ML19320D524

From kanterella
Jump to navigation Jump to search
Effluent & Waste Disposal Semiannual Rept,Radiological Impact on Man for First & Second Quarters 1979.
ML19320D524
Person / Time
Site: Vermont Yankee Entergy icon.png
Issue date: 08/31/1979
From:
VERMONT YANKEE NUCLEAR POWER CORP.
To:
Shared Package
ML19320D515 List:
References
WVY-79-99, NUDOCS 8007210467
Download: ML19320D524 (47)


Text

-

l

' e, l

9 l

EFFLUENT AND WASTE DISPOSAL SDiI-ANNUAL REPORT i l

RADIOLOGICAL DIPACT ON N  !

l FOR FIRST AND SECOND QUARTERS, 1979 1

i VERMONT YANKEE NUCLEAR POWER STATION b

  • 0 07 21.oggy,

, .y <

. 1 s-ERRATA In the Vermont Yankee Effluent and Waste Disposal Semi-Annual Report covering the first half on 1978, the following correction 1

should be made:

Table 3, A.I.a; spent resins, filter sludges, etc., change the volume'of waste shipped from 4.56 E+03 m 3 to 4.56 E+01 m3 ,

e 0

e F '

4-

TABLE OF CONTONTS Page 1

.. 0 INTRODUCTION

, 2.0 METEOROLOGICAL DATA 2 3.0 RADIOACTIVITY RELEASES 3 3.1 Liquid Releases 3 3.2 Gaseous Releases 3 4.0 DOSE ASSESSMENT 4 4.1 Organ Doses to Individuals from Receiving-Water 4

Exposure Pathways 4.2 Individual Whole-Body and Skin Doses from Noble Gaseous Effluents 4 4.3 Organ Doses to Individuals from Radioactive Iodine and Particulates in Caseous Effluents 7 4.4 Whole-Body Doses in Unrestricted Areas from Direct Radiation 9 4.5 Whole-Body Doses to the General Population from all Receiving Water Related Pathways 10 4.6 Doses to the General Population and Average Individual within Fifty Miles from Gaseous. Effluents 10 REFERENCES 12 APPENDIX A - SUPPLEMENTAL INFORMATION l

LIST OF TABLES Table No. Title lA Gaseous Effluents - Summation of all Releases

, 1B Gaseous Effluents - Elevated Releases 1C Caseous Effluents - Routine Ground Level Releases ID . Gaseous Effluents - Non-Routine Releases 2A Liquid Effluents - Swnmation of all Releases 3 Solid Waste and Irradiated Fuel Shipments 4-A to 4-H Vermont Yankee Joint Frequency Distribution January - March, 1979 5-A to 5-H Vermont Yankee Joint Frequency Distribution April - June, 1979 6 Quarterly Average X/Q and D/Q Values for Selected Receptors

~7 Summary of Radiological Impact on Man l

e E

  1. 8 VERMONT YANKEE EFFLUENT AND WASTE DISPOSAL SEMI-ANNUAL REPORT RADIOLOGICAL IMPACT ON MAN JANUARY - JUNE 1979

,_ l.0 INTRODUCTION-Using actual measured effluent and meteorological data for the first six months of 1979, this report estimates potential doses from radioactive effluents that could affect individuals and the general population near the Vermont Yankee Nuclear Power Station. Tables 1 through 3 lists the recorded radioactive effluents and solid waste for this semi-annual period.

Tables 4 and 5 report the cumulative joint-frequency distribution of wind speed, wind direction, and atmospheric stability observed during the first half of 1979, while Table 6 lists the calculated X/Q and D/Q values at different points of interest based on ths meteorological record presented in Tables 4 and 5 for both quarters. Table 7 summarizes the potential radiological dose commitments to individuala and the general population surrounding the plant. Supplemental information concerning the plant's regulatory release limits and the methods used in measuring released radioactivity is given in Appendix A.

All estimates of potential dose for the first six conths of 1979 were within the dose objectives set forth in Appendix I to 10CFR50. This was accomplished while the plant realized net capacity factors (design MWe) l of 83.1 percent and 91.0 percent for the first and second quarters, 1 1

respectively.

i

1.

2.0 METEOROLOGICAL DATA Meteorological data was collected during this reporting period from

, the site's 300 foot met tower located approximately 2200 feet northwest of the reactor building, and about 1,400 feet from the plant stack. The 300 foot tower is approximately the same height as the primary plant stack (94 meters) and is designed to meet the requirements of Regulatory Guide 1.23 for meteorological monitoring.

Implementation of the Central Meteorological Monitoring System (CMMS) was completed during the-month of May, 1978. The CMMS is expected to improve data recoverability substantially by permitting routine daily (Monday through Friday) checking of data transmitted from the meteorological tower every

6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />. In addition, the on-demand, tower call-up capability from the central system location will allow instantaneous monitoring of any sensor suspected of malfunction. This feature will permit more rapid recognition of sensor or equipment malfunction, thereby reducing instrument downtime.

Combined data recoverability for the first and second quarters was 97.8 percent and 94.9 percent respectively.

X/Q and D/Q values were derived for all receptor points from the site meteorological. record for each quarter using a straight-line airflow i model. All dispersion and air concentration factors have been calculated employing appropriate source configuration considerations, as described in Regulatory Guide 1.111(1), plus a source depletion model as described inLMeteorology_and Atomic Energy (1968),(2) and deposition velocities as given by,Pelletier and Zimbrick(3).' Changes in terrain elevations'in the 1

site environment were also factored into meteorological models. A full description of the methods used to evaluate air dispersion phenomenon at the plant site is given in Vermont Yankee's 10CFR Part 50, Appendix I evaluation (4).

3.0 RADIOACTIVITY RELEASES 3.1 Liquid Releases There were no liquid releases of radioactivity from the plant during this semi-annual period.

3.2 Caseous Releases All gaseous effluent recorded for the first half of the year are listed in Tables lA through 1D. All gaseous effluents were recorded as continuous in nature, and were released to the environment via the 94 meter stack located approximately 875 feet north of the Reactor Building. As indicated in Table 1A, all gaseous effluents were well within the plants operating Technical Specification for gaseous releases of radioactivity.

In addition, there were no unplanned or non-routine releases of radioactivity in gaseous effluents during this reporting period.

. 1

~3-

4.0 DOSE ASSESSMENT Following the guidance of NUREG-0473(7) nuclides in particulate form which were not detected above the lower limit of detection, (LLD) have been reported as "less than" the LLD and have not been included in the dose calculations. However, the release rate of noble gases from the plant stack, after treatment of the gas stream from the air ejector through the augmented off gas system, is'so low that no noble gases are detectable above the LLD.

Therefore, as a conservative approach for the noble gas releases, it has been assumed for dose calculational purposes that the principal noble gases measured in the off gas mix at the air ejector are present at the LLD level determined for the plant stack.

4.1 Organ Doses to Individuals from Receiving-Water Exposure Pathways There were no routine or accidental liquid releases from Vermont Yankee during either the first or second quarters of 1979. As a result, no receiving water exposure pathways could contribute to any whole-body or organ doses to individuals in unrestricted areas.

4.2 Individual Whole-Body and Skin Doses from Noble Gaseous Effluents Based on the method of sector averaging discussed in " Meteorology and Atomic Energy - 1968", and utilizing the site meteorological data recorded for this reporting period, the point of maximum off-site ground level air concentration of radioactive materials in gaseous effluents was

~ determined for each quarter. Changing terrain heights in the vicinity of the effluent stack were taken into account in calculating these effluent ground level concentrations. For the first and second quarters of 1979, the pointslof maximum ground level air concentration were determined to be approximately SSE at 2.8 mile and NW at 1.55 mile (respectively) of the plant stack. The undepleted X/Q's at these locations were calculated to be 4.6 x 10-7 sec/m3 and 5.9 x 10-7 sec/m3 for the first and second quarters of the year, respectively.

Whole-body and skin doses were calculated at these off-site points

~

as a result of noble gas releases occurring in both quarters. The methodology applied to the dose calculations is consistent with that of Regulatory Guide 1.109(5) for an elevated release point. Dose conversion factors for noble gases and daughters were taken from Table 3-1 of this Regulatory Guide. For the beta contribution,,co the skin dose, a semi-infinite cloud model was used. The whole-body gamma dose was evaluated using a finite cloud sector average model with Gaussian activity distribution in the vertical plane. The gamma radiation received at a point of interest from a differential volume of the cloud is calculated. The radiation is then integrated over the entire cloua, taking into account of the geometry of the cloud, variation in concentration, attenuation by the interaction of photons with matter in the path between source and the receptor point, and scattering of radiation from material outside the direct path to the point of interest. An attenuation factor of 0.7 is also applied to the dose calculations to account for the dose reduction due to shielding which would be.provided by a residential structure. No additional credit is taken for decay of radionuclides in transit to the receptor point.

For the first quarter, theiskin and whole-body doses from exposure

, to noble gases at the point of maximum ground level air concentration were calculated to be 0.16 mrem and 0.078 mrem, respectively. For the noble gaseous. effluent during the second quarter, the skin and whole-body doses at the point of maximum ground level air concentration were calculated to be 0.10 mrem and 0.044 mren, respectively.

In addition, the maximum nearest resident and site boundary whole-body and skin doses have been calculated due to noble gaseous effluents from the plant stack during the reporting period. The maximum whole-body and skin site boundary doses (both 0.15 mrem) for the first quarter of 1979 occurred in the SSE sector, 0.54 miles from the stack. The second quarter maximum whole-body and skin site boundary doses (both 0.10 mrem) occurred at the same location.

l In the first quarter, the maximum skin and whole-body dose to the nearest resident (0.12 mrem and 0.11 mrem respectively) in any direction was determined to be for the skin dose in the SSE sector, 1.33 miles from

~

the plant stack, and for the whole-body dose, in the south sector, 0.33 miles . As a result of the second quarter meteorology and noble gas effluents, the maximum whole-body and skin dose to the nearest resident (both 0.083 mrem) in any sector occurred to the resident 0.33 miles south of the plant stack.

The resultant doses due to noble gas effluents for the maximum site boundary location, maximum nearest resident, and point of maximum ground level air concentration are tabulated in Table 7. All doses are conservative in that they assume 100 percent occupancy at each point. Whole-body doses consider the gamma radiation received from the effluent plume overhead.

The skin doses considers both the beta and gamma contributions at the receptor point. All doses from noble gaseous effluents are well below the dose criteria of 10CFR50, Appendix I.

4

4.3 Organ Doses to Individuals from Radioactive Iodine and Particulates in Gaseous Effluents The critical pathway of internal exposure to radioactive iodine and particulates, including tritium, resulting from gaseous effluents for the second quarter is through the grass-milk pathway. It is assumed that milk animals are free to graze on open pasture during the second quarter with no' supplemental feeding. This assumption is conservative since most of the milk animals inventoried in the site vicinity are fed stored feed throughout the entire year with only limited grazing allowed during the growing season.

During the winter months of the year, the dose commitment through the milk pathway and fresh vegetable ingestion is insignificant. The maximum ~

length of annual growing season is approximately six months long in this part of New England. Therefore, the milk pathway and vegetable ingestion doses for the first quarter are the result of activity deposited on feed and vegetables grown during the growing season and allowed to decay while held in storage. As a result,'the critical pathway of exposure for radioactive iodine and particulates during the first quarter is through inhalation.

As a result of the milk and fresh vegetable pathways, the maximum dose for the second quarter from gaseous releases of radioactive iodine and particulates was determined to occur at a fars 3.5 miles south-southeast of the plant. The critical organ was an infant thyroid with a calculated dose of 0.37 mrem. For the first quarter, with inhalation being the principle pathway of exposure, the maximum organ dose was projected to also be at the farm, 3.5 miles south-southeast of the plant. The critical organ was a child's thyroid with a calculated dose of 0.12 mrem. The pathways of exposure which were assumed to exist during the second quarter at this farm include ground plane exposure, inhalation, fresh home grown vegetables and goat's milk. The pathways of exposure considered at the farm during the first quarter include continuous ground plane exposure, inhalation and contributions from stored vegetables and milk.

Table 7 shows the maximum calculated quarterly organ dose due to the combination or' exposures from all pathways which have been identified at the farm. Table 7 also shows the calculated organ doses to the highest exposed nearby resident, and potential organ doses to individuals if assumed standing at the highest ground level air concentration point on the site boundary for the entire six-month reporting period. The site boundary doses only include exposure from inhalation, and direct radiation from the ground plane. The nearest resident is assumed to have a vegetable garden during the growing season which contributes to his ingestion dose. For all ground plane exposures, the-activity is assumed to accumulate on the ground for 15 years at the rate equivalent to that observed during each quarter. This is a simplified method of approximating the average deposition over the life of the plant. The calculated dose from direct exposure to activity a

on the ground thus represents the dose an individual would see in each quarter if the plant had been operating 15 years. This approach is very conservative, but shows the relative impact the plant would have on the dose commitment over its operating life if the releases were to continue at the levels recorded during this reporting period.

t The critical organ for the first and second quarters at the highest exposed nearest resident, and maximum site boundary location, was calculated

- to be a child's thyroid. The respective doses at these locations for the first quarter were 0.069 mrem (SSE 1.33 miles) and 0.0019 mrem (SSE 0.54 miles). For the second quarter,.the respective doses were 0.015 mrem (NW 1.35 miles) and o.9 x 10-4 mrem (SSE 0.54 mile).

