ML20012G456
ML20012G456 | |
Person / Time | |
---|---|
Site: | Arkansas Nuclear |
Issue date: | 02/24/1993 |
From: | ENTERGY OPERATIONS, INC. |
To: | |
Shared Package | |
ML20012G454 | List: |
References | |
NUDOCS 9303020477 | |
Download: ML20012G456 (101) | |
Text
PROPOSED TECHNICAL SPECIFICATION CHANGES l
r 9303020477 PDR 930224ADOCK PDR 05000368 P
-i i
i
^ !
= _ _ _.
t g : .,
& 17 1 -REGION OF UNACCEPTABLE OPERATION j W _
C 'l D \
u) _ --
, U) -
160,16.19) (100,16.19) RELAT1VE ;f W _ 60,16.os) (100,16.05) N f HUMIDITY j
{ 16 J!(<so. is.93 cioo. is.93 /
a _.
45N
- sh s # - -12%
llll l x s - 50%
4 __
xix / i z _.
? N/M- 0%
x' l
' E 1 \ N#>C !
z 15 7 \#x Nx i s x ;
7 A ',N N(i40, i4.s> ---
1 z --
N '
W \ hi!8;il:if) ::: !
! 7 REGION OF 5$237.88.18.21)]j R
p.
14 --- ACCEPTABLE OPERATION
/
g /: r O E l'8" ' 5) !
9 -._
r t (60,13.2) 13.2; ,
(125.7.13.2)/
i 13 ;;jji,; ij,,ijjjij,3;iij,i;jj j,j jijjij.;;,jiijii (
60 80 100 120 140 160 i t
i CONTAINMENT AVERAGE AIR TEMPERATURE ( F) l l
FIGURE 3.6 - 1 !
CONTAINMENT INTERNAL PRESSURE i vs. !
CONTAINMENT AVERAGE AIR i TEMPERATURE
- i i
NOTE: Instrument Error is not Included on Curve t
ARKANSAS - UNIT 2 3/4 6-7 Amendment No. 9, 24 J1>7 I i
i i
a , -
au a ,o z - - . .=.s -.,s..s-.,-.. n w- , - +=~a.p. ,
Ja w& .,
t i
I l
}
'l t
i ATTACHMENT 1 e
i AND-2 LARGE BREAK LOCA REPORT l (SAR UPDATE SECTIONS 6.3.3.2 AND 6.2.1.6) e t
t 4
'I i
P 4
1 i
I 1
I 9
i i
i
?
l t
k o
.t 6.3.3.2 ECCS Performance The results for the large break LOCA-ECCS performance evaluation are provided in this section. The methods and the technical justification are also ,
- discussed in this section.
6.3.3.2.1 Introduction and Summarv !
10 CFR 50.46 (Reference 1) provides the acceptance criteria for Emergency Core Cooling Systems (ECCS) for light water nuclear power reactors. The ECCS performance analysis presented in this section demonstrates that the ANO-2 ECCS
- design satisfies these criteria. j 4
J The analysis was performed for a spectrum of break sizes in the reactor coolant t pump discharge Icg. The limiting break size, that which limits the peak linear !
heat generation rate (PLHGR), was identified as the 0.6 DEG/PD break (Double l Ended Guillotine break in Pump Discharge). The results of the analysis .
demonstrate that, for a PL11GR of 13.5 kw/ft, the ANO-2 ECCS design meets the 10 l CPR 50.46 Acceptance Criteria. Conformance is as follows- f r
Criterion (1) Peak Cladding Temperature. "The calculated maximum fuel element ;
cladding temperature shall not exceed 2200 F." i The ECCS performance analysis yielded a peak cladding temperature of 2142 F for the 0.6 DEG/PD break.
Criterion (2) Maximum Cladding Oxidation. "The calculated total oxidation of t the cladding shall nowhere exceed 0.17 times the total cladding -
thickness before oxidation." )
3 .r l The ECCS performance analysis yielded a maximum cladding l oxidation of 8.90%. for the 0.6 DEG/PD break, i l
1 i Criterion (3) Maximum Hydrogen Generation. "The calculated total amount of hydrogen generated from the chemical reaction of the cladding with water or steam shall not exceed 0.01 times.the hypothetical [
amount that would be generated if all of the metal in . the ;
cladding cylinders surrounding the fuel, excluding the cladding surrounding the plenum volume, were to react." :
i The ECCS performance analysis yielded a maximum core wide oxidation of less than 0.843% for the 0.6 DEG/PD break.
Criterion (4) Coolable Geometry. " Calculated changes in core geometry shall {
' be such that the core remains amenable to cooling." (
u The cladding swelling and rupture model (Reference 2) which is :
part of the ABB CE large break LOCA evaluation model (Reference {
' 3) accounts for the effects of changes in core geometry if such changes are predicted to occur. Adequate core cooling was demonstrated with the predicted core geometry changes. The analysis was performed to the point where cladding temperatures were decreasing and the RCS was depressurized, thereby }
precluding any further cladding deformation. Therefore, a ,
coolable geometry was demonstrated. i a
I I
-. . . _ - - .___ ~ -- -- .-. _ . -- . _. . -
i e
i '
i
=l Criterion (5) Long Term Cooling. "After any calculated successful initial operation of the ECCS, the calculated core temperature shall be maintained at an acceptably low value and decay heat shall be .l removed for the extended period of time required by the i long-lived radioactivity remaining in the core." i i
The ECCS performance analysis showed that the rapid insertion of j borated water from the safety injection tanks (SITS) and the ;
safety injection pumps suitably limited the peak cladding !
temperature and cooled the cere within a short period of time. l Subsequently, the safety injection pumps would continue to l supply cooling water from the refueling water tank (RWT) to :
remove heat from the long-lived radioactivity remaining in the l core. When the RWT is nearly empty, the safety injection pumps !
would be lined up to recirculate water from the containment sump. See Section 6.3.1.4.2 for additional information on {
long-term cooling. ;
6.3.3.2.2 Lage Break LOCA Analysis ]
6.3.3.2.2.1 Evaluation Model The large break LOCA analysis was performed using the NRC-approved June 1985 l version of the ABB CE large break LOCA evaluation model (Reference 3, ,
In the ABB CE evaluation model, the CEFLASil-4A computer i Supplement 3-P-A).
program (Reference 4) is used to determine RCS behavior during the blowdown ;
phase, and the COMPERC-II computer program (Reference 5) is used to determine '{
RCS behavior during the refill and reflood phases of the large break LOCA. The l core flow and thermodynamic parameters from these two computer programs are input to the STRIKIN-II computer program (Reference 6) which is used to ,
calculate the hot rod cladding temperature transient. Also input into STRIKIN-II are steam cooling heat transfer coefficients which are calculated l
- using the llCROSS (Reference 2) and PARCil (References 2 and 7) _ computer '?
?
i programs. The peak cladding temperature and maximum cladding oxidation are obtained from the STRIKIN-II calculation. The maximum core-wide cladding ,
, oxidation is obtained from the results of both the STRIKIN-II and COMZ1RC j l (Reference 5, Supplement 1) computer programs. The initial steady state fuel rod conditions used in STRIKIN-11 are determined using the TATES3B computer i l
4 program (Reference 8), f a i the method used to calculate core-wide clad As described in Reference 3, j l
t oxidation is conveniently simple, but is very conservative. The following ;
. major conservatisms can be enumerated: ;
A. During blowdown, all rods experience the same amount of oxidation as the !
- hot rod. l,
, 1 B. During the entire transient, all rods experience the same rupture region !
oxidation as the hot rod. l i
f i
i I
J !
3 i
. .- . . - . . . _ . .~ . -. . .. -.
t l
l t
In initializing ' the multi-region COMZIRC calculation, the CEFLASH-4A hot 4 C. !
, assembly clad and- fuel temperatures are used for all rods having above average power. ]L D. During refill /reflood, the flattest possible power ~ distribution is used, j even though inconsistent with the peak LHGR. ;
6.3.3.2.2.2 Safety injection System Parameters j:
i As described in Section 6.3.2, the ANO-2 ECCS consists of three high pressure i safety injection (HPSI) pumps, two low pressure safety injection (LPSI) pumps i and four SITS. Each HPSI pump injects to one of two high pressure injection j headers which feed each cold leg. The LPSI pumps inject to a common header !
which feeds each cold leg. Each S1T injects tc a single cold -leg. The HPSI l and LPSI pumps are automatically actuated by a safety injection actuation ;
signal that is generated by either low pressurizer pressure or high containment i l pressure. The SITS automatically discharge when the RCS pressure decreases {
below the SIT pressure.
i The large break LOCA analysis conservatively represents both the spillage of i safety injection flow into the containment and the most limiting single failure I of the ECCS. In the analysis, all the safety injection flow to the broken dis- j charge leg was assumed to spill into the containment. j The most limiting single failure of the ECCS for the large break LOCA analysis j was determined to be no failure in the ECCS. No failure is the worst condition !
because it results in a maximum of safety injection water spilling into the _
containment. This acts to minimize containment pressure which, in turn, l minimizes the rate at which the core is reflooded. Any f ailure which reduces l safety injection flow is not the worst condition because there would still be sufficient flow to keep the reactor vessel downcomer filled to the cold leg nozzles. This maintains the same driving force for reflooding the core as the i I
no failure case, but results in less spillage into the containment.
i Based on the design of the ANO-2 ECCS, the most limiting single failure and !
spillage considerations, the following safety injection flows into the RCS were l used in the analysis for a discharge leg break: 75% of the flow from two HPSI '!
, pumps, 75% of the flow from two LPSI pumps, and 100% of the flow from three [
SITS. Consistent with the fact that no failure is the worst condition, maximum l HPSI and LPSI pump flow rates were used in the analysis and the pumps were !
modeled to start injecting when the downcomer was refilled by the SITS.
