ML19343A863
| ML19343A863 | |
| Person / Time | |
|---|---|
| Issue date: | 10/31/1980 |
| From: | Eckerman K, Matt Young NRC OFFICE OF STANDARDS DEVELOPMENT |
| To: | |
| References | |
| NUREG-0707, NUREG-707, NUDOCS 8011240067 | |
| Download: ML19343A863 (61) | |
Text
-
NUREG-0707 A Methodology for Calculating Residual Radioactivity Levels Following Decommissioning 4
Manuscript Completed: July 1980 Date Published: October 1980 K. F. Eckerman, M. W. Young Division of Siting, Health, and Safeguards Standards Office of Standards Development U.S. Nuclear Regulatory Commission Washington, D.C. 20555 i
p
- M %,
s
,4
,.... i t
1
(
$p} ' k
ABSTRACT Determination of a policy for decommissioning nuclear fuel cycle facilities requires establishing a relationship between potential dose to an individual and the radioactive contaminant existing on surfaces and in soil.
The accumu-lation of dose can be controlled by restricting the amount of contaminant and/or the exposure time.
Hence, a relationship between resultant dose to man and nuclide concentrations on surfaces and in soils considering environmental trans-port is needed.
This report presents a methodology for predicting radionuclide contamination levels that relate to a defined annual dose to an individual in the post-deposition period.
Transport of radioactive contaminant through the environ-ment and realistic exposure rates are modeled.
The code that incorporates the methodology is documented in this report.
i
TABLE OF CONTENTS Page Abstract.........................................................
i 1.0 Introduction................
1 2.0 Methodology for Assessment of Residual Contamination.........
2 2.1 Introduction............................................
2 2.2 Calculation of Time Dependent Nuclide Spectra...........
3 2.3 Exposure Pathways.......................................
5 2.3.1 External Exposure to Deposited Radionuclides.....
6 2.3.2 Inhalation of Resuspended Radionuclides..........
7 2.3.3 External Exposure to Resuspended Radionuclides...
8 2.3.4 Ingestion of Contaminated Fogds.................
10 2.4 Dosimetry Mode 1........................................
14 2.4.1 Dosimetry of Internal Emi tters..................
16 2.4.2 Dosimetry of External Exposures..................
17
- 2. 5 Computation of Residual Activit 22 Conclusions....................y............
2.6 25 3.0 Application of Code............................
25 REFERENCES.................................
29 APPENDIX A:
Listing of Computer Program for Assessment of Radio-nuclide Pathway Concentrations and Doses...........
A-1 APPENDIX B:
Code Input Instructions.......
B-1 APPENDIX C:
Listing of Example Input and Output Stream...........
C-1 APPENDIX D:
Parametric Sensitivities..............
D-1 t
ii
I LIST OF FIGURES Page 1.
Resuspension Factor as a Function of time...........
8 i
1 i
h E
J l
i i
9 I
T iii
LIST OF TABLES Page
- 1. Ratio of Submersion Dose Rates in Finite Room Sizes to the Dose Rate for a Semi-infinite Region................................
19
- 2. Ratio of the Dose Rate from Surface Jeposits in a Room to that from an Infinite Plane Contaminated at the Same Level..........
21
- 3. Ratio of the Dose Rates Above an Infinite Plane Volume Source to that of a Surface Source.......................
23
- 4. Radionuclide Dose Assessment...................................
28 5, Predicted Residual Concentrations of Major Radionuclides.......
28 D-1. A Listing of Internally Defined Parameters....................
D-3 0-2. Sensitivity of Internal Code Parameters to Ingestion Dose Calculations................................................
D-4 4
4 iv
1.0 Introduction The " Plan for the Reevaluation of the NRC Policy on Decommissioning of Nuclear Facilities," NUREG-0436 (Ref. 1), identified the need for specifying acceptable criteria for residual radioactivity following decommissioning for both surface and volumetric facility component contamination and for residual radioactivity in soil.
A description of the methodology or computational basis which deter-mines residual activity limits is needed by decommissioning management for identifying the potential dose to individuals from any contaminant.
The dose data are expected to be part of the information needed for making future decommissioning decisions such as release of sites for unrestricted use, the need for additional cleanup operations, etc.
i The methodology, assumptions, and parametric definitions used for establishing criteria for residual radioactivity is presented in the report.
1 i
t t
- 2. 0 Methodology for Assessing Residual Contamination 2.1 Introduction i
}
Numerical estimates of radiation dose to man must be developed for evaluating l
residual contamination levels of radionuclides associated with decommissioning various facilities.
These estimates will provide insight into (a) what residual
.j radioactivity levels would be related to a particular dose level, (b) which of the various exposure pathways are significant, and (c) which nuclides associated with the facility are significant dose contributors.
1 j
Given the information on the particular radionuclides ar.d their quantities in the residual contamination, the computational model estimates:
1.
the relative quantities of the various nuclides present at times following the decommissioning of the facility; and 2.
the quantities of the various nuclides that would correspond to a specified dose value at the time the. facility is released.
1 The environmental exposure modes considered are irradiation from surface deposits 1
and resuspended radionuclides, inhalation of resuspended radionuclides, and 1
ingestion _of food products contaminated by plant uptake of material from the soil and the deposition of resuspended radionuclides onto the foliar portion of plants.
Ingestion of drinking water is not included as an exposure mode
'because of the remote possibility that the pathway would exist.
The existence I
of this expo <<re pathway at a facility should be dete" mined at the time of decommissior.iag and thus considered in a site-specific evaluation.
I The modeling approach assumes that the residual radioactivity is associated with soil or contained on or within the structure of the facility.
The resid-ual~ levels in these somewhat ' fixed' media serve as the ' initial conditions' for the model and the driving function for the various pathway nodels, t
i 1
4 f.
2 u
m
--m
The mathematical modeling of pathways to man drew heavily from past staff efforts, e.g., " Final Generic Environmental Statement on the Use of Recyled Plutonium in Mixed Oxide Fuel in Light-Water-Cooled Reactors," NUREG-0002 (GESMO, Ref. 2), ar.d " Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Regulatory Guide 1.109 (Ref. 3).
However, considerable ef fort was devoted to updating the methodology, in particular, adoption of the recently published International Commission on Radiological Protection (ICRP)
Publication 26 dosimetry methods (Ref. 4).
Information relating absorbed dose to the risk of biological effects has per-mitted the ICRP (Ref. 4) to consider two categories of radiation effects, namely, stochastic and non-stochastic effects.
The stochastic dosimetric system recom-mended by the ICRP entails the calculation of absorbed dose to body organs and tissues and weighting these doses in a manner to reflect the total risk from stochastic effects.
2.2 Calculation of Time Dependent Nuclide Spectra The starting point of the numerical evaluation is the estimate of the relative abundance of the various nuclides defining the residual radioactivity.
An assumption of the approach is that the facility decommissioning procedure would have removed radioactivity not fixed to exposed surfaces and provided assurance that no points of active release to the environment existed.
Given this starting point, the most significant process altering the radioactivity levels following the completion of decommissioning would be radioactive decay.
The kinetics of radioactive decay are well understood and can be accurately calculated.
Since many of the radionuclides decay to radioactive nuclides, i.e., daughter products, the mathematical model must consider the ingrowth of these daughter products.
Following Skrable, et al. (Ref. 5), consider the serial transformati,on of the members of a radioactive chain, e.g.,
3
[
P O-4
~
A
+ '
'A A
Ay+
A g
g 1
2 3
A
'A A
A A
j 2
3 i-1 i
j f(1,2) f(2,3) f(3,4).....
f(1-1,1) f(i.i+1) j where l
A denotes the activity of the i chain member; th g
th A
is the decay constant for the-i member (In2/T ); i g
g
~
th f(i,1+1) is the fraction of the i member decays leading to the i+1' species; and q
P is the production rate of the first chain member.
g t
The differential equation ~ governing the system is then l
f E=P -AA
- where4sh, (1) y g
yy i
j 4
- I(l'2)A A -AA (2) 2 2y 22 a
4 = f(i-1,1)A A;_y'- A A; (3)'
9 j
j s
e th The general solution for the activity of the i member as a function of time t, assuming that at-t=0, A =A, and A =0'9, i > 1, can be expressed as y
g A exp(- A t)
Pg [1 - exp(-A t)]
(4)-
A (t) =
f(j,j+1)A g
k k
j j ( k=1,. }) (3 _3)
)
A k
)
' j2 o
2:1 f=1 Rfk 2/k Radionuclid,e species fornied by branching, i.e., _ f(i,i+1) < 1, are evaluated by applying the equation over the new lin ar chain formed.
1 4-i i
...T..
- _. - -.,. - ~
2.3 Exposure Pathways This section discusses the computational model used to calculate the radiation exposure of an individual residing in an environment contaminated with a residual level'of radioactive material.
The exposure modes considered are irradiation from surface and subsurface deposits and resuspended radionuclides, inhalation of resuspended radionuclides, and ingestion of food products contaminated by plant uptake of material from the soil and the deposition of resuspended radio-nuclides onto the foliar portion of plants.
th A generalized expression for the annual dose through the p exposure mode can be written as N
P P
D (t) = U IAy(t)DFy (5) i=1 where P
th D (t) is the annual dose from the p exposure pathway at time t; th UP is the annual usage of the p pathway media; th th A{(t) is the concentration of the i radionuclide in the p pathway media at time t; and th th DF is the dose factor for the i radionuclide in the p athway media.
It is evident from the above that we have chosen to represent the pathway con-centration during the year of exposure by a point estimate at time t rather than a mathematical average over the year.
The nuclides of interest in this study are of sufficient half-life that little rigor is lost in this simplification.
In a decommissioned facility the radionuclides of concern have half-lives ranging from 5 years to several thousand years.
Shorter lived radionuclides will decay or will have been removed by the decontamination process during decommissioning.
For example, in a reactor facility, the primary radionuclides expected to remain 5
as trace contaminants are Co-60 and Cs-137 with half-lives of 5.2 years and 30 years, respectively.
2.3.1 External Exposure to Deposited Radionuclides 1
The residual radioactivity deposited on surfaces in the working environment, e.g., building walls, or in the site environment, e.g.,
soil, would result in an external irradiation of an exposed individual.
The annual dose received by the individual is determined by the amount of contamination, the decay processes of the individual nuclides, i.e., energy and intensity of photons emitted, and the duration of the exposure.
The time dependences of the dose rates are deter-mined by the decay and daughter ingrowth processes.
As surface deposits pene-trate inward or are removed by " weathering actions" the dose rate will decrease more rapidly than is indicated by radioactive decay.
The maximum exposure scenario would have a person residing on the deposited P
material 8766 hours0.101 days <br />2.435 hours <br />0.0145 weeks <br />0.00334 months <br /> per year.
This occupancy time, U, of 8766 hours0.101 days <br />2.435 hours <br />0.0145 weeks <br />0.00334 months <br /> per year is defined internal to the code.
Iralistic occupancy times can be input into the code as a usage fraction for each exposure mode.
Factors that tend to reduce exposure in a, realistic situation are:
1.
A person spends approximately 10% of his time outdoors and only a fraction of this time might be spent on the site.
2.
Building materials provide shielding that reduces the external irradi-ation of the body.
For example, less than 10% of cobalt-60 gamma 3
rays will penetrate 11 inches of concrete (density of 147 lb/ft )
and only about 10% of cesium-137/Ba-137m gammas penetrate 9 inches of concrete.
3.
Roads, sidewalks, and buildings all provide additional shielding from the radiations emitted by nuclides on the ground surface.
- However, some of these materials may contain higher natural radiation levels than the desposited activity.
6
1 Inside a building released for industrial use, an occupancy time for an individ-ual of 2000 hours0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> (50 40-hour weeks) per year would be appropriate.
A realistic time for residing out-of-doors is difficult to quantify owing to the many options available for site reconstruction.
The dose factors used in the evaluation of external irradiation were those of Kocher (Ref. 6).
These factors were developed for a receptor on an infinite contaminated plane.
For evaluation of exposure in the environment, a factor of 0.5 is applied to account for the influence of ground roughness on the dose rate above the surface.
Use of the dose factor in conjunction with surface contamination of a building is discussed in Section 2.4.2.
2.3.2 Inhalation of Resuspended Radionuclides Resuspension of radionuclides deposited on surfaces would result from mechanical disturbance of the deposited material and entrainment in moving air adjacent to the surface.
Only a small fraction of the deposited activity would be expected to resuspend.
Thus, the external irradiation by submersion in the airborne con-taminants would, in general, be of minor dosimetric significance compared to irradiation from the bulk of the material remaining deposited.
Howver, in the case of fuel cycle facilities where transuranics are the pre-dominant nuclides, internal exposure through inhalation of the resuspended material is the primary mode of irradiation.
There is very little penetrating radiation associated with the transuranic nuclides.
The airborne concentration of resuspended material can be estimated from the surface concentration using a resuspension factor.
The ratio of the airborne concentration to the surface concentration is defined as the resuspension factor, K, i.e.,
3
- resuspended airborne activity (Ci/m )
K _ deposited surface activity (Ci/m )
x This factor is an input parameter of the computer code.
A default value of
-8 10 per meter has been set in cenjunction with Figure 1, which illustrates the 7
h functional dependence of K on the post depusition time.
This dependence was developed by Auspaugh et al. (Ref. 7) to analytically represent the influence of weathering on the resuspension factor.
The present methodology treats the resuspension factor as a time invariant parameter.
A default value for K of
-8 10 per meter tends to interject conservatism into the dose calculations as indicated by the data of Figure 1.
Analysis of contamination inside buildings should probably specify a larger resuspension factor e.g.,
10
, to reflect less restrictive surfaces.
Three models that address the resuspension phenomena are available:
resuspen-sion factor, mass-loading of the air, and resuspension rate.
The resuspension factor approach is currently being used owing to its simplicity and its pre-dominance in the literature.
However, prediction of resuspended airborne con-centrations using the resuspension factor approach is suspect because of the wide range of experimental values in the literature.
Recent analysis has suggested that, for generic studies, a mass loading approach (Ref. 8) appears preferable because the resuspension rate approach requires detailed knowledge q
of the contaiainant distribution and the resuspension factor is too undefined.
{
Additional investigations are needed to determine the merits of each approach and may possibly be addressed in a later report.
An annual inhalation intake of 8300 m, as recommended by ICRP-23 (Ref. 9), is specified in the code.
For individuals working in a decommissioned facility, the fraction 0.29 of the annual intake is considered associated with occupa-tional intake as derived from ICRP-23.
2.3.3 External Exposure to Resuspended Radionuclides Resuspension of radionuclides from a surface results in airborne concentration of the radionuclides.
Radiation emitted by the decay of airborne radionuclides external to the body represents an addition &l pathway of external radiation.
This pathway is referred to as the " submersion" exposure because the individual is submersed in the air containing the radioactivity.
8
~_
k
}
10' i
i i
i i
i 1
1
~9 10 gg-10
- T E
-11 g 13 G
S
$ 10 e
G 5
Si 10-13 au 10'l4 l
10'U I
f I
I I
I I
-16 10 5
10 15 20 25 30 35 40 TIME AFTER DECOMMISS10NING, YR FIGURE I Resuspension Factor as a Function of Tfne
- Jenkins. C. E.', Schneider K. J., Irfjtnolony. Safetund costs of Decomenissioning a Reference Nucleaf Fuel Reprocessina Plant, NUREG-0278 Vol.1 Pacf fic Nortlwest Libraryfor U.S. Nuclear Regulatory Conselssion.
October 1977, p. 6-10
T As. discussed above,-only a small fraction of the deposited activity is expected to be resuspended; thus this exposure pathway would not be expected to.be signif-icant compared to the exposure'to the-deposited activity (Sect. 2.2.1).-
Never-theless, we have. included an evaluation of this potential pathway in~the analysis.
The usage rates as set forth for exposure to the surface deposition (Sect. 2.3.1)
.are applicable to these considerations.
2.3.4-Ingestion of Contaminated Foods Contamination of food items could result through the deposition of resuspended material onto the foliar portion o' vegetation and through uptake by the plant:
of material directly from the so,I.
This contamination would reach man-through either his direct consumption of the vegetation or his use of products derived from animals consuming the vegetation. -The pathway model employed is basically that presented in the'GESM0~(Ref. 2) and Regulatory Guide 1.109 (Ref. 3) with minor modifications as discussed below.
Concentration in Vegetation:
The major factors to be considered in the evalua-tion of the foliar deposition of resuspended activity are (a) the resuspension factor, (b) the fraction of deposited material captured by the vegetation, (c) the deposition rate for airborne activity, and (d) the retention of the i
deposited material.
1 As discussed above, the resuspension factor relates the air concentration to the surface concentration.
For crops and garden produce, tilling the soil mixes the surface deposit into the soil volume.
Natural processes tend also to result in downward migration of the deposition.
In evaluating the uptake from the soil by vegetation, the deposit is considered to be uniformly mixed within the 3
plow layer.
An average soil density is 2000 kg/m, however, for tilled soil 2
(top 7 inches) a plow-layer density thickness of 240 kg/m is reasonable.
The activity within a centinater of the soil surface (Ref. 2) is considered to be
-8 available for resuspen'sion at the rate-of 10 per meter (default value) or as specified by user input.
For pasture vegetation from which one half the diet of beef and milk animals is considered to be derived from, the pasture land (range)-is-not considered to be tilled and the total deposit is assumed to be available for_resuspension.
i-10-y
-r.
.,,-w
+
---c
~
J k
l For-all_ vegetation. types, the fraction of the deposited airborne activity'that lis captured by the vegetation,.the capture fraction, is taken as.0.3 (Ref. 3).
j The captured material.is assumed to be retained following first-order' kinetics with'a'.14-day half-time in addition-to the radiological decay process (Ref. 3).
