ML19323F131

From kanterella
Jump to navigation Jump to search
Ft Calhoun Cycle 6 Small Break ECCS Performance Evaluation at 1500MW.
ML19323F131
Person / Time
Site: Fort Calhoun Omaha Public Power District icon.png
Issue date: 05/21/1980
From:
OMAHA PUBLIC POWER DISTRICT
To:
Shared Package
ML19323F129 List:
References
NUDOCS 8005280576
Download: ML19323F131 (43)


Text

Enclosure (1) to

, CE-18074-794 t

t

- Al-1 O- '. .

Fort Calhoun Cycle 6 Small Break ECCS Performance Evaluation at 1500 MWt G

O I

-. - . - . 800528O N b ..

.'

  • Ft. Calhoun Cycle 6 .

Al-2 Small Break ECCS Performance Evaluation {

i, .

,/ .

T.0 Introduction and Summary .

l The ECCS performance evaluation for the small Sreak loss-of-co'olant-

, accident (t.0CA) for Ft. Calhoun, presented herein,' demonstrates conformance with 10CFR50.46 which presents the Acceptance Criteria for .

' Emergency Core Cooling Systems for Light-Flater-cooled Reactors (I) . 'The I

evaluation demonstrates acceptable small break LOCA ECCS performance for Ft. Calhoun at a power level of 1530 Mwt (102% of 1500 MWt) and a peak linear heat generation rate (PLHGR) of 15.5 kw/ft. The method of analysis and results are presented in the following secticns.

2. 0' Method of Analysis . .

The calculations reported in this section were performed using Combustion Engineering's approved Small Break Evaluation Model which is described in

'~ ^

References 2 and 3.

Evaluation of small break transients involves the use of four computer codes. B16wdown hydraulics are calculated using the CEFLASH-4AS(4) code, reflor , hydraulics are calculated using the COMPERC-II code (5) and fuel ,

rod temperatures and clad oxidation percentages are calculated using the STRIKIN-II(6) and PARCH (7) cod::s. Details of the interfacing of these codes are discussed 'in Reference 2. -

As discussed in Reference 2, the worst single' failure for analyses of the small break LOCA is the failure of one of the emergency diesel generators to start. This failure results in the minimum safety injection available to -

cool the core. Therefore, based on this assumption, the following injection j pumps were credited in the small break LOCA analysis: j

a. 75% of one high pressure safety injection pump
b. 50% of one low pressure safety injection pump

. In addition to the pumped injection, three of the four available safety injection tanks were credited in the. analysis.'

1

\

Al-3 As described in Reference 2, the small break LOCA analyses conservatively i

. assumed that offsite power is lost upon reactor trip. As a result, the

  • injection from the above described pumps was assumed to await a 30 second delay (for diesel startup and load sequencing) following a safety injcction actuation signal.

The ECCS performance analysis considered a spectrum of cold leg breaks 4

in the reactor coolant pump discharge leg. The break sizes analyzed 2 '

include the 0.5, 0.1, 0.075 and 0.05 ft cold leg breaks.

The significant general system parameters used i.n the small break calculations which are different from those used in the most recent small break LOCA analysis @)~are presented in Table 1.

3.0 Results The analysis demonst ated the .075 ft2 break to be the limiting small break with a peak clad temperature and ' peak zirconium oxidation percentage of 1874*F and 2.10%, respectively. The analysis was performed using the limiting batch H fuel at the time-in-life when fuel stored energy is '-

highest. -

The transient values of parameters which most directly affect fuel rod performance are shown in Figures 1 (A through H) through 4 (A through II). The following parameters are graphically presented for each break s.ize:

(A) Normalized'TotalCorePower (B) Inner Vessel Pressure

~

(C)BreakFlowRate -

(D) Inner Vessel Inlet Flow Rate (E) Inner Vessel Two-Phase Mixture Volume (F) !!ot Spot lleat Transfer Coefficient (G) Channel Coolant Temperature at flot Spot (II) llot Spot Clad Surface Temperature l

._ . - . . . _ . . - . . . . . . . _ .. . _ . . .. . _ _ . _ . . . , _ . _ . _ .. J J

The times at which significant events in the performance of the ECCS Al-4 cccurred for each break size are listed in Table 2. A summary of' the hot fuel rod performance is provided in Table 3 wherein are given the calculated peak clad outside surface temperatures and locations as well as the amount of core wide zirconium oxidation and the peak local oxidation on the hot rod.

, Figure 5 summarizes the peak clad temperature results of the spectrum analysis. .

4.0 Evaluation of Results The Reference 8 analysis included ECCS perfomance calculations for the 0.5, 0.35, 0.1, .075, and 0.05 f t 2cold leg breaks. 'The peak clad temperature vs.

break size for the previous Reference 8 analysis is shown in Figure 5. This 2

previous analysis demonstrated the worst small break to be the 0.5 ft break.

