ML19322C266
| ML19322C266 | |
| Person / Time | |
|---|---|
| Site: | Crane, Davis Besse |
| Issue date: | 02/14/1978 |
| From: | Engle L Office of Nuclear Reactor Regulation |
| To: | Office of Nuclear Reactor Regulation |
| References | |
| TASK-TF, TASK-TMR NUDOCS 8001160720 | |
| Download: ML19322C266 (38) | |
Text
--
~
po ur
,c 8["
UNITED STATEC O,C f
~
j NUCLEAR REGULATORY COMMisslON n
l.a WASHING TON, D. C. 20555 8 /#7h h
- /.!
M FEB J1 h7A 7
{
Docket No. 50-346
(. 6 gg A7. Se4urme-1 LICENSEE: Toledo Edison Cor.pany g
FACILITY: (Davis-Besse tpclear Power Station, Unit No.1 (08-1) fjt [ 6.C f
SUBJECT:
SU!HARY OF MEETING ON NATURAL CIRCULATION TEST - (DB-1)
On February 7, 1978 representatives from the Toledo Edison Company (TECO), the Babcock & Wilcox Company and the Bechtel Corporation met with the NRC staff to present their bases for not needing to conduct 1
l a natural circulation test for DB-1.
A list of attendees is provided l
in Enclosure 1.
l At 2243 hours0.026 days <br />0.623 hours <br />0.00371 weeks <br />8.534615e-4 months <br /> on November 29, 1977, DB-1 experienced a transient
' (temporary loss of 13.8 KV power) which tripped all four reactor I
coolant pumps, and for approximately 15 minutes until 2258 hours0.0261 days <br />0.627 hours <br />0.00373 weeks <br />8.59169e-4 months <br />, reactor decay heat was removed by natural circulation.
During the
(
15 minute period the data-recording reactimeter was in operation and 4.
TECO analyzed the data to see if natural circulation could be justified during the loss of station power transient.
,TECO concluded from their analysis of the data that the transient did not satisfy the NRC test requirements for a natural circulation test.
Because of (1) the imbalance of the once-through-steam generators '
3 (OTSG) during the transient, (2) the lack of data for the loop 1 hot leg temperature, and (3) the non-equilibrium state of the NSSS during the transient; TECO cou,ld not analyze and qualify the transient as a satisfactory natural circulation test.
MNRC staff concurred with TECO that the. loss of site power _ transient Qdid not confirm a steady-state natural circulation flow rate required the natural circulation test.
s w.
C0 then reiterated their previous position that the elevated position OTSG's for DB-1 wculd increase the natural circulation flow of m
- JB-1 above that observed by test for Oconee No. 1.
A summary of l
ECO's position is provided in Enclosure 2.
li h"TECOstatedthatthetest t
i.mcedures for conducting a steady-state
!j natural circulation test would; include 14 hours1.62037e-4 days <br />0.00389 hours <br />2.314815e-5 weeks <br />5.327e-6 months <br /> at - 5% of_ full power.
to reach stable Xenon conditions and an additichal 8-hours for both I
i phases of the test.
Similar ' tests conducted in the past have required
% ;about three days.
TECO stated that the presentl coal supplies:available for electric
+
.- {
power generation in the state of Ohio have reached a critical point and 03-1 caniot be off-line and at reduced power for the time required i
9
. gp
= = =.
_.__ai.ee.=
= = =
=
e e.e m.......,
x
~
r
'.L C L-
- /
' ' 'd Q
to run the natural circulation test without impacting load requirements for their grid system and increasing the use of rapidly diminishing coal supplies.
The NRC staff stated that the question of requiring DB-1 to run a natural circulation test had been considered prior to issuance of the Operating License for 08-1 when the NRC staff had concluded that DB-1 was not considered as a similar plant to the prototypic Oconee1 since DB-1 was the first B&W 177 NSSS to use the elevated 0TSG's.
Both the NRC staff and TECO indicated they would be in contact with each other in the near future regarding these matters.
b 'r Qtm
.q%./-
l Leon Engle,' Project Manager Light Water Reactors Branch No. 1 i
Division of Project Management
Enclosures:
1.
Attendance List 2.
Summary of TECO i f Technical Position 1
I i
I f
l j
~
L. * --
.y
u,
- d 6
o-
<c-FEB
>a-N'. ;
ENCLOSURE 1 k..,
ATTENDANCE LIST FOR
- j.
MEETING HELD ON FEBRUARY 7.1978
~
WITH THE TOLED0 EDISON COMPANY DAVIS BESSE, UNIT NO. 1 DOCKET NO. 50-346 Nuclear Regulatory Connission
- 8. Clayton L. Engle C. Graves J. Mazetis P. O'Reilly j
D. Riehm
)
Toledo Ediosn Company C. Domeck F. Miller R. Sund
-Babcock & Wilcox Company i
R. Davis J. Lauer C. Tally Bechtel Corporation D. Dismokes r.
~,
,.q, -c~q.)
3 1
l-
tivtir1 AM V UI 701.118n T.DI SiW (*fNrAlfY
'P.
r r
TT.CIDif f'41. POSIT 1tN (El Tilr Hrris D '
~!
TO CtNDitCT A NAlt'R41. C1!;f'lfl.ATION FEB 14197 TF.ST - DAVI S-Ill:SST, IfN I1 )
k i
ikTI Thehr whfeh renults in nnturn3 cJrenforlon f3nw enn 1.c expr enned by the f ul k1 equntton:
MI N
O F =7La - Lerc + 1 f t.(pirn)- 17 f t.[ pin)- 1.brh
..D where d P = dif fra ent in t pt entsure nvn t leil.le for nulnenI ef enintinn fIow t.c = ve rt i en1 d3etnuce is em 1.n 0 t n r. nf e ns e t v 1.nt t ora of Letwyesntsese ttann1t3on v.onc in re t enm renerntus.
'l pc = denn it y of cold Icg water 3 ft dept h of t emece nt ur e t rnunf t inn reen - fu ascom y,ene s.= t or
=
plrn log menn dennfiy of wnies
=
12 ft = nettve core J enr.t h (t rsina t t ien rone)
Lh - vertlen) distneere isom I oli of roi e in t op t crapre nt tu e t a nnn it In" 7.one,in atenm generator ph = dennity of hot 3cn unter I.c (Ornuce)
- 45 ft 1.h f ric..in.c) 14 f
Lc (navin-Besse) = 68.fi (t s i. ( p. s. g., ng n,,,. )
,,7, g, g,
pc 47.7 lb./ l I ph
=
1 4(. 7 lb /Ii Compa ri ng Oconec 1 a n.; na v i n. n,.yy,.
3 Inc r enneddi' a- ( 71. fs it) (pr - ph) 2 3 f' _ i. 'i)
(
144 O. 2 'i Ih/in!
The only difference bet ween ornnee I nuil Itav i n Itenne 1 in in th" rnined utcom gencrntorn, which only tend to t oerenoc 6 r.in 15avi n. Depre-I nnd hcorc inri en ne ilow (Q).
For the system curve t bnt npplien in 1. orb'Ocoper 1 and Dnvin-nenne J f
f 'OAVIS BESSE-1 s
2 s' Ocen.
CG-1 ocou u i
- e, Q 2.i> Q -
4 J _.2_ _
c U
As5$
- 4 FLo w (cq)
., Graph 1, shows calculated and actually measured Oconee 1 natural circulation flows, compared to FSAR requirement.
Graph 1 also e
shows calculated flow for Davis-Besse 1.
tiovember 29, 1977 transient data shows that during 15 minutes that reactor coolant pumps were idle, heat was being removed (loop Tb and TC
--decreasing).
-.em-M eogWIIees a en e e
\\-
.t c, _.. _
w
.....- FEB N.19
./ <.i,.....__._._.._._..___........_._........
--. g. f,o y q...
./
. _..=..........
p
).
_.....N, A_, i_U. P A.._ I P s,_.,
A..i._l..._N,
_t_
U_
..___..___._; _. _.$ _- 5._0. %..._. _.__. _......_ _
._ =. C..F.... O P.E R AT..E. R.. A NG E _... ;.n_.... n. m,. m
_u_...
.i
....a.
R
- 1. _.. __
_ _., = _ _
. =.
_r v
i,_.__t___....__.____.;..__,,._._,,___.
.__.m.
T......._ _ _. _ _..
7 '
l
% -D.ECAY Pra.7_._
1 _rc.
___ J.#
C3
~
E
=
-e _D A..-Ts^ __P_OI N=.t. :__
.o
.t_
,t-~
i i
7.____._11.
g..
e s.
- _. g.. 9 _... _- _ _
l t___=._._,____
L...___..__
. _c
...... O__ -. - - _ - - - - - _. _ _ _ _ _ -
.. y.....
._ n _ r
. _ _ _...w,/. l s_. _ _ _ _. _ _ _ -. -..... _
__-__3_..
. 3 s,,.
f.. _... M.._....
.:. A.__ _ _.. - _
t...
/
[.. 2
._o.
i p
_ __.c_
.. c,.. v s,
l.
_..___......8...---------
L,.u.3
,.q.
. _ ___.... /.
3
,4 _
.,..r.
._a.
m..
. _s.
y
. _. A O..<.
s,.
i 1
I.
, e,s o
t
_ i l
+ J
.:. _ __.i
- s... :..t a
_.. _.O.._._..._..
.:....-u._-._...
.. N..... 7,.
.s"
- .....4___.........__...
y, 3e
.p._.
..q._.....
...p._..
..t
.s
. l_
.M-FSAR REQ'JIREMENT
. m... - -
0
..._e.
.g.
,,.,...,._._....._.+__.,__..p___....,.
_i, _ _m,..
.a
_._.1,___,.... _ _.
....____.t._ _..___
r.
.,._I.____
._._._a.
s...... _
.i..i....l_
.2..
3 4
. 5. _... 6. _...-7... __..&.. - _9.-._1.0. _... '...- l w.
. _ _ - _. = _
POWER i
l
___._._____.r.:......____
... r.. _ _.. _.- N.eJ.'.
