ML19339B564

From kanterella
Jump to navigation Jump to search
Suppl 7 to Proposed Tech Specs Change 145,replacing Section 4.0,small Break Analysis of App a to Core 13 Performance Analysis,W/Revised Section
ML19339B564
Person / Time
Site: Yankee Rowe
Issue date: 09/21/1977
From:
YANKEE ATOMIC ELECTRIC CO.
To:
References
NUDOCS 8011070254
Download: ML19339B564 (51)


Text

..

e f? ' '

i t Q,*.

2. v 4 ;,.

n,f

~ v.

cua f

)

.a.-

ATTACitMENT I INSTRUCTIONS FUR IMPLEMENTING 1

i' SUPPLEMENT NO. 7 TO PROPOSED CilANGE No.145

., 9 e) *9 s/ ()

3, '. * '

A

5.,t d c

. ', '[,

7 >C2N
  1. ~

\\^

.....l 104 /

+

gg ba#"

I 80

\\

0?O RG~y i

e e

(

SUPPLEMENT NO. 7 TO PROPOSED CHANGE No.145 IMPLEMENTATION INSTRUCTIONS s

l 1.

Replace Section 4.0 "Small Break Analysis" of Appendix A to " Yankee t

Nuclear Power Station Core X111 Performance Analysis" with the j

corresponding Section 4.0 attached in its entirety (including all tables 1

and figures).

i l

4 I

j J

I i

f I

f 4

s i

0 Y

i t

a

4.0 SMALL BREAK ANALYSIS 4.1 In t roduct ion i

j Modifications to the ECCS (Section 2.0) and to the low flow film boiling correlation used by Yankee (Section 3.2) were made to assure that I

the consequences of the previously identified most limiting small break LOCA (2.25 in I.D. thermal sleeve) are within the limits specified in 10CFR50.46. As previously discussed, the unique break postulated to occur is a complete severance in a small length of ECCS piping (1 to 2 feet) immediately downstream of the check valve which is nearest to one of the RCS cold leg injection points. This bre location results in reactor coolant (RCS) blowdown through a 2.25 a.

I.D. thermal sleeve and ECCS spillage through a 3.438 in. 1.D. ECCS line to containment.

j

]

The revised ECCS assures that the consequences of this most l

improbable event and other small breaks are acceptable by providing separate i

(

llPSI through each of the ECCS injection trains to the four RCS cold legs.

4 Sufficient injection to the three intact cold legs is sssured by supplying

}

resistance in each of the separate llPSI lines to yield a HPSI header pressure in excess of 1000 psia when spilling through the ruptured ECCS line prior to injection to the intact loops. This is accomplished using throttle valves in each of the four lines connecting the HPSI header to the LPSI injection lines (refer to Section 2.0).

To confirm that the combination of modified low flow film boiling heat transfer and the revised ECCS provide the margin necessary to limit the 4

/

a i

i consequences of small break LOCA events within 10CFR50.46 criteria, a complete small br. ak LOCA spectrum analysis was performed.

Sections 4.2 through 4.4 provide the analysis of the 2.25 inch ID thermal sleeve, 4.0 inch ID, 5.0 inch lu, 7.5 inch ID and 10 inch ID small breaks.

i i

k

)

4.2 Method of Analysis

?

S The trans ient depressurization of the RCS was calculated using the NHC approved RELAP4-EM digital computer code as modified by the Exxon Nuclear 1

~

Company (RELAP4-EM/00311/07/75 95 ENC 20) and Yankee (refer to Section 3.2).

For rod heatup calculations, the approved TOODEE2 Versio2 ENC 13 as modified by Yankee (refer to Section 3.2) digital computer code was used.

The reactor coolant system was nodalized into control volumes interconnected by flowpaths as shown in Figure 4-1.

The broken loop was modeled explicitly while the intact loops were lumped together. This model is identical to the nodalization used in the Core XII analysis excepting:

(1) changes in the ECCS portion of the model necessary to represent the modified ECCS and i

1j (2) changes in the ECCS model necessary to accurately reproduce both the

- i results of the most recent LPSI and HPSI pump tests and the 1972 accumulator flow tests.

Figure 4-2 provides the Core XII model for comparison.

i (3) changes to the input HPSI fill curves.o reflect recent HPSI pump tests.

j i

4 For conservatism The results of these tests are provided in Figure 4.3.

1-'

and to allow for future potential measurement uncertainties, the minimum

l l

HPSI perf ormance curve (i.e., Pump No. 3 f rom 790 paid to 160 psid, and Pump No. 1 f rom 160 psid to runout conditions) was reduced by 7.5%

both in flow and head. This revised performance curve is also included i

in Figure 4-3.

1 As stated above, the only actual change in the model is in the ECCS modeling. However, a minor change in secondary system modeling was required due to RELAP restrictions. The change is in the andeling of the feedwater flow to the steam generators.

In the Core X11 analysis, feedwater flow to the steam generators was modeled as a time dependent fill junction.

It was found in preparing the current small break model that due to separation of the HPSI pumps from the LPSI pumps (Core X11 LPSI and HPSI pumps were additive and treated as a single fill junction) that a total of six (6) fill junctions would be required if the primary system model I

were to be retained intact.

Since RELAP is restricted to a maximum of five (5) fill junctions, it was decided to modify the feedwater modeling since this was the most readily accomplishable change. Thus, feedwater input to the steam generator is modeled as a time dependent volume (Volume 26) connected to er.ch of the two steam generator secondary nodes (Volumes 16 and 17) with time dependent valves in each junction. The change was developed to assure that the feedwater flow, which is minimal since it is ramped from full flow to zero flow in two seconds, remained consistent with the Core X11 analysis and subsequently was confirmed in the analysis.

