ML19317G701
| ML19317G701 | |
| Person / Time | |
|---|---|
| Site: | Rancho Seco |
| Issue date: | 07/01/1973 |
| From: | Schrock V, Trezek G CALIFORNIA, UNIV. OF, BERKELEY, CA |
| To: | |
| References | |
| 4792-5138, WHM-4, NUDOCS 8003260833 | |
| Download: ML19317G701 (78) | |
Text
{{#Wiki_filter:- _ - _ - NATIONAL SCIENCE FOUNDATION I WM% HEh1MANh(dMENf [h Report No. WHM-4 g3 Submitted to Sacramento Municipal Utility District g. Under SMUD Contract No. 4792 { I eo e d 1 g v P' g' b Q94(9 u. RANCHO SECO NUCLEAR SERVICE SPRAY PONDS PERFORMANCE EVALUATION by j ~ Virgil E. Schrock George J. Trezek UNMf6IG OfGUf0Mik l Muku .cos a.o rn a anaessame ~ D 3en19n. E3f
.A. 22. i c 7_ %i-I Report Submitted to Sacramento Municipal Utilit'y District J, " Rancho Seco_ Nuclear-Service Spray Ponds
- Performance Evaluation"
.c. s k. by Virgil-E. Schrock George J. Trezek 4 [' with assistance from ' Thomas Chan Jorge De1LMazo _Binky Lee Mitchell 01sewzski r Shi-Chune Yao 1 44 65 1 SMUD Contract No. 4792 4 i University of California, Berkeley
- 3 Waste Heat Management Research Project 3
July 1, 1973 f] M
I' ,1 .:r-CONTENTS i
- L Page No.
7,. Acknowledgement. 11 iii List of Figures '1 I. Introduction. 1 II. Objective 2 .s III. Test Program and Procedures
- r-A.
Tes t P rogram. 2 B. Test Procedure.. 3 .t" C. Measurements and Instrumentation 1. Wind Speed. 3 a, 2. Psychrometric Data. 4 3. Pond Volume 4 4. Water Temperatures and Catch Pans 4 5. Flow Measurement S 'IV. Discussion and Results t !r A. Water Loss. 6 B. Spray Nozzle Efficiency 7 ' f' C. F.' < rates auul Heat Loads. 9
- \\.
- a.
D. Pond Interaction. 10 E. Intermittent Operation. 10 4_ F. Overall Pond Performance. 11 G. Summary of Computer Results 14
- t, V.
Conclusions 16 Appendices A. Flow Calibrations 46 l B. Pond Volume Data. 54 ,r. t , p. r'
- i
.u
r -' li' ['. it, ACKNOWLEDGMENT
- r-The success of this evaluation has been the result of the excellent cooperation of many individuals. Lee R. Keilman was primarily respon-
.[ sible for the SMUD planning of the tests and coordination of information flow between UC-Berkeley, Bechtel personnel and others. We are especially grateful for his understanding and thoughtful guidance and assistance. Many others at the Rancho Seco Plant assisted in many ways, in particular David-Abbott and Mike Montenero. Bechtel per-sonnel assisted in the planning of the tests and as observers. We would like to express our gratitude to Landon R. Brown, Bert Aley and the u-many others. William E. Hebden, Vice President of SPRACO, gave generously of his time in assisting with data collection. Kevin Strauss was responsible for the construction of the catch t-pans and assisted with the installation of instrumentation. Finally, we wish to acknowledge that the National Science Foundation under Grant GI-34932 provides the basic support for our Waste Heat Management Project. Through this grant and the encourage-
- r ment of our Program Officer, Dr. Leonard Topper, to interact meaning-fully with industry, we were in a position to respond to the request to do this study for SMUD.