6.3.3.2.2.3 Core and System Parameters The significant core and system parsmeters used in the large break analysis are j presented in "lable 6.3-9. l The large break LOCA analysis accounts for up to 10% steam generator tube -j~
plugging per steam generator. A conservative Beginning of Life (BOL) moderator temperature coefficient (40.5 x 10 Ak/k/ F) was used for all cases. l i
The analysis was performed at a hot rod average burnup of 1000 MWD /MTU. A ,
parameter study was performed which demonstrated that this burnup yielded the ,
highest peak cladding temperature.
I
)
i l
\'
6.3.3.2.2.4 Containment Parameters :
Section 6.2.1.6 presents the minimum containment pressure analysis that was performed as part of the large break LOCA analysis. It identifies the -
containment parameters used in the analysis. The values for these parameters were chosen to minimize containment pressure in order to minimize the core !
reflood rate. f i
6.3.3.2.2.5 Break Spectrum !
The break spectrum consisted of seven reactor coolant pump discharge leg j breaks. Guillotine and slot breaks ranging in size f r om a full double-ended !
break to a 0.4 double-ended break were analyzed. Table 6.3-11 lists the specific break sizes that were analyzed.
As previously demonstrated in Reference 3, the reactor coolant pump discharge ,
Icg is the most limiting break location. The pump discharge leg break is !
limiting because both the core flow rate during blowdown and the core reflood rate are minimized for this location. }
6.3.3.2.2.6 Results and Conclusions f i
The important results of this analysis are summarized in Table 6.3-15. Table l 6.3-14 lists times of interest for the breaks analyzed. As noted in Table ;
6.3-11, results for each break are presented in Figures 6.3-13 through 6.3-19. {;
For each break, the variables listed in Tabic 6.3-12 are plott.ed as a function of time. For the break with the highest peak cladding temperature (the 0.6 !
DEG/PD break), the additional variables listed in Table 6.3-13 are plotted. ;
Peak cladding temperature versus break size is shown in Figure 6.3-20. !
Based on the results of this analysis, it is concluded the ANO-2 ECCS design ;
satisfies the Acceptance Criteria of 10 CFR 50.46 for a spectrum of large break ;
LOCAs. !
l T
l r
2 i
i 1
< {
t i
l l
l
e i
Table 6.3-9 r
SYSTEM PARAMETERS AND INITIAL CONDITIONS ;
FOR THE LARGE BREAK LOCA ECCS PERFORMANCE EVALUATION i
Quantity Value Units Reactor Power Level (103Y. of Nominal) 2900 MWt Peak Linear Heat Generation Rate 13.50 kw/ft (PLHGR) of the Hot Rod i
PLHGR of the Average Rod in the Assembly 12.73 kw/ft with the Hot Rod Gap Conductance at the PLHGRU ) 1572 Btu /hr-ft 2
- F i Fuel Centerline Temperature at the PLHGRU) 3359 *F ,
fuel Average Temperature at the PLHGRU ) 2129 *F I
Hot Rod Gas Pressure") 1114 psia l Moderator Temperature Coefficient at
+0.5x10 Ap/*F Initial Density 6
RCS Flow Rate 119.9x10 lba/hr :
Core Flow Rate 115.7x10' lbm/hr RCS Pressure 2250 psia Cold Leg Temperature 556.7 *F Hot Leg Temperature 616.8 *F Safety Injection Tank Pressure 550 psia 3
Safety Injection Tank Water Volume 1350/1600 ft !
(Minimum / Maximum)
Low Pressure Safety Injection Pump Flow 3222/5000 gpm .
Rate (Minimum / Maximum)
High Pressure Safety Injection Pump Flow 678/825 gpm Rate (Minimum / Maximum)
)
l (1) These quantities correspond to the rod average burnup of the het rod (1000 MWD /MTU) that yields the highest peak cladding temperature. !
l
Table 6.3- 11 !
BREAK SPECTRUM !
FOR THE LARGE BREAK LOCA ECCS PERFORMANCE EVALUATION l
Break Size. TYDe. and location Abbreviation Fiqure No. l 1.0 Double-Ended Guillotine 1.0 DEG/PD 6.3-16 .!
Break in Pump Discharge Leg l 0.8 Double-Ended Guillotine 0.8 DEG/PD 6.3-17 I
Break in Pump Discharge Leg ,
0.6 Double-Ended Guillotine 0.6 DEG/PD 6.3-18 l Break in Pump Discharge Leg ;
0.4 Double-Ended Guillotine 0.4 DEG/PD 6.3-19 !
Break in Pump Discharge Leg l
1.0 Double-Ended Slot Break 1.0 DES /PD 6.3-13 l in Pump Discharge Leg ;
0.8 Double-Ended Slot Break 0.8 DES /PD 6.3-14 in Pump Discharge Leg 0.6 Double-Ended Slot Break O.6 DES /PD 6.3-15 in Pump Discharge Leg j
1 i
T i
l Table 6.3-12 VARIABLES PLOTTED AS A FUNCTION OF TIME FOR EACH BREAK 0F THE LARGE BREAK LOCA ECCS PERFORMANCE EVALUATION Figure- F Variable Designation !
Core Power
~
A Pressure in Center Hot Assembly Node B Leak Flow Rate C Hot Assembly Flow Rate (Below Hot Spot) D.1 Hot Assembly Flow Rate (Above Hot Spot) 0.2 s
Hot Assembly Quality E Containment Pressure F Mass Added to Core During Reflood G ;
Peak Cladding Temperature H") '
(1) For the limiting break, the temperature of the rupture node is also shown.
t I
N 3
6 1
1 5
d Table 6.3- 13 VARIABLES PLOTTED AS A FUNCTION OF TIME FOR THE LIMITING BREAK OF THE LARGE BREAK LOCA ECCS PERFORMANCE EVALUATION l Figure Variable Desianation Mid Annulus Flow Rate I l Quality Above and Below the Core J Core Pressure Drop K Safety Injection Flow Rate into Intact Discharge Legs L Water Level in Downcomer During Reflood M Hot Spot Gap Conductance N Local Cladding 0xidation Percentage 0 Fuel Centerline, Fuel Average, Cladding P ;
and Coolant Temperature at the Hot Spot Hot Spot Heat Transfer Coefficient Q [
Hot Pin Pressure R t
h i
~
f i
Table 6.3-14 l l
TIMES OF INTEREST l FOR THE LARGE BREAK LOCA ECCS PERFORMANCE EVALUATION j (Seconds after Break) l SI Tanks End of Start of SI Tanks Hot-Rod l Break On Bypass Reflood Emoty Bunture '
l.0 DEG/PD 9.6 15.1 27.0 55.2 49.7 .
0.8 DEG/PD 10.4 16.2 28.0 56.3 48.4 i
O.6 DEG/PD 12.2 18.0 29.8 58.1 47.8 i 0.4 DEG/PD 15.8 21.8 33.6 62.1 58.7 1.0 DES /PD 8.6 14.1 25.9 54.2 49.7 I 0.8 DES /PD 9.4 14.9 26.8 55.1 51.0 ;
0.6 DES /PD 10.8 16.7 28.5 56.6 53.0 i
n t
b I
i k
Table 6.3-15 PEAK CLADDING TEMPERATURES AND OXIDATION PERCENTAGES FOR THE LARGE BREAK LOCA ECCS PERFORMANCE EVALUATION Peak Cladding Maximum Cladding Maximum Core-Wide Break Temperature (*F) Oxidation (%) 0xidation (%)
1.0 DEG/PD 2132 8.64 <0.714 l 0.8 DEG/PD 2135 8.72 <0.756 0.6 DEG/PD 2142 8.90 <0.843 0.4 DEG/PD 2112 8.21 <0.705 1.0 DES /PD 2129 8.58 <0.672 l 0.8 DES /PD 2129 8.58 <0.684 0.6 DES /PD 2122 8.43 <0.697
)
f Figure 6.3-13A 1.0 Double-Ended Slot Break in Pump Discharge Leg i Core' Power l
i 1.2 . ,
~
1.0 ! .
f e
t
[
w -
3 0.8 O >
n.
b -
z.
O 0.6 o.
g w '
g 1 3 0.4 O .
n- :
. r 1
0.2 .
4 4
I t I f 9 T f 9 f f f f f f I f 1 1 4 t E f f 1 1 8 9 I I I I I I I I O I I I I I I I I 1 I O 1 2 3 4 5 TIME, SEC r
i Figure 6.3-13B
- 1.0 Double-Ended Slot Break in Pump Discharge Leg :
Pressure in Center Hot Assembly Node i
2400 i
)
t 2000 a
1600
{
i 5
a) -
c_
c g : '
c -
a 1200 _ ,
U) -
U) -
Lij -
E ,
a- :
e 800 -
l t
400 g :
0 5 10 15 20 25 TIME, SEC e
i i
Figure 6.3-13C -
1.0 Double-Ended Slot Break in Pump Discharge Leg ,
Leak Flow Rate !
t r
h 120000 i
100000 4
)
t 80000 -
O i m
W 5 2
CD :
a -
k60000 E i 5
O a ,
u_
i 40000 !
w 20000 _
~
MJ l o
''''' '''' ''\ '''' ''''
0 5 10 15 20 25 l
TIME, SEC l l
1 l
b t
figure 6.3-13D.1 1.0 Double-Ended Slot Break in Pump Discharge leg Hot Assembly Flow Rate (Below Hot Spot)
L r
30 s
e 20 .
10 O
w '
W
- s to
_J ui o i
F- '
W '
g L O
-J i u.