The peak clad temperature analysis was performed using the T00DEE2 digital computer code as modified by Yankee (refer to Section 3.2).

Figure 4-4 provides the 17 axial node model employed to simulate the peak rod.

i r

i t

i Initial f uel rod temperatures were obtained utilizing RELAP4-EM/ HOT Channel as modified by Yankee (refer to Section 3.2) with a corresponding axial nodalization. Time dependent fluid conditions required as T00DEE2 input i

were obtained from the blowdown results.

I 1

4.3 Results "t

The following figures illustrate the key parameters for the various small breaks analyzed for Core X111 at BOC Conditions:

Figures 4-5.1 through 4-5.8 2.25 inch ID 12.85 kw/ft Figures 4-6.1 through 4-6.8 4.00 inch ID 12.85 kw/ft i

Figures 4-7.1 through 4-7.8 5.00 inch ID 12.85 kw/ft t

Figures 4-8.1 through 4-8.8 7.50 inch ID 12.85 kw/ft j

Figures 4-9.1 through 4-9.8 10.00 inch ID 12.85 kw/ft Table 4-1 provides a summary of the sequence of events for the above breaks and Table 4-2 provides a summary of the results.

i 4.4 Conclusions i

The ef fects of the revised ECCS and modified low flow film boiling I'

correlation yield small break LOCA transients whose consequences are well i

)

within the limits specified in 10CFR50.46.

i l

l i

i.

n-r.-+-

-,,n

,n,---

1 i

4 i

l c

i f

i TABLE 4-1 YANKEE ROWE CURE X111 SHEL BREAK ANALYSIS u

TIME SEQUENCE OF EVENTS l

I i

l Event Time, Seconds I

j Break Size Equivalent. ID:

2.25" 4.0" 5.0"

7. 5" 10.0" Event Pipe Rupture 0.0 0.0 0.0 0.0 0.0' Loss of offsite Power 0.0 0.0 0.0 0.0 0.0 l

Safety Injection Signal 10.5 6.2 6.0 5.6 4.9 PCT Occurs 12.6 209.8 117.6 72.8 5.4 HPSI and LPSL Flow Begins 20.0 20.0 20.0 20.0 20.0 EECS Flow to Intact Cold Legs Begins 48.0 24.8 20.0 20.0 20.0 j

Core kecovery Occurs 616.4 218.5 126.8 76.0 56.0 5

e 9

1 t

1 1

i i

i i

e r--

w s-

+--+ -

-wv-~m

--*-,a-em m-

.m i---.-.m*-

we y

e

+m++-

e

-m+

1 1

(

l j

TABLE 4-2 i

YANKEE ROWE CORE XIII SMALL BREAK LOCA ANALYSIS l

SUMMARY

OF RESULTS*

i Break Size Equivalent Internal Diameter. Inches a

Pa ramete r 2.25 4.0 5.0

7. 5 10.0 Peak Clad Temperature "F

1133.5 1793.4 1522.4 1398.4 1625.3 Peak Clad Temperature Location, ft.

4.29 3.79 3.79 3.79 3.79 Maximum Local Zr/H O 2

j Reaction, %

.13 0.70

.24

.17

.20 i

Maximum Local Zr/H O 2

i Reaction Location ft.

4.29 4.04 3.79 3.79 3.79 Percent of Total Core Zr/H O Reaction, %

<1

<1

<1

<1

<1 2

  • CALCULATIONS PERFORMED AT THE FULLOWING CONDITIONS:

Power Level, MWt 618 Peak Linear Heat Generator Rate 12.85 j

Teial Peaking Factor 2.76 3

3 i

Accumulator Water, Fr 700 Cold Leg Temperature, F 519 i

4 4

I i

I. '

FEEli WATER

~

STEAM l

OUTLET u

u s

g

@ 1r @

m w

e re e

j ru!

I m

c1)

U U

s g

g g

8 lB g

L _.. g i

m a

i 8

s HPSI (28 g

e a

a I

d 3

FIGURE 4-1 NODALIZATION FOR YR CORE XIII SMALL BREAK ANALYSIS NO2 321Q{

.m

(

(

Stesa Outlet Steam Outlet 4

A Relief Valves 4

=

26 25 27 24 16 GM L-Dilj i

c--5 Containment h

@ l

@ g.

! 4-Feedwater 22 H.

4 23 17

+1012 -E d

l4 6

4,._,p... 73 )

,_3 g, 9.gg-.... -

gg 2 gg 3

CI d

g

.w,>-,.~~.._~.n_w l

-D7 n(7)

  • +

14' 4 h, 13 6

,,,, w --

1 g

d 20 (see note below) l

' 18 l

15; a

e Heat conductors p

uuuum 21 28 4 Flow Junctions E

'g Q Volumes V

, h- + 20 Leak Junction Nota: Junction 20 connected to volume 14 only for break sizes

__ _ _less then.l J.5. inches ID Figure 4-2 Small Break Nodalization for YR Core XII LOCA Analysis 1

9 9

......... g C

O

+4

~

Sa

=

n

,C (O

.n 4

f.J x

Q H

~

m e n.

M e-4 e4 M v4 H w

eb W

h4 O

~

O. n e-4 gH 4 g

m

~

G

/

'I OdO 4

/

/

O U

f m

2 O

J I'-

e n.

g-O b

a.

su:g 2

O a

C O

4 O

W N

q 2

Z O

~

J ta.

H N

W w

e p

m m

g D

W MW

~

g Za.