t. -l 1 i 5 .t* 1 t .+ jr' lI ! t.) l n M-g
7 9 d-t 7 kt s r?e e t. LIST OF FIGURES + Page No. 1. -Plan of Spray Ponds. 24 l 2. ' West Pond Schematic and Instruments Stations. 25 3. Pond Level and Make-up Flowrate - West Pond.......... 26 4. ' Pond Level, East Pond 27 5. Wind Speed, Test No. 1...................... 28 ~ 6.- Wind Speed, Test No. 2........... 29 7. Wind Speed, Test No. 3....... 30 8. Wind Speed - Nine Day _ Test. 31 b 9. Total Water Loss Rate vs Time, Test No.1...... 32 10. Total Water Loss Rate vs Tirne, Test No. 2. 33 c i - 11. Total Water Loss Rate vs Time, Test No. 4. 34 [t. ' 12. Total Water Loss vs Wind Speed, Test No. 1 35 13. Total Water Loss vs Wind Speed, Test No. 2 36 1 14. Total Water Loss vs Wind Speed, Test No. 4 37 15. Drift Loss vs Wind Speed, Tests 1, 2 and 4. 38 16. Nozzle Efficiency vs Distance. 39 - 17. Pattern for Averaging y - Low Wind Case 40 . 18. Pattern for Averaging y - High Wind Case. 41 e 19. f) _ vs Wind Sp eed............. 42 T -: .e k, ,\\,E' 'y. i C
- 7 :.
1-iii i1
o L I. Introduction 7 The. spray ponds of the Rancho Seco Unit 'l Nuclear Generating Station are s-two redundant systems designed to dissipate nuclear. decay heat and auxiliary equipment waste heat during ~ periods of shutdown for maintenance and in emergen-cies including the design basis accident, the loss-of-coolant accident (LOCA). Each pond must-have the thermal capacity to dissipate the thermal load associ-ated with the:LOCA under conservative meteorological conditions and limit the cooling water temperatures. to the design ranges of system components. Addition-ally the pond water inventory must be capable of sustaining this performance w. . for a period of 30 days following the hypothetical LOCA. i. Because the detailed performance parameters of spray ponds are not well s, established the Atomic Energy Commission has asked that Sacramento Municipal i F Utility District (SMUD) provide additional evidence of the ability of the ponds I to meet the design criteria. To obtain the necessary supporting information t-SMUD has asked the University of California, Berkeley, to carry out an experimental l-(, evaluation of the performance of the ponds. Of.particular concern is the efficiency of the spray nozzles and its depen-dence up,on operating variables and the drift loss dependence upon wind speed and heat load. These performance factors are central to the calculation of com-i.. pc >ite behavior of the system mentioned in the first paragraph. } The University of California study is in two parts. Phase I consists of the equipment test program and the basic results contained in this report which a i are needed to demonstrate adequacy of the system design in response to the AEC j request. Phase II will consist of a more detailed analytical study and laboratory U,
- experimentation' on individual nozzles.
Phase II is not necessary to demonstrate Q system adequacy but is ' conducted to advance the state of the art and to provide the' industry _with detailed information to be used in' the design of future systems. Phase II-report will be available upon request to the District. These studies. Q] will be~ aimed at developing more accurate methods for design of spray ponds and k c n k'l
..... ~ j-41 2
- ,4 N
prediction of the parameters on which these designs depend. .4* II.. Objective The objective of the experimental program was to perform tests on the Rancho Seco spray ponds 'in accordance with the ASME Power Test Code - No. 23 - Atmos-pheric Water-Cooling Equipment, and with. prevailing meteorological conditions for ' the' purpose of: (., 1. Establishing the ' thermal performance capability of the ponds; 2. Establishing the drift loss as a function of wind speed and q heat' load; 3. Determining the spray nozzle efficiency. From the basic experimental results the overall pond performance is to be
- )
a, calculated for conservative meteorological conditions and.the heat load character-istic of the LOCA (SMUD FSAR) to verify the design thermal performance and 'f ' the adequacy of pond inventory to sustain operation for the critical 30 day lI period. A. III. Test Program and Procedures 1.. A. Test. Program .[, Four tests were conducted as follows ji West Pond Test No.1 - 24 hours -at Heat Load of 3.0 x -10 Btu /hr. Continuous I 7 -Spray. Test No. 2 - 24 hours at Heat Load of 6.68 x 10 Btu /hr. Continuous q
- (j Spray.
