ML19332C419
| ML19332C419 | |
| Person / Time | |
|---|---|
| Site: | 05000470 |
| Issue date: | 11/15/1989 |
| From: | Singh R Office of Nuclear Reactor Regulation |
| To: | Office of Nuclear Reactor Regulation |
| References | |
| PROJECT-675A NUDOCS 8911280103 | |
| Download: ML19332C419 (81) | |
Text
.-
M'b l
, Project No. 675 November 15, 1989 j
FACILITY:
CE System 80+
APPLICANT:
Combustion Engineering, Inc.
SUBJECT:
MEETING BETWEEN NRR AND CE ON SYSTEM 80+ DESIGN CERTIFICATION 20,1989, )the NRR staff met with representatives of Combustion On October Engineering, lac. (CE at their offices in Windsor Connecticut, to discuss the System 80+ design certification. Enclosure 1liststhemeeting participants. Enclosure 2 provides the meeting agenda.
Following a brief overview of the nuclear design activities, CE presented the key features of the System 80+ design including the reactor, safety systems, NUPLEX 80+ advanced control complex, containment, and preliminary PRA results. They also discussed the design and certification schedules and requested the staff to expedite'the issuance of the Licensing Review Basis (LRB) document. Following these discussions, CE gave a demonstration of NUPLEX 80+ and a briefing on their Safe Integral Reactor (SIR) design.
In summary, the staff obtained a better understanding of the System 80+ design certification effort. Copies of the presentation slides used by CE are provided in Enclosure 3.
/s/
Rabindra N. Singh, Project Manager Standardization and Life Extension Project Directorate Division of Reactor Projects - III, IV V and Special Projects Office of Nuclear Reactor Regulation
Enclosures:
As stated DISTRIBUTION:
a.6o R. Singh ACRS(10)
NRC POR l
T. Murley A. Thadani J. Richardson I
J. Sniezek OGC W. Travers PDSLE Reading E. Jordan C. Miller
(
LA:P4 E PDS M D:PDSLE y d MROV RSingh:sg CMi11er 11//P/89 11/ly/89 11/6 /89 j
l Off}
/
.p tp r NRC F1E CENTER COPY b l
P W 2 P R a 3" " " m" -
me
y-L, gLP EICO
((' > #,
jo, UNITED STATES
+
j NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C, 20555 g
./
November 15, 1989 t
....+
1 Froject No. 675 FACILITY:
CE System 80+
APPLICANT:
Combustion Engineering, Inc.
SUBJECT:
MEETING BETWEEN hRR AND CE ON SYSTEM 80+ DESIGN CERTIFICATION l
20,1989, )the NRR staff met with representatives of Combustion On October Engineering, Inc. (CE at their offices in W1ndsor, Connecticut, to discuss the System 80+ design certification. Enclosure 1 lists the meeting participants. Enclosure 2 provices the meeting agenda.
Following a brief overview of the nuclear design activities CE presented the key features of the System 80+ design including the reactor, safety systems, i
NUPLEX 80+ advanced control complex, containment, and preliminary PRA results. They also discussed the design and certification schedules and requested the staff to expedite the issuance of the Licensing Review Basis (LRB) document. Following these discussions, CE gave a demonstration of NUPLEX 80+ and a briefing on their Safe Integral Reactor (SIR) design.
In sunmary, the staff obtained a better understanding of the System 80+ design certification effort. Copies of the presentation slides used by CE are provided in Enclosure 3.
i Rabindra N. SEgh, Project Manager Standardizhtion and Life Extension Project Directorate l
Division of Reactor Projects - III, IV V and Special Projects Office of Nuclear Reactor Regulation
Enclosures:
l As stated
(
1
.m s
..c-
0:
l ENCLOSURE 1 MEETING BETWEEN NRR AND CE l
ON SYSTEM 80+
OCTOBER 20, 1989 NEETlhGPARTICIPANU NRR CE i
T~Murley RI Newman A. Thadani A. Scherer J. Richardson R. Turk W. Travers W. Fox C. Miller R. Jaquith R. Singh J. Longo S. Ritterbusch c
W. Gill R. Matzie E. Kennedy
/
1 4
w
..w
l o
ENCLOSURE 2 l-AGENDA MEETING BETWEEN NRC AND C-E WINDSOR, CONNECTICUT FRIDAY, OCTOBER 20, 1989 8:00 - 8:30 INTRODUCTIONS A. E. SCHERER OVERVIEW 0F NUCLEAR R. E. NEWMAN DESIGN ACTIVITIES 8:30 - 12:30 SYSTEM 80+
DESIGN R. A. MATZIE
SUMMARY
- DRIVING FUNCTIONS /
DESIGN BASIS
- SCOPE OF DESIGN
- STATUS OF DESIGN COMPLETION
- CERTIFICATION SCHEDULE
- DESIGN FEATURES R. S. TURK REACTOR SAFETY SYSTEMS l
OTHER NUPLEX 80+
l.
(INTRODUCTIONONLY)
- CONTAlmENT W. FOX
- PRELIMINARY PRA RESULTS R. E. JAQUITH
n O
'O ENCLOSURE 2 1:30 - 2:30 NUPLEX 80+ DEMONSTRATION W. J. GILL /K. SCAROLA 2:30 - 4:00 SIR DESIGN
SUMMARY
J. LONGO 4:00 - 4:30 MANAGEMENT S MiARY & PHOTOGRAPHS A. E. SCHERER l
i e
t I
h s
b l
e e d'
e p
4 l.
l w
,,,y y
y
---e+--
- we
--- - - --v-,.
m
J ENCLOSURE 3 i
\\
1 OVERVIEW 0F COMBUSTION ENGINEERING 1
NUCLEAR SYSTEMS DESIGN ACTIVITIES l
SYSTEM 80 PLus STANDARDIZED NUCLEAR PowEn PLANT DESIGN oF KOREAN UNITS (YGN 3 AND 4)
THE SAFE INTEGRAL REACTon (SIR) i COMERCIAL HTGR NEw PaoouCTIoN REAcrons l
- HTGR l
l.
- HEAVY WATER REACTOR 1
l l-1 s
i:
I I.
_-,.,.e.e~+
.n.,,,.,,,-,
,.,-,n,.,
_---,,--~--..n-.
,n,
e i
+
i SYSTEM 80 PLUS STANDARDIZED NUCLEAR POWER PLANT 1300 EKE) EVOLUTIONARY ADVANCED LIGHT WATER REACTOR BASED ON C-E's suCCassFut SYSTEM 80 DESIGN COMPLIANCE WITH EPRI REQUIREMENTS SusMITTED TO NRC FOR DESIGN CERTIFICATION sY 1992 DOE SUPPORT OF CERTIFICATION PROGRAM 9
l e
C
1 i
l l-y SAFE INTEGRAL REACTOR 320 W(E) PER MODULE l
INTEGRAL REACTOR: NO EXTERNAL PRIMARY LOOPS l
PASSIVE SAFETY FEATURES DEVELOPMENT WITH ROLLS ROYCE, STONE AND i
WEssTER, AND UNITED KINGDOM AEA TECHNOLOGY PLANNING FoR 1990's c0NSTRUCTION IN U.K.
~
k e
~)
9
--,,----,,e e.,~-,.,-+
..,..n,--,.,
.-,.v,----,---.--
,v.
. -,, - -.., ~
~......,_.-,-.--------,--,-,._.____-,-----~~u--
s i
i
~
i' l
I l
+
l.
COINERCIAL HIGH TEMPERATURE l
i L.
GAS COOLED REACTOR NUCLEAR ISLAND ENGINEERING (NIE)
PRIME CONTRACTOR WITH DOE DESIGN OF. VESSEL, STEAM GENERATOR, SHUTDOWN COOLING HEAT EXCHANGER PLANT DESIGN CONTROL 0FFICE 1
BALANCE OF PUNT ENGINEERING SUeCONTRACTOR TO STONE AND WEBSTER DESIGN OF PLANT SUPERVISORY CONTROL SYSTEM PLANT SIMuuTION ann DYNAMICS ANALYSIS TECHNOLOGY DEVELOPMENT SUeCONTRACTOR TO ORNL REACTOR VESSEL MATERIALS STEAM GENERATOR COMPONENTS (EG, HELIUM SEALS) e 1
6
-e~,w-r--wpy -g e-ev--9e-ret a,-yr.gw+a-
--a-e-vey
,----mi-e,--y-,w.
y m -, w w em, weg,N er v a r - e Mw w w a
'--w w +tes--wh v*-e-w 4w'r-w-wiep-'www'--m wwe-T
'r
=' --'
--"ww--ww--"rw-'"'re'-'*P"wN'*
i i
t NEW PRODUCTION REACTORS i
gas COOLED REACTOR IN IDAH0:
CEGA, INC.
l HEAW WATER REACTOR AT SAVANNAH RIVER:
l EsAsco TEAM l
H I
I i
l' D
G F
l O
i l
l l
,av.,,
,,~A.,--,
--.,n,,,-
,,.,,-,.>,.--.,.,.n-.---..._-._.--..-,....--..n.,-..