)

O I

O e

r w

I W

2 O

~

i M

W l

~

W 3C Z

~

G 353I355 155333333

lul553535 553555331 333533533 5355$5345l555513343 353355113 155535153 333355353 O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

m m

N D

D 9

D N

(OISd) 3WnSS3HJ 7U11N3W33J10

]

e FICURE 4-4 4

T00DEE2 HOT ROD NODALIZATION i

i l

91.0 t

r i

L f

f 68.25 a

16 65.00 15 14 13 i

12 11 n

POINTS i

3-15 10 GRID LINE LOCATION 3 INCH NODES 9

~

(Inches) 8 7

6 S

4 I

i 3

l i

26.00 t

2 22.75 r

t 1

j i

i w

0.0 l

l I

l i

a e

O O

~ f*" 'T * * ~F r

v v

v v v v

i r

v v

s' O

("N EN ers Cff8 o

O LLA

., 7 i:0

.O e,x o

a "M O

O O

.I i

I O

r o

E 6

Z

'n O

J N

o 64 r

~

~

0 o

a M

-a

~

o 8

4 e4 H co A

tn in. e4 N

~

~

0" I mH Cd A >h m

g Q >* v3 uQ g

3 3Q K

6--

CC o N M%

4

.C o

% U

<r g

as u

O

_..I r

a a

n Lij O

Ll*

LD

_J

_J t.T a

7" O

0)

  1. d
ri)

I as a

Z o

O U

M

~ _..

,a !

t.0 t 3

a u

ON 33M0d O'12IlbW80N 5

0'

L) 8 E..

r i

r i

I gr~

,,s

.r-es p(D o

a, c

uh

..z ao

,o 4 r o

ce g

ac a

o aa o

r-

.n DJ.

a e4

.J to u

o O

r

-=_

o

~a e

4 o

88 z

? g 'a '

o w

.n.

a

.A sn m

.hh ow IN o

a.m N

k LJ ua a

r eo

,a.-.

a a

s w z.c

% 0 k C A-o cr o

g u

C) o U

.J M

T o

to R

(r-m

.J J

(r t

8, u,

en LAJ a

(r" O

c

~

L2 (Y

_ _. _ _ _ i i

I g

g no 'r.

cosa cot noo:

cost cc:5 333 og 100 tutSJ) 330SS33d 330]

dl.

c

+w dw s4 J-e

-ws,,i+1.+,g,:

5


a

_J-,,.-.

a+

n A

6A wm-4s- - -

m-m--

e a

a.w

.a-

---u

+e--

.wm w,

J p.

4

~e.

O h

I I

I I

I I

Urs

s CN
  • cn a

k o

LLA nZ HQ 3D J

c:t o'

we hO o

D I, 3 t

i n

M N

U O

J:

n C

Z O

~

~

m z

o 9

r w

eIE

~

]

W m

ium 4H N

ow M

N 1

F O

y e

j LA g M

o n

y,

[

tBa

=

~~

b i

L o

y 1

O g

g y

J M

I 4

0

- t 5

7 w

l A

4 4

r s

i E

1 o

y o"

M j

f W

l l

J l

i 7

h O

o t

lw

! L g

d>

m r

U o

W o

O x

i t

i

_i 1

000 1 00001 0000 0009 000t 0002 0

0008 IMP

' 33S/W87) M073 137N1 3803 I

l I

l

.c.

W m

7

-~..

ti

,I C

C 4

C lbi L \\'IIl-

~

t

/

ZrL

<' /

.L

s. /

t,t S 1

i c

c C

t 3

IN 0

/.t 0 v

3' M C

.b i

i D

O s

M g

g 0

i i

0 g

2 N

o 3

G l

a 8

m C

iM H

i i

C le 9

a

  • 2 J

88 t

N J

yA I

I 7

s3T S

- 0 e S

y1 m C) 3S 2

i i

C a

2' S 3 23O naI W

sI i

i2 t anp i

ou I

C a2 6

i i

Cr o

3 3

0 7

v b

C 3

i i

C E

b 5

T ie C

W i

i O

2 S

E l

3 C

8 i

i G

0 I

3 B

A

-j7;\\if C

8g..

8O a8a O8.

O a oc' o8i ra wnmeN2cr rOr, #m b o mxc Nrc n

o

d i

l oo h

~ ' ~ ~l -

I I

{

l I

O Ets j

", s

-t~

CN 20) 1 a

o n1

,,z Ma EO i

1 PE o

m o

]

o e

i 2

i 1

1 a

a u

o n

Q h

N.

i z

N l

O u

J 1

O 1

(D I

1 o

4 o

r w

1' w

o "8

l

.Z U

c.

~

. ma W

4mgd i

i m

n o~

mn sJ o

e g

eIm m

uo u

E an d c) w M

g a

s Ae u.e oo 4J C a

MM i

g o

i k

Uo e

J k

O rm o

uj o"

O' 1D J

(T E

=

o

<n i

O N

tr>

i uJ o

tr o

o U

w 1

E i

l i

i l

6 6

L 5

v L

?

IlW (1J) ~13A3'1 3801XIW 3803 4

4 F*

QQ u

4 0

oo

.o o

ooo

..__.7.__._

_7._ _ _ _ _ _. _ _ 7

..Oc'

d

, r-Os CCD o

o

&&3

.7

O

%O sr o

rf o"

o 1

d a

u o

6 a

z O

o a

@M UI o

I

~'

o o

e u

o Hm Z

o

o. m. a a

g D

e) o-4 om N

o W

N u' g gj$

E 3

n ec o.c a

<ao H

A c

g

>H o

o s in cr o

mn 0

0 U

1 t

o cr W

cr (1)

_.J J

ct a

t a

vi es)

W o

cr o'

O

~

U cc 1

I i

J l

Ot 43 00 St GI 5

3 61Mr (JJS/Wull ilSSJA 01 M07.4 333

O oo O

e b

CN

.c CN CO o

1 o*

tLi

  • 2 MO
a
  • e Y

o "W

~

o C)

O 3

2 k1" i

o

  • C o

a r~

b Za a

d r

C U

Of

)i G

sE Z

g

>s

~

G.-

1-D ed d!h "O

8-

.cm w ta u

a c.x H U

MC C

M QJ.C a

H A W U U

A C H

M o

E O

r,

=~

a J

a o

O Y.

id y

O a

o 1

[

W (O

t

_J J

T o

. 3~

M,.