In addition, a second peak at the low end of the break size spectrum occurred for the 0.075 ft2break. To demonstrate that these limiting small breaks (i.e. the 0.5 and 0.075) remain below the acceptance criteria, the analysis contained herein included a reanalysis of the 0.5 ft2 break (the limiting Reference 8 '

small break) and the 0.1, 0.075 and 0.05 ft.2 breaks to identify the peak in the low end of the spectrum and confirm that the shape of the spectrum remains unchanged in this region. Results of these reanalyses are compared to the

~

Reference 8 analysis results in Figure 5.

~

Peak clad temperatures during a small break LOCA are produced by different phenomena depending on'the break size.

2 For the 0.5 ft break, the temperature transitnt is terminated during the reflood period which is controlled primarily by the Safety Injection (SI) pumps after the Safety Injection Tanks (SITS) have emptied. The previous analysis presented in Reference 8 used conservative. values for the low pressure SI pump flow. The analys,i contained herein used' corrected low pressure SI pump flow which resulted in '

a decrease in peak clad temperature (PCT) f,or the 0.5 ft 2break at 1530 Mwt relative to the previous Reference 8 analysis performed at 1448 Mwt. The low pressure SI pump data does not, however, impact the other smaller area breaks since the PCT's for these breaks are controlled entirely by the SIT and the high pressure safety injection (HPSI) pump fims. ,

en

  • e 4,y g s .cuumun ge , e ==e,me:p
  • e *=.Wy'#*. { M*

~

4 - b

'!. Al-5

-The 0.1 and 0.075 f 2t breaks are characterized by a relatively slow depressurization rate and recession of the two-phase level in the core. The depletion of the two- ,

phase level and subsequent recovery is co.ntrolled by the boiloff rate due to decay heat and the rate at which the coolant is replenished by the HPSI pump flow. The transient is terminated shortly af ter recovery-of the core two phase level with injection from the SITS.

2 The 0.05 ft2break experiences similar behavior as the 0.1 and 0.075 ft breaks, however, the recovery of the core two phase level and temination of the clad temperature transient is controlled entirely by the HPSI pump flow.

es 2

It is estimated that break sizes less than 0.03 ft will not experience core uncovery since the boiloff rate will be exceeded by the HPSI flow at a time when the two-phase level in the inner vessel is well'above the top elevation of the core.

5.0 Conclusion j The re'sults of the small break ECCS performan;e evaluation for Ft. Calhoun demonstrated a peak clad temperature of 1874*F, a peak local clad oxidation per-centage of less than 2.1% and a peak core wide clad oxidation of less than .24%. The

?dCceptance Criteria are, respectively, 2200*F,17.0% and 1.0%. Based on these ECCS performance results, it is concluded that operation of Ft. Calhoun at a reactor power

  • level of 1530 Mut and a PLHGR of 15.5 kw/f t is acceptable and that tne small break

' LOCA ECCS performance is less limiting than the large break LOCA performance.

~

6.0 Computer Code Version Identification e

The following versions of the Combustion Engineering ECCS Evaluation .

Model computer codes were used for this analysis:

CEFLASH-4AS: Version fio. 77019 STRIKIll-II: Version flo. 77035 ,

COMPERC-II: Version flo. 74223

~

PARCH: Version tio. 77004 l

j

(

b -

' ~

Al-6

7,0 References , ,

, l. Acceptance Criteria for Emergency Core Cooling Systems for Light-Water Cooled fluclear Power Reactors, Fede'ral Register, Vol, 39, No. 3 - Friday, January 4, 1974.

I

2. CEllPD-137, " Calculative Methods for the C-E Small Break LOCA l

Evaluation Model", August,1974 (Proprietary).  ;

3. CEllPD-137, " Calculative Methods for the C-E Small Break LOCA Evaluation Model", Supplement 1, January 1977 (Proprietary).

p ,'

, 4. CEllPD-133, Supplement 1, "CEFLASH.-4AS, / Computer Program for Reactor Blowdown Analysis of the Small Break Loss-of-Coolant Accident", August,1974 (Proprietary).

CErlPD-133, Supplement 3, "CEFLASH-4hS, A Computer Program for

. Reactor Blowdown Analysis of the Small Break Loss-of-Coolant Accident", January 1977 (Proprietary). ,

5. CEliPD-131, ."C0liPERC-II, A Program for Emergency Refill-Reflood of the Core", April,1974 (Proprietary).
6. CEllPD-135, "STRIKIll-II, A Cylindrical Geometry Fuel Rod Heat Transfer Program," April, 1974 (Proprietary).

CEllPD-135, Supplement 2-P, "STRIKIll-II, A Cylindrical Geometry Fuel Rod Heat Transfer Program (!!odification)", February,1975 (Proprietary).