1 Test No. 3 - 24 hours at Heat Load of 7.9 x 10 Btu /hr. Intermitt- ~ 7 5: \\ ent Spray. y ,w.4
3 A East Pond Test No. 4 - 9 days, No Heat Load, Continuous Spray. f, Tests 1 and 4 were started simultaneously on May 18, 1973. Tests 2 and 3 ) followed test'1 on consecutive days. Thus the first three days of test 4 were run concurrently with tests 1, 2 and 3. This procedure allowed comparison of i load and no load operation under the same wind conditions. It also provided an opportunity to observe the interaction between the ponds. Figure 1 shows the orientation of the ponds with respect to each other and other plant components. ( B. Test Procedure \\. The procedures. followed and the instrumentation employed conformed to the f ASME PTC-23. Figure 2 is a schematic diagram showing the layout of the West Pond and the instrumentation locations. Similar instrumentation was provided I as needed for the simpler test performed on the East Pond (Test 4). Table 1 lists the instrumentation associated with each of three West Pond data stations. L Also included is the frequency of reading and the precision of the instrument. t .t Circulating pumps were turned on and spray operation started the day prior to the start of testing. The-heat load was applied to the West Pond several -(- hours before the start 'of testing so that the startup transient had passed and I the pond was following the meteorological conditions. .I, C. Lleasurements and Instruments 1. Wind Speed and Direction Wind speed and -direction were recorded continuously during all four tests b .using a Weather Measure Corp (Systron-Donner) recording anemometer located on '[ the west side of the West' Pond (up wind side most of the time). The prevail-k. ~-ing wind is out of the southwest in this season and the direction was usually 'between L220 and 270 degrees (true). Occasionally in early morning hours during j lulls the direction shifted to south or southeas :. lJ. e, .m
a -. j' 4 t
- ('
,. (.. A precision hand-held anemometer was used at data station.4o. I to read the wind speed each time psychrometric data were read at the three stations.on the 4:- west bank of the West Pond. Records were obtained from Mather Air Force Base, the nearest meteorological station, for comparison. ?!ather is approximately 20 miles north of the Rancho ~. 3-Seco site and is in a similar meteorologic location. 2. Psychrometric Data i Wet and dry bulb temperatures were recorded at three up wind stations on l' the west bank of the West Pond using Weather Measure Corp. battery powered 3 psychrometers which had been modified by installation of 0.1*F precision ther-mometers. ( 3. Pond Volume I A calming well was installed on the outboard side of the pump suction sump '[' structure near the north-south axis of each pond. Vernier electric contact point gages having a precision of 0.001 foot were mounted in the calming wells
- i ~(
to measure the level of the water in the ponds. Each pond was surveyed before filling to obtain reference points for defin-b ing the bottem and sioning side surfaces. The survey data were used to calculate j! a detailed relation for pond volume vs depth. These results are presented in
- C
-Appendix C and are consistent in precision with the depth readings. ,a i Pond volume changes are accurate to within i 500 gallons or better. w 4. Water Temperatures and Catch Pans ,p N, Water temperatures were measured with mercury in glass thermometers and ]: thermistors to within t 0.1*F. Itercury thermometers were installed in bubbler [ ' columns to provide flow.over_the immersion length. Thermistors were mounted in the pond a:: shown in Figure 2 and one was taped to a spray nozzle pipe and wrapped with~ insulation. Good agreement was found between it and the mercury IU lu ill.8