.- -. --. ~.
.. a.
i l
o i
SYSTEM 80 PLUS ACCEPTANCE IN THE MARKET PLACE t
1 EVOLUTIONARY ALWR Is PREFERENCE OF UTILITIES FOR NExT GENERATION IT IS ONLY' NUCLEAR TECHNOLOGY AVAILABLE BY MID-1990's.
TECHNOLOGY Is PROVEN, MINIMIZING INVESTMENT RISK NO TECHNOLOGY DEVELOPMENT, NO TESTING, NO DEMONSTRATION MEETS UTILITY AND PUBLIC CONCERNS:
IMPROVED SAFETY IMPROVED ECONOMY IMPROVED RELIABILITY e e
-<--r,-ev, na,-en-,-
-vm<-,
-.-,----en
-m-,.-m-w,-*<
+ev---- - - - - - - ~,.-
---r-,, - - - - - - - - - - --
e, n,.------
_~._- -__._..._..___. __. _ ___.. _...-_ _ __ _.. _ _ _.__,
i 4
E E
I
=
E g
g
.E il d
E i
y I
Ie E
~
a 8
3 E
m
=,l 1
E g
g.
i e
E8d i
e, s
s u i
n g
l$s E
5 t
W I
le Be ng e
i m
i g
DE 1
5
-S L
6 gg g
l BgI gE U
ll i
w
-m l
l E
E iiiiii i
u l
~
L C-E EVOLUTIORARY ALWR PROGRAM f
I EPRI ALM REQUmERMENTS DOCURAENT j
DOE DUKE (DOE) i ADVANCED CONSTRUCTAet.ITY l
Inc PROGRAas PROGRAas i
I i
t I
C-E DOE i
I PRODUCT ENG. &
ADVANCED REACTOR j
i DEVELOPRAENT SEVERE ACCEENT f
PROGRAGA i
PROGRAGA l
I f
i I
i i
DOE ALM
{
DESIGN VERF9 CATION PROGRAAA 4
i i
I 4
i
}
[
-. sasan@6 --
A6
.......~___..-.____________.____--_______---____-___,!
A.
.(,
Q
[
T l
APPRAKII Fet EKLOPIIIG i.
1 TE SYSTEM Blk STAMbAltB ESIEE a
s r
O STAltT WITH CIAWEIIT SYSTEM 80 STAIAAIID KSIGII (CESSAR-F) 0
' COIISillER GIAIIGES SIE TO l
EPlti IIEellillDEIITS i
t IstC MAISATED OIAIIGES
{
C-E ESillED DIAIIGES
-t i
F 0
ASSESS IIFACT OF OIAIIGES 011 i
WM PERF0150AIICE 0PERABILITY i
j MAINTAIIIABILITY COST I
l t
l 0
IIIColtPORATE GIAIIGES IISIIIG PITA I
i COST /REEFIT 0
ItEVISE STAlmAltQ ESIGII (SYSTEM 8tk/CESSAR-K) t j
i
a t
i SYSTEM A0 PLUS SCOPE OF DESIGN j
)
ESSENTIALLY COMPLETE FUCLEAR POWER PLANT O
REACTOR SYSTEMS 0
SAFEGUARDS SYSTEMS 0
STEAM AND POWER CONVERSION SYSTEMS 0
TURBINE GENERAT0R SYSTEMS 0
WASTE MANAGEMENT SYSTEMS 0
INSTRUMENTATION AND CONTROLS SYSTEMS 0
ONSITE POWER SYSTEM 0
CONTAINMENT STRUCTURE AND SUPPORT SYSTEMS O
COOLING WATER SYSTEMS 0
SUPPORT SYSTEMS 1
0 CONTROL BUILDING 0
OTHER BUILDINGS AND STRUCTURES l
l 1
-s-~,-.
,,n.n,
...,.,. - - ~,._
n-,.,,--,-
,-,---,._,.,,n,..._,,
,.,. _..n-n
.,1 a
REACTOR SYSTEMS l
0 " REACTOR COOLANT SYSTEM 0
FUEL SYSTEM i
FUEL STORAGE AND HANDLING SYSTEMS O
CHEMICAL AS'O VOLUME CONTROL SYSTEM L
0 PROCESS SAMPLING SYSTEM u.
l.
g.
i.
SAFEGUARDS SYSTEMS 0
SHUTDOWN COOLING SYSTEM 7
0 SAFETY INJECTION SYSTEM 0
SAFETY DEPRESSURIZATION SYSTEM 0
4
.4
g STEAM AND POWER CONVERSION _SYSIEMS 0,
MAIN STEAM SUPPLY 0
CONdENSATEANDFEEDWATERSYSTEM
)
0 STEAM GENERATOR BLOWDOWN SYSTEM d
0 MAIN CONDENSER SYSTEM 0
CONDENSATE STORAGE SYS' ".M O
CONDENSATE CLEANUP SYSTEM s
0 MAIN VACUUM SYSTEM L
0 DEMINERALIZED WATER MAKEUP SYSTEM TURBINE GENERATOR SYSTEMS 0
TURBINE GENERATOR 0
TURBINE BYPASS SYSTEM 0
TURBINE GLAND SEALING SYSTEM 1
0 TURBINE LUBE DIL SYSTEM l
0 TURBINE CONTROL SYSTEM 0
TURBINE COOLING SYSTEM JYbfl h h I
.,w.u
-,_.e..
-__.,_._,,.,_..__s
4 WASTE MANAGEMENT SYSTEMS L
0 LIQUID WASTE MANAGEMENT SYSTEM 0
GASE0US WASTE MANAGEMENT SYSTEM 0
SOLID WASTE MANAGEMENT SYSTEM I
O PROCESS / EFFLUENT RADIATION MONITORING SYSTEM l
INSTRUMENTATION AND CONTROLS SYSTEMS 0
ENGINEERED SAFETY FEATURES ACTUATION SYSTEM 0
CONTROL SYSTEMS NOT REQUIRED FOR SAFETY 0
DISCRETE INDICATION AND ALARM SYSTEM
~
0 INTEGRITY MONITORING SYSTEM 0
DATA PROCESSING SYSTEM e
t
-t e,
sv...
.,--m.s--,..m--
.m
..,,,... - [o.