O "J

I U)

S

~

< La o

M o

O U

T L

l i

I f

I 1

00L GGG 005 GOP 00E 002 006 3

9IMr (T3S/W97) M0lj M63b3 l

L3 0

O O

r-

? e,

~ea O

O r

'?

s f; e o

es e-O o8 g

" a O

e e

-o e O a c,.

8 ow Mo O

u O

M o

44.

s 8

1*

8

-a ea e-O e

=w ca,

_e.

~

mm o

a u

o es a

02 (O k g m

OO

=0u t;u e ** m w

-$ m E Oo W

z.

a~

~

e W'O u

Qm a

Ow WHC o

L? E H

w W

O~

IAs t s

.r -

am r4 ag e

O J

N td 6'

O n

LO O

a p-Ds a

o 1,

m rJ

.r Eo 8

a e

d

~

O.a (3

O O

O<

t)

Z

,w.~

rJ 2 uJ V

O O

- o w

,4 o z

[.*

r **

O O

C3 Ld.

w y

. O, r

ce LJ u

O

')

oc 0;i cc ces co cit co act ec. dt-cc dr, cc dz _ -. *

<!y

,, c'0 n,

"" ~

,G ( =

(JJ 3801683ciWh GNIGGS 13 D**]D 9 ]D ' 3 se Ju snd.

s

n a anu v w ~r : v w,-

YR CORE 13 SMALL BREAK LCCR FOUR INCH SENSITIv!TY

]

Ch I

I i

I i

I I

i 1

J l

J J

J o

z I

d I

w 2

1 O

l I

L g

OW N

w-

~

J 'o g.

~

r Cz' O

\\

Z

\\

@ED I

l 2259 3559 C

c==

cJ I

t I

f f

I l

t i

Et 40 cc 120 150 cce 240

sc
29 3c,c seu M

TIME I SE C )

u Figure 4-6.1 Normalized Power vs. Time for 4.00 Inch ID Small Break

o P

W T

U V

T U

r S

7,.

o e

_ g

?

o r

_ g w

H S

W tJ o

H O.

4 m

Z Q

w e

es o.w k*

t'3 rf) o 7

O

". 0 $

r a.

u, (f) 1 E4 H 4

H

- o" oe@

o

~

(J g>m to g

E uso a

wus 9

s N 3 t.

ma mu 8M O

(r w

O O

-J o

O r

(!:

tu rs lf CD J

J (r

E o

ci m

ro tu cr o"

O O

[

%s t

i 008 00t2 0000 0091 0031 00b 007 h

IdB (UISd) 380SS38d 3803 a

e

c... :

. nm cui'm S

YR ECRE 13 SMCLL E D E ; K L C C Ci FOUR INCH SE NSI Ti /7 TY F, i 1

i i

i i

i i

f

_I 3 0oo O

H

-no No T L' cc J

w z o Oo J8 s

LLJ Jo zo 1

  • ~ ?

I tu cco u oo e

\\

r.

)

\\

rf

'1 NP'Nuifw-

"~

m

(

v i

4

'?g i

i i

i i

i i

i i

"t 40 ac

,' c 2 ";

v' 320 2e 40; TIME ' SE C )

Figure 4-6.3 Inlet Flow vs.Tirae for 4.00 Inch ID Small Break

A h0 i

f i

CORE 00TLET FLOW (LBri/SEC1 JW2

-4000

-2000 C

2000 4000 6000 80C0 100G0 n

i 1

M E

I i

o O

s.

~

M o

~

m a

K

( aJ 4

(D t

- 3

_v r

g F"

c)

. i A

[3 TTI o

.D i

A n

O r*

j Q

Q i

O O

"r

~

m D

mc 3p O

M

T @

m I

_A m

a.

nm b-I U M 00 3

wC Z

v

Ti e s

~

g' O n CO o

1 w4s z

wa l U) i m

m i

1

.T tz M Hv O

\\.

@ W g) hk m

t,.a

- 2 (9

M

~

H i

p O

Y I

o

+-+

i p,

H i

sb O

q t

u

~

PJ a

g S

t

'b i

LJ

~

s O

h

[

U i

,3, r

a a

A 3

e a

p

  • 1

,. -,.,,,. ~

.t i

I 4

-e

+

a

.c g.,::,, u,,,,vi.,,,,

(R CCRE 13 SMALL BRC;K LCCG FOUR INCH SE NCITIVITY w

I I

I I

I 1

1 1

i

~

1 a

t A

(J 3

F u

i "O

t I

LJ t

>u w w e

a 2

X r

te w

e i

o L/

I i

i g

t=a aME9 S

l l

"c:Mid y

u l

l l

f I

l t

cc 40 cc 129 159 20c 240 2sc

tc 3c; er TIME f SE C1 M

Figure 4-6.5 Core Mixture Level vs. Tite for 4.00 Inch ID Small Break

6 9

e.e-*.e o

3 2

a s

t-4 5

.e n

a O%

Q g-

~

iv w

l o

d

~

JP n

~

4-0 "x

ne a

Ru$

Zm

~

d H zt n(

?

l8.p NN_

i * *g

  • n a

Z Df 0c

~

,., m no-g o 'O h(.