~

~

CEllPD-135, Supplement 4-P, "STRIKIti-II, A Cylindrical Geometry Fuel Rod Heat Transfer Program", August,1976 (Proprietary). -

CEllPD-135, Supplement 5-P, "STRIKIti-II, A Cylindrical Geometry Fuel Rod Heat Transfer Program", April 1977 (Proprietary).

l 9

. = - = . - > . - . .

,, J e Al-7

' .7,6 ' References

, 1. Acceptance Criteria for Emergency Core Cooling Systems for Light-Water Cooled fluclear Power Reactors,' Fede'ral Register, Vol . 39, I

fio. 3 - Friday, January 4, 19,74.

l

2. CEtlPD-137, " Calculative itethods for the C-E Small Break LOCA Evaluation Ilodel", August, .1974 (Proprietary).
3. CEllPD-137, " Calculative flethods for the C-E Small Break LOCA Evaluation !!odel", Supplement 1, January 1977 (Proprietary).

o .

es

, 4. CEllPD-133, Supplement ~ ), "CEFLASH-4AS, A Computer Program for Reactor. Blowdown Analysis of the Small Break Loss-of-Coolant Accident", August,1974 (Proprietary).

- CEllPD-133, Supplement 3, "CEFLASH-4AS, A Computer Program. for Reactor Blowdown Analysis of the Small Break Loss-of-Coolant Accident", January 1977 (Proprietary). '

5. CEllPD-134, "C011PERC-II, A Program for Emergency Refill-Reflood of the Core", April, 1974 (Proprietary).
6. CEllPD-135, "STRIKIll-II, A Cylindrical Geometry Fuel Rod Heat Transfer Program," April, 19 (Proprietary).

CEriPD-135, Supplement 2-P, "STRIKIti-II, A Cylindrical Geometry Fuel Rod lleat Transfer Program (flodification)", Feb' r uary,1975 (Proprietary).

CEllPD-135, Supplement l-P, "STRIKIll-II, A Cylindrica'l Geometry Fuel Rod Heat Transfer Program", August,1976 (Proprietary). -

CEllPD-135, Supplement 5-P, "STRIKIll-II,. A Cylindrical Geometry Fuel Rod Heat Transfer Program", April 1977 (Proprietary).

D e 6

e l _

t 9 .

~

b ,

Al-8

7. CErlPD-138, " PARCH, A FORTRAft-IV Digital Program to Evaluate Pool Boiling, Axial Rod and Coolant Hedtup", August,1974 (Proprietary). - -

. / .

~

- CEllPD-138, Supplement 1, " PARCH, A FORTRAff-IV Digital Program to Evaluate Pool Boiling, Axial Rod and Coolant Heatup" (Modification),

February 1975 (Proprietary). ,

CEtlPD-138, Supplement 2, " PARCH, A FORTRAft-IV Digi.tal Program to j Evaluate Pool Boiling, Axidl Rod and Coolant Heatup" (Modification),

January 1977(Proprietary).

8. ft. Calhoun Cycle 3 Small Break Analysis (t,o be supplied by OPPD).

e

  • . e ,

e j

e

, e 4

e

/

/

4 es t &

S

, e t

. . * . f 4

6

  • *~ ~ .,, s p awe +n .-w--.m~e -

,*~

e

. Al-9 l

  • Table 1

~

. General Systen parameters

.- Ft. 'Calhoun Cycle 6 e i

Quanti ty Value

., Reactor power level (102% of Ncminal) 1530 MWt Average linear heat rate (102% of Nominal) 6.128 kw/ft

! Peak linear heat rate '15.5 kw/ft l 2 Gap conductance at peak linear heat rate 1699. BTU /hr-ft oF Fuel centerline temperature at peak linear heat rate 3689 F Fuel average temperature at peak linear heat rate ~2278. OF Hot rod gas pressure " 1200. psia -

~ Hot rod burnup* 820. MWD /MTU System flow rate (total) 71.56 x 106 lbm/hr' 6

Core flow rate J 68.34 x 10 lbm/hr Reactor. vessel inlet temperature 547.0 F Reactor vessel outlet-temperature 604.2 *F

- .~

  • At time-_in-life of minimum gap conductance k

e se#,

e e

e-e

. 6

  • s 9

_ ^

=~--e we, e . > .e..A. , , _ . - y;

- Table 2 8

Ft. Calhoun Cycle '6 (1530 Mwt) .

Times of Interest for Small Breaks

. (seconds) .

. ~s .

? Hot Spot Peak

~~ Time for SI ,0 Clad.Temperatur HPSI and .

Occurs Chargint Pumo On_ LPSI Pumo On SI Tanks On To Reach Bottom of Fuel Break Size' (sec) sec (ft) 2 (sec) (sec) (sec)

96. 100. 214.