[....: a l
L i
n l
t ONSITE POWER SYSTEM t
0 NON-1E.AC POWER. SYSTEMS a
0 1E AC POWER SYSTEMS 0
DIESEL GENERATOR i
l L
0 NON-1E ALTERNATE AC SOURCE l
\\
l 0
PROTECTIVE RELAYING SYSTEM 0
1E DC POWER SYSTEMS 0
NON-1E DC POWER SYSTEMS
- CONTAINMENT STRUCTURE AND SUPPORT SYSJitti 0
CONTAINMENT PRESSURE BOUNDARY 0
REACT 0R BUILDING 0
CONTAINMENT HEAT REMOVAL SYSTEM 0
CONTAINMENT ISOLATION SYSTEM 0
CONTAINMENT SPRAY SYSTEM 0
CONTAINMENT; COMBUSTIBLE GAS CONTROL SYSTEM
.,.e-,.,
e,
.<m..e- -. -
.. _ _.. ~..,. -., _,.. - - -. -.. -. - -,,. - - - -, -,
COOLING WATER' SYSTEMS l
0 COMPONENT COOLING WATER SYSTEM 0
STATION SERVICE WATER SYSTEM 0
TURBINE BUILDING SERVICE WATER SYSTEM 0
TURBINE BUILDING COOLING WATER SYSTEM O
CHILLED WATER SYSTENS (ESSENTIA!. AND= NORMAL) 0 CONDENSER CIRCULATING WATER SYSTEM t
b
/
L e
l 1
l 2ysit h h
4 i
L 1
i a
DEGRADED CORE DESIGN FEATURES O
STEEL SPHERICAL CONTAINMENT LARG FREP VOLUME FOR HYDROGEN CONTROL UNDEISEVEREACCIDENTCONDITIONS VENT PATHS FOR PROPER-HYDROGEN MIXING o
REACTOR CAVITY i
DESIGNED TO PREVENT DIRECT CONTAltMENT HEATING LARG FLOOD AREA AT TH!E CORIUM-CONCR INTEIFACE TO FACILITATE DEBRIS COOLA ITY a
SAFETY DEPRESSURIZATION CAPABILITY OF THE RCS 0
IN CONTAINMENT REFUELING WATER STORAGE TANK H
PROVIDES WATER SUPPLY FOR SAFETY INJECTION AN) CONTAINMENT SPRAY SYSTEMS PROVIDES INVENTORY FOR THE CAVITY FLOODING SYSTEM
-ABILITY FOR SELF COOLING THROUGH ANY AVAILABLE PUMP-HEAT EXCHANGER COMBINATION ELIMINATES THE NEED FOR RECIRCULATION FROM THE CONTAINMENT SUMP 4
HYDROGEN CONTROL REbTS C$TR LDERkhERE R
HYDROGEN GENERATION EQUIVALENT T0 75% METAL-WATER REACTION OF THE ACTIVE FUEL CLADDING WILL NOT ~~
CAUSE THE UN ' FORM HY)ROGEN CONCENTRATION IN CONTAllMENT "O EXCEE) 13 PERCENT BY VOLUME CONTAINMENT DESIGN PROMOTE'.i A MIXED ATM0 SPHERE WHICH '"
MAKES THE LOCAL DETONATION OF HYDROGEN UNLIKELY l
HYDROGEN BURNING WILL NOT RESULT IN FAILURE OF l
EQUIPENT NECESSARY-TO MAINTAIN CONTAINMENT INTEGRI1Y 0
USE OF IGNITORS IS NECESSARY-FOR HYDROGEN CONTROL ASSUMING 100% METAL-WATER REACTION AND A DETONABILITY LIMIT OF 10%
g a 4
o
t LARGE, STEELLSPHERICAL c
i CONTAINMENT j
1 1
1 i
Dual Containment
~
q l
200 Ft. Diameter l
l
/
~
l 1
Increased Space
/
c,-
s-For Maintenance L
- "! \\\\\\
i=., (#M A g?+ \\
l
& Access
~
ITt L
Q_
r1 1
l Designed To ir gc o,
- p:.;l a
i
~ i.
i
~
. w y" j. f.;' T f_ :.!, p"
,. [.,/
~
l Mitigate Severe u
l Core Damage w
"=
y
.gf e
. y...,
$!!d$$$id[N$yNNdjtSI"*~
~ "
~
F 7 E !!!!
Shadow Area 3
~
n Houses Safeguard l
Systems a
j J
,j>I
!)l
!i 1
ll
- r L!a 7.
. j i
~
I
.IG
.I TC E
L E
~
S M
.E A
P R
Y G
.I DP N
N E
G
.Y B
S I
S. I T
I I
E UL
,A T
D
/I T
N YB D
E II E
I A G
I rC
- C T
S Z
AT A
T I
T l
t E
N D
M f i
.N R
R f
K oR I
A CT P
T uT S
E D
l RN G
T G
N F N eE I
I A
I A
O KC I
AST K
RI SE EE l
I PR K
RC L
C O
I O
E ND AI RU TA EF U
I L TODTNL GETTPFEAAP K
L MLE NNE R
UN F
AACYOEPR A -
1 DG l
MTL LRTSS I
I S
SPPEI AFT E
s YO PLDBON TPFL l
E l
I l D
I OLCSAliE1 1
C I
CD - AI !
DE0 I
T ALERLXTt9 R'N A
PEZEBES1 GI VULO0EO R
AI I
CFSOPF C0DC K
N I
S h
llo 0000OO00OO C
srs isA
[
.I jl' ll!
l.
9!
l
.[
~
3
~
i.
.]
T j ',i
[
DUKE POER CofFAllY/II.S. DOE i
i.
DESIGN FOR C011STitHCTABILITY PROGRAfl 1
3 COIISIDERATI0llS.INFLUEIICIIIG PINT CGIITAIIEENT TYPE SELECTIGIl i
a SEVERE ACCIDENT CollSIDERATICIIS AIID CONCEllIIS i
t
.4 s
0 REACTOR COOLANT SYSTEM BLONDINNI i
O ilYDR0 GEN CofmuSTION O
DEDRIS C00LiliG i
0 DIRECT CollTAll5ENT BEATIIIG
-l 0
LollG-TERM C00LillG i
O SECGIIDARY CollTAllOENT BEllEFITS i
0 PASSIVE CONIAIISENT C00LIIIG
]
i 0
ANTICIPATED CONTAIINENT FAILINtE MDDE l
l l
1 i
1 i
~
h
.a
~
(
c.
[
T j-4 C011TAIIBEllf TE0511 CAL DATA 4
CollTAllOENT i
CONTAll8ENT. TYPE
. STEEL SPIERE STEEL TYPE SA-537 CL. 2 INTERNAL DIAIETER 200 FT.-
WALL TIIICKIESS
~
1.75 IN.
l 6
FREE VOLINE 3.4 X 10 cy_py l
DESIGli PRESSURE 53 PSIG i
(li1CLllDilIG llARGIN ALLOWA11CES) l SillELD BullDING i
1YPE C0110lETE INTERNAL DIABETER 210 Ff.
WALL TillCKilESS 3 FT.
~
f 0
k mu[26 I
REACTOR VESWI CAVITY DESIGil GIARACTERISTICS
?
r y
l 0
ADDRESS SEVERE ACCIDENT CONCEIGIS IDENTIFIED BY. ARSAP
, j i
l PROVIDELARGEFLOORAREdFOR-DEBRISCOOLABILITY l
4 l
INCORPORATE FEATURES TO RETAIN DEB 1 TIS IN CAVITY TO MINIMIZE l
DIRECT CollTAliBEMT BEAT!IIG J,
l PROVIDE FOR FLOODIllG OF CAVITY FROM IInfST FOR DEBRIS OtENCillllG l
i
+
I i
O MAINTENANCE Ell 11ANCE9ENTS IfrROVE ACCESS FOR MAINTEIIAllCE AIID ISI
'j i
INPROVE ICI INSTALLATI011 BASED UP011 SYSTEM 80 EXPERIEllCE l
\\
i i
,'i
.51t574 I
.~
. ~..
~
'T N[
h l
IN-CONTAllNENT REFilELillG WATER ST0ftAGE TAIK (IltWST)
[
DESIGil CHARACTERISTICS
}
l u,
O STRUCTURAL CilARACTERISTICS l
l TOR 0lDAL, USlflG EXISTilIG INTER 11AL STRitCTURE AS BOUNDARY-l LOCATED LOW IN CollTAllNENT FOR OPTIMAL SPACE UTILIZATION Alm' ION'It0VED i
WATER RETURN PAlli
.3.
O FullCTIONAL CilARACTERISTICS
~
l CAPACITY IN EXCESS OF 500,000 GALL 0llS PROVIDE WATER FOR EERGEllCY ColtE C00LillG AIB FOR REFUELillG PROVIDE EllERGY SIIIK FOR SAFETY'DEPRESSIRIZAT!0ld SYSTEM 1
ELIMINATES IIEED FOR RECIRCllLATION MDDE OF EERGEllCY CORE COOLING
_,%.e-9
.- an W
?m.
u
-e ee-
---i.--,---
]
~^^=~p. Q,h,- m.gj,u8. 'W)%*M%#989Q. 4. M::.f sx> c,~Eu%c.g P'4.es 7, 9 -
W'M? %;
"-@tM:
'n s v~. a c
+.
f m.< -. m u :,-; m.T.
...,,.7 t-c -i e.
. 3:.. '
..\\
Q n*
n,.m;,
w.3.
1
.p,;.,
....~.1
- m,.
~ s
- e..,$
,s
'! **$Ne,'.W.-
'! ',3 ' , '. ; N.
- [
[*, Jg6[ -
g ; s, s'-
I
[
1.9.,,.
,j y,
'+S* 4 **
- e..
.4
~ &, ; q I ;Shf
.~~t.
..u.
