5 z o Factor for integral type flanges 9z d
l U
2
- h g
V o
o C
o u.
l z
{
3 a<
l BY DATE TYPICAL BONNET STRESS ANALYSIS
- _ 'h
~ 25, 197S Mav l
TITLE l
WITH SEISMIC CONDITIONS
>[ g. Q' E
5 C
l TOR CLASS 2 & 3 VALVES APPRovEb /
\\/,//.
Masoneilan Division McGraw Edison. Norwood, Massachusetts and Montebello, California 10 196-353-3,81
~ L _ _r - J ~
~ ~ ~~
~~
~
~
~~ '
PAGE 7 or 27
.Masoncilcn NUCLEAR OPERATION Factor for integral type flanges e
1 o
zwc h
F Factor for integral type flanges (See ASME Section III, Appendix XI, Figure XI-32'.0-2).
cv U' ci F=
.90892 for this procedure.
>z
=<
<2 EC Hub stress correction factor for integral flanges f
o z Wo (See ASME Section III, Appendix XI, Figure XI-3240-6).
25 5e f=1 when g*=gg (which is true for NE 155 calculations).
Mz s o=~d3 wD ftC
<z Gb (In.)
Effective bonnet to body joint gasket reaction diameter.
yo 2-zS
$3 G
Horizontal acceleration.
H (ft/sec. )
20
<z jo G, (In.)
Effective seat ring gasket reaction diameter t<
C 2"
- O
<u 2e G
Vertical acceleration V
- u. o (ft./see.2) c o n
E$
c c-Og g, (In.)
Thickness of hub at small end.
- c. <
w2 Thickness of hub at back of flange
-w gy (In.)
m z@
g,=gy (for NE 155 calculation).
$U e=
z3 H (lbf)
Total hydrostatic end force.
9z w<
.785 G P
b fd c
O E
l d
f M-
""Y i
YPICAL BONNET STRESS ANALYSIS DOCWEM ID CHECKED,,,
l WITH SEISMIC CONDITIONS NE l55 C
FOR CLASS 2 & 3 VALVES APPROVED g
j Masoneilen Division McGraw Edison. Norwood, Massachusetts and Montebello, California
( 10196 3$3 3/81
- L _ E i d - _____
PAGE O
op 27 l
. MESonCilOn NUCLEAR OPERATION u (lbf)
Hydrostatic end force on area inside of flange.
2
.785 B
P 3
Hg (1bf)
Casket load. U-H C
'z p (lbf)
Total joint contact surface ec pression load.
o H
U'd 2b IT G c P b
b
>z z<3 f
so H
(1bf)
Difference between total hydrostatic end force and force on o
A
[z
., 2 area inside bonnet. E-H '
D O D
$E hD (In.)
See Figure 6.
R+b W3 2
50
< c:
o hG (In.)
Radial distance from gasket load reaction to bolt hole
@w u
,b circle (see figure 6.)
2 C-G b
E 2
ou zo
<z J<
h, (In.)
Factor-JB g t o
o am c :-
28 2
h7 (In.)
See Figure 6.
R+gy+hg C
2 o
t:m c:
E?
gg I_y(In.4)
Moment of inertia for calculations about the x-x axis of x
- ~ j yoke leg.
m h$
1,_,(In.4)
Moment of inertia for calculations about the z-z axis of z
w w cg yoke leg.
-2 2o Cz Ratio of outside diameter of bonnet to body flange to its K
E inside diameter 3
3 B
i
~
TITLE BY DATE May 25, 1976 TYPICAL BONNET STRESS ANALYSIS DOCUMENTID CHECKED WITH SEISMIC CONDITIONS C.M l%
NE 155 C
TOR CLASS 2 & 3 VALVES APPR,0 Dg Masonellan Division McGiaw Edison. Norwood, Massachusetts and Montebello, California 10 196 333-3/81
Me811AW913118 PAGE 9 or 27 hlESOMO330D NUCLEAR OPERATION 3
L Factor t e+1
+
t_
T d
a M
Bending moment applied to the bonnet to body flange due y
Q (In.-lbf) to external loading.
0 M
Bending mo=ent applied to the yoke to bonnet flange due to
~@.
2 e
(In.-lbf) external loading z<
<2
- c. w Sc o
M Component of moment due to H p
D zg (In. -lbf) ez c=
wo M
Co=ponent of moment due to H g
g g
@c (In.-lbf) uw 2+
28 Og M
Moment acting on the hub at the backface.
22 H
2"
(;n.-lbf) ce zc
<z j#
M, Total moment acting on the bonnet to body flange.
c zw 0g (In.-lbf) 2 =u
- O C
M Component of coment due to F u
T 7
EN (In.-lbf)
EE ow ec
- j j
m Gasket factor (See ASME Boiler and Pressure Vessel Code, 5$
Section III, Appendix XI, Table XI-3221.1-1).
M+O z_z EE M, (lb)
Mass of actuator and bonnet with all accessories except 6A
_E Series handwheels when specified l
3Cz q<
2 M, g (lb)
Mass of actuator with 8A or top counted handwheel o
(if specified).
i d<
lDATE May 25, 1978 TITLE B
l TYPICAL BONNET STRESS ANALYSIS
~
OcCUMENTID CHECKED P M %
[
WITH SEISMIC CONDITIONS l
TOR CLASS 2 & 3 VALVES APPROVEDj g l
Masoneilan Division McGraw-Edison. Norwood, Massachusetts and Montebello, California
' # 85-3553/8'
Mc8M M ISM PAGE 10 or 27
,MES3nOU3D NUCLE AR OPER ATION M,. (lb)
Mass of 6A series handwheels.
n.
N Nu:ber of bonnet flange bolts.
a
- t z
O C
P (psig)
Valve Design Pressure.
=0W z*
a (psig)
Actuator pressure differential.
For reverse actuators it M
is the spring initial.
For direct actuators it is the difference between the spring final and the supply pressure.
- c. w 2C Oz u e z c-C D P
(psig)
Equivalent pressure to account for external loads on bonnet gz to body joint.
3w c 'C e
2h Pfd (Psig)
Flange Design Pressure.
0%=
- p. 3 R (In.)
Radial distance fro = bolt circle to point of intersection 5c" of hub and back of bonnet flange, =
ze
'. z s<
C-B Go 8
~
$,W 1
2 mo
<v 2 e o
5 (Psi)
Allowable stress per ASME Section III for bonnet flange.
C u
D3 55 to body flange bolt allowable stress at a=bient Bonnet 8
Sd (Psi) g g-c=
c<
temperature.
g2 EU io Sa2 (psi)
Yoke to bonnet flange bolt allowable stress at ambient a w z
_g temperature.