Activity removal in food preparation or additional decay during the period i
between-harvest and consumption was not considered.
It should be noted that.
.for the nuclides of interest here, radiological decay during transit from field -
to table-can be_ neglected.
th The contribution of-foliar' deposition to the concentration of the i radio-nuclideinvegetation,Cf(t),can(thenbeexpressedas Cf(t)=y Kdj(t),
(6) r i
where-r is the fractional capture of the depositing airborne activity; v
is the deposition velocity (m/sec);
i is~the vegetation density (kg/m );
2 v
A
'is the total removal rate constant for deposited material i
e
-(sec'I);
K is'the resuspension factor (m-1); and 8
th C
is the effective surface concentiation of the i nuclide 2
available for resuspension (pCi/m )
Asdiscussedabove,dj(t)dependsuponwhetherthesoilisbeingtilledornot.'
-Thus,_forpasturevegetation,Cj(t)isthetotalsurfacedepositioncorrected
),
fordecayanddaughteringrowth-totimet,i.e.,dj(t)=Cj(t),whereCj(t)-is j
'the surface deposition.
For tilled soil, the effective surface concentration is the_ total deposition Cj(t), multiplied by the ratio of the thickness of. the resuspension layer, P, to the-mixing depth or plow layer, P '
r d
rj(t)/P' I) gs(t) = P C
d
(
i 1
11
2 where P is the plow layer density thickness (i.e., 240 kg/m ), and P is the d
r 2
density thickness of the resuspension layer (12 kg/m ).
The surface concentra-tion,C{(t),isthetotalamountofmaterialpresentinthesoilperunitarea, corrected for decay and daughter ingrowth.
Uptake of material by vegetation directly from the soil provides an additional mechanism for contamination of food products.
This mechanism can be modeled using a simple transfer coefficient which relates the nuclide concentration in vegetation to the concentration in the root zone (Ref. 3).
The concentration invegetationarisingfromrootuptake,C[(t),canbeexpressedas C'j(t) = B{ C{(t)/P,
(8) d th whereB{isthetransferfactorforthei nuclide between vegetation and soil.
Combining expressions 6, 7, and 8, then the concentration in vegetation, C{(t),isgivenas C{(t)=Cf(t)+C[(t)
(9) re P BY
[y3 K + [d ]C)(t),vegetationontilledsoil
- d C{(t)={
(10) y B.
[ y] K + p'
]C{(t),pasturevegetation e
d TheB{parametersusedintheanalysisaretabulatedinAppendixC.
The values are primarily those presented in the GESMO (Ref. 2) and Regulatory Guide 1.109 (Ref. 3) with more recent Pb and U values from Reference 10).
Tabulated below are the values assigned to the other parameters of equation 10:
Parameter Value assigned r
0.3 v
864 m/ day, i.e., 1 cm/sec 12
2 P
12 kg/m r
2 P
240 kg/m (default value for root d
zone)
A.
In (2)/14 days plus the decay constant e
(1/d)'of the nuclide 2
Y 0.75 kg/m - wet weight for pasture grass 2.3 kg/.72 - wet weight for agricultural crop and garden produce K
10-8,-1 (default value)
Concentration in Animal Products-A fraction of the activity ingested by milk and meat animals will appear in milk and products.
These animals were considered to obtain '.neir diet from both pasture (range) and forage crops.
The major distinction between these two vegetation sources is the aerial density of the vegetation cover and the soil management practice.
As noted above, pasture lands are assumed not to be tilled and thus the deposited activity is not mixed in the plow layer.
Letting f denote the fraction of the animal's diet obtained from pasture, the concen-th radionuclideintheanimal'sdiet,Cf(t),is t ation at time t of the i Cf(t)=fCf(t)+(1-f)Cf(t),
(11) p p
where th Cy(t) is the concentration of the i nuclide in pasture grass (pCi/kg); and th Cy(t) is the con' centration of the i nuclide in forage crops (pCi/kg).
Theseconcentrationsinthecomponentsoftheanimal'sdiet(CyandC)areesti-j mated from Equation 10 with use of the appropriate numerical parameter values as j
discussed above.
13 1
th The concentration of the i nuclide in animal products is then estimated'as
'C{(t)=.AF{Cf(t)',
(12) where-A is the amoun_t of vegetation ingested bylthe animal'(50 kg/d);
and th F{
is the fraction of the~i nuclide transferred to the animal product (d/ liter-milk) or (d/kg-meat'j.
Values for the F{ parameter for milk and meat are given in Appendix C.
The data for milk were taken from Reference 11 and the data for meat were obtained from GESMO (Ref. 2) and Regulatory Guide 1.109 (Ref. 3) and updated from.
McDowell-Boyer, et al. (Ref. 10).
food Consumption Rates The' consumption rate of food products has been defined according to the maximum exposed individual data presented in Reference 3.
Consumption rates for milk, meat, and vegetables are specified as follows:
Pathway Consumption Rate Milk 310 f/yr Meat 110 kg/yr.g Vegetable and Fruit 400 kg/yr These food'consumptio'n rates are defined as internal parameters to the code and cannot be altered during input.
1 2.4 Dosimetry Model Over the past decade, information has become available to permit a prudent quantification of the relationship between absorbed dose and the risk of bio-logical effects.
This information_ permitted the International Commission on Radiological Protection ~(ICRP)-(Ref. 4) to consider two categories of radiation 14 f
~.
effects, namely,-stochastic and non-stochastic effects.
Stochastic effects are those disorders, e.g., cancer, for.which the probability of an effect occurring, rather than its severity, is a function of absorbed dose.
Radiation-induced effects whose severity is a ' function of' absorbed dose are
~
referred to as non-stochastic effects.
Non-stochastic effects exhibit a' threshold or pseudo-threshold that must be exceeded before the effect is induced.
The ICRP considers that non-stochastic effects can be prevented at radiation dose levels much higher than-the levels of concern in this report so
~
no further consideration of these biological effects is presented here.
For stochastic effects, the ICRP recommended a dosimetric system that considers the total stochastic risk incurred from-the irradiation of various body tissues.
This concept, based.on a linear non-threshold dose-response relationship, results in a summing of the absorbed doses to the various organs or tissues of the body.
~
Weighting factors are employed in the summation so that radio-sensitivity of the exposed tissues is included in the procedure.
The resultant dose quantity, the effective dose equivalent, represents the total stochastic risk even under conditions of non-uniform irradiation of the body; a condition often encountered in the case of internal emitters.
The dose quantity is expressed as t
H =IW H (13) e i
j where H
is the effective dose equivalent (mrem);
e th W
is the weighting factor for the i tissue or organ; and j
th
'H is the dose equivalent for the i tissue or organ (mrem).
j Note that we have continued using the "old" units rather than the SI units in this report.
Tabulated below are the organ weighting factors recommended by the ICRP (Ref. 4).
It'should be noted that these weights were developed specifi-cally for radiation workers; however, the ICRP has indicated that they may be considered as appropriate for the general population (see paragraph 125 of Ref. 4);
15
Organ Weighting Factors W
Organ / Tissue
_i Gonads 0.25 Breast 0.15 Red bone marrow 0.12 Lung 0.12 Thyroid 0.03 Bone Surfaces 0.03 Remainder 0.30 The value specified for the remainder, 0.30, is to be allocated equally to the five remaining organs or tissues (0.06 each) receiving the highest dose equiva-lent. When the gastrointestinal tract is irradiated, the stomach, small intes-tine, upper intestine, and lower intestine are considered as four separate organs.
For further details on the origin and development of the weighting factors the reader is referred to ICRP-26 (Ref. 4).
2.4.1 Dosimetry of Internal Emitters The ICRP has not published, at the time of this writing, the report of Commit-tee 2 setting forth detailed dosimetric and metabolic models with the numerical results developed by its calculational task group.
However, the National Radia-tion Protection Board of the United Kingdom has published a report (Ref. 12) employing the Committee 2 methods in conjunction with the approved dosimetric and metabolic models of ICRP Committee 2.
The dose conversion factors for inges-tion and inhalation exposures used in this study were obtained from that report.
Fo" further details, the reader is referred to Reference 12.
However, we will note here:
1.
A quality factor of 20 for alpha particler and recoil nuclei was employed.
2.
The modifying factor, n, was taken as unity.
3.
The dose was based on a fifty year commitment period.
16
4.
For inhalation calculations, a particle size of one micron AMe" (Activity Median Aerodynamic Diameter) was assumed.
5.
The lung model ~of the ICRP Task Group on Lung Dynamics (Ref.13) was used.
6.
The GI tract model of Eve (Ref. 14) was employed.
7.
The bone dosimetry included consideration of both the active marrow and bone surface tissues indicated to be at risk (Ref. 4).
Following publication of the ICRP Committee 2 report, the dosimetric data used by the computer code may be updated from this source of data.
2.4.2 Dosimetry of External Exposures The dose factors for external exposures were adopted from the work of Kocher (Ref. 6).
As the body organs are relatively uniformly irradiated by the exter-nal radiation exposure, the effective dose equivalent rate is adequately esti-mated by the total body dose rate factors given in the above reference.
The factors developed by Kocher were based.on a semi-infinite airborne activity distrit,ution and an infinite ground plane geometry for the consideration of exposure to airborne and deposited' activity, respectively.
These factors are applicable to exposures in the general environment; however, their use in evalu-ating indoor exposures and potential conservatism in this application merits further discussion.
Conservatisms in External Exposure Estimates Following the methods of Kocher (Refs. 6, 15), the ratio R(E) of the dose rate from submersion in an airborne activity of finite radius r to the semi-infinite dose rate, assuming uniform and equivalent activity concentrations, R(E), is given by 17 1
1
4 p'"'
R(E) =
1e~P" +
C' D-1)pr, y
[(D - 1)pr - f]e (14)
E
. (D-1)2 4
i
'-where p
is the ' linear attenuation coefficient' in air for photons of
-1 energy E, cm ;
p
'is the linear energy absorption coefficient-in air for photons-en
~I f-of-energy E, cm i r
is the hemisphere radius, cm; and' C and D are energy dependent coefficients of the Berger form of the j.
buildup factor, i
i As the coef ficient D of the buildup factor is less than unity, the above ratio is then less than unity, i.e., the semi-infinite geometry is conservative.
t Tabulated in Table 1 are the submersion dose rate ratios for various size rooms assumed to be hemispherical as a function of photon energy.
As can.be seen from the tabulation, over.a~rather broad energy region (0.05 to 2 MeV) the semi-infinite factors are conservative by factors of 40 to 90 depending on the room size.
As discussed above, the submersion-dose is not significant relative to the dose associated with direct exposure from the deposited radio-active materials, and thus the noted conservatism is not important in analyzing the external dose rates from contaminated walls and surfaces.
t The factors used for estimation of the dose rate from exposure to deposited l
radionuclides were developed from the geometry of an infinite plane surface deposit. 'These factors were applied in the analyses to the consideration of I
contamination on room surfaces.
Following.Kocher (Refs. 6,15) the ratio of the dose rate from surface deposits on the walls and floor of a room to that for an infinite plane. contaminated at the same level is given as k
pr + Cpre(0-1)pr + E (pz) - E (pa) + (D - 1) *(D-1)pa ~ *(D-1)pz C
i-l l
(15) e R(E)
C (D-1)pz E (PZ) ~ (D - 1) l l
i i
18-
l Table 1-r
~
- Ratio of Submersion Dose' Rate in Finite Room Sizes to
-the Dose Rate for a Semi-infinite Region l
Photon Room Size (m )
3 Energy (MeV) 100 200 500 1000 0.01-0.83 0.88 0.92-10.94~
0.'02 0.20 0.24 0.31 0.38 0.05 0.019 0.025 0.035 0.046-0.03 0.012 0.015 0.021 0.028 0.10~
0.011 0.014 0.020 0.026 0.20 0.012 0.015 0.021 0.027 0.50 0.013 0.016 0.022 0.028 0.80 0.013 0.016 0.024 0.027
- 1. 0 0.012 0.015 0.021 0.026-2.0 0.010 0.013 0.017 0.022 I
19 e
-p g
+-
e a+M--
T-r+e 3
-#=
-w
-m
+y-r-g-ev->*'-
+rm e
+
where z
denotes the height above the floor, taken to be 100 cm; r
is the radius of a hemispheric room (cm);
E (x) denotes the first-order exponential integral; and l
2 2 + z, a
is given as a = /r Tabulated in Table 2 are the ratios for various size rooms as a function of photon energy.
It should be emphasized that the data of Table 2 assumes a hemi-spheric room geometry.
This approximation appears reasonable for small room 3 room of Table 2, the height sizes; however, for large rooms, such as the 1000m of the " ceiling" becomes quite large.
Thus, the hemispheric geometry for large rooms may underestimate the ratio as tabulated.
In the limit of room size, the ratio for a rectangular room would approach about 2, i.e., the individual is exposed to two infinite planes.
For the smaller rooms, the conservatism introduced into the analysis by use of the infinite plane geometry ranges from a factor of two to three at the higher energies and approaches unity or 20%
greater at the lower photon energies.
In the formulation of the dose factor for exposures to deposited activity, the radionuclides were assumed to be distributed on the surface of the medium, i.e.,
walls or ground plane.
If the nuclides are distributed within the volume of I
the medium the dose rates will be reduced by the attenuation within the source region.
The ratio of the dose rate above an infinite plane uniformly contami-2 nated with a photon emitter throughout the density thickness D(g/cm ) relative to the case where the activity is assumed to be on the surface is approximately given by E (pz)
(16) 2 R(E) = O(p/p) E (pz) i 1
20
Table 2 Ratio of the Dose Rate From Surface Deposits in a Room to That From an Infinite Plane Contaminated at the Same Level 3
Photon Room Size (m )
Energy (MeV) 100 200 500 1000 0.010 1.2 1.1 1.1 1.0 0.020 0.89 0.95
- 1. 0
- 1. 0 0.050 0.39 0.44 0.49 0.56 0.080 0.32 0.36 0.40 0.46 0.100 0.32 0.36 0.40 0.46 0.200 0.36 0.40 0.44 0.49 0.500 0.40 0.44 0.48 0.54 0.800 0.41 0.45 0.50 0.55 1.000 0.42 0.46 0.50 0.55 2.000 0.42 0.46 0.50 0.55 I
21
i where D
is the density thickness of the volume source (g/cm );
2 p/p is the mass attenuation coefficient of the source medium 2
(cm /g); and E (x) denotes the so:.ond-order exponential integral.
2 Other factors are as defined above.
Tabulated in Table 3 are the ratios of the dose rates as a function of photon energy assuming:
1.
a density thickness of 240 kg/m, the soil plow layer thickness 2
noted above; and i
2.
that the photon attenuation characteristics of soil are approximately those of silicon dioxide (Ref. 16).
The tabulated ratios indicate that the conservatism (introduced by the assumption of a surface rather than volume deposition) ranges from more than ten for photon energies less than 200 kev to five for 2 MeV photons.
In summary, the external dose rates estimated in the analysis of contaminated walls and surfaces are considered to be conservative by a factor of two to ten considering various aspects of the source geometry.
More detailed calculations under specific exposure conditions would be warranted if the nuclide distribu-tion in volumes were more realistically estimated.
2.5 Computation of Residual Activity The methodology outlined above was developed to estimate the concentration of various radionuclides corresponding to a specified dose objective for. residual activity.
The dose associated with a relative spectrum of nuclides is dependent on the nuclide spectrum defined as input to the code and the environmental trans-port pathways considered to be operational.
If we denote D as the resulting dose th and A; as the concentration of the i nuclide defined as input and given a dose 22
Table 3 Ratio of the Dose Rates Above an Infinite Plane Volume Source to That of a Surface Source Photon Energy (MeV)
Ratio ___
-3 0.01 1.4 x 10
-3 0.02 6.8 x 10
-2 0.05 4.1 x 10
-2 0.08 6.2 x 10
-2 0.10 6.9 x 10
~2 0.20 8.5 x 10 0.50 0.11
'0.80 0.13 1.0 0.15 2.0 0.19 r
1 1
23
objective D for the residual activity, the residual concentrations of the various nuclides k are computed as g
k=
A (17) g j.
The methodology was formulated in terms of the surface area concentration of the nuclides, i.e., A is assumed to be in units of activity per unit surface j
area.
These units are generally applicable to the consideration of contamina-tion in the work place, e.g., material on floor surfaces in a laboratory.
Soil concentrations however are traditionally addressed in terms of concentration per unit mass.
It is thus riecessary to convert the surface units to those of mass.
This conversion is carried out assuming the contaminant is uniformly mixed within the plow layer thickness P, as discussed above.
Thus the concen-d tration in soil is given as A I C
=
(18) s o d.
1000 Pd where C
is the soil concentration (pCi/g);
soil 2
A is the surface concentration (pCi/m ); and P
is the soil density thickness (kg/m ).
d The-factor of 1000 converts kilograms to grams.
It should be noted that, for some pathways, the model assumes the nuclides are on the surface of the soil while in the final analyses the dose is assigned to a volume source.
This approach tends to overestimate the dose contribution per unit mass concentration in soil and thus is conservative in assignment of the residual activity.
During the final decommissioning activities at a site the vertici stribution of activity in the soil should be determined, thus
-permitting a.re refined predictive assessment of the exposure pathways in the post-decommissioning period.
24
-2.6 Conclusions s
4 The preceding sections have described a _ methodology -for estimating source concen-trations that relate to a specified annual dose commitment.