-10 '
)
i a
-20 Y
f ,
i
-30 O 5 10 15 20 25 TIME, SEC
Figure 6.3-13D.2 1.0 Double-Ended Slot Break in Pump Discharge leg f Hot Assembly Flow Rate (Above Hot Spot) l 30 ,
20 1
10 ;
o tu k
2 i in '
2 LII 0 h
t g v- ' r
<C CC S '
I ,
O ,
5
-10 i i
-20 i
f T I I f f I f f f f f f f f f f f f f f f f f f f f I f f f f f 4 4 f f f f f f f 0 5 10 15 20 25 :
TIME, SEC
Figure 6.3-13E :
1.0 Double-Ended Slot Break in Pump Discharge Leg Hot Assembly Quality i
F 1.0 .
,.. t
. g ,; ,,
- 1; 1 '
l
-I. , ,
I t: Il ,' i N: gl 1l l l 1 ! I' 4 1
n ;l 0.8 ..
. g ,.
.. g VI
- :. 3
- /
1:.. .
g z 'l l; lI j;'s !
O :( (/ 1 / t t-o 0.6 i. i i;
,/ i
< :6 i ,. ,! .aI x
- u. :( 1; / / if l'
~
> $ \\{
I h -i i, l ,' /
< 0.4 L i ,
i D s ! ,
< /
O ..
I t s' /
/
G- -- -O- - O Above Hottest Region f i /
/ G-- -- G ---- O At Hottest Region g
/ O O OBhlow Hottest Recion 0.2 -
3 l,
i r
P I t t I t t t $ t t I t ie f I I a e t , e e q g ,,g , , , , g ,
0 5 10 15 20 25 TIME, SEC
i 4
Figure 6.3-13F 1.0 Double-Ended Slot Break in Pump Discharge leg Containment Pressure c
60 em 4
.e h 50 40 m
Q.
t$ '
cc a 30 x m
m N --
LU E
Q.
- )
20 _
i 10 i i
I I f f f f f T f f f if f f f f f f f i f f g j f f f g g a e t t 1 g g l 1 g y g g g g 0 100 200- 300 400 500 i i
TIME, SEC i l
i l
I i
I i
Figure 6.3-13G !
1.0 Double-Ended Slot Break in Pump Discharge Leg i Mass Added to Core During Reflood j i
t
=
i 120000 _
i 100000
/ i 80000 2 : i cn -
i J t cg 60000 l
en
< - i t
2 : i
- i
~ I 40000 f
1 l
20000 r -
0 O 100 200 300 400 500 i
TIME (DURING REFLOOD) .SEC l 1
l
i i
i t
figure 6.3-13H -
1.0 Double-Ended Slot Break in Pump Discharge Leg Peak Cladding Temperature t
2200 ..
i
~
1900 I
j -
1 1600 _
0 -
W .
O ;
1
- m. '
T ;
R 1300 ,
4
[ !
w (L
2 m
H 1000 ;
}
700 [
a e i 400 O 100 200 300 400 500 TIME, SEC i
i 1
1 I
l 4
l l
Figure 6.3- 14A !
0.8 Double-Ended Slot Break in Pump Discharge Leg l Core Power ,
l 1.2 1 l
1.0 b
.e e I w -
3 0.8 ~
O
- a. ..
Z : i
- u. -
i O 0.6 $
0 -
<C -
[ -
tL -
- g. !
g ..
S 0.4 O
g . .
a w
4 b
0.2 .
O e
.m I
0.0 O 1 2 3 4 5 ,
TIME, SEC
Figure 6.3-14B 0.8 Double-Ended Slot Break in Pump Discharge Leg Pressure in Center Hot Assembly Node 2400 i
2000 N
1600 .
m O.
LE W
1200 .
w ..
tu
[ ~
Q.
800 ..
4 400 e
. . , , , ,,,, ,,,,,,,, , .ii,,,, ,,,,,.i,, ,,, ,,,,,
0 5 10 15 20 25 TIME, SEC
t i
Figure 6.3-14C 0.8 Double-Ended Slot Break in Pump Discharge leg Leak Flow Rate ;
i 120000 . ,
e d
9 w
e 100000 -l e
80000 O
w Q. !
- s
~
to i s
f<C60000 C .
3 oa LL 40000 ,
20000 G
o
. . . . . . . . . ......... ......... s........ ......... ,
0 5 10 15 20 25 TIME, SEC I
i
i f
Figure 6.3-14D..I ,
0.8 Double-Ended Slot Break in Pump Discharge Leg liot Assembly Flow Rate (Below Hot Spot) i 30 f
20 ..
10 '
o ..
w
[ '
E _
2 -
in ui 0 w- *
/
E O
if V :
-10 L :
-20
\
i
/ '
/
-30 '
0 5 10 15 20 25 ;
TIME, SEC
i i
Figure 6.3-14D.'2 ;
0.8 Double-Ended Slot Break in Pump Discharge Leg flot Assembly Flow Rate (Above flot Spot) 30 20 k
10 0 !
m
- E m .
m- o N\. ,
5 O
W
-10 ,
3 l-
~20 LI . :
s 1 Y t t t ? I t E 1 f T f f f I f f 9 9 9 f i f 1 9 1 8 t f 8 1 f f I f, ,
0 5 10 15 20 25 ,
i TIME. SEC I
r
I i
Figure 6.3- 14E 0.8 Double-Ended Slot Break in Pump Discharge Leg .
Hot Assembly Quality l i
1.0
.I 7,*
- j
- 1 ;, a
.I
' I l l l
- sf : t <
l
-4 l l l
l O.8
- n l , f ll - '
1
_ i. ., i
}- l, /
e ICl l
' l'
- 4 I
'.s ,.- i n */ :
z -!' l '
ll 'It i-O :(' ,;
t-0 0.6
_ s.
i :,
I l f,';!, "
l
< :f ', , s1 1
i
[ ' I . <
- L 1 I *. l r,11 ,
, /
6-- f d
i
,/ f 11 J e /
-. 1 ,
< 0.4 C /
a O ..- - If
- /
4 j ' '
/ &-- -O - -- O ve Hottest Region
.;; G-~ ---G----O A Hottest Region !
j 0.2
, OB wt Honest Reg ion f
)
l r !
0.0 '''' ' -
O 5 10 15 20 25 TIME. SEC I i
I I
I I
Figure 6.3-14F 0.8 Double-Ended Slot Break in Pump Discharge Leg Containment Pressure :
60 _
e e
e
.e 4
50 -
o e
o e
40 ,
,W w &
Q~ i L5 *
[
a 30 x -
W w __
LU C I Q.
)
20 _
h I
4 r I
I 10 _
l g
..=
0 !
0 100 200 300 400 500 j TIME, SEC i
b
i i
e Figure 6.3-14G l 0.8 Double-Ended Slot Break in Pump Discharge Leg ;
Mass Added to Core During Reflood !
t i
i 120000 .. !
100000
/ i'
. i i
80000 !
~
2 (D -
j J -
t y 60000 l u) -
4 .- ,
2 -
I
- l
- 40000 _ l g
4 g
20000 .
q -
e 0
O 100 200 300 400 500 TIME (DURING REFLOOD);SEC t.
- .,-_m ,_., . ., ,
Figure 6.3-14H 0.8 Double-Ended Slot Break in Pump Discharge leg Peak Cladding Temperature l
2200 1900
~.
1600
~
)
m .
ci m
o ui
[
S 1300 T
m Q.
2 m
I-1000 i
k 1
700 !
~
400 O 100 200 300 400 500 TIME, SEC
i Figure 6.3-15A 0.6 Double-Ended Slot Break in Pump Discharge Leg ;
Core Power i
i
(
, i f
1.2 ,
1.0 !
e m _
3 0.8 o
G.
b i z
g 9 0.6 .[ f O .. .
T -
LL -
g !
- w -
S 0.4 !
O .
1 : ;
t O.2 .
l .
A 4
f 0.0 ''''
O 1 2 3 4 5 ,
-i TIME, SEC :
i 8
d i E
[
i Figure 6.3-15B i 0.6 Double-Ended Slot Break in Pump Discharge Leg :
Pressure in Center Hot Assembly Node i
i 2400 .
l l
t
.. j 8
2000 _
.e 'M
~
s 1600 _
_4 U> -
n_ ~,
LLI E
3 1200 $ l U) -
U) - '
til T ~
O.
~
~
~ !
800 ,
i' t
400 $ ,
t t t i I I E I i f 1 # I t f 1 f d i t t t t i E t I f f f I f I I f if f 1 f i t t t 0 5 10 15 20 25 j TIME, SEC l i
a 4
i Figure 6.3-15C 0.6 Double-Ended Slot Break in Pump Discharge Leg Leak Flow Rate r
120000 .
b 100000 _
80000 o
m u) 3 in N60000 E :
3 ..
o ~
if 40000 x >
20000 _
0 O 5 10 15 20 25
. TIME, SEC ,.
l
Figure 6.3 15D.1 0.6 Double-Ended Slot Break in Pump Discharge Leg Hot Assembly Flow Rate (Below Hot Spot) 30 20 10 o
tu u) i
\
)
ui 0 q ' ;
x \
3 o;
11.
-10 '
} >
3 i
/
-20 V :
t t t t I e t t e f a f 9 t t t t t t t t t t t t t t t t t t t t i f f f f T f f I t 0 5 10 15 20 25 !
TIME, SEC l i
f i
i
I l
l Figure 6.3-15D.2 !
0.6 Double-Ended Slot Break in Pump Discharge Leg Hot Assembly Flow Rate (Above Hot Spot) 30 20 ,
I I
i 10 i o i w
s a) f I
uI o 1 D
E 3
O
_a LL
-10 t
/
( !
-20 /
i' e
-30 O 5 10 15 20 25 ,
TIME, SEC i 1
l 1
l Figure 6.3-15E 4 I
0.6 Double-Ended Slot Break in Pump Discharge Leg Hot Assembly Quality i
1.0 < .