.. EASE. D. UN 27 7 2 M W..
,. m
_ w u -..
. : > :.r.,. s.,......
a.-......... _...,.... _ _.
.. ~.... -
0.
I.
e
)
5.
//// S / d S
=
,., /c
..,y,
~
\\ dabCOCk & WilCox 1
,..., c.m.,,,,,, ow P.O. Bos 1260. Lynchbutg. Va. 24 Telephone:(703) 384 5111 I
July 16,1975
~%
i',3
__ 12B13; SIP lb/028; TP SOM #055, 620-0011
- r -
1
['
GEcggygg l
s
- N20gg,g, I
I Mr. J. G. Evans, Station Superintendent fG ~ s Davis-Besse !luelear Power Station 5501 froi th State Route #2 Cak Harbor, Ohio h34h9
Subject:
Justification for Deletion of the fiSSS I?atural Circulation Test
Dear Jack:
y Our Engineering Department has completed an in depth analysis of the I;SSS natural circulation characteristics of Davis-Besse Unit I.
The analysis t
was based on the Duke Power Company Ocence I natural circulation test re-sults and an analytical extrapolation of results by comparison of Oconee I and Davis-Besse Unit I designs. As a result of this analysis, it was con-cluded that. Davis-Besse, Unit I vill exhibit more natural circulation flov than.Oconee I due to the elevated position of the steam generators with re-spect to the reactor vessel.,
In lieu of "the Oconee I natural circulation test results and the analysis by our Engineering Department the following is recom= ended:
[
1.
The natural circulation steam generator water level setpoint, Integrated Control System FW 20.h and FW 219, should be reduced from 95% to 50% on the operating range instrumentation.
505 is the setpoint used in the Oconee I natural circulation test and the engineering analysis.
2.
The natural circulation test at Davis-Besse Unit I need not be' conducted
. per Regulatory Guide 1.68, Appendix A, Part D.la (!!ovember,1973) which states as follows:
"I?atural circulation tests to confirm sufficient cooling capacity.
Coc-parison of adequate flow data with the performance of previously tested s -
plants of like design may be substituted for this test."
In order to support item 2 above, the following information should be useful in deleting the requirement for a natural circulation test.
=
die 1 6
e $e A
*=.**.*.'.g*.*... '.... ".. ' ' ' * * *
...e f
- f... t....,
..-...I.**......I.'...'..t.=.. - *. '. '
....'...A.._**..........I**=.*.=.*.L.=...
~-~.~... t ;.. - '* :, ' ;; l... g... : =. ; ? g..,, ' M.. * *...t,...
..t.
, g
.... * * * =. =. =.. -
- ** J
. ~.,g_-*
i
......"...;.~."".*;............ - "
4t-l.
- f
=: P -l. ~;*. -.; ! :..._"=;,..._.._.....,**........... ".....
....l...8...
I*
... : T.F.?. n;: *l. :* *.* * ".'****g**.i....l...
a l
.l
- _,*..,.t......
- - ; M * ; - : t... ;; - :
Z-**
-"'."3,
. =...
_... -....f.-.l"......
J
.' *. 0. j.11"*"".."Z..*.*.*.. - - - -
- a.
.-:--* - -"?
,-.. ;" p a +..
......l..
..{-........._....,.."... t - ".. ; I.....- : :....l......
..l.....
....._..t..._........
..~.- "....t.
....s_.
.:... :..,.;; ~. f *. :=.. a :..... l...._. _......
e..-
. :--*~....
_.. :: ~..
Ri
=iWw.G!?!Ws5hiD.:/2wdE0 ATM.M_CMCW.52;Wi % i*.h t3;-L:.! :.3 f,
K e - tm.r; =. x.
\\w :. :.: - d..r.
-...:.a
- i
.= -
Y* a :-
E%a -
=t--
- =n e
.. ~
_ =- _ l- -- :-: _. =.-..=: ::=l. ::..w -
..e.
.=g=.c ~......rw n..u._. %. _ ~. w.,.... M..t...
m.- = =...
- =-.
-=.*[,.._.........._...........................I..
=.
......l......
L....... :=.....T...._......==.
====**g....
~,,,,~,,,_~*,-'**C.**E,.:.,_._.l.............
- * - = * - = * * *
.=
....I........l..*"***1-=*......
.. * = -
=....
=.=-
.. '. ~ _. _ = = _. _. _ = =., -
............ J.
a.J.
==*
f
=.
.-t.-=-*-t----*-.--_-._-.----&.a......=...._.-.--_..-g..__s.J
..g
,_s....--_.-
e w.
_ =.
_r,_.N__M.**.*.*..,......
===--*...g.
- -.......=.
=.
- -. =..
= = = = * *.
O
-. =... * * * *
- _...-..._-.,_-._._...._.._.............._...._.-...I..".1_....
- s*3 7,,,*,$ 3...
...,_.7
.. J_
..&....t".. -.
s
.._~.6
....%~..._
._._.1w _._._..._.... _. _ _
.3..
nT. __. _ _
.t_._.__.
--.--.1-..-..-l_...-....___...#.'........--..._.....
........____._._.L_._._._.....~._
.... _-_ _ _-...-.g.
.l._..
....._.t.._.._.L......L._.....l-......S..
,_ __._,, n. pt
.....J..__t._.,.........l._...__._,_..___.#.1..._....__...__.._.__._......
t."_.
l..
_E_.,....._
a _-_ _ t_
s..
...._.f..
r
,__.q_.
........p.e...-...a.p...._e._.._.s..._.p-.,,...-_._....,...t.
_4
_.a__._.._.__.
.......E
.e.
e -
._.e _ _.....
_(___. _
._~_%._
..s.....__.....___..
..l._..._._
_).,._...
.......eC.
gr..._..._..a._._._.. _....... Om __
__-_.-j._..........
. f 1
--s-
.... s... %._
_.. _. _.... _.. -..........,....~V..-_...._.....
,, v
_ ___ ~,.._...-. -...
r
.. 7..... _ t _r _.. t"
-._s
_.._J____r.__._.
.. _ _.._ _ _ _.._..._.__...._T__._.____.
_ q
.._.- _.l
.__.--a..._._..
... - ~._
__.2__.
.fe_~ 4f 4.%./
-~
... ~. -
_,.._...._..t.._.
~.
.n
. _._._ _ _.-..~_V. [.
.J.,..
t.. n.. -
.~--
___._..-.r_.
_g.;*.l.._ _. -...._. -
.3
_L n
m..
_ _. ___ L.. _.. _......... _-.
.._._.1.._....._.
w 4
o *==**,
........L
_,f._.__ _.
_ t- -, #...~
-..p--
-._.a.._.....
-..._..._.1.__._
_.~ 4_ _4.
......r1.._....-
- -__-t.t___..Q.,..p._._.--.._.. -
,q.._,._._.
.. ~ -
..n--
.._-...._-...w
....-_.....M.
..__.../,f 7 _, s.
- _... - ~ _ - -~~t_..J_./.
s
- t..
__f..._....
,.-_L
..(.
...s
_.a
.E.._ a.
....,_....,-._..__..._..._..___r._..._.
.., i4
.,..___.,\\___..__..__.._.-t.-_
y,, _..
...-s./. _
6 6._.
. _ ~,. _.
,._ p
.~_.
-._.r. _1._..._
. -.-.. ~. -
i
--.T.-.----
- _ -. - ' - - - - - ~ - --
w r--_*.-'
- ~ - - ' - -
4.-
.-.4
..s.
.T. - -
A
_._h
-... ~.... _.. _... _.
b-..*... f...e_
?
7-- _.
~- (,:
.=
r.
.~..._ -
._ -...._....... _..... ~. _.,, _ _.. -...._._.e_..s._..._._
a
._-_J.,
m
...a......
. r =)
e..
_.,.a,._*.c._
-a.._
.-..ee
.,..~...... _. _.
\\
e__-
-- g
....... _.. - -.....4_.
C.......
. _ //(.E- _. _... *.
1_. _
_...... C C a
....'...,..._......_...c......._.._...__..-..................._
_-a-m
..__.f._.......- -......g1._....
-._4.,_.._.s.._...__._L
..... ~ _. _... _. _.. ~........
.._..._.._.._._......h....___.._._..__.._.....t_N
._.L_..._...
.._...t.
..... _....... ~ _ _,,
-,.Q
..\\.........._._.,.
..........._._.._..t.,_._........___..f......... \\..............
._hr.
......... ~
~.,.
...L.......
1_.. _. _.t_~ ~._. _..
_.w.
._,_2_
w.
.._....._.~t._.
t _~....
_t
......._.t........ _..... _...
.~..........I_...
~ _ -.....
._.._t..__...,.._._...__.._.._..._.._......r._y....__.t.......m._._.. _. _....
..-....._s.
_. ~. _. _ _ -..........._....__t...
f,..
..g
- _.... }_..... - -.
3.
........_._._l...._......,_..._.t.._.a.,........._t.......l......_....__t...
.s I......
..t........................ -.....
....._._.....I.._..
........t........
.... _......l.........
...t.....
........._......._......................,_...t.._.......... _.......
q.-
.._g....
...t."_............._.....;._.r.~
.. -.. _....... _.....1. _-.. _..
_.._.)...J._...
q
.. -..- ~. -- _.....~
_....s__-.._...-.............._..._.....,_l..__..._..__....._......
...........-......_.l........._,....._1.....r......_._..........................
.a___
-..g-.
_s
.... *a..... l..,..........
e s...
)
I..
...t.....
...g................_......
..u......
.....t.. 3,,4..
,.. _......_...ll9..
....p.......g.....
g
........JO.....
.v
... ~. ~.
.. 4. s..............
...:9 s s..........i.I.
1
, rap
.r......._..........t................s.........
...........L&......_.
,.......t.....
.n,.....
..... ~......
=
ul..
.. qE.
.cgpS.,
.g,
a
- 3....
,a-
..4........
- f.....
....,...i..
.. -..i...,
\\....
_....... r...
....,. a..
..._.. l.-
_._..,......i...................
......s.....
.g....
..t...
. u.