. .5 39. 101.

b 718.

"1

. 46. a 700.

1010. b 1034.

.075 50. a c b 1648.

.05 54. a .

I t . _ . . . . .

,\

s. .-

a - calculation terminated before time of LPSI pump activation 1

b"- core never totally uncovered ' -

l -

I c - calculation terminated before SIT actuation 1

4 . d - top of core never uncovers e - clad temperature during transient never exceeds initial

fuel clad temperature i

4 b

! O l'

  • e'6

~

Table 3 ,

Ft. Calhoun Cycle 6 (1530Mwt) -

- Fuel Rod Performance Sumnary. -

Maximum Clad Core Wide Peak Local Elevation of Hot Spot. 4- Zirconium Oxid.

Surface Temperature (from bottom of core) Zirconium Oxid.

i.

Break Size 2 ,- ft  %  %

ft F ,

.5-1691. 9.6 *

< .1S <. 71

.1 1647. 9.6 < .08 , ,

< .~34 .

~

, .075 l'874. 9.6 < .24 < 2.10

~

.05 1662. 10.1 < .22 < l.34

~

~.

.s. . . . . .

~

1 i

4 4 ,4,

's , .)

b I . O g 4 i

  • i 3 ,,... ..

e

FIGURE 1A Al-12

~

FT CALHOUll

. 0.5 FT 2 COLD LEG BREAK AT PUMP DISCHARGE Il0RMALIZED TOTAL CORE POWER .

(SHALL BREAK Ai4ALYSIS) 1.f1000 i i i .i 1.2000 .

m 1.0000 -

W s

a .

W .

S 0 8000 d

F--

S .

$ 0.6000 N

Ba -

SE l 0.I1000 -

0.2000 - -

0.0000 .

O0 5.0 10.0 15.0 20.0 25.0

- TIME,. SECONDS

. , ,,n., . . . . y- . . - - +

O L )

m-n

- FIGURE IB .

FT CALHOU'l 0.5 FT 2 COLD LEG BREAK AT PUMi) DISCHARGE INNER VESSEL PRESSURE (SMALL BREAK AilALYSIS) 2400cC ,

20CG.C en O-ul 1600,C 7

c=

r .

3 cn CO .

L1J .

ce

' O- s III to 1200.0 -

LO L1J

. 1 ce .

L1J .

z

. 5 800.0 -

400.0 s 0.G O O O O

O O O O .

O O- O .

O O . . O O

  • O -O CJ to O <

~< .-e C4 ]

O  %~ (C .

]

TItiE, SEC0dDS i

' ~ l

.o

- Al-14 FIGURE IC .

FT Caul 0UN ~

O'.5 FT2 COLD LEG BREAK l.tT.PUNP DISCHA'RGE BREAK ~ FLOW RATE (SHALL BREAK ANALYSIS) -

I 10000.0 , , , ,

c. )

l 8000.0 - -

b h 1 .

m, 6000.0 -

i S. Il000.0 u_

E W

m 2000,0 -

' ' ' I 0.0 0.0. 110.0 .

80,0 120.0 1G0.0 200.0 -

T'ME, SEC0ilDS-

~

_I

. k 1

de pwe *

  • M g4 e e w e>> eh9 9

.)

.. Al-15 FIGURE ID .

'. FT CALHouil 0'5 FT2 COLD LEG BREAK AT PUMP DISCHARGE INilER VESSEL INLET FLOW RATE (SHALL BREAK At!ALYSIS) i 35000 28000 21000 B .

R La s 14000 -

=

S 7000 -

0. .

-700G. o a. o a a a o o a o o - - - -

O * ' O O O

' O O CJ (D O l a e, e -

- cv ,

TIfiE, SEC0flDS  ;

  • l

, Al-16 FIGURE lE .

~

FT CALHouil 0.'5 FT2 COLD LEG BREAK AT PUMP DISCHARGE .

INNER VESSEL TWO-PliASE MIXTURE VOLUME '

(SHALL BREAK AllALYSIS) 3000.0 i , i i s

y

! 2500.0 - .

i i

en ..

. m, -

Ed 2000.0 -

Es S

'W . i 1500.0 -

E w'

N

.c ___ _

TOP OF CORE 2 1000.0 -

'n BOTT0t1'0F CORE

. r i .500.0 -

i 0.0 O.0 110.0 80.0 120.0 160.0 ,

200.0 TIME, SEC0dDS .

e 9

Al-17 Al-18

~ FIGURE 1F

. FT. CALHoull .

2 0.5 FT COLD LEG BREAK AT' PUMP DISCHA'RGE HOT SPOT HEAT TRAliSFER COEFFICIENT .

.( SMALL BREAK AllALYSIS)  ;

- t

\i .

iOCGGG g' .

t_ . ...

i ,,

1000Gc ,

I - -

toco. l loc. d.- . -

i  :: .