2 H tf n-a

~

m a

H 9

ro m

~

l-m o.

3/t ~S O

O-m r

a A

I

)T d"

n 11m

[.

I r

t n:

3

- N

)v b

m A

o n

V

[

cn cca cs:

c02 osi oci os g

91WJ

)CES/MBL(

lESSEV OT WOLF CCE

0

s r.

i; i

1

[:r L

rI

,'[,l!

\\'[ i h:

b4 IE!'

!-i; j:t![5D\\-,.iL Il n

1OCm Eo3 nMZq) *m4<*

..Al3:

,~4

, i % 'l4 2

NA OOm9 n

3nt F G A m D %. ~

  • J O u.

f 0

~

C

~

(#

i t

0

~

8

~

2 8

1 0

W0 4

J 2

)

0 C0

=

E02 S

/

MB' L

0

( 0 i

6 W1 O~

L F

0 K

0 R2 I

E1 R

B 0

0 8

1 0

0 4

)

~

~

pO

-*O t8 pko O

)

a hag uDO g

  • o 0

,)

b 8,

Lc i~*3R u> woe m*McQ &,f w t

  • SuY 5gs

<to*

dr OO[ tm 0 lxt

.P 0

k.0o HDnW G M 5 MH Wn Dw

,t l

v.i::i t _ t - - y -t '.

(R CORE '

4.G T O "> ~ M L e r E R.

r.i r i:

. w i r' *100 ! f :T :E S Mx t C A v ; ',

w.

a.-

u I

o A

".J.

1 i11 PCT N00t g

'2

'N001 ?C 4'

?

/',t'.)

<,n

.c.

ms N: :',:tto N00t

=n O

e. '

.lQ

/

i

./

e

/

W i

,.. o

)u l
  • :?

a.. -

c:

w c.

I

..,8

/

  • 4. _

./

w.z

/

--. p'

/

-Y

/

l)'-

b GEB b-c,

'.? +

r,),.

, e.. -

.t

....,.,,. ~.

r.

7 r

. 7.,,.

,, n.,,,

3 m

3 ; M E-

..>i

, c., r,-

sso Fi ure 4-6.8 f

d Peak Clad Temperature vs. Time

4I iI 0

1 ji1-M

~..0 3,

2 3:v:M rE

3. T 2:S 0

reY i

I 9

S 1

S

< C 5 C.

eE 0

e i

I s

D 1

E I

f i

D 0

D i

I 4

H 1

0 N

0 W

5 O

D r

W 0

ok O

i l

2 f a 1

e L

er B

mB

)

C 1i

.Tl D

E 7

l S

.a I

4 sm 0[

vS N

i I

0 e

1 E

rrD I

M ueI gw I

0 i oh T

FP c n

5 dIe A

i f

0 z

9 i

C l

E i

A I

o O

am L

ro K

N A

s R

S L

L A

M i

1 0

4 E

S I

E R

i t

o O

t C

R 1

Y D

th-q-

o-3 g

a

'.c c'