- tl 1., . I ,'
I
' :: i*
/
I
- t e. g. ,~ '
- , I '
0.8 Ih I u.
.g ,. ,
!( ll .' I* .e' e i
. g
. ' * /
ll Z II , "* , , *II O :( il ', / '.j l l W 0.6 ~i g. -
\ s O . ,' I y g
. I '. , , , < ' f ~j li
- u. :( l ll , / Ii
$ l 'l / ti b
a -.
i i ,
s
< 0.4 * ) n /
O -
4-'
O - I f
F g/ O- -- -O - - O vc Hottest Region
' t t jt G-- ---G----O A Hottest Region C O O Below Hottest Recion :
0.2 !
7 f
-l- <
1 1 e f I I I t I r I t t 1 i t t if t I e t t t i s t if f T I f f e t i t t t 0 5 10 15 20 25 TIME, SEC i
)
i I,
l 1
i I
Figure 6.3-15F !
0.6 Double-Ended Slot Break in Pump Discharge leg i Containment Pressure f
i I
60 ,
(
i 50 _
b 40 f r
m :
r Q. '
w.
[
- a 30 x e W I m -
w .
[ 5
' i 20 3 p
f 10 1 t
?
~
O 0 100 200 300 400 500 TIME, SEC i l
f t
f
Figure 6.3- 15G 0.6 Double-Ended Slot Break in Pump Discharge leg Mass Added to Core During Reflood 120000 100000
~
' /
I l
80000 g 60000 _
/
$ 2 s : I 40000 .
m 20000 .
$ h h Y Y ! k k $ Y k $ N I Y $ I ! l h k Y h h k j l $ l T h Y k $ h l h h k 0 100 200 300 400 500 TIME (DURING REFLOOD), SEC l
i i
Figure 6.3-15H t 0.6 Double-Ended Slot break in Pump Discharge Leg Peak Cladding Temperature !
k
~
2200 .
5 1900
/
4 4
1 1600 (d
w a : t uI ~
[
S 1300 ,
[
w Q.
2 !
w F
1000 I l\
i 700 !
t e i e e e e t e t t t t t t t t t i i t e a t t e i t t t t i e e t i t t t e,, +
0 100 200 300 400 500 TIME, SEC ;
t
a Figure 6.3 -16A ,
1.0 Double-Ended Guillotine Break in Pump Discharge Leg !
Core Power ,
i 1.2 i
! 5 1.0 5 i
m _ ,
m ,
3 0.8 i O : .
1 L i
z LL O 0.6 $ i o -
E g ..
d -
m -
S 0.4 O -
n_ i i
0.2 -
-t i
0.0 I
O 1 2 3 4 5 !
TIME, SEC j P
i
, 4
t Figure 6.3-168 l 1.0 Double-Ended Guillotine Break in Pump Discharge leg l Pressure in Center Hot Assembly Node i
2400 l
2000 >
1 k !
1600 .
6 !-
w G. -
Lli f x -
a 1200 ._
to -
m i tu -
[ ,
a.
800 I e
~
i
\
400 ;
^
i 0
O 5 10 15 20 25 TIME, SEC ,
1 1
I
)
I i
Figure 6.3-16C ;
1.0 Double-Ended Guillotine Break in Pump Discharge Leg !
Leak Flow Rate i i
i 120000 t
- C O OPurnp Side I G -- -- G ---- O Reactor Vessel Side 100000 _
5 g 80000 !
m -
cn x >
2 -
m '
J {
. i m
6--
60000 :
l
< 4, r, -
E : '.
3: , '.
O; '
'. i u_ :
40000 -
F
's !
i s i 20000 s, l
, 1
~. l i
,. t
,, - 'p i
0 O 5 10 15 20 25 l TIME, SEC l
Figure 6.3-16D'1 .
1.0 Double-Ended Guillotine Break in Pump Discharge Leg Hot Assembly flow Rate (Below flot Spot) 30 j 20 .
I 10 o
w (f) bcn
~
g 0 y
[
8 J e \ ,
-10 ,
l
-20 L
-30 O 5 10 15 20 25 TIME, SEC L___ _.__..'.___.
i i
Figure 6.3-150.2 '
l.0 Double-Ended Guillotine Break in Pump Discharge Leg Hot Assembly Flow Rate (Above Hot Spot) t r
i 30 e
f i
20 i
10 .
o t LU d
- E to J : 't g
s 0 T L f :
g m .
Vs ,
t
-10 l ;
h '
I / o 20 ,
- +
4
'''' - 4 ..... ,,,,,,,,, ,,,,,,,,,
30 0 5 10 15 20 25 !
TIME, SEC f i
i Figure 6.3-16E 1.0 Double-Ended Guillotine Break in Pump Discharge Leg Hot Assembly Quality i t
1.0 ._ i , ; f , , .
l
-I l l I l
- : f! f
-I , , ,
-k e 8
/ 1
-l ,. ,. 8
-,a
'l l /
e Ia i /
8 t
- ga.! ii V.! N i ,
. l.. > / ,
I b., 1l = .' 1 Z \$
/ ll.,I '* .!II e
9 :( il
& 0.6 j -
o ,
l ';
,~ l
< :l g. s' s I !
tc U- A. ,' g; s'
/ tit \
I :
I
>-~ I g I , /
/
bJ 15 ! / \
I so! /
< 0.4 :.f! I / ;
--) 4 0 l,,' i / -
1 f ;
jf I
f G- -- -O- - O A ' ve Hottest Region i lj 0-- ---O---- O A - Hottest Region j[ ,
d C O OBelow Hottest Recion I 0.2 y I a t
)
.i l i t
r IL f f a i t i I t I t t I t it 1 9 t f A t E E f f f 9 t t 9 1 f f I 1 9 s t I t t t 0 5 10 15 20 25 l
TIME, SEC l
l l
1 l
I Figure 6.3-16F ;
1.0 Double-Ended Guillotine Break in Pump Discharge Leg Containment Pressure
.e 50 40 w
Q.
15 1 I e :
3 30 x w -
W E
Q.
)
20 ,
10 ..
e a
0 ''''
O 100 200 300 400 500 TIME, SEC i
L Figure 6.3-16G 1.0 Double-Ended Guillotine Break in Pump Discharge leg Mass Added to Core During Reflood 120000 i
100000
/
80000 t
O g 60000 _
u) '
2 : /
40000 ^
20000 _
j j
i 0
O 100 200 300 400 500 !
TIME (DURING REFLOOD) -SEC l
Figure 6.3-16H 1.0 Double-Ended Guillotine Break in Pump Discharge leg Peak Cladding Temperature 2200 _
1900 $ '
e 4
1 1600 C3 m
O .
ui .
[ !
5 1300 ;
l E
w i O
- 2 m
F- !
1000 k '
- 1 700 .
I l
400 i 1
0 100 200 300 400 500 '
TIME, SEC l
l l
l
I i
i Figure 6.317A i 0.8 Double-Ended Guillotine Break in Pump Discharge leg ;
Core Power ,
i 1.2 l e
/ !
1.0 5 i
i 6
m :
tu -
3 0.8 O :
- a. -
j, E :
tt O 0.6 $ ,
o _ L m -
t LL -
- m. -
tu 3 0.4 0 --
n -
?
i O.2
.{
' ' '''' '''' ''''~ ''''
0.0 O 1 2 3 4 5 TIME, SEC f
i i
l i
i figure 6.3-17B :
0.8 Double-Ended Guillotine Break in Pump Discharge leg Pressure in Center Hot Assembly Node 4
2400 .
t 2000 i 1600 k l 55 !
1 . !
ui -
i
[
a 1200 en - ,
gn ..
m E -
- n. : . ,
800 .
l 400 -
1
~
r .
0 }
0 5 10 15 20 25 ;
TIME, SEC i
i L
i
=- -
figure 6.317C 0.8 Double-Ended Guillotine Break in Pump Discharge leg Leak Flow Rate i i
i f
f 120000 i C O OPump Sido G-- - - -G - - - - -O Reactor Vessel Sido j 100000 _
t g 80000 '
w '
<n
~ .
co -
J W_ 60000 1-
< {
[ ,
g -'.
O '
-J ',
- u. .
40000 . ;
i, ,
% s
's, 6 L g g
b 20000 ', t 4 *
~~ >
% 4 %
%w*
' ' ' ' ' ' ' ' ' ' ~~- ' ' ' ' ' ' ' ' ' ' '
O O S 10 15 20 25 TIME. SEC
l Figure 6.317D.1 0.8 Double-Ended Guillotine Break in Pump Discharge Leg Hot Assembly Flow Rate (Below Hot Spot) l 30 ,
l
\
20 10 o I m
U) i N I N 0 ,
[
3 o
d I i
-10 y
> y
-20
-30 ''''
O 5 10 15 20 25 TIME, SEC
i Figure 6.317D.2 0.8 Double-Ended Guillotine Break in Pump Discharge Leg Hot Assembly Flow Rate (Above Hot Spot) i 30 i
20 i
s 10 } !
m v)
- =
2 a3 J
- w. 0 i
i- -
[ r 3
o; i 1
1
-10 JY t
t
-20 j
! t 4
1 i
-30 O 5 10 15 20 25 l TIME, SEC -
f
.~
I i
s i
figure 6.3-17E O.8 Double-Ended Guillotine Break in Pump Discharge Leg Ilot Assembly Quality ;
3 i
a b
I 10 g '
. 1
,2
., ~
. r. 1, ,
l'!
Il
- (l' v l*
JJt,*s l
--W1/
0.8 I ;; '
I i.* .i ; e
_f -
.t *
. : \ /
t' l 8 e t, ,.
Z ..f 1
f' .' i ,I !8 O .:(
l 'i .' '.' l :
,; , . , -i ' !
- - 0.6 1 1 .
o 1 ;, ,; 4 -- r i
<:( 1 ie /'I I i +
[ '
i ' ,' i
- u. .. ( - ,
- f 1i .
4'-
\
j
/ tl t-
_J t:
g s
?