However, several
.of these modeling components merit-further investigation and refinement, for-example, the' downward migration of.nuclides into _the soil and the effect of the-vertical: profile on the photon dose estimate.
Also, modeling for resuspension of deposited' material ~should be further examined as noted in Section 2.3.2.
These problems and other' aspects of the computer implementation will be dis-cussed in a later report, if necessary.
Results _that favor realism are desired especially for meaningful comparisons to field or laboratory measurements.
For generic purposes, the methodology will yield slightly conservative results.
In site-specific instances, a more r
refined calculational _ approach might be ' feasible.
It is considered that'the t
values developed in the analysis in conjunction with information on potential conservatisms, do _ provide the necessary insight into the generic radiological aspects of residual radioactivity levels.
I 3.0 Application of Code a
The computer code developed for the numerical analysis is' listed in Appendix A.
The code evaluates the following modes of exposure:
1 1
1.
external irradiation from resuspended radionuclides; 2.
external irradiation from deposited _nuclides; 3.
interna 1 irradiation from inhaled.nuclides; and 4.
internal irradiation from ingested nuclides.
d
{
The user, on input, can select which of the above exposure modes are operative for the evaluation.
For example, in the case of residual radioactive contamina-i tion of a facility devoted to industrial usage, the modes 1, 2, and 3 are pos-
'sible with' usage rates appropriate to the occupational considerations.
Exposure i
mode 4 is,'of' course, applicable only to soil contamination.
All exposure modes i
- may be operative'at a site being released to general usage.
i 25
.m d
l Input instructions for the code are provided ir. Appendix-B.
An examination of
~
parametric sensitivity of.the methodology is presented in Appendix D.
A helpful way for conveying the ~ efficacy of the incorporated code is~ to con-
~
sider an' example case. 'The following discussion describes the data setup =for analysis of a typical pressurized water reactor (PWR) and the calculational results.
.A listing of the inputLstream for the PWR case is shown in Appendix C.
A brief review of the input'follows: The PWR source nuclide spectrum and rela-tive concentrations are identified in the' input.
For this case, the nuclide spectrum was obtained from Reference 17.
The spectrum actually corresponds to that existing at reactor shutdown and contains many short-lived radionuclides t
that'will decay away before decommissioning.
Input to the code is a normalized i
source spectrum including'only radionuclides with half-lives greater than one-half year.
About one year is anticipated to elapse between th: final decom-missioning survey and the release of the site, thus a value of one year is 3
assigned to the " TIM" parameter.
The governing dose rate limit, "DLIM," at ll
" TIM" years is set at 5 mrem /yr, as recommended in Reference 18.
Next, the
~
-6 resuspension factor, " RESP," is set at 10 1/m.
The selection of exposure modes is ' dependent upon wh.ere the contamination exists (environmental or in-side building).
For this example, a contaminated building is being considered.
-Thus, exposure modes; submersion, ground plane, and inhalation are indicated.
l Finally, the usage factors of the exposure are designated; an individual is 5
considered to be susceptible to receiving dose from the submersion pathway,
.the ground plane pathway, and the inhalation pathway at 23, 23, and 29%,
1 respectively,'of the yearly ~ rate.
These factors generate occupancy or' usage rates that yield the realism discussed earlier in the report.
A' listing of the output generated for the PWR analysis is also provided in i
Appendix C.
First, the library of radionuclides'and related information is printed.followed by a listing of the stable element transfer-data used in the environmental transport calculations.
Additionally, environmental pathway usage factors, the governing dose limit, and the post-deposition time are, printed followed by the identified source nuclide information.
I 126-
'The.results are presented in Tables 4 and 5.. Table 4 is an.itemizatinn and accrual of dose rate.(mrem /yr) associated with each radionuclide. As shown in this table, the first column lists the nuclides contributing to-dose.
The
-second column presents the initial concentration of each radionuclide (zero if nuclide is a daughter product) while'the third column shows the activity after
." TIM" years.have elapsed. The next six columns provide a tabulation of the dose rate contribution of:each pathway.
Since the ingestion pathway is inoper-able in this~ example, the milk, meat, and vegetable' pathway columns contain~
zero..The last two columns present total dose rate per nuclide summed over all_ pathways and a running' total, respectively.
The'last line of the table.is an accumulation of each column identified above.
Table 5 is of more pertinence in establishing the major dose' contributors.
First,-the source nuclides are again listed followed by their initial concen-2 trations (pCi/m ).
The' third column identifies the allowable concentration 2
data (pCi/m ) for each nuclide, assuming the same. relative spectrum'as entered
.in input, that corresponds to an individual exposure of DLIM.
The relative percentage.of dose contributed by each nuclide is then enumerated in the fourth column.
The dose. contribution from daughter products-is attributed to the parent present in the source term..In this particular example, Co-60 is observed to.
be the significant contributor to dose.
i l
1 27 J
TABLE 4:
RADIONUCLIDE DOSE ASSESSMENT PLlR DECOM ANAL.. 5 AMPLE RUN...
PCI/M2 PCI/M2 DOSE RATE (MREM /YR)
NUCLIDE Q(I)
ACTIVITY SUB GRD INH MILK MEAT-VEG TOTAL SUM 25MH 54 3.06E-02 1. 3 6 E- 0 2 1.40E-11 2.74E-07 2.06E-10 0.0 0.0 0.0 2.74E-07-2.74E-07 27C0 57 1.41E-03 5.54E-04 8.82E-14 3.02E-09 9.87E-12 0.0 0.0 0.0 3.03E-09 2.77E-07 27CO 60 9.41E-01 8.25E-01 2.83E-09 4.82E-05 2.98E-07 0.0 0.0 0.0 4.35E-05 4.88E-05 385R 90 1.88E-01 1.83E-01 0.0 0.0 5.74E-07 0.0 0.0 0.0 5.74E-07 4.94E-05 39Y 90 0.0 1.84E-01 2. 3 3E-17 2. 3 3E-12 3. 58E-0 9 0. 0 0.0 0.0 3.53E-09 4.94E-05 55CS134 5.41E-02'3.87E-02 7.56E-11 1.64E-06 4.47E-09 0.0 0.0 0.0 1.64E-06 5.10E-05
$5CS137 1.00E+00 9.77E-01 0.0 0.0 7.76E-08 0.0 0.0 0.0 7.76E-08 5.11E-05 56BA137M 0.0 9.24E-01 7.64E-10 1.38E-05 4.23E-10 0.0 0.0 0.0 1.33E-05 6.49E 05 53CE144 1.65E-03 6.77E-04 1.64E-14 6.00E-10 5.70E-10 0.0 0.0 0.0 1.17E-09 6.49E-05 59PR144 0.0 6.69E-04 2.83E-14 4.72E-10 0.0 0.0 0.0 0.0 4.72E-10 6.49E-05 59PR144M 0.0 8.12E-06 5.57E-17 2.13E-12 0.0 0.0 0.0 0.0 2.13E-12 6.49E-05 59PRt44 0.0 8.12E-06 3.44E-16 5.73E-12 0.0 0.0 0,0 0.0 5.73E-12 6.49E-05
-10TAL-3.68E-09 6.39E-03 9.59E-07 0.0 0.0 0.0 6.49E-05 6.49E-05 TABLE 5: PREDICTED RESIDUAL CONCENTRATIONS OF MAJOR RADIONUC!! DES PWR DECOM ANAL.. SAMPLE RUN.
50'J P C C PCI/M2 PCI/M2 NUCLIDE INPUT CALCULATED Mt 54 3.06E-02 2.36E+03 0.423 C0 57 1.41E-03 1.09t+02 0.005 CO 60 9.41E-01 7.25E*04 74.775 SR 90 1.C3E-01
- 1. 4 5 E + 0 4 0.390 C5134 5.4IE-02 4.17E+03 2.529 cst 37 1.00E+00 7.71E+04 21.376 CE144 1.65E-C3 1.27E+02 0.033 DOSE :
5.0 MREM /YR AT 1.0 YEARS 28
i
~
i REFERENCES i
- ~1.
US NRC,-Plan:for Reevaluation of NRC Policy on Decommissioning of-
-Nuclear Facilities, NUREG-0436,-Office of Standards Development, December 1978.
- ~2.
US NRC,iFinal' Generic Environmental Statement on the Use of-Recycled Plutonium in Mixed 0xide Fuel in Light-Water-Cooled Reactors, NUREG-0002, Volume 3. August 1976.
- 3.
US NRC, Calculation of Annual Doses to Man from Routine Releases of p
Reactor Ef fluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I.
Regulatory Guide 1.109, October-1977.
1 4.
Recommendations of the' International Commission on Radiological Protection ICRP Publication 26, Ann. ICRP, 1,.No. 3, Pergamon-Press, Oxford (1977).
5.
Skrable, K., et al., "A General Equation for the Kinetics of Linear First Order Phenomena and Suggested Application," Health Phys. 27, 155 (1974).
- 6.
D. C. Kocher, " Dose-Rate Conversion Factors for External Exposure to Photon and Electron Radiation from Radionuclides Occurring in Routine Releases from Nuclear Fuel Cycle Facilities"; ORNL/NUREG/TM-283, Nureg/CR-0494 April 1979.
7.
L. R. Ar..paugh, J. H. Shinn, and P. L. Phelps, "Resuspension and Redistribution of Plutonium in Soils," UCRL-76419,- Jan. 1975, pp. 14-18.
8.
L.- R. Anspaugh, J. H. Shinn and D. W. Wilson, " Evaluation of the Resuspension Pathway Toward Protective Guidelines for Soil Contamination With Radioactivity," IAEA/WHO Sympsosium on Radiological Safety'Evalua-tion of Population Doses and Application of Radiological Safety Standards to Man andthe Environment, Portoraz Yugoslavia, May 20-24, 1974.
9.
Report of the Task Group on Reference Man ICRP Publication 23, Pergamon
(
Press, Oxford (1974).
10.
McDowell-Boyer, L. M., et al., " Review and Recommendations of Dose Conversion Factors and EnvTronmental Transport Parameters for 2toPb and i
22cRa," NUREG/CR-0574'(1979).
11.
Ng, Y. C., et al., " Transfer Coefficients for the Prediction of the Dose' to Man via the Forage-Cow-Milk Pathway from Radionucl. ides Released to the 1
. Biosphere," UCRL-51939, July (1977).
12.
Adams, N., et al., " Annual Limits of Intake of Radionuclides for Workers," National Radiological Protection Board, NRPB-R82, October J'
(1978).
29
i 13.
International Commission on Radiological Protection, " Task Group on Lung Dynamics, Deposition and Retention Models for Internal Dosimetry of the Human Respiratory Tract," Health Phys. 12, 173 (1966).
14.
Eve, I.
S., "A Review of.the Physiology of the Gastro-Intestinal Tract in Relation to Radiation Doses from Radioactive Materials," Health Phys. 12, 131 (1966).
15.
D. C. Kocher, " Effects of Man's Residence Inside Building Structures on Radiation Doses from Routine Releases of Radionuclides to the Atmosphere," ORNL/TM-6526, December 1978.
16.
J. H. Hubbell, " Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients From 10 kev to 100 GeV," NSRDS-HBS29, August 1969.
17.
R. I. Smith, G. J. Konzek, and W. E. Kennedy, Jr., " Technology, Safety and Cost of Decommissioning a Reference Pressurized Water Reactor Power Station," NOREG/CR-0130, Vol. 2, pp. 7-35, June 1978.
18.
Conti, E.
F., Residual Radioactivity Limits for Decommissioning, NUREG-0613, Office of Standards Development, USNRC, October 1979.
- Available for purchase from the NRC/GPO Sales Program, U.S. Nuclear Regulatory Conmission, Washington, D.C. 20555, and the National Technical Information Service, Snringfield, Va. 22161 30
i
)
l s
APPENDIX A:
Listing of Computer Program for Assessment' of Radionuclide Pathway Concentrations and Doses A-1
s d
MAIN
- 6n 8
?
REDOF PRODUT DOSIT INPUT SOURCE b
PRIiiTB PATHS b
BETH DAUGH LIBPT BRANCH F0 WARD BAKWRD FOOD EXP1 EXFCT IFUN Schematic of Calling Subroutines in Program 'RESID' s
COMPUTER PROGRAM LISTING for Assessment of Radionuclide Pathway Concentrations and Doses.
CW*wa*ww*w***w***Mwwmawwwwww wwwwwwwww*wwwwww***w***w*wwwwwmwww***ww*
C RESIDUAL RADI0 ACTIVITY CODE K.F.
ECKERMAN. DECEMBER 1978.
C
... CODE UPDATE!
M.W. YOUr4G, JUNE 1980.
C C
GIVEN A MIX OF NUCLIDES AND A DOSE LIMIT TO BE APPLIED AT SOME C
TIME THE CODE WILL THEN DETERMINE THE PATHWAY CONCENTRATIONS TO C
YIELD THE DOSE LIMIT.
C C INPUT DECK FOLLOWING THE DOSEFACTOR LIBRARY C CARD HO FORMAT DESCRIPTION C---------------------------------------------------------------------
C 1
20A4 TITLE CARD C
C 2
8E10.0 TIM - TIME IN YEAR AFTER OPERATION C
DLIM-DOSE LIMIT (MREM /YR)
C C
3 8E10.0 RESP - RESUSPENSION FACTOR (1/M)
C DENSL-SOIL DENSITY (KG/M*w3)
C PLX - PLOWLAYER THICKNESS (M)
C C
4 1012 JPATH ARRAY
- SETS OPERATING PATHWAYS C
JPATH(1)
SUBMERSION C
JPATH(2)
GROUND PLANE C
JPATHC3)
INHALATION C
JPATH(4) MILK CONSUMPTION C
JPATH(5) MEAT CONSUMPTION C
JPATH(6) CERAL CONSUMPTION C
JPATH (7 - 10) AVAILABLE 50R FUTURE USE C
C 5
8E10.0 FSUB-FRACTION OF YEAR SUDMERSED (DEFAULT 1)
C FGRD-FRACTION OF YEAR ON GROUND (DEFAULT 1)
C FINH-FRACTION OF YEAR EXPOSED TO INHALATION C
C 6
12,7E10.0 JX-FLAG IF LE O NORMAL kUN C
IF EQ 1 ASSUME INPUT DATA IS RELEASE C
RATE INFO C
IF GT 1 ASSUME INPUT IS INVENTORY AT C
T:0 WILL COMPUTE AT T: TIM C
UML-MULIPLIER APPLIED TO INPUT QUAINITY C
C 7
2X.A2,5A1,1X,E10.
IS-CHEMICAL SYMBOL C
IM-MASS AND METASTABLE NOTATION C
QQ-RELEASE QUANITY C
C JOB ENDS ON A SERIES OF 3 BLANK CARDS.
C C
CMww*wwwwwwwwwh**wwww*w*www******hw***wwww***w***w*********wwwww*wwwww C
C Cuww MAIN COMMON /SORCE/Q(50), LIST (50),HSOR.JX CALL REDDF 10 CALL INPUT CALL SOURCE IF(JX.LE.0) CALL DOSIT IF(JX.GT.0) CALL PRODUT GOTO 10 END j
A-3
4 i
SUBROUTINE DOSIT REAl*8 ZPATH, UNITS LOGICAL ZERO.RIGHT,EOC,E0B COMf10H/BRANPT/IDAU. LIP,ID.E0B,EOC COMMON /DFACT/IA(200),IMASS(200) T12(200).IDEY(200),FR(200),
1EXG(200) EXS(20 0).CFI(23 0),CF A(200).fiE1 A(200),HLIB COMMON /P A TilW/ZP A T H( 2,10 ), UNI T S ( 10 ), FP A T Hf 10 ), UP AT H( 10 ), NP ATH 1,SRHO. RUFF COMM3H/$0RCE/Q(50 ), LIST ( 50 ),HSOR JX COMMON /ELEMEN/IELEM(100)
CCr*, NUN / JOB /TliiE(20) JPATH(10). TIM.DLIN. RESP DIMENSIDH DOSE (50) DOS (10),DOST(10)
DATA ACIL/1.DE-16/
10 FORMAT (I4,A2,13.Al.1P12E9.2)
'll FORMAT (2X A2,13.A1.1PE1.2.3X,E1.2.0PF8.3.1PE9.2) 14 FORTI A T ( 1H 1,///,2X.20 A4./ )
15 FORMAT (2X,'NUCLICE',4X,'QCI)',3X,'A2TIVITY',3X.'SUB',7X,'GRD',
16X,' INH',6X,'DU',5X,' MILK',5X,' MEAT',5X,'VEG',6X,' TOTAL'4X,' SUM' 2,/2X.'-------
3,e..._____ __.____.-_.... ___.-_...___ __ __.._.
,3 150 FORf1AT(12X,'PCI/M2',3X,'PCI/M2'.30X,' DOSE RATE (MREM /YR)'/
113X, ----
2,s.__'__......_..._.._..___....___.___...e}
19 FORMAT (1X,' SOURCE ',2X,'PCI/M2',6X,'FCI/N2',11X,
,4X,' CALCULATED',3X,'%',
1/lX,'NUCLIDE',2X,'INFUT
')
2/1X,'-------
16 FORM A T ( IX, ' S OURC E ',2X, ' PCI /r12 ',6X, ' PCI /t12 ',11X,
,4X,' CALCULATED'.3X, l'FCI/G '/1X,'NUCLIDE',2X,' INPUT '
2'*P,6X,'50IL'/1X.'-------
35X,'-----
')
18 FORMAT (//,'
DOSE :', F 5.1, ' MREM /YR AT',FS.1,'
YEARS')
17 FC." MAT (21X,'-TOTAL ',1P12E9.2)
DIOT:0.