.r.
.. e...
.....s....
.. s.
.. m...
.. i......
_.. _ _...i.........
-. f- ;.
. j.. b....
i...
..i........
1.--... 2...n--
T.
....i..
....... l.2.. r...
...........l 4
..l.
.m.
a
.m e _
e.. _.. = =
...e,
..e-
.N O
e A
g
l !A em::
- -.. -t-l m:7.
r i
'$s j
- cc 7)H;>J'Y) !7 TP B00.04
!" M_ '-
+
jf rt.'a.--77 LAH D; Vis 3cL 5e Nuclcar ?ower Station y~
, !.?. ~'
W
-.HS.
I,
/
Unit No. 1 4.,
cao R --
.a a
n ::
s, s.
RECEIy50
~
.n r.s_ 7=_ _j e.,..o.
L.
cocedure TP 800.04 DEC 02 I977
)) gg
~G.-
g>,'
o POWER ENG
" ^ ~ ~ ~ ~ ~
Huo
-.l I[
s.
-Aso A~Na ;' tral Circulation Test
- - - ~ ~. _. _. ',
cLM
, g.
Ru @ f Accroval and CF5Wa! ';"1],g r --
go
!;gw t,'--
.;3 r
i-j ;,. j - [.cd. ' *
- i..
vJdWjj y
A,s O ULL4 ha d
)t..
rsu PreparcQ"A_NY N
e.,
ua.
n n-,,
Subcitt h p
C.
4,-
W WNTl-7M /7)
./
i,.n e s '._l - _)
[
hi: tion Head Date Reco cef~~"~$)~1-1
/3 m O 7!/~L/7'7 w
- F R $~lsJb,.SEBChairman
/'" I Date J
]
7 } '/h ~7~/f]d
,../.f..,.
[-(I' d
- 7.,4,* y; QA,'.pproved by e
c/Managt - of Quality Assur e
",,,~7 Date Approved by
, 9,$d Vb.'fN
'/,3 /
I Station 6p'c?intendent
' Da te Revision SR3 QA Sta. Sept.
No.
Re,c oc=e nda tion Date Approved Date Approved Dat f '/sh' 73)a w itan,..N
.f i
to I >
~
l Please Returo Pievious Revision to the DavisV Betse Office Supervisor, Stop.2103 /
s TEST PEP.FORMANCE Test Completed l
Test Leader Date i
Reco= rended by
.f
(
Scction Head Uate
~
I Recoceended by Si 3 Chairman Date i
- -- - - - - ~ ~ -..---. -. -..
o
\\
i
1 TP 800.04.0 1.
PURPOSC
~
M The purpose of this precedure is to verify that on loss of all forced reactor (f. j coolant ficw, natural circulation will begin to provide adequate core cooling U
for all possible levels of decay heat generatica. The procedure provides two nothods of measuring primny flow rato under natural circulation conditions.
l no test is performed in two phases. ' Since under natural circulation conditic i
Tc will change significantly frcm the value at which pcwer range instrumntati J
was calibrated, it will be necessary to measure the effect of a change in It c indicated neutron flux. %is is acccmplished in Phase I.
Phase,.II is the natural circulaticn test itself. With reactor p:wer at 2 - 4% FP,' Auxiliary Fecdaater ficw is established to the CTrSG's. While naint sining the reactor critical, the operating PC pumps are tripped. h*nen steady state conditions are established, prinary flcu will be nrnsured by calculation using reactor A T and by measurcm2nt of lcop transit tire, i
2.
EQJIPMDTr NEEDED 2.1 Ecactimeter 2.2 Bn:sh Recorder (6 Channel)
F uip. No.
4 2.3 Digital Voltmeter
~
Equip. Mo.
C 3.
REFEREJCES 3.1 Davis-Besse Final Safety Analysis Report, Section 15.2.5.
3.2 Poaer Escalation Controlling Procedure, TP 800.00.
3.3 Reactor Protective Sys.tcm Oparat.ing Procedure, SP 1105.02.
3.4 Physics 1bst 1unual (B&W) TG 000.23.
3.5 TECo Nuclear Quality Assurance Manual.
r 3.6 AD 1801 series on the Ccnduct of the Preoperational & Startup Test Program.
3.7 Auxiliary.Feedaater Systcm Operating Proccx3ure, SP 1106.06.
3.8 Power Operations, PP 1102.04.
(TS) 3.9 - Davis-Besse Technical Specifications:
f.-
(
TS 3.10'.3 Special Test Exception - Reactor Coolant Icops
=
s TS 3.4.1 Limiting Ccndition for Operatien - FUacter Coolant Icops TS 3.2.5 Limiting Condition for Cpetation - DNB Paramaters' TS 3.1.1.4 MmitIng Ccndition for Operation - Minimum ibmperature for 2 Criticality
-.. - -.. ~
4 e
~j
y.
p,. j 2
77 800.04 1 4
'M L.'
'Is 3.1.1.2 Listir.ing Condition for Operation - Boron Dilution V.
'Is 3.7.1.3 Ilmi':ing Condition for Operation - Condensate storage Tank
..h.
'**j 3.10 SP 1103.15, Reactivity Ba' lance.
I
}
4.,
f-j 3.11 ST 5030.11, RPS Pcer Range Calibraticn l
\\
3.12 TP 800.05, Reactivity Coefficients at Power 3.13 IC 2000.03, Sett'.rq RPS Overpcwcr Trip Distable Setpoints.
3.14 ST 5030.02, RPS Ibnthly Check i
4.
TD'S & PFrtcom:EL RrIUna l*~
4.1 Fach Phase of th U test will require approxirately 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> to caglete.
Note that this d: 2s not include the tire rcquired to establish the required plant c. xlitions, notably Xenon conditions, which will require i
on the order of 1 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> at WS% FP.
I 4.2 Personnel Rccuir.d.
s Phase I
- Reac or Operator at Dia:Tond Staticn Reac mr Operator controlling feedwater Reac:tTeter Op2rator Test L2ader Phase II - Reac:or Operator for Prirary Plant Controls Reactor Operator at Diamond Statica Reactor Operator at feedwater controls Reactimeter Operator Brusa Recorder Operator 1
Equipiant Operator at Auxiliary Feed Pumps I&C Tuhnicicns to jumper RPS, Peasure NNI voltages, etc.
' inst Ieader Shift Forcman in Control Rocm 5.
LD4ITAT CNS & PRECAUTIES 5.1 When on natural circulation, manually trip the reactor and start one reactor coolant pu:g in each loop if any of the follcwing limits are i
'I reacled:
--PARAv2fER HIGi LH4IT ILW LIMIS l
Indicated Reactor Pc m r (NIS,6,7, or 8) 5% FP*
(..
s Beactor Coolant Pressure (PBS RC2B2, IC2A2) 2300 PSIG 1990 PSIC Pressuri::er IcVel (LRS RCl4) 280 IN.
50 IN.
~~' l OIEG Pressure (PI SP12B or P'I SP 12A) 1020 PSIG
.I c
'4
... =,
=**-+= *== + *** -
= = * *
~
,m
' l
\\
=
4 3
TP 800.04.1
.r '
s Any Incore T/c (7511 - T562) 650 F
.5.,
Th (TI RC3B1, BC 3A1) 600 F r-r*
t CST Invel (Tank in Service) 10 Pr.
.*) - '
r, Corrected (See Section 7.1)
C,. -
f-5.2 hTen on natural circulation, manually trip the reactor and begin focdine i
- using a main feed pump if at any tire an auxiliary feed pump is lost or e
, auxiliary fee:1 water flow is lost for any other reason.
(TS) 5.3 Do not change reactor coolant horon concentration during the tire reactc coolant pnps are off.
(TS 3.1.1.2) 5.4 hhile on natural circulation, p essurizer spray will be unavailable, therefore pressu o control of the RCS will te slow at best. Tne means available are changing OrSG level using auxiliary feeds. uter, pressurizer l
heater control, letdown & makeup, and (in an er.ergency) electroratic relief. Ponitor temperature and pressurizer level trends and take action well in advance to minimize prirary prc.ssure excursicas.
6.
PREREQUISITIES 6.1 Prerequisites for PHASE I.
6.1.1 The plant is at v l5% FP per PP 1102.04, Pcwer Operations.
Verified Date i-6.1.2 RCS boron concentration is + 30 ppnb of the value at which Pluse II will be run, Verified Date' LOTE:
Phase II will be conducted at 2 - 4% FP, approxinutely equilibrit Xe, with GP. 6/7 60-80% 10.
6.1.3 Feedwater dcmand stations FIC ICS 32B/32A arckin FAND. Feedwater
"~
darand is on Iow Icvel Limit.
Verified Date 1
6.1.4 Pressurizer Icvel isev 200"; Pakeup tank level is N 85", and there are 2 letdcwn coolers in service.
c Verified Date
/(
6.1.5 The reactimeter is set up to record data per Attachmnt 1.
Verified Ehte e
- l'. *..
~ * * ' ~ ~
..J 3.*
7 * " ~^ * * ~~~-~T 9
- +
r k
p.,
l y
SU^
4 TP 800.04.1 f.~..
.r.
j 'J~)
6.1.6 Reactor P w er Imbalance is 0 + 0.5% FP.
Verificd Date b,(.,
6.1.7 Grodp 6/7 position is 70-80% WD.
ra..
{-'
Verified Date 6.1.6 The NSS heat h, lance program in the Plant Capputer has tcen I
chccked and is conputing ccre tMnral power accurately.
Verified Date 6.1.9 The follming pira:reters are on corputer trend reccrders on the operator's console.
i' Ici R1 Floa (Loop 1)
F674 FN Rf Floa (Icop 2)
F682 GEN. Ici J427 Verified Date 6.2 Prercquisites for PHASE II r..
r l
[
6.2.1 The plant is in pwer escalaticn testing per TP 800.00, Poe_r
's.
Escalation Sequence.