4.4 Whole-Body Doses in Unrestricted Areas from Direct Radiation The major source of direct radiation (including sky shine) from the station is due to N-16 decay in the turbine building. Because of the orientation of the turbine building on the site, and the shielding effects of the adjacent reactor building, only the seven westerly sectors (SSW -

NNW) see any significant direct radiation.

High pressure ionization chamber (HPIC) measurements have been made in the plant area in order to estimate the direct radiation from the station.

The chamber was located at a point along the west site boundary which has been determined to receive the maximum direct radiation from the plant.

Using measurements of dose rate made while the plant operated at different power levels, from shutdown to 100 percent, the total integrated dose from I

direct radiation over each three month period was determined by considering the quarterly gross megawatts generated. Field measurements of exposure, r

in units of Roentgen, where modified by multiplying by 0.6 to obtain whole I

-body dose equivalents, in units of rem, in accordance with recommendations of HASL report- 305(6) for radiation fields resulting from N-16 photons.

Estimates of the population exposure from direct radiation during the first and second quarters have been made out to two miles. Beyond two miles, the dose from the turbine building is negligible. As a result, the estimated population dose for each of the two quarters respectively was approximately 1.7 x 10-2 and 1.9 x 10-2 man-rem, for a total population

. of about 351 persons. The estimated direct radiation dose at the maximum site boundary location was approxima'.ely 3.1 mrem for the first quarter

, of 1979, and 3.4 mrem for the second. These hypothetical individual doses ast,ume a 100 percent occupancy factor, taking no credit for the shielding effect of any residential structure. Table 7 summarizes these results.

4.5 Whole-Shdy Doses to the General Population from all Receiving Water Related Pathways Since there were no radioactive liquid effluents released from the plant during the reporting period, there are no related population or ,

individual doses from receiving-water pathways.

4.6 Doses to the General Population and Average Individual Within Fif ty Miles from Gaseous Effluents Using site meteorological data in Tables 4 and 5, quarterly average X/Q values were determined for each sector formed by placing radial rings from the plant at distances of one, two, three, four, five, ten, twenty, i thirty, forty and fifty miles, and their intersection with radial lines 1

drawn to form each of the sixteen principal compass directions. For noble I i-gases, zwhole-body and skin doses were calculated for each sector and multiplied by the estimated population within each sector to determine the sector man-rem. No credit for decay in transit of activity was assumed.

For the approximately 1.1 x 10 6 people within fifty miles of the plant, the first and second quarter whole-body doses from noble gas cloud exposure were estimated to be 1.9 person-rem and 1.2 person-rem, respectively. For the same two quarters, the average individual whole-body

. doses were 1.7 x 10-3 mrem and 1.1 x 10-3 mrem, respectively. The skin doses for the two quarters were 3.2 person-rem and 2.0 person-rem, respectively.

The average individual skin dose was 2.8 x 10-3 and 1.7 x 10-3 mrem for the first and second quarters.

Table 7 also indicates the population whole-body and thyroid dose commitments from radioactive iodine and particulates (including tritium) released from the plant in gaseous waste. The pathways of exposure which have been considered for the 50 mile population include inhalation, ingestion of vegetables, milk and meat produced within 50 miles, and the direct exposure to activity deposited aan the ground plane. The total whole-body and thyroid dose commitments for the first quarter were calculated to be .

4.8 x 10-2 person-rem and 0.67 person-rem respectively. For the second quarter, these doses were 1.5 x 10-2 person-rem and 0. 61 person-rem respectively.

4 e

REFERENCES

1. Regulatory Guide 1111. "Hethods for Estimating Atmospheric Transport i and Dispersion of Caseous Effluents in Routine Releases from Light-

- Water-Cooled Reactors", U.S. Nuclear Regulatory Commission, Office of Standards Development, March 1976.

2, Meteorology and Atomic Energy,1968, Section 5-3.2.2, " Cloud Depletion",

pg. 204. U. S. Atomic Energy Commission, July 1968.

3. C. A. Pelletier, and J. D. Zimbrick, " Kinetics of Environmental Radioiodine Transport Through the Milk-Food Chain", Environmental Surveillance in the Vicinity of Nuclear Facilities, Charles D. Thomas Publishers, Springfield, Illinois, 1970.
4. " Supplemental Information for the Purposes of Evaluation of 10CFR Part 50, Appendix I", Vermont Yankee Nuclear Power Corporation, June 2, 1976.
5. Regulatery Guide 1.109, " Calculation of Annual Doses to Man From Routine Release of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR Part 50, Appendix I", U. S. Nuclear Regulatory Commission, Office of Standards Development, Revision 1, October 1977.
6. W. M. Lowder, P. D. Raf t, and G. dePlanque Burke, " Determination of N-16 Camma Radiation Fields at BWR Nuclear Power Stations", Health _

and Safety Laboratory, Energy Research & Development Administration, Report No. 305, thy 1976.

7. NUREG-0473, " Radiological Effluent Technical Specifications for BWR's",

Revision 2, July 1979; Table 4.11-1, notation f.

TABLE 1A VERMONT YANKEE EFhLQENT AND WASTE DISPOSAL SEMI ANNUAL REPORT - 1979 JANUARY - JUh?.

GASEOUS EFFULENTS - SUMMAIION OF ALL RELEASES Unit Quarter Quarter Est. Total Error, %

1st 2nd A. Fission & activation gases Ci <5.65E+03 <8.57E+02 1.0EW2

1. Total release
2. Average release rate for period uCi/sec <7.19E+02 <1.09E+02
3. Percent of technical specification limi:  % <2.12E-01 <1.51E-01 i

B. Iodines

1. Total iodine - 131 Ci 3.77E-01 2.61E-02 I 5.0E+01
2. Average release rate for period uCi/sec 4.77E-02 3.31E-03 -

L Percene of technical specification limit  % 9.99E+00 6.92E-01 C. Particulates

1. Particulates with half-lives C1 1.05E-02 2.93E-03 I 5.0E+01
2. Averane release rate for oeriod pCi/sec 1.34E-03 3.72E-04
3. Percent of technical specification limit  % 1.75E-01 4.63E-02 4 Gross aleha radioactivity C1 7.48E-08 4.68E-08 D. Tritium .
1. Total release Ci 4.37E+00 1.92E+00 1 5.0E+01
2. Average release-rate for period pCi/sec '.56E-01 2.44E-01
3. Percent of technical specification limit  % N.A. N.A.

I I 4 -

  • e G"

7 t*

l

TAlli.F. til VElt!nNT YANKlili liFFLillINT AND WASTE DISPOSAL, SDITANN!'AI. 'ti!!'ntlT - 1979 GASliollS tiFFLUI!NTS - El.1 VATlin ItEl.liASE

- JANUARY - JUNE CONTINUOUS MODE DATCl! MODE Nuclides Released Unit Quarter Quarter Quarter Quarter 1st 2nd 1st 2nd

1. Fission gases k rypt on-85 Ci (1) (1) krypton-85m Ci <2.53E+01 <2.13E+00 krypton-87 Ci <6.09E+01 <1.69E+01 krypton-88 Ci <5.78E+01 <1.04E+01 xenon-133 Ci <4.09E+03 <1.28E+00 xenon-135 Ci <1.62E+02 <2.02E+01 xen on- 13.~,m Ci <6.00E+02 <1.52E+02 xenon-13M Ci <6.58E+02 <6.54E+02 Total for period Ci <5.65E+03 <8.57E+02 -
2. Iodines iodine-131 -Ci 3.77E-01 2.61E-02 -

iodinc-133 Ci 1.09E-01 4.40E-03 iodine-135 Ci 4.09E-02 2.38E-03 Total for period Ci 5.27E-01 3.28E-02

3. Particulates strontium-89 Ci 1.86E-03 1.79E-04 strontium-90 Ci 7.33E-06 1.05E-06 cesium-134 Ci 3.02E-03 1.80E-03 cesium-137 C1 4.12E-03 2. 88E-04 barium-lanthanum-140 Ci 2.91E-04 4.02E-04 cobalt- 60 Ci 9.43E-04 2.11E-04 rine- 65 C1 2.71E-04 3.97E-05 mnganese- 54 Ci 2.40E-05 7.30E-06

- cadmium- 109 Ci 4.54E-04 (2) cerium- 139 2.04E-05 (3)

(1) -Kr-85 not detected in off-gas mix - limit of detectability = 6.97E-07 uCi/cc (2). MDL < 1.17E-12 pCi/cc (3) MDL < 4.89E-14 uCi/cc

~

TABLE IC VERMONT YANKEE ,

EFFLUENT AND WASTE DISPOSAL SEMI-ANNUAL REPORT - 1979 JANUARY - JUNE

' GASEOUS EFFLUENTS - ROUNTINE GROUND LEVEL RELEASES

  • i
  • There were no rountine measured ground level continous, or batch mode, gaseous effluent releases during the reporting period.

e .

[ e e

[

4 5- g mm -- ,. w w y w -.-y-ey-- w u,

  • f.y 1

l

., TABLE 1D i

VERMONT YANKEE F . EFFLUENT AND WASTE DISPOSAL SEMI-ANNUAL REPORT - 1979 JANUARY - JUNE I

GASEOUS EFFLUENTS - NON-ROUNTINE RELEASES

  • l l

4

  • There were no non-routine or accidental gaseous effluent releases during the reporting period.  !

i i

De i e

i Y

S 1

e 9

I 1

e !

Y

, , ,, ,,, . ----a., . . - -, . - ,, -- . . .. -. -- , , - ,- - - -

TABLE 2A VERMONT YANKEE

, EFFLUENT AND WASTE DISPOSAL SEMI-ANNUAL REPORT - 1979 JANUARY - JUNE LIQUID EFFLUEVIS - SL' iTION OF ALL RELEASES *

  • There were no routine or accidental liquid effluent releases during the reporting period.

~

\

l I

d TABLE 3 VERMONT YANKEE EFFLUENT AND WASTE DISPOSAL SE!!IANNUAL REPORT SOLID WASTE AND IRRADIATED FUEL SHIPMENTS January - June - 1979 A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (Not irradiated fuel) i.

6-month Est. Total

1. Type of waste . Unit Period Error, %
a. Spent resins, filter sludges, evaporator m3 6.94 E+01 bottoms, etc. (1) Ci 2.47 E+02 i 7.5 E+01
b. Dry compressible waste, contaminated m3 1.48 E+02 equip, etc. Ci 4.87 E+01 7.5 E+01
c. Irradiated components, control m3 rods, etc. Ci m3
d. Other (describe) Ci
2. Estimate t.? major nuclide composition (by type of waste)
a. Ce.sium - 134  % 3.0 E+01 Cesium - 137  % 5.0 E+01 l Cobatt - 60  % 5.0 E+00 Barium / Lanthanum - 140  % 4.0 E+00 ~)

Zine - 65  % 2.0 E+00

b. Same as "a" above  %
c.  %

Si

d.  %
3. Solid Waste Disposition .

Number of Shipments Mode of Transportation Destination 16 Truck Barnwell, S.C.

1 B. IRRADIATED FUEL SHIPMENTS (Disposition)

Number of Shipments Mode of Transportation Destination None (1)- For the first 6 months of 1978, the volume of Type 1.a. waste were incorrectly reported as 4.56 E+03 m 3 . This should be corrected to 4.56 E+01 m3 ,

1

, e 1 e

.A OOO ao M m se M @ OOO se M p OOO OOO MOO 4 OO MO MO OO MO OO OO O e*

a=

  • e e o e e e e e e e e e e e e C OO M M OO M OO OO O s't e= M M M O Z ee &

E

.J OOO 000 000 OOO OOO OOO OOO GOO O O* OO OO OO OO OO OO OO OO O IE e e e e e o e o e e o e e e e e e

, 7 OO OO OO OO OO OO OO OO O

w OOO GOO OOO OOO OOO OOO 900 OOO e-2 OO OO OO OO OO OO OO OO 2 e e e e e e e e e e e e e e o e J OO 90 OO OO OO OO OO DO 4 e

U O

E OOO OOO OOO DOO 000 OOO OOO OOO W 2 3D O OO OO OO OO OO OO OO e e e e e o e o e e e e e e e e E OO DO OO OO OO O C- OO OO Q 2

O B OOO OOO ODO OOO 000 000 000 000 4

= 2 OO OO OO OO OO OO OO OO Z e B e e e o e e e e e e e o e e e e o

OO OO OO CC OO OO OO OO O

n E OOO OOO OOO OOO em om l#9 OOO OOO =* M M tad a CO OO OO OO MO OJ OO MO J ,

e e e o e e e e e e e o e e e e

  • OO OO OO OO M OO OO M O, e= M M W Z

W E OOO OOO OOO OOO OOO OOO OOO OOO e, y n OO OO OO OO OO OO OO OO M W 3 e e o e o e o e o e e o e e e e W OO OO OO OO OO OO OO OO O L Z w me m'* 1 OOO OOO OOO OOO OOO OOO OOO OOO E O 3* M OO OO OO OO OO OO 3O OO ==e