Do 20 I:1,50 20 DOSE (I):0.
DO 21 I: 1.10 21 00ST(I):0.
FRINT 14, TITLE FRINT 150 PRINT 15 DO 100 1: 1,NSCR ZERO:. FALSE.
LIB: LIST (I)
CALL LIBPT(LIB.IZ, MASS.M.ID.FZ, TAU 1)
IF(IZ.LT.1)GOTO 100 CP:Q(I)
QPX:QP CALL BRANCH 50 RIGHT:.TRUE.
CALL FORURD CALL BETH(QP,0.. TIM. TAU 1.FZ,IDAU,ACT)
IF(ACT.GT.ACTL)ZERO:.TRUE.
IF(ZERO.AND.ACT.LT.ACTL)GOTO 70 00 58 J:1,NPATH 51 DOS (J):0.
DOSI:0.
IF(ACT.LT.ACTL)GOTO 55 CALL PATHS (ACT,IZ, TAU 1.EXS(LIB),EXG(LIB),DFA(LIB),DFI(LIB), DOS)
DO 60 J:1.NPATH DOSI:DOSI+ DOS (J)
DOST(J):DOST(J)+ DOS (J) 60 DOSE (I): DOSE (I)+ DOS (J)
DTOT:DTOT+DOSI 55 PRINT 10,IZ,IELEM(!Z), MASS,M,QPX.ACT (DOS (J),J:1.NPATH),DOSI,DTOT IF(EOC)GOTO 70 CALL DAUGH(IZ,ID. MASS,M. LIB,RIGHT)
IF(LIB.LE.0)GOTO t00 QPX:0.
CALL LIBPT(LIB,IZ, MASS.M.ID.FZ, TAU 1)
GOTO 50 70 CALL BAKWRD IF(E0B)GOTO 100 RIGHT:. FALSE.
CALL LIBPT(LIB.IZ, MASS,M.ID,FZ, TAU 1)
FZ: 1.-FZ CALL BETH(0.,0.. TIM.TAUI,FZ,IDAU.ACT)
CALL D/ UGH (IZ,ID. MASS,M L IB, RIGliT )
IF(IIB.LE.0)GOTO 100 CALL LIBPT(LIB,12, MASS.M.ID.FZ.TAUI)
GOTO 50 100 CONTINUE A-4
PRINT 17,(DOST(J),J:1,NPA1H),DTOT,DTOT PRINT 14 TITLE IF(RUFF.GE.1.0) PRINT 19 IF(RUFF.LT,1.0) PRINT 16
-DO 200 I: 1,NSOR LIB: LIST (I)
PER: 100.* DOSE (1)/DTOT IF(PFR.LT.O.001)PER:0.0 QX:DLIMwQ(I)/DTOT IF(RUFF.LT.1.0) GO TO 199 PRINT 11,IA(LIB) IMASS(LIB), META (LIB),0(I),QX,PER GO TO 200 199 QXX:QX/(SRH0w1000.)
PRIN! 11,IA(LIB),IMASS(LIB), META (LIB),Q(I),QX,PER,0XX 200 CCHTINUE TIM: TIN /365.25 PRINT 18 DLIM, TIM
- ETURN END
' SUBROUTINE PRODUT LOGICAL ZERO,RIGHT,EOC,E0B C 0!1i10N/ BR ANP T / I D AU, L I B, I D, E0B. EOC COMMON /DFACT/IA(200),Ir1 ASS (200).T12(200),IDEY(200).FR(200),
IEXG(200),EXS(200),DFI(200),DFA(200).t1 ETA (200),NLIB C 0 fit 10 N/ S O R C E/ Q C 5 0 ), L I S T ( 5 0 ), H S O R, J X C 0ll:10H/ EL EMEN/I E L EM( 10 0 )
C0f;t10H/J0B/ T I T L E( 2 0 ) J PA T H C 10 ),11M, DL It1, R E SP 10 FORf1AT(14,A2,I3,A1,1P12E9.2) 14 FORf1AT(1H1,///,2X.20A4,/)
15 FORf1AT(2X,'NUCLIDE',4X,'Q(I)',3X,' ACTIVITY')
18 FORr1AT(//,'
TIME :',F5.1,
' YEARS')
PRINT 14, T I T L E PRINT 15 DO 100 I: 1,NSOR ZERO:. FALSE.
LIB: LIST (I)
CALL LIDPT(LIB.IZ, MASS,M.ID,FZ, TAU 1)
IF(IZ.LT.1)GOTO 100 QP:Q(I)
QPX:QP CALL BRANCH 50 RIGHT:.TRUE.
CALL FORURD IF(JX.EQ.1) CALL BETH(0..QP TIM. TAU 1.FZ,IDAU.ACT)
IF(JX.NE.1) CALL DETH(OP,0.,TItl,TAUI,FZ,IDAU,ACT)
IF(ACT.GT.O.)ZERO:.TRUE.
IF(ZERO.AND.ACT.LE.O.)GOTO 70 55 PRINT 10, IZ, I EL EM( IZ ), t1 AS S, rl. 0PX, AC T IF(EOC)GOTO 70 Call D/UCH(IZ,ID.t1 ASS,M. LIB,RIGHT)
IF(LIB.LE.0)GOTO 100 CALL LIBPT(LIC,12,t1 ASS,M.ID,FZ. TAU 1)
QPX:0.
GOTO 50 70 CALL BAKWRD IF(E0B)GOTO 100' RIGHT:. FALSE.
CALL L I BP T C I IB,IZ,t1 ASS,M,ID, FZ, T AU 1)
FZ: 1.-FZ CALL BETH(0.,0.. TIM, TAU 1,FZ,IDAU.ACT)
CALL DAUGH(IZ,ID,fiASS,M, LIB.RIGHT)
IF(LIB.LE.0)GOTO 100 CALL LIBPT(LIB IZ,f1 ASS,M,ID,FZ, TAU 1)
GOTO 50 100 CONTINUE T iti: T If1/ 36 5. 25 FRINT 18, T If1 STOP l
END j
A-5
l SUBROUTZHE DAdGH(IZ,ID, MASS.M, LIB 00IGHT)
LGGICAL RIGHT COMM0H/DFACT/IA(200),IMASS(200),T12(200),IDEY(200),FR(200),
1EXG(200),EXS(200),DFI(200) DFA(200), META (200),NLIB CGMMON/ELEMEN/IELEMC100)
DATA IBLHK, MET /' '
'M'/
1 FORMAT ('
NM THE DAUGHTER PRODUCT ',A2,I3,A1,'
IS NOT IN THE',
l' LIBRARY')
IF(ID.LT.10)GOTO 10 ITEH:ID/10 IF(.NOT.RIGHT)ID:ITEN IF(RIGHT)lD:ID-10dITEN to GOTO ( 1 1,12,13,14,12,13 ), I D CWW ALPHA DECAY 11 IZ:IZ-2 MASS: MASS-4 M:IBLHK GOTO 15 CMM BETA MINUS DECAY ID:2 GRHD STATE ID.NE.2 METASTABLE 12 IZ:IZ+1 M:IBLHK IF(ID.NE.2)M: MET GOTO 15 cmc BETA PLUS DECAY ID=3 GRHD STATE ID.NE.3 METASTABLE 13 IZ:1Z-1 M:IBL:IK IF(ID.NE.3)M: MET GOTO 15 CMM INTERNAL TRANSITION TO GRND STATE 14 M:IBLHK CWM FIND THE DAUGHTER IN LIBRARY 15 DO 20 LIB:1,HLIB IF(I A(LIB).NE.IELEM(IZ))GOTO 20 IF(IMASS(LIB).HE. MASS)GOTO 20 IF(META (LIB).NE.M)GOTO 20 GOTO 30 20 CONTINUE PRINT 1,IELEM(IZ), MASS,M LIB:0 30 RETUR1 END SUBROUTINE BETHCA P.T
.TAUI,FRDY,IH,50M)
REAL*8 TAU, TIM,5UM1 PRD1.C.D AA1,EXP1.EXFCT, FRAC,FR DIMENSION TAU (15), FRAC (15),AA1(15)
DATA LIMIT,ZMULT/15.1.0E+06/
10 FORMAT ('
WMM THE OF DAUGHTERS EXCEEDS LIMIT,',I4)
IF(IN.GT. LIMIT)GOTO 999 TAU (IH): TAUT FRAC (IH):FRDY IF(A.EQ.0..AHD.P.EQ.0.) RETURN IF(IN.GT.2.AND. TAU 1.GT.1.E6)GOTO 50 TIM:T C:ZMULTwA D:ZMULTMP FR:1.
SUM 1:0.
IF(IN.EQ.1)GOTO 20 12:IN-1 PO 15 I:1,I2 15 FR:FRMFRACCI) 20 DO 40 L:1,IH IF(TAU (L).GT.1.0E06)GOTO 40 PRD1:FR DO 30 M:1,IH IF(M.EQ.L)GOTO 25 PRD1:PRD1MTAU(M)/(TAU (M)-TAU (L))
GOTO 30 25 PRD1:PRD1MTAU(M)/ TAU (1) 30 CONTINUE S Ut11 : SUM 1+(CMEXP1(TAU (L), TIM)+DWEXFCT(TAU (L), TIM))wPRD1 40 CCHIINUE AA1(IN): SUM 1/ZMULT GOTO 50 50 AA1(IH):AA1(IN-1)wFRAC(IN-1) 60 SUM:AA1(IH)
RETURN 999 PRINT 10, LIMIT gg STOP END
SUBROUTINE BRANCH Cuu C SUBROUTINE BRANCH AHD ITS ENTRY POINTS FORWRD AHD BAKWRD DETECT C CHAIN BRANCHING AND DIRECT CONSIDcdATION OF 1HE ADDITIONAL CHAIHS.
CMM LOGICAL EOC.E0B COMMON /BRANPT/IDAU, LIB,ID E0B,EOC DIMENSIGH IDAUI(20),LIBI(20)
CMM SET BRANCH COUNTER TO ZERO IBRHCH:0 CMM SET CHAIN MEMBER INDEX TO ZERO IDAU:0 CMM SET EH3 0F CHAIN FLAG EOC:. FALSE.
CMM SET END OF BRANCHS FLAG E08:. FALSE.
CMM ZERO OUT ARRAY OF LIBRARY POINTERS (LIBI)
CMM ZERO OUT ARRAY OF INDEX OF CHAIN AT BRANCH DO 10 I: 1,20 LIBI(I):0 10 IDAVICI):0 RETURN CMM C ENTRY POINT FOR FORWARD MOTION DOWN CHAIN, BRANCHING DETECTED ENTRY FORWRD C
CMM CMM IF DECA" MODE ZERO, I.E.,
STABLE DAUOHTER PRODUCT, SET EOC FLAG IF(IT.tQ.0)EOC:.TRUE.
CMM IHCREMENT CHAIN INDEX IDAU:IDAU+1 CMM IF H0 BRANCH INDICATED, I.E.,
ID LESS THAN 10, RETURN IF(ID.LT.10) RETURN CMM BRANCH HAS OCCURRED E0B:. FALSE.
CMM INCREMENT BRANCH COUNTER IBRNCH:IBRHCH+1 CMM STORE LIBRARY POINTER & CHAIN INDEX LIBI(IBRNCH): LIB IDAUICIBRHCH):IDAU RETURN CMM C ENTRY POINT TO DIRECT RECOVERY 0.
POINTERS FOR BRANCH POINT ENTRY BAKWRD C
CMM IF(IBRNCH.EQ.0)GOTO 20 CMM HEW CHAIN TOBE EVALUATED EOC FALSE.
CMM CHAIN MEMBER INDEX AT BRANCH POINT IDAU:IDAUICIBRHCH)
CMM LIBRARY POINTER AT BRANCH POINT LIB:LIBICIBRHCH)
CMM DECREMENT BRANCH COUNTER IBRHCH:IBRNCH-1 RETURN CMM SET E08 FLAG TRUE 20 E0B:.TRUE.
RETURN END SUBROUTINE LIBPT(LIB,IZ, MASS,M,ID, FZ, TAU 1)
COMMON /DFACT/IA(200),IMASS(200),T12(200),IDEY(200),FR(200),
1EXG(200),EXS(200),DFI(200),DFA(200), META (200),HLIB IZ:IFUNCIA(LIB))
MASS:IMASS(LIB)
M: META (LIB)
FZ:FR(LIB)
ID:IDEY(LIB)
TAUl:T12(LIB)
RETURN END g_7 f
i
SUBROUTINE'REDDF C0f tM0H/DF ACV/I A(200), MASS (200),712(200) IDEY(200),FR(200 ),
fEXG(200),EXS(200),DFI(200),DFA(200),M(200),HLIB 4
DATA ELN2/0.693147/
10 FORff A T( A2,13 A l, E8. 0,I2, FS. 3,4 E7. 0 )
11 FORf1 A f (12 )
12 FORMAT (2X,A2,13,At.tPE9.2,I4,0PF7.3,1P4E9.2) 14 FORf1AT('
LIBRARY CONTIANS',I4 ' ENTPIES')
15 FORMAT (1X,' LIBRARY OF RADIONUCLIDES'/1X,'-------------
l '--------- ' // ' OX, ' H AL F L I F E DEC AY FR A C ',5X, '---DOS E F AC TO R ',
2'S--
'/2X,'HUCLIDE (DAYS) MODE DECAY SUBMERSN GROUND 3'INGESTIN INHALATH')
READ 11.JPRINT I:0 20 I:I+1 READ 10,IA(I), MASS (I),M(I),T12(I),IDEY(I),FR(I),EXS(I),EXG(I),
ICTICI),DFA(I)
IF(MASS (I))30,30,20 30 NLIB:1-1 FRINT.15 DO 50 1: 1.HLIB IF(FR(I).EQ.0.)FR(I): 1 IF(JPRIHT.GT.0)GOTO 50 PRINT 12,IA(I), MACS (I),M(I),T12(I),IDEY(I),FR(I),EXSCI),
IEXG(I),DFI(I),DFA(I) 50 T12(I):ZLH2/T12(I) 60 PRINT 14,NLIB IFCJPRINT.EQ.0) CALL PRIHTB 4
RETURN END SUBROUTINE FOOD (ACT TAU 1. RESP.SRHO,IE,CMLK CMET.CVEG)
C0tNON/) R AHF R/B IV( 10 0 ),ZML K( 10 0 ) ZME T( 10 0 )
DATA Y1,Y2.AINR,FP VDEP,FCAP,T12W.FUP/
10.75,2.3,50.,0.5,864.,0.3,0.049511,0.05/
TAUE:TAul+T12W CVEG1:ACT*(VDEP*FCAPWRESP/Yl/1AUE+BIV(IE)/SRHO) a CVEG :ACT*(FI'P*VDEP*FCAP* RESP //2/TAUE+BIV(IE)<SRHO)
Ct1LK:AINR*2MLKCIE)*(FPdCVEGl+(1.-FP)*CVEG)
CMET:CMLK5ZMET(IE)/ZMLKCIE)
RETURN END t
SUBROUTINE' PATHS (Q,IZ,TAUI.EXS,EXG.DFA.DFL. DOSE)
REAL*8 ZPATH. UNITS COMMOM/PATHW/ZPATH(2,10), UNITS (10),FPATHf10),UPATH(10),NPATH 1,SRhu, RUFF C0t: MON /JOR/ T ITLE(20 ),JP A TH( t o ) TIM.DL IM. RESP DIf1ENST04. 00SE( 10 )
IF(JPATH(!).EQ.0)GOTO 20 C**
S U Ef1E P.S IO N DOSEtt):Q*EXS*RESF*FPATH(1)*UPATHC1) 20 IF(JPATH(2).EQ.0)GOTO 30 C4W-GROUND PLANE COSE(2): RUFF *QwEXG4UPATH(2)*FPATH(2) 30 IF(JPATHC3).EQ.0)GOTO 40 Ch* INHALATION-DOSE (3):QWDFA* RESP *UPATH(3)*FPATH(3) 40 CALL FOOD (Q,TAUI. RESP.SRHO,IZ,AMLK AMET.AVEG)
IF(JPATH(4).EQ 0)GOTO 50 C** MILK INGESTION DOSE (4):AMLK*DFL*UPATH(4)*FPATH(4) 50 IF(JPATH(5).EQ.0)GOTO 60 C44 MEAT INGESTION DOSE (5):AMET*DFL*UPATH(5)*FPATH(5) 60 IF(JPATHt6).EQ.0)GOTO 70 C**
VEGETATICH IHGESTIDH
-DOSE (6):AVEG*DFLkUPATH(6)*FPATHC6) 70 RETURN EtiD A-8
l SUBROUTINE SOURCE -
COMM0H/DFAlf/IA(200),IMASS(200) T12(200) IDEY(200),FR(200),
IEXG(200),EXS(200),DFI(200),DFA(200), META (200),NLfB COMMON /SORCE/Q(50), LIST (50),HSOR,JX DIMENSIDH IM(5), HUM ( 12)
DATA HUM /'
','0','1','2','3','4'.'5','6','7','8','9','M'/
13 FORf1AT('
GRIEF ',A2,5A1,1PE10.2) 14 FORMAT (I2,7E10.0) 15 FORMAT (//,2X,'JX :',I2,'
UML :',1PE9.2) 21 FORMAT (2X A2,5A1,1X,2E10.0) 22 FORMAT (4X,A2,I4.A1,1X,1P2E9.2) 23 FORMAT (2X,I4,1PE15;8)
READ 14,JX,UML I:0 QT:0.