I
< 0.4 f, i
D I I t O 't 4 i l i f -
P O- -- -O - - O A ve Hottest Region
- y. O-- --O----O A, Hottest Region 0.2 s)
' C O OBUlow Hottest Retion h
L 0.0 0 5 10 15 20 25 !
4 TIME, SEC r
t a .
?
Figure 6.3-'17F 0.8 Double-Ended Guillotine Break in Pump Discharge leg Containment Pressure 60 .
w e
^
50 9
W -
40 55 n.
ui C
a 30 . x m
[
n.
20
-w e
1 10 .
0 O 100 200 300 400 500 TIME SEC i
1
. I J
l Figure 6.3-17G ,
0.8 Double-Ended Guillotine Break in Pump Discharge Leg i Mass Added to Core During Reflood- 4 i
I 120000 100000 _
7 l
.. l i.
80000
. +
}.
f 2 L to -
J -
g 60000 ;
en 2 ~
j i
40000 !
.-. l
{.
r i
20000 $ [
4 9
L It t t t t t t t t t t t t t t t 1 e e f e a e e t ie e t i e e e , a t t t t t t e e 0 100 200 300 400 500 TIME (DURING REFLOOD), SEC I r
I I
f
i l
)
l
.i I
Figure 6.3-17H l 0.8 Double-Ended Guillotine Break in Pump Discharge leg >
Peak Cladding Temperature -
2200 .
i 1900 _
i i
- u. 1600 Ci w
a !
g i T
1300
< I E
w Q.
2 m
I-1000 lI-i 3
700 f
400 , ,,,,,,
0 100 200 300 400 500
' TIME, SEC i
r I
figure 6.3 18A 0.6 Double-Ended Guillotine Break in Pump Discharge Leg Core Power 1.2 .
1.0 >
l E
W .
3 0.8 o
n.
F--' .
E o . 0.6 O
T -
- Id -
W 3 0.4 o
- n. -
0.2 .
0.0 O 1 2 3 4 5 TIME, SEC 1
l 1
Figure 6.3-18B 0.6 Double-Ended Guillutine Break in Pump Discharge Leg Pressure in Center Hot Assembly Hode 2400 .
2000 1600 sm O_
t E
1200
\
m .
m -
C n.
800 g 400 .
g
\/ .
0 0 5 10 15 20 25 TIME, SEC s
l t
Figure 6.3-18C ,
0.6 Double-Ended Guillotine Break in Pump Discharge leg '
Leak Flow Rate t
i L
120000 1
O O OPump Side 0-- -- 4---- O Reactor Vessel Side 100000 .
- 8
- i 80000 '
O w
W 2 :
m a
W g 60000 .
4 .-
E -
3 -
o
-.s :,
LL 40000 $ %,
4
=
20000 ~ .
\
g
~
, , , , , , , , ,,,,,, m. ,,
_._~. ... ,,..
0 5 10 15 20 25 TIME, SEC -
t Figure 6.3-18D.1 0.6 Double-Ended Guillotine Break in Pump Discharge leg Hot Assembly Flow Rate (Below Hot Spot) 30 i
20 t t
P 10 O s ;
W
@ i i
2
= 1 \
j
>_ 0 N u s
E !
3 o j -
M E '
-10 l 1
1
-20 l
,,,,, ,,, .,,,,,,,, ,,,e i.,ii ,e . . . . , i i ......,
0 5 10 15 20 25 TIME, SEC -
I Figure 6.3-180.2 0.6 Double-Ended Guillotine Break in Pump Discharge Leg 110t Assembly Flow Rate (Above Hot Spot) 30 20 l '
j 10 O
w s h i in
[-
- g J L .
4
< +
T '
3 O '
J d
-10 ,
-20
-30 '''' ''''
O 5 10 15 20 25 TIME, SEC
l t
t i
Figure 6.3 18E !
0.6 Double-Ended Guillotine Break in Pump Discharge t.eg Hot Assembly Quality l i
l' '
- g ,' ! l, g .J i . .l
! !,' 4 11!
I
- t j '
2 l' O.8 3 ,
f.,. ; i x,
..(
1 '.
i ,' -f i I
I s/
- t I '
! I 1 I !! I Z -f. i' o
I f
- ( ' i F 0.6 -d O _-f. t / g
< .:t ,.
E I
- u. .. (
_ /
1 y- -i i b
a .i. I
< 0.4 t I a
O j
> i
{ 0-- -O- - O Above Hottest Region !
g O-- - - G - - - - O A1 Hottest Region l
[. C O OBelow Hottest Region 0.2 h
h .
I e
it i t I f f J t a i n e t ie t it t t i1 e a f e I a e t a t t e e e a f n 0 5 10 15 20 25 TIME, SEC i 1
h
i t
r Figure 6.3-18F i 0.6 Double-Ended Guillotine Break in Pump Discharge Leg !
Containment Pressure !
60 i
e 50 ;
t m.
40 w t D. 4 ui
[
a 30 x ,
W in N -
l
?
m E
- a. ,
i 20 > t P
=
10 _
i i
f I f I 1 9 f f f f f f f f f f f f f f f f 1 f f f I f B e f f g g f g ' g g f j f f g g g 0 100 200 300 400 500 !
TIME, SEC !
b
i Figure 6.3-13G !
0.6 Double-Ended Guillotine Break in Pump Discharge Leg Hass Added to Core During Reflood :
120000 ,
-t 100000 80000
[ ,
n a
g 60000 en
/
2 ,,
40000 Reflood Rate, Time. sec in./sec 0.0 - 7.2 3.142 6
20000 i
0 '''' i 0 100 200 300 400 500 TIME (DURING REFLOOD),SEC i-
i Figure 6.3-13H 0.6 Double-Ended Guillotine Break in Pump Discharge-Leg Peak Cladding Temperature i
2200 i
/ i 1900 l i
- u. 1600 f ,
.I O. t W L a
~~~~-
ui x
3 1300 t- +
1 '..
J *
/
E w
. , i n_ ,
3 w '} .<
l-1000 ;
C O O PEAK CLADDING TEMPERATURENODE O-- - - -O - - -- O CLADDING RUPTURE NODE +
)
700 i
400 0 100 200 300 400 500 TIME, SEC
.t
t t
I Figure 6.3-181 ;
0.6 Double-Ended Guillotine Break in Pump Discharge Leg :
Hid Annulus Flow Rate ;
c s
i 5000 f T
0 l i I
-5000 O
w .
W 1
cn
" k j
N -10000
< t
[
3 o
_a L2- i l '
-15000 i I
g !
-20000 !
t
''' '''' ' ~ ''''
-25000 .
0 5 10 15 20 25 TIME, SEC i
l 1 l
?
I Figure 6.318J j 0.6 Double-Ended Guillotine Break in Pump Discharge Leg !
Quality Above and Below the Core l 4
6 3
l l
l 1.0 .. ..- ..
, ,;.. .f.8.s.. .,.
l ; .:t ;. 9l '
. . .. f, i
0.8 -
Z . ..
~
-_O .. .'
H 0.6 : l h 0
I" g . i ,
it l . l !
1
. i 3
J 0.4 j.
f./ .. -
I f
i O -f. f I. . ,
- r l I ,,
0.2 .
L
- i
- l '.'
3 l
l l C O O Above The Core j l G - - - - -G - - ---O Below Thc Core I 0.0 0 5 10 15 20 25 TIME SEC -
r i
i Figure 6.3 18K 0.6 Double-Ended Guillotine Break in Pump Discharge Leg Core Pressure Drop 30 so 20 .
4 m
s a 10 , '
55 ;
n.
id E
D g h r.h- . f m x Q i
[
Q
< 4 ,
l--
) t FW O
-10 P
-20 i
-30 0 5 10 15 20 25 TIME, SEC
f Figure 6.3-18L 0.G Double-Ended Guillotine Break in Pump Discharge leg Safety Injection Flow Rate into Intact Discharge legs ;
i 10000._ ,
I b \
8000 [
o :
M : SAFET f INJECT 10: 1 N -
TANi< S 2 6000 S [ - - -
- ) 'N :
a :
t2 :
fr -
~
4000 3
o
.J L1 .
2000 i aD
- SAFETY IN JECTION
~ '
PUMPS '
O liisi nii i i i i i ua_i iniiiiiin iiiiiiiii viiiiiiin O 20 40 60 80 100 TIME, SEC ,
i i
f i
Figure 6.3-18M ;
0.6 Double-Ended Guillotine Break in Pump Discharge Leg -
Water Level in Downcomer During Reflood '
6 30 r
25 i
i 20 t LL
.I m 15 tu i
J 10 ,
5
~
l 1
0 100 200 300 400 500 I 1
TIME (DURING REFLOOD)/SEC i
i i
Figure 6.3-18N 0.6 Double-Ended Guillotine Break in Pump Discharge Leg !
ilot Spot Gap Conductance t
i l
1800 .
i a
3 1500
- u. ,
@ 1200 Q '
c4 W ,
It E kJ l
3 900 -
t- t (D -
~
ci -
z :
O o .
% 600 C
300 ~
/ .
0 O 100 200 300 400 500 j l
TIME, SEC i
l
. . - . .. ~. _ . . .-
t i
I n,
I figure 6.3 180 .
0.6 Double-Ended Guillotine Break in Pump Discharge Leg l Local Cladding Oxidation Percentage !
t
?
?
18 l
l 15 ;
i t
J o~
O 12 p z.
O H< r O ,
X 9 O ;
p -
i z i f .-
m -
o :
m t w r O .
6 f i r
i 3 / !
1
- f
~
/
' '''' '''' ''' '''' l 0
O 100 200 300 400 500 :
TIME, SEC ,
i
i' Figure 6.3-18P :
0.6 Double-Ended Guillotine Break in Pump Discharge leg ,
Fuel Centerline, Fuel Average, Cladding '
and Coolant Temperature at the Hot Spot ;
2700 i
~ !