9 E:
-2 z o Bonnet to body bolt stress o z 3B (Psi)
<3 c
S (psi)
Bonnet to body flange bolt allowable stress at Design
,z Temperature.
a<
k y (n
^- %
YPICAL BONNET S'1 RE S S ANALYSIS 10 WITH SEISMIC Cc1DITIONS NE 155 C
FOR CLASS 2 & 3 VALVES appgavgo Masoneilan Divisi'on McGraw Edison. Norwood, Mzssachusetts and Montebello, California
McSM
,[
, MOO 3DOllCD NUCLEAR OPERATION PAGE 11 0F 27 Sg (psi)
Longitudinal bonnet to body flange stress.
d S
(psi)
Yoke spud nut shear stress total.
n z
wc S
(psi)
Yoke flange bolt stress total.
fg Eu My SR (Psi)
Radial bonnet to body flange strcss.
z<
<2
- c. w Eo S. (psi)
Longitudinal bonnet to body fluge stress.
c2 1
s u o z c-oD e2 S71 (psi)
Maxi =um yoke tensile stress due to actuator scating force.
c=
ws sw
$2 Sy2 (psi)
Maximum yoke tensile stress due to, vertical acceleration e[C j
along the y y axis.
z8 2
m53 S 3 (psi)
Maxi =um yoke tensile stress due to horizontal acceleration 5 un 7
gg along the x-x axis.
<z s<
.0 O 2E S 4 (psi)
Maximum yoke tensile stress due to horizontal acceleration 7
mo gu along the z-z axis.
So O o
>p S
(psi)
Total yoke stress.
E 7
o
- c. c-Cw EO T
Factor (See ASME Section III, Appendix XI. Figure w2
- w XI-3240-1).
- ca 9 >-
2 z yg t'(In.)
Flange thickness for bonnet to body flange.
-2 2 C c z U
Factor (see ASME Boiler and Pressure Vessel Code,Section III, Appendix XI, Figure XI-3240-1).
c:
O w
2 a
4 YPICAL BONNET STRESS ANALYSIS DOCUMENT D I4ITH SEISMIC CONDITIONS p-j (
1 5 C
FOR CLASS 2 & 3 VALVES AP*RovEoy g Masoneilan Division McGraw-Edison. Norwood, Massachusetts and Montebello, California
MCSM#tDI3H RAGE 12 08 27
. M S S O D'DilE.D NUCLEAR OPER ATION j
i V
Factor for integral type flanges (See ASME Boiler and Pressure Vessel Code, Section !!I, Appendix XI, Figure
- i XI-3240-3).
C=
W (lbf)
Flange design bolt load 2o A 'g S
(for gasket seating) e a
-c
'>Z W
(for design c:nditions) gg 31
=
- c. w 20 02
$o g (lbf)
Minicu= required bolt load for Design Conditions.
2 W
o92 oc ws e
G P7 3*
W
=.785 G ~ Pfd + 2bb b
e c5 When the valve does not use a seat ring gasket omit the J<je last ters (G b ). When the seat and body gaskets S S 2w S{ overlap increase the inside diameter of the body gasket by <v 2e the a=ount of the overlap. Sc C o {[c X1 (In.) Horizontal distance for centerline of actuator to center of D'w gravity of 6A Series handwheel (See Figure 2a). co a< 19 2 -w
- u X2 (In.)
Horizontal distance from center of Sigma F actuator to 9H ~ =@ center of gravity (See Figure 4). TA h2 Y Factor (See ASME Boiler and Pressure Vessel Code, Section Cz P< III, Appendix XI, Figure XI-3240-1). <2ccg y (psi) Minicum design gasket seating stress (See ASME Soiler and 2 J Pressure Vessel Code,Section III, Appendix XI, Table XI-3221.1-1). TITLE BY DATE May 25, 1978 TYPICAL BONNET STRESS ANALYSIS [M* O DOMEW lO WITH SEISMIC CONDITIONS fj NE 155 C FOR CLASS 2 & 3 VALVES APPROVED 'v' Masoneilan Division McGraw Edison. Norwood, Massachusetts and Montebello, California 10 196 353-3/81 Mc8MEDISBN 13 27 PAGE .htsonoilEn NUCLEAR OPERATION op Y1 (In.) (See Figure 2a.) Vertical distances fro = back of bonnet flange to the center of gravity of 6A Series Handwheel. a 5 Y2 (In.) (See Figure la.) Vertical distances fren back of bonnet flange to the center of gravity of actuator and bonnet. a 9 mz C Y3 (In.) See Figure 2b and 4. v U ci NE E2 Y, (In.) See Figure 2a. a
- c. w so SE 2E Yb (psi)
Mini =u= design seating stress for body gasket. o- $2 c: w: s[ Y, (psi) Minicu= design seating stress for seat gasket. <c 50 2* Z Factor (See ASME Boiler and Pressure Vessel Code, Section =8 9 2 III, Appendix XI, Figure XI-3240-1). >? oD 2o GENERAL <z a<c 4wcg 1.0 Body to Bonnet Flange Joint Analysis 2 Bonnet flange stresses are calculated using the rules of ASME Section wa C III, Appendix XI. To incorporate stresses due to seismic loads, the a Ed rules of NC-3658.1 and ND-3658.1 are included in the analyses. These 3 w '6 w rules allow seismic loads to be converted to equivalent pressures ~ co '- j which are then added to valve design pressure resulting in an P$ equivalent flange design pressure. The following is a description of 2+ _z j how these rules are applied to Masoneilan products. C w h-5 gE 1.1. Calculate the flange design pressure (Pfd)* hk (for Model 37 & 38 Actuators). j y = (M, Y2+ HW 1) H+ HW l V M o t 3 (for model 47 & 48 Sigma F. Actuators) I M = (M, Y ) GH+ .act X) y 2 2 V May 25, 1975 su, Y ICAL SONNET STRESS ANALYSIS ^ DOCUMENTID CHECKED ;- ), WITH SEISMIC CONDITIONS NE 155 C FOR CLASS 2 & 3 VALVES APPROVED l Masoneilan Division McGraw Edison. Norwood, Massachusetts and Montebello, California f 10-196 353 3/81 M:EAMiSDil .M823MC532D NUCLEAR OPER ATION PAGE 14 op 27 '1 o 'eq pg 3 b
- z u
P =0^+P S fd eq wzou NO3 : The =axi u: :oment (M ) is determined by lunping the y -c >l z particular = asses at their respective centers of gravity. z< g2 This'coment is due to seistic loads acting in both horizontal Ec (x and z) directions si=ultaneously. This is true for any o z U C 2 *5 value around the circumference of the bonnet because: 92 85 M cos O = Fg cos 0 M = g x 50 u >" E 3z0 " H sin 0 = M sin 0 z 3 B em $"g For equal horizontal seis=ic accelerations M = M, = M