75 I:I+1 READ 21,IS,IM,QQ IF(QQ)101,101,76
~
76 K:-1 MASS:0 MET: HUM (1)
DO 90 JJ: 1,5' J:6-JJ IF(IM(J).EQ. HUM (1))GOTO 90-IF(IM(J).NE. HUM (12))G010 78 NET: HUM ( 12)
GOTO 90 78 K:K+1 DO 80 L:2.11 80 IF(HUM (L).EQ.IM(J))GOTO 85 PRINT 13,IS,IM,QQ 1:I-1 GOTO 75 85 MASS: MASS +(L-2)x10.WWK 90 CONT! HUE CMM FIND NUCLIDE IN LIBRARY 92 DO 95 LL: 1,HLIB IF(IA(LL).NE.IS)GOTO 95 IF(IMASS(LL).NE. MASS)GOTO 95 IF(META (LL).HE. MET)GOTO 95 GOTO 96 95 CONTINUE I:I-1 PRINT 13,IS,IM,QQ GOTO 75 96 LISTtI):LL 100 QT:QT+QQ Q(I):QQ4UML GOTO 75 101 HSOR:I-1 CxN PRINT CUT SOURCE TERM PRIHT 15,JX,UML DO 105 I: 1,HSOR LL: LIST (I) 105 PRINT.22,IA(LL),IMASSCLL), META (LL),0(I)
PRIHT 23,HSOR,QT RETURH END FUNCTION IFUN(IAA)
CxM FUNCTION RETURH Z GIVEN CHEMICAL SYMBOL COMMON /ELEMEN/IELEMC100) 1 FORMAT ('
MW GRIEF-',A2)
DO 10 I: 1,100 IF(IELEM(I).EQ.IAA)GOTO 11 10 CONTIHUE IFUH:0 PRINT 1,IAA RETURN 11 IFUN:I RETURH
-END
_g
k+
s,i-
,Ar4 4LaA 22-4-k
+w+4-*rw-r-
'a-4 aa-b, b
m "O-
-+?
4 k
w_
SUBROUTINE INPUT REAL#8 ZPATH, UNITS CCP.t10N/P A THW/ZP A TH(2; 10 ), UNIT S ( 10 ), FP ATH t 10 ), UP A TH( 10 ),NP ATH 1,SRHO. RUFF COMMON / JOB / TITLE (20),JPATH(to), TIM DLIM. RESP 10 FORMAT (20A4) 11 FORMAT (8E10.0) 12 FORMAT (10I2) 23 FORMAT (1H1,///,2X,' ANALYSIS OF RESiu.AL ACTIVITY',//,
12X,20A4,//,3X,' PATHWAYS CONSIDERED USAGE UNITS FRACTION')
21 FORMAT (6X,2A8,F7.1,AS,F6.2) 22 FORMAT (2X,' TIME PERIOD
',F7.1,'
YR DOSE LIMIT
',FS.1,' MREM /YR')
23 FORMAT (/2X,'RESU5 PENSION FACTOR (1/M) = ',Et0.2/
12X,'50!L DENSITY (KG/M*v3) = ',F10.1/
22X,'PLOWLAYER THICKNESS (M) = ',F10.5////)
READ 10, TITLE READ 11, TIM,DLIM IF(DLIM.LE.0.)GOTO 900 READ 11, RESP.DENSL.PLX IF(RESP.LE.0.0) RESP: 1.OE-08 IF(DENSL.LE.0.01DENSL: 1350.0 IF(PLX.LE.O.0)PLX:.1778 SRHO:DENSLMPLX READ 12.JPATH I
C IF JPATHt4-7) : 0, THEN A CALCULATION FOR BLDG CONTAM.
C IS ASSUMED. FOR JPATH(4-6)
.NE.
O, INGESTION PATHWAY C
IS OPERATING AND A SOIL CALCULATION IS MADE.
RUFF:0.5 DO 25 I:4,6 IF(JPATH(I).NE.0)GO TO 27 25 CONTINUE RUFF:1.0 27 CONTINUE READ 11,FSUB,FGRD,FINH IF(FSUB.GT.O.)FPATH(1):FSUB IF(FGRD.GT.O.)FPATH(2):FGRD IF(FINH.GT.0.)FPATH(3):FINH PRINT 20, TITLE DO 30 I: 1.NPATH IF(JPATH(I).NE.0) PRINT 21,(ZPATHCJ,I),J:1,2),UPATHCI),UNITSCI),
e 1FPATH(I) 30 CONTINUE PRINT 22, TIM.DLIM PRINT 23. RESP,DENSL,PLX TIM:365.25* TIM RETURN 900 CALL EXIT STOP END SUBROUTIt!E PRINTP COMf;0N/ EL Eff E N/I EL EM( 10 0 )
I C OMl10 N / T R A N F R/ B I V ( 10 0 ),2ML K ( 10 0 ). Zr1 E T ( 10 0 )
10 FORT 14T( tH l.///. 26X ' S T A BL E EL Ef1ENT TRANSFER DATA',/)
1I F CRt1A T ( tX.2( ' EL EM'. 3X. ' V EG/ S0! L '. 2X. 't11L K ( D/ L ) ' 2X. ' MEA T( D/ K G) '
1,4X))
15 FORflAT(2(2X.A2,IP3E11.1.5X))
PRINT 10 PRINT'll DO 40 I:t,50 J:I+50 40 PRINT 15. I E L EM( I ). BI v (I ).ZML K (I ),ZME T (I ),
t I E L Elt( J ), B I V ( J ). ZN L K ( J ),2f1E T ( J )
REIURN END FUNCTION EXFCT(X,T)
IMPLICIT REAL*3(A-H,0-Z)
C** EVALUATES THE FUNCTION (t.-EXP(-XaT))/X Y:X*T i
IF(Y.LT.O.03)GOTO 10 GOTO 20
~10 EXFCT:T*((((((Y/7.-1.)wY/6.+1.)
1-
-Y/5.-l.)*Y/4.+1.)*Y/3.-l.)
2
- Y/2.+1.)'
RETURN
- 20. EXFC T :( f. -EXP I(X. T ))/X RETURN END A-10
~.
BLOCK DATA REAL*8 2 PATH.UN!I$
CCit0N/P A f HW/7P A T H( 2,10 ), UNI T S( 10 ), FP A T H( 10 ), UP A T H( 10 ), HP A Til t,SRHO, RUFF C0fiMON/ IP A N F R/$01L C 10 0 ),2f1L K ( 10 0 ),2 MET ( 10 0 )
C OMMON/ E L E M E N/ I E L Ef1( 10 0 )
DATA 2PAIH/
4 l
I 'SUBf1ERSI','ON.....',
2 ' GROUND P',' LANE 3 'INHALATI','0H.....',
5 'It! L K CON','SUMPTION',
6 ' MEAT CON','5Uf1PTION',
7 'CERAL IH','GESTICN 8 860./
DATA F P A T il. NPATH/1081.0.6/
DATA UFATH/
18766.,8766.,8300,310.,110.,400. 4w0./
DATA UNIIS/
,' M3/YR '.' L/YR 1'
HR/YR '.' HR/TR '
i 2' KG/YR '.' KG/YR ',4*0./
DATA IELEM/
2'5I','HE'.'LI'.'BE','B
'CA'.'SC','TI','HE','NA'.'MG','AL' 1'H ',
'C '
'N
'O
'.'F '.
CL','AR'.'K
'V
'.'CR','MN','FE' 3'CO' 'HI',CU','ZN','GA'.'GE','AS','SE','BR'.
'P
' S '
4 ' 2 R '. ' H B ', ' f10 ', ' I C ', ' R U ', ' R H ', ' F D ', ' A G ', ' C D ',, ' K R '
'.'XE','CS'.'DA','LA','CE','PR','ND'
'Ff1'
'SM',
EU'.'GD','TB' 6'DY'.'HO','ER','Tf1','YB','LU','HF','TA','W '.'RE','0S','IR','PT' 7'AU'.'HG'.'TL'.'FB'.'BI','FC','AT','RN','FR','RA','AC','TH','PA' 8'U
'.'HP'.'PU',' Art'
'CM'
DATA SOIL /
14.8
.5.0E-0?,A.3E-04.4.2E-04.1.2E-01.5.5
.7.5
.1.6 26.5E-04.1.4E-01.5.2E-02,t.3E-01,1.8E-04.1.5E-04,t.1E*00,5.9E-01, 35.0E+00.6.0E-01,3.7E-01.3.6E-02,1.1E-03,5.4E-05.t.3E-03.2.5E-04.
4
]
42.9E-02.6.6E-04.9.4E-83.1.9E-02.1.2E 01,4.0E-01.2.5E-04.1.0E-01,
- 51. 0 E-0 2.1. 3 E- 0 0,7. 6 E- 01,3. 0 E-0 0,1. 3 E-O t,1. 7 E-0 2,2. 6 E-0 3.1. 7 E- 0 4, 6 9. 4 E-0 3.1. 2 E- 01,2. 5 E- 01,5. 0 E- 0 2.1. 3 E + 01,5. 0 E-0 0,1. 5 E- 01,3. 0 E-01, 72.5E-01,2.5E-03,1,1E-02.1.3E-00.2.0E-02,1.0E+01,1.0E-02,5.0E-03, 4
82.5E-03.2.5E-03.2.5E-03.2.4E-03.2.5E-03,2.5E-03,2.5E-03,2.6E-03,
- 92. 6 E-0 3. 2. 5 E- 0 3,2. 6 E- 0 3,2. 5 E- 0 3. 2. 6 E- 0 3. 2. 5 E-0 3,2. 6 E- 0 3.1. 7 E-0 4, A6.3E-05,1.8E-02,2.5E-01,5.0E-02.1.3E+01,5.0E-0t,2.5E-03.3.8E-01, B 2. 5 E- 01. 6. 8 E- 0 2.1. 5 E-01,.1. 5 E-O t. 2. 5 E- 01,3. 5 E- 0 0. t. 0 E-0 2,3. t E- 0 4, C2.5E-05.4.2E-03.2.5E-03.2.5E-03.2.5E-03.2.5E-04,2.5E-04,2.5E-03, D2.5E-03.2.5E-03,2.5E-03.2.5E-03/
DAIA IttLK/
i 11.4E-02.2.0E-02.2.0E-02,9.tE-07,1.5E-03.1.5E-02,2.3E-02.2.0E-02, 21.1 E- 0 3. 2. 0 E- 0 2. 3. 5 E-0 2. 3. 9 E-0 3. 2. 0 E-0 4. 2. 0 E-0 5.1. 6 E-C 2,1. 6 E- 0 2, 31.7E-02.2.0E-02.7.2E-03.t.tE-02,5.0E-06.1.0E-02.2.0E-05.2.0E-03, 48.4E-05,5.9E-05.2.0E-03,1.0E-02.1.7E-03.1.0E-02.5.0E-05,7.0E-02, 56.2E-05,4.0E-03.2.0E-02.2.0E-02.1.2E-02,1.4E-03.2.0E-05.8,0E-02.
62.0E-02.1.4E-03.9.9E-03,6.1E-07,1.0E-02.1.0E-02,3.0E-02.1.0E-03, 7t.0E-04.1.ZE-03.2 2-0 5. 2. 0 E- 0 4. 9. 9 E- 0 3,2. 0 E- 0 2. 7. t E- 0 3,3. 5 E- 0 4.
i 32.0E-05,2.0E-05.2.0E-05,2.0E-05.2.0E-05.2.0E-05,2.0E-05.2.0E-05,
- 92. 0 E-0 5,2. 0 E- 0 5. 2. 0 E-0 5.2. 0 E-0 5,2. 0 E-0 5. 2. 0 E-0 5. 2. 0 E-0 5. 5. 0 E-0 6.
A2.8E-06,2.9E-04,t.3E-03,5.0E-03.2.0E-06,5.0E-03,5.3E-06.9.7E-06, B 1. 9 E- 0 3. 2. 6 E- 0 4. 5. 0 E-0 4.1. 4 E-0 4.1. 0 E-0 2. 2. 0 E-0 2,2. 0 E-0 2,4. 5E- 0 4.
C2. 0 E- 0 5,5. 0 E- 0 6,5. 0 E-0 6,6.1 E- 0 4. 5. 0 E- 0 6.1. 0 E-0 7,2. 0 E- 0 5. 2. 0 E-0 5, D2.0E-05,2.0E-05.2.0E-05.2.00-05/
DATA ZitET/
- 11. 2 E- 0 2. 2. 0 E- 0 2.1. 0 2- 0 2,1. 0 E- 0 3,8. 0 E-0 4. 3.1 E-0 2,7. 7 E- 0 2,1. 6 E- 0 2, 21.5E-01,2.0E-02,3.0E-02.5.0E-03.1.5E-03.4.0E-05,4.6E-02.1.0E-01, i
38.0E-02,2.0E-02.1.2E-02.4.0E-03.1.6E-02.3.1E-02.2.3E-03,2.4E-03, 4 8. 0 E-O 'e,4. 0 E- 0 2.1. 3 E- 0 2,5. 3 E- 0 3.8. 0 E- 0 3,3. 0 E- 0 2,1. 3
,2.0E+01, l
5 2. 0 E- 0 3.1. 5 E- 0 2. 2. 6 E- 0 2. 2. 0 E-0 2. 3.1 E- 0 2,6. 0 E- 0 4,4. 6 E-0 3,3. 4 E-0 2, 6 2. 8 E- 01. 8,0 E- 0 3,4. 0 E- 01. 4. 0 E- 01.1. 5 E- 0 3. 4. 0 E- 0 3.1. 7 E- 0 2,5. 3 E-0 4, 75.0E-03.8.0E-02,4.0E-03.7.7E-02.2.9E-03.2.0E-02,4.0E-03,3.2E-03,
- 82. 0 E- 0 4,1,2 E-0 3. 4. 7 E- 0 3. 3. 3 E-0 3. 4. 8E- 0 3. 5. 0 E-0 3. 4. S E- 0 3,3. 6 E- 0 3.
94.4E-03,5.3E-03.4.4E-03.4.0E-03.4.4E-03.4.0E-03,4.4E-03,4.0E-01, A 1. 6 E-0 0, t. 3 E- 0 3,8. 0 E-0 3.4. 0 E-O S t. 5 E-0 3,4. 0 E-0 3. 8. 0 E-0 3,2. 6 E- 01.
P4.0E-02 2.9E-04.1.3E-02.1.2E-02,3.0E-03,2.0E-02.2.0E-02.4.0E-03.
C6.0E-02.2.0E-0,5.0E-03.3.4E-04.2.0E-04.1.4E-05.2.0E-04.2.0E-04 D2.0F-04.2.0E-04.2.0E-04,2.0E-04/
END FUNCTION EXP1(X.T)
. IPPLICIT REAL*3(A-H,0-Z)
C** EVALUATES THE FUNCTION EXP(-X*T)
EXPT'O.
Y:X*T IF(Y.GT.150.) RETURN EXP1:DEXPC-Y)
RETURN END A-ll
t i
I i
l 4
1 t
i l
i i.
i t
i r
[
t l
i
?
L I
i i
i 4
i 4
}
l 1
I I
i l
t L
l
)
s t
(
l L
APPENDIX B:
I Code Input Instructions i
i l
1 i
i
}
i 1
i 1
i 1
1 5
1 4
1 1
4 a
l 1
I.
i-i 4
d' i
B-1 i..
1
~
_...__.._.._.,._,..;_....._.~___.___.__._.._____..-_
1 INPUT INSTRUCTIONS Card Label Variables Format and Explanations REDDF.1 JPRINT Format (12)
-1, Print radionuclide library data JPRINT
=
0, Print radionuclide library data and
=
stable element transfer data 1, No print
=
RDDF.2 IA(I), MASS (I),M(I),T12(I),IDEY(I),FR(I),EXS(I),EXG(I),DFI(I),
DFA(I)
Format (A2,I3,A1,E8.0,12,FS.3,4E7.0)
Chemical Symbol (left hand justified)
=
Mass Number MASS
=
M, if metastable M
=
' blank', if ground state
=
Half-life (days)
T12
=
Mode of decay IDEY
=
0, decay to stable daughter
=
1, a_ decay
=
2, p decay
=
5, p decay, metastable
=
3, p 6, p decay
=
decay, metastable
=
4, internal transition to ground state
=
note:
To reflect two modes of decay, a double digit number is input for IDEY.
When decay modes 1-6 are used, the code will identify the radioactive daughter product.
Branching fraction FR
=
note:
FR is 1.0 if 0<IDEY<10.
Unless a nuclide branches to a stable daughter, then FR corresponds to the branching fraction.
When two modes of decay exists, FR refers to the decay mode indicated by the number in the ' units place' of IDEY.
Consequently, (1.-FR) refers to the digit in the ' tens place' of IDEY.
3 Submersion dose factor (mrem /hr)/(pCi/m )
EXS
=
2 Ground plane dose factor (mrem /hr)/(pCi/m )
EXG
=
Ingestion dose factor (mrem /pCi)
=
B-2
. INPUT INSTRUCTIONS (Continued)
Inhalation dose factor (mrem /pCi)
DFA
=
Note:
A REDDF.2 card should be entered for each radionuclide.
A maximum of 199 nuclides are permitted.
The variable NLIB denotes the number of nuclides in the library.
RDDF.3 Blank Card A blank card following the last radio-nuclide data card terminates the reading.
INPUT.1 TITLE Format (20A4)
Output title for problem identification TITLE
=
INPUT.2 TIM,DLIM Format (8E10.0)
Post-deposition time (years)
TIM
=
Dose limit set at ' TIM' years DLIM
=
(mrem /yr)
INPUT.3 RESP,DENSL,PLX Format (8E10.0)
Resuspension factor (m 2)
RESP
=
(default = 10 8) a Soil density (kg/m )
DENSL
=
(default = 1350.)