Verified Date 6.2.2 The follcwing testing has been carpleted at 15% FP:
l' TP 800.05, Reactivity Ccefficients at Pow _r TP 800.08, ICS Tuning at Power i
~
TP 800.22, NSS Heat Balance y,
j TP 800.02, NI Calibration at Pwer i
Verified Date j
l 6.2.3 Fcactor Power is at 2-4% FP per PP 1102.04 with one main feedwate i
pa:@ ard 2 FC pumps in oInration. The bhin Ri Ptap is on Ihi_t i
Steam. Mini-feed to both S/G's is in operation.
1 2
f Verified Date 6.2.4 Xenen concentration is approaching equilibritm, such that calcu-lated reactivity change between the start of the test and test corpletion will be less than.04%o k/k.
(Ref. Reactivity Balance Calculation, SP 1103.15)
L Verified Date j
)
\\
\\
. 1 s
=
4
5 TP 800.04.1
~.
6.2.5 Heat Balarce & NI Calibration (ST 5030.11, RPS Poacr Range Calibration) have been ccrnpleted at 4% FP at the boron concen-
'. ~., <
tration at which the test will be run.
.f.
Verified Date f
6.2.6 A mininum of 47 incore thermocouples (TE IM01 - TE 1 M14) are operable.
~
Verified Date 6.2.7 Moderator tenperature coefficient has been nuasural per TP 800.0' Reactivity Coefficients at Poaer, and is predicted to be no nere positive than 0.0% d k/k F a': the power level and boron concen-tration at which this test will be run.
FUrE: The core must have been expended m4 EFPD before the i
temperature ccefficient is negative.
6.2.8 Pressurizer Invel is approximtely 150".
Pressurizer & Pakeup tank are within + 30 p;r.b of PCS concentration. 'Ihere are 2 i
1 letdown coolers ~in service.
Verified Date 6.2.9 'Ibe reacticuter & Brush Recorders are set up and calibrated to record data as specificd in Attachtrent 3.
Verified
_Date 6.2.10 The Plant Ccrrputer is set up to reccrd data as specified in Verified Date
'I ',i 6.2.11 The ICS Configuration is as follcas:
f, STATION STA'IUS HS ICS 1 Unit Paster Track
'Ihrbine Trippai HIC ICS 13 S/G - RX Paster Hand i
HIC ICS 20 RX Demnd Track HC NI 44 Dianond Manual FIC ICS 32B FIC ICS 32A F/ti Demand Hand (0%)
/
HIC ICS 36B Pain Feed Pumps, (cne)
Auto FIC IC3 353 FIC ICS 35A Mitin FW Valves Auto E.
FIC ICS 338 FTC Tr g 4M g /p g.: yn 1...,,-
r::_ ___
2...-.,...
.m p*
%e e
e e
6 TP 800.04.1 6.2.12 Tin RPS high flux. trip has been reset per IC 2000.03, Setting
, i-of RPS Owa Trip Bistable Setpoints, to 10% FP on all 4 x-RPS Channels.
('IS 3.10.3) c.M Verified Cate ht
)j -
- 6. '2.13 Both condensate storage tanks are filled with secondary makeup i
quality water to a level of > 30'.
Verified Date 6.2.14 Tne Auxiliary Feedwater System, including both pu ps, is operabir 4
1' For SP 1106.06, Auxiliary Feedwater System. The Aux boiler is fi up to non.nl operating pressure.
Verified Date 6.2.15 Boron concentration in the ICS is + 30 par.b of that when Phase I was carplcted. Batch calculations Eave been perforned for additic 1
to the Mikeup Tank.
Verified Date 6.2.16 Tne high flux trip portion of ST 5030.02, RPS Monthly Check, must (TS) be ccr.pleted within 12 hcurs of starting Phase II.
I Verified Date b
7.
PROCEDURE 7.1 PIDSD I - Th2 purpose of Phase I is to reasure tiu effect of reduced testeeratures on mdicated neutron flux. This data will be used to produce a correc: ion to indicated pcwer which can he used during the natural circulation test.
f 7.1.1 Verify all prerequisites of 6.1 are ccmplete.
Vc ified Date 7.1.2 Obtain Shift Foreman's permission to' begin this Phase.
Time Shift Forcman Verified Date 7.1.3 Mjust imbalance to 0 +.5% using.the APSR's.
Verified Date 7.1.4 Shift Practor Durand Station HIC ICS 20 & Diamr.d Sta' ion to
(~"
FKNUAL. Maintain reactor power at 15% controlling rcds in i
LRNUAL.
N.
Verified Date 7.1.5 Station c.aother reactor opirator at tJn feedwater de: rand stations 1
to c..ont.rol feedrater. Place pressurizer icvel centrol (I.lC DC-145 4..
- wMe e.
e=
g.
.. = = * *
- y eg e*-*
gb 9
e o
e
e 7
TP 800.04.0
.[
- 7..*:. 6 Start the trend reborders on the operator's console.
[.]
Verified Date t,t r
7.1.7 Begin recording data on the reactimeter at 1 second intervals.
, Begin recording data on Attachment 2 at 1 minute intervals.
Obtain NSS heat balance calculation fran plant ccnpater.
(Pecord a minunum of 5 minutes of steady state data).
Verified Date k..
7.1.8 Using feedwater damnd stations FIC ICS 32B/32A in FRID, SIDiLY
~
increase feedwater derard to lower Tav^5 F.
NCTTE: This is an increase of only/v4" SUR lev !1 ani.will reduct pressurizer level N 25".
Do not move control rcds unless necessary to turn steadily in-i creasing or decreasing rcwer.
I Verificd Date 1
l 7.1.9 With Tav steady, balance feedwater fica so that total feel flow I-
-I is the same as recorded in step 7.1.6, 7.
It may at this point be necessary to adjust reactor pomr using control rods in'yanual to achieve desired Tav & Bi ficw.
Verified Date
[4'1 V -
7.1.10 Wait for conditions to stabilize & request NSS heat balance fran the plant ccupater. Verify that Calculated Wth equals that deternined in. step 7.1.7
+ 20 Kith..
e.
C".
4:.-
Verified
. Date 7.1.11 Stop recording data on,the reactincter ("o" Switch), allcw the recorder to ccuplete its last record, then restm. :i recording data.
Verified Date 7.1.12 Becord 5 minutes of data on Attachamt 2.
Verified Date 7.1.13 Fe t st ps 7.1.7 - 7.1.12 at w 5 incronents u til Tav = 559 n
i F
s Verified Date s
7.1.14 SICVIX reduce ni damrd until ni darand is on loa level limit.
i l
Verified Date 6.%
.e-
= = en 6*
me
. p.e
=
r 8
TP 800.04.1 kff).
7.1.15 Return the ICS to the lineup specified by the Shift Foretan.
- t.,
l 1,,
Verified Date
-r r'r:
7.1.16 Stop reco: ding data en the reactimeter and data sheets.
rn 1
l Verified i
Date l
7.1.17 Infoun tho Shi.ft Fore:ran that this Phase is caiplete.
.t..
Verified Date 7.1.18 Delog rea:iineter data and determine corrcction factor for indic.
poacr usi:n the nutrod on Attachient 8.
I Verified Date I[
. l 7.2 PinSE II - thtural Circulation Feasurcmant i
7.2.1 Verify th :: all prerequisites for Phase II, Section 6.2, have be-i ca pleted.
(
Verified Date 7.2.2 Cbtain th1 Shift Forcrun's penaission to hagin this Phase.
Tin 2
-Shift Fo-caun Verified
'Date 7.2.3 Start taking data on the reactineter at 0.1 second intervals.
. Start the Erush Recorder at 25nuv' min.
Verified Date 7.2.4 Manually start Awciliary Feed Pumps 1-1 & 1-2 per SP 1106.06, Auxiliary Faedwater Systen, by opening MS 106 (HIS 106A) & MS 107 (HIS 107A) (C5717). With Fede Switches HIS 520B & HIS 521B (C57' in FWUAL, adjust speed to N2000 rpn.
1 NOTE: Be prep 1 red to add water to the FU tank as required.
Verified Date 7.2.5 Trip the SFRCS in the Ioss of RC Pemp Fede by pressing & latchin HIS 4869E & HIS 4870E (C5721). This will align each Auxilia-7 Feed Pump t'o its respective steam generator. Place press. level 1
control in IIAND- (llc RC-14).
Verified Jate 7.2.6 Glcwly & evenly increase auxiliary fced pump speed using HIS 520.
and HIS 521A to raise steam generator level to N 100" on the SW
. Pange. Tne SA Feedater Valves will shut as level is increased This will cause a ccoldcwn of about 9 F fran 543CF and a corres-0 ponding 45" drop in pressurizer level which is desired. Insure 1
that mini-feed is in operation.
- 2:- :
g L.
... - ~
~
Y S T
I r'
l
~
9 TP 800.04.1 7.2.7 mintain EG level at 100" on the SUR using the Aux ni pr:ps.
Verify tn t ootn uxe S/U anc Main Feecenter Valves are shut. S p,E.
to the Au:: boiler.
Shift the Main Ef pu'rp to the Aux steam head <
2 the SUFP Ovan bring on the Aux Boiler and shift the Aux steam he.
and chift gland steam to the Aux Steam header. Decrease min ni pump as directed by the Shift Foreman.
g E'
Verified Data b
7.2.8 Allca tar trature and pressures to stabilize and reverify the folloaing initial conditions:
r,.
I-Reactor Power 2-4% FP (Corrected *)
Xe Cc ndition (As'specified in step 6.2.4)
Boron concentration (As specified in step 6.2.15)
Preswrizer Invel 100 - 150" 2 ID Coolers in service Corr.ct irdicatcd paar for temp 2rature using correction l
dete.:.dned in Phase I (See Attacht 8).
y Verified Date 7.2.9 Defeat Ic :.s of floa trips in tha Pea: tor Protective System by ccnpletinj Attachment 5.
(
' Verified Date i
\\
7.2.10 Using dig cal voltmater measure carpensated 1 cop flow voltage in INI at con:censated floa multiplier output.
WI IOCATICN PIN t.n.
IrGP 1 7-6-5 7
I ILOP 2 4-3-9 7
9
[? - t Record 5 mf.nutes of fica voltages at 30 secord intervals. Recon y
voltages o.. Attachment 9.