2250 g ..
, i
,.' i
, 7 '
000
,~'
R 0
l ,
w ... t i
o -g t
ui h. .
E .I h l 3 1350 , :
t- .
dl !
( -
Fsi f!I E i w .1 :
i
- n. .) ' -
2 1 ,
m .. I l- i 900 /
C O O FUELCENTERLINE lIll G-- - - -G - - - - O A'fERAGE FUEL pj
!Ig C O O CIAD I
-Ig G- -- - O COOLANT 450 ,
1 .
a f r i1 e e t t e i 1 e e t t t ia if a a e e I t i f f f e t i e t i e f a ( t 0 100 200 300 400 500 TIME, SEC i F
t
i Figure 6.318Q 0.6 Double-Ended Guillotine Break in Pump Discharge Leg i Hot Spot Heat Transfer Coefficient i
180 i
150 .
- u. 120 e
w a
di 5
E 90 ,
E l a
t-to 6
}-
I 60 30
- ~
0 ;
O 100 200 300 400 500 TIME, SEC
I i
l i
i l
i l
i Figure 6.3-18R 0.6 Double-Ended Guillotine Break-in Pump Discharge Leg liot Pin Pressure i
1200_ l l
1000 _
1
- 8 o
e m
6 800 i 2
_c -
m -
Q- :
~
sm 600 m -
LJ -
- t (r
0- 2 i
_ .i 400 _
e 4
4 M
h 200 -
6 4
im h
ree i 1Iiff fI Qf fff Iffifi 111 It tt1I gggqggggg gggg , g,g, O 20 40 60 80 100 '
TIME, SEC i
t 9
E Figure 6.3 19A 0.4 Double-Ended Guillotine Break in Pump Discharge leg -
Core Power 1.2 f 1.0 i e
4 w -
3 0.8 !
O : '
o_ -
F '.
5 : !
u_
. O 0.6 O ..
<C g- ..
u_ -
~
- I g ~
3 0.4 O -
- n. -
0.2 i i
\
h e
e 0.0 O 1 2 3 4 5 TIME, SEC e
i
- - . . _ . _ - . ~ -
l e
r Figure 6.3-198 0.4 Double-Ended Guillotine ~ Break in Pump Discharge Leg !
Pressure in Center Hot Assembly Node i 2400 !
)
i
,1 2000 t t
t 1600 .
u) ~
Q_
~
t LLI
{
g) 1200 g) !
m -
0~ ,
a.
800 .
i t
400 ..
. i y g g iy 1 t f 1 y e y v t i f 9 f T I I I I ' '
O 5 10 15 20 25 t
TIME, SEC -
l l
i Figure 6.3-19C -
0.4 Double-Ended Guillotine Break in Pump Discharge Leg Leak Flow Rate 120000 i
C O OPump Side G-- - - -G - - - - O Reactor yessel Side 100000 .
g 80000 .
m W
2 ca ~.
W_ 60000 s- -
g ..
3 -
o a
LL 40000 ..
s
.. g 20000 .
"h g *
'*o, {
hg g
6 0
' ' ' ' ' '''' '' ' " ~
8
O 5 10 15 20 25 TIME, SEC
I i
figure 6.3-19D.1 0.4 Double-Ended Guillotine Break in Pump Discharge leg i Hot Assembly Flow Rate (Below Ilot Spot) l t
l 30 1
l 20
' y o J, m
w g
( 3 4
s' ; 1 i .
-10 I l, I
Y
-20
-30 0 5 10 15 20 25 l l
l TIME, SEC I
Figure 6.3-190.2 !
0.4 Double-Ended Guillotine Break in Pump Discharge Leg Ilot Assembly flow Rate (Above llot Spot) ,
i 30
- 20 :
O m
10
\#
w .
[yg
- v>
N bQ tg k u
C L \
5 O I i G'
-10 . .
-20
-30 O 5 10 15 20 25 TIME, SEC 6
I
Figure 6.3-10E 0.4 Double-Ended Guillotine Break in Pump Discharge Leg Hot Assembly Quality 1.0 g. ; e
. I ; l t !' j;i l
- 3;. '
t ; l'. / g I
g, .
I t * !! II. ( .l'
. 1,' ', ll.-
i ., ' ,/ 3 I. .il Il ll I
l,N
'l il. i s ,
(*1
. li n' '
O.8 r.
v .
. 1 f .=
';g, ff,1 l 'i
. 1 e
/s
~. I' '.
- a' gl I ll r'* ;/
1- t
- f = '
i 18 !!
\ l1 ll I
'g Z :I ; / ,' A Q A i
l' . !! I i- 0.6 -i 1
\ q ll\
) eI **.It i g
o i 1 1' 1 1 '.i '.,' I i ,s'
< :I, '. kI II
- g i tt _I i
I' 1
-g
, l g Il g
>-- , , e t
_"~, i n
- f.
- '. l
. . I
< 0.4 (
\
D 'j ./
O i
a O- - - -O- - O y' ve Hottest Reg ion f G-- --G----O Af Hottest Region 4
C O OBblow Hottest Recion 0.2 !
I -
4 0.0 '''' ''''
O 5 10 15 20 25 TIME, SEC
[
I t
Figure 6.319F !
0.4 Double-Ended Guillotine Break in Pump Oischarge Leg ;
Containment Pressure ,
t i
60 ,
4 50 )
l i
40
.h I
i 55 i-n.
w E
a 30 s :
w :
m - ,
m E .
n_ !
20 !
) :
i 10 .. ;
~
0 O 100 200 300 400 500 TIME, SEC
N I
figure 6.319G t 0.4 Double-Ended Guillotine Break in Pump Discharge Leg Mass Added to Core During Reflood .
i i
120000 5 100000 i 1
i i
80000 $ ,
9 s :
m -
J -
g 60000 _
l m -
t 2 :
4 40000 i
- I h
20000 .
[
D
~
I
' f 1 f I t f f f f f t I t t t t t e f r i e e e 5 e e e , , e t 1 t ' t t f v t i t t t 0 100 200 300 400 ' 500- !
t TIME (DURING REFLOOD);SEC !
l i
h i
3 I
i
)
Figure 6.3-10H 0.4 Double-Ended Guillotine Break in Pump Discharge Leg Peak Cladding Temperature l
2200 1900 _
i i
g 1600 I
[
- a. -
w -
O ,
~
ui _
E -
1300 i f
lt E
w 1 c_ -L 2 t w
e i 1000 g i
?
700 1
400 O 100 200 300 400 500 +
TIME, SEC -
i t
^
P a
Figure 6.3 20 ,
Peak Cladding Temperature Versus Break Size ;
t f
2200 , , , , , , , , ,
h i
2160 - _
I
- u. - _
l o
w
-~
m Q
2120 - _
ui _ -
m D - _
Q x - _
w a.2080 - _
E w - _
i--
7 l
2040 - -
Deeee DISCHARGE LEG GUILLOTINE BREAK -
_ 00000 DISCHARGE LEG SLOT BREAK ,
_ _ l 2000 O 2 -4 6 8 10 ,
BREAK AREA, FT2 l 4
0 $
I
- w. _ ,y._ -
'I
t r
6.'2.1.6 Minimum Containment Pressure Analysis for ECCS Performance Analysis I 6.2.1.6.1 Introduction and Summary }
Appendix K to 10 CFR 50 (Reference 9) lists the required and acceptable l features of Emergency Core Cooling System (ECCS) evaluation models. Included 5 in the list is the requirement that the containment pressure used in the ;
evaluation of ECCS performance not exceed a pressure calculated conservatively ;
for that purpose. This section presents the analysis that determined the minimum containment pressure that is used in the ANO-2 ECCS performance analysis presented in Section 6.3.3.2. ,
6.2.1.6.2 Method of Calculation The calculations reported in this section used the NRC-approved June 1985 version of the ABB CE large break LOCA evaluation model (Reference 3, i,
Supplement 3-P-A). In the evaluation model, the CEFLASH-4A computer program ,
(Reference 4) determines the mass and energy released to the containment during !
the blowdown phase of the postulated LOCA. The COMPERC-11 computer program (Reference 5) determines both the mass and energy released to the containment during the refill /reflood phase of the LOCA and the minimum containment pressure response used in the ECCS performance analysis. j 6.2.1.6.3 Input Parameters j
- The input for the minimum containment pressure analysis for ANO-2 presented ,
herein is consistent with the input used in the ECCS performance analysis of i Section 6.3.3.2 which uses the results of this section. ,
6.2.1.6.3.1 Mass and Energy Release Data :
a i
The mass and energy released to the containment for the limit ing large break l LOCA, the 0.6 DEG/PD break (Double Ended Guillotine break in Pump Discharge),
are listed as a function of time in Table 6.2-34. The quantity of safety !
injection fluid that spills from the break is discussed in Section 6.2.1.6.3.5. j 6.2.1.6.3.2 Initial Containment-Internal Conditions
.- l The initial containment internal conditions used in the analysis are: .:
Temperature 60 F (minimum) ,
Pressure 13.2 psia (minimum) j Relative ilumidity 1007 (maximum) !
For each parameter, the conservative direction with respect to minimizing the i containment pressure appears in parentheses. j 6.2.1.6.3.3 Containment Volume The net free containment volume used in the analysis is. 1,820,000 ft* l (maximum).
i i
i
6.2.1.6.3.4 Active Heat Sinks i
In order to conservatively maximize the heat removal capacity of the l containment active heat sinks, the containment sprays and fan coolers were =
modeled to actuate in the shortest possible time following the LOCA and to j operate at their maximum capacity. ;
The operating parameters used for the containment sprays are as follows:
Number of pumps 2 Flow rate 2400 gpm/ pump j Actuation time 20 see after LOCA Temperature 40*F ,
The operating parameters used for the fan coolers are as follows:
Number of fan coolers 4 !