Plow laye' thickness (m)
PLX
=
(default =.1778) l INPUT.4 JPATH(I)
(I=1,10) Format (1012)
Defines operating pathways (input JPATH
=
0 or 1).
0, pathway not operating
=
1, pathway operating
=
where JPATH array references the following:
JPATH(1) = Submersion JPATH(2) = Ground Plane JPATH(3) = Inhalation JPATH(4) = Milk Consumption JPATH(5) = Meat Consumption JPATH(6) = Cereal Consumption JPATH(7-10) = available for future use.
INPUT.5 FSUB,FGRD,FINH Format (8E10.0)
Fraction of year an individual is FSUB
=
exposed to the submersinn pathway.
B-3
- - _ ~
~ INPUT INSTRUCTIONS (Continued)
FGR0 Fraction of year an individual is
=
exposed'to the ground plane pathway, f
FINH Fraction of yearly air intake during
=
exposure to the inhalation pathway.
SOURCE.1 JX,UML Format (12,7E10.0)
JX Flag for selecting type of.run.
=
4 0, Normal run; determine radionuclide
=
concentration and dose spectrum.
1, Determine radionuclide concentration
=
spectrum, assuming a source production rate is input ('QQ' of SOURCE.2 card 2
defines the rate in pCi/m -day) 2, Determine radionuclide inventory
=
at ' TIM' years given the parent quantity, QQ (of 500RCE.2 card) i
.UML Multiplier applied to release quantity
=
(QQ); possible utility in conversion-of units.
i SOURCE.2' IS,IM(1-5),QQ Format (2X,A2,5A1,1X,2E10.0) 4 L
IS Chemical symbol of source (left hand
=
justified)
IM
= Mass and metastable notation of source QQ.
Release quantity (or source concentration)
=
2 (pCi/m )
Note:
Enter the SOURCE.2 card for each source nuclide in the source term followed by a blank card-to terminate read.
A maximum of 50 nuclides in a source term is permitted.
NOTE:
After the'above cards have been entered, two blank cards must follow i
for normal terination of job.
t I
Af ter completion of the problem set, the code'will attempt to read an additional
' set at card INPUT.1, thus permitting the user to stack a number of problem sets-4 together for execution.. The end of problems in a given execution of the code is i
not detected until two blank' cards are read'after the blank card that terminated-the reading of the last source. term nuclide.
B-4
.=
l APPENDIX C:
Listing of Example Input Stream and Output Stream C-1
1 INPUT STREAM :
CM242 6.61E+03 1 1.02.3E-114.1E-122.2E-035.3E-01 4
AM241
- 1. 58 E+ 05 11.0 1.2E-083.6E-102.2E-035.3E-01 AM242 6.68E-01320.8278.5E-092.1E-101.2E-067.1E-05 AM242MS_55E 0414.99522.?E-103.2E-112.6E-036.3E-01 AM243 2.69E 06 1 3.1E-087.7E-102.2E-035.3E-01 PU238 3.20E 04 1 4.9E-119.1E-125.5E-053.0E-01 PU239 8.90E 06 1
- 4. 8 E-1 14.1 E-12 5. 0 E-0 5 3. 3 E- 01 PU240 2.39E 06 1 4.8E-118.7E-126.0E-053.3E-01 PU241 5.26E 03 2 9.7E-075.9E-03 PU242 1.41E 08 1
- 4. 9 E-116. 9 E-12 5. 7 E-0 5 3. 2 E- 01 HP239 2.36 2
1.1E-072.4E-093.7E-062.8E-06 NP238 2.12 2
3.4E-076.3E-097.3E-063.4E-05 NP237 7.81E 08 1 1.5E-084.1E-104.0E-025.0E-01 U 233 1.63E 12 1 3.9E-116 2E-122.8E-041.2E-01 0 237 6.75 2
8.7E-082.1E-093.3E-064.1E-06 U 236 8.55E 09 1 4.6E-117.1E-123.0E-041.3E-01 U 235 2.59E 11 1 9.8E-082.2E-092.9E-041.3E-01 U 234 8.92E 07 1 9.1E-118.5E-123.1E-041.3E-01 U 233 5.79E 07 1
- 2. 0 E-10 8. 4 E-12 3. 2 E- 0 41. 3 E- 01 U 232 2.62E 04 1
- 1. 8 E-101. 2 E-111. 6 E- 0 3 6. 5 E-01 PA233 2.70E 01 2
- 1. 2 E- 0 7 2. 7 E- 0 9 4.1 E-0 61. 0 E- 0 5 PA231 1.19E 07 1 1.9E-084.5E-101.7E-012.2 TH234 2.41E 01 5
- 4. 9 E-0 91. 3 E-101. 4 E-0 4 3. 5 E- 0 5 TH232 5.13E 12 1 1.1E-107.0E-122.7E-031.2 TH231 1.06 2
9.1 E-0 92. 9 E-101. 6 E-0 6 9. 6 E- 0 7 TH230 2,8IE 07 1 2.5E-101.0E-115.3E-042.6E-01 TH229 2.68E 06 1
- 5. 5 E-0 81. 3 E-0 9 3. 6 E- 0 31. 8 TH228 6.98E 02 1 1.3E-093.4E-113.9E-043.0E-01 TH227 1.87E 01 1
- 6. 6 E-0 81. 5 E- 0 9 3. 8 E- 0 51. 6 E- 0 2 AC22 7 7. 9 5 E 0 312. 986 2 7. 7 E-112. 0 E-121. 8 E-0 38. 2 E-01 AC225 10.
1
- 9. 9 E-0 92. 3 E-108. 3 E-05 6. 9 E-0 3 R A228 2.10 E 0 3 2
- 2. 3 E-17 4. 8 E-181. 3 E-0 3 4.1 E-0 3 RA226 5.84E 05 1 4.4E-099.6E-111.5E-031.6E-02 RA225 14.8 2
4.0E-091.7E-103.5E-047.4E-03 RA224 3.66 1
- 6. 4 E-0 91. 4 E-10 3. 4 E- 0 4 2. 9 E-0 3 RA223 11.4 1
8.3E-081.9E-096.1E-047.4E-03 P0210 138.
5.2E-121.0E-131.6E-038.1E-03 BI210 5.01 2
5.6E-061.9E-04 PB212 0.443 2
- 9. 4 E-0 8 2.1 E- 0 92. 5 E-0 51. 6 E-0 4 PB210 8.14E 03 2
- 6. 6 E-10 3. 5 E-113. 6 E- 0 31. 8 E-0 2 PA234M8.13E-0442.99877.0E-091.3E-10 RN222 3.82 1
2.4E-105.0E-12 P0218 2.12E-03 1 PB214 1.86E-02 2 1.6E-073.4E-09 B I214 1.38E-02 2 1.0E-061.7E-08 P0214 1.89E-09 1 6.8E-111.3E-12 RH219 4.58E-05 1 3.6E-087.6E-10 P0255 2.06E-08 1 BI211
- 1. 48 E-0 3 21. 9 97 2. 9 E-086.1 E-10 TL207 3.31E-03 1.3E-092.5E-11 U 240 5.88E-01 5 4.5E-104.6E-11 NP240 4.51E-02 2 8.0E-071.6E-08 AC228 2.55E-01 2 5.8E-071.1E-08 RH220 6.44E-04 1 3.4E-107.0E-12 P0216 1.74E-06 1 B I 212 4. 20 E-0212. 6 4 0 71. 2E-0 72. 2 E-0 9 TL208 2.13E-03 2.3E-063.5E-08 FR221 3.33E-03 1 2.0E-084.4E-10 AT217 3.74E-07 1 1.9E-103.9E-12 BI213 3.17E-0212.97848.4E-081.7E-09 P0213 8.60E-12 1 1.9E-113.6E-13 PB209 1.38E-01 FR223 1.51E-02 2 3.3E-088.4E-10 P0211 6.48E-06 4.9E-099.5E-11 TL209 1.53E-03 2 1.4E-062.5E-08 P0212 5.30E-13 1 HP240M5.14E-0342.99892.1E-074.1E-09 PA234 2.79E-01 2 1.2E-062.4E-08 PB211 2.51E-02 2.
6.7E-116.3E-10 C-2 s
HA 22 9.50E+02 1.4E-062.9E-081.6E-051.0E-05 NA 24 6.25E-01 2.9E-064.0E-081.4E-001.0E-06 P 32 1.43E+01 0.0E+000.0E+007.4E-061.3E-05 CA 41 5.11E+07 1.2E-121.9E-141.8E-061.9E-06 CR 51 2.77E+01 2.CE-085.5E-101.5E-072.7E-07 MN 54 3.12E+02 5.1E-071.0E-082.7E-066.3E-06 FE 55 9.86E+02 8.7E-122.0E-135.9E-072.5E-06 FE 59 4.46E+01 7.7E-071.4E-086.7E-071.5E-05 CO 57 2.71E+02
- 7. 9 E- 0 8 2. 7 E- 0 91. 2 E- 0 6 7. 4 '.- 0 6 CD 58 7.08E+01 6.0E-071.3E-083.5E-067.(E-06 CO 60 1.92E+03 1.7E-062.9E-082.6E-051.jE-04 HI 59 2.74E+07
- 1. 4 E-113. 8 E-131. 9 E-0 ~. s. 3 E-0 7 HI 63 3.50E+04 0.0E+000.0E+004.1E-071.9E-06 CU 64 5.29E-01 1.2E-072.8E-094.6E-072.6E-07 ZH 65 2.44E+02 3.7E-076.8E-091.4E-051.8E-05 SE 79 2.37E+07 0.0E*000.0E+002.6E-063.1E-06 RB 86 1.87E+0i 6.0E-081.1E-099.3E-066.3E-06 RB 87 1.72E+13 0.0E+000.0E+004.8E-063.2E-06 RB 88 1.24E-02 4.4E-076.8E-091.6E-077.8E-08 RB 89
- 1. 0 6 E-02 21. 0 0 01. 4 E-0 6 2. 3 E-087. 8 E-08 3. 6 E-0 8 SR 89 5.06E+01 8.4E-111.6E-127.8E-063.5E-05 SR 90
- 1. 0 4 E + 0 4 21. 0 0 0 0. 0 E+ 0 0 0. 0 E+ 0 01. 2 E-0 41. 3 E-0 3 SR 91 3. 9 6 E-012 5 0. 5 8 0 4. 3 E- 0 78. 6 E- 0 9 3. 0 E-0 61. 6 E- 0 6 SR 92 1.13E-01 21. 0 0 0 9. 0 E- 0 71. 6 E- 0 81. 9 E- 0 6 9. 6 E- 0 7 Y 90 2.67E+00 6.3E-146.3E-151.0E-058.1E-06 Y 91 5.85E+01 2.4E-094.2E-119.3E-064.4E-05 Y 93 4.21E-01 21.0005.8E-081.1E-094.4E-062.1E-06 ZR 9 3 5. 58 E+ 08 51. 0 0 0 0. 0 E+ 0 0 0. 0 E+ 0 01.1 E-0 6 2. 4 E- 0 4 ZR 95 6.40E+01520.9934.6E-079.6E-093.6E-062.0E-05 ZR 97 7.04E-0125.946 1.2E-072.3E-097.8E-064.4E-07 NB 93M4.96E+03 8.2E-117.7E-124.1E-072.6E-05 NB 95 3.52E+01 4.7E-079.9E-093.6E-064.4E-06 NB 95M3.75E+00 4 NB 97 5.01E-02 4.1E-078.9E-097.8E-067.4E-08 MD 99 2.75E+00250.8681.0E-072.3E-094.4E-063.7E-06 TC 99 7.77E+07 0.0E+000.0E+009.3E-077.4E-06 TC 99M2.51E-01 41.0008.2E-082.8E-092.8E-081.4E-08 RU103 3.94E+01 20.9982.9E-077.1E-092.7E-067.4E-06 RU105
- 1. 8 5 E- 015 2 0. 7 2 0 4. 9 E-0 71.1 E- 081.1 E-0 6 4. 8 E- 0 7 RU106 3.68E+02 21.0000.0E+000.0E+002.1E-054.8E-04 RH103M3.90E-02
- 1. 4 E-101. 4 E-111.1 E- 0 8 5. 6 E-0 9 RH105
- 1. 4 7 E+ 0 0 5.0E-081.4E-091.4E-068.9E-07 RH106 9.08E-02 2 1.01.4E-072.65-092.7E-067.4E-06 PD107 2.37E+09
- 0. 0 E+ 0 0 0. 0 L'+ 0 01. 6 E-0 71. 6 E-0 5 A G 10 9M'+. 58 E-0 4 2.8E-091.5E-103.2E-101.1E-1G AG 110 M2. 51 E+ 02 ( 1. 0 0 01. 7 E-0 6 3. 4 E-081.1 E-0 55. 2 E-0 5
.CD113M4.96E+03 0.0E+000.0E+001.6E-041.6E-03 n,
.S N 12 6L 31. 6 5 E+ 0 7 21.' 0 0 03. 0 E-0 81. 2 E-0 91. 6 E- 0 5 5. 9 E-3 5
'h ' *SB125 1. 01 E + 0 3 52 0. 7 7 0 2. 6 E-0 7 6. 4 E-0 9 3. 0 E- 0 61. 0 E- 0 5 SB126 1.24E+01..
1.8E-063.9E-081.0E-051.1E-05 SB126Mt.32E-02420.8609.6E-072.2E-087.8E-083.2E-08 SB127 3.85E+00520.8654.3E-079.7E-096.3E-065.2E-06 TE125M5.80E+01 6.5E-093.8E-103.4E-066.7E-06 TE127 3.90E-01 3.1E-097.9E-117.4E-073.3E-07 TE127M1.09E+02 20.9761.8E-091.1E-108.9E-062.1E-05 TE129 4.83E-02 21.0003.6E-088.6E-101.9E-079.3E-08 TE129M!.36E+01240.6402.0E-084.7E-109.6E-062.0E-05 T E 131M t. 25 E + 0 0 4 2 0. 7 7 8 9.15- 0 71. 8 E- 0 81. 3 E-0 5 7. 8 E- 0 6 T E 132 3. 26 E+ 0 0 21. 0 0 01. 4 E-0 7 4. 4 E-0 9 3. 7 E-0 6 4.8 E-0 6 TE133M3.85E-02420.8701.5E-062.9E-088.1E-074.1E-07 I 129 5.73E+09 5.5E-094.1E-103.7E-042.3E-04 I 131 8.04E+00 2.4E-076.3E-095.2E-053.1E-05 I 132 9.58E-02 1.4E-062.9E-085.2E-073.1E-07 I 133 8.67E-01 3.8E-078.7E-099.3E-064.8E-07 I 134 3.65E-02 1.7E-063.2E-081.9E-071.1E-07 I 135 2.75E-01 1.0E-061.8E-082.0E-061.2E-06 CS134 7.53E+02 9.7E-072.1E-087.4E-054.8E-05 CS135 8.40E+08 0.0E+000.0E+007.4E-064.8E-06 CS136 1.31E+01
- 1. 4 E- 0 6 2. 8 E- 0 81.1 E-0 5 7. 4 E-0 6 CS137 1.10E+04 50.9460.0E+000.0E+005.2E-053,3E-05 CS138 2.24E-02 1.6E-062.7E-081.5E-078.5E-08 BA137M1.77E-03 4.1E-077.4E-094.1E-071.9E-07 3A140 1.28E+01 21.0009.2F-082.3E-098.5E-063.5E-06 LA140 1.68E+00 1.5E-062.7E-087.8E-064.8E-06 LA141 1.64E-01 21.0002.9E-084.8E-101.4E-066.7E-07 LA142 6.44E-02 1.8E-Oo2.7E-086.7E-072.1E-07 C-3
CEl41 3.25E+01 4.8E-CG1.6E-0*2.6E-063.1E-06 CEI43
- 1. 3 S E + 0 0 21. 0 0 01. 7 E- 0 7 's. 6 E- 0 94. ', E- 0 6 3. 4 E-0 6 CE144 2.04E402520.?O31.EE-03).4E-102.0E-053.5E-C4 rR143 1.36t+01 5.3E-151.2E-164.4E-067.4E-05 FR 14 4 1.20E-02 0 2.1E-0!3.5E-10 r F! ! '+ 4f D. 0 0 E - 0 3 4 3.4E 0?I.3E-10 flD147 1.11E+01 21. 0 0 0 8. 3E- 0 0 2. 4 E-0 0 4.1 E-0 6 7. C E- 0 6 F i114 7
- 1. 5'! E 6 C 2 21. 0 0 0 2. 3 E-12 3. 0 E-14 9. 6 E- 0 7 3. 4 E- 0 5 F t1141 2. 2 i E + F,0 7.4E-072.0E-103.7E-062.?E-06 5:1147 3.71E*13
- 0.0 E* 0 0 9. 0 E + 0 0 2. 7 E- 0 6 3. 7 E- 0 3 S!1151 3. 2 3 E + 0 'e 6. 4 E - 13 5. I E- ' ~e 3. 0 E - 0 7 3. 7 E- 0 3 FU152 4.15E*03 20.2777.3E-071.5E-001.4E-062.7E-04 Ell 15 's 3.lif603
.7. r, E - 0 51, 6 E- 0 G 7. U E-0 6 4.1 E- 0 4 EU155 1.31E+0i
- 3. S E - n r,1,4 E-C i t. I E-0 6 3. 0 E- 0 4 f LM DEC0'1 AHf E...S A!!PL E EU'l..
1 5.