/ .

... 1 -

. . \ ..

1

]

10 = .

- W , , ,

o -

1- -,

c, o a . 0- -

b- t C o ]

.o. '

o o o o N D O a .0 ,

o TIME',' SECONDS

,a=6 e c*-+ e =p '

.e.m ese 4 --

,*** ** $gw= + 4 J

o.  ;

, l Al-19 FIGURE lH ,

FT. CALHOUU .

O,5 FT 2 COLD LEG BREAK AT PUMP DISCHARGE HOT SPOT CLAD SURFACE TEMPERATURE '

(SMALL BREAK ANALYSIS)

/

h

- t .

20CC 0- s

- ~

1800.C-e

- '- u.

O u) cc 1600 0  ;

=, . . -

!E .

65 . .

m h14000 i -

. I uj ,. .

U

<c LL. .

cc 5 -

a 1200.C -

<C -

_a .

u .

8 -

10GG . C; . .

000. . C -

4'! '

l l l 6'-

o o o a

. . O

. o' o- o- o o o

o o o o o o ca , s-  : m co .

\ .

- TIME, SEC0i10S ...

)

' ~

^ -20 FIGURE 2A

~~

FT CALil0Vil 0.1 FT 2 COLD LEG BREAK AT PUMP DISCliARGE

~

NORi1ALIZED TOTAL' CORE POWER (SMALL BREAK Af!ALYSIS) .

1 ,

1.2000 i i i i 1,0000 - .

5 s .8000 -

w i 8

u a

, .6050 -

O d -

d E

O

.4000 -

~

~

.2000 . .

W.. -

0.0000 i i . i i

~

~

( 0.0 10' 0 20'.0 30.0 fi 0 50'.0

. TIME, SEC0tlDS .

- seesyge* ey - eyge we, , g e m

  • 4 g - n.s g* $ ,

?. "

Al-21 FIGURE 2B

~

FT CALil0Ull

~

Ol FT2 COLD LEG BREAK AT PUMP DISCHARGE -

IWWER VESSEL PRESSURE (SMALL BREAK ANALYSIS) 2400.0 2000.0 ,.

E 1600.0  ;

g ,

8 k a

E 1200.0 \

a .

LU cn L2J cr:

.W 000.0 N -

N -

400 0 \ N

( .

0.0 O O '- O O O =

o O *

, O O O O O O O O O O O N v U) CD .-e

, TIME, SECONDS .

,e.s .-. . .~+,..,p. ,,e . , . , - n. , , , . . . . .ns.-- - ~ ~ ~ * ~

2C A1 22

. .. FIGURE FT CAUiOUW 0.1 FT 2 COLD LEG BREAK AT PUMP DISCliARGE .

BREAK FL0ll RATE

.. (SilALL BREAK ANALYSIS) 2400 0 20C0.0 u.

w '

R 1600.0

. :r B -

tB .

g . .

1200.0 55 LL x .

t5 EI 800.0 -

A .

400.0 l

0.0 . o O O O O -

. . . . O O O O O O O

  • O O O O O D -"

'O N V LD l

TIME, SEC0rlDS l

  • . l

' - Al-23

~~ -

FIGURE 2D-

'. FT CALHOUil '

0l1FT2 COLD LEG BREAK AT PUMP DISCHARGE IriliER VESSEL liiLET FLOW RATE (SMALL BREAK AIIALYSIS)

. i -

35000 28000 21000 y

w ,

=

td 14000 G

x s:  !

o .

d '

l 7000 -

l l

1 0 I

-7000

,a O O O O +

. . . . o O O O O O O O O O O O '

.O N v W CO -

TIME, SEC0! IDS e

g

=s m ,, *  :._,-

FIGURE 2E ' Al-24

~

FT CAltl0Ull 2

. 0.1 FT COLD LEG BREAK AT P' UMP DISCHARGE IllHER VESSEL TWO-PliASE MIXTURE VOLUME (SMALLBREAKAilALVSIS) .

3000,0 i i i i i

i .. .

i 2500.0 "M '.

u_

N 2000'.'0

' =)

52 ,

uJ ' '

W 1500.0 - -

2 .

U

$ TOP OF CORE e 1000,0 - - -

W

! BOTTOM OF CORE I ~

500.0 l

~

I I 0.' 0

~ '

0.0 200.0 90'0.0 600.0 800.0 '1000.0 TIME, SECurlDS .

4 9

,~

  • < s .n . y. . . - ,

Al-25

'FIGV.RE -2F ,

. FT CALH0Uti ' '

2

. 0.1 FT COLD LEG BREAi( AT PUMP DISCllARGE

, HOT SPOT HEAT TRAr1SFER COEFFICIEllT

.(SHALL BREAK Ai1ALYSIS) i

'00000.

~

u.