a.- ? 41 5 i ( thermometer on the return line. a-Catch pans 1 foot in diameter and 4 inches deep were equipped with an over-flow line. A thermistor was mounted at the mouth of the overflow line to ensure 'l ^ that it responded to changes in spray water temperatures. These catch pan ther-mistors measured the temperature of the spray water falling on the pond surface. 1 A total of seven fixed catch pans were employed to obtain a representative dis-tribution of the spray water temperature falling on the pond. A special catch i pan was designed to measure both the flowrate of the falling spray and its tem-j 4 - perature at impaction. This device was designed to be towed thus permitting a j larger number of locations to be surveyed. L The towed or movable catch pan also carried a rack of thermistors to meas-ure water temperature at various depths in the pond. It was employed primarily during test No. 3. All themistors were individually calibrated. During tests they were con-nected to a bridge circuit whose unbalance was recorded on a Honeywell Brown L Electronic multi-point recording potentiometer. Accuracy of t 0.1*F was achieved. 5. Flow Measurement. ( Pitot tube stations were mounted on the 24 inch stainless steel return 1 lines in the ponds midway between the last fitting at the pond sill and I the first vertical header. Several sets of 90* traverses were made in each pond to establish an accurate relation between the flowrate and the spray head pres-( sure. The pitot tube differentials were observed on a manometer containing Meriam Fluid No. D 2883 (Sp. gr. 2.95). The differentials were on the order b of two feet and' could be read to 0.01-ft. However flow oscillations caused (- variations of t 0.05 feet (or more in the West Pond at times) so that a small amount of scatter of the data points in velocity profiles resulted. Flowrates were calculated, using the standard equal area method, from the faired velocity 7O j
.-.y f 6 1 p i i profiles. These results:are presented in Appendix A. ~ . p-Make-up water flowrate was measured on a precalibrated Haliburton turbine l meter-(+ 0.57. accuracy). The makeup water was injected into the system at the I 1 heat exchanger inlet. j IV. Discussion and Results A. Water Loss W. j Water loss from the ponds was found from the change in pond level and the metered make-up water,if any. The entire nine day test w'as run without make-up i i water addition. The West Pond level and make-up flowrate are given in Figure 3. East Pond level is shown in Figure 4. These data were used to calculate aver-age loss rates for the intervals between pond level measurements. I Wind data from hand anemometers was averaged and found to compare well ,t. with the recording anemometer. For tests 1, 2 and 3 the hand anemometer data J were used to obtain the wind curves given in Figures 5, 6 and 7. Wind speed from the recorder is the basis of the curve for the 9 day test. (Test No. 4) (~ shown in Figure 8. During periods of high wind the wind was very gusty. For l example when the mean wind speed was 12 mph the variation was often t 6 mph. s, This condition required fairing variations of high and moderate frequencies in tL order to process the data. Figures 9,10 and 11 give the total water loss rates vs. time for Tests 1, l" ~ Combining these with the wind data gave the relationship between the 2, and 4. l . total loss rate and wind speed sr.)wn in Figures 12, 13 and 14. Taking the inter-L cept of the curves on the ordinate to be the evaporation loss, gave drift loss curves plotted in Figure 15. This procedure assumes that the evaporation rate is independent. of the wind speed. The percentage of total heat loss which is 1'" 'due to evaporation may vary slightly but such an effect has yet to be established. [ The remaining question then is how the evaporative fraction compares for each test. .. Lt. j
- Data are tabulated in Tables'2,'3 and 4.
es ' }:: u_ :
m 7 f .-w
- (
7 lb 7 For Test No.' 1 the intercept gives 80% of the heat load (100% equals 3.0 x 10
- s..
Btu /hr) while for Test No. 2 it gives 65% of the heat load (100% equals 6.68 x ,f,
- I-10 ' Btu /hr).
- C' It is'not li'<ely that these results are an accurate indication of the per-1t cent of heat transfer by evaporation for these two runs or a general dependence upon the magnitude of the heat load.
The value for Test No.1 is probably too high.while the one for Test No. 2 is too low. In spite of this the data proces-
- I sing method yields good agreement for the drift loss-wind correlation of the l{
three runs.as shown in Figure 15. Further evaluation of the evaporative loss will be undertaken in Phase II, i l-but for-the present it will be conservative to assume the drift loss according i L. to the average of Figure 15 and 100% evaporation loss. This is the basis of the ' 1
- E.
30 day performance evaluation to be discussed later. B. Spray Nozzle Efficiency
- p>.