>= u o e e e o e e e o e e o e e e e M 2 OO OO OO OO OO OO OO OO E 4 W .J

& 3 4 O A 00O 000 ODO DOO COO COO OOO OOO u 9 W W GO OO OO C O OO OO OO OO 3 59 e o e e e o e o e e o e e o e e 5 4 e w CO OO OO OO OO CO OO OO u Pm 2 I 2 a O 4 4 e9 == ss OOO 000 OOO COO OOO OOO OOO DOO "5 4 t= CC CC CO OC OO OO OO OO M w .J u e e e e e e o e e e e e e e e e a u s OO 00 OO OO OO GO OO -OO as e a 4 a O W OOO OOO 000 000 000 000 000 OOO 9 W m se CO DO OO CO OO OO DO

> Q 59 e e e e e o e o e e e e e e e o W 2 QO OO OO OO OO OO OO CO

.4 **

3 3 W DOO 90O 000 OCa OOO COO 000 OOO W # OO O r2 SO CO OO cc Oe OC C 4 e o e e e e e e e e e e e e e e c CL 0C OO OC OO CO OO OO OO W ee 3 O iE 9 4 4W 2 W OOO OOO OOO OOO OOO OOO OOO OOO 1&

O es a OC OO OO ao OO OO DO O@

m* WB led * * *

  • e e e o e e e e o e o e 99 30 s= 4 CO OC OO OC OO CC CO OO se me 3 =6 ZZ

& u me e.

me W OOO =* M @ OOO OOO OOO OOO OOO se M @

> GO MC OO CC OO CO OO MO EE

.S= s= e e e e e o e e e e o e OO OO e e M

e e os se eo OO M OC OO OO s is, se J m m Q me 99 O S W OOC OOO OOO COO OOO COO OOO OOO Z2

> 4 2 CC OO OO CO OO OC OO OO OC u == ea# * *

  • e * * * * * *
  • e e *
  • e se ==

2 St OO OO OO OO OO OC OO OO == a=

W eg 3 DD O W OO3 OSC == M @ OS O OOO O3O OOO == M @ 2E naJ J OC CO MC CC C C OO CO MO WW X . e e o e e e e o e e e o e e o e O wt h CC OC em ,Oc Oc cO OO M gg

  • 9 M 33 a=

2 es OCO OOO O3 3 oO 3 OOO OOC O O 1ll OOO C3 '

  • = 2 CC CC C C C C CC C C CC CO O" C 4 2 e e e e e o e e CC
e. e OC e o OC e e CO e e O3 uQ "5 em OC OC CO C C 4

W C .J .J W 3 OOC 000 COO Ooo OOO OOO OO ODO .J .J e M O OO OO OO CO OC CO CO OO as 4 2 2 e e e e e e e o e e e e e e e e 4 ee OO 00 CO OC 00 CO CO OO ss

> a. QQ

e- .=

2 h so I at ** M e due Po est om N so s= O sa sus W sm am M man m 2g O 1 J == N O ** N 9 *e N ====N O.

. sunNaus N em N N as N O ** N W 4aJ E O th 4ww uww aww eww gw= 3 ww ww Www uw

& o I u O M e e= taJ Ba tes == w an == 0 & W and D 9 C 59 4 EL N W W 3 led 8 . se s==

& J *= N SB 4 w tse

J OOO ** O @ NOO se O p eOO OOO en e W p9O 4 OO @@ 09 OO OO 90 OO ON w e e e e o e e e e e e e e o e e C OO O O O 90 CO O O em M N W N N O Z ee &

E J ese OOe OOe See OOO 400 OOO eOO O O 99 OO OO OO OO OO OO @@ *S g e o e o e e e o e e e e e e e o e

> OO OO OO OO OC OO De OO Q

r OOO OOO eOm .m e c OOO OOO GOO New >

X OO #9 C- O OO OO 99 OO CO 2 e e e e e o e o e e e e e o e e ,,3 OO DO C O 90 OO OO O <

N N W 3 O

' E OOO OOO DOS OOO OOO 000 000 OOO ana 2 OO OO OO OO OO OO OO OO e e o e e e o e o e e o e e e e E OO OO CO De OO OO OO OO O Z

e a 900 OOO COO ODO 900 000 ** O m ee O m 4 0% 2 OO OO OO CO OO OO OO OC E e E *

  • e e o e * * * *
  • e e o e e o=

OO OO OO OO OC OO O O 0%0 N M e

R OOO GOO SeO COO OOO OOO OOO GOS tad W OC OO CO OO OO OO OO CO .J e o e e e o e e e o e e e e o e a OO OO OO OC OO OO OO @@ .O

> tad 2 lan had 2 OOO OOO OOO OOO 90O DOO DOO OOO E u e OO OO CO OO OC CO OO GO M 3 S e e o e e o e e e e e e e e e e tad OO OO CO OO OO OO OO OO O L E w ee

    • E OOO == O e OOO OOO OOO OOO OOO se o In 3 O 3* O OO OO OO OO O0 OO OO OO w

> u o e e e e e e o e o e e e e e e-E 2 OO O OO OO OO OO OO O E as las N N .J X 3 4 O E OOC OOO OOO OOO SOO OOO OOO OOO u 9 Ra6 m CD OO OO OG OO DO DO DO 2 W e e o e e e o e e e e e e e e e 3 sc O h CO Oo OO OO OO OO OO OO u N 2 l M e;y 2 O 4 m == n OOO OOO OOO OOO OOO COO OOO O na e "3 a8 > CC CC OO OC CO CO CO CC

% N w .J u o e e e e o e o e o e o e e e o N u lac OO *w O 09 OO OO OO OO DO 8 M ,

~

y J w OOO COO 900 OOO OOe OOO 900 COO tas a CO OO CO OO DO OO DO CD 2* O e e o e e e e e o e o e o e e e e tad 2 CC OO OO CC CO OO OO OO

.J ==

3 2 taJ CC3 DOO DOO OCO OOC OOO OOO OOO h e CO CC CC CC CC CG CO OO O

& e e e e e o e e o e o e e e e o Q <

& CO OO OC CO OC CC CO OO tas om I 3 L9 2 6 e as and 2 ens OOO OOO OOO OOO  ?* O O OOO OOO OOO &E G # m CO OO OG OO 3O CO OC OO en e tad e *

  • e o e *
  • e - e e e *
  • e MM
  • *E OO OC OC CO OO CC OO CO == es D =J ZZ z u o e= '
    • tad OOO OOO OOO OOO OCO OOO ft O O OOO C > CC CO CO OC OC CO CC CC 24 e= = e e o e e e o e e e e e e e e oo M *e CC OO OC CC OC OO CO CO hh se .J l O *= me t taa OCO OOO DOC OOO COO DOO OOO OOD 22 3" 4 2 CO CO CO CC OO OO OC OO CQ u o= taA * * * * *
  • e e e
  • e o e o e e om em 2 m OO Cc CO CC OO OC OC CO *=>

taJ e er 3 2> 2e 3 las CCC OOO *= C @ COO COO COO COO == c to 22 tad 2 CO OC Oc CO OO C C OO CC taJ tas 2 e e e e e e e o e e e e e e e e em h CC CC C CC CC OO OO C TE N N OO 2 tad O3C CCO O3C CCC COO OOO OCO OSO OO

== 2 CC CC CC CC CC CC C C CC O3 L as a e e e e e e o e e e e o e e e e oc 3 e- CC OC CC CC Cc OC C C OC c0 e

las C .J .J eno 2 CCC coa CCO CCO 000 ode OOO OOO .o .J Jr C OC CO OC OO CO OC CC OO es e 2 2 e e e o e o e e e e e e e e e e 4 ** CC OC CO OO OO OC OO OO w4

  • 3 3D

> == =>

2 h 84 2 #4 ** 889 em M Pm etam 0%g EN 84 5 dP M g 34 Sh $ PE Wh  % pg gm gg

  • O T .J == N 8 == fge t == N ====N ** N N em f%I N ** N O == N ta# taJ T O a e=-= uww aww 3 == w e w Iww == w tad w w uu 3
  • I y g ar - e e= naJ 32 end k w - * == 0 SL and an#
  1. D C e aa N tea E E tat .J om om

& .a == N M e tw w l

.J OOO eee e em m to == e PWM en =* e NOe e O se 4 OO M ee ee >N ee Pm N OO Mee o= e e e o e o e o e o e o e e e e O OO == 4 e e e @ O es a e= ** N se N == 0 Z

== &

E OOO 000 See eOO OOe OOO OOO OOO O

.J OO e O OO OO OO OO OO GO OO E e e e e o e o e o e o e e e e o e

= > OO OO OO OO OO OO OO OO O

s OOO e te mme NOe mmy OOO OOO e De m >

X eO Fe O == OO O se OO OO ee 2 e e e e o e e e o e e o e e e e .A OO N O @ O OO OO 4 4 N 3 O

3 OOO OOO OOO es er @ == e 16 OOO OOO NOe tad 2 Oe OO OO PO PO GC OO OO e o e o e o e o e o e e e e e e g eC eO eO N N OO OO @ Q 2

= E OOO OOO OOO ee n te Nee == e @ en e en en se e 4 4 2 OC OO OO PO OO PO PO MN Z e e o e e e e o e e p

e 1 e e o e e e em OO CO OO N en N He e se e e

B OOO DOO OOO OOO me e en ODO en e en NOO tan b OC OO GO OO PO OO 9O OO .A e e o e e e o e o e e e e e e e a eC OO OO OO N CO N @ O e= tad 2 W tad E OOO OOO OOO OOO OOO OOO OOO OOO &

W W OO OO OO OO OO GC OO OG W E E e e e e e e e e o e e o e o e o taJ CO OO OO OO OO DO OO OO O

& 2 w me

  • e E OOO OOO en e en OOO OOO ODO DOO ee e in S m OO OO PO OO OO CO OO eO w P >=

e e o e e e Pm u o e e e e e e e e e E 2 OO OO N OO OO OO OO N E 4 tad .J e

K 3 OOO U O E OOO ** e @ OOO OOO OOO OOO == e 6A S tad W OO PO OO OO OO OO OO PO IK M e o e e e e e e e e e e e e e e a P h OC N OO CO OO OO bc N U pm 2 Q 2 M Q OOO MNe 3

e m ** M CCO OOO OOO OOO e@ Nee

  • 3 as e= CO CC CO CC @C CC CO C ==

q e e e e e e e o e o w .J u o e e o e o OO O e U taa OO OO OO OO N 16 CC =J O taJ 000 OOO O90 000 OOO COO OOO OOO aC w m Co CO CC CO CC OO CO CO c n e e e o e e e e e e e o e o e e H >

W 2 OC OC OC CC GO OC OO OO

.J ==

1 E W OOO CO@ CCO se e 6A OCO OOO SOO e@

tad m CC OC CC 9O CC OC CO PG O

& e e e o e e e e e e e e o e e e c

& CC CC CO N CC CO OO N ta! **

3 s.92 9 U 4 tal 2 taJ OOO OCO == e to OOO OOO OOO OOO == e @ &&

C e e CC CO eO OO OO OO OO ec

    • M taJ e o e e # # * * *
  • e e e o e e M#
  • CC CO N OO OO CO OO N ==**

D =J KZ

  • =e=

e u OOO OOO OOO == e in

    • taJ OOO OOO == e @ OOO R > CO OC OC CC OO CC PO 2R

> == c. Ce e e e ,e e e e e e o e e e e 33 m me De OO N OO OO OO OO N is ts

    • .J

== ePJ e O COO OOO == e 66 2 2 E had OOO OOO == e @ OOO OOO

> e 2 C C OO PC OO CC CC OO PO OQ U s= end o e o e o e o e e e * * *

  • e e * * *
  • CO OO N OC OO OO OO N a= e=

2 FA 4 as taJ O.

3 w OOC == e to NEF OC 3 OOO OOC OOO mNe 2m tas 2 CC & C CC CO OC OO CC E == tal ta#

g e e e o e e o e o e e e e e o e me e6 CC N @ C C CC CC CO C EC 3D e-2- tad DCC se e @ CCC OOO CCO COC CCO == e @ 33 CC CC CC OC CC CC @C C*

e=

O . at 2

2 e e F =

o e o e o e e o e e o e e e C3

taf O =J .A and 2 OO= . OCO OOO OOO == e @ NE & COC mNe .J .A ar C OC OO CC cc pc CC eC E == =a 4 2 2 e e e o e o e o e e e e e e e e

  • ** CC OO OO OO N to OO e is es

> B CO 1

o= == ====

F h

  • Emm Men hem Nmm @me emm emm Mem 22 l Q 2 J == N e == N ====N e == N N == N N == N O se N tas taJ E O & e w == 0 == N _ e w aw uww eww 3ww eww ww tas == == uu 2 e K u 8C e8e F == taJ 22

! w em 43 & end taJ tas P=

> # C e EL &

N tal an tad .J en m j == ni

& .J e as ww e

  • i TABLE 4-D WENMONT VANMEE JOINT FREQUENCY DISTRIBUTION = UPPER LEVEL = (JAN79 = MAR 79) 297.0 FT MIND DATA STABILITY CLASS D CLASS FREQUENCY (PENCENT) e 56.13 w!ND DIRECTION SPEED (apH) N NNE kE ENE E ESE SE SSE S S$h SW WSW N WN4 NW N4w VR8L TOTAL CaLN o n a a 0- 0 0 0 n 0 0 0 0 0 0 0 0 0 *