- C
~yln.s.-
sse I
4 i
.V 7.,,'. ;- j8 l
sa4 g
'..:1 h
l
.i,
..s m am.
m+E'.*gr,.m L
- b.,. pe. e,, o..%.,,.2-g. ;m..
c, 3
S.I al e
v
$g j
a
-U
,w
-i i
D*
?-I'".-gt.* g l
...#; T.. ' ' '..
n.<3.,,wy.ft.{: %,\\ c, '.GWd 4
- 3.,
N4 W
[r
,.w,.,.7 3 ;;w 2m. m.. s
. m,,,,,
.u u..,.;
n t
y
,G ',
P.,'
'8-4
^ ^ ", f,
^r o.-
L
.1 J
h,s,s,u
' p',',, 'j
? ;'
4 l.1 a
k'II-g
o.m, -
. (
e.
p m. w$f
.=.m
_,.. y. _..
h_ _.
]5 h hkq.- J9hQWfh M
F=4... k m -.. a
. n t. e -
--s'
'W 4
~.,
1"a
- " " ^
l
]
q h l@
N iY '
(
l j (I kh5
_", M<-#*s'dNp(8 w*w2
,QC e"pF.?* -
2-m _
ps.L. _3%
pg o
w
-. w m.,.,g l
e q
q
- a.m h
1 n
s 7..
)
.sMw. w.ww. wen es
, o eu....
tt.....: -
k i
rit-3 Q
.4..;
u p.
. c[ 3
.. G; k $J.t.{.5'
],.P F M. Y I, 9 i
r4 I" -
< F'- W L
9,,,,y G
- r< '4'.,
e
' ;;p J
p
~_ f.-
.s.
5.W,y;
_w3 i';. j<-
.J-ao y
- c..
v.
rv.
y s,..-
G;
{W,i
%g --
4
' v,h-5 5.7 v.. c.
- m. m.......
c m
- y. p p, s.-
dpp99,.r...k..,.. #-8+ g~'-
j(Q I I.-
Er l
T 4
,,.v.
l
.n,
- h. g,,v;')c.1aum:,g.. 4 G M ',
f: y c 4 -
3, _
Ti:
_&1 r
" *! ~ ~n.
n :v
.r.an&,
- ' ' ~ ~ - -
b
"=-
s,.
- e. 4
'..s.
+:.-
l
{
]
g g
- K;.2 C
r 4
y.e
- q.. %,
.w.
~
[,.. w
- m. -
.1
- - 'p -
k';I l
.,.N1 $ t,.
i.A
?lhNd "w ' *
.-w.,'
5.I,' k
~~
v' '
E
>f.,
kEi V && f}h.+. :-
/Y 2'
?*k.
=,,
u.
v wwva
- '*f.
. neigdg.W y. n.i mLee 9a d..'e" T.
5 k ga k
-.R f bh.'[h. [ ',g. f
- ?
R$a h
44 s[-%p
. 3. ;@p J. ~..
7 L-
., e s
..ir;
.,es
_fa+..
l k
- ht, Q m.'
^ a% l4c.,L c.>^,'* cw '
b* [
g,
I e
,~
t
'..~..w,. '...
l
+
t-
. '. - S. -.
t y.- - -
l apN fh! y,; -
M4NN'f-.* 3'h tk 5.O...- Oh.A'\\:k:Sh O
7 r~.:
- A.^.'O ^
lN ei dE:X l
i
- g..n;, y-. i.
,,,., 3..q k' ' '
{
,':,tg'$f,'.W'
_.. j.,y; $ 1,
';r ' WJ,'.
- j...
c 4
5 G
Y
\\
/
. 'J ' s n r.
.P s*
f' r
t Js,0
.+
m.,-
s
.E,
' fi-l-
_ mii
~2
- a.,...w..
- <
iy. -
... :d 2 f:, e,,
3 ' *>g j*I 2
l
" nT.e t,-
6
',(
9,
'.l, Y.
[Q.
.n b
^ E= '
W(4 jw%
0 g, p y
M.Nf!S${hI DMNMLiiR 4
E 6
~
A qNnB Af-
~+
p g-4 4
% R@ib+
.Qf M~y" -M_
bi' 1
i w www w
M
~;
l
_y, 3
2
= '
~
- i. k., f
". g+
t.
>.9.= ml..:.
y
-m w.
3 y
.j
<sf.N l
~
3[
,w -
3 ff.
m 7. %g g n o
3
{,..3 %q: W b> cK. = "-
. ' [. y[9k/N k*
W
..,:?: T i
g m
ht
,., I t 3;
7-
.t t,g.k.
- n. ;%j.1-
.,. _ _ h
-- q r
a t
fl.
J 4 "..
.6, :
- e. :.
M*.
E ',. #
h.
t
'i g'
.te'e t
.i k :
?. g,.,9.,,
h*'
,l.d:.i[h..a..
l ?ge Y
i v.h':!.5
(
Q
< fa.
T* ;g ; ;
.p
.s
{
,, 1r p
t
'~
S
- * ' ~
g, gl g gg 5.H:s.
?-
gn. 3.,
~g.
m:.-
9
.w g
- s Ri.T.W.y st.)
I-f,
. - j..E f..~..i-93.s,55.-
j
,s.....,
e Ms.i g w ?a,%3@..n.f. T...
y..-- - % - - -
c
'5
. ' C i - ' ~~ "3[*2(1,p i, *;,..
- ,'; C
.e xd. *.C.k.*-
u
.i 3'.h 'r f
gglpy ny E ^ '8 $.
' 'f-id>D.I
]
g/.',~.
j~b; h
SP R-pdW}yh,,h a n@$$N b.~L%d W
,.g
. ~.
n..~
.r.$
y:., 3+, r v..+ r
~
3 l
- . f r
- s. '. d.. o -, d T %
?
.[
L' Q
a
+
~
g 4
g i
v-4
?
1 5
4
,h,,
9 4
9 5
g g
g.
w e=e a
g, L
n
]
l*..
l*
l
.-4.
.2.
k
.I. 3 Y i
4
[
h i
i i
i' PROBABILISTIC RISK ASSES 9ENT I
i TASK OsJECTIVE o
COMPLY WITH SWERE ACCIDENT POLICY STATEMENT i
REQUIREDEENT FQa PRA av PRov1 DINS - A LEVEL-III PRA FOR ADVANCED SYSTEM 80 DESIGN v
1.
f o
DenoNSTnATE CODFLIANCE WITH EPRI ALMt MEAN CORE DAMAGE FREQUENCY GOAL OF 10-3/Ya.
3 l
l 0
DenoNsTaATE CODFLIANCE.WITH LAaGE RE raw GOAL oF i
10-6 y,,
f o
SUPPORT EVALUATION OF DESIGN CHANGES i
i h&
[
+.
SYSTEM 80+ PRA PROBABILISTIC RISK ASSESSENT APPROACH i
o ESTastISu BASELINE PRA Foa SYSTEM 80 o
USE PRA As EVALUATION Toot ron ASSESSMENT OF DESIGN CHANGES i
o PREPARE LEVEL III PRA FOR SYSTEn 80+
i i
4 i
i i
i
-j l
'I I
f t
1 i
lt SM
.1 1
4
' '~ '
i.
e W
-w me m
s m.. m
. m.m..
-u a..a
a i
E t
SYSTEM 80+ PRA.
n PRELIMINARY CORE DAMAGE FREQUENCY BY INITIATING EVENT CORE DAMAGE INITIATING FREQUENCY EVENT ___
(WITH RECOVERY)
(MEAN/ YEAR)
LARGE LOCA 6.12E-8 MEDIUM.LOCA 1.16E-7 i
SMALL LOCA 4.31E-8
-Loss or FEEDWATER 5.84E-9 Loss or CONDENSER VACUUM 6.71E-9 OTNEn TRANSIENTS 4.64E-9 STEAMLINE BREAKS 2.74E-10 S.G. TusE RuPTunE 1.38E-7 Loss or OrrsITE PowEn + SB0 8.80E-8 ATWS 1.97E-7 Loss or CCW/SW 1.26E-8 Loss or 4.16Ky Bus 2.76E-11 Loss or 125 VDC Bus 2.61E-12 INTERFACING SYSTEM LOCA 3.01E-9 VESSEL RUPTURE 1.00E-7 TOTAL 7.87E-7 muhS
,w m_s.ums,6-Ia' oms e m-n.-MS,s en g,Wem a s wm ae,.
6 s.9
- q 0.4 4L 46=~
.*m' A+moa
. eu-4 4+-
Ar4n 4
4Aa-aja,-
4 e
,,9
& s -M4 a _4m.4 s
~
t
. e<
g
-' i
?