- h Z@
Adding M and M by SRSS per NRC Regulatory Guide 1.92 g xg ze a< iO 2w (M cos 0) + (F sin 0) M= M,g+M g g g = o M= g (sin 0 + cos 0 ) P = g c c: U wc. A co=ponent of moment due to seistic acceleration in Where: M gg g = horizonatal (-x) direction acting in the O direction. w EU e-2@ M,9 component of mo=ent due to seismic acceleration in = wh horizontal (-z) direction acting in the e direction 5 l =y 2c 9: r< Ec: C w l 3 t a a 1 YPICAL BONNET STRESS ANALYSIS / fem M"Y WITH SEISMIC CONDITIONS CHECKECf"f DOCUMENTID L.) w FOR CLASS 2 & 3 VALVES NE 155 C g APPROVE l l l Masoneilan Division McGraw Edison. Norwood, Massachusetts and Montebello, California 90 196-353 3/81 McSMMISS htSODCilan NUCLEAR OPER ATION PAGE 15 OF 27 HCRIZONTAL PLANE (x-z plane) I d M 2 1 2 E M zcU U d \\ 5 e 7 v. <2 x cw 2C SE z c-O 3 $2 o= "r 5w <=
- 5. 0 Er 1.2 Longitudinal Hub Stress (S )H I55 53f{
The longitudinal hub stress for the bonnet to body flange say 55 either be based on the Design conditions (internal pressure 3c zW plus seismic) or gasket seating f orce. Therefore, each stress O must be investigated cnd the largest one selected as =aximum. EO 2 e
- O C y D
1.2.1 Maximum moment due to design conditions (M,) 5]=
- c. c-Cw ES M
- E h
p p D w2 5$ T"bb M =H h "g c g g G[ M =FT + F_ + MG =m o i ez -2 z-9z 1.2.2 Maximu= moment due to gasket conditiens (Mo): 5 c-c b w 5 M = o 2 d< Ti m e DATE May 25, 1976 TYPICAL BONNET STRESS ANALYSIS AhA ~ HEMED DOCWEM ID WITH SEISMIC CONDITIONS i2 )C . 155 C NE FOR CLASS 2 & 3 VALVES APPROVEC Masoneilan Division McGraw Edison. Norwood, Massachusetts and Montebello, California 10 196-353-3/81 I MSMg ?AESODT532D PAGE 16 OF27 NUCLEAR OPERATION 1.2.3 Hub **Tess Calculation (S ) p In accordance'with the rules of NC/ND-3658.1 (c) the equation z for the longitudinal hub stress given in XI-3240 has been 9 revised as follows to include the primary axial ce:brane wz stress. g fM PB U'd 1 >z SH = 4g z '< 2 yd L gi S c y EC c "., z9 1.2.4 Discussion c3 Sz Q= w5 Masonellan's bonnets are of such a configuration that the hub it w y =g and the optional c thickness is unifor=. Therefore, g j[ use of B in place of B in the S f r=ula is allowable y H because B<20g. y DiO 5G m C 1.3 Radial Flange ~ Stress (S ) g R <z J< j@ ,(1.33 t e + 1) M, 3 oE R 2 "o Lt B <u Ec 'C Og$ Use the calculated value of M for each condition. C$ EE Oc 1.4 Longitudinal Flange Stress (S )I a< wE
- w h*
1.4.1 Longitudinal Flange Stress Calculation 2 YM 2 Ey S.i. = qf -ZS R
- s t
a Use the calculated value of M for each condition. z c Cz O w< E=0w 3 .,a .J< ((h; Mav 25, 1978 TYPICAL BONNET STRESS ANALYSIS CHEbKED A DOCUMENTID WITH SEISMIC CONDITIONS 7., J % FOR CLASS 2 & 3 VALVES APPROVED / Masoneilan Division McGraw-Edison. Norwood, Massachusetts and Montebello, California 10196-353 W81 McSCHISH 'Mamnoilcn NUCLEAR OPERATION PAGE 17 OF 27 1.5 Discussion Gasket seating stresses are usually calculated in accordance y with the above requirements. However, in a few instances, 5 where the bolting is significantly oversized, the total load k' 9 (as defined in XI - 3130) is controlled by torque limits. h This insures proper gasket seating loads without overstressing uea the bonnet flange. Torque limits will be included in the y$ output of stress results. <2 ew sc O$ 1.6 Allowable Stresses z e-Sj The following allowable stresses will be used in avaluating 85 the flange stresses unless lower values are stated by the s:h customer's design specification: ge uW Ew z8 STRESS NORMAL LIMITS ABNORMAL LIMITS 9 8 53 52 S 1.5 S 2.4 S h zo S 1.5 S 2.4 S- ,' { g EO S 1.5 S 2.4 S E OE "o <a
- u. 5 Where:
S = allowable stress as given in ASME O u g, Section III, Appendix I =8 w. e-Normal Li=its = allowable li=its listed in ASME III, e- < y,1 paragraph NC-3658.1 and ND-3658.1
- m
?>O z Abnormal Limits = maximu= of allowable stress limits in 2 Table NC-3521-1 and ND-3521-1 -E $c 2.0 Maxi =um Bolt Stress Analyses PE E g The =aximum bolt stress in the body to bonnet bolting is determined by dividing the =aximum bolt load by the cross-sectional area of the .aa bolt at the root diameter. ATE May 25, 1978 T PICAL BONNET STRESS ANALYSIS ho WITH SEISMIC CONDITIONS CHECKED'4 DOCUMENT ID-FOR CLASS 2 & 3 VALVES APPROVED Masoneilan Division McGraw-Edison. Norwood, Massachusetts and Montebello, California Mc8 Mal 35 . MSS $nOilan NUCLEAR OPERATION PAGE 18 op 27 The nor=al allowable stress is 1.0 S. The =aximu= abnor=al stress is also limited to 1.0 S. These values insure that no yielding of bolts will occur under any condition, thus pressure integrity will be P Z =aintained. W21 z 3 B g g
- a for W in this If W is larger than Wuy, substitute Wg my g
e- $ '9"*EI "* 2Oz u o 2 C-3g 3.0 Actuator Analysis 85 s* The actuator as shown in Figure 2a is analyzed at the weakest point <E 3.1 c 9O in the yoke legs (Section A-A shown in Figure 2b and 3). The EH zS analysis is based on the following assumptions: o_m 53 55 3.1.1 The mass of the actuator is lu= ped at its center of gravity. ccz J< $8 3.1.2 The yoke legs act independently and all loads. are divided equally OE yg between the two. E: u-o C 3.1.3 The base of the actuator is rigidly =ounted tio the bonnet, o g c; c: U Wc. e-ec 3.1.4 Each yoke leg is analyzed as a cantilever beam fixed at one end and CW