(1) 0.00 p.no n 00 0.00 0.00 0.00 c o n0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (2) n.00 n 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C=3 A 6 2 2 3 3 13 to 2 1 3 0 3 1 7 12 0 76 (1) 67 51 37 87 .25 25 1.10 .na 57 08 25 0.00 25 08 59 1.01 00 6.el (2) .38 2n 09 09 .14 .la 62 47 09 05 .la 0.00 34 .n5 33 57 0.00 3.60 a=7 17 6 2 3 I e 16 9 15 2 2 1 3 9 15 38 0 la3 (1) 1.83 58 .17 25 0A 38 f.35 1.26 76 .l7 37 08 25 76 1.26 3.20 0.00 12.06 (2) 80 24 09 14 05 19 76 71 43 09 09 05 34 43 71 1.a0 0.00 6.77 8-12 an 9 e 0 0 2 25 22 2 84 7 3 1 15 30 35 0 283 (1) 3.37 76 .A7 n 00 0.n0 17 59 2.11 1.85 17 25 08 1.26 2.53 2.95 7.03 0.00 23.06 (2) 1.89 .a3 .3s 0,00 0.00 09 ,33 I.la 1,04 09 .la 05 71 1.42 1.66 3.98 0.00 13.39 15-13 62 e a 5 3 0 a 7 23 1 0 1 15 75 e3 163 0 sla (1) 5.23 34 67 .a2 .25 0.00 34 59 1.94 08 0.00 08 1.26 6.32 3.63 13.74 0.00 34.91 (2) 2.93 19 38 24 .14 0.00 19 33 1.09 05 0.00 05 71 3.55 2.0a 7.71 0.00 19.59 19-28 23 0 0 1 1 0 6 e il 1 0 0 4 56 31 89 0 227 (l) 1.94 0.00 n.00 08 08 0.00 51 3a 93 08 0.00 0.00 34 4.72 2.61 7.53 0.00 19.14 (2) 1.n9 0.00 0.00 05 45 0.00 28 19 52 05 0.00 0.00 .19 2.65 1.47 a.21 0.00 10.74 GT 24 5 0 0 0 0 0 0 5 1 0 0 0 0 7 6 19 0 e3 (l) .a2 n.no 0.00 0.00 n.00 0.00 0.00 82 08 0.00 0.00 0.00 0.00 59 51 1.60 0.00 3.63 (2) .24 n.00 0.no 0.00 0.00 0.00 0.00 24 05 0.00 0.00 0.00 0.00 33 .28 90 0.00 2.04 ALL $8EEDS 155 25 20 Il 9 9 e6 66 ' 68 7 8 3 40 178 137 a05 0 1886 (t) 13.07 2.11 1.69 93 67 76 3.48 5.56 5.73 59 67 25 3.37 15.01 11.55 la.15 0.00 100.00 (2) 7.3e 1.8M 95 52 .38 .e3 2.18 3.12 3.22 33 38 .14 1.A9 8.42 6.48 19.17 0.03 56.13 (llePEkCENT OF ALL sonD UhSERV4fgDNS FOR IHIS PAGE .

(2)mPENCENT OF aLL conu 09SEWV ATIONS FOR THIS PERIOD Ce CALM (MIND SPEED LESS THAN OR EQUAL TO 60 MPH) e

' a .

TABLE 4-E

  • E#"Oht TaNREE JOINT FHEQUENCY DISTRIhuTION-UPPER LEVEL = (JAN79 g Mas 79) 297.s FT =IND cata StasILITy CLASS E CLASS FREQUENCY (PENCENT) e 32.33 WIND DIRECTION 4

SPEED ("Pd) N Nkt AE ENE E ESE SE SSE S 88m SW MSa N DNW NW NNW VR8L TOTAL CALM 0 0 u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (l) 0.00 0.00 0.00 0.00 0.00 n.no 0.00 0,+< 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (2) 0.no n.no 0.00 p.no n 00 0.00 0.00 0. 6, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C-3 to 7 F e 6 5 6 8 4 1- 5 8 6 3 13 12 0 100 ft) 1.a7 1.03 1.03 88 .A8 7a .A8 1.18 59 15 74 .15 .A8 .se 1.91 t.77 0.90 1a 73 (2) .a7 .33 33 2R .28 2a 29 38 19 05 2a 05 28 .ta 62 57 0.00 a 73 a-7 3a 3 1 3 6 6 30 21 11 3 a I . 3 2 15 75 0 216 (t) 5.01 .se .l5 35 38 88 a.s2 3.09 1.62 .as 59 15 .se 29 2.21 11.05 0.00 31.08 (2) 1.61 .la 05 05 .28 28 1.a2 99 52 .la 19 05 14 09 71 3.55 0.00 10.22 8-12 26 2 0 1 1 0 Il 22 3 I , 3 82 8 9 90 0 202 (1) 3.P3 29 n.00 35 .l5 0.00 t.h2 13 1.91 .3.2a .as 15 .as 1.77 1.18 t.33 13.25 0.00 29.75 til I.23 09 0.00 05 .05 0.00 52 62 1.0a .la 05 .ta 57 38 .a3 a.26 0.00 9.56 13-18 29 0 0 0 0 0 0 7 51 2 0 0 3 1 3 as 0 139 (l) s.12 n.00 n.00 0.nD 0.00 0.no 0.00 l.n3 7.51 29 0.00 0.00 .as .l5 .as 6.a8 0.00 20.a; (2) 1.33 n.00 0.00 0.00 0.00 0.00 0.00 33 2.at 09 0.00 0.00 .ta 05 .14 2.08 0.00 6.58 19-2a 2 0 0 0 0 0 1 0 7 1 0 0 0 2 0 8 0- 21 (l) .29 n.00 0.00 0.00 0.00 n 00 35 0.00 1.03 15 0.00 0.00 0.00 29 0.00 1.18 0.00 3.09 (21 09 0.00 0.00 0.00 0.00 0.00 05 0.00 33 05 0.00 0.00 0.00 09 0.00 38 0.00 99 GT 2a 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 (1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 .t5 0.00 0.00 0.00 0.00 0.00 8.00 0.00 0.00 0.00 15 (2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 05 0.00 0.00 0.00 0.00 0.00 0.00 0.e0 0.00 0.00 05 ALL SPEE05 100 12 8 8 53 Il a6 50 95 to le 5 24 16 a0 229 0 679 (1) te 73 f.77 1.38 3.38 3.91 1.62 7.07 7.36 13.99 1.a7 3.a7 .7a 3.53 2.36 5.89 33.73 0.00 100.00 (2) s.73 57 38 38 .A2 52 2.27 2.37 a.50 .a7 .a7 2a t.ta 76 1.89 10.8a 0.00 32.13 (llsPEHCENT OF aLL conD ORSERVaTIONS FOR THIS PAGE (2)ePENCENI 0F ALL GOOD ORSE RV ATIONS FOR THIS PEH100 cm CALN (WIND SPEED LEss THAN OR EQUAL TO 60 MPHI e

TABLE 4-F wENuoNr vagaEE Julkt FNE00ENCY DESTRIHUT{ON=UPPEN LEVEL = (JaN79 - MAR 79) 297.0 F I al=0 Data- STaRILITY class F class FREQUENCY (PENCENT) e 8.57 NINO DIRECTION SPEED (MPM) N NNE NE ENE E ESE SE SSE S SSN SW aSW W NNW NW NNh vp0L TOTAL Cat" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (t) 0.00 n.00 0.00 0.no 0.00, 0.00 n.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (2) e no 0.nn 0.pn n.no n.no n.00 0.no 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C=3 4 6 1 0 t 1 3 2 1 2 3 1 1 2 8 4 0 a0 (t) 2.21 3.31 55 0.00 55 55 1,66 1.10 55 1.10 1,66 55 55 1.l0 4.a2 2.21 0.00 22.10 (2) .19 28 05 0.00 05 05 34 09 05 09 .te 05 05 09 36 19 0.00 1.09 4=7 11 1 0 0 1 2 6 3 3 5 6 5 *

  • 7 37 0 95 ft) 6.08 55 0.no 0.00 .55 1.10 3.31 t.66 l.66 2.76 3.31 2.76 2.21 2.21 3.87 20.e4 0.00 52.49 (2) .52 05 n.no 0.00 .05 09 28 .te 54 24 28 24 19 .tv 33 l.75 0.00 a 50 8-12 2 0 0 0 0 0 2 2 9 2 1 1 I 2 3 19 0 48 (1) 1.10 0.00 0.00 0.00 0.00 n 00 1.10 1.50 4.97 1.10 55 .55 55 1.10 1.66 10.50 0.00 24.31 (2) 09 0.00 0.00 0.00 0.n0 0.00 09 09 43 09 05 05 05 09 .ta 90 0.00 2.00 13=18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 (t) .55 n.no 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 55 0.00 1.10 (2) 05 4.no 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 05 0.00 09 19-24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (l) 0.no 0.00 0.00 0.00 0.00 0.00 0.no 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (2) 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 GT 2a o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (t) 0.00 n.no 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (2) 0.00 0.no n.no 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ALL SPEEDS 18 7 1 0 2 3 11 7 13 9 10 7 6 8 18 61 0 181 (l) 9.94 3.07 55 0.00 1.10 t.66 6.08 3.47 7.18 a.97 5.52 3.87 3.31 a,a2 9.94 33.70 0 e0 100.00 (2) .R5 33 05 0.00 09 14 52 33 62 .e3 47, 33 28 38 ,85 2.89 0.00 8.57 (lisPERCENT OF ALL Goesp URSEkvaTIONS FOR THIS PaGE .

(21mPERCENT OF aLL GOOD IISSERVaTIONS FUp THIS PER[on Ce CALM (WIND SPEED LE85 THAN DN EOUaL 70 60 MPH) 4 o

. .8 OOO FOW O O em O 4D e N O g> eeO OOO GA O O 9 OO ON se o e O set OO OO OO N O me

> e o e e e e o e e o e e e o e e O OO O O me e OO OO O == 8'.

> N W M O Z ,

se S. ,

E l

.8 OOO DOO OOO OOO OOO OOO OOO OOO O l 9 OO OO OO DO 4 1 m e e e e D. O. O. O. O. Oo O. Oe e e o e e e > OO CC DO OO OO DO OO OO ,

z O j 2

OOO CO OOO eee eoe se O m OOO OOO == O N e-OO O es O ed OO OO OO es O gn '

E e e e e e e e e e e e e e e e e .i 4O OO 4 o w OO OO e e

. ** N e 3 G

B OOO MOe am O te OOO OOO OOO OOO W 9 S* taa 3 OO O ** OO OO OO OO OO O me e e e e e e e e e e e e e e e e e OO ne e oO OO OO OO 4 C se se 2

O A OOO se O to == 0 @ OOO OOO OOO OOO NOP as se 2 OO OO OO OO OO OO OO OO 2 e 3 e e o e e e e e e e e e o e e o >

== Ce W G OO CO OO CO O M

n R OOO OOO =e O te OOO CDe OOO OOO se O 4A see B OO OO CO OO CD OC OO OO .e e e e e e o e e o e o e e e e e 8"a OO OO W eo OO OO OO a3 , O

> Ins 3 aan tea R OOO OOO COO se O @ COO OOO OOO se O to dL U e OO OO OO OO OO OO OO OO O E E e e e e e o e e e e e e e o e e and CO OO OO W OO OO OO 4 O

e. E w me 8= B COO OOO COO == O en OOO OOO OOO == F .1 3 5> > M O@ OO OO OO OO OO OO e9 w em u e e e e e e o e e o e e e e ,.e o E E OC 09 OO e OO OO Oe e L
  • taJ .3 K 3 *e o n ODO GOO 000 000 OOD 'OOO OOO OOO u 8 taJ M OO OO OO OO OO OO OO OO K m o e e e e e e e e e e e e e e e 9 8' W GO CO OC OO DO OO OO OC U em 2 0 2 O o a < m en en OOO 000 CCO 900 e* O nn OOO 000 w e nn q *3 e > CC C C OO OO CO OO CC OO
  • ,=,3 w U e e e o e e e o e e e e e e o e y u ned OO OO OO OO e OO OO e g 0 2 me N .A O has OOO OO= NO& OOO OOO OOO OOO NO

< tw en CO CC OC CO CO CC OC C .,

[= > c n e e e e o e e e e e o e e e e e tad 2 CC C C C CO OO OC OO O eJ **

3 3 W OOO OCC OCC COO OOO 90O OOO OOO tai M CC C O CO C C CC C C OO CO C e, e e e o e e e e CO o e o e e e e o C 6 CO OO OC OO CO OO OO lms em 3 QR 9 43 as and 2 tan OOO OOO OOO OOO OOO DOO OOO OOO G. e.