.g
- Verified, Date
- /.2.11 Pagin trending cmputer data as specified in Attach:mnt 4.
Verified Date 1
7.2.12 Trip the running reactor coolant pumps. after oberving the Notes of this step and step 7.2.13.
ICTE: Flcw coastdcwn time will be apprc<ircately 30 seconds. As fica coasts dcwn, reactor o T will increase ard should stabilize around 30-40 F. with flea sustained by natural circulation. With negative mcderator ccefficient, reactor poaer should be stable, but response to temperature tran'sients will be sluggish due to 1cw ficw.
j Prim ry temperature will tend to increase due to the reducal ficw,,with, corresponding increase in pres.-iari.:er
.lcvel.
j;
i 10 TP 800.04.1 7.2.13 Carefully nonitor RCS tcnperatures, prcssures, pressurizcr lcvel
!.:/c.
and reactor poaer. M2.nimize the effects of the primary tu.v:rattu d
increase by over feedang the steam generators and alloaing level to increase to a maxin:um of 50% OR '!he primary pressure transient
- 4.,
'a may also ha mitigated by increasing letdown flow.
l 1
Manually trip the reactoi and starttwo PC pumpsin each lcop if auxiliary feaiwater flow is lost or if any of the folloaing limit:
are reached:
PARATTER HIGli LIMIT I4W LIMIT In3icated Peactor Poaer (NIS,6,7 or 8) 5% FP
Pressurizer Invel (LPS PC14) 280 IN.
50 IN.
OISG Pressure (PI SPRB cr PI SP12A) 1020 PSIG Any Incore T/c (1511 - T562) 650 F Th (TI PC3B1, PC3A1) 600 F
(
CST Invel (Tank in Service) 10 FT.
[
RCS Tave 525 F Corrected (See Section 7.1)
Verified Date
't 7.2,14 Icve control rods only as required to keep. reactor poaer between 1 & 4% FP (Corrected).
Verified Date l
7.2.15 Allow Th, Tb and PCS pressure to stabilize. Verify that* natural circulation has begun by observing that reactor L\\. T has stabilizec in each loop. This may take Op to 35 hour4.050926e-4 days <br />0.00972 hours <br />5.787037e-5 weeks <br />1.33175e-5 months <br />. Expected natural circulatiion ficw is en the order of 7% which will result in a reactor LST of about 30 F.
N Verified Date 7.2.16 Gently adjust reactor poser and steam generator level to achieve stable conditions at 40% OR level and 2-4% FP corrected.
NOTE; Intermadiate Range level may provide a more accurate scale 1
for controlling reactor po ur.
[
Verified Date
(
7.2.17 Record data for at least 10 minutes after reactor AT and reacter l pcwur have been stabilized.
Verified Date
(
~
s e
~.1
11 TP 800.04'.1 l'
7.2.18 Shif t Io: p 1 Turbine Dy;oss Valve to WJO.(PIC ICS 12D) and open it 5% to rcduce Do not execcd 100 F/llr. cooldown,1-1 OrSG pressure by 50 PSIG.
rate (
20 psig/ nun.)
- p. $1i NCTTE:
If the Rc.ctor is trippcxl while a 'Ibrbine Dypass Valve is in M
~'
~~
HAND, ret'Arn the valve to the CIGED position and return to AUIO if directal by the Shift Foreman.
C Verified Date 7.2.19 Monitor Brush Recorder traces. The ternperature drop should be detected ca the Icop 1 Th trace in about 1 minute.
a.
h "'
Verified Date c.
b 7.2.20 Continue to mintain reactor pcuer 2-4% FP corrected using j
control rods in Manual.
t Verified Date s
l 7.2.21 Mwn the r T.perature drop is detected on the Ioop 1 'dt Trace,
'4 shift Icc7 2 Turbine Bypass Valve to Wdo (PIC ICS 12A) and open 1
itN5% ta reduce 1-2 OISG pressure by~50 PSIG. Do not exceed 100 F/Hr e/Doldcran rate (N20 psig/ min.)
hUrE: Do st allcw Tav to go belcw 525 F.
Verifiod Date
\\ -
i_
7.2.22 Continue -. king data until the temperature change is detected on the Io o 2 Tn Trace in the Brush Recorder. This should take approximat.':ly one minute.
[.
Verified Date 7.2.23 Return Turbine Bypass valve H/A stations in AUTO and allcw Tav to increase lack to cqailibrium value for turbine header pressure of 870 psig. This will be about 534 F.
i Verified Date l
7.2.24 Clear the t; rip on the SFRCS Panual Trip HIS 4869E & HIS 4870E by releasing the hold-in trip buttons. This will allcw the SFPCS to reset when RC pumps are started.
Verified Date e
7.2.25 Manually trip the reactor. Verified Date s
I
,l
~
e%
e.
e.
.~
l':. -l
-t,f, 12 TP 800.04.1 r g..,9 v
l %.fi 7.2.26 Start two RC puqsin each loop, then verify Auxiliary 1
E
{'
Feed Perp Mode Switches IIIS 520B & HIS 521D (C5709) in WWUE and back Auxiliary Feed Pumps down to muumum spoed, y ~~;*
O.
Verified Data
- f. ;
a3 7.2.27 Carry out Reactor Trip Prccedure, EP 1202.04.
?~
Verified Date 7.2.28 As steam generators steam down, verify S/U Feedwater Valves open 1
and control on Ios Ievel Setroint.
Bring the nmning Main F4 pt:
up to speed and stop the SUFP as directed by the Shift Fore an.
Verified Date 1
7.2.29 Return tha Auxiliary Feedwater System to Standby Creration per i
SP 1106.06, Auxiliary Feedwater System.
Verified Date 7.2.30 Stop taking data on reactimater, recorder and carpAer.
Verified Date
~
7.2.31 Renove jut;ers inshlled on RPS in Step 7.2.8.
,,,,l Verified Date I
(TS) 7.2.32 Reset high flux trip as directed by PES 'nast Coortlinator.
Verified Date 7.2.33 InfoLn Shift Foronan that this prtion of the test is ccTelete.
j.la Verified Date 7.2.34 Calculate natural circulation flow per Attachmnt 6.
Verified Date 8.
ACCEPTANCE CRITERIA 8.1 Natural circulation floarate determined by eitler methcd in Attach: ent 6 equals or exceeds the minimum specified by Attachment 7. *
-Verified Date
[
9.
RESUIHS DISTRIBUTICN k
9.1 B & W Site Operations Panager 9.2 Tiro Pcuer Engineering & Construction Division t
~..
=
6
?-
- f I..
13 1
. -..7j REACTIMF.TER DAT.'s FOR PHASE I TP 800.04.0
~.Ip
!ct up the reactiraeter to. record the following data:
SIGNAL p [i PARAMETER RANCE' RANGE _
.StIIP MO.
w.t
({c'c
- Cencrated IG 0-1000 IN 1-100 MV 22 P. C. '. ;
y :.. s...
}!U Tank Level 0-100"
-10 + 10 VDC 35 3..
!'g,
Int. Range Flux (NI3) 10-11-10'3 0 't 10 VDC 40
- a
~11-10-3 0- +'10 VDC 41 Int. Range Flux (NI4) 10 a
l $.. _,
Power Range Flux (NIS) 0 - 125% CP O - + 10 VDC 42 i
['-
Power Range Flux (NI6) 0 - 125% FP 0 - + 10 VDC 43 i
Power Range Flux (NI7) 0 - 125% FP O - + 10 VDC 44 Power Range Flux (NI8) 0 - 125% FP 0 - + 10 VDC 45
-i' Loop 2 Th 520 - 620 F + 10 VDC 50
~
r-j' i
) Loop 1 Th I*
520 - 620 F + 10 VDC 51 T
Press. Level (Comp.)
0 - 320" + 10 VDC 52
=
NR RCS Pressure 1700 - 2500 PSIG 0 - + 10 VDC 53 ~
~
Loop 2 Tc (1-2-1) 520 - 620 F + 10 VDC 58
[.;lt i
Loop 2 Tc (1-2-2) 520,- 620 F + 10 VDC 60 i
520 - 620 F + 10 VDC 62
'.E.
Loot,1 Tc (1-1-l)
Loop 1 Tc (1-1-2) 520 - 620 F + 10 VDC 64 S/U W Flow' Loop 2 0 - 1.5.106 #/Hr + 10 VDC 70 6 #/Hr + 10'VDC 71 3'
S/U W Flow Loop 1 O - 1.5.10 10{ W ' Flow Loop 2 0 ~ 7.106
~
- /Hr + 10 VDC 75 -
0 - 7.106 C/Hr + 10 VDC 76 101 W Flow Loop 1 Feedwater Temp.
0 - 600 F + 10 VDC 74
~.
' croup 6/7 Positien 0 - 100 7.
0 - 5 VDC 3
OTSG 2 Outlet Pres.1 0 - 1200 PSIG t 10 VDC 72 t
p.7,.y...
l
~ ~ ~
m
f
,.t
- ' 8 0 #2 14 TP 800.04.1 THE TOLEDO EDISON COMPANYi W
POWER
- PRODUCTION DEPT.
.totion TEST READINGS Sheet No.
1 of 2 _
W. w '
or cst of
.f..
Page No.
Test No.
Observers l
nate
\\
race FI-Fi-,' FPT pf" '"7I i
[N5' j '" "
HFAP,gMCE i
l ILOP 1 ILOP 2 ILOP 1 ILOP 2 GEN i PLANT p/U FW S/U B1 FN Bi.bN EW Mi l
CCMPUTER
~
Time iFILW FILW FILW ' E7J0W EU'CT.9
'R!
I.- e i
GUJP 2 2..=.=
7..
i.
Ii i
l
~ !. i I
i i
1 - --
IA I
l l
1 j i
l 1
1
[.-
I a
i+
l
.i_
_m..
l i/-
l l
j i
i
.a V,
t i.
i 1
s.
l l
t
! j.