- c. <
"f 2 when the load is acting in the y-y plane the outer end is assumed to EE 9w be fixed and guided. This is based on the. outer end being 0 2 restrained to have zero slope where it joins the top of the yoke. 2 5=$s 2c 3.1.5 Side mounted handwheels (Models 6Al, 6A2 and 6A3) and their weights E# are not included in the yoke stresss analysis because they stiffen E the yoke (see Figure 2a) and decrease the total center of gravity, tr.z thus, it is more conservative to omit them from the analysis. d< l
- h _lDATE May 25, 1978 E
B TYPICAL BONNET STRESS ANALYSIS f, 5 CHECKED DoCWEM ID WITH SEISMIC CONDITIONS ~ NE'155 C FOR CLASS 2 & 3 VALVES APPROVED j Masoneilan Division McGrawEdison. Norwood. Massachusetts and Montebello. California NC88HimSM PAGE 19 OF 27 ' M2SonOilan NUCLEAR OPERATION i 3.1. 6 Top counted handwheel (Model SA) is included in the analysis by adding its weight to the actuator weight and increasing the center of gravity height accordingly. 5 3.2 The maxi us yoke stress at Section A-A is composed of four components, c =aximum tensile stress due to actuator loading (S, ), h xiru tensile E z 8 stress due to vertical acceleration (Sy2), and caximum tensile stress due m. to bending mo=ents resulting fro horizontal acceleration, in both .O 22 horizontal axes simultaneously (S and Sy3). In equation for: the y3 cw @C stresses are: u e za C U P A = a i $2 S oe y1 wo ^ M y != c >0 M G, act i oEr Sy2 = A. u z* Y o-e Y $5 act B 3 1
- S 2
y3 = 41 C x-x ?c:z dc M C Y C act h 3 2 zw Sy4 = I c-z-z w3 5.e n o $h
- This includes the factor for the moment on fixed and guided outer
>U end (moments equals load times distance divided by two). y D w
- c. C-ow cO s<
3.3 The total yoke stress is calculated by adding the stresses as 16: 2
- g follows
TH y4 ) 1/' ? 2+S 2 2 ~ t S y1 + (Sy2 y3 Z S =S =g yt -2 The square root of the sus of the squares provides max 1=um z c 9z g< probable stresses due to seis=ic loads acting in all three E direction simultaneously as defined in USNRC Regulatory Guide = Cy 1.92 .a .J< lDATE May 25, 1978 WE B TYPICAL SONNET STRESS ANALYSIS CNECKED~- DOCUMENTID WITH SEISMIC CONDITIONS - f,7 (, ~ N'E 155 C FOR CLASS 2 & 3 VALVES i APPROVED Masoneilan Division McGraw Edison. Norwood, Massachusetts and Montebello, California i Mc8HAWGSON ' 'EjCCSMOjl8D NUCLEAR OPERATION PAGE 20 c5 27 The yoke stress li=its will be 1.5 S for normal conditions and 2.4 S for abnormal conditions unless otherwise specified by the y custocer. P= 5 4.0 Analysis of Actuator to Bonnet Connection 2o Ue: 4.1 Spud Nut Cennection >z z< <E gy Generally the connection of the attuator and bonnet is =ade o z u o using one large nut called a Spud Nut. The stresses are z r- _8" calculated using the =axi=um vertical load due to actuator load OC wo and vertical seismic load. In addition, it is conservatively 50 g= assumed that the nut resists all of the bending mocent resulting c *0 from seismic loads and it is assumed that this load is uE9 g$ restrained by only one half of the nut. G= 53 02 4.1.1 Nut Shear Stresses zo tz a< Uo yy M2 = (M,et Y C)+ HW ( 1 V*Y4 H) 3 E $"e o V P, Ag + (M,ct +MHW) OV ao 5 = o nl A u D3 == EE M S 2 ow n2 - cC .5 D A n _2 w E$ $r S =Snl + Sn2 o z nt _z !df - -myj 4.1.2 Allowable Stress z e 9z r< The allowable stress is taken as.65 for nor=al and abnor=al E conditions. a 3 .a J< loATE TITLE BY May 25, 1978 TYPICAL BCNNET STRESS ANALYSIS CHECKED 7 - oOCUMENTID WITH SEISMIC CONDITIONS ?)C Nr 155 C FOR CLASS 2 & 3 VALVES Apps o Masoneilan Division McGraw Edison. Norwood, Massachusetts and Montebello, California I McSRAMISH PAGE 21 CF 27 MSCOUC533U NUCLEAR OPERATION
- 1. 2 Fla'nced Connection In so:e cases the yoke is connected to the bcnnet by means of a bolted N<
- h flange. When this is the case it is assuned that the forces tending to o
C bend the yoke vill cause it to pivot on the outer edge of the flange z 8 (see Figure 5). The following calculations neglect the reaction of the >3. bolts closest to the pivot point. This will render a core conservati.e m 2 design. It should also be noted that the force applied will cause EO tensile loading of the bolts. o z Uo z c-c3 $z 4.2.1 Bolt Tensile Stress Calculation c= == 5C act 3 H + "act X G C N2"M 3 y o u >" 2h, P, Ag+M C aet V o S = nl 4A gg b2 >m 55 M2 zo s j{ n2 2A D b2 mc zw CE mo 3 4.2.2 Allowable Stress bP
- c. c-Sc E<
The allowable stress is the S of the bolt caterial. a w2 EE e-2 z m-5=5s z e c z w< E E A3/jg 2 Doc. 3137A aa< May 25, 1978 x,,,, T PICAL BONNET STRESS ANALYSIS DoCWEM ID CHEMEDf WITH SEISMIC CONDITIONS Nr 155 C FOR CLASS 2 & 3 VALVES APPROVE g Masoneilen Division McGraw Edison Norwood, Massachusetts and Montebello, California iiELirdWtmaan BSCDO512D NUCLEAR OPERATION PAGE 22 OF 27 .a a< m r 3 2 F I G 'J R E la O C I 5 f I h v M t 1 ~; f z ~< E2 0 I$ ~~ r = j Ad L GE l) . YOXE.-Boup.=i ~ZOUMEC7102.T Eb 1. $2 . l i CC w0 / \\. e c >- o 2 b-EN Y -e $0 I 3" i,i c$ I zo <z a< IC 2w o i!" E8 E e 'o o e hh FIGURE lb G3