O st TJ OO CO CO GO OC CO CO CC se WB and e e e o e e o e o e o e e e e e W3 W3 e= g CC OC CO CC CC CC CC CC me em 3 a' ZZ D u =>

me end OO3 OOO OOO O3O OOO OOO OCO OOO a >

== > e e C C. e Ce C. e e e e o e e o3 es ** OC OC Oc OC CC CO CC CC 46 te.

me .8 L em @ 03 2 W OOC COC ODO OOO OOO DOO OGO OC3 2 Z

> g 2 GC DG OO OO CC GO OC CC CO u e= lag e e e o e e e o e o e e o e e e se me 2 55 CC CO CC CC OO CC OO CC e= e-w as e 3- -

> J>

G taJ OC 2 OO2 OOO OOO COO OOO OOO COO 22 eaJ 2 OC CO eC CC OO CC C C CC tas tse 2 e e e e o e e e e e e e e e e e W3 4 06 CC CC OO CC CC CC OC CO 2z E taJ OaC DOO OOO OOa OOO 00C OCO O00 DC me - 2 C C CC CC 3 <a 2 e e e e o e OC e e OO o e Ce C e e C C e e CC e e Cq

% > 3_

C C C C CC CC OC CC CC C3 43 @

as haJ C. ob =J taJ 2 OCC se O te ao O to OOO OO3 OOe OOC N C (P .J .J

. s C OC C O CC OC OC C C CO CG as au 2 & e o e e e e e e e e e o e * * *

<a w CO e e

> a CO OO DO CO s tu c s.,

e= o= e= em

.F Ob 8"4 I 8"* 8* 88h ** 8" em 88% 8

  • N due ** 5 8's 8mm W 884 88* W A 84 M 8* 89 I2
  • C 1 .A == N O == N O == N == es N ====N N == N N == N O ** N enJ en#

I O e

EL *e =w w uww eww eww 4 == w t =8 == w me taJ w w uu E 3 U e s8e P 8= taJ B &

tea ** ** == ** taJ gne L*J ik

> @ C WD &&

N and ea ta# .) ** dan

& eJ ** MS WD as ww v

E TABLE 4-11 WEReuMr vaNMEE JOINT FNEuuENCY DISTRIHUTION= UPPER LEVEL - (JAN79 - MAR 79) 297.9 FT = inn DATA ST ABILily CL A33 ALL Cla33 FREQUENCY (PERCEhT) a 100.00 WIND DIRECTIDN SPEED (NPM) N NNE NE ENE E ESE SE SSE S SS= SW WSm u WNw hw NNW VROL TOTAL Calg 0 a e o e o 0 0 0 0 0 0 0 0 0 0 0 0 ft) 0.04 n.ed o.ap g.pn 0.00 A.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (2) 0.ca- n.en p.no 0.00 0.00 n no 0.00 0.no 0.a0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C-3 23 20 11 e il 9 22 20 7 5 12 2 le 7 31 29 0 227 ft) 1.09 95 52 3P .52 .a3 1.ca 95 33 2a 57 09 47 33 1.47 t.37 0.00 10.74 (2) 1.n9 .e5 52 36 52 .a3 t.no 95 33 2a 57 09 87 33 3.87 t.37 0.00 10.7a a=7 63 10 7 5 9 13 52 at 23 to 13 7 11 16 38 150 0 a76 ft) 2.99 .a7 .33 2a .a3 62 2.a6 3,9a 1.09 .a7 62 33 52 76 3.80 7.a0 0.00 22.53 (2) 2.99 .a7 .33 2a 43 62 2.a6 1.9a 1.o9 .a7 62 33 52 76 1.80 7.a8 0.00 22.53 8-12 64 11 e i 1 2 21 a0 53 7 6 6 20 at a8 202 0 Sa3 ft) 3.22 92 38 05 .oS 09 99 t.49 2.5 33 28 28 1.33 1.9a 2.27 9.56 0.00 25.70

(?) 3.22 52 34 05 .05 09 99 1.A9 2.51 33 2A .28 1.33 1.9a 2.27 9.56 0.00 , 25.70 13 14 92 a 4 5 3 0 a la 76 3 0 1 20 70 a7 212 0 567 (l) s.35 19 3a 2a .ta 0.00 19 66 3.60 .ta 0.00 05 95 3.69 2.22 10.03 0.00 26.83 (2) s.35 19 19 28 .ta e.00 19 66 3.60 .ta c.00 05 95 3.59 2.22 10.03 0.00 26.03 19-2a  :( 0 e i 1 0 7 a 20 2 0 0 4 59 31 97 0 253 (1) ". 2 8 co ne 0.00 .oS .oS 0.00 33 19 95 49 0.00 0.00 19 2.79 1.47 a.59 0.00 11.97 (2) 1.29 0.00 0.00 05 05 0.00 33 19 95 09 0.00 0.00 19 2.79 1.a7 4.59 4.00 11.97

'. T 2 8 5 0 0 0 0 0 0 6 1 0 0 0 1 9 6 19 0 a7 (t) 2a 0.00 n.no 0.00 a.no c 00 n.00 28 .e5 0.00 0.00 0.00 05 .a3 .20 90 0.00 2.22 (2) 2a 0.n0 0.00 0.00 n.n0 n.no 0.00 28 .n5 0.00 0.00 0.00 05 43 28 90 0.00 2.22 ALL SPEE45 27s a5 la 24 25 2a sn6 125' too 27 3t 16 74 210 201 717 0 2113 (l) 13.16 2.13 l.61 95 1.18 1.te f.02 5.92 8.52 1.28 t.97 76 3.50 9.9a 9.51 33.93 0.00 300.00 (2) 13.16 2.t3 t.61 95 3.to 1.la 5.02 5.92 8.52 1.28 t.a7 76 3.50 9.9a 9.51 33.93 0.00 100.00 (t)spERCENT OF aLL COUD ORSEwwaf!Oh3 FOR THIS PAGE (2)aPERCENT or aLL C000 UMSERwaTIONS FUN THIS PERIOD Ce CALM (WIND SPEED LESS Thaw OR E0ual TD 60 MPH) 6

3 9OO OOO nmo m h 986 hhe NMO OOO OO4 en OO OO M ese se ao O == m M == OO N O ==

> e o e o e e e e e o e e o e o e C OO OO O 8 O O O@ c oe om

  • = 10 N O E E

.,e OOO OOO OOO eOO 90O OOO DOO DOD *2 O OO OO OO OO Oe OO DO DO e E e o e e e e e e e e e e e o e e e e > OO OO OO OO DO De OO DO O

s eOO OOO OOO OOO mme on e la OOO eOe o=

F eO OO OO OO O fts ** O OO ON E e e e e e e o e o e e e o e e e =J OO OO OO OO O e OO en e N N 3

" . O E OOO OOO OOO OOO em M 46 OOO OOO em r= to tad E DO OO OO CD oe O OO OO me o e e e e o e o e e e e o e e e e W OO OO OO OO e OO OO e Q E

e I OOO DOO DOO 900 OOO DOO 000 000 e

  • = Z OO OC OD DO OO CO OO OO 1 e 3 e e e o e e e e e o e e o e e e e-

== 0O Ce OO DO OO OO OO OO M

M 3 OOO OOO OOO SOO 900 OOO OOO OOD tae E DO DO OO OO OO DO 90 OO .3 e o e o e o e e e e e e o e o e M OO OO OO OO OO OO OO OO O

    • enA 2 taA nao 3 ODO OOO DOO OOO OOO 000 000 DOC L u M OO OO OO OO CO OO OO OO M 3 5 e e e e e e e e o e e e o e e e led OO OO OO OO OO OO OO OO O L E w me
  • m E DOO OOO OOO OOO OOO DOO 000 OOO 3 9 > M OO OO OO OO OO OO OO OO m*

> u e o e o e o e e e a e e o e o e Z 2 OC OO OO OO OO OO OO OO t 3 d on

  • 3 *r e 3 E OOC OO O OOO se > nn OGs OOO OOO == p to u 8 W W DC OO OC ==*O OO OO CO == O E 53 e e o e e e e e e e
  • e e e e e 3 P en. OO OO CO W OO O 2 CO W u P= 2

<*, 2 M Q g as M == e OOO DOS 900 who OOO se r~ m OOO en n e

,* p e e e= cC CC CO d ** CW ** O CC ON

=a .A y e e o e e e e e e o e e e o e e M

u u and OO OO OO e OO O OO O S 2 as As

& w cc a O ias eOO OOO OOO c p= p OOO OOO OOO W e- e

  • IC had S OO CO CC 4 em OO OO CO 4 ==

p > O W3 e e o e e e e o e o e e o e e e laJ 2 OO OO CC 4 CO OO OC 4

.A me se em 3

2 las OOC COO OOO OOO OOO ODO OOO OOO tad M CC CC OO CO CC OO CC OO C Oh o e e o e e o e e o e e e o e o Q

& OC OC OC OO CO CO CO OO W e=

3 GE 9 e e and 2 taJ OOO OOO ** P* 4A MOW OOO OOO OOO W Pm 9 IL &

C M M CC CC == C te == OC OC CD 4 ==

    • M tad e e * * *
  • e e o e e e e e e
  • WM e= e CC OC W N OO CC CC 4 * * *
  • 3 J e= == II 3 u ==e=
    • tad OOO OOO OOO == P= W OOO OOO OOO ee >= to E > CC CC C C == C OC CC OC se O 2 f4 e- > e e e e e e e e e e e e e e e e 33 M == CO OO CO e CO CO OC W wh
    • A O == MM 2 laJ OOC GO S ** Pm @ OOO OOO COO OC O == em @ 22

> e 2 CO CC == O OO OO CO CO == O O3 O == lad e o e e e e e e e e e e e e e e ====

2 M OO OC W OO OO OO CO W *=#=

end 4e 3 >>

D tat COO OOO CCO OOO OOO OOO OOO OOO 22 tad X OO CC CO CC C C CC OO OC nnJ taJ E e e e e e e e e e e e e e e e e Ob erb ta CC CO OO CC CO CO DO CC S&

C e=

    • tab OOO OOO OOC OOO COO OCO OSO OOO 2O
  • = 2 CC C C C C OC OG
  • C CO CC CC 3 e 2 e e o e o e e e e o e o e e e o CO "3 e= OO OO OC OO OC OC CO OC CC e

W C J eJ and 2 OO4 CCO OOO OOC ee > te OOO OOO == >= te =A s

. E C OC OC OO OO == O OO CO == C e4 2 2 e e e e e e e e e e e e e e e e e == 0O OC CO OO W OO OC U h ta

    • A CC en e. em ,=

2 m 8't I Mbph M 31% A == S't d'% N WAh det O dabWEh $ WEbeh $ M SEh O WWhe4 $[

Q Z A== N 9 a= N 4 ** N e= == N == == N N == N N == Ar D == N tas taJ 3 C & e == w uww Www a en w s e., e, aww me w w w em uu S e K U S M P e= led EE w > em em - == 0 & end tas

> 9 O M &&

fts taJ ee taa =J *==*=

& .A eme N SB g ww e

o

.A OeS e 46 e e op > te M P e 46 > eeP WOP 89 O S*

  • OO == Pe 7 == M e med == m e em m == POe e= e e e e e e e e e o e e o e e o C OO e e se se e e w ee a O= se en est se e Z
e. G.

K

.3 eOO eOe See oce OOO OOO Oee o@e o

, e eO Se Se eO OO 90 9e OO as 3 e o e e e e e o e e e e e e e e e

> OO OO OO Oe OO OO DO 99 O

2 OOO OOe == e to e en e eee mee N44 Se 2 OO eo ee eN 4m w Me e* N == N4O

  • Z e e o e e e e e o e e e e e o e .A eO eO es e e e m m em 4 N 3 A

O Oee eoe OOe N to o mMe mMW OOO e O en laa 2 OO eo == es fW == N es OO dm e e Oea e e e o e e e o e e e e o E OO F, e eO N m M Oe e Q e a

  • 3 OOO == e to == e to OOO mme == e to OOO 4 tR P
  • 9 2 OO OO OO OO N ee OO OO E R8  %.

e E e : e e e e e e e o e e o e e e 9=

W O f, em se oO M == OO e 59 S O 6' C e

se e to OOO es e te eOe OOe OOe Nme tea e ese oo eO OO Ou OG OO ==== A e e e o e e e e e e e e e e e e a eO ** OO es ee ee Oe N 8= O 2 taf tea las E OOO OOO OOO OOO OOO OOO OOO 8" e O ew u M CO OO OO OO OO OO OO OO W 2 R e o e e e o e e e o e e e o e e neo OO OO DO OO OO OO eO DO O tL

E m

E Oee == eie tre == C to OOO OOO OOO O O ts N 96 O 2 e > 53 OO CO O9 OO OO OO O*A e= so w

  1. % W e e e o e e o e o e o e e o e e 2 Z OO == == OO OO OO OO N I 3 4J

.J

  • 3 D at O E COO OOO OOO th en O OOO COO 000 N an e

$ M OO OO U taa CO .*

  • OO OO OO =*
  • E M e e e e e e e e e e e e e e e e M 9 86 OC CO CO N CO OO OO N u s== 2 E # Q

,, g & M == M OCO OOO OOO te @ w == e 16 OOO OOO 4 4A @

4 e e= CC CO OO M fb cc OO g OO W ftf O

== .A u e e e e e o e e e o e e e e o e u taa OO OO OO IA == Oe OO 4 9 2

!a2 ' ==

A .s O 4J 000 OOO .m e nn eOe 000 000 OOO en e w gt; taa e CC OC OC M ** OO OO CC MN 4 Jo O M e e e e e e e o e e e o e e o e p te.

.a 2

OO OC == W CC OO OO WI j

i A

M tad baJ M

OOO CC N 16 O e===

nmo Wm O e*

OOO OOO OOO eO&

l 1

ea == CO OC CO @M O A e e o e e e e o e e e e e e ew OC N e e C N W CO OC CC G las ce 3

e E, - 02 2 OOO en taf nea == O 86 == S tp N i#t O OOO OOO OOO eOP & e.