5 I
I
- t
.3-
)
e 4
I 1
"*-4 9
i A A N
I ~
@ N 1
l W - W W s
I I
(.-
- m. v4.
AI L
W o
- h b
m e
m y
(J i
M W!ii d 5
-ar 1
l l-l
. _.. -. -. -. ~._,._,... _.-.......... _ _. __-. _,.
... e..-..-~
,q
~
i 1
1 i
l IMPACT OF SYSTEM 80+ DESIGN FEATURES i
ON SEVERE ACCIDENT RISK l
-(Core Damage Frequency, Internal Events) r
.e j
E EDs t
i a
5 o
t; o-
. O CssisCS r
l 4
12e a se E n see 3 CCwiss.
l o
S"r S stwST 4.es.
l 4
j
=;
oo D as x i.,
~
h Se t
~
I y
~
4 3..
EC
'-)
se 4.
28.
j i
~
29.4 8
i I
go 93.4 i
F-1
,e asm mee ases -
ase
[
wtSes stWSt CCWISSW SeS CSSISCs (meID EOS)
{
PLaset COMtGtmal4000
- i
- R$$f 4
i
..k.
,.,s
. -- w.w
~
j DOMINANT CONTRIBUTORS TO SEVERE ACCIDENT RISK (Core Damage Frequency, Internal Events) e.g g gi
,66,,.,
4....
i 31.1%
.3%
14.7%
46.4%
O LOOP /S80 E LEA E TRAltSENTS E OTIER
-susst h d
I r
T' 3
SAFETY FEATURFC 0F SIR NSSS DESIGN l
I.
II.
DECAY NT REMOVAL SYSTEMS L
III.
SIR PASSIVE SAFETY FEATURES
.-IV.
TRANSIENT PERFOIDENCE l
l O
t l
{
l (SIR;)
l t
~
F
)
SIR LICENSING PERSPECTIVE j
-1 o.
SIR DC ON. HOLD DUE TO DOE REJECTION OF SIR PASSIVE PLANT PROPOSAL o
SIR ~ PROGRAM PRESENTLY DIRECTED TOWARD UK j
HARDWARE PROGRAM L
DESIGN.& SEPARATE EFFECT TESTING TO l
. ESTABLISH BASES.FOR BUILD DECISION NII LICENSING IMPLEMENTATION L
~
-o KEEP.NRC INFORMED TO ENSURE DESIGN EFFORTS WOULD BE CONSISTENT WITH NRC LICENSING OBJECTIVES (EG COMPUTER CODES)
L 1
SIR MAJOR DESIGN OBJECTIVES SAFE LARGE SAFETY MARGINS PASSIVE RESPONSE IN MITIGATION PHASE-f NO LARGE BREAKS REDUCED SERIOUSNESS OF SMALL BREAKS INCREASED BACKUP SYSTEMS SI)FLE MAJOR PIECES OF NARDWARE ELIMINATED MAJOR FIEW WELDS-ELIMINATED ELIMINATE PROCESS SYSTEMS IN CVCS ELIMINATE CONTINUOUS COOLANT CHARGING-COMP 0NENTS SIZED FOR AVAILABLE TECH i
SMALL-MILTIPLE COMPONENTS LESS LIMITING STEAM LINE BREAK SLOW RESPONSE TO PERTURBATIONS SLOW-NO REQUIRED IM4EDIATE OPERATOR ACTION l
-e l
tSIR; l
f 3
-+
I REACTOR COOLANT SYSTDI - MAJOR CCHP0NENTS o
REACTOR VESSEL o
REACTOR CORE o
PRESSURIZER l.
L L
o REACTOR COOLANT PUMPS e
O tSlR; l
$ @2
"%;lM[k.!$8
[1 g !j,,*!s."\\ _
l Auxiliary spray j
Nozzle (4)
)
'~
s.veey R.=,
r g,\\
p,,,,,,,,,,
Velve(3) i.
(upper Head)
CEDM whaft
- cuide Tube (es)
,j t
t<
y a
{s 4
f J
[
Pressuriser.
3
]
9) l g
I L
Divider Plate p
j<
N j <l l
Reactor g -
Coolant
.t incere
)
[
c lk. y;
'. ? A j
- E 3
e (6 i
Steam Line (12)
?
(.
s/
~
N 4
Upper Support (12)
Vi-g h,C k,.
Feedwater Line (12)
Vessel Support ($)
~
Savety Injection
/**
l} rrren1r Nozzle (2)
/
,.,l ;. J,y h,
.,p
.j Stcr.m Generator lli 'l 51[
Steam l'
' Ganerator (12)
Figw Plate l
Control Element g
Guide Tubes (65)
'1 Reactor f vn**'
y i
Excore Flux j
Monitors (8) m I
i
- Stasm Generator j' 'y Lower Support (12) 9
.11 !
(
i
/"
. Co,e Suppor.
e i n.y Sa,,ei ve..e.
[
O inoo,.
instrument GuWe % M Flow Skirt
,l s
~ lu
/
Lower Head Same s
l.. -____
_ - _. _, - ~ _ _. -.. _. -
~.... -..
=..
1 t
5 PatSS#l2ER atAC?ca
- CCOLANT PUMP g,)'
v
(
\\
s Q
[9]
n
'h.
h I
I I
I 5
g U
h h
y 9
000 CCC
}
g' il
\\
4
.q p ata: ca y
9 OCag 4
h a
Fqure f
3 I
)
SR Flow Paths b2
-k
-... - -. - -. -. ~. -... -. - - -
4 t
(
///////////////
/
/
p l is.: w.i
/
/
{ 240 PSIA)
/
mREssama j
/
/
7800 Kg/S Lit tst)(TOTAL
/
)
/
(St.s : 108 318 *C (40s 8F)
/
l
\\
REACTOR COOLAwT
/
[ % PUMP (1 OF 6)
/
MOTOR
/
/
- STEAM 5.5 MPs (800 PSla)
/
ts*C
($00F) SUPEfDGAT l
/
818 K 'I 9
(10F 12)
(4 a 108 LD$ ~tet)
/
CORE
/
(TOTAL)
(1000 Mwt)
/
/
r t
L n.EowATER
'~
224 oC (43s ap) a i
/
1
,/
2,4 ec t $42.s d7) 4
/
l
/
/
i susER stCnOw +-- -
- DOwwCOMER stCnOw
/
/
///////////////
REACTOR VESSEL SOUNDARY p
SIR Plant Configuration (System Schematic) i
(
J rSIR t
1
(
x @ @ x X O O O O G X
- e x @ x O x @
X X
G G x@xO @
g g
O X O x G XO g
g G SX O X O O xO xOxOx0 x
X O G O O G x x G G x 4 ELEMENT CEA (25) 4 ELEMENT CEA (40)
l l
1 C
)
1 j
SIR CORE PARANTERS l
l I.QRE o
EQ CORE DIAN. IN.
- 102, o
ACTIVE CORE HGHT. IN 136.7 o
CORE POWER DENSITY KW/L G4.6 o
AVG. LIN. HT RATE KW/FT 3.05 RIEL ASSEMBLY
)
o NLMBER 65 o
TYPE 22 X 22 o
DIMENSIONS, IN 11 X 11 j
o NUMBER FUEL PINS /FA 400 o
NUMBER INT. BP. RODS /FA 36 o
NUMBER INSERT. BP RODS /FA 16 I
LEA o
NUMBER 65 o.
TYPE 4 & 8 ELEMENT l
o NUMBER REG 25 o
NUMBER SHUTDOWN 40 Y
N f SIR;A t
f F
,-,,,..r.
,,.e
...,..,-.,,n
__n,._,ne,.w.,,
l I
i t
i 1
i F
D l
1 9,. %>
1 i
WM i
i WX OX OX iXO XC Xm l
j O.
O w
L X
XLe t />
Xl :..
- X
- riX X'
i
\\
\\
\\
\\
1 ta w
,x n
l sw
\\
h;<
n'!
i L'z i p j
I C
X X
X X
O I
X W3/
s-vri X
3 i
y;;
e
- x;
.:si l'l f:
'* ' 1
).f.1 f/:
l h,kA 1
,x.
.f4 :e ix, 4.:
.x C
X X
X.
X O
t 4
> i i
i 1
a.xx y)A
.r:
1;N l
4:.;
vt 6
.41 M) l
[
-X Xs' 7
X?:
iX 1 iX X
I C
e 1
1 O
I i'
1 I
t iX CX CX EX.O E
D<.M t p.