az x u3 a c_ aaN JcrxOz t

o i

I

~~~~~~~I l

l l

i; Gr:

eH DI) o tu e,

c) n;;u)

U
  • O

.yd eo o

.J

,b W

Oo o,

n Z

o

~I o

o o

2 c"a u

o o

a

%3 n n

u N. $0 g

uJ swm c) iH

~

4 A

o-

.s Z

~

~

O 8$0 w

o m

E co m

  • "A o

p 4 3H

=

m Ln eC ou d

o ua C1 bH Uo 2

J O

U r

G y

o*

ic cn J

_J crr o

u)

(t)

LJ (e

o o

U 1

1 tr 1

1 1

1 1

1 005 00t!

0000 0091 000L 00G 007 3

Id6 (UiSd) 380SS38d 3803

....~.

S

._.T--~~---~~~'T-'-

--~~' i i

i i

i' dr

~m; ts Cu) o 3

a us n

yen

.u

'40 h

eo O

ul a

?

L a

-c O

o i

E

.C z

o x

a O

x o

d O

~

~

__J n$

~

m o

.~u a

u; 8

ee U) j @$

o-um z

O CH g

u a

~

s

.s E

co m es w >s c) p 4

us 3

LD OO MM u

O" o

u O

0

_J

)

e j

m ra to o*

cc

.J T

E Q

o*

u) 4 Y

ca

,s ~

Cr o

W O

'E rJ U

tr

>=

_s' I

f i

i i

GG006 0000L 0C05 COGL 0007 C002 G

GC0d' IMP (DlS/W91) M 01:3 131N 1 3803

e o

O il s

C r.

"v-ls e

Wh a

u%

~

lW)

' L.s a L>

a,. i1 o

a m

a uJ

~

kb d'

O O

r eo Z

M xo k

O

.3 5

O ga w$

i.D L)

4. E* 9 en a

a N

g i to H

~

>s n-af o

e: d g

u O U2

  • ~

UM r

ec N ca

[

$u" O

w.

u')

H 0 aa 3N G

~

~ h O

L.

O 8

..)

o O

Y cx uj o*

cr s

co

)

n CTn o*

u) in z

y' h

ni y

cc

_J, c.

O ed u

(f w

I t

1 1

l GLO t GOGOL 0005 00GS 000r C000 0

GC 0f' IMP (3]S/W971 M0l i 131100 380]

re s...:n uw,1 w~ m (R CORE 13 St14LL BRERK LOCA 5 0 IN ID BLOWDOWN MODIF IED ECCS SYSTE.M

,I I

I I

I i

1 i

I

- 1 r

_3 E

'l w

o

-o>u u.

I Cfa w

X r

u" cc

\\

O

.l u

1 Y

r c4 I

I I

.1 1

1 I

c0 20 40 SC 00 100 120 140 ISO 100 000 TIME ( S F.C )

Figure 4-7.5 Core Mixture Level vs. Time for 5.00 Inch ID Small Break

a O

]

l I

I I

I C

~

OL pal

, e-C(n O

c>.

c'

~

u) n

u) 10 i

"n u l Los L)

O I

~

f C

u; Ed.

W O

o O

l'

~

z u

3 o

O

  • y O

o c3 ca 3a ca Bc uu P so J

c.o e

.H y

m.-e uJ s>m O

(n i

d 4

gm n-Z O

coa w

was E

kor wuo O

w k

c

)H e

LD do C

~

a wo c3 O

O o

_J W

r T

o uJ w

w CD i

J

_J n

O to ra LAJ N~

w G

a U

(t t

i i

i i

i OL C9 05 Ot DE 02 OL 3

6tMr (33S/W911 1]SS3A 01 Mold 3311 i

1

ll el,

!i!

0

?

l:I' i -

1 i 0 F

2 33

/

23M TE

?tT nS 0

i l'Y i

i 9

1 S

2 0~,S

/*C

  • C F.

!'. E 0

i i

6 1

D E

I Q

F 1

0 0

^

0 i

,e 4

N 1

ro N

f W

k O

ea me D

0 i r W

O i

i 2

TB 1

.l L

sl 1

B 7 va C

m E

7 wS D

S

- o I

4lD 0(

FI a

N i

t 0

e E

rkh 1

I uac M

gen I

i rI 0

T FB 0

5 g0 e

L5 A

i i

0 0

d C

l O

o L

C K

A E

t O

S R

B L

L A

M i

i 0

4 S

3 1

E R

4 i 0 2

O C

R Y

~

C o,-

o0 oa'c oooC 8e-8o 8c 4

4

" u a N I_3 d 3 O J_ L.- rzato C 2, c

cL(c t

1 O

O e

O

~

.o ra r-f*

0 O

sv 8

C3 1

_O i

a m u,

]

O ;

Gw e o O

_e u.

L c1 C.

_ur 8

d, a e,

o c

F uJ Z

O O

O c)

,G 3 0

o 4 m Z',

te g9 m

e m

t-a m

.4 OZ

>.,4 x

g g

'?O

.ea w

Ou o w v2 0,

.oa e :s

-a

~s u o mM N

Q b b 4).C W

s n. o a

Or ec s e a

ch-

,4 ow e

>H

~ t,> W O

o r

to a

8

  • u C*

O O

M A

J e

_J,

m O

q) rr r~

m L

e a

a

.x O

2 a

n O

aJ o O

6 C1 e f) f o,

c2 2

_o w

a O

2 o a.a O

e

.- c3 e

az

.a.

a. -

c.,

g O

e rt w-r

.o c ra cc I

C1 u

l w

lO

( --.-

.iO CO C'i2 CD SN 00 Odd C0' Sit OC Cdi 00';ji 90 006 00'st

',0 d5 O

,0l=

lJJ 180ib8]oW71 ONIG0613 D**

3 DD D

E

=

i

rii

,?l, 0

7 0

7 ji1a

- ~

1 0

MS OC 7C

?/E 3

1 1D i i

1 0

/

9 E

2I

F c

f I a

  • sD E'O
  • M i

f 0

3 0

1 N

I 0

i f

0 7

0 5

5 7

7 r

N o

W fk O

i I

0 6

a ee D

mr 1

1iB W

C

.T O

E 8

l L

S

.l S

4 savm f

i l

0 e

S rr 5

E

=

ueD M

gwI

=

I io

=

FPh T

=

c d n eI z

A i

I 0

i 4

l C

~

a O

mr L

o N

K R

0 E

i i

3 R

B L

L A

0 M

i i

2 S

3 1

E R

i I