O I

ca

+ 10G00;; .

LL  ; '

s.

s ... ,

o -

. w c,

, i H -

.1000.:.. . .

z _.

LLI --

~ , .

u.

LL . ..

LL -

LU ..

O v -

e -

99* . .

to 1 -

- F LL . -

v3 _-  ;

z .

.::C ..

cd ' ~

p s,.

s --

.:c to

2 j10..

gi

-l 4 ,- . .

e o a o o -

. . . ., o o o o o -

o - 'o

. o o o a .o o ca v m m --

TIME, SEC0ilDS

\

m j

  • F""  %* 447 W h -# * *-QN 88.-,, ,.-N_

b

~

Al-26 l

1 I.

FIGURE 2G

. FT CALHOUN:

0l FT2 COLD LEG BREAK AT' PUMP DISCHARGE. .

CHAlhiEL C00LAtlT TEMPERATURE AT HOT SPOT (SHALL BREAK A!1ALYSIS)

. l,, .

. :2cC.q-

/

~

1000 . C- -

l'

~

, } .

o C.CC .C - -

ul

~

a: .

=>

<I*

  • cr: . .

Le s a-m fiCC .C -

U .

F- i 2

b o .

O / 00.C -2 S- .

i .

- 200.C - -

~

.t

~ '

o.C -

O O O O -

. . . .. o O- O O O O O O O -

O O O O cv .v O O -.

- TIME, SEC0i1DS .

..e*-

~

.;..., - . .w. - . q ~

y,g,, ,

y,,.

Al-27 FIGURt- 2H FT CAUIOUit

~

0.'1 FT2 COLD LEG BREAK AT. PUMP DISCHARGE HOT SPOT' CLAD SURFACE: TEMPERATURE '

(SHALL BREAK AllALYSIS) ,

5 ~1 4

70c o.

500 0 -

- ~

w

  • o '

d cr: 1300 0-

~

R /

$u.;

o_ .

g .

r 1100 0 -

U!

M .

Ma -

a .

ln 900 0 - -

t) //

I -

I 70G .0 - -

500 0 .  ! I ',  ! 6 O O O O *

  • * *
  • O O O O O. O .. O

- O O O O O O C4 v O CC

- TIME! SEC0iiDS . .

e w, - eeme-w. *m

v. -. .,..eg , g.

Al-28 FIGURE 3A

. FT CAtllouil 0l075FT2 COLD LEG BREAK AT . PUMP DISCliARGE NOR11ALIZED TOTAL CORE Poller (SHALL BREAK AilALYSIS) .

4 1 2001 .

1 0.000

. h

.8 80C0 W

8 -

a' .6000 8 .

U ~

_a g . .4000 ,

=

2000 0.000C o o o o a o o a o o o o o o o o o*

O *

  • o o

. O o o o .

- cu m -

y w s .

TIllE, SEC0i DS

~ ~ ~

. . - . . = * -. = ' -=

  • i+->g

. .-. =~ - . . . . . . . - . . . ~ .

.'  ; . Ab29 FIGURE 3B

' ~

FT CALHOUll

' 2 O',075 FT COLD LEG BREAK AT PUMP 9ISCHARGE IlWER VESSEL PRESSURE (SMALL BREAK AllALYSIS) o -

e 2400 0 2000.0 i

5 E 1600.0 I ,

P E .

t3 cc -

o- 1200.0 -

Gi 12 ce 000 0 y:2 3 5 .

400 0 s O O 9 9 9

  • O O O O O O O O O

+ O O N (D O

'O v CD - -* N

- TIME, SEC.0ilDS

~

. +v < s . . ,- . n , , , ,p , .m N

.Al-30 O f FIGURE. 3C.

FT CALH0Vil .

0.'075 FT2 COLD LEG BREAK AT PUMP DISCHARGE BREAK FLOW RATE

~

(SMALL BREAK AilALYSIS)-

2400.0 -

4 2000 0 o

U 1600.0 M.

B. .

g~..  ;

@ 1200.0 L '

= .

S U_

M

=:C E

m 800 0 400 0 N -

0.0 a o a O O - - -

' *

  • O O O O .O O O O O

+ O O N (.O O O v co - -- N l

TIME, SEC0ilDS l

Al-31

. FIGURE 3D FT CALHOUd.

0,075 FT 2 COLD LEG BREAK AT PU;iP DISCHARGE lilNERVESSELINLLTFL0l!R.t.TE (SMALL BREAK AllALYSIS) j , .

35000. .

28000 21000.

u -

U* 1 g 14000 e

ct:

=-

S 7000 (

O. .

?

-7000 a o a O , O * *

  • a o a o o a o o a a o ce o a o y o .