-I i
l i
I i
l I
i i
2 J i l
l I
I i
t i
J-r I
I I
i I
l l
8 l-i JT i
i
~
7 l
1
.t I
I i
l I
I I
i 1
l 1
I i
t-I il!'
I I-t L
J I
I i
l I
?
I i
i
'h l
I.
g l
l I
8 i
i.-
. j--'~
6 l
S 8
I I
i.
If iN 1
I
.s' t
I l
8
_m._.._,
8 i
i i
~
i T...
1 --,. '..
.. ' _ ~~ - ~ ".
---'-'-'--'--'--r-~
-= _..i.
.v
. ~ _ -
s
- ~ ~ -
s r> ocn 15 TP 800.04.
'+
THit TOLEDO EDISON COMPANY'6 l
~,
Q.
POWER' PRODUCTION DEPT.
to TEST READINGS Sheet No. 2 of 2
) r Test of _..
OF o.
- e. ' /r :
Ps ge No. _.
J.
Test No.
Ob:ervers. __._
c..
NCTTE:
If Tave....d..ro.p.s balow 532 F nage I
?.
Time
' P.. '
l Int. No.NI-3 l.-
---_r_e_c_ o.r_d_a_l_l_ r_ea..d.i. ng.s__ a.t..__15.._M__in._ _in__t_er. vals.
b-I I
F i
.___I.___
I i
p NI-4 ' NI-5 NI-6_
NI _7_j_NI-8._'I_'T_4Bl.
TT4B3 ' TT4A1 ' TT4A3 '
Int.
- Int. ~ Pwr. : Pwr.
Pa:.. Pwr.
ICOP 1 ILOP 2 Bangel Range. Range. Range Pange ' Range NR Tc NR Tc I
i Time Flux a Flux l
oj 0'
j
-,(!. cps. )_ ( A.m. ps) _ _.(%,m _) _.(%.m_FP)..(% F.P_,.(.%. FP) gl 7l p
,i i,._,.
_. _ i m,
_ _ _ _. _ =.
l
,i l
I'_ _ _
r
__j i
i i
j:
i t
l l
t I
i i
i i
i i
r - --- -
i i
i g_
r I
T'~
.l J
l
- i --^ -- - -
'-'~
i l
j~
i I
lk i
j
~!
I 1
i i
i I
i i
e
+
t-I l_
i t
i e
i
,i f
i I
4 1
1 i
i
_ j r
, a 8
i j
l I '
I l
j..
I I
i l
h i.
i.
1 I
l i
i i.
i
~i i
l t
j i
l I
l I
I i
i i
.I i
l I
i i
I.
f i
l-~
l l
i t
t l
l l
t
.-( -
~
l j
n l
.__.p...._....._._g_____.g._...........
t,-
j
.j_ __ _. j.. _.....
...j...__... l _
.. 4...,
N u***
,,e
=.....
. I
~
,s
47 1
- 2.,'.
h
~
16 TP 800.04.0 i ' *2 s
REACIDTIER & RIDORDER DATA FOR PHASE II Set up the reactimeter to record the following data:
d',
e,..
PARMETER SIGNAL
- 5.
RAIKE RANGE SUTP NO.
RCS Cmpensated Flcw Icop 1 0 - 90.106
,. + 10 V 48 FCS Ccmpensated Flcw Icop 2 0 - 90.106
-10 _ + 10 y 47 10 Tank Invel 0 - 100"
- + 10 VDC 35 Pcuer Range Flux (NI 5) 0 - 125% FP 0 - + 10 VDC 42 i
Pcwer Bange J2'tx (NI 6) 0 - 125% FF 0 - + 10 VDC 43 Pcuer Range Flux (NI 7) 0 - 125% FP 0 - + 10 VDC 44 j
Pcser Range Flux (NI 8) 0 - 125% FP O - + 10 VDC 45 Icop 2 'Ih 520 - 620 F + 10 VEC 50 Icop 1 Th 520 - 620 F + 10 VDC 51 Press IcVel (Ccmp.)
0 - 320"
- ': + 10 VDC 52 NR PCS Pressure
~
1700 - 2500 PSIG 0 - + 10 VDC 53
~
Icop 2 Tc (1-2-1) 50 - 650 F e
- + 10 VEC 59 Imp 2 Te (1-2-2) 50 - 650 F
, + 10 VDC 61 Icop 1 Tc (1-1-1).
5O - 650 F
,, + 10 VIX:
63' Icop 1 Tc (1-1-2) 50 - 650 F + 10 VDC 65
. Group 6/7 Position 0 - 100%
0 - 5 VDC 3
OrSG 2 Outlet Press 0 - 1200 PSIG + 10 VDC 72 OPSG 1 Outlet Press i
0 - 1200 PSIG
~10 - + 10 VDC,
73
},
orSG 2 Operate IcVel 0 - 100%
. + 10 VDC' 77 OISG 1 Operate Invel 0 - 100%
' + 10 VDC 79
,E 2 S/U Invel 0 - 250" + 10 VDC 78 OrSG 1 S U IcVel
/
0 - 250" + 10 VDC 80
- i
+
~
. emow om e me. m a k
l
~
+,
-> s
.J.-
~
17 TP 800.04.0 k, -
REACTIME ER & RECORDER DATA FOR PHASE II T
g., -
.~
i 2.
_ Set up Brush Recorders as follows:
A.
Recorder No. 1 a
TRACE PARTE TER RANGE SUTP!
~
l Icop 2 'Ih 520 - 620 F 50 l 1
2 Icop 1 Th 520 - 620 F 51 3
Icop 2 Tc (1-2-1) (WR) 450 - 650 F 59 I
4 Icop 2 Tc (1-2-2) (WR) 450 - 650 F 61 5
Icop 1 Tc (1-1-1) (hE) 450 - 650 F 63 6
Icep 1 Tc (1-1-2) (ha) 450 - 650 F 65 I'
NOIE:,,This recorder nust be positioned in the Control Rocra so that the Test leader. can see 'it.
N,
[
s 1
(y.
ATITG EIP P/GE 2 OF
. y
- 'UD g
gg
h 18
'I? 800 04 0 4
- Ca@trR2 DATA - PHASE II 1
l s
l.
Program an alaznr point for incore the.mple tenperatures T511 - T562 in th plant cxxrputer with setpoint 645 F.
. w-E 2.
Place the fol.lcwing parameters cn. trend recorders on the Operator's Console:
a j.
Icop 1 Th T 721 L
Icop 2 Th T 730 C.
Icop 1 Tc (h*t)
T 781 Icop 1 Tc (WR)
T 801 Icop 2 Tc (WR)
T 821 Icop 2 Tc (WR)
T 841 Icop 1 Ccxtp. Flow F 727 '
Imp 2 Ccrrp. Flow F 732 l
3.
Place the follcwing incore thennocouples on the line printer to print at l
1 minute intervals:
6 CORE IDATICN Pr. ID. NO.
H-9 T 541 F-7 T 531 i
M-9 T 542 L - 11 T 552 E - 11 T 549 L-3 T 515 P-6 T 528 ii i
C - 13 T 556
'O - 12 T 555 B-7 T 529 E-4 T 517
.H.- 5 T 521 L-6 T 526 G - 11 T 550 E-9 T 539 G-2 T 512 N-4 T 518 i
R-7 T 533 N-9 T 543 C - 10 T 544 C'
' (Pcfer to tha next page for core nap.)
)
l i
i l
ATTACID'SR y..,
.w+E
==
-*-m.
+.
-e
- * * * = - = *
-*e=.=*-
m D
e
{
. g,...
19 TP 800.04.0 v i, u%(
)
- c.., _
o
~.. *, ',;.
FUGL T2,.*.y,S, NI-1 2
~*
'.y'.6.7.#'y..-
f[ PC.
' ' h,/, p. > i.'.
TUBES
~ ' '
O. <.
?
\\^
l ?.-l,.
., f.>.
~~
- i~ 1,.' ;.
'-~(.)
...p.t-.f..
f [, f / / J l
2-42E" f
- F s*,,f.
I i
1 -
jQ l
l...
...f-
/
...! :p,
~
n_
d-.h l aJ e/
MiT g
, c.,,
i:
rr 'j
- i g 3;'.'.,
r/r.J i !
.t i r.
/
l 4
t.;5. -
- n
~
_ c.co t
- c<s.o n,l ch)a
.l.
.):,2
..,s,-
lp,-
.C: :
p:
8__
c,:< >
f Ic47-3l i:s.t.n' "d
5 r7-f p-J; i If
'I'.!j r:-
!. h Q!.,f p ___ _
4 I
N'
_ YLe 1 t
- .,.'~ y lcte_5 ces.4 css. *
'ca.i
- s;.3 b
f lI*? j.*!
,as.s j
-l.f t
)"
v,~
D. i M."Js""
.,'jR...-Q.V Vik
~
l
- -H Q i n *,..~
-4 i e ice
..;g.i c4 r.c
.1
[I
. q. q
-. q
.:n >,
l tcri.1 kr en-s
,I l Q'.*.l...
]
f-
- -. -? crs-1 l
?c > s e n -2 7.;71-
';m
- rsl.;.}-,g:;- --
's um j
t f
i.-
t w>u c.,,.,
.u -
m
- \\
.:e. -S
- ~. -
J_
s'
"'h
"T
.. J '-4 us-b N
^ ' '
b--
b'bd.i
. E:
I c.; l lf P1us.zlim F..u.
- .uis uz.c
- M.. o s
c.
.y ar i
m.,
m.,
m.,
.e.s.
. p o..
' {1. '..'...ot.,b
- 9 ) s p,3 4
i.
4.
Q>lf a*
[
g
,__,i ly-
.I? I' '
O ll
! g.t/
_ []
Q"/ 4
(
l I
/
.1
,s l
x / sD
. v,.7 u
,. p....
gS e
,z
. o.
[.
.{ :h$k.f. j%.,.,;,
~
?
p
.,.,..f.. g....,,
3
- ?' -(.:p:,-~;,
.:.p-* 'a.. P.
\\.
.* ;e -
..p s :-\\'
~'.' f :,:p p ?. '
l NI-2.
p; 1.9 L
.~
.r.__.....