1.E-06 1 1 1 0 00
'Ili3IDE BtDG CA M (HO INGESTION P ATil;f AY)
.23
.23
.21 0
1 I t'3 5 'e 3.06E-2 C057 1.41E-3 COSO 7.41E-1 5970
- 1. C ?. E - 1 C 013 *+
5.41E-2 C3137 1.00003 CC144 1.65E-3 0.
D**)D *]D ] {
~
o a Ju o JB. JU.1 o
I C-4
LIBRARY OF RADIDHUCLIDES HALFLIFE DECAY FRAC
---DOSE FACTORS---
HUCLIDE (DAYS) MODE DECAY SUBMERSH GROUND INGESTIN INHALATH CM242 6.61E+03 1
1.000 2.30E-11 4.10E-12 2.20E-03 5.30E-01 AM241 1.58E+05 1
1.000 1.20E-08 3.60E-10 2.20E-03 5.30E-01 At1242 6.68E-01 32 0.827 8.50E-09 2.10E-10 1.20E-06 7.10E-05 AM242M 5.55E+04 14 0.995 2.90E-10 3.20E-11 2.60E-03 6.30E-01 Ar1243 2.69E+06 1
1.000 3.10E-08 7.70E-10 2.20E-03 5.30E-01 PU238 3.20E+04 1
1.000 4.90E-11 9.10E-12 5.56E-05 3.00E-01 PU239 8.90E+06 1
- 1. 0 0 0 4.8 0 E-11 4.10E-12 6.00E-05 3.30E-01 PU240 2.39E+06 1
- 1. 0 0 0 4.8 C E-11 8.~ 7 0 E-12 6. 0 0 E-0 5 3. 3 0 E-01 PU241 5.26E+03 2
1.000 0.0 0.0 9.70E-07 5.90E-03 PU242 1.41E+08 1
1.000 4.90E-11 6.90E-12 5.70E-05 3.20E-01 HP239 2.36E+00 2
1.000 1.10E-07 2.40E-09 3.70E-06 2.80E-06 HP238 2.12E+00 2
1.000 3.40E-07 6 30E-09 7.30E-06 3.40E-05 HP237 7.81E+08 1
1.000
- 1. 5 0 E-0 8 4.10 E-10 4. 0 0 E-0 2 5. 0 0 E-01 U 233 1.63E+12 1
1.000 3.90E-11 6.20E-12 2.80E-04 1.20E-01 U 237 6.75E+00 2
1.000 8.70E-08 2.10E-09 3.30E-06 4.10E-06 U 236 8.55E+09 1
1.000 4.60E-11 7.10E-12 3.00E-04 1.30E-01 U 235 2.59E+11 1
1.000 9.80E-08 2.20E-09 2.90E-04 1.30E-01 U 234 8.92E+07 1
1.000 9.10E-11 8.50E-12 3.10E-04 1.30E-01 U 233 5.79E+07 1
1.000 2.00E-10 8.40E-12 3.20E-04 1.30E-01 U 232 2.62E+04 1
1.000 1.80E-10
- 1. 2 0 E-11 1.60E-03 6.50E-01 PA233 2.7 0 E + 01 2
1.000 1.2 0 E-0 7 2. 7 0 E-0 9 4.10 E-0 6 1.00E-05 PA231 1.19E+07 1
1.000 1.90E-08 4.50E-10 1.70E-01 2.20E+00 TH234 2.41E+01' 5
1.000 4.90E-09 1.30E-10 1.40E-04 3.50E-05 TH232 5.13E+12 1
1.000 1.10E-10 7.00E-12 2.70E-03 1.20E+00 TH231 1.06E+00 2
1.000 9.10E-09 2.90E-10 1.60E-06 9.60E-07 IH230 2.81E+07 1
- 1. COO 2.50E-10 1.00E-11 5.30E-04 2.60E-01 TH229 2.68E+06 1
1.000 5.50E-08 t.30E-09 3.60E-03 1.80E+00 TH228 6.98E+02 1
1.000 1.30E-09 3.40E-11 3.90E-04 3.00E-01 TH227
- 1. 8 7 E + 01 1
1.000 6.60E-08 1.50E-09 3.80E-05
- 1. 6 0 E-0 2 AC227 7.95E+03 12 0.986 7.70E-11 2.00E-12 1.80E-03 8.20E-01 AC225 1.00E+01 1
1.000 9.90E-09 2.30E-10 8.30E-05 6.90E-03 RA228 2.10E+03 2
- 1. 0 0 0 2. 3 0 E-17 4. 8 0 E-18 1.30E-03 4.10E-03 PA226 5.84E+05 1
1.000 4.40E-09 9.60E-11 1.50E-03 1.60E-02 RA225
- 1. 4 8 E + 01 2
1.000 4.00E-09 1.70E-10 3.50E-04 7.40E-03 RA224 3.66E+00 1
-1.000 6.40E-09 1.40E-10 3.40E-04 2.90E-03 RA223 1.14E+01 1
1.000 8.30E-08 1.90E-09 6.10E-04.7.40E-03 P0210 1.38E+02 0
1.000 5.20E-12 1.00E-13
- 1. 6 0 E-0 3 8.10 E-0 3 BI210 5.01E+00 2
1.000 0.0 0.0 5.60E-06 1.90E-04 PB212 4.43E-01 2
1.000 9.40E-08 2.10E-09 2.50E-05 1.60E-04 PB210 8.14 E + 0 3 2
1.000 8.60E-10 3.50E-11 3.60E-03 1.80E-02 PA234M 8.13E-0 4 42 0.999 7.00E-09 1.30E-10 0.0 0.0 RM222 3.82E+00 1
- 1. 0 0 0 2. 4 0 E-10 5.00E-12 0.0 0.0 P 0218 2.12 E- 0 3 1
1.000 0.0 0.0 0.0 0.0 PS214 1.86E-02 2
1.000
- 1. 6 0 E-07 3. 4 0 E-0 9 0. 0 0.0 B1214 1.3SE-02 2
1.000 1.00E-06 1.70E-08 0.0 0.0 P0214 1.89E-09 1
1.000 6.80E-11 1.30E-12 0.0 0.0 RH219 4.53E-05 1
1.000 3.60E-08 7.60E-10 0.0 0.0 P0215 2.06E-08 1
1.000 0.0 0.0 0.0 0.0 DI211 1.48E-03 -21 0.997 2.90E-08 6.10E-10 0.0 0.0 TL207 3.3tE-03 0
1.000 1.30E-09 2.50E-11 0.0 0.0 U 240 5.88E-01 5
1.000 4.50E-10 4.60E-11 0.0 0.0 HP240 4.51E-02 2
1.000 8.00E-07 1.60E-08 0.0 0.0 AC228 2.55E-01 2
1.000 5.80E-07 1.10E-08 0.0 0.0 PN?'O
- 6. 4 4 E- 0 4 1
1.000 3.40E-10 7.00E-12 0.0 0.0 P0216 1.74E-06 1
1.000 0.0 0.0 0.0 0.0 B1212 4.20E-02 12 0.641 1.20E-07 2.20E-09 0.0 0.0 TL208 2.13E-03 0
1.000 2.30E-06 3.50E-08 0.0 0.0 FR228 3.33E-03 1
1.000 2.00E-08 4.40E-10 0.0 0.0 AT217 3.74E-07 1
1.000
- 1. 9 0 E-10 3. ? 0 E-12 0. 0 0.0 BI213 3.17E-02 12 0.978 8.40E-08 1.7.0E-09 0.0 0.0 P0213 8.60E-12 1
1.000 1.90E-11 3.60E-13 0.0 0.0 PB209
- 1. 3 8 E- 01 0
1.000 0.0 0.0 0.0 0.0 FR223 1.51E-02 2
1.000 3.30E-08 8.40E-10 0.0 0.0 P0211 6.48E-06 0
1.000 4.90E-09 9.50E-11 0.0 0.0 TL209 1.53E-03 2
1.000 1.4 0 E-0 6 2. 5 0 E-08 0. 0 0.0 P0212 5.30E-13 1
1.000 0.0 0.0 0.0 0.0 HP240M 5.14E-03 42 0.999 2.10E-07 4.10E-09 0.0 0.0 PA234 '2.79E-01 2
1.000 1.20E-06 2.40E-08 0.0 0.0 PB2't 2.51E-02 2
- 1. 0 0 0 6. 7 0 E-11 6.30E-10 0.0 0.0 C-5 l
p l
HA 22 9.50E+02 0
1.000 1.40E-06 2.90E-08 1.60E-05 1.00E-05 HA 24 6.25E-01 0
1.000 2.90E-06 4.00E-08 1.40E-06 1.00E-06 P 32 1.43E+01 0
1.000 0.0 0.0 7.40E-06 1.30E-05 C A 41 5.11E+07 0
1.000 1.20E-12 1.90E-14 1.80E-06 1.90E-06 CR 51 2.77E+01 0
1.000 2.00E-08 5.50E-10 1.50E-07 2.70E-07 i
NH 54 3.12E+02 0
1.000 5.10E-07 1.00E-08 2.70E-06 6.30E-06 FE 55 9.86E+02 0
1.000 8.70E-12 2.00E-13 5.90E-07 %.50E-06 FE 59 4.46E+01 0
1.000 7.70E-07 1.40E-08 6.70E-07 50E-05 CO 57 2.71E+02 0
1.000 7.90E-05 2.70E-09 1.20E-06 7.40E-06 CO 58 7.08E+01 0
1.000 6.00E-07 1.30E-08 3.50E-06 7.00E-06 CO 60 1.92E+03 0
1.000 1.70E-06 2.90E-08 2.60E-OS 1.50E-04 HI 59 2.74E+07 0
1.000 1.40E-11 3.80E-13 1.90E-07 9.30E-07 HI 63 3.50E+04 0
1.000 0.0 0.0 4.10E-07 1.90E-06 CU 64 5.29E-01 0
1.000 1.20E-07 2.80E-09 4.80E-07 2.60E-07 i
ZH 65 2.44E+02 0
1.000 3.70E-07 6.80E-09 1.40E-05 1.80E-05 SE 79 2.37E607 0
1.000 0.0 0.0 2.60E-06 3.10E-06 RB 86 1.87E+01 0
1.000 6.00E-08 1.10E-09 9.30E-06 6.30E-06 RB 87 1.72Et13 0
1.000 0.0 0.0 4.80E-06 3.20E-06 RD 88 1.24E-02 0
1.000 4.40E-07 6.80E-09 1.60E-07 7.80E-08 RB 89 1.06E-02 2
1.000 1.40E-06 2.30E-08 7.80E-08 3.60E-08 SR 89 5.06E+01 0
1.000 8.40E-11 1.60E-12 7.80E-06 3.50E-05 l
SR 90 1.04E+04 2
1.000 0.0 0.0 1.20E-04 1.30E-03 1
SR 91 3.96E-01 25 0.580 4.30E-07 8.60E-09 3.00E-06 1.60E-06 SR 92 1.13E-01 2
1.000 9.00E-07 1.60E-08 1.90E-06 9.60E-07 Y 90 2.67E+00 0
1.J00 6.30E-14 6.30E-15 1.00E-05 8.10E-06 f
Y 91 5.85E+01 0
1.000 2.40E-09 4.20E-11 9.30E-06 4.40E-05 i
Y 93 4.21E-01 2
1.000 5.80E-08 1.10E-09 4.40E-06 2.10E-06 ZR 93 5.58E+08 5
1.000 0.0 0.0 1.10E-06 2.40E-0't ZR 95 6.40E+01 52 0.993 4.60E-07 9.60E-09 3.60E-06 2.00E-05 I
ZR 97 7.04E-01 25 0.946 1.20E-07 2.30E-09 7.80E-06 4.40E-07 NB 93M 4.96E+03 0
1.000 8.20E-11 7.70E-12 4.10E-07 2.60E-05 NB 95 3.52E+01 0
1.000 4.70E-07 9.90E-09 3.60E-06 4.40E-06 N3 97 5.01E-02 0
1.000 4.10E-07 8.90E-09 7.80E-06 7.40E-08 MO 99 2.75E+00 25 0.868 1.00E-07 2.30E-09 4.40E-06 3.70E-06 TC199 7.77E+07 0
1.000 0.0 0.0 9.30E-07 7.40E-06 i
TC 99M 2.51E-01 4
1.000 8.20E-08 2.30E-09 2.80E-08 1.40E-08 RU103 3.94E+01 2
0.998 2.90E-07 7.10E-09 2.70E-06 7.40E-06 RU105
- 1. 8 5 E- 01 52 0.720 4.90E-07 1.10E-08 1.10E-06 4.80E-07 i
RU106 3.68E+02 2
1.000 0.0 0.0 2.10E-05 4.80E-04 l
RH103M 3.90E-02 0
1.000 1.40E-10
- 1. 4 0 E-11 1.10E-08 5.60E-09 l
RH105
- 1. 4 7 E+ 0 0 0
1.000 5.00E-08 1.40E-09 1.40E-06 8.90E-07 l
RH106 9.08E-02 2
1.000 1.40E-07 2.60E-09 2.70E-06 7.40E-06 PD107 2.37E+09 0
1.000 0.0 0.0 1.60E-07 1.60E-05 AG109M 4.58E-04 0
1.000 2.80E-09 1.50E-10 3.20E-10 1.10E-10 AG110M 2.51E+02 4
1.000 1.70E-06 3.40E-08 1.10E-05 5.20E-05 CD113M 4.96E+03 0
1.000 0.0 0.0 1.60E-04 1.60E-03 SN126 3.65E+07 2
1.000 3.00E-08 1.20E-09 1.60E-05 5.90E-05 5B125 1.01E+03 52 0.770 2.60E-07 6.40E-09 3.00E-06 1.00E-05 S L 126 1.24E+01 0
1.000 1.80E-06 3.90E-08 1.00E-05 1.10E-05 SB126M 1.32E-02 42 0.860 9.60E-07 2.20E-08 7.80E-08 3.20E-06 SB127 3.85E+00 52 0.865 4.30E-07 9.70E-09 6.30E-06 5.20E-06 TE125M 5.80E601 0
1.000 6.50E-09 3.80E-10 3.40E-06 6.70E-05 TE127 3.90E-01 0
1.000 3.10E-09 7.90E-11 7.40E-07 3.30E-07 TE127M 1.09E+02-2 0.976 1.80E-09 1.10E-10 8.90E-06 2.10E-05 TE129 4.83E-02 2
1.000 3.60E-08 8.60E-10 1.90E-07 9.30E-08 TE12?M 3.36E+01 24 0.640 2.00E-08 4.70E-10 9.60E-06 2.00E-05 l
TE131M 1.25E+00 42 0.778 9.~10E-07 1.80E-08 1.30E-05 7.80E-06
(
TE132 3.26E+00 2
1.000 1.40E-07 4.40E-09 3.70E-06 4.80E-06 TE133M 3.85E-02 42 0.870 1.50E-06 2.90E-08 8.10E-07 4.10E-07 I 129 5.73E+09 0-1.000 5.50E-09 4.10E-10 3.70E-04 2.30E-04 I 131 8.04E+00 0
1.000 2.40E-07 6.30E-09 5.20E-05 3.10E-05 I 132 9.58E-02 0
1.000 1.40E-06 2.90E-08 5.20E-07 3.10E-07 I 133.8.67E-01 0
1.000 3.80E-07 8.70E-09 9.30E-06 4.80E-07 I 134 3.65E-02 0
1.000 1.70E-06 3.20E-08 1.90E-07 1.10E-07 I 135 2.75E-01 0
1.000 1.00E-06 1.8 0 E-08 2. 0 0 E-0 6 1.20E-06 CS134 7.53E+02 0
- 1. 0 0 0 9.7 0 E-0 7 2.10 E-08 7. 4 0 E-0 5 4. 8 0 E-0 5 C5135 8.40E+08 0
1.000 0.0 0.0 7.40E-06 4.80E-06 l
CS136 1.31E+01 0
1.000 1.40E-06.2.80E-08 1.80E-05 7.40E-06 CS137 1.10E+04-5 0.946 0.0 0.0 5.20E-05 3.30E-05 C5138 2.24E-02 0
1.000 1.60E-06 2.70E-08 1.50E-07 8.50E-08 BA137M 1.77E-03 0
1.000 4.10E-07 7.40E-09 4.10E-07 1.90E-07 BA140 3.28E+01.
2 1.000 9.20E-08 2.30E-09 8.'50E-06 3.50E-06 l
LA140 1.68F+00 0
1.000 1.50E-06 2.70E-08 7.80E-06 4.80E-06 LA141 1.64f-01 2
1.000 2.90E-08 4.80E-10 1.40E-06 6.70E-07 LA142 0.44E-02 0
1.000 1.80E-06 2.70E-08 6.70E-07 2.10E-07 C-6 j
CE141 3.25E+01 0-1.000 4.80E-08
- 1. 6 0E-0 9 2. 6 0 E-06 8.10E-0 6 CE143 1.38E+00 2
1.000
- 1. 7 0 E-0 7 4. 6 0 E-0 9 4. 4 0 E-0 6 3. 4 0 E-0 6 CE144 2,84E+02 52 0.988
- 1. 20 E-08 4.49 E-10 2. 0 0 E-0 5 3.50 E-04 PR143 1.36E+01 0
1.000 5.50E-15
- 1. 20 E-16 4. 4 0 E-0 6 7. 4 0 E-0 6 PR144 1.20E-02 0
1.000 2.10E-08 3.50E-10 0.0 0.0 PR144M 5.00E-03 4
1.000 3.40E-09 1.30E-10 0.0 0.0 HD147 1.11E+01 2
1.0 0 0 8.30 E-08 2.4 0 E-0 9 4.10 E-06 s.00E-06 PM147 9.58E+02 2
- 1. 0 0 0 2. 3 0 E-12 8. 0 0 E-14 9. 6 0 E-0 7 3. 4 0 E- 0 5 PM149 2.21E+00 0
1.000 7.40E-09 2.00E-10 3.7CE-06 2.90E-06 SM147 3.91E+13 0
1.000 0.0 0.0 2.70E-06 3.70E-03 SN151 3.28E+04 0
1.000 6.40E-13 6.10E-14 3.00E-07 3.70E-05 E0152 4.96E+03 2 0.279 7.30E-C7 1.50E-08 4.40E-06 2.70E-04 EU154 3.14E*03 0
1.000 7.80E-38 f.60E-08 7.00E-06 4.10E-04 EU155 1.81E+03.