Actuation time 0 sec after LOCA- j lleat removal capacity (per fan) O BTU /sec at 33 F, vs. containment temperature 28663 BTU /sec at- 300 F t
{
6.2.1.6.3.5 Steam Water Mixing j i
The effect on containment pressure due to condensing containment steam with j spilled ECCS water was calculated in the manner described in Section III.D.2 of l Reference 3. The effective ECCS spillage rate is shown in Figure 6.2-30. The l spillage rate was conservatively determined using the maximum flow rate from two high pressure and two low pressure safety injection pumps and initiating the safety injection pump flow when the downcomer was refilled by the safety ,
injection tanks. ;
}
6.2.1.6.3.6 Passive Heat Sinks l
.l The surface areas and thickness of all exposed containment passive heat sinks ~j are listed in Table 6.2-35. The material properties used for the passive heat l sinks are listed in Table 6.2-36. ;
I For the analyses described in Section 6.2, performed to determine the peak !
containment pressure and temperature conditions which could be encountered !
- under the various postulated accident conditions, a thorough review of the l containment layout drawings was conducted to determine those components and j structures which would serve as heat sinks, and calculations were performed to j determine the exposed surface ~ areas of these components and structures. .j llowever, since larger heat sink surface areas result in lower containment ;
pressures and, consequently, represent the more severe condition with regards i to the ECCS performance evaluation, the heat sink surface areas used in - the _
ECCS evaluation were conservatively higher than the calculated values. In j determining the heat sink surface areas to be put into the ECCS analysis, the -l individual calculated areas were multiplied by a factor which ranged in value e from approximately 1.1 to 1.7. For those heat sinks whose surface areas could 'l be determined with a good deal of certainty, factors on the low end of this ,
range were used. For example, the calculated concrete surface areas were l multiplied by factors ranging from approximately 1.1 to 1.3. Due to the ;
i 4
~
i t
t
l I
difficulty of assuring that all the steel sink surface areas have been accounted for, larger factors were used in determining these areas. For example, a factor of approximately 1.4 was used in determining the surface area v of the polar crane, and a factor of approximately 1.6 was used in determining j
~
the surface areas of the refueling struct.ure and restraint steel. The factors were selected to ensure that the heat sink parameters put into the ECCS ,
performance model represent the worst case condition. Overall, the steel heat l sink surface areas used in developing the ECCS performance model were l approximately 50 percent higher than those used in developing the containment j
. response model, and the concrete surface arcas were approximately 15 percent higher. -
6.2.1.6.3.7 lieat Transfer to Passive liest Sinks !
The condensing heat transfer coefficient between the containment atmosphere and ,
the passive heat sinks was calculated in the manner described in Section
, III.D.2 and Figure III.D.2-2 of Reference 3. The variation of the condensing i
heat transfer coefficient used in the analysis is shown as a function of time in Figure 6.2-31. In addition, the following heat transfer coefficients were [
q also used in the analysis:
Containment atmosphere to sump liquid 500 BTU /hr-ftz op Sump liquid to base slab 20 BTU /hr-ft* F !
10 BTU /hr-ft**F Containment structure to atmosphere !
t
] 6.2.1.6.4 Results j For the limiting large break LOCA, the 0.6 DEG/PD break, the minimum j containment pressure response for use in the ECCS performance analysis is shown l in Figure 6.2-32. The responses of the containment atmosphere and containment j
< sump temperatures are shown in Figures 6.2-33 and 6.2-34, respectively. t j The containment response is used in the ECCS performance analysis prescuted in {
Section 6.3.3.2. !
1 .I I
d i
a I
? I I
1 i :
h I
f a i t i l,
1 l
Table 6.2-34 [
i MASS AND ENERGY RELEASE DATA FOR THE HINIMUM CONTAINMENT PRESSURE ANALYSIS FOR ECCS PERFORMANCE l 0.6 DEG/PD BREAK 1
A. BLOWDOWN PHASE Mass Flow Energy Release Integral of Mass Integral of Energy '
Time, Rate, Rate, flow Rate, Release Rate, !
sec lbm/sec BTU /sec lbm BTU O.00 0.000E+00 0.000E+00 0.000E400 0.000E+00 0.05 6.798E+04 3.748E+07 2.619E+03 1.442E+06 0.10 6.730E+04 3.707E+07 6.213E+03 3.423E+06 0.20 6.799E404 3.749E+07 1.306E+04 7.195E+06 '
0.30 6.757E+04 3.730E+07 1.959E+04 1.080E+07 O.41 6.681E+04 3.690E+07 2.689E+04 1.483E+07 0.50 6.657E+04 3.678E+07 3.290E+04 1.815E+07 0.60 6.612 E+04 3.654E+07 3.977E+04 2.195E+07 0.70 6.580E+04 3.638E+07 4.643E+04 2.563E+07 0.80 6.538E+04 3.616E+07 5.257E+04 2.903E+07 0.90 6.469E+04 3.580E+07 5.906E+04 3.262E+07 i 1.00 6.387E+04 3.536E+07 6.548E+04 3.617E+07
- 1.40 6.063E+04 3.366E+07 9.043E+04 5.000E+07 1.80 5.608E+04 3.125E+07 1.138E+05 6.302E+07 2.20 4.851E+04 2.707E+07 1.348E+05 7.474E+07 :
2.60 4.380E+04 2.450E+07 1.530E405 8.491E+07 i 3.00 4.087E+04 2.293E+07 1.700E+05 9.438E+07 3.40 3.820E+04 2.153E+07 1.857E+05 1.033E+08 3.80 3.617E+04 2.050E+07 2.005E+05 1.116E+08 4.20 3.512E+04 2.008E+07 2.148E+05 1.197E+08 ;
4.60 3.338E+04 1.930E+07 2.285E+05 1.276E+08 '
5.00 3.173E+04 1.859E+07 2.415E+05 1.352E+08 5.40 3.012E+04 1.786E+07 2.538E+05 1.425E+08 ,
5.80 2.871E+04 1.719E+07 2.656E+05 1.494E+08 -
6.20 2.743E+04 1.657E+07 2.768E405 1.562E408 i 6.60 2.622E+04 1.596E+07 2.875E+05 1.627E+08 7.00 2.500E404 1.532E+07 2.977E+05 1.689E+08 7.40 2.382E+04 1.468E+07 3.075E+05 1.749E+08 i 7.80 2.275E+04 1.405E+07 3.168E+05 1.807E408 :
8.20 2.166E+04 1.340E+07 3.256E+05 1.862E+08 .
8.60 2.055E+04 1.277E+07 3.341E+05 1.914 E+08 9.00 1.927E+04 1.207E+07 3.420E+05 1.963E+08 .
9.40 1.779E+04 1.133E+07 3.494E+05 2.010E+08 10.01 1.472E+04 1.001E+07 3.594E+05 2.076E+08 11.01 8.959E+03 7.578E+06 3.709E+05 2.162E+08 12.01 7.109E+03 6.493E+06 3.785E+05 2.232E+08 ;
13.01 4.184E403 4.769E406 3.844E+05 2.288E408 14.01 2.716E+03 3.155E+06 3.877E+05 2.327E+08 ,
15.01 4.255E+03 3.783E+06 3.910E+05 2.361E+08 i
B A
Table 6.2-34 (continued)
MASS AND ENERGY RELEASE DATA FOR THE MINIMUM CONTAINMENT PRESSURE ANALYSIS FOR ECCS PERFORMANCE 0.6 DEG/PD BREAK 4
16.01 6.078E+03 3.803 E406 3.963E+05 2.400E408 17.01 5.633E+03 2.749E+06 4.025E+05 2.434E408 18.01 3.455E+03 1.444E+06 4.070E+05 2.454E+08 19.01 1.107E+03 5.003E+05 4.089E+05 2.462E408 19.52 6.205E+02 3.025E+05 4.093E+05 2.464E+08 -
- 8. REFLOOD PHASE (Values are for steam only) ;
Mass Flow Energy Release Integral of Mass Integral of Energy <
Time, Rate, Rate, Flow Rate, Release Rate, sec lbm/sec BTU /sec lbm BTU ,
19.52 0.000E+00 0.000E+00 4.093E+05 2.464E+08 29.52 0.000E+00 0.000E+00 4.093E+05 2.464E+08 39.52 0.000E+00 0.000E+00 4.093E+05 2.464E+08 i 49.52 2.ll3E+02 2.767E+05 4.097E+05 2.469E+08 i 59.52 1.915E+02 2.509E+05 4.ll7E+05 2.495E+08 69.52 1.984E+02 2.599E+05 4.137E+05 2.521E+08 79.52 1.973E+02 2.585E+05 4.157E+05 2.547E+08 89.52 1.929E+02 2.527E+05 4.176E+05 2.573E+08 i 99.52 1.924E+02 2.521E+05 4.195E+05 2.598E+08 ,
109.52 1.950E+02 2.554E+05 4.215E+05 2.623E+08 119.52 1.936E402 2.537E+05 4.234E+05 2.649E+08 ,
129.52 1.931E+02 2.530E405 4.253E+05 2.674E+08 139.52 1.923E+02 2.519E+05 4.272E+05 2.699E+08 149.52 1.917E402 2.511E+05 4.292E+05 2.724E+08 i 159.52 1.915E+02 2.509E405 4.311E405 2.749Et08 I 169.52 1.909E+02 2.501E+05 4.330E+05 2.774E+08 l 179.52 1.905E+02 2.496E+05 4.349E+05 2.799E+08 )
189.52 1.902E+02 2.491E+05 4.368E+05 2.824E+08 l 199.52 1.898E+02 2.487E+05 4.387E+05 2.849E+08 219.52 1.890E+02 2.477E+05 4.425E+05 2.899E+08 l 239.52 1.887E402 2.473E+05 4.463E+05 2.948E+08 259.52 1.883E+02 2.467E405 4.501E+05 2.998E+08 l 279.52 1.879E+02 2.461E+05 4.538E+05 3.047E+08 :
299.52 1.874E402 2.455E+05 4.576E+05 3.096E+08 i 319.52 1.869E+02 2.449E+05 4.613E405 3.145E+08 . !