- c. -
om 7 cc h
- s. <
!:! E PE [5 x-X _z s/ ~ Zn95 Z <2= 0 f a J< ORIEN"ATION IYPICAL BONNET STRESS ANLYSIS - ' - ' N lDATE TITLE BY ""Y CHECKED,,7 7CCWENT f D WITH SEISMIC CONDITIONS 1 C FOR CLASS 2 & 3 VALVES APPROVED / l Masoneilan Division McGraw Edison. Norwood, Massachusetts and Montebello, California 0-196-353-3/81 ~ Mc6RAVHDl8N 7Aa2Onellan NUCLEAR OPER ATION FAGE 23 or 27 iM r:S:R: 2e r a r i f t 3 C.G. H/W = 9 \\ 8 I n ) F 8 l r- - Y4 i k 3.l. i tg - a, is y a l i i '__ _ 3 A-llo C' v i y, Q lI ez = cc w3 \\ 5o i 4 u m EH i., 28 9 2 em 2" % v a C$ rg A} 20 <z 8< <S fil OE FIGURE 2b "O C 2 '.3 cN f \\ l T wr $~w (- \\ l / 1c '~ R ' Nt W.i gm -w &c ,...s, Mw e Z z en / Y3 e= I -2 2e k \\ / g c O t 7, V d
- A
"A* M n TITLE BY f DATE ^978 4 ., a v 25' TYPICAL BONNET STRESS A N AI.Y S I S . G Mh DOCUMENTID CHECKED - 3k WITH SEISMIC CONDITIONS POR CLASS 2 & 3 VALVES E g, APPROVED Masoneilan Division McGraw Edison Norwood, Massachusetts and Montebello, California go 196-333 3/81 MCSilAlHDISDN q .MaCCDO3]an NUCLEAR OPERATION PAGE 24 OF 77 j i i FIGURE 3 J< Z r C: [ l V =c - / / i, f r// ?///4 ^ V // ~$ M l k 1 j -c >l z z< C' XI Y X -l cz U C l g$ 1 at Ec Y 5 f mz 9 [1] n= c o ~ { uH .2H C2 4-- EE y_ >m h$ I SECTioWX-X .C b i <z i<c + Zw 85 YOKE 517.E '8 lDIMINSICM <u 9 l11 13 M_ IB L 2+ lsch. A l8 lC l O ts I a ~4.s 4.6 5.11 7.18 7.87 9.0 3.25 4.50 6.CO 8.00! O I es i $h f c1 3.6 3.6 4.0 5.75 G.12 l 7.5 2.75 l3.75 l4.38!G.50'; e j gg l . 6 z.s 2.5 2.75 4.5 +. s 5.o 1.s 3.31 4.i2 s.zsj eo lo.zs o.zs o.zslo.a o.++ o.3 slo.12. o.r9 c.41 'o.ss; _m
- =
c i..... c z..... ..r.z s
- i. < s i.37 2.z5!z.zs a.s o.7s',i.es 2.oe z.e3
[!u 1 l =5 i =c 9z p< 2m b l = I< DATE WE B A May 25, 1978 CHECKED S g ~ DOCUMENTID f TYPICAL BONNET STRESS ANALYSIS WITH SEISMIC CONDITIONS ~ i-NE 155 C FOR CLASS 2 & 3 VALVES APPROVED / Masoneilan Division McGraw Edison. Norwood, Massachusetts and Montebello, California Lvwnssa-sesi Ma8MWilHM Maaencilan NUCLEAR OPERATION PAGE 2 5 OF 27 FIGURE 4 a< .~z wc Xa F- + i u l ~I I M' l >c ( i 3 z ( z< !!l s\\ <2 sy p i i g; s 2C ) o z I P f o o 6E f i w= m !!: U l-\\! ' l ']i L w 3 <c $r o .a 7 o2W 2S o, .j ~ -a WD l 'D >m 52 k$ N P J r; Q t t ) s 3o l 2m 0 it L m u8 %J i I 2 e 'O O u O d c U W' SIGMA F cCW co W2 EE en 5$ ACWATO'? a/xw19% io);\\ l,3 X2 l O WE/6//7* 2F 2 r es i 922/j - 36q.ut.;; 45 46 88/ A25 y l 5/ZEB-7sq.is. 70 6C to.f 2.7f /65 //f 4 60 j9ZEC-MDq.ia /75 O 1 2 s I< TIRE BY DATE May 25, 1978 l TYPICAL BONNET STRESS ANALYSIS DOCUMENTID CHECKED ~ _ _ ),% j WITH SEISMIC CONDITIONS NE 155 C p, l FOR CLASS 2 & 3 VALVES APPROVED 1 l Masontilan Division McGraw. Edison. Norwood, Massachusetts and Montebello, California de>wnmun McSMMDISDN . 31220U05 SU NUCLEAR OPER ATION PAGE OF / i i / Q /. /. e 6 ,/tll lllll lf h. u~ ]L_h' N 3 W Gy ru gus 1 / Sb FIGURE 5 t? z S5 it c~00[ l$ D >I zS o ?! A N G E F10!)iTrT.- A.JU hTO.R 55 zo <2 44 iS .m D+ C " E"o ju j Q {$ u. g s,s y ' ',g sg h.l'h.,~ j / I T Ih' wg i, ,[ =E aw i. i i cc l' l, ' wh ,!,/ ~E l/' l / / $H / z@ l[- $N / == / -2 W 2c 9z Ec O u. r ,,._s 3 c ;- . f _!,5wK z _"UsV
- l. ' ' ; s *.~ L)
/1' t q, r's a a< ay 5, 1M5 TY ICAL BONNET STRESS ANALYSIS WITH SEISP.IC CONDITIONS CHECKED g,, DOCUMENTID FOR CLASS 2 & 3 VALVES Nr 155 C g APPROVED Masoneilan Division McGraw-Edison. Norwood, Massachusetts and Montebello, California 10 196-353-3/81 MCIIA M PAGE 27 OF 27 413300nOilan NUCLEAR OPERATION .. e g / / / s // 1 s / f J [,, /! h FIGURE 6 /' / z / 9 / 6z O I u / ~; b / - z ^ k TM //
- C EE He
/; eQ s
- c. w Eo
/ '/ v Oz u o 2 C- -s 0 3 f .) / mz 3: / w3 / 35 w e nc // c -/ 'o /,/ / En / //' // i;; d / / s'/ /l 33 ,/ / j s /, ' / /,f/p SD y / ,/ 1E p zh I. l,l '.,s' / 'l / / / / ,/ l' m5 T l/, l \\ '../ / <,/ / / / ./ <u v t / / / / E g- / g // / 'o I l/ / / s / O u l } /, /,/ / is g'nN'v csmy casxm wE l ?gD 'v 4 ~ 3 ZE s-GE CO -- 'b H Ez r< r I E P N iJ -z J J< i TYPICiL BONNET STRESS ANALYSIS h4-l, TITLE BY DATE .s a y 25, 197-e oo 10 WITH SEISMIC CONDITIONS ?~ r FOR CLASS 2 & 3 VALVES APPROVED i i l Masoneilan Division McGraw Edison. Norwood, Massachusetts and Montebello, California l 10-196-353 3/81 McBMW91 SON 1 7 MSSOI1'Jilal1 NUCLEAR OPERATION PAGE Op .,s 5 -zw 9 u.zoo '>z z< <2 cw 2C oz u o z c-03 !O z cc wD 5w s=o c& u .Ee APPENDIX I zd 9m,2 5 U) 512 ze <24 JC zw OE
- O
<u E: c SO o u bU c: CD w c. C-ou c:: o c< W2 E sc - E z Es =2 2c I 9z <2e O w l 2 J< TITLE BY DATE May 25, 1976 TYPICAL BONNET STRESS ANALYSIS CHECKED - DOCUMENTID WITH SEISMIC CONDITIONS L L J / -- ~H C g FOR CLASS 2 & 3 VALVES APPROVED Masoneilan Division McGraw-Edison Norwood, Massachusetts and Montebello, California 0 196 353 3/81 McSRAWfBISH e - ~ " MBS9nOllaD NUCLEAR OPERATION PAGE 2 0F 7 i,tA kI b C E='O C W C "'- $,E t t N C. "'2.0 (nlan W. e TMT %NE ~ f a b Sb % EfCCC p%f 'E A = 9.7 5 m. ~
- 0. 5 l7.
= wg Ai : n s m.' t. sc.,,,, E As: 4.7 5 0 in' U= 1.22 o 8 Asi. : e.s c4 in' V=
- o. sS tos
- 12. c.i An : 4.544 m' X, : S.co in.
y lE h: G.435 in - Y:
- 1. !! O 2
f E' L75 in. g = ice.o g:,4 @O Si -
- 2. G ZE m.