I l
I 1
l 4
~
FUEL ROD (HIGH ENRICHMENT) 3a FUEL RCD (LOW ENRICHMENT)
INTEGRAL BP ROD (Gd 0 UO )
[
23 2
GUIDE TUBE FOR INSERTABLE BP ROD (Gd 0 Al 2 3 2 3) 1 q
Fuel and Burnable Poison Arrangement
)
k rSLR t
~m,
+ - -w,m-w,,w.,---e--,a, e,+,--,n.,
e,,-m
,---.-,-mm--------+-e--.e-....-,-,,-,e
n,--..a- - - - - - -,,.
~~.--,e-
F 3
ADVANTAGES OF SOLUBLE BORON FREE DESIGN i
i o
N0 BORIC ACID CORROSION o
LARGE NEGATIVE TEMPERATURE COEFFICIENT AT ALL TIMES IN CYCLE o
GREATLY SIMPLIFIED CHEMICAL AND VOLUME CONTROL SYSTD4 o
N0 BORON RECOVERY SYSTEM
[
l o
GREATLY SIMPLIFIED LIQUID WASTE PROCESSING i
i o
LOWER PERSONNEL RADIATION EXPOSURE o
SIMPLIFIED OPERATION OF PLANT I
I J
L (SIR;a r
1
S b
3.2 3
3.1
=
3.0 j
2.s E
i 2.3 O
)
2.7 l
l U
NOMINAL VALUE (SIR) 2.s 3-l 2.5 I
2.4 j
I2.3 2.2 l
2.1 TYPICAL LARGE PWR 2.0 t
1.9 1.3 i
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.3 r
RADIAL POWER FACTOR (F )
R Minimum DNBR at Full Power vs Radial Power Peaking Factor L
)
rSiR t
<--w.
..,r..,,,__,.,...-%,_m.v.---_-
_,w.
-....ww,..,_.
.-mm
3 c
SIR LOSS OF FLOW EVENT CANNED MOTOR PUMPS - FLYWHEEL CONSIDERATIONS i
0 t
I o
SIR FEATURES i
o LOW CORE POWER dei!SITY (DESIGN) o l
LARGE NEGATIVE MODERATOR TEMP. COEFF.
REDUCED PRIMARY RESISTANCE j
o NEEDED INERTIA CAN BE PR2VIDED VIA IMPELLER 1
o WITHOUT REQUIRING WET WHEELS OR REDESIGN OF MOT BEARINGS f
4 t
t I
j
(
((S,r,R.J T
l-
- -,.. ~ _..,,,,
e.
e i
MELATIVE MASS VELOCITY IN LIM; TING CHANNEL e,
e e
8, e,
e, e,
9 D
e o
e e
o e
o e
e e
d i
i 6
i e
n-1 I
5-o E
- e
!c t
- E h
$- "o l
e g
c h
l g
ge hN II 5
am en o
gr
~*
O
'd g
amm a
A
$g.
6-g.
e
,k.
m ((f;.
d -
E ET
)
8
.w (E
I c&
/
a e
JD I.
f E
n M
/
e o
,- g i
f
/
5 U
ga I
U5*
e.
I.J 1
>L E
yf
=
t f
f f
f f
g O.
E.
h.
O.
O, I.
9 D
O e
e o
e o
o o
o o
11NNYHO DNiilWl' Ni Xn7d 1YIH 3A!1Y13W k
k
,e v
~
---,,,.-----,,.-1.-
--nn-, - -, -, -. - - - -..,,, -,... - - -, - -..,. - - - -. - - - - -,,
n--
i
+
I Y
A18411lARV / lLill ikJitlliflC i
i 11:1 c.iu1 9 s1 vl tatvi 12;> s1:1:rluRI l
l t
I l
i i
1 I
I I
y 1
I i
i
- A A
m A
I l
Gl At: LOR M'/J t l
l fOlJI'AR144ill x I
i i
8 I
8'
'5 i.
D i
sl-
,0 l
\\
a i
.j.g gg; g gy g l
,.A------
i.iivA..!
l
- : ll g, v.
64 1
v v
v. :*
. i,..
F.is i,
i kr 4
8 I
i
{.p/
- 'eh j
f
- l 4
e 0
~a.
r" y
's,
e J
l
- irl A*.'llW IHill'flA4 5
+-
k I
/
SIONAfl ARIA 0
8 l
\\
hh
.* *, r I'l ACI(Mt cot 4i Alt 1MI fll IKMpHDAllY S4000We SPALWft r,
ssens a esessse sai.amesasssc cearesasema
,k_'340/811.
'..K 411 i
e i
Fignese 13 -
~
i r
I i
CONTAINMENT DESIGN L.
o l
0 PROYEN PRESSURE SUPPRESSION DESIGN t
1 i
o THREE COMPONENTS i
1.
REACTOR VESSEL COMPARTMENT 2.
PRESSURE SUPPRESSION TANKS t
3.
INTERCONNECTING VENT SYSTEM o
o PASSIVE HEAT REMOVAL VIA NATURAL CONVECTION AIR FLOW DVER TANKS i
0 MATURAL FISSION PRODUCT REMOVAL ECHANISMS
{
l o
PRESSURE LIMITED BY PASSIVE i.' EAT REMOVAL 9
.o ARRANGEENT REDUCES COST AND CONSTRUCTION TIE (SIRJ
DICAY HEAT REMOVAL SYSTEMS o.
TWO S.G. RECIRCULATING SYSTEMS o
TWO EMERGENCY COOLANT INJECTION SYSTEMS l
o FOUR SECONDARY CONDENSING SYSTEMS
[
o TWO SAFETY DEPRESSURIZATION SYSTEMS t
l g
e (S!R)
I r
l 1
?1 Q
l i
Normal Makeup i
y Secondary Consensing System Emergency Coolant injection System y Safety Depressurization System y Consen.ng Poei
-M L. _ ve; k
-T we.e.o
,,.o.
vont Weeve
'I i
l i p
b h<
i
' W,.
)
w....
~
Tenk
.t
'~
J
/
.\\
ene.
re...
Sieem.,e.i-Xt A
esX
~
l i
Atm.
I'#
G
}
5 gf
%4 T
Lt I
i Cuc *i..nc g,,
,,i
~ '"
i g
g g,7 l
- 2 comoe,..
,, re.,,
Coeieng we g,,
1 Ste,$ue i,
I Feed Pump Ooncensi Storsoe Tank dSteam Generatet Recirculation '
System Turoine Sy. Pass [
Secondary Feed and Sleed h power Generation /\\
i Figure 1.122 SIR HEAT REMOVAL SYSTEMS
1 i
l+
t i
t l
l l
PASSIVE FEATURES OF SIR l
Y SOLUBLE BORON FREE.CCCLANT-o i
o REACTOR COOLANT VOLLHE o
LOCATION OF CORE SECONDARY CONDENSING SYSTEM i
o EMERGENCY COOLANT INJECTION SYSTEM l
o
/
P V
9 (s:s)
1
'a p
3
)
REACTOR POWER
(%)
vs. TIME (sec)
- 120,
)
i
- 100, J
i 80 't
- Berated Rcs L
l 60l -
3 40 i
p unborated Rcs l
20 3
1 r
i 0
L 0
50 120 180 240 300 TIME (seconcs)
RCS PRESSURE (os ia) vs. T:ME (sec) 3200
/./._soratedRcs 3000 6
~
[
2000 h,
2500h U"b*'** " RCS M
2400
'2200 ~
E O
50 120 120 240 300 TIME (seconcs)
L
^
J rS,,R t
1 j
1
(
i r
f 3
i LOS1_Of.FEEDWATIR l
1 r
CORE UNC0VERY TIME (N0 ACTION)
OCONEE (B&W) 57 M.INUTES
~
1 I
CALVERT CLIFFS (CE) 104 MINUTES HB ROBINSON 120 MINUTES l
SIR 278 MINUTES l
L l
l e
l
x i
\\
1 THE IIR DESIGN ACCol4400ATES A WIDE RANGE OF SYSTEM TRANSIENTS WITHOUT PLANT SHUTDOWN AND WITH HINIMUM i
)
OPERATOR INVOLVEMENT.
I.
LOAD MANEUVERING 5% RAMP LOADS NO REACTOR TRIP-OR L1FTING OF SAFETIES LOSS OF LCAD USE OF RPCS & SBCS RESULTS IN NO REACTOR i
TRIP OR LIFTING OF 1
SAFETIES l
l II.