339.52 1.868E4 02 2.447E405 4.650E405 3.194E408 1 359.52 1.862E+02 2.440E+05 4.688E+05 3.243E408 379.52 1.855E+02 2.430E+05 4.725E405 3.292E+08 399.52 1.852E402 2.426E+05 4.762E405 3.340E+08 419.52 1.848E402 2.42]E+05 4.799E+05 3.389E+08 439.52 1.844E+02 2.416E+05 4.836E+05 3.437E+08 459.52 1.840E+02 2.410E405 4.873E+05 3.485E+08 479.52 1.836E402 2.405E+05 4.910E+05 3.534E+08 499.52 1.831E402 2.399E+05 4.946E405 3.582E+08 519.52 1.829E402 2.397E+05 4.983E+05 3.630E408 I
l I
i i
Table 6.2-35 CONTAINMENT PASSIVE HEAT SINK DATA FOR THE MINIMUM CONTAINMENT PRESSURE ANALYSIS FOR ECCS PERFORMANCE Wall Thickness, Surface 2
No. Descrintion Material ft Area. ft 5
I Containment Walls Type 8 Coating 0.0004 62,050 and Dome") Steel 0.0225 Concrete 3.56 !
2 Containment Walls") Type A Coating 0.0004 20,000 Steel 0.0224 Concrete 3.78 3 Base Slab Type C Coating 0.0107 10,000 Concrete 1.5 i
Steel 0.0208 '
Concrete 9.0 4 Refueling Canal (2) Stainless Steel 0.0217 10,000 i Concrete 2.02 ,
i 5
Sheet g' )tal and Galvanized Coating 0.00008 110,500 Pipes ( Steel 0.0049 ;
I 6 Concrete Walls and Type C Coating 0.0063 28,000 Floors o,23 Concrete 1.38 7 Structural Steelo,2) Type A Coating 0.0004 119,300 l Steel 0.0349 ;
i 8 Crane Girders o ,2) Type D Coating 0.0005 67,000 !
Steel 0.0098 9 Concrete n ,2) Concrete 2.70 68,000 .
10 Stainless Steelo,23 Stainless Steel 0.0179 7000 h Notes: (.' ) Thickness is effective thickness as a result of combining similar thickness walls.
(2) One side of wall is exposed to contai~nment atmosphere, one :
side is insulated.
u
t l
f Table 6.2-36 CONTAINMENT PASSIVE HEAT SINK MATERIAL PROPERTY DATA FOR THE
-MINIMUM CONTAINMENT PRESSURE ANALYSIS FOR ECCS PERFORMANCE t
Thermal Conductivity, Vol. Heat {apacity, -[
Material BTU /hr-ft *F BTU /ft - F :
t Concrete 0.9 30 Steel 26 56 Stainless Steel 10 55.7
~
Galvanized Coating 64 41 :
Type A Coating 0.1 33 :
Type B Coating 0.9 30 ;
Type C Coating 0.1 33 :
Type D Coating 7.4 30 i
e l
I 1
4
^
i l
i r
Figure 6.2-30 CONTAINMENT SPRAY AND ECCS SPILLAGE FLOW RATES USED IN THE I MINIMUM CONTAINMENT PRESSURE ANALYSIS FOR ECCS PERFORMANCE i
24000 . . . , l
); [
i 20000 -
~ BROKEN DISCHARGE LEG ~
SIT SPILLAGE !
16000 -
2 -
_ i o_ !
o -
r N
~
~
@ 12000 6 _
EFFECTIVE SIT SPILLAGE d
8000 -
~
~
EFFECTIVE S1 PUMP SPILLAGE !
4000 -
~
i
~
I
?
j 0 1 1 l l l 0 50 100 150 200 250 TIME, SEC ,
I I
i Figure 6.2-31 CONDENSING HEAT TRANSFER COEFFICIENT 4
FOR PASSIVE HEAT SINKS USED IN THE MINIMUM CONTAINMENT PRESSURE ANALYSIS FOR ECCS PERFORMANCE
~
- e ;
S !
lt h = 4.xh (TAGAMI) ;
w max o i y LINEAR :
w m t 7-
< l 5 h=h Stag + (h max -h Stag) e .025(t-t p ) t Q
E l E
h Stag = 1.2 h (UC'HIDA) !
m :
/
5 o
.h o =8. i 2 i t
8 p TIME i REFILL- !
BLOWDOWN REFLOOD TIME OF ANNULUS DOWNFLOW l t
t i
4
Figure 6.2-32 HINIMUM CONTAINMENT PRESSURE FOR ECCS PERFORMANCE ANALYSIS 0.6 DOUBLE-ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG 60
.: 1 i
I
. r 50 . ;
40 _
en i n_
15 {
w '
a 30 x
~
m ,
T O_
20 ; j t
l 10 .
~
0 O 100 200 300 400 500 TIME, SEC I
Figure 6.2-33 CONTAINMENT ATMOSPHERE TEMPEPATURE 0.6 DOUBLE-ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG 300 i6 4
6 250 .
'200 l 8
o -
5 ;
e :
3 150 t2 _
~
s -
N ~
100 j
'm b
6 50 1 4
6 e
0 .
0 100 200 300 400 500 TIME, SEC
Figure 6.2-34 CONTAINMENT SUMP TEMPERATURE 0.6 DOUBLE-ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG 300 250
'200 - -
8 o -
~
tJ n' -
?150 g ..
~
E s -
N ~
100 50 tI ff fff1 I 0 i1 1I fifit i1g tggg33 gg9ggg i gg gg,gg gy 9g 0 100 200 300 400 500 TIME, SEC
I REFERENCES I
- 1. 10 CFR 50.46, " Acceptance Criteria for Emergency Core Cooling Systems for Light Water Nuclear Power Reactors," Federal Register, Vol. 39, No.
3, January 4, 1974.
- 3. CENPD-132P, " Calculative Methods for the C-E Large Break LOCA Evaluation Model," August 1974. l CENPD-132P, Supplement 1, " Calculational Methods for the C-E Large Break -
LOCA Evaluation Model," February 1975. .
CENPD-132P, Supplement 2-P, " Calculational Methods. for the C-E Large Break LOCA Evaluation Model," June 1975. ,
CENPD-132, Supplement 3-P-A, " Calculative Methods for the C-E Large Break LOCA Evaluation Model for the Analysis of C-E and }! Designed .
NSSS," June 1985. .
i
- 4. CENPD-133P, "CEFLASH-4A, A FORTRAN-IV Digital Computer Program for '
Reactor Blowdown Analysis," August 1974. '
CENPD-133P, Supplement 2, "CEFLASH-4A, A FORTRAN-IV Digital Computer !
Program for Reactor Blowdown Analysis (Modifications)," February 1975. '
CENPD-133, Supplement 4-P, "CEFLASH-4A, A FORTRAN-IV Digital Computer :
Program for Reactor Blowdown Analysis," April 1977.
CENPD-133, Supplement 5, "CEFLASH-4A, A FORTRAN 77 Digital Computer i Program for Reactor Blowdown Analysis," June 1985.
i
- 5. CENPD-134P, "COMPERC-II, A Program for Emergency Refill-Reflood of the !
Core," August 1974.
CENPD-134P, Supplement 1, "COMPERC-II, A Program for Emergency Refill-Reflood of the Core (Modifications)," February 1975.
E
~
CENPD-134, Supplement 2, "COMPERC-II, A Program for Emergency Refill- !
Reflood of the Core," June 1985. C
- 6. CENPD-135P, "STRIKIN-II, A Cylindrical Geometry Fuel Rod Heat Transfer Program," August 1974.
CENPD-135P, Supplement 2, "STRIKIN-II, A Cylindrical Geometry Fuel Rod .
Heat Transfer Program (Modifications)," February 1975.
l CENPD-135, Supplement 4-P, "STRIKIN-II, A Cylindrical Geometry Fuel Rod Heat Transfer Program," August 1976.
CENPD-135P, Supplement 5 "STRIKIN-II, A Cylindrical Geometry Fuel Rod Heat Transfer Program," April 1977. ,
t
- 7. CENPD-138P, " PARCH, A FORTRAN-IV Digital Program to Evaluate Pool <
Boiling, Axial Rod and Coolant Heatup," August 1974.
CENPD-138P, Supplement 1, " PARCH, A FORTRAN-IV Digital Program to .
Evaluate Pool Boiling, Axial Rod and Coolant Heatup (Modifications),"
February 1975.
CENPD-138P, Supplement 2-P, " PARCH, A FORTRAN-IV Digital Program to Evaluate Pool Boiling, Axial Rod and Coolant Heatup," January 1977. ,
- 8. CENPD-139-P-A, "C-E Fuel Evaluation Model Topical Report," July 1974.
CEN-161(B)-P-A, " Improvements to fuel Evaluation Model," August 1989.
CEN-161(B)-P, Supplement 1-P, " Improvements to Fuel Evaluation Model,"
April 1986.
Letter, A.C. Thadani (NRC) to A.E. Scherer (CE), " Generic Approval of C-E Fuel Performance Code FATES 3B (CEN-161(B)-P, Supplement 1-P) (TAC NO.
M81769)," November 6, 1991.
- 9. Appendix K - ECCS Evaluation Models,10 CFR 50.46,
- Acceptance Criteria for Emergency Core Cooling Systems for Light Water Nuclear Power Reactors," Federal Register, Vol. 39, No. 3, January 4,1974.
O
.