M p
O
\\
r.'
e 20 TP 800.04.l
- e. ;..
ParrmORE FOR DEFEATEG RPS IDSS CP FIN TRIPS FOR NA'IUPAL CIPCUIATICN TEST 57:f- -
- e. -
- 7...
.I 1.
Obtain keys for RPS Cabinets frcm the Shift Forman.
+ - -
i 2.
Defeat Power / Pumps, trip by installing jumpers as follows:
4 JUMPER M:PER RPS CWREL IOCATJCN PINS ESTAT.TFD/DATE RE: W ED/DATE 1
1-3-8 17 - 18
/
/
i 2
1-3-3 17 - 18
/
/
3 1-4-P 17 - 18
/
/
4 1-4-8 17 - 18
/
/
3.
Defeat Flux / Flow trip 1.y installing jta,cers as follows:
e-
~
JUMPER JUMPER RPS,CH?R EL II.GT]
PINS E SIAT.TED/DATE REGED/DATE 1
1-4-14 17 - 18
/
/
2 1-4-14 17 - 18
/
/
3 1-5-14 17 - 18
/
/
4 1-S-14 17 - 18 *
/
/
4.
Icck RPS Cabinets and return keys to Shift Forman.
'l Verified Date
~
/
/
3 ATr/m4a7P t
P. AGE 1 OF 1 1 n
g 6
p
. * * *..a..
o
-. - - - ~ -
+-me.-
e.===
--.e-~-
.=-*o-e.-
-~- - - ~~
s m'
g
.s..
.[
)
21
'I? 800.04.0
_ CALCULATION OF NATURAL CIRCULATION FLOWRATE
'i.
3y
..hi..
p
- m.,.
-METHOD NO. 1 - REACTOR g This method is based on thc relationship between pri=ary flow, heat input & entha:
q (BTU /HR) = Wa 6h, and astumes that for the range tested, o h = h T.
1 1.
Average compensated,lecp flow voltages (Vm) which were recorded on Attachment Using the average volicge for each loop, compute compensated loop flow (Wf):
~
vm + 10 vm + TO I
Vm 2'0-~~
Wf = (
6 20 7 (90.10 ) lba/hr 0 6080 Th LOOP.1 i
LOOP 2 2.-
Delog reactimeter and tverage 1 min, of RCS temperature data just prior to RC pump trip (Step 7.2.12).
3.
Using these averaged t.amperatures, determine reactor A T just prior to RC pump trip ( 6 Tf):
ATf = _T_h (l',...+ Th (2)_
Tc (la) + Tc (Ib) + Tc (2a) + Tc (2b) 2 4
o
=
F 4.
Using the reactimeter data taken af ter steady state natural circulation has been established (Step 7.2.17), average 10 minutes of RCS temperature data.
5.
Determine natural circul.ation reactor 6 T using the data averaged in Step 4:
I Th (1) + Th (2)
T (la) + Tc (lb) + Te (2a) + Tc (2b)
AT e
e n
2 4
o F.
=
6.
Using reactimeter data for time just prior to RC pump trip, average the power range levels for the 1 nin. prior to the pump trip.
NIS NI6 NI7 NI8
% FP 7.
Determine the average power level prior to pu=p trip:
I(
p NIS + NI6 + NI7 + NI8 p
4
?
8.
Using the same period of time as step 4 above, average the power range levels for the 10 minute period:
.I.
=%
N T 'L.-.
M74 "T'
'7g
__7__
e
- w es 1
e
l.
22 TP 800.04*
C/.LCULATION OF NATURAL CIRCULATION FLOi; RATE 9.
Using the correction f actors developed in Section 7.1, correct the power rang-f levels in Step 8 to the Tc Prior to the pump trip.
NIS NI6 NI7 NIS
% FP ~
-g i
4 10.
Using the corrected power levels in Step 9, determine the average power level after natural circulation flow is established:
% pp NIS + NI6 + NI7 + NI8 p,
=
4 5
11.
Calculate natural circulation flowrate:
g (Loop 1) + Wg (Loop 2), Mf Pn
~
Wn (lbm/hr) = W ATn pf 12.
Calculate natural circulation flowrate as % of 100% flow at 6080 :
F Wn (100) g pio, 131.100 I
W.THOD 2 - INDUCED TEMPERATURE TRANSIENT TIME This method was a direct measurement of the time for a temperature perturbation to travel from the.T instrument to the Th instrument.
c 1.
Plot the following reacti=eter data taken during steps 7.2.18
.7.2.22 versus time:
[;. -
. LOOP 1: Th (1), Tc (la), Tc (lb)
[
LOOP'2: Th (2), Te (2a), Tc (2b) 2.
From the plots in step 1, determine the time between the temperature, drop at the T instruments and the Th instruments in each loop.
e (NOTE: This time should be on the order of 1 minute.)
6t (loop 1) =
Min.
~
A t (loop 2) =
Min.
3.
Calculate the natural circulation flowrate using each loop 4 t: -
i 44,040 A t (Hila.)
Wn" At
^
LOOP 1 N
LOOP 2 l-Miere 44,040 = Volume of RCS (in gal.) between Tc&Th instruments, s.
~
6
n,# = ;
3,' :' ;,=.
23 TP 800.04.0 r.'4 CAI.CULATION OF NARJRAL CIRCULATION FLO*a* RATE
-h_.*
- -
- ~
1~
4.
Average the flowrates obtained using Loop 1 & Loop 2 8 c:
j
. (
.s '
~
Wn (1) + Wn (2)
,h,'.
Wa (av.)
GPM
=
=
fSr
,I 2
?:
C*
j 5.
Determine natural circualtion flow as a % of rated flow:
t i._
i fi W (av.) (100).
g fio, n
's 352,000 gpm T
Y e
O d
f-
~ ~. '.
e 4
%g e
8 l
e.
y Y
I e
e e
l e
N.
8 f
. n s
._u l
e i
e I
l e
g
{
..f
.t 2,1 TP S00.0!. 0
... o -
I.
i, I
l 1,.
...........t
......... -.........i_..- _.._..._ _..
.s 2-
'FJ 0W RIQUIRED FOR DECAY llEAT RD10 VAL gJ,
p,,
i i
- i..
.i
_ -.l. t.
l 4..
t.....
,i 1,
i t
- l. c i
3,
+
.f 1...
.e
,............I
. p,..
.i..
i
..............1 1
l.
i
...i
.s
...i.
.. l...
. i a
s.,
..t.
..j..
. 1...
+.
y~
.s
.cr.
.s.
- l..
i..,....,,
i, i..
. i.
t.
l..,. :. _
I t.
.t. _ _... _..
i,
........i.....
o 3
g
.T i
l n,,,
.......... _.....1,..
i _.. ___..t.
..I.
i I..
...I....._..i o,,
2 _.
c.
. s.
i..
l e4 i..
.i
... _ o _
c3
.i
.l
.i t
- , o,
.i n.
I.i.
1.,.
t.
m.
n-j...
.t_
a.
.i.
l
___ s _-
t-
/
i i.
... I..:..
a
.l
.l.
i l
.g.
.i t
(
O i
.-_ l.
.i.._.._..._
a-
.t.
s.
- l.. i.
y.
i
- 3. -
1 e
i j
2 L
cm
....i
.,.. _.i..
l._
i
. _. o_
l_.._....... _.... _.
I.-.'
,i
..g.
- i. -. :
se
- i..
l
...a r
g O
.L
/-.'..l.-l a-...-l.
t i
8-
.......l g'. --l...-3..J....i..
l a
W i-y
-. ' /-
- u. -
2--.-
.i....r.
- 1 -
a.
,...g-
.i
.l i
y.
.,,.... l.
a
.,, ec m
-l..
u l..
.i
..l 9.,
u.
. _i.
26 e
i._ _ _
4
...... i 4
o, z.
a I.
a I..:.l:
i
- . 1
.-l
. :::. -i.
P. i
- /
1:..
o.
. :..-..i.._.j
. i..._ :__
- o.,
u.
m
.i.
e;.
g _- -
- l...,
i.
. ' - :l..
4 o
j
.:. l i
- i -i
-l.
M
.e. r
..s _........
. p.:...
- i..,... i g..
,j.
W "5
.i i,.
o_
I.,.I i.
i
.~
.v u
.!l....I..:l.-
.l i.
__. i.
...... i.. !.
..l..
a:
._.{....~..
i
.i
..m._...
m g,..,,
....p j,
u q
j, i
,i
.g i
. _ _...i..._..
y.
i l
Z s.
[.--
- l..j. :
3
.r i.
,. :._;.r -.,.
.l..._. -.::_. :
..:... l.__:......i..._.... ::..u.. t..... :
~:
i, l
.i i
i s
l
.s
~ --*
n O
1 2
3
'4
~
.5 I
i. I-1 I
I4-.. :.:. :
- ....i:. :..:. i. i
..J.
o
6-i
[
l 25 TP 800.04.0
'A
)c73 DETEF1tDIATIQ1 OF C04MION FACIOR IVR INDICATFD POKER i;
q
__,1.
Using reactirreter data frcm Section 7.1, select tmperature & NI Pcrmr Cata 1
1 for each tmperature plateau of Section 7.1.
De sure to select data where
- c This has been power level by heat ba?.ance and feedwater flcus are constant.
l,;& y
" marked" on the reactir.cter data file by starting a new block of data when f4-b(
conditions have stabilized (See step 7.1.11).
s.
For the selected data records, average the four 'It values to obtain an average
/].
2.
f
'It at a given tine.
3.
Plot the average Tc for each plateau versus the corresponding NI3, 4, 5, 6, 7, 8 flux levels:
8 Indicated Power VS.
Avg. Tc for NI-5, 6 NI-EEPD Indicated GP 6/7 Pcre r NI-6 i
i Baron Core.
559 582 BC Press O
Tc F
\\
4.
'For each detector in Step 3, linearize tha data and find the sicpe of the lin:
t witich will be the cor2.ection facior for that detector.
5.