Y, = 7.8/ m. y2 'e s = c.t s ?.s m. W: /5.7,o. oD bs ' o.0Socin. Ys : 19.C in. =z 5c C - = 7.7s'c in. %.:. 550m. wa gg c, r c.% m. 7: Lc1 yc ct = 2.25 m. 9 "D = 3.32 in. Vctve. ~D ELs c.ca c lo :a 2 0 d: 2.loi g$ er C.734 %u. : 4 in. ya F = c.9 csu Meest 35 _:Tn -c,A3 512 9: I. D ",2.s TIN. '. A45t cfAs3 i S'O E@ Gi, 5.E(.5 in. Acn ster. Sitr. : *I 5 j$ G* = 3 C !sei-Ac. vier Rever.sc 2w Gs ' 4 ;~w T.,esa w,i wi'. V-- 5 C 's n =I cc m. t' p 2=8 G u = 5 %f:,a.'- l y ' usiu s.L '. 15D 91:3 a,,= c.g'7g m. ( Cagis wgo.#rus.c. g , * = E $, i :. o.Tr7s in, br<..s+.en.i.evsn w 5.pv c rg no : "2 >-. -> i n. 5? bc
- 1. CD in.
c-E'g he : I.137 O hy : ?..D 4, tn. w2 =w K: 5.57l e- - w; L = 4.44s z@ m = 3.cc $E m e : M c t'. > % * ' '.C u.. =j fn ais : / 5 lb. z c M= 8 kE ~P = 160=s.. E
- 7..t. s l, ode a 5
Rt Z. I?.5 u.z .5 - 17, S:x: ps s sn: secc pi a< TITLE A_
- vpICAL BONNET STRESS n"ua ygI3 CHECKED DOCUMENTID
,9j( WITE SEISMIC CONDITIONS (. - p ' ~ 155 C Nr FOR CLASS 2 & 3 VALVES APPROVED Masoneilan Division McGraw-Edison. Norwood, Massachusetts and Montebello, California g T. ', Irma Atsonoilan NUCLEAR OPERATION PAGE 3 OF 7 a< ~w ('P:,h 1.o t a v. te_si w w W s.se(I_ E Mi: Gn Yz,. rg yd G, + % x, Gy [(14cKis."D4-d6. D] 2 -(-5)(C.cc)($ Zeu
- tlS'31 in-lb
-C, N >l z IG M. 'G (1193!) T
- 5SC ?L'S Z$
5.,
- w Gj Ks.n.s )
- c. w 5c
@z Y;J = "P + ?q ISC + 35o : (6cc osia f-z c. 2.D eet-lsoC5 N E e t.- A c.E.J 3 ~ (m.S. 85 ~2.1 L et to o a ::sse c.=. em w s $h 4: 0."2S6 GIF;j, c.7EE (S.5/d-XScc) : t.15 5 \\'. a ga up = 2 6% m ? = z(c.is sW(s.s:.si(:.ce'.Os:n = 24 3 :.h. f[ Wms : H w t.A p = 12 f 55 + 24
- l 14 ~:3 to.i z S, (m._g o-z.
_e-u>e va. c su sau:, ~ co~ oi-. ie w gg c 2: % = n '~ (a, e,- s e ) s
- g
= Tr(toc ~1tssi.sX:ss-!;r(v.r.=bO.ce=)] <2
- {38 ME /6. \\
Jc g .3 Teu c.a.su mso 4 A.c u s I1=c % (.c.,4A.' 2m <g E =u A _ wi iac.a':. s wa mi - ~@c - ss: - o ab a >l-E= Am. = -'d " " 22 - = ).gn in = t e.
- .sc.e ow A
- 1. g e ': gn. c: 0
- c. <
w2 ~] Ab4 N
- (0.594 S)
[4.~7EC E$ Ab ~ in n -.o (w)
- z
- .4 !:u~uz tesim,, scu-z.4.1 re.t cewa c.e-citi e e 5g i u.cs-th )
=s w = woi = z o 9z# E 2.A' ~e Gae r.c-Sste m 40 e. c ?.c e. 5 h w = [A*=
- A >\\ Q = h 6C;
- 4.7-g 3:::ce d yy,fD i'e.
o wz a J< T PICAL BONNET STRESS ANALYSIS /// C "#Y CHECKED DOCUMENTiD WITH SEISMIC CONDITIONS .- )k -t FOR CLASS 2 & 3 VALVES NE 155 C APPROVED Masoneilan Division McGraw. Edison. Norwood, Massachusetts and Montebello, California ho.196 353 3/81 MCElk 3' ' ' PAGE 4 OF 7
- MSOCnOilan
~~ NUCLEAR OPER ATION l 1 - l 1 J / o 10 E' AW C=E McMews (,'A o 'zwo ~.1 =c c. te s m, cowoi no s mz 8 H e : c.1SS 5'?
- c.735 (It:s '-)( isc) : %1 Th e6 Mr : M-Mo = i2iss a.: : t n c 4.
- i
p2 4: L.6 - H = 14. 's-l-'.:55 : 2 '. '75 W. <2
- c. W
@C Mc5 Me he : ( % 1 X t. a h -
- d. 2 5 sn.tb u o M-: MT h-(mM)(?.c V.
- 24 l3 L
.n-ib z c. (t4 3)(,1.cn :. TJ7CS sn. 'io '4. he, g Mc, s r oe = y~<g Me : Mo - M- - Ms = 2- ?., L in-G \\ 4 c: = e >o o - 2 G 3.2 P=s c,a u-sc.-m m_ c ~os :io n SE 4.'(C -G d= 795.- [7.we.c A'"* - ' :. &j Ft 0"/ sn. 33 Me : a e ozo . E AC O M ULATies C: R.C.%E $;Tc.Es.s Es (5w,5 45.rh zw 05 4.1 b tesws. cc,we mew 5 2 =g FMo vs, mo 3,, 2 sw = Lg_ci . _ = a + J .s p 6.cVT-d) ' i E OY ' ' d y! _-(.t w Xc.st )(.:<:.C _~ Mo 27 O g8
- c. <
w2 .52. '.6 mT Eg ( 5 a :. e-b l')}"
- Mc g q.
=m , _ -e e: E' _ Ti:.@s#.-Q-d 177IA 5 (.u =e'O.rc-) u. u ) <2 { k
- 2. ~ AO pi L
m z_ r J t BY[ g !!a y 25, 197E DATE TITLE TYPICAL BONNET STRESS ANALYSIS CHECKED DCCUMENTID WITH SEISIIC-CONDITIONS E4.) C FOR CLASS 2 & 3 VALVES APPROVED ,} Masoneilan Division McGraw. Edison. Norwood, Massachusetts and Montebello, California 863553'81 LtGRA M ^ il
- nn PAGE 5
op 7 4as8noMn3LM NUC!. EAR OPERATION ss s .a V Ko gi , h. c. ..g zw [t.110) Z~7 '. *- Q ~ 3 *'q k
- c A
/, E
- /
~ 3 (!.gf) (,t.15-) u u"J N - 32~3 nif ~$ z< <E e_ u sc ^"
- C=MG7 SEr t w Cc~o m o s o$
u C Me 'P E, Gs: 6* i-t8 ez c: lt.cd(SGob, [lSo)h4.f) wm hg5 _8.4e xc.r:s'X:.26 4 /c.nc) $o u >= 2 >- z3 !6H DOC estl ~ 9 ;;; em [l.53 c 2, L b ~~ 1.75 2o <z . (1.NII.60.[Mti { ?S70'l a<[$ O l Wi) (l.5.-)(,I.b ) 2 b2. - Il II f5/\\ gou Y M. c5 6T - = < - E' ?e ( ow i c: C ll. itch SS v
- ,/
l~~[lql-h i
- c. <
ws 'i r8 (t.C)(1.7 r) e-10124 =s,1\\ (ST .W-2 zC 9z Ec:o a f z i J .J< flTLE syg DATE TY?ICAL BONNET STRESS ANALYSIS U h4 Mau 25, 1978 CHECKED DCCUMENTID WITH SEISMIC CONDITIONS NE 155 C FOR CLASS 2 & 3 VALVES APPROVED Masoneilan Division McGraw. Edison.. Norwood, Massachusetts and Montebello, California i ! 1o 196-353 3i81 ~~ = - ' ' - ' - Mc88AWfBl88N PAGE 6 I MSS 9M'j' lOn NUCLEAR OPERATION 0F t a< !C h % % g-- Oj g-. c. 3 3 5O O AL CU L C-?t e u r'- C Eecv f -- a w_ / g as Ma :.isc>._:o %,)i w c eu G s = c 3 ,e.")., L 6 .me 2 O U M ..c >2 gg 6.c YotE Aude (sg 3c R._ Ai. (A( r@' - C C I "O 'b t
- e. m
$ u, i ~ {,,4t c C 2 .AD Uo 2 c. O 3 "2 We G* _- O d (U. w,, ~c5 <t s c-. h-3) b.*. M- < w: aD , /a.. a.9 9 =_g.s-c.n? - e,tso g as ui= =v = > i l 'T. 12_ 28 B - r-r _- (A-c") b' (M-s5)4.f 4 55 = i O. sc:, m a2 i,. I _%. 2O
- 2<
hM(3M 03 s g = W., e G u U _C. - (,0.il")) s.- r ,.s i b -e o s. / _A /.x' yo 3 e M u-Ce h Cf . [14 c'-( N ( d.C.( 7..~.f \\, y 3 'O yy gq-o _- m ie.sc
- Dm w
- . C-bl T
.3 T .4 O ,UT ~ w 9
- c. <
W 3 557 r Y (8e GUT 465' ~E 2>0 2 [" l k"~ : Ebkb FS' WD -E 2o 92 w< 2-c: O u. 2 a I< AT !!a y 25, 1978 TY ICAL BONNET STRESS A!! A LY S I S //hm_. CHECKED DOCUMENTID, WITH SEISMIC CONDITIONS " *' J W ,IE 155 C FOR CLASS 2 & 3 VALVES - jp APPROVED Masoneilan Division McGraw Edison. Norwood, Massachusetts and Montebello, California me vrnuw MCSPZHfDISDN PAGE 7 OF 7 MSSonCilan NUCLEAR OPERATION
- 0. c c.