ACCIDENT TRANSIENTS L
t TLOFW ATWS NO EXTERNAL DIVERSE PROTECTION SYSTEM HEEDED 1
LOCA NO NEED FOR HIGH CAPACITY, IH4EDIATE DELIVERY ECCS Q
r
)
(SIR;s
3
,7 SIR TLOFW AWS j
r i
I A_SSUMPTIONS:-
i NSSS IS INITIALLY AT NOMINAL OPERATION CONDITIONS l
ALL REACTOR TRIPS ARE DEACTIVATED
.3 TOTAL LOSS OF FEEDWATER FLOW OCCURS T, 10 SEC.
WO CASES:
l t
SIR REACTOR WITH NO SOLUBLE BORON 3
(1)
THE RCS - HAS A WJRST CASE MTC OF h
-2.SE-04 AND A PRIMARY SAFETY VALVE AREA 0F 0.03 SQ-FT.
i (2)
SIR REACTOR 'v;ITH BORATED RCS -
HAS A WORST CASE MTC OF +0.0E+00 PRIMARY SAFETY VALVE AREA 0F 0.06 q
^
J (sis)-
?
f 3
REACTOR POWEF
(%) vs. TIME (sec) 120 i.
a 1UU M j
50i-c sors:ac acs 50 t
)
40 -
T.
p - Unecrets: Rcs l
cv C,L i
~
0 E0 120 ic h-;
300 TIME (secen:s, AC5.:E55URE (cs: a) vs. T:ME (s e:)
3200-I 3000
/
-- Borsteo ocs
/
j 2900 W "S
- EC3 l
2500 Y[
l 2400 L
L l
2200 i-0 50 120
', 5 0 E-0 360 I L
TIME
- sec:ncs)
Sla t
i I.
l
)
e
- e. - -._ 1 T, rJ..r. _
0,3 W A T W S 3
~
R C J ' :.'.. S
Do x 1000) vs. TIME
(..s :
7 0 0 -- - r --
r 1
i 4
l
.s l
,30 j
550
.ne: rates or.3 640';
+-- Borstee RCS l
520 500' O
SO 120 180 240 300
~
TIME (secenes)
PRZR LEVCL
(%)
vs. TIME (sec) l 100; i
- ~ !:-a:eo ocs 60'f a
i l
l 60 N
ecre:ec Rh, 1
l 40<-
l P
20 [
1 n
O O
60 120 150 240 300 TIME (se:Oncs) 2000. :5v :LOWAATE (Ibm /sec) vs.
IME (S90) 1500 1200 I
i 500 [-
- ~cr"e oC~C 1
l 4
t Un::-a:ec Rc5
}
O '7 e
g,,,, q g,, _
j m q.;f\\
0 50 120 150 240 300 k.
TIME
!se::nes)
)
r
(
q
i F
3 2.7-INCH DIAMETER LOCA l
REACTOR IS INITIALLY OPERATING AT NOMINAL FULL POWER CONDITIONS BREAK IS INITIATED AT T=10 SECONDS i
THE REACTOR TRIPS ON LOW RCS PRESSURE ABOUT 29 SECONDS LATER (z.t., AT ABOUT T=39 SECONDS) 1 30 LBM/SEC SAFETY INJECTIOl4 FLOW IS INITIATED WHEN THE REACTOR VESSEL DROPS TO ABOUT 2 FEET ABOVE THE TOP OF THE CORE (I.E., 18.5 FEET) AT T=3.5 HOURS THE 30 LBM/SEC SAFETY INJECTION FLOW IS SUFFICIENT TO IINEDIATELY TURN REACTOR VESSEL AROUND i
THE ESTIMATED TIME TO CORE UNC0VERY WITH NO OPERATOR ACTION IS APPROXIMATELY 4.0 HOURS l
t (SIRj
_ _ _ _. _ _ _... ~.
u.
i I
SIR 2.7 INCH SB-LOCA 3
i REACTOR VESSEL LEVEL (f t) 70 go a i
0 30 lbm/see safety Injection flow is initiated when level reaches -
gg 2 feet above the top of the core-at about t=3.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 30 20 l,..T.o.p o.f..Co.r.s..=.16. 5..f.ee.t....-................. - - -. - - -
- -.. - ~ -
^
10 j
2 3
4 TIME (hours)
RCS PRESSURE (psia) 2400 i
2000 1600 Reactor trips on low Rcs pressure about 29 seconds after the CEDM ejection is initiated at t=10 seconds 1200 800 400 0
l 0
1 2
3 4
I TIME (hours)
BREAK FLOW RATE (Ibm /sec) 120(
4
~
100 30k SO [
40 20 0
O i
2 3
4 TIME (hours)
)
N f SIR;A t
e 1
r 3
CASE 1 - NEGATIVE FTC AND MTC SHUTDOWN REACTOR 0
i AND RCS STABILIZES AT ABOUT 622 F WITH PSVs CYCLING PERIODICALLY AS NECESSARY TO REMOVE CORE i
DECAY HEAT.
6 CASE 2 - NEGATIVE FTC REDUCES POWER TO ABOUT 68%
l BY ABOUT T = 100 SEC, HOWEVER, PRESSURE EXCEEDS l
3000 PSIA AND IS CONTINUING TO RISE WITH WATER FLOWING FROM THE PSVs AT T = 100 SEC.
s.
d
-am ae-
-4 w-w'
..-p---.*-.
--rA-" ' -
E dlF am e-E'A*-6-ht---a-aX--,A
-a 43
-44*M.)ha e eh-n4.-d--.Aa.hp.,A,d._s---%a J w s.a a a J #,JAmAe ap_h._E,mha.-m._.Jee_*_ea.u
.e e,
e F
3
.i I t
i 1 i
i i
f i
na e
L l
l
..* * ! !<g i l I.I, l
g !. !.
1 8 l
= I, g i s
. r u r 1,
1
,t e.!
l a m e
e n.
i ic i
' i,E E i
l sl-l
~
~
=
=
t t :
!, ! i.i n!E t i g
'; I I
i y
m V
$ 7g
}
I aI tus e
a n
t s.
b y
g 4
I I
m a g Ig.
5 4 c
I
~
e
~
'I
.E-so
!!=g I,E, l
It!
- ~
- a l
.~
.~
w 118 f e.
('
In i
i t
a i ;
ge I E l g I E 4
~
a 1
n
---,w
-w- ~ -,-~~~
r,w=-~s-=~~-
-,* ~~ ~ - ~ - - - - - - - - - - - - - - - - ~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - < - - - - - - -- ~
.__._.._.__...,..,,,_.,_.._,-,..._.,.m.m.-,,....,~_-,._,,....,.f,,,,...-.,_
4 3EVLAV YTIFAS TRANI M l
styLAV nottAtosI ttu04 e
80T4004 N METSYS LMTEDC YT!VITCAta ttttV!O ntT3fS TNEV NOITA!tRU$$tt*!C *
)sCYC( METSY$ pUILM a
f l
artses nottttoit
=
=
TNALODC YCNtsttuE * -----
8 METSYS ENlaCeDC 3
Q s0TARtutS MAITS
- g METSYS 4
g e
e e e e
e W
GIIL00C NOITALUCRICER
,g: n#
A l
ROTARtutS MAETS tyLAV PEMI MAETS NIAM e
e e
4 3tYLAV $SAPY8 EN!lRUT 4 Rt5MtS OC NIAM l
l*E e
=
g ttfAhttF 9UTRATS I
i gi E
5
_8 i
E.
a I
52 1
-s. I l
ji E,g i
!i !s
^
r R
R E
E i
c{
3
=
s s
's '= s s'55 b
r 3
l L
SIR LICENSING PERSPECTIVE i.
j L
o SIR DC ON NOLD DUE TO DOE REJECTION 0F SIR L
PASSIVE PLANT PROPOSAL 1
o SIR PROGRAM PRESENTLY DIRECTED TOWARD UK NARDWARE PROGRAM
- DESIGN & SEPARATE EFFECT TESTING TO ESTABLISH BASES FOR BUILD DECISION i
- NII LICENSING IMPLEMENTATION l
i o
SIR - NRC MEETINGS TO ENSURE DESIGN EFFORTS
)
WOULD BE CONSISTENT WITN NRC LICENSING OBJECTIVES (Es COMPUTER CODES) 1 ftSIR;
l l
i i
F 3
i i
i 111 PirAARY SYSTD4 YESSEL CDeARISCN VITM $YSTD4 80 5.G.
4 e
m i
SIR K [!