Using the correction factors frcm step 4 above, cor.etruct charts for operators use showing correction to be applied to indicated power V. 'It::
~
a.
-0.2 Fake chart similar to this. Since
.. -0.1 all detectors should be approxiratc (r '-
- j.j ly the same, it should be possible C.F.
O M1 to make one chart for all power M.2 y-range detectors and one for inter-
-I nodiate range.
1
-2
-1 0
+1
+2 l
ATc J
6.
'Ihe correction factor will be used in Phase II to correct indicat?d power:
4 i
Actual = =, Ind. + 7 1
(
6
,i?,
- ... ~.
.__a*
+.
M*r i
, -S 2G l
r * **
- 2
. p TP 800.04.0 i
t;,.
THE TOLEDO EDISON COMPANY POWER, PRODUCTION DEPT.
f
- static,n.
1 Of 1 TEST READINGS Sheet No.
OF
%~
Testc/
Page No.*
,g a :-
Test No.
observers k
g-Date
\\
r Time I, - prra.
[.-
l Int. No.l DV:4
,IM4 l
l i:
,Ii:CP l*
iocp ;2
~
l g 14NI g RJI
- t Cwa.
'C wp. !
I Time Flcy Flcw l
R
{
-,q(Volts
_..Q(Volts)_, n _ __.
_______a_.
i i
r 1
i i
l i
i l'
I i
s s
l l
e a-
.l.
l l
i i
i i
t
_..._.i t
I i
I l
i i,
1-.
__._.2.-
.___.i i
l l
t
-- _j 1
l l
i r
+
e I
.i l
3
-]
-[
l I
e t
i i
i i
l
- l..
i l
1 i
i i
l 3
- 2..
I s
i i
i i
i.
i.
l i
j 1-t I
s j
4 l
g l
I- -
--t- -
-e. :
e s
l I
l i'.- -i, l g
s a
l i
}
l i.
p I
i I,
T
, j--
l l
i t
i -
i 9
l i
i l
I i
j e
s e
l l
- l..j.
I I
l 1
l
.L s
l h
0.!
.j i
.l.
I I
I, i
~
t s.
t
- ,I l-
}
I i
i i'
l I
1.
.t 4
l
! ((
l i
s I
g I
l'
.l I
I "I
i
--.s._.
-w.
L
}._ - _..
I_
1-~
l i__.1,
l e
1
-., f it
~
.v.
g N
- ?
SOM 055 l
July 16, 1975 l'
Page 2 Mr. J. G. Evans M.i
. dabcock & WilcoX
^
Test Results Summary:
Natural Circulation in Oconee I T.~:e Plants, "A Description of Measure =ents and Su= nary of Resulte" e
[
March 21, 1974, as evaluated by BEN Nuclear Service. Natural circulation steam generator 1evel approximately 50% on the operating range instrumentation.
h : Natural Circulation
?
Graph 1:
Flow vs Reactor Pcver (Decay Heat) @ Natural Circulation Level of 50% on th'e operating range instrumentatica "Censervative analytical results".
Graph 2:
Same as Graph 1, except curves represent " Realistic analytical results".
9 These two graphs represent our Engineering Department's evaluatica of charact istics for Davis-Besse Unit I as co= pared to the Oconee I natural circulation characteristics normalized to Davis-Eesse pcVer and flow parameters.
Graph 1 represents the conservative characteristics in which all heat transferred frc the React.or Coolant System to the Secondary System is assumed to occur in the lower portion of the steam generator, in the vicinity of the 1cuer tube sheet i
Graph 2 represents the more realistic situation for it assumes that all heat i
transferred frem the Reactor Coolant System to the Secondary System occurs in
~
{
the vicinity of the auxiliary feedvater nozzles where feedvater is introduced to the steam generators.
Both graphs are based on a natural circulation leve
{
of 50% on the cperating range and as indicated the more realistic characteri:
l ties, Graph 2, reflect more natural circulation flow than the conservative re i
sults shown in Graph 1.
I In each case the natural circulation flov at Davis-Besse Unit I will always b j
greater than that at Oconee I, a plant of like design, for the corresponding power conditions.
I hope that this information is sufficient for deletion o f the Natural Circu tion Test and for making the necessary corrections to the FSAR.
If you have questions, please contact Fred Faist.
Yours truly, a.
R. J. Baker, Jr.
Site Operations Mana6er I-RJB:FRF:nif encl.
cc:
G. M. Olds E. C. Novak, TECo E. J. Coppola J. D. Lenardson, TECo J. A. Lauer T. D. Murray, TECo
,1 R. L. Pittman i
T. F. Scott
.~
E. L. Icgan E. R. Michand-...
-~
- - - -
- 2--"
~
-?
e.
~
a
. W: a.
75 S..
}
r._. j
....i
'g
"{.
TT~AC/IMEMr 1 J;
n,::
p;.
2
- e. :,
g,.
- g..,
c.
!=.
2 t.'s, t, -
~
Natural Circulation in Oconee i Type Plants lA Description of Measurements and Suw.ary of Results i
l s
. March 21, 1974 l
~
.f..
u..
i
~.
l
~
~ -
s
. r,.
3 7,.~
x.
l Prepared SY:
' (
i Q
l A. Robeson e.
Plant Performance Service s
- i Reviewed fe: Acc.uracy:
,7
~
. *w
....i......
a.._.
?._
.. ~..
t l
3
.J
e J
' NATURAL CIRCULATION IN OCONEE I TYPE PLANTS l
S u==a ry t? r* -
Adequate natural circulation in the reactor coolant system assumes heat removal from the reactor core upon loss of all reactor coolant pumps.
Babcock & Wilcox nuclear steam systems are designed to provide natural circulation, and safety
,I i
analysis verifies that I
in the natural circulation mode, more than adequate cooling is provided for the reactor core.
As indicated in the Oconee I FSAR, the system is designed to provide natural circulation flow, at 1% decay heat, greater than that required for heat removal by a factor of five.
Natural circulation tests performed on Oconee I, using two independent methods, yielded a minimum factor of ten.
Although normal reactor coolant flow sensors are not intended to read flow rates in the range produced by n'atural circulation, a flow rate in agreement with test ceasurements was indicated in the control room.
Thus, analysis and experimental measurements have verified that Oconee I-type plants are capable of adequate natur'al circulation flow in the reactor coolant system upon loss of all reactor coolant pumps, i
I Method of Measurement I
The basis for measurement of natural circulation is determination of the reactor core transit time for a temperature transient, the " induced temperature transient
' circulation time (ITTCT).
Decay heat from the reactor core provides the flow, and', prior to the measurement, the reactor is operated at power for a time which vill insure that at least a 1% full power decay heat level vill be -present during the first hour following reactor shutdown.
The.once-through steam generators (OTSG) are operating at a level of approximately 50%, and the reactor is brought to hot shutdown condition with one reactor coolant pump (RCP) operating in each loop.
The main feedwater pumps are stopped and the level in the OTSG's I
maintained at 507..by the emergency feedwater pump through the auxiliary nozzles.
The remaining two RCP's are tripped, and the core outlet te=perature allowed to level off, indicating c stabiliz~ed natural circulation flow.
The time required
$J " l 1s about one-half hour.
When natural circulation is established, a temperature
~'
t drop of about 10 degrees is produced in.the core inlet temperature from a rapid reduction in header pressure by opening the steam bypass valves.
A measurement (1
of the time between the break point in temperature at the cold leg,and that at the hot leg, determines the circulation time.
I The volume and weight'of water between the two temperature measuring points and g
the observed transit time are the parameters necessary to determine the natural circulation flow (NCF):
M NCF
)
ITTC (1)
{-
k where:
M Mhss of the. reactor coolant between cold'and hot leg
=
RTD's et the time the ITTCT is measured in Ibm.
1TICT Induced Temperature Transient Circulation Time in hours.
=
O e
e I
~ * '
g.-eri 2
kr.s t-T.'.
- 3 g s
I
.An alternate value for the natural circulation flow is obtained by using a calculated value of the decay heat source in the reactor at the tice of introduction of the tecPerature breakpoint.
Using a calculated decay heat e..
[
curve and the recent power history of the plant, a value for the decay heat
{,f generated by the core for any time af ter shutdown can be obtained.
1; The calculated value of Q, the decay heat generated by the core (Btu /hr), permit
'I ~ I the natural circulation flow (NCF) to be calculated by:
I
.?
I ycy.
Q
~
-l C x (T -T)
(2) h where:
Q calculated value of decay heat at tice of ITTCT ceasurement.
=
C Specific heat of reactor coolant in Bru/lb F
=
T h
Temperature of hot leg at time breakpoint occurs at hot leg.
=
T Temperature of cold leg at ti=e breakpoint occurs at cold leg.
=
c
. Experimental Data The initial experiment
' conducted at Oconee I to measure natural circulation flow with decay heat was on November 4, 1973.
The results showed that there was adequate natural circulation, but due to problems with data retrieval, no accura:
,)
i value fn-TrTCT.could be established.
A second experi=ent, on May 2, 1974, yield 7
the r'
..own below.
~
Natural circulation measurement using Equation (1):
M Mass of reactor coolant between cold and hot leg RTD's
=
254,541 lbm
=
ITTCT 1 min. (Graph 1)
=
4 '
254,541 6
NCF =
x 60 min /hr = 15.3x10 lbm/hr @ 1.05% Decay Heat y
[
The pressure transient which produced the temperature drop is shown in Graph 2.
The sharp temperature decrease (breakpoint), used as a timing indicator to ceasure ITTCT, produces an increase in natural circulation flow which is included I
in the above value of NCF.
of a similar experiment performed atA rough correction can be cade by using the results when the decay heat was essentially zero.zero power, beginning of life (May 1,1973)
Craph 3 shows the-result of a ceasurece i
yiciding an ITTCT = 4.0 min.
The flow rate corresponding is then:
NCF (No Decay Heat) = 256'947 6
x'60 = 3.85x10 lbc/hr 4O
- Pressure and temperature conditions vara aae u-a**--1..*.-'- - - - - - -. ' - - - - - -
g O
es g-_
e