0 1

O C

R Y

\\

tL D

2 o, -

'c -

S 4c cu3OC C J_cgcO2 rl c

o2

o p

o e.

V<n

  • o

,-u

[a]

ia

-) - o 4)

t. =

l

~

~

'a a f

ao o

"t I.

o, e

I a

~

~

I o

oo tn b

O.

Z W

2 O

o u

e o

a w.2 1

a, O

N.

Uau

~

W m+m m

D l H.-<

.e a"' W 8$8

=

a t

a m

cc o m

w WQ g

% CH I

mm.c eo C

$3 U

O J

8o r

O E

W l

- p m

i

_i

._J J

t c,

to g

rn

)

l T

td tr -

a o

U ce I

t I

t t

00E.0 00t2 0000 G051 C001 006 CGt 3

Idu (biGdJ 3 BOSS 38d 380J

~ _..

o

. y _..... -. ' f '~

T ' ^** ~~ V ~

T

'~

T

^-'~~L' t'm

  • U

..o 5"J

?.a oe aJ

' a.

J;m to

- r.,o

  • I o

.k 01 4

y a

I

  • ~*

z i

O

~

~

R j

w va s

n o

2 4

v3 g

o 5

e w

a o

1g o

MMS C5 al co g e J

(O I ub CD e*m m.

.H o

g

  • uf 4

4 a

r dy$

s w

4 cn m

t-N3 a

0Q 4N N

c o

O a

i o

c i

w r"

tv j=

_ g a'

to

-e d

T__

W a

w E

u es

~

m j

g 3

.m i

E u

.tr o

o U

/

n-

/

I

.~/-

t

.- t

--.L.._

T C000!

C009 0009 000t C000 0

G000-000 /'

i IMP (33S/W87) M01:3 131N1 3803 i

i 4

i a

f

,w-,...

.,a u

--p,

.-n

, m

., ~

0

~.

i

', i l-i, 0

1

nS uC C

mE n

D i

l 0

9 E

I
f

. i a

vD rO eM i

O S

D I

N I

i i

0 0

7 0

5 5

7 7

r N

o f

W O

i t

0 6

ek D

ma 1

i e W

C 4.T r O

.B E

8 L

i, S

sl S

4 vl f

a i

0 ewm 5

E roS

=

M ul

=

gFD I

=

i I

T F t a

eh l c t n A

i l

l 0

uI 4

O C

O er L

o C

K 9

E i

I 0

3 R

B L

L A

M i

l 0

0 S

A V

,I 3

L SI 1

E R

i l

0 O

1 C

\\,

R Y

li!-

i.t li I

~

0 S8 -

ooOe 8ow 8o, ogc a

oOoC a$7 a

J (zm 9

nawUsT_ca 2OJa *W Cao WE o

9 O

~

)

C t., >

-U I,'. j

(*'

uj mW4 34>

LO cc.o

'E l

oc L_

O

~

O Oe-g LD m

M I*

O Z

X G

g o

a D

M.sd Q

f H :o 3

r-o 3

Ld m

o

r.-e -

W f5

~

O 05 > Q to um W

E.

UM

,cc

.c

  • -~

4 eo H

Exe M C n

DH 4JMC C

~

o ao O

s' O

G M

.1 o

't' C

Ld o

O Q"

fD

_J 3

g CT

?

E o

<n cJ rn t4J T

o O

ts W

1 1

i' I

l_ _ _ __ _ _ I ti CL 01 f.

S y

3 IlW (Id) ~13 A31 3801XIW 3B03 i

1 I

l 1

o

- -.. q (}

..C(n Zu d' ',

-t-to -

o li.I

=M lsu.

>ao Jo

  • n o

cn O

z or~

13 rn rs g-a es z

ZC 88 O

o co

, so o

H d

~

2 U

  • ri "

o dJ m>h

_J CO I

in m

4 G w

uo a

w 86~

e E

EoS

~

wue

=

P--

A N

g

00 a m.

w g

a 9

N O

v2o o

U d

W r

T o

gj

)

(f

}-

rn

_3

_J T

)

o r.

y)

(O uJ Cr o

o o

cr 1

I I

i i

I GGL G09 005 CDP COE 000 001 3

61Mr (33S/W9~ll T3SSJ A 01 MO Id 333

o p

_7 --

y 7__. _ ___ _ _ o Tu)

Cu no

'W f

to o"

w

,, ~ ~

Mu.

'u O ao

  • E g

a

._4 z

\\

1 o

a 3

e u

J3 o

u t-gg z

O2 xC.-

o

- m W

O

$d o

9 2

w mBm In W

EEo s

o*w 0 ~N.c

s e o E

24 c a

wms K

20 mm

>J

=

R

~

U t

o a

o

._J r

G LJ O

w in 5

_J J,

(Tn o"

V3 r.3 W

re o

O u

(C 1

I I

I kl 1

000tt 00021 00001 0005 0009 000t 000 2

GIMP (3]S/W97) M0ld M6389

ih!)

h0'. v %, p o

o-y'b 'f' e;$)

N Q ~ O

.gg\\

'bU /

,,3'll?,, ;pp,

,y y

a

,y r

%9,

'% <v IMAGE EVALUATION

\\

l TEST TARGET (MT-3) 1.0 E a na e raa igp=2 em.

l,l t us "l]b l 2.0 l1 e:

1 l 1.8 i=

1.25 1.4 1.6 i

f 4

6" i

MICROCOPY RESOLUTION TEST CHART I'%

f 4%

es 4[:p 3,,,,

gp g,,

.e y4%

yg 1

&+

c:'s ' ',

'l;l$ lg,4>

y, 4
  1. %//,lj'l j f 'qff/

/

/

,)t?

gry;\\p?'

\\

IMAGE EVALUATION TEST TARGET (MT-3) 1.0 P P' B4 in BB gn c :u l

l,l h,

  • hN I

I l.8 i

l.25 [

1.4 I.6 4

6" p.

MICROCOPY RESOLUTION TEST CH ART f@J'b 4)p%#

43p ;,AS 4% 4$

/,3 777 e.

1 4.y.

o

.p

e o

o.

-o g

~

c. -

s

@o O

s n.

t e

o.

n.

c a

es La i

O>

o UE O.

G U

_n

-o.

0)

,1- >

d u e.

M G.

l gr g

<g a

-u.

_O.

O r

g i

L.

I 4

..u.

~4.w o

o

_n, -

8 4

u 0

W LA.

o m 2a N

z m

r 2

00

. ll5 5 w

O u eam ee

_o w a,.

4 MO em

  • H l