! ( The spray nozzle efficiency is defined as si T -T sp c n. (1) T -T sp w l' where -t T = temperature of the spray water q sp T
- temperature of droplets impacting on pond surface c
, [, T, = wet bulb temperature. Values were calculated from the average-wet bulb temperature observed at i o .the three psychrometer statio'ns and the' values of T recorded in each of the c
- I seven. catch pans.. Because the average value of T must equal to the mean pond j
- [-
c t 1 temperature T, when the pond is operating in steady state, the spray nozzle ~ p .( ' efficiency based upon T was calculated for comparison. The results from West ~ p p-Pond tests 1, 2 and 3 are presented in Tables 5, 6 and 7 respectively. Indivi-
- Ol t
- Neglecting. surface evaporation
- {Q
- ^
. _.~ - - (?. g L p {j dual nozzle efficiencies vary from a high of 0.686 to a low of 0.125. p This wide range' of nozzle efficiencies is due to a major extent to the interaction between nozzles. Nozzles located downwind of the edge of the spray } pattern received air that has been humidified whereas ambient wet bulb tempera-ture is used to calculate n. Thus nozzle location is important and wind speed { and direction are important in detemining the effective wet bulb temperature available to each nozzle. This same effect would be observed (to a lesser f I extent) for a single nozzle if its efficiency were measured as a function of C position in the spray pattern on the pond surface. For the large group of nozzles in a rectangular pattern the effect of wind 1 '[ direction tends to confuse the dependence of efficiency on nozzle position. We have adopted the view that the distance across the spray field from the upwind I edge, measured in the direction of the wind, is the relevant length for correl-ating the efficiency. This concept is sound for the case when the wind domin-ates the air flow within the spray region. At low wind speeds the natural con- [ vection plumes dominate the air flow, i.e., the plume induces air flow into the i spray region all around its periphery, even on the downwind side. This phen-a l-omenon was observed at night during periods of low wind. The lighting around the pond made the plumes especially visible. For the natural convection case L we would then expect a non-monatonic variation in n observed along a line ,s( through'the pond in the wind direction. Figure 16 illustrates the variation of efficiency in the wind direction q. L-for high moderate and low wind condition. These results corroborate the ideas i expressed in the previous paragraph. For design purposes it is desirable L to know the average value of K for the entire pond. Thus a rational method for averaging the measurements of individual catch pans is needed. We l
- U U
k
[ T 9 r have used the explanation put forward above as the basis.for seeking two pat-terns 'for weighting individual catch pan results, one for high wind where wind dominates and one for low wind where natural convection dominates. (. The averaging patterns selected were found by trying several plausible -schemes and comparing the results with the value of n calculated using pond temperature. To do this only data were chosen for times when pond and wet bulb I temperatures were particularly stable. Figures 17 and 18 illustrate the pat-i terns adopted for low and high wind conditions, respectively. The question arises as to how to define " low" and "high" wind. For winds up to 5 mph only the low wind pattern was used. For winds between 5 and 7 mph both patterns were used and the difference in the results is not large. Above 6 mph only the t high wind pattern was used. Figure 19 presents these results and constitutes s j a reasonable correlation of the average nozzle efficiency with wind. -
- t, For design, average values of n in the vicinity of 0.40 to 0.45 appear to
- '. ~
be justified. This conclusion is consistent with the results of our analysis of intermittent spray operation. We have compared the results of our computer C model with the experimental data of Test No. 3 for various values of n. For 6 = 0.45 the pond temperature agrees closely for the prediction and experiment. t C. Flowrates and Heat Loads ~i' The results of pitot tube traverses are presented in Appendix A. The