- cu TI!1E, SEC0ilDS

61 32 FIGURE 3E FT CALil0VN '

2 0.075 FT COLD LEG BREAK AT. PUMP DISCHARGE liti1ER VESSEL Tii0-PHASE MIXTURE VOLUf:E (SMALL BREAK AilALYSIS) 3000'0 i i i i

c. .

2500.0 1

i to u_ i oy' 2000','O -

.g .

W-s 1500.0 - -

5 C

h '

W t TOP OF CORE g ,,

t a

1000.0 - -

$ BOTTOM OF CORE s'

i 500.0 -

i .

i .

' ' i '

O'. 0 ~

0'.' 0 400.0 800.'O 1200,'O 1600.0 2000.0 TlHE, SECONDS e

mse3 * =ees e e m. % +. . o9 p.e_ew se.,,em , m,,og. ppg p w p g = rem =-e ,M-

=.s

. Al-33 FIGURE 3F FT Call 100d .

2 O 075 FT COLD LEG BREAK AT ' PUMP DISCilARGE ,

110T SPOT llEAT TRAdSFER CUEFFICIE;1T ,

(SMALL BREAK Ai1ALYSIS1

.j 100000.:: , .

c u_ .

10000.:.

i m  ::

u_ . .

i "

. ce ,

Z /

o .

CQ .

s 1000.n ,

t'  ::

L3  :: ,

g ..

L.

LL . . .

LLS O

x 100 n.

LU ,: - .

la ...

w .

m W .- .

W

  • C tu
  • 1 0  :: - .

.t , .

3 =

l .. .

.' . l

_t .

l. .

i ' o 6 O l

O O * * ,

  • O O O I O O 'O O O O '

1

  • O O N
  • m O O .V CC -* . .-* N

. TIME, SEC0;1DS .

+ (

. .e c ~ ,._ w r W ~+ ' vm- * < - - e. = . ~ -

e .en,9p,,

Al-34

. c.

  • FIGURE 3G

'FT',' CALHOUii

~

0'.075 FT2 COLD LEG BREAK AT PUMP DISCHARGE CHAiii1EL C00LAilT TEMPERATURE AT HOT SPOT (SMALL BREAK AllALYSIS) 1200 0-1000 0- ,

a o .

, 800 0 - -

to M

=a H .

e- .

to 5?: '

la 60 G . 0 - '

, g r '

o

- /,0 G . G --

200.0 00 -=-

I-

& -6 6.

o o . .

O O

  • O O O O O O O (D O

' *O O CJ. CJ (D .-** --*

O N-TIME, SEC0i1DS 9

      • ee' - we e.e,op og =%_

=*

. -.- 'Al-35 FIGURE 3H

~

i FT','CALH00tl -

l -0.'075 FT2 COLD LEG BREAK'AT PUMP DISCHARGE ,

HOT SPOT CLAD SURFACE TEMPERATURE (SMALL BREAK AilALYSISL 1

240G.G-g*n 20GG.0

. u -

o ,

u3 cc . .

5< 160G.0 i

cc L1J t CL .

?E i-d

< 120G.E-ti, cc .

O C/)

._, O G G . C - -

u k

<00.o -

00 - - -

-4 -

cri 6 -

A-O O -

,O

.

  • O L)

O O O O e O O

+ O O CJ .(D O O v CO -* -d CJ TIME, SEC0f1DS _ _.

e .

~"******m ean - .e, . ,, _, __,

f Al-36 FIGURE IIA FT CAltl0Ull 2

O.05 FT COLD LEG BREAK'AT PUilP DISCilARGE NORMALIZED TOTAL CORE POWER (SilALL BREAK A;1ALYSIS)

.. . I 1.2001 ,

~

1.CCCC '

cd LaJ 3

2 ..'8CCC .

!$E S

  • a -

'6

.6CCC L1J u

a 6 '

c2 ./.OCC "

O .

Z .

.2000 .

0 000C O O O O O O O O O O .O O O .O O O O * * *

  • O
  • O O

. O O Q *- l.'

CJ O') V O~ ~

TI.ME, SEC0dDS i .

. .. .. . ...,_-,..r.m------ .

l

4 Al-37 FIGURE ilB FT CAlliuuil

-0,05 FT 2 COLD LEG BREAK AT PuliP DISCilARGE INI1ER VESSEL PRESSURE .

(SHALL BREAK A.lALYSIS) 240G.0 2000.0 --

5

. E 16CC.0

'a e 5

U")

L1J .

E l'200.0

_a LLJ tu 65 000.0 -- -

is

/,00.0 x s

~

'0.0 O O O O

, a .

O O O

a. O O O O O O O W D *D
  • O O .

-4

  • C4 CJ O LD 1

TIfiE, SECdi1DS

  • = we e. w=w , e. e.g ,. wee, w .,
  • ' " . . *
  • g

. . . Abas

~. 's.