N k

Jl*

u; oeo O

or se s a N

v4 o a

Ow m

e 1

oH go s c.

M u

e s

i w

g c-c2

,=

8 e

m J

,a, a.

n

~

a r

a o

b.

a a

t1 N

o.

~

i w C3 o-o,

_a o.

o in zw e4 O

O

-o w

3 U z n

5 n

o w

a, o

w.

2 O

W i

O u

x O

t.3 co osg cosig ec.cjg go.gt og. g,g 2 co csz 00 siz oc cdz, *co sit.

36 IJJ 3801883dWll ON100813 s

k l

I l

i e

I n~t

--e y

--r e

.-r r

,wy-

-.--e.

r e n:

onm w:: n

    • x 10 INCH BLON *nn WORK DONE 9/2/77 YR CORE 13 SMALL BREAK LOCR g

i i

i i

i l'

" - l - -~

i i

4 O

Z

~

cc W

3 O

CL O

N

_J 'o T-E tr O

2 i

ca l

l 1

i f

1 I

I I

'cp 10 20 30 40 50 60 70 SC 90 100 TIME fSEC1 Figurc 4-9,1 Normalized Power vs. Time for 10.00 Inch ID Small Break

0 7

0 7

~

1 a7

/

307

?/

7r2 g/

i

,9 3

i 0

3 3E

cN

/4O

+sD irK I

i 0

R 9

O W

i I

70 00 N

0 D

1 L

r B

i 0

o fk 6

a H

ee 1

mr C

C 2.i B N

E 9T I

S l

4

.l sa f

0 I

I 0

evm 1

5 r

S E

ue M

grD I

iuI F s T

sh ec rn PI A

I I

0 4

C er O

o L

C K

A E

I i

0 3

R B

L L

AMT l

0 2

S 3

1 E

R I

i 0

O 1

C R

Y

~

0 oUpc oo r ooO ooe" oO-oe g,

c 4

4 J

tC c mCL-W M D n.n.w & C w e O L (c

m e

  • f das/003 1/tt'77 03/C2177 8

YR CORE 13 SH9LL BREAK LOCA

10 INCH BLDN

WORA DONE 9/2/77 i

i i

i i

i i

i i

8 c4

-a:

8 o

,-uWo (8

n 'd oo

_J w

8 0@

u.

Hw Jo w

Mo b-'

k', W

'g1 a

r o

8 i

o I

l l

l I

1 I

l l

o 10 20 30 40 50 60 70 80 90 100 TIME CSEC1 Figure 4-9.3 i

Inlet. Flow vs. Time for 10.00 Inch ID Small Break

e Rtt A*4/009 t/13/77 01/00877 8

YR CORE 13 SMALL BREAK LOCA

10 TNCH BLON

WORK DONE 9/2/77 S

I I

I I

I I

I I

I N

2 3

8 _

8 Ow in

  1. 8 _

N8

_a w

2og US W

_.I Wo

~

38 -\\

O c4

\\

\\

wx

\\

W L

i.

i

.l j/, y f ig c

8 I

g _

e og i

1 i

l i

1 1

I l

I0 10 20 30 40 50 60 73 80 90 100 TIME (SEC)

Figure 4-9.4 Core Outlet Flow vs. Time for 10.00 Inch ID Small Break

. =. _.

a REtA**/03J 1/13/77 39/32877 YR CORE 13 SMALL BREAK LOCR mum 10 INCH BLDN===

WORK DONE 9/2/77 i

i i

i i

i i

i i

i

~1 i

s E

'2 W

t W

" c2 E'.

s uJ

.. - J -

. uj e

.~

D b--

X z-

. uj

  • i

.m

'O

u t

~

i a

ca F3 O

L l-i i

a i

i i

g c0 10 20 30 40 50 60 70 90 90 100 O

TIME (SEC)

W Figure 4-9.5 k:S c)

Core Mixture Level vs. Time for 10.00 Inch ID Small Break V4W 9

1

_.. _ _ _ ~.. _ _...

.__..___.____._.._.__m

_ _. ~ _ _... _ _. _ _ _ _ _ -. _. _ _ _.. _ _. _. _. _. _....

e p

8tft A*0/303 1/13/?? 01/W 877 1

YR CORE 13 SMALL BREAK LOCR

=== 10 TNCH BLON ano WORK DONE 9/2/77 i

i i

i i

i i

i i

an,o n

z

+

i 7

l-c g

, - co u

[

i w

(n Nr co8

_.J ue JW cn og w,

aw

~

1 2o J@

O j

u.

Ou wa O

(4 4

o

~

O i

i i

j t

i i

i e

i i

i i

c0 10 20 30 40 50 60-70 80 30 1CO TIME (SEC) l Figure 4-9.6 ECCS Flow to Core vs. Time for 10.00 Inch ID Small Break

i

..___.m...

2 KEt4*e/G 3 1/13/77 03/32/77 8

YR CORE 13 SMALL BREAK LOCR

10 INCH BLON

WORK DONE 9/2/77 l 8_

. i i

i i

.i i

i i

i C oo 3 S_

~

I "O

ua uj O en

  • 8 Nr O

J o

-g 2*

O

_J ts a

~

~

Lu

  • Of f

m i

g c4 i

o 4

i o

h 1

I f

f I

i i

l i

't 10 20 30 40 50 60 70 80 90 100 i

TIME fSEC)

Figure 4-9,7 Cold Leg -Break Flow vs. Time for 10.00 Inch ID Small Breal l

..~

u T30DEt 2t t*-Y AECO 3 f03/05/773 YR CORE 1310.0 ID SNALL BRERK ECCS LINE BOC 12.5 KW/FT dea 051TED 1000 P HaSi t

W t~

c$

g-(11 PCT N0DE o

"?

(NODE 10 AT 3 73 FT.)

E

~

o N0 f 6!L ED NODL.

.- s d.

Lc4 w

'I Wo Mo 3

J-p.o c$

ew CLEC w.

M.

I O *"

z

-oo Q"3 c ea ao.

i c2-1 t-C 2

t_3 8

i.

O h.00 l'O.00 2'O.00 3'O.00 (0 00 5'O.00 6'O.00 7'O.00 8'O.00 9'O.00 100 00 TIME (SECONDS)

M E

a b

Figure 4-9.8 Peak. Clad Temperature vs. Time for pg 10.00 Inch ID Small Break bP m.

'