C # W3 OC OC CC em .* CO OO OO *P.==

= W3 taJ e e o e e e e o e e o e e

e o e o O W3 4 CO == == N CO CO CC W == em 3 .A ZZ m u

== -0 lea OOO OOO N te O N IP O == E no OOO OCO le e W 4 > CO ==== ==== CO OO OO MN G2

== == e e Ce C. .. e e e e e e e e e e ;o e *= CO CO #w N *= 0C eO to e6 te.

== =J C. *e 83 #

Z taJ COC CCO == C en OO C COO COO OOO == E iA 22

> e 2 CC OO CC OO OO OO CO OO OO y o* ted

  • e o e e e e e e e e e e e * * * * = =

M CO OC == OO OO OO CO == *=>

laJ L ee 3 W CCC MeS WO@ OO O CO3 OOO OOO NmW 2&

, te, 2 OC N == m em O C CO CC DO te s9 taJ taJ T e o e o e o e e o e o e e e e o M ar) is CC m a CO CC OC CC Pm 2C DO w cCC =Oc =se =mm COO Cs0 000 mew OO

==- 2 C& CC

'L ^ CC C C = =

  • C C& fb == 01

<a 2 e e o e e e e e e e e e o e e e oa 7 . 8= CC se .* CC 4

.* CC CC M O@

- *- ta! O 8 .A ta/ 2 CCC O2O M sat e @ to e ' N@C OOO se C to NOE .J =J at O cC OO #b == w tw ==== 00 &C em P to as e

.Z 2 e o e e e e e e e e o e e e o e as me CC OO am E e9 e N OC a= N 46 ta

== OO ,

. 2 . - z --e ,e,=- N-- C-- . .m e., . - , = , .e ==

C Z .A == N g == N f == N ====N == = fW me == N N == N O == N las tas 3

2 4

e

& as w == u en es e e.s to 3 == w 4 w en 3ww == w tad w w uu 3 e M y las se en 'u == ==

em Q

taa ae end tas

> @ O f) &4 N tad l tad ae

.A ** a L i W3 .a em N l as ww 4 8

l l

I

.8 eee eem e e 46  % e te e p= e > m As mee oee e OO ee mOe te e r= mee so m e D em et e N e o ein o e o e e e e e o e e e o e e e e me N en ee N O> em Q ee e 046 me e Z e* N 005 ni

    • & I E

.,J eee eee OOe eee 900 000 eOO 900 e e ee ee oe ee oe oe ee ee 4 e e e o e e .. e e e e e 2 e e o e oe

> OO eO ee Oe OO OO Oe em Q e oee se s= te me p= In m>m eme fw m o ** em to eee >

F OO ee ee a= e e mm m se ee fis m N e e e e e e o e o e o e e o e e e,3 2 > ** es '

oo e to ==

so 3 O I e s eeO OOe oOO ene e e-de e eOe OOO w 2 oO Go OO e en o fw OS e. ma e me '

e e e e e e e e e e e e e e e e E OC eO OO fts fu 3 OO e Q l

2 i e B eoO OOe e. pm to w em to MOe mOe oeo emD e N 2 Oe Z e E O. O. O. O. e. O. 4. O. O.=.= O. se. e e m.me e= l n De ce N #w cc an e

e 2 OOe eeO OOO e Pm p en m o N est O ed m o m >= m saa E Se eC ee 4 == m ne m == M == se e e eJ e e e e e e e e e e e e e e e e l 8'* OO OO ee fts m se == e .O j e= taa i tao I OOO SOO &

taJ E see eoe OOO OOO OOe OOO OO OO OO OO OO OO Oe 09 u E3 OC e e e e o e e o e e-M E e e e e e e tai ee OC eO OO OO OO OO OO O

& 2 og w

d"* 2 OOO OOO eoe se P= to eeo OOO eOO == P= te 2

& 3 e OO OO OO ee eO OO OO eO en*

e e o e P= u" o e e o e e o e OO e o OO e o OO E 2 2 Ce ce OO

.3 3 taa en

  • 3 3 eOO mOe u O A eoO COO OOe se p= to Nmo OOO 9 tas m OO OO OO eO m* OO OO O ==

2 e e o e e e e e e e o e e e e e e N

@ Is. OO OO OO em OO cO As u em 2 m e Q U & W w e OOO OOO doe eme mee OOO men l

  1. = = > ee Oc e n4 e= c fw m fg O= CO =Oe erg w .B Q e e- e e e e e e o e o e e e e e

' '" u tad O4 OO fts e m fu oO fte y 9 E e2 J o w e30 aOO ene ace =ne OOO OOO =mm M w e OC CC e == 0 fu eo oO Oc se M 4A e e 4 > O e e o e e o e o e e e o e e o E= ins a oO ee fu e OO cO e-ed **

3 2 anJ OOO == Pm to e *= P W Pm e OOO COO OCO NOe tu m oo ec e e= 4 arl OO OO Cc == O ef* C

& e o e e o e e e e e e e e e e e Q

& cc fis e Oo ce OC e tar **

3 L9 2 e U en taa 2 taJ OOO OOO N est O N est e se > + OOO OcO att est e & gh C W3 55 CO Oc psg == m == aO OO OO m fu ee 83 taJ * * *

  • e e e e o e e e e * * * #5 WB e=
  • OO OO == a= OO CO 886 ==**

3 e3 3Z Z u *=**

    • Ra# ceO nmo moe OOO OOO O3O OOO trt M e R > cC #81 == O == Cc cO cO OG 88t fu &9 e= a- e e e e e e e e e o e e e e e e 30 8? es Oc == fu Oc cc OO OO m 06 46
    • eJ C e= mm E tad OcO en f* l#* OOO OOC OOO OOO OOO =e f* 4A 22

> en 2 Oe eO OO Oc OO OO en 40 CC u *= taA e e e e e e o e e e e e e e e o eoea 2 e ee ac cO OO cO cO >>

tai as e D >>

0 tal ccO OOO Occ ooe eec ooc oc OOO cc OOO a2 tan L ec cO cc Oo 00 e e saa eas 2 e e c. O. e e o e e e e e e e in ss is ec Oc cc OO cc Oc cc cc ee DD l 2 W OOe Nmc =>e ace Osc =>m Occ Onc Oc l = 2 cC m e- < c c fu cc 4c Oc oee CO

  • " = 2 e e o e e e e o e o e e o e e e CC
  • 1 *= cc == e Oc cc e o 69 l

e

.A e,p ant C r

tas 2 OCO O p= e eee to e86 e 3OO OOO m m == .J es u C Oc Nm moO. == 4 e e fu m tw Oc cc tw m == en en s 2 2 e e e e e e e e e e e e e o e e e ee CO == 4 e M cO Oe te on t6 46

> 3 ee QQ

  • = em *=t=

2 46 #"a I dm ** oft sah de Pm em em fu en pg g og een g og am 3 pm en g ein og 22 C 1 .A em fte O ** P A 9 e= fu e= en fw we se fu fu em tw fts se N O == N tad tad 1 S & se eus =* u se w eww 3 == w S ese en a w we tw ** ans w eia LJ La

  • 3
  • T U & m 8* tad EE eaa ** ew == .P. O & - enJ tas

> # C 83 dL EL Af taf G E tal .E ***

& e,4 == N 95 as ens w e o e

TABLE 5-D WEmm0=f vammEE JUthf FNEQUtNCY DIStageutg0w. UPPER LEVEL - (APR79 - JUN79) 297.0 FT hlho Data STa81Ltiv Cla3S O class FREQUENCY (PERCENT) a 50.31 u!ND DIRECTION SPEE0(MPH) N NAE hE ENE E ESE SE SSE 5 SSP Sw WSa d WNW NW NNd WRSL T014L CALM o o n 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 (I) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 (2) 0 no n.00 p.no n.no 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C-3 12 II 6 7 to it is to 3 6 3 3 3 9 11 12 0 134 (t) 1.15 1.06 58 67 96 1.06 t.44 96 79 77 29 29 29 86 1.06 1.15 0.00 12.86 (2) .Se .53 .29 34 44 53 72 48 14 39 14 .te 14 43 53 54 0.00 6.a7

  1. -7 37 12 in a e 35 3a 35 as 6 5 1 1 5 13 at S 282 (t) 3.55' t.15 t.73 77 77 s.as 3.76 3.36 4.72 58 .e8 50 10 .a8 1.25 3.84 C.00 27.86 (2) t.79 58 .n7 39 .39 72 1.6a 1,69 2.12 29 24 05 05 2s 63 1.93 0.00 13.62 A-12 37 3 a 9 12 37 51 78 13 1 5 6 17 19 46 0 339 (t) 3.55 79 50 3s 86 1.ts 3.55 a.e9 7.49 1.25 10 .a8 58 1.63 1,82 4.41 0.00 32.53 (2) 8.79 .te .n5 ,39 .a3 58 t.79 2.46 3.77 63 05 24 29 82 92 2.22 0.00 16.37 13-14 7s 2 0 0 2 8 13 Il 44 11 2 1 18 36 23 36 0 220 ft) P.02 19 n.no n 00 .19 77 t.75 1.06 4.72 l.06 19 .t0 1.71 3.45 2.21 3.e5 6.00 21.88 (2) 1.01 50 0.0a 0.00 .lu 19 63 53 2.12 53 10 45 87 t.74 1.11 t.74 0.00 11.01 19*24 5 o 0 0 0 1 0 1 5 0 0 0 t 16 4 to 0 87 (t) .es n no 0.c0 0.00 0.00 .to 0.00 10 .a8 0.00 0.00 0.00 .to 1.5e 38 1.34 0.00 4.51 (2) 28 0.no 0.00 0.00 0.00 05 0.00 65 24 0.00 0.00 0.00 05 77 19 63 0.00 2.27 CT 2e 3 0 0 0 0 0 0 0 1 0 0 0 3 2 5 0 0 12 (1) 10 0.00 0.00 0.00 0.n0 0.00 0.00 0.00' 30 0.00 0.00 0.00 29 19 48 0.00 0.00 1.15 (2) 05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 .n5 0.00 0.00 0.00 34 .to 24 0.00 0.00 58 ALL SPEE01 113 74 25 19 29 47 99 108 175 38 18 to 32 85 75 148 0 10a2 (t) to.no P.69 7.80 1.n2 7.78 a.51 9.50 10.36 16.79 3.65 1.06 96 3.07 8.16 7.20 14.20 0.00 100.00 (2) 5.a6 1.35 1.21 92 1.40 2.27 e.78 5.21 8,a5 t.n3 53 48 1,55 4.10 3.62 7.15 0.01 50.31 (1)sPERCENT OF ALL GOOD URSERVaIIONS F0p IHIS PaGE E2)sPERCEkt OF ALL CDOD URSEpvaTID=3 FOR IMIS PENIOD Ca CaLH (NIND SPEED LESS THaN OR E0ual TO .%0 MPH)

O

I , .

TABLE 5-E VERMONI Yank (F JulHT FWEquEhCy plSTRIMtJTION. UPPER LEvFL = (APR79 - JON79) 297.0 FI alND Da7a St aHILI TY class E CLASS FREGUENCY (PERCENT) e 25.56 WIND DIRECTION SPEE0(MPH) N NME NE ENE E ESE SE SSE S SSW Su WSW W WNW NW NNW VR9L TOTAL CALM o n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (3)- 0.00- 6.pp 6.00 0.00 0.no 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 (2) 0.00 0.hu 6.00 0.on 0.00, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C-3 16 5 7 5 5 9 13 13 6 3 1 1 1 6 4 13 0 106 (1) 3.07 96 1.3a 96 06 t.73 2.50 2.50 1.15 19 19 .19 .19 1.15 77 2.50 0.00 20.35 (2) 7F 7a 3a_ 2a .24 .e3 63 63 29 05 05 05 05 29 19 63 0.00 5.12 a.7 27 6 3 3 2 6 25 2a 16 2 2 3 3 3 1I a6 0 182 (1) 5.14 1.15 .59 54 .38 t.15 a.00 a.61 3.47 .38 38 58 .58 58 2.11 8.83 0.00 38.93 (2) 1.30 29 .ta .ta .10 29 1.21 1.t6 7F 30 10 .ta .te .ta 53 2.22 0.00 8.79 0=t2 11 1 0 0 1 5 7 28 27 6 3 a 6 13 5 38 0 155 (1) 2.11 19 0.00 0.00 .19 .*6 1.3a 5.37 5.18 1.15 58 77 1.15 2.50 96 7.29 0.00 2'.75 (2) 53 05 0.00 0.00 05 2s 3a 1.15 1.30 29 .ta 19 29 63 24 1.83 0.00 7.a8 13-la 12 2 0 0 0 0 m to 18 a 0 0 5 3 3 11 0 72 (t) 2.30 16 0.00 0.00 0.00 0.00 77 3.92 3.45 77 0.00 0.00 96 58 58 2.11 0.00 13.82 (2) .50 10 0.00 0.00 0.00 0.00 19 .a8 87 19 0.00 0.00 24 .ta 14 53 0.00 3.as 19-28 0 0 0 0 0 0 0 0 1 0 0 0 t 1 0 1 0 0 ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19 0.00 0.00 0.00 19 19 0.00 19 0.00 77 (2) 0.cn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 05 0.00 0.00 0.00 05 05 0.00 05 0.00 19 GT 2a 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 ft) .19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19 0.90 0.00 0.00 30 (2) 05 0.pn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 45 0.00 0.00 0.00 10 ALL SPEEOS 67 to 10 8 8 20 49 75 68 13 6 8 16 27 23 109 0 521