- j results of three flow measurements each on the West and East Ponds during these 1
tests plus five additional measurements made by David Abbott of SMUD subsequent l iil) to the UC tests are presented together in Figure A-1 as flowrate vs. spray ll manifold pressure. The mean line drawn ;hrough the data points is the recom-N mended correlation for both ponds and is with 3.5% of all data points. [ The heat load on the pond was calculated from the product of the mass flow-M fi
=_ m. --w=-- M'. 10-U: rate and the temperature difference between the water leaving and returning to the pond.- n-Table 8 below gives the average conditions for the four tests. Table No. 8 ( Flowra+e_, g m Heat Load Btu /hr West Pond Test 1 15,000 3.0 x 10 7 j West Pond Test 2 16,500 6.68 x 10 16 pr p West Pond Test 3 7.9 x 10 y aO L East Pond Test 4 15,900 0 l' i-D. .Dond Interaction During Tests 1,2 and 3 the wind was generally from the west or southwest and therefore the air crossing the West Pond became humidified before reaching s the East Pond. The effect of the upwind pond on the one downwind has been a matter of speculation. Comparison of wet bulb temperatures for the two ponds a shows that there is a small effect. Figure 20 shows this comparison for Test No'. 2 and reveals that the downwind pond sees about a 1*F increase in wet bulb temperature above ambient. At the design load on the plant this effect would t be slightly more than twice this amount. 3-E. Intermittent Operatien .I.' The purpose.of intemittent operation is to conserve water when the con- { tinuous spraying is not needed to hold the pond temperature at the design level. L hhen the pond water temperature is low the circulating water is' put on bypass. 4 L In this condition the water from the heat exchanger is returned directly to the pond and is directed away from the pump suction to avoid short circuiting of the pond. It was observed in Test No. 3 that the high kinetic energy of the [ water entering the pond promotes large eddys and rather good mixing. Short a C I
O, 11 L p -- 4,, circuiting would be most evident by a rate of rise of the pond outlet tempera-ture exceeding the rate for adiabatic conditions and perfect mixing of the return water in the pond. In each case that the flow was on bypass the actual ~ rate of rise of temperature at the pond outlet was equal to or less than the L ideal rate. 6. i F. Geerall Pond Performance The transient behavior 'of the pond can be analyzed on the basis of a sim-b pie lumped capacity model. The system is described by the following diagram T (t), T (*) y d Qsp [ Q radiation [ e [~
- [
convection Q(t) - 3 .'/.* d evaporation r ...5 i i m u-T M P ? F, p where: Q(t) is the time dependent heat load I Q is the heat rejected from the spray sp [ Q is the surface heat transfer rate due to radiation, evaporation c U and convection i M is the mass of water in the pond m is the circulation mass flowrate I' c is the l specific heat of water T is the ambient dry bulb temperature d The energy balance is. i' d b p l(McT ) = Q(t) - Q -Q (2) p sp Recalling Eq. 1, L - T -T il " T -T (1)- r
--___.-._~,-w-._;_ n f,{ 12 A P (, The heat load is given by, i Q(t) = he (T -T) (3) sp p The energy loss from the spray, neglecting the evaporative mass loss is ,y.
- [-
Q = de (T -T) (4) sp sp c ll" The surface heat loss is Q = hA (T -T) (5) e p d 9., The system mass balance is .(,, =id* ( e 3._.( where is the mass loss rate by wind drift [5 = E(V)] d p . E, is the mass loss rate due to evaporation I-Assuming that 100% of the heat transfer from the spray and the pond surface goes to evaporation Q +Q h sp e (7) = e h y_ f8 t, Specification of initial conditions Nu) and T (o) and the forcing functions p L Q(t) and T,(t) complete the description of the problem. p Recognizing that the water mass in the pond changes very slowly compared with thermal changes the calculation of T (t) and M(t) is facilitated by uncoup-l P lI ' ling of equations (2) and (6). Complexity of the forcing functions dictate a L-numerical solution which may, however, proceed in a st raight forward way with-1 li, out iteration. The essential steps are 1. T =T +Of*) sp p me I 2. T=T - n (T -T) { c sp sp w l 3. Q = mc (T - T-) sp sp e l j ' 4. 5 is specified from drift correlation and~ E, = q .q sp c d ~ fg i