it O h w w F T b_ w ~ 6.c.T ' e. 9.0 Aw.tv s, s o c a ';. / S':,.; ? Mv7 Aw Aty st 3 'sS n-) = w r%c-Y3 C, - m,~ (X, G - y4 G,.) Ms z r-O
- (IAOXIOM(b
~5'i(E0c)(N-(f f0Ihq( >? c. v e z
- I CS4" ir. ID z<
_1,il + (Mac t W-- be -bN 0 2 --n u e 2 c. s _[l4)(neh-(14C?7O O U m= Bh A.5GL iC [,37 ys I c eO uM E>u Mt z$ 6 ^'
- c.5 3 A n.
$53 oM IC14L )O C f(2.310(,4.0.0; a< El C 5E !' E S ?s# =c d H $5 6,5 ~ - 1%5 ow cc;g ( s,t - 2 css psi! s l ?> l 0 2_ z WW U$ =s z o I 9z l r< t Ec C i l m 2 aa< TITLE BY DATE
- tay 25, 1978 TYPICAL BOMNET STRESS ANALYSIS
[ mMFm to
- I T H SEISMIC CONDITIONS
' g) ;; FOR CLASS 2 s, 3 VALVES j, p] APPROVED Masoneilan Division McGraw. Edison. Norwood, Massachusetts and Montebello, California o n b .h k NIC !.NA m t m M Mfl i OllDlilt 11 0. IlE 155 m 8 VALVE S i l. E 4.00 lNCII 1Yl'E 207T1 R A f litti 150LD. AC 1UA Tult '15.OR IlW :6 A3 ~ N m m 'E ~ " ~ ~ " ~ " " " " ~ ~ ' ' .5 - M N U C L f'A lt CLASS 2 VEllil l Al ACCEllPAflull 3.0 G UFSIGN PRESSURE 150.PSIG w 5 s D ES I GN I FMP ER A1 UR E 120.F lluit i Z0111 AL ACCE L ER AI! ONr ' 3 0G' y= M w o n: s = o i. = a I" lititlilF 1 IL All iE Atl A.I.V$ l.5.... -2 sa o r.. n,. g g g g, .IlullilE I ' I l. AllGl' UD y.1541 fl. 1 1. AllGl: lillCKilESS I.560lil. ID~ "I'lT50: NF- - 500JPSIG " " " " r"~ ~ > l' L AllGF DESIGH PRESS.118 3 t Ill.LilS SLA1 R1llG, GAS 00 4. 3 8 0 ,it. 'l 2 .o N R EStH I Alli MullElli EM . R E S ul.1 AN I' l'URC E ' 3 20 l'. L D S ~ 10 "" ' 4 4 0 60 : (1. 'H'"'r - T-h z O W E l Gill Ul tiXID flASS 2 65. L il 5 'lluthlEt GA5KUl UD 5.000lfl. " a~ I 0 7 5 2 5 0 i N ' 7 ' TI ~ ^'"
- 13. J 5 0 i N."' "" "~~~~"d A SK u l i A t t illi S Y 10000.
g lg, - -5 = i- ' o 'o. ' lit)L i ~ C litCL E Di A.. e 671tl 4 oE l'. G. IU EXI. HASS S. V ALU E DES IGN ~ 1 EMP' 17 50lnPSI ~ ' ' R
- ~ ~ ~ ': ~ ~ ' M * ~" '3 4 0 0 0 '7P.* *
. o \\- 3 o = __, y.m. g a 0 .s ~. ,.....,..._y gg g. Till C K NE S S101 ""' O i H T S I Nim.'? h ....~.... - v ; .c.
- s. -.c... q.,.p. -. p
- g. 9.. f.,
g m .... x ..'.. U. P,.E. N. A.1.,1 N G.' E. dh u l..f l., u. l.$..y' ...,.m., 3.. 8 2,, hillt'l. t)E $ 1Gil AL LOWA ' *AhliditHAl All.bW 2.40s"q U E g . 3 n. 3 216 i PS I ~ m 7"~' 2 6 7.5 0 a " P S I,h L E.1. $ S ' ' U H AX I!10h SiltES$ i .v m r m - - -my,- T" " " 420001' ' I ", "" "' $ l'! E . o. SI PSI 26250. PSI 42000. P I'
- f5El Ei
. Sn.3290. I 3 69 T 4' ~ PS I "" ' ?. 6 2 5 0 4 " P S I ~ ' 'T7""'&~ "Nr"" 4 2 0 00 7"PS.I """r75 s> .g moa 3 y .. " G A S K E T $ E A T I N G "T'" * ~ "~ " -' " -'M"*" ' ~<~ ""* "" ";."'*.*" j"$ g n: z 4 A i_ L O W F 7 M U S ~~ 9 0 .E 'E! MAXIMuft STRESS ~' NO RM." D F,S I G rj A L L OW A O L E T175 S "'m" A D NO R M A t."000. PSI 9690. psi 26250. PS ~"'"'"'"'F4 2 0 0 0 JT PS l ~"? oo 5 42
- E
. Sil.101614 "P10 3y '"""7"" 2 6 2 5 0 T' P S a. P$ m "x ,e C Si.t. 11417. PS. ...,.'q,. 2 6 2. 5.0,. _P,S._t. g,....,.. _. _.,.7, 4 2 0 0 0,.,7. n 1. a, zmm .g a n. y,_ ...s .a ....._...,,.........,.v,,,.,.,..,,.,. 7,,.z,. y.g,...,,.,. r q p ).,, gHm g Z ma y O C C ALCUL AI IUN CD!!Tr UN PGD7 ~ ' " ' '" ' T."~r ~~' "' '~I "'.m T"~ ~ 'PFI FWM"'7717 0.* j.r " oem Q D A l._E.,.. 0 0 5 2.. .....;_.-.....,.7,..-,,.,,....-.......,,,.....,.,..,,,y,,,,,.,,...y g ga %o. :s s.4 W (0 t-H pr. F E 'ONVW30 NOda NUO1311 OL 133000S St GNV 03ldO3 UO 31100J 30VW 3810N IS0W ONV lVl1N3GI JNO3 St 'ANVdWO3 NOSIO3 MVHD3W NOISIAIG I""113NOSVW -10 A1U3dOUd 3tli SI N13kl311 NO11VWUO.lNI TIV n U til 1% S EISM ll L ALL S. I' G. 2 u en I'- Oi llut)Y,IO filliifil: I 001. I I liu ei tilli.I S I l. l i.000til. AC I tlAl lluL I Alt E A 4.150 5 0. I Il J ' Ol) A tJ T i l y 8. itE OUI RED. 00L T. ARE A
- 1. 5 26 5 0. I fl.