11) 12.86 2.69 f.92 1.se 1.se 3.no 9.a0 Is.40 13.05 2.50 1.15 1.54 3.07 5.ta e.at 20.92 0.00 100.00 (2) 3.Pa 68 .a8 39 .39 97 2.37 3.62 3.28 63 29 39 77 1.30 1.11 5.26 0.00 25.16 (t)sPERCENT Op aLL CUfm OBSERVATIONS FOR THIS PaGE (21mPERCENT OF ALL Corso uaSEnvaTIONS FOR THIS PERIUn Ca CALM (wlND SPEED LESS THaN OR EQUAL 70 60 MPH)

~

O

I

. e TABLE 5-F VERMowl V ANREE Julkt FR[eJUENCY DISielHUTION=UPPE4 LEVEL = (APR79 - JUN79) 297.0 F1 mlho DATA sfastLITY CLASS F CLASS FREQU(NCY (PERCENT) a 9.a2 ,

WINO DIRECTION SPEE0(MPH) H NNL NE ENE E ESE SE SSE S SSm SW uSW W whw Nw NNw VROL T0fAL CALM o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (3) 0.00 0.00 0.00 0.00 p.00 0.00 0.00 0.00 0.00 8.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (2) 0.00 n.no n.no 0.no 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C-3 a 6 a 3 1 2 e a 1 2 5 2 3 2 3 0 0 5a (1) 2.05 3.nh 2.05 1.5a .51 1.03 2.05 2.05 51 1.03 2.56 1.03 1.5a 1.03 1.5a 4.10 0.00 27.69 (2) 19 29 19 .la 05 30 19 19 05 50 2a 30 .l4 50 .la 39 0.00 2.61 a-7 13 5 1 1 1 6 12 . 12 1 2 1 0 3 1 6 25 0 90 (1) 6.67 2.56 51 51 .51 3.n8 6.15 6.15 51 1.03 51 0.00 1.5a 51 3.08 12.02 0.00 46.15 fil. 63 7a 05 05 .05 29 58 50 05 10 05 0.00 .la 05 29 1.21 0.00 a.35 6-12 7 0 0 0 1 0 1 3 1 3 2 1 3 6 0 20 0 a0 (t) 3.59 0.00 0.00 0.00 .51 0.00 51 1.5a 51 1.5a 1.03 51 1.5a 3.00 0.00 10.26 0.00 2a.62 (2) .3e n.no 0.e0 n.00 05 0.00 05 34 .n5 .la 10 05 .la 29 0.00 ,97 0.00 2.32 13-14 9 0 0 o 0 0 0 0 0 0 I l 0 0 0 1 0 3 (l) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 51 51 0.00 0.00 0.00 51 0.00 1.5a (2) 0.nD n.no n.on 0.00 0.00 0.00 0.40 0.00 0.00 0.00 05 05 9.00 0.00 0.00 05 0.00 .la 19-2a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1) 0.00 e.no n.00 0.00 0.nu 0.00 0.00 0.n0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (2) 0.00 0.00 0.00 0.00 8.00 0.00 0.n0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 GT 2a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1) n.co n.no n.no 0.00 0.o0 o 00 0.no 6 no. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (2) 0.00 0 no n.go 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 ALL SPEEns 2e 18 5 8 3 8 17 19 3 7 9 a 9 9 9 Sa 0 195 (1) 13.31 5.6a 2.56 2.05 1.5a a.10 8.72 9.74 1.54 3.59 4.62 2.05 a.62 a 62 a.62 27.69 0.00 100.00 (2) 1.16 53 2a 19 .la 19 82 92 .la 3a .a3 .lg .a3 .a3 .a3 2.61 0.00 9.42 (I)mPEnCENT OF ALL C000 HOSERVATIONS Fue IHIS PAGE (2)ePERCENT OF ALL COOD UHS [Nyafl0HS FOR THIS PERIOD re CALM (WINO SPEED LESS THAN OR EDUAL 10 60 HPH)

eJ eOe to em N e e em esee4 m eee eee eOO e O ses 4 OO em 4 ** NWD == @ @ eO OO OO e e its e= e e e e e o e e e o e e e o e o Q OO N m M eO Oe ee e 843 ee

    • H e N O E se &

E

.J een eeO GOO 000 OOO OOO ene eep e e ee ee eO 99 OO Oe OO ee 4 e E e o e e e e o e e e e o e e e e e

> OG SO ee OC OO Oe ee ce r eOO

. O me n ne eOe eee OOO OOO OOO mam >=

7 OO em O N em mM OO OO OO es its e 3 e e e o e e e e o e o e e e e e e,&

, Oe N e > eO Oe eo e e en 8%0 D G

B eOO N art O N en O OOO OOO OOO OOO eoe w 2 OO M == M en OO OO OO OO em ==

e e e e o e e e e e e e e e e e E ee a e OO OO OO ee e Q N - .Se ;OO- ~.O e

w. OOO .E N

e

- .. O. -- == . O .O .O .. O .O O O ,N e en. 1 2 e e e e o e o e e e e e o e o e 9=

8 46 eS OO W f%f Ge OO eO 4 m

B e

Oee N 46 e em p= grt OOO OOO eOO eOe MNe saa 5 OC M es em O OO OO OO OO F == eJ '

e o e e e e e e e e e o e e e e 8"* OC W fif OO OO eO ee 4 O

  • = tas Z w l w n OOO OOO OOO OOO OOo OOO Neo &

u e OO N mee e. OO CC OO DO OO m en a 1

l E E e e e o e o e e o e e e e e e e ene OO 9 OO OO OO OO OO @ C

& E w me

  • =n E OOO ftp e O OOO OOO OOO OOO OOO N te O E O

pm

>= e OO M oe OO OO OO OO OO H oe =*

u e e o e e e e o e e e e o e e e 2 2 OO eB OO OO CO OO OO W E 3 tai m.S "3 3 4 O E OOO e= *m en eoo OOO COO OOO DOO en Fm en u

$ laa M OO == 0 OO OO OO CO OO == 0 C W e e e e o e e e e e e e e e e e S 9 in. OC N OO OO OO OO N

p. 2 OO u R M C
  • & M M

== OOO OOO en om an OOO OOO OOO OOO em p. en es se ** OC OO == C CO CO OC ===O m w eJ u

u e e e e e e Oe O. e e e e e e e nad Oe oo N Oe oO Oe OO N Ese, 0 a d J O w OOO =mw mNo OOO EC e OC OOO OOO OOO woe

( saa

> 0 M e e

== O o e en == OO OO CO OO > ee o e o e e e e e e e e e p w z CC N 4 OO OO OO OO e J **

3

& taa OOO OOO OOO OOO OOO OOO OOO OOO taa C CC CO CO OO CO CO OC C O O EL e e o e o e e e e e e e e o e e O

& OO OO CO OO OO CC OO OO taJ on 3 LS E 8 0 e nee 2 taJ eOO MNW MNW OOO OOO OOO OOO 4WP &4 Qm e OO to e- gr se eO OO OO OO C f%f me M enJ e e e e e e e e e e e e e e e e MM t= *e OC e e CO CC CO OO M on me 3 et se ZZ O u e= >

me taJ OOO en P= te OOO OOO OOO OOO

> OOO ** Pm 46 E CC == C C C C C OC CC CC e- C 33 e= == e e o e o e e e o e e e e e o e 33 wa == 0C N OC CO OC OO OO f%f e6 an, me eJ c me a:, e o ad OO3 OOO OOO OOO COO OOO OOO OOO I2

> e 2 oc i

u - w O. C. C. O. O. e. O. O. O. O. O. O. O. Oe Oe O. me -

l 2 M OO OO OC OO OO CC OO OO >=8=

w e4 l

1 2

DD 3 ins COO CCO OOO OOO OOO OOO OOO OOO TZ w 2 C C CC CO OO CC OO OC OO nad w 2 e e o e e e e e o e o e e o e e 6fA 40 e6 CC 00 CC OO CO OO OO OC E' S r w coS OOO se e in OOO OOO OOO OOO en em an oo

  • = 2 CO OC l a= C C O CC CC CC == C C. O C e 2 e e e e e e e e o e o e o e e e CO

=s s- Ce OC N OO OO e OO CC 4 ou ene C eJ eJ

= ens Z CCC CO3 MN9 d%s to O OSe oOO OOO 16 8m e eJ ed at 3 CO CC If ** M se OC OC OO GN as se 2  % e e e e e e e e e e e e e e e e

  • ** CC OO e e OO OC

> W OC O 46 46 se QQ

e. e=

ese e-

  • P is en 3 mm an m sahen fm en em N sun am @ sun am 3 en en W mm og O Z ed == F%#

ej sut sun 22 8 se N 0 en N == se N se em fgs N es fgf N em fit O == N end end 1 C & es me w uww a se w 0 w me 0ww 0 w te ww e 1 u te# w w uu EE F*

E M P e* 4aJ MM tad w

> P as em O & tad naJ O M &&

848 taJ taf ae

& eJ ** e9

  1. eJ ** N 4 ww a
  • 4

--a -

, , 4 TABLE 5-h WEwangt vahmEE JUThf PdE00ENCY DISIRIHUTInh-UPPER LEVEL = (aPR79 - JUN79) 297.0 P1 MIND Data SiaRILIlv class ALL class FREDUENCY (PERCENT) a 100.00 MIND DIRECTION SPEED ("PM) N hhE hE ENE E ESE SE SSE S SS= Sw WS8 * *4" N* Nwe vuol Total CaEa p e e o o 0 0 0 0 0 e f e 0 0 0 0 0 (1) 0.00 0.00 0.00 p.no 0.no a.ou n.00 0.00 0.no 0.00 p.no e.no 0.00 0.e0 0.00 e.00 0.0s 0.00 (2) 0.00 n.nu n.no n.no n.nD n.no n.00 0.no 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.0e 0.0e C-3 38 25 20 16 19 26 35 28 to 12 12 e le le 2e 35 e 328 (1) 1.64 1.21 97 77 02 1.26 1.69 1.35 .se 50 58 39 48 87 97 3.69 0.88 15.es (2) 1.68 1.21 97 .77 92 1.26 t.69 1.35 40 58 50 39 .at 07 97 1,69 0.00 15.88 e.7 93 76 26 le 16 3e 77. 79 66 to 9 e e 13 32 117 e 624 (I) 4.ao 1.26 s.26 68 77 1.64 3.72 3.Al 3.19 .as 43 19 39 63 1.55 5.65 0.00 30.13 (2) 4.89 8.26 1.2h 64 .77 t.6e 3.72 3.Al 3.19 .at 43 19 39 63 1.55 1.65 0.00 30.13 8-12 A9 51 1 e le 2e 56 96 128 26 7 10 2e 30 30 131 0 est (t) 3.33 53 05 19 68 1.t6 2.70 e 6a 5.84 1.26 34 48 97 8.83 1.45 6.33 0.00 31.77 (2) 3.33 53 05 19 65 1.16 2.7o a.6s 5.84 1.26 3e .e8 97 1.83 1.e5 6.33 e.se 31.77 t3-In et a o e 3 9 87 22 68 17 3 2 2e e5 69 34 e 362 ft) 1.0P 19 n.00 0.00 .34 .a3 .a2 1.06 3.28 .R2 14 .le 1.35 2.17 t.64 3.33 e.80 17.as (2) l.98 19 c. ,G 9.00 .le 43 .a2 1.06 3.20 82 34 .30 1.35 2.17 1,64 3.33 8.00 17.as 19-28 5 I e 0 0 1 0 t to 0 0 0 4 21 13 22 e 78 (t) .24 05 0.00 0.00 0.00 05 0.00 05 48 0.00 0.00 0.00 19 1.01 63 3.06 0.00 1.77 (2) 2e .n5 0.00 0.00 0.00 05 0.00 05 48 n.00 0.00 0.00 63 39 1.01 1.06 0.00 3.77 GI 24 3 0 0 0 0 0 0 0 1 0 0 0 5 3 5 4 e 21 ft) 34 0.00 0.00 0.00 e.00 0.00 0.00 0.00 , 05 0.00 0.00 0.00 24 .te 24 19 0.00 1.e1 (2) .le n.00 a no 0.00 0.00 0.00 0.00 0.00 05 0.00 0.00 0.00 24 14 24 19 0.00 1.01 mLL SPEEDS 285 67 47 34 52 94 145 226 276 65 33 24 75 438 134 370 0 2071 (t) 11.A3 3.2e 2.27 1.64 2.58 4.54 A.93 10.91 13.33 3.14 1.50 1.16 3.62 6.66 6.47 18.25 0.00 100.00 (2) ii.a3 3.2e 2.27 9.6. 2.5: e.5 e.93 iO.9i is.33 3.i. 1.50 1.i6 p.62 6.66 6 a7 18.25 e.se i0s.00 i (l)sPERC[Hy UF ALL Gi f M) 04SENwaitHNS FOR 1HIS PaGE (2)mPEdCENI OF aLL Gh00 (MSEWWaI{0NS F04 IHIS PERIon to CALM (WIND SPEED LESS Thaw on touaL 10 60 MPHI 9

e

TABLE 6 VERMONT YANKEE QUARTERLY AVERACE %/Q, D/Q AND CAHMA'X/Q VALUES FOR SELECTED RECEPTORS i POIE OF I EEREST FIRST QUARTER SECOND QUARTER A. Maximum offsite ground Location: SSE 2.80 miles Location: NW 1.55 11 level air concentration X/Q (undepleted)*: 4.60x10-7 X/Q (undepleted):

5.92x10}9 es X/Q (depleted)*: 4.60x10 X/Q (depleted): 5.92x10 1.81x10- '

loca tion '

D/Q**: 2.47x10-9 D/Q:

Camma X/Q:* 3.02x10 Causna VQ: 2.72x10 -7 B. For whole body and skin doses from noble gases .