- cf 5.1 Apply the difference forms of Equations (2) and (6) for the time step j
l l IOU
.--~..i.. ~.. T 2. f' 13 t;- {j 6. Re turn to S tep. 1. This calculational model has been applied to one of the Rancho Seco ponds f~ ,1 to establish the 30 day performance following LOCA. The heat load is that pre-r~ sented in SMUD FSAR , Figure 9A-30 of Amendment 19. The meteorological con-L ditions used were those based on June 1951 (High Wind) and August 1958 (High ~. Wet Bulb Tcmperature) as presented in Tables 9A-7 and 9A-8 and Figures 9A-22 and 9A-26 of Amendment 19*. The diurnal variation of wet bulb temperature was i, I.. assumed to follow the latter two figures for each of the 30 days. Input information on drif t loss was taken from the drif t correlation pre-u sented in Figure 15 (The curve from Test No. 2). Evaporation was assumed to be l' 1007. of the heat load. Constant h was used parametrically. Before proceeding to discuss the results some of the major features of the problem may serve to aid in understanding the results. Each pond is designed t p to hold 2.7 x 106 6 lb of water. The circulation rate for gallons or 22.5 x 10 m each pond is 16,000 gpm or 8 x 106 lb /hr. The high wind condition, 14.3 mph, m will produce a drif't loss of 0.937. or 7.44 x 104 lb/hr of spray operation. The integrated energy input over 30 days corresponds to an evaporation loss of ( 28.3 x 106 lb - m The intended operation of the pond for the critical 30 day period is to L~, spray intermittently to hold tne pond temperature at or below 95*F. Water from the unheated pond is assumed to be available and will be transferred to the heated pond. The above data indicates that'by this method there is ava41ahla 16.7 x 106 lb of water for the drif t loss requirements. Based upon the experi-t. a mental results of Test No. 3 which indicates the fraction 0.37 as the time 7 BTU /hr (compared to the needed for spray operation at a heat load of 7.9 x 10 .I
- See pp. 23, 43, 44.and 45 of this report.
i-m ^ 0
. - - - ~ ~. w r3 5b 14 ' Fl
- ( ;
30 day mean of 4.17 x 107 BTU /hr it is clear that the pond inventory is sufficient. .r-This is corroborated by the computer study. to It should be emphasized that the calculation is conservative in terms of r l the mass. loss by evaporation. In every case there is some loss by sensible L. 'l, heat transfer. Based on the drif t loss evaluation the amount of the sensible
- f. ;
heat transfer during spraying operation in the present tests (as inferred from lg, the intercepts of total loss curves) was 20% and 35% for the two heat loads. 6' 20% sensible heat transfer corresponds to 5.66 x 106 lb, reduction in water loss. I G. Summary of Computer Results ik ~ As indicated above the pond water inventory is inadequate for the 30 day !I -{j period following LOCA for the high wind (June 1951) condition with continuous spraying. For the high temperature condition (August 1958) the inventory is 'k-still not quite adequate for the 30 day period on continuous spraying. A com-puter run for this case shows that the diurnal peaks in pond temperature are (_ within the design limit. The pond starts at the mean ambient wet bulb tempera-4 4 t, ture of 70*F and rises to 92.6'F and then declines due to low wet bulb temperc-g ture at night. On the second cycle the peak temperature is 94.2'F; on the third 'I-91.0'F and then lower for all succeeding peaks. This calculation uses an average I nozzle efficiency of 0.45. The results shows that intermittent spraying may
- L.
be used during these ambient conditions. (~'[ Results for the critical meteorological conditions are given in the follow-ing summary. -9 L [u om ! i ibs 1
' u.ua...:
- =-.w w:
- a.,.-
- =.