0 1.000 3.50E-08 1.40E-09 1.10E-06 3.00E-04 LIBRAP.Y CONTIAHS 158 ENTRIES STABLE ELEMENT TRANSFER DATA ELEM VEG/ SOIL MILK (D/L) MEAT (D/KG)
EL EM VEG/ SOIL MILKCD/L)
MEAT (D/KG)
M 4.8E+00 1.4E-02 1.2E-02 58 1.1E-02 2.0E-05 4.0E-03 HE 5.0E-02 2.0E-02 2.0E-02 TE 1.3E+00 2.0E-04 7.7E-02 LI 8.3E-04 2.0E-02 1.0E-02 I
2.0E-02 9.9E-03 2.9E-03 BE 4.2E-04 9.1E-07 1.0E-03 XE 1.0E+01 2.0E-02 2.OE-02 8
1.2E-01 1.5E-03' 8.0E-04 C5 1.0E-02 7.1E-03 4.0E-03 C
5.5E+00 1.5E-02 3.1E-02 BA 5.0E-03 3.5E-04 3.2E-03 M
7.5E+00 2.3E-02 7.7E-02 LA 2.5E-03 2.0E-05 2.0E-04 0
1.6E+00 2.OE-02 1.6E-02 CE 2.5E-03 2.0E-05 1.2E-03 F
6.5E-04 1.1E-03 1.5E-01 PR 2.5E-03 2.0E-05 4.7E-03 NE 1.4E-01 2.0E-02 2.0E-02 HD 2.4E-03 2.0E-05 3.3E-03 NA 5.2E-02 3.5E-02 3.0E-02 PM 2.5E-03 2.0E-05 4.8E-03 MG 1.3E-01 3.9E-03 5.0E-03 SM 2.5E-03 2.0E-05 5.0E-03 AL
- 1. 8 E- 0 4 2.0E-04 1.5E-03 EU 2.5E-03 2.0E-05 4.8E-03 SI 1.5E-04 2.0E-05 4.0E-05 GD 2.6E-03 2.0E-05 3.6E-03 P
1.1E+00 1.6E-02 4.6E-02 TB 2.6E-03 2.0E-05 4.4E-03 5
5.9E-01 1.6E-02 1.0E-01 DY 2.5E-03 2.0E-05 5.3E-03 CL 5.0E+00 1.7E-02 8.0E-02 HD 2.6E-03 2.0E-05 4.4E-03 AR 6.PE-01 2.0E-02 2.0E-02 ER 2.5E-03 2.0E-05 4.0E-03 K
3.7E-01 7.2E-03 1.2E-02 TM 2.6E-03 2.0E-05 4.4E-03 CA 3.6E-02 1.1E-02 4.0E-03 YB 2.5E-03 2.0E-05 4.0E-03
-SC 1.1E-03 5.0E-06 1.6E-02 LU 2.6E-03 2.0E-05 4.4E-03 TI 5.4E-05 1.0E-02 3.1E-02 HF 1.7E-04 5.0E-06 4.0E-01 V
1.3E-03 2.0E-05 2.3E-03 TA 6.3E-03 2.8E-06 1.6E+00 CR 2.5E-04 2.0E-03' 2.4E-03 W
1.8E-02 2.9E-04 1.3E-03 MN 2.9E-02 8.4E-05 8.0E-04 RE 2.5E-01 1.3E-03 8.0E-G3 FE 6.6E-04 5.9E-05 4.0E-02 05 5.0E-02 5.0E-03 4.0E-01 CO 9.4E-03 2.0E-03 1.3E-02 IR 1.3E+01 2.0E-06 1.5E-03 NI 1.9E-02 1.0E-02 5.3E-03 PT 5.0E-01 5.0E-03 4.0E-03 CU 1.2E-01 1.7E-03 8.0E-03 AU 2.5E-03 5.3E-06 8.0E-03 ZN 4.0E-01 1.0E-02 3.0E-02 HG 3.8E-01 9.7E-06 2.6E-01 GA 2.5E-04 5.0E-05 1.3E+00 TL 2.5E-01 1.9E-03 4.0E-02 GE 1.0E-01 7.0E-02 2.0E+01 PB 6.8E-02 2.6E-04 2.9E-04 A5 1.0E-02 6.2E-05 2.0E-03 BI 1.5E-01 5.0E-04 1.3E-02 SE 1.3E+00 4.0E-03 1.5E-02 P0 1.5E-01 1.4E-04 1.2E-02 BR 7.6E 2.0E-02 2.6E-02 AT 2.5E-01 1.0E-02 3.0E-03 KR 3.0E+00 2.0E-02 2.0E-02 RN 3.5E+00 2.0E-02 2.0E-02 RB
- 1. 3 E- 01 1.2E-02 3.1E-02 FR 1.QE-02 2.0E-02 2.0E-02 SR
~1.7E-02 1.4E-03 6.0E-04 RA 3.1E-04 4.5E-04 4.0E-03
.Y 2.6E-03 2.0E-05 4.6E-03 AC 2.5E-03 2.0E-05 6.0E-02 ZR 1.7E-04 8.0E-02 3.4E-02 TH 4.2E-03 5.0E-06 2.0E-04 NB 9.4E-03 2.0E-02 2.8E-01 PA 2.5E-03 5.0E-06 5.0E-03 MO 1.2E-01 1.4E-03 8.0E-03 U
2.5E-03 6.1E-04 3.4E-04 TC 2.5E-01 9.9E-03 4.0E-01 HP 2.5E-03 5.0E-06 2.0E-04 RU 5.0E-02 6.10-07 4.0E-01 PU 2.5E-04 1.0E-07
.1.4E-05 RH 1.3E+01 1.0E-02 1.5E-03 AM 2.5E-04 2.0E-05 2.0E-04 t
-PD 5.0E+00 1.0E-02 4.0E CM 2.5E-03 2.0E-05 2.0E-04 AG 5.5E-01 3.0E-02 1.7E-02' BK 2.5E-03 2.OE-05 2.0E-04 CD
- 3. 0 E- 01 1.0E-03 5.3E-04 CF 2.5E-03 2.0E-05 2.0E-04 IN 2.5E-011 1.0E-04 8.0E-03 ES 2.5E-03 2.0E-05 2.0E-04 SN 2.5E-03 1.2E-03 8.0E-02 FM 2.5E-03 2.GE-05 2.0E-04~
C-7
ANALYSIS OF RESIDUAL ACTIVITY PWR DECOM ANAL... SAMPLE RUH...
PATH! JAYS CONSIDERED USAGE UNITS FRACTIDH SUBMERSION....
8766.0 HR/YR 0.23 GROUND PLANE..
8766.0 HR/YR 0.23 INHALATION 8300.0 M3/YR 0.29 TIME PERIOD-1.0 YR DOSE LIMIT-5.0 MREM /YR RESUSPENSION FACTOR (1/M) :
0.10E-05 SOIL DENSITY (KG/M**3) :
1350.0
' PLOWLAYER THICKNESS (M) :
0.17780 JX : 0 UML : 1.00E+00 MN 54 3.06E-02 CD 57 1.41E-03 CO 60 9.41E-01 SR 90
C-8
4t I
i 4
l
(
i I
i i
J 4
4 a
i I
f 1,
APPENDIX 0:
i
\\
j Parametric Sensitivities I
4 e
i l
i 1
l 1
t
[
D-1 i
m r
g_-gn
-m-y g
n-em,,,
a e
4 a
-v
i i~
Parametric Sensitivities The dependence of calculational results upon preset values of input and code-4 internal parameters can be minimal or quite significant.
A sensitivity study has been performed to identify the influeno that a variation in parametric values has on the results. The study is.diviu d into two parts:
the internal.
3 parameters and input data.
J Internal Partmeters of the Code Various parameters of the dose assessment models have associated with them a r
degree of uncertainty.
Some of these parameters are internally defined in the j
code and consequently are not subject to re-definition during normal implemen-tation of the code.
A summary listing of.the internally defined parameters, their definitions, and the values assigned to each variable is provided in
' Table D-1.
Except for the pathway usage rates, these parameters are associated with the ingestion pathway calculations.
Therefore, any uncertainty applied to one of these parameter yields an uncertainty in the ingestion pathway dose.
It should 1
be noted that a parametric uncertainty may well affect the dose from ingestion i
but exhibit a very minor effect on the total predicted dose through all pathways and thus the subsequent residual radionuclide concentrations.
l The sensitivities of internal parameters for the ingestion pathway are illu-strated in Table 0-2.
The ingestion pathway is broken down into three sub-pathways (milk, meat, and vegetation).
The " standard run" is defined from
~9 j
Table D-1 and corresponds to a resuspension factor of.10 1/m and a plow 2
layer density thickness of 240 kg/m.
The calculated dose rates are nor-malized to the " standard run" results.
Overall, the results are only slightly affected by a-50% change in the parametric values except for the animal inges-tion rate which produced a 50% variation in the milk and meat dose results.
j Overall, the results exhibit minor fluctuations because the small resuspension factor.allowsthe(B{/P)terminEquation10todominate.
~
d I
D-2
l Table 0-1 A Listing of Internally Defined Parameters Parameters
- Definitions Value FCAP Fraction of deposition intercepted by vegetation 0.3 2
Y1 Pasture grass density 0.75 kg/m 2
Y2 Density of stored animal feeds and vegetation 2.3 kg/m consumed by man during its growth period FUP Fraction of ground concentration available 0.05 for resuspension AINR Animal ingestion rate 50 kg/ day FP Fraction of animal diet derived from pasture
- 0. 5 5
VDEP Deposition velocity 864 m/ day
-1 T12W Weathering decay constant 0.04951 day UPATH(1+6)**
Maximum pathway usage rates:
submersion 8766 hr/yr ground plane 8766 hr/yr 3
inhalation 8300 m /yr milk consumption 310 f/yr meat consumption 110 kg/yr cereal consumption 400 kg/yr
^The parameters as symbolized in the FORTRAN are listed.
- The first three pathway usage rates can be altered on input using the FSUB, FGRD, and FINH variables discussed in Appendix B.
D-3
Table D-2 Sensitivity of Internal Code Parameters to Ingestion i
Dose Calculations j
NORMALIZED DOSE RATE +
RUN STND. VALUE MILK MEAT VEG MILK MEAT VEG l
l STANDARD *
- 1. 0
- 1. 0 1.0 1.0 1.0 1.0 T12W =.025
.5 1.08 1.076 1.003 1.074 1.077 1.002
=.075
- 1. 5
.973
.971
- 1. 0
.971
.974 1.0 FUP =.025
.5 1.0
- 1. 0
.999 1.0
- 1. 0
.998
=.075
- 1. 5 1.001
- 1. 0 1.001 1.0 1.0 1.002 VDEP = 432
.5
.959
.959
.999
.96
.963
.998
= 1296
- 1. 5 1.042 1.041 1.001 1.04 1.04 1.002 Y1
=.375
.5 1.082 1.082
- 1. 0 1.074 1.077
- 1. 0
=1.125 1.5
.973
.971 1.0
.971
.374 1.0 FP
=.25
.5
.961
.959 1.0
.96
.963 1.0
=.75
- 1. 5 1.041 1.041
- 1. 0 1.034 1.037 1.0 Y2
= 1.16
.5 1.001 1.0 1.003 1.0 1.C03 1.002
= 3.45 1.5
- 1. 0
- 1. 0
- 1. 0
- 1. 0
- 1. 0
- 1. 0 AINR = 25.
.5
.50
.499
- 1. 0
.499
.531
- 1. 0
= 75.
1.5 1.495
- 1. 5 1.0 1.497 1.501
- 1. 0 FCAP =.15
.5
.959
.959
.999
.96
.963
.988
=. 45
- 1. 5 1.042 1.041 1.001 1.04 1.0c 1.002 STANDARD **
1.0
- 1. 0
- 1. 0
- 1. 0 1.0
- 1. 0 VDEP = 900 1.042 1.042 1.035 1.032 1.043 1.04 1.028 FUP =.1
?.0 1.016 1.014 1.746 1.022 1.014 1.733 FCAP=.25
.83a
.836
.831
.878
.841
.83a
.878
+ Additional significant figures shown for numerical comparison.
- This particular analysis considered the standard run as that shown in Table D-1, except that RESP was set at 10 9 per meter.
This analysis is identical to above except that RESP = 10 6 per meter.
D-4
Sensitivity of rcsults to changes in the internal code parameters are secondary in effect to the influences which the resuspension factor has upon the results.
A fair degree of uncertainty can be allowed in the parameters of Table 0-1 since with the exceptior of the usage rate, they impose minor changes in the results.
Input Parameters Input data containing uncertainties are (1) pathway usage fractions, (2) source concentrations, (3) dose conversion factors, (4) soil density, and (5) resuspen-sion factor.
Specification of the post-deposition time and the operating path-ways sitould be accurately identifiable when decommissioning activities are terminated.
The pathwry usage fractions are a direct factor in calculating dose rate.
Therefore, any uncertainty associated with usage fraction is directly applied to the dose rate and residual concentrations.
This argument also applies for uncertainties in the input source concentrations and the dose conversion factors.
Uncertainties of the detection survey (or source concentrations) are directly applied to the predicted criteria and consequently do not present an implicit calculational uncertainty.
Uncertainty in the soil density should be minimized.
A 50% variation in soil density can incur a 50% change in results when the (B{/P ) term of Equation 10 d
controls the dose rate calculation.
Yet, when the resuspension factor is large enough, the influence of (B{/P ) is reduced.
Hence an accurate estimate Of d
resuspension factcr is desired.
Sensitivity studies that set the resuspension
-6 factor to 10 1/m revealed ingestion dose rates that increased by a factor of 100 from the standard run in Table 0-2.
Also, dose rate from the submersion f
and inhalation pathway fluctuate in direct proportion to any change in resus-pension factor.
Fuel cycle facilities with y-emitting radionuclides as con-tainmant, e.g., reactors, should find direct irradiation (ground plane) as the limiting pathway.
However, for facilities where heavy metal contaminant is predominant, such as a fuel fabrication plants, inhalation and ingestion appear to be the significant pathways.
A knowledge of the uncertainty in the resus-pension factor is pertinent in this latter case.
0-5
m_. _
..__a m.
i i
U.S. NUCLEAR f tEr,UL A10RY CC.*M4s510N ^
I DIBLIOGHAPHIC DATA SHEET NUREG-0707
- 4. I11 th JJJD f,UD11T LE (AulJ Volunue no., olprope,ste).
- 2. llense lue kl l
A Methodology for. Calculating Residual Radioactivity Levels Following Decomissioning
- 3. HECauNr5 ACCE SSION NO.
l
- 7. AUTitoR(S)
- 5. DATE ItEPORI CCYlPLE TED Keith F. Eckerman, Michael W. Young July l1980 MON TH VCAH
- 9. PL HFORMING ORGANIZATION N AME AND MAILING ADDHESS (/nclud,r 2,p Codel DATE HLPORT ISSUED Environmental Protection Standards Branch uGN m l1980 vtan
-Division of Siting, Health and Safeguards Standards October Office of Standards Development s (t,., u,nni U. S. Nuclear Regulatory Commission Washington,.D. C.
20555 8 (t,ue u naf 12, SPONSOHING ORGANIZATION NAME AND M AILING ADDHESS (Im/ude lip Codel Environmental Protection Sta'ndards Branch soaH JeCmAsmoR< unit No.
Division of. Siting, Health and Safeguards. Standards M. CONTHACT No.
Office of Standards Development U. S. Nuclear Regulatory Commission l
Washington, D. C.
20555 N/A
- 13. T YPE OF REPOHT PE RIOD COVE RE D (Inclusive dates /
Technical N/A
- 15. SUFPLEMENTAHY NOTES
- 14. (Leave blank /
r
- 16. ABSTR ACT (200 i >rds or less)
Detennination t/ a policy for decommissioning nuclear fuel cycle facilities requires establishing a relationship between potential dose 't an individual and the radio-active contaminant existing on surfaces nd in soil. The accumulation of dose can be controlled by restricting the amount of contaminant and/or the exposure time.~.Hence, a relationship between resultant dose to man and nuclide concentrations on surfaces and in soils considering environmental transport is needed.
This report presents a methodology for predicting radionuclide contamination levels that relate to a defined annual dose to an individual in the post-deposition period.
Transpnrt of radioactive contaminant through the environment and realistic exposure rates are modeled. The code that incorporates the methodology is documented in this
(
report.
- 17. KEY WORDS AND DOCUMENT AN ALYSIS 17a. DESCRIPTORS Decommissioning.
Residual Contamination Levels Dose 17b. IDENTIFIEHS/OPEN-EN DED TERMS N/A 18 AVAILABILITY STATEMENT
- 19. SECURITY CLASS (This report)
- 21. NO. OF PAGES Unclassified Unlimited.
- 20. SECU RI TY CLASS (This pegel 22.PHsCE Unclassified s
NHCFOnM 336 (7 77)