YESSEL l
j s
4 i
I i
il i
l 245" 0.D.
p i
i l
t t
I 65' i
I PALS VEXCE
". =. STEM 4 GEN.
i i
l i
l.
I 4
/
0 f
i ftSIR;
N'l
l Ig k
7 b;
NJ 22iR t
D-
/i i
8I
\\
,o_
g 3
2 J
I l
g m/i Acll 5e i1 l
i i,
9 N
~
n L
y
' SLIDE 127. DOC 14 NUPlFX 80+ DESIGN BASIS o
IMPROVED MAN-MACHINE INTERFACE i
PLANT OVERVIEW COMPREHENSION j
REDUCED INFORMAT!0N OVERLOAD ORDERLY TRANSITION TO NEW TECHNOLOGY
[
CONTINUED OPERATION WITH EQUIPMENT FAILURES l
)
l 0
IMPROVED PLANT PERFORMANCE
~
EXTENDED AUTOMATIC CONTROLS-LOAD FOLLOWING SYSTEMS L
CONTROL SENSOR VALIDATION j
PRETRIP CONTROL' ACTIONS l
VARIABLE PROTECTION LIMITS o
IMPROVED RELIABILITY AUTOMATIC TESTING l
FAULT TOLERANT REDUNDANCY SEGMENTATION
~
DIVERSITY t
+
-c '4 4
- - SLIDE 127*, DOC 15 -
p; L~'
L NUPIFX 80+ DESIGN BASIS h
o REGULATORY L
COMPLIANCE-j l
--SABOTAGE L
--FIRE PROTECTION
-HUMAN FACTORS L
ul' o
COST REDUCTION DESIGN CONSTRUCTION
.Ug8
- 1. OFF-THE-SHELF-
- 1. MULTIPLEXING
- 1. NSSS EQUIPENT AND BOP-
- 2. FACTORY STANDARDI-
- 2. AUTOMATED TESTED SYSTEM ZAfl0N'
-DESIGN TOOLS
- 2. CH4NGEABILITY
- 3. SOFTWARE BASED JSYSTEMS
- 3. RELIABILITY 8
4 5
e sw i
l
-.-...,__..._..._.,s-
.,,., - -., _,, _... _., -...,.. ~,.
J,a
,a.
,_%m-AA.a Ja, de
+%Jw.J w
4LA..s.
--dM-a.
4 J
an.d.a.=.
e sae--M.<d
--d--,,--a.+4a',4Ji..em--s-m+A.*-44_h 6--
e..m,.e.
i+4--
-a,se mE,a M esAs.,,4epah-44d-i.---m-dm 4
. B-
_. 9' o
=
e t
2 2
s I
A' i
+
4
- s
_i y
M w
L w
a
=
t-5 g
5
- g sg g
e L
mo-a En.
EI i
i u
g.
a it
~
I l
i
~
~
u
,5 2
NL-
_ou Y
I t
a D.
l-L;
..-. ~ _,.
2.-.
.... ~....-...-.,a#..
-+5.m.--.x, a
.~...s.
.we 2
n 1
l-j f
L i
l I
'l"l ll
!!!I i
Ip -lil L
l l
li
!l ll'!
ll"i l
i 8
a l4 l
s E!
I
~
as I=a h
d ll,ll s
ns l
lE 5
lg!
n l
t
/=W
---r-1
-ewp-
=
ore.ir=.-
+m,...,-
.w-a.--e,
-ww e
,we.+,w_.-m
-- -.-r
---...-.--m.
= -
- - - - - - - - - - - - - - - - - - - - - - - - - -. =
SLIDE 127. DOC 6-
\\
f NUPI FX 80+ DETA11 FD DESIGN i
NUPLEX 80+ IS BEING APPLIED TO THE FOLLOWING PROGRAMS:
EACH IS CONTRIBUTING TO THE DETAILED DESIGN:
I o
ADVANCED CONTROL COMPLEX FOR SYSTEM 80+ (EVOLUTIONARY ALWR) - DOCUMENTATION HAS-BEEN SUBMITTED TO THE U.S.
NRC (CESSAR-DC) FOR DESIGN CERTIFICATION.
e o
. ADVANCED CONTROL COMPLEX FOR THE SAFE INTEGRAL L
REACTOR l-0 ADVANCED CONTROL COMPLEX FOR MHTGR - NEW PRODUCTION REACTOR l
0-ADVANCED CONTROL COMPLEX FOR EHWR - NEW PRODUCTION REACTOR l
0 APPLICATION OF NUPLEX 80+ TECHNOLOGY TO SELECTED L
SYSTEMS FOR YGN 384 NUPLEX80+
~
SL19E141. DOC
(,
NUPLEX 80+ HlflAN' FACTORS APPROACH i
o ESTABLISH A fRN_TIDISCIPLINARY DESIGIl AND-IlWEPENDENT REVIEW TEAM I
HF SPECIALIST l
REACTOR OPERATORS-NUCLEAR SYSTEM ENGINEERS IleSTRINENT Als CONTROLS ElIGINEERS O
PERFORN TOP DONil IlWEPElWENT SYSTEM ANALYSIS l
i FUNCTI0ll ALLOCATIOll EVALUATI0li IDENTIFY lilFORMATI0ld AIS CCITit0LS REQUIREIENTS Y
yypy,gg, i
i 1~
, #4 s
4 e
g.
' ADVANCED CONTROL COMPT EX 1
i
~
W^
- 7-
~
_. /
o
.r h[
i N
pt
\\
5 51 q
m E_A l
~
4 s
, pS i
.~'
g i
i a-d6d L
(
e[rx 4
I N
)
l
-aue m n 1
/
/030/a9 i
- \\
v
.-ev
. m m
[
' SLIDE 142. DOC'
[
IPS0 VALIDATION 1984-1986
+
HALDEN REACTOR PROJECT PWR SIMULATOR EPORTS:
HWR-158 HWR-184
' THL
4ENTS REIN @CE THE:
"THE FINDi SUPPORT FC.
tGE S d v i OVERVIEt! TN THE CONTROL RG.-
... HELPS' OPERATORS IN THE DETECTION AND DIAGNOSIS OF PLANT DISTURBANCES...
... FACILITATED A RAPID IMPRESSION OF PLANT STATE, AND PROMOTED LIVELY DISCUSSION BETWEEN CREW MEMBERS."
l I
mmM
)
m SLIDE 142. DOC t
SPMS VALIDATION 1987-1988 HALDEN REACTOR PROJECT PWR SIMULATOR i
REPORTS:
HWR-213 HWR-222 HWR-223 HWR-224
" SPEED AND ACCURACY OF OPERATOR PERFORMANCE IN TAKING APPROPRIATE CORRECTIVE ACTION WAS CLEARLY SUPERIOR WITH THE SPMS.-
... RESULTS CLEARLY ILLUSTRATE QUITE DISTINCT ADVANTAGES..."
l r
G p
e
o-I CONTROL SYSTEM 4
L r
LOCC dk O
m vauonvio=
Loose ANALOG FIBER OPTICS
?
s
^%
\\
OATA pmocessewo U N
system
.m.
PLANT PROTECTION
+
conseas= aces f
SYSTEM A
n A
.c,.
l
---9 vaa_OATC H 3 9 (
c R Tjl l
j l
ta-q e
e
-t i
J e
C
"]
(~%
o
~\\
s m
l DIGITAL 1 r l
FluER OPTICS Ct. ASS 1E Pf80 CESS LCsGIC ALApHu i
l sce4 sons D
78LEs i
j
- +-
-- L. ~. ~
l
=
/;
m.&.= _
=== ow t":
ocess l) m o,s ce o e r
1-o.c-ons 4
i USE OF VALIDATED SENSOR DATA DISCRETC HOICADON MD f
ALARM SYSTEM IOR INFOR M ATION DISPLAYS AND CCNTROL 5
l NUPLEX80+ ~
.i l
IO}Ii[89
~
r-
, - ~,. - - +
-n1--
_---_--__--.-,___a
y t
- y l
! p- +
U-H Y?
Il Il p
Y
[~
-r s
u
?
l-y ds1x
/
l i
?
N.
[
al
/
ftp Ilj
'a j
y a
hm
~
~__
b lll1 xl 4
an.
t-d l
y
~r O'
0'
'I a
- g j
s I
!ll
~M q
f
-\\
,(s.
s I
c e
o o is, l
1l4 l
~
4
)
o
=
=
.....m.
....-,...,--m----,
,-r
-.._,-r.
,