~ FIGURE IlC

. FT Call 10V!1

- 2 0.05 FT COLD LEG BREAK AT PU!iP DISCHARGE BprAK FL0ll RATE (SMA! OREAK A,lALYSIS)

. I' 2400 0 x

200C.0 -

g 1600.0 -

.w -

E B

N 1200.0 B

l M -

5 Occ.c a:

CD 400.0 0.0 O O O O O .

  • O O O O O O O O O O '
  • O *O LD O *D O LD -* C4 CJ 7

s TIME, SEC0iiDS

~ -

-ee..* , . e,e ** t

s ,

Al-39 FIGURE f4D FT CALF!0Ud FT 2 0,05 COLD LEG BREAK AT PU!iP DISCilARGE .

IrillER VESSEL INLET EL0f,' RATE (SMALL BREAK AilALYSIS) .

35000

. Zacco.

21000 '

M '

5 B .

u.7 14000 ce x .- .

g .

u_

7000

\

O. .

-7000 .

C O O O g

  • O* O O O O O O O O O

- O O O O .n C m - - .ca ca TIME, SEC0llDS

~. - - - . - . - , - , . . - . . . , _

^

s

~ o Al ,

FIGURE'. 11E FT CALHOUll 0,05 2 FT COLD LEG BREAi; AT PUMP DISCHARGE liMER VESSEL TWO-PHAS; hlXTURE VOLUME (SMALL BREAK AtlALYSIS) 3000.0 ,

l .

3 2500 0 l

H .

LL w

s 2000.C -

E

._J w

Q 1 1.3 0 C . 0

^^ -

E .

W TOP OF CORE

'- ~

o ,000 0

~

m n _.

>=~

o if .

BOTT0f4 0F CORE 500 0 O.0-O O O O

. O

  • O
  • O O O O O' O O O

'O O 'D

  • O O. W -

W - - N N C .

TlHE, SEC0ilDS -

Al-41 FIGURE 4F .

FT CALHOUN O','05 FT, COLD LEG BREAK AT PUMP DISCHARGE HOT SPOT HEAT TRANSFER COEFFICIEi1T (SMALL BREAK ANALYSIS)

.p,

. s t ,

100c00c u -

m i 10ccc .: . -

'3 LL . .

~-....

}

=c N .

. C ,

CQ i__

s 1000 n. .

  • ~ ~

.2":

W

.==4 .

~! .

~ . .

U- .

L1. . .

LLJ O

t) e w

100.' - i . .

g .

g ...

z . -

<3' ..

CE ,

I-- .- . .

y .

y .

W 10 :_

>=

- e f i f I f 1

  • ~

~

O -

O O d .

,o . . .,

.

  • O O O O O O O O O O D *O

- O O W .

-e CJ^ lJ O LD .*

TIME, SEC0tlDS

~ .,.,.--. . . . .

- . f.

  • Al-42

. FIGURE 4G FT CALH0Ull

~

0',05 FT2 COLD LEG BREAK'AT PUMP DISCHARGE

. CllAllNEL C00LAilT TEMPERATURE AT HOT SPOT .

(SMALL BREAK Ai1ALYSIS) 1200.0-

c. ,_
0C0.0 g- 000.0 - -

,1 w .

cd,

=

w -

li W

e 600 0 t .

.g - .

H W

  • x 8

u

/00 0 -- .

1

200.0- - - .
s. .

00 -

' C 6 d d

  • O. *' ' *
  • O O O O '

O O '

O O O O

  • O O II) O 'D O 10 * --* CJ CJ TIME, SEC0llDS' l

=.

s. Al-43
    • i

. . , 4, t . ,

FIGURE IIH FT CALH00it 0'.'05 FT2 COLD LEG BREAK AT PUMP DISCHARGE HOT SPOT CLAD SURFACE TEMPERATURE

-(SMALL BREAK Ai'lALYSIS) .

1700 0-15CC.rr '

. /,

r. .

u_ -

C .

Q 1300 0 -

E . . .

g .

W -

5 r '100.0 t

U a: -

a M

ca . 9 0 0 . C --

u .

700 0-- . s 4 .

5 0 0 0 =-- .

e e c -- 6 a . . .

O

  • O O O O O O O O O O O LI) O. *7 u

O LD . a - CJ CJ TIME, SEC0i'lDS

  • ,/

p .

4 9

. . - n~- ~~m wm_

T

' ' Al-44 FIGURE 5 PCT vs. BREAK AREA ,

. l .

2200. i i i 2000. -

0 111/18 tiWT (REF 8) 0 153b' MWT u_ -

1800. -

)

g s

  • O e

in -

E

]600, -

o, .

m r .

d II lfl00. -

.E .

1200, -

6 .

1000, 0,5 0 0,1 0,2 0.3 0 . 11 i

BREAK AREA .

o 4

0

  • a s ,* - w a

,