1) Maximum site boundary location: SSE 0.54 miles Location: SSE 0.54 miles location X/Q (undepleted): 8.55x10-9 x/Q (undepleted): 3.53x10-X/Q (depleted): 8.55x10-9 x/Q (depleted): 3.53x10 -8 D/Q: 5.02x10-II D/Q: 2.98x10-10 Can.sa X/Q: 5.86x10-7 Camma X/Q: 4.15x10-7
2) Maximum nearest Location: SSE 1.33 miles L ation: South 0.g3 miles 7

residence X/Q (undepleted): X/Q (undepleted):

1.62x10 1.34x10 1.34x10-8 X/Q (depleted): 1.62x10-7 X/Q (depleted): ,

II D/Q: 1.30x10-9 D/Q: 9.13x10 Gamma X/Q: 3.53x10-7 Camma x/Q: 5.07x10-7 C. For organ doses from j iodine and particulates in gaseous effluents

1) Maximum farm location Location: SSE 3.5_y11es 14 cation: SSE3.5,yiles X/Q (undepleted): 3.46x10 . X/q (undepleted): 2.26x10 X/Q (depleted): 3.39x10-7 X/Q (depleted): 2.22x10 -7 D/Q: 1.81x10-9 D/Q: 9.14x10 -10 Camma X/Q: 2.31x10-7 Camuna X/Q: 1.41x10- ,

t

TABLE 6 (continued)

POINT OF IlffEREST FIRST QUARTER SECOND QUARTER

2) Maximum nearest residence SSE 1.33 miles Imca tion: NW 1.35 Location:

X/Q (undepleted): 1.62x10-7 >/Q (undepleted): 1.51x10

-911es X/Q (depleted): 1.62x10-7 X/Q (depleted): 1.51x10 -7 D/Q: 1.30x10 -9 D/Q: 6.32xto -10 Causna X/Q: 3.53x10-7 Camma y/Q: 1.89x10 -7

3) Maximum site boundary location: SSE 0.54 m11es Location: SSE 0.54 miles location X/Q (undepleted): 8.55x10-9 X/ Q (undepleted): 3.53x10 -8 X/Q (depleted):' 8.55x10-9 y/Q (depleted): 3.53x10-8 D/Q: 5.02x10 -II D/Q: 2.98x10 -10 Camuna )/Q: 5.86x10-7 Camma X/Q: 4. Sx10-7
  • Depleted and undepleted X/Qs and Camuna X/Q are in units of sec./m 3 Delta (D/Q) in units of 1/m 2 .

6 O

S

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ ____4- - _ _ _ . _ _ _

- _ ._~

t TABLE 7 * *

SUMMARY

OF RADIOLOGICAL IMPACT ON MAN Vermont Yankee Nuclear Power Station First and Second Quarters, 1979 ESTlHATED FIRST ESTIMATED SECOND POTENTIAL PATHWAY OR TYPE OF EXPOSURE QUARTER DOSE QUARTER DOSE COMMITMENT COMMITMENT I. Maximum individual _ whole body and 0 0 critical organ doses from receiving- (no liquid release) (no liquid release) water exposure pathways from liquid releases (arem).

II.

A. Whole body and skin doses to (location approximately (location approximately individuals exposed at point 2.8 miles SSE 1.55 elles northwest of maximum offsite ground of stock) of stack) level air concentration of radioactive noble gaseous -

effluents.

1. Skin dose (arem) 0.16 0.10
11. Whole body dose (arem) 0.078 0.044 B. Whole body and skin doses at (SSE (south maximum site boundary location site boundary site boundary from radioactive noble 0.54 miles) 0.24 miles) gaseous effluents.
1. Skin dose (aren) 0.15 0.10 ,
11. Whole body dose (arem) 0.15 0.10 C. Whole body and skin doses at (skin dose;SSE 1.33 mi) (south 0.33 elles) maximum nearest residence (whole body;S 0.33 mi) from radioactive noble gaseous effluents.
1. Skin dose (aren) 0.12 0.083
11. Whole body dose (arem) 0.11 0.082 O

. , i .

TABLE 7 (continu:d)

ESTINATED FIRST ESTIMATED SECOND POTENTIAL PATHWAY OR TYPE OF EXPOSURE QUARTER DOSE QUARTER DOSE COMMITHENT COMMITMENT III.- Organ doses to individuals from radioactive iodine and particulates in gaseous effluents (including 9

tritium).

A. Maximum farm location. ( f a ra 3. 5 (farn 3.5 miles SSE -

alles, SSE - all thyroid , CI(LLI), whole bcay; organs) fara 3.6 miles N - bone)

Maximum individual whole body and organ doses from all pathways.

1. Bone (arem) 2.1x10-2(child)

-I 4.3x10-3(infant)

-I

11. Thyroid (arem) 1.2x10 3.7x10 111. GI(LLI) (arem) iv. Whole Body (arem) 5.8x10[3((ch11d) teen) 7.9x10[4(infant) 3(teen) 9.0x10 (adult) 1.8x10 (adult)

B. Critical organ doses to maximum (resident 1.33 miles (resident 1.35 miles NW all nearest resident from the SSE all organs) organs) inhalation, ingestion and ground plane exposure of iodine and particulates.

1. Bone dose (arem) 1.2x10-1(ch11d) 1.3x10-3(child)

-2

11. Thyroid dose (arem) 6.9x10- (child) 1.5x10 111. GI(LLI) (mren) 4.0x10- (teen) 4.8x10-4(child) teen) iv. Whole body as critical organ 5.6x10- (adult) 8.2x10-4((adult)

(aren)

O e

TABLE 7 (continued) ,

ESTlHATED FIRST ESTIMATED SECOND POTENTIAL PATHWAY OR 1YPE OF EXPOSURE QUARTER DOSE QUARTER DOSE COMMITHENT COMMITMENT C. " Organ doses to individuals at point (2.8 miles SSE) (1.55 alles NW) of maximum ground level air concen-tration of gasesous effluents from inhalation and ground exposure of iodine and particulates.

1. Bone dose (area) 7.2x10-3(child) 1.2x10- (child)
11. Thyroid dose (arem) 1.0x10-I(child) 3 9.4x10- (child) 111. GI(LLI) (uren) 7.0x10 3(teen, adult) 1.2x10-- (adult, teen) iv. Whole body as critical organ 7.1x10- (teen) 1.2x10 (adult)

(area)

D. Organ doses to individuals at point of maximum site boundary (0.54 alles SSE) (0.54 miles SSE) air concentration of gaseous ef fluents from inhalation and ground exposure of iodine and particulates.

1. Bone dose (arem) 1.5x10-4(child) 1.9x10-4 teen, child)
11. Thyroid dose (area) 1.9x10-3(ch11d) 6.9x10-4((ch11d) 111. GI(LLI) (arem) 1.4x10- (all) 1.9x104 (teen, child)

Iv. Whole body as 1.4x10- (teen) 2.0x10 (adult, teen) critical organ IV. Whole-body doses to individuals and populations in unrestricted areas from direct radiation from the facility.

9

- - ~ _ _ . -

TABLE 7 (Continued) ,

ESTlHATED FIRST ESTIMATED SECOND, POTENTIAL PATHWAY OR TYPE dF EXPOSURE QUARTER DOSE QUARTER DOSE COMMITMENT COMMITHENT ,

IV. (continued)

A. Maximum site boundary (arem) 3.1 3. 4 (west of turbine building).

B. Population dose (man-rem) 1.7x10-2 1.9x10 -2

v. Whole-body dose to the population 0 (no liquid releases) 0 (no liquid releases) from all receiving-water related pathways from 11guld releases.

(man-tem) v1. -

A. Whole-body doses to the population and average individual out to 50 miles from noble gaseous effluents.

i. Whole body dose to population 1.9 1.2 (man-rem)
11. Average individual whole body 1.7x10-3 1.1x10-3 dose (mrem) 111. Skin dose to population 3.2 2. 0 (ma n-rem) iv. Average individual skin dose 2.8x10-3 1.7x10-3 (arem) 4

TABLE 7 (Continuzd)

ESTIMATED FIRST ESTIMATED SECOND POTENTIAL.PATIIWAY OR TYPE OF EXPOSURE QUARTER DOSE QUARTER DOSE COMMITMENT COMMITMENT VI. (continued)

B. Organ doses to 50 mile popula-tion, and average individual, from inhalation, ingestion of milk, meat, and vegetables, and ground exposure to iodine and parti-culates in gaseous effluents.

6.7x10 ~I

i. . Thyroid population dose 6.1x10 ~1 (ma n-rea)
11. Average individual thyroid dose (arem) 5.8x10-4 5.3x10 ~4 111.Whole body population dose (man-rem) 4.8x10-2 1.5x10-2 I V. Average individual whole-body dose (arem) 4.2x10-5 1.3x10 -5 P

9

- . ~

  • l

. .* ~ i

  • \

APPENDIX A l

EFFLUENT AND-WASTE DISPOSAL SEMIANNUAL REPORT Supplemental Information January - June 1979 Facility: Vermont Yankee Nuclear Power Station Licensee: Ve,rmont Yankee Nuclear Power Corporation

1. Regulatory Limite
a. Fission and activation gases: 0.08/EY C1/sec.

'b. Iodines: 0.48 uC/sec.

c. Particulates, half-lives >8 days: 1.6E+3 MPC Ci/sec.
d. Liquid effluents: 1.03-7 uC/ml 1 (HTO: 3.0E-3pC/ml, dissolved Noble gases: 4.0E-SuC/ml).

Identified isotopic limits are found in 10CFR20 App. B, Table II, Column 2.

2. Maximum Pe_rmissible Concentrations Provided below are the MPC's used in determining allowable release rates or concentrations.
a. Fission and activation gases: No MFC limits
b. Iodines: No MPC limits
c. Particulates, half-lives >8 days: See 10CFR20, App. B. Table II, Column 1.
d. Liquid effluents: See 10CFR20, App. B, Table'II, Column 2.
3. Average Energy Provided below are the ave' rage energy (E) of the radionuclide mixture in releases of fission and activation gases, if applicable. ,
a. Average gamma energy: 1st Quarter 0.236 Me'/ V dis.

2nd Quarter 1.11 MeV7 dis. .

.b. Average beta energ/: Not Applicable

4. Measurements and Approximations of Total Radioactivity Provided below' are the methods used to measure or approximate the total radio-activity-in effluents and the methods used to determine radionuclide composition.
a. Fission and Activation Cases Daily sampits are drawn at the discharge of the Air Ejector. Isotopic breakdown of the releases are determined from these samples. A logarithmic
  • v . ** _2_

.e chart of the stack gas monitor is read daily to determine the gross release rate. At the very low release rates normally encountered during operation with the Agumented Off Cas system the error of release rates may be approxi-mately 2100%.

b. Iodines Continuous isokinetic samples are drawn f rom the plant stack through a particulate filter and charcoal cartridge. The filters and cartridge are-removed weekly (if releases are less than 4% of the Tech Spec limit), or daily (if they are greater than 4% of the limit), and are analyzed for radio-iodine 131, 132. 133, 134, and 135. The iodines found on the filter are added to those a the charcoal cartridge. The error involved in these steps may be approximately 250%.
c. Particulates The particulate filters described in b. above are also counted for particulate radioactivity. The error involved in this sample is also approximately 250%.
d. Liquid Effluents Radioactive liquid effluents released from the facility are continuously monitored. Measurements are also made on a representative sample of each batch of radioactive liquid effluents released. For each batch, station records'are retained of the total activity (mC1) released, concentration (pC1/ml) of gross radioactivity, volume (liters), and approximate total quantity of water (liters) used to dilute the liquid ~ effluent prior to release to the Connecticut River.

Each batch of radioactive liquid effluent released is analyzed for gross gamma and gamma isotopic radioactivity. A monthly proportional composite sample, comprising an aliquot of each batch released during a month, is also analyzed for tritium, SR-89, SR-90, gross beta and gross alpha radioactivity, in addition to gamma spectroscopy.

There were no liquid releases during the reporting period.

~

5. Batch Releases .
a. Liquid There were no routine liquid batch releases during the reporting period.
b. Caseous There were no routine gaseous batch releases during the reporting period.

.. 6. Abnormal Releases

a. Liquid There were no non-routine liquid releases during the reporting period.
b. Caseous There .were no non-routine gaseous releases during the reporting period.

i

- .... _. .. . . . _ . . . . _ _