n w E V Al. U E U I-W 3 tl 14 2. lll S. ,5 V A t. U E. A l.T E fil,'.. 25000. PSI y .g y 5 ALLOW t1 Ax litU M Silti SS Ilultil. Ui. S IGN ALL OWAllt.E,1. 05 4BN0ltM Abo 00. P 5. 0...S. o
- p 3
Sn n030. PSI 25000. PSI ~ 2 ~ zy e. Mitt nuit DOL T 10RollE
- 29. f'.l B S Fult 'llYOft 0 ' T E ST - '
max, HUM HOLI 1011000 334. I. l. L il S - p 3 j O "g o Atll Allilt Atla StS g ALI U410lt' Wl lGill 140. L ll $ YukE l.L G WlDill 4.50th. 'I h lil' 19.00lN. UUTSIDE DIN. 7 10 l N. 3 % = C.G. til:I(fv AL I N I dit E A J iu. So. IN. INSIDE DIM. B. } S i h. g p. .a Q Atl. IOU m A C I U Al tllt PitESS ' UEL T A 14.PSID ~ ~~
- S~ V A l' U E~ Y O K E." " 17 5 0 0. P 51"'"~ "'"
"0 g n. ,o w ' ADH0ftM AL ' Al.L OW i 2 4 40 S" ~ %
- .4.,2 0 0 0... P...S. I.,y 3, 3' x
o w o g o g o z a 4 ...,.._.,..........,,......y,...r. [ = u uj o yogE 3 3
- i. n n ot.a.f j E't..j o't..u.t..A...t.J 4. L y g g g 2:
7...-,-,..._..,., .. _..,..,.,. 7.... 3.312111. >+ c (Jul 01AMETEll ' ~ ' ' O. 6 2 S i t i r ' ~-" v' 77' 7' C ' ' 7 7 ' ""~ ~'7'" " ' ll m S fJUING AGEllEN I ' SilE Alt Alt l A I. 30 21 tl. a =m
~~~~~""""""C'"'".~"~'~~"'"M""~"'*~T-~'C << 0N S$ .i. a> m AL L W 076'~ S'~' $ C ll IGN T AlJ0WADL E 10 s G S"ADNOR 4Alf ~ 0,....,,S M' M AX Irl0M ' 51 RF S" .~ NullM. DE .. 2000.. (I 200 w a> ..,S I g SL 2 0 SI.. P S
- ..._..,..........7 7,..,. 7, r. - -
a z e c. on o c.= U, y .,.y....._._,., m _.-, 7. ; -. m a \\ l. U 6 n ~.J . " '" ' ~7'm ~~I ~ M' s"" c II AI E PE RI OltMED 0052 '~
- """'v'7"'"~"7"'~~"""~P' b U$
) I, L ASI REVit;IOfl' '9205' m u,c m/ .,.....p. (t) 4 49 L .c ..1; a u g LU510fli:lt T AC Hil. S.l i: 51 LAS.E NO. 1 ,e x,, a gn .,-. 7 ,.,n...,. o - ~.... H H O Q O. Or ~..,.4_....... .....r....... g k b 'GNVW30 NOda NHO13U 01133rHOS S1 ONV G3fdO3 HD Dilafid 30VW 3010N IS0W UNV k 1V11N3Gl lNO3 St *ANVdlAIO3 NOSIG3-MVHD3W NOISIAIO NV~*lNOSVW 30 A1U3dOUd Bill St N13U3tl NOl1VWHOdNI TIV .6 ) e. 1 l APPENDIX III _TO REPORT NUMBER 1141 VALVE CLOSURE CALCULATIONS
- e
Mc6 M N Masonellan c^ c. ~o-CUSTOMER /PRCJECT M Atus %same ATomtc Vmem G. vNi REF NC.MfC2.C{(q - g y P. O. M '/- l G 3 TAG uo M CV - C->DO 6 DATE 2. (G.33 Ev {tg{ SUEJECT \\/ A t_\\/ E CLOSUQE C A L C U L fA T l D Q 6 C-ECKED ev i VALVE DESCetp rio M ~8 MODEL 36-20521 Mo.16 L Reveese Acro AmR '/9-53 psic, spzinc. Rasc.E Futt ate A TR.im w/BuuR-N SonT SsAr CowsveucTios PR.E ssuze ciFF eRENTi AL ACROS$ SE AT = 5 5 p5 t Flo L.) DIRECTION : Flow -To - Ope 4 1 PLUG M ome w ct ATuRE. Ao = Maximum binPa2AG,vs AesA = z'7 8 in? As : Se AT AREA = 30.GS, in? Cs = 5enT Ciecumwec.eace = tel.G3 in. T>3 = 6enT DiameTEa_ = G.25 in. Po : T>e stc.s ~Pe.essuae = ss psic. AcTunros spra wu \\u m n t Passsva e = 9 Psic - Pt FoecE [E) CEEATED BV PEE 65u1E DtFFEeENT1 AL ACEc55 SEKT Fp = Po As = (ssX30.GS) = IG87 LBs Foecn [Fd Resusteo ro compee65 $oGT $EST Fot Buun-N, use 25 La /m. on saar c.iac.umpec.awce ~ 8= 25C = (2.sX. tet.63) = H ot i LE 3 rcmt AcTuATon_reoc e [Fyl Ee&uttEO Foe SuuT-oG F FT = Fe + Fs : IG BG + '{ 9 l = 217 8 LS Ac ru AnoR_ t ec.ce (R} Av Att AstE. A = Ao Pc = (2 78)(9) = 2502. LB F 5 t ace. FA is c,e.EATsc_ -runu 7 T, me v Atve is suotes Tb BE. C.APAELE OF SMuiitwco-oFF A G At RST A ME 5SuP E Dtf FER.E RTT AL ACEoS5 THE 6E.4T OF 55 Ps \\. f?Tmiri&T0 f%ecn - McGraw Edison Co.. Norwnnd. Massachutant 117f1R7 II.R A