- a % ;7
- 2'.
t
- q-p 15
.u, 1 1i U June 1951 High Wind Speed [ 30 Day h Total Mass Loss Residual Mass Total Days of 106 6 lb,. 10 lb, cooling Available ~!a 0.30 37.65 7.35 39 0.35 3t. 35 10.65 42 i ~ 0.40 32.14 12.86 44' [ 0.45 30.20 14.8 47 O.50 28.82 16.18 48 August 1958 High Wet Bulb Temperature R 30 Day h Total Mass Loss Residual Mass Total Days of 6 10 lb, 106 lb, Cooling Available }" 0.30 40.67 4.33 34 f } 0.35 37.57 7.43 37 O.40 35.18 9.82 41 4 0.45 33.39 11.61 42 [ 0.50 31.96 13.04 45 q-H These calculations use a surface heat transfer coefficient of 15 Btu /hr 2 ![ ft *F which was deduced from the data of Test No. 3 while on bypass flow. As it noted in the analysis all the pond surface heat transfer is considered to-be f 3 evaporative in the evaluation of mass loss. The intermittent operation cycles the pond' temperature between 90 and 95'F. These results show that the pond water inventory is adequate even for the 4 a poorest nozzle efficiency. From the correlation presented in Figure No.19 the II best choices for 5 would be 0.38 for June 1951 conditions and 0.52 for August T' h 1958 conditions. J, l c i 1
.L 17 c. q T1 i.. f Table 1 (L West Pond Data Stations and Instrumentation r i. p ' Data Station No. 1 L Variable - Frequency of Reading Accuracy Instrument I Wind Speed 15 min. O.1 mph Hand Anemometer Wind Speed and Direction Check each half hour
- 0. 5 mph Recording Weather
- f
. Station d-Wet Bulb Temp.
- 15 min.
0.1 F Automatic 0 Dry Bulb Temp.
- 15 min.
0.1 F Psychrometers 0
- Three Stations Data Station No. 2
[ Pond Level 30 min. & or.
- 0. 001 ft.
Point Gage L make up change Pump Discharge Press 30 min. O.1 psi Test Gage if Pond Outlet Temp. 30 min. 0.1 F Hg Thermometer g Make up Water: ' Rate 30 min. & Crude hTurbine '3 Volume on make up change
- 0. 5%
LMeter Temperature 30 min. 10F Hg Thermometer U Press.at Heat Exch. Outlet 30 min. O. I psi Test Gage Temp.at Heat Exch. Outlet 30 min. 0.10F Hg Thermometer r
- L.
Data Station No. 3 - Spray. Water Pressure - 30 min.
- 0. 05 in Hg Manometer 2
Spray Water Temp. (Bubble r) 30 min. 0.1 F Hg Thermometer 0 Spray Water Temp. (Thermowell) 30 min. O.10F Hg Thermometer Recorded Temperatures - Check each 30 minutes the recorder range (on scale) and the .) catch pan positions (all under spray) v. m 0 h' .L]
.,.c. - zn : -- a aa. - ~ .a.;;a.-a a.~::..u 4.- 'rq' l, 18 ITable No.2 TOTAL WATER LOSS '- WIND CORRELATION 't.: l o-.. West Pond Test.No. 1,!!ay 18-19, 1973 Tjme' Span-Mean Wind sph Total Water Loss %' ' ' ~ - .1530-1600
- 8. 3 1.0
.a 3 ei 1600-1630. 7.3 0.93 '1630-1700 6.4 0.80 I F~ 1700-1730 6.5 0.73 7, -1730-1800 7.1 - 0.73 .1800-1830 8.3 0.80 "? 1830-1900 9.1 0.98 it. 1900-1930 7.5 0.83 1930-2000-4.6 0.33 -2000-2030 4.6 0.40 m -2030-2100. 5.8 0.53 2100-2130 4.6. 0.86 '~ .2130-2200-4.6 0.53 1e 2200-2230 3.4 0.53 2230-2300 4.2-0.57 !( 2300-2330 2.6 0.40 2330-0000-1.1 0.27 .0000-0030: 1.0 0.40 ~ d~ 0030-0100 0.7 0.53 0100-0130 1.5 0.47, 0130-0200-1.0; 0.47 0200-0230' O.5 0.47 -0230-0300 - 1.0 0.33 0300-0330 1.5 0.33 li7 0330-0400 3.4 0.53 0400-0430-2.7 0.43 ~0430-0500' 2.8 0.50 '0500-0530-2.6-0.57 i ;_ -. -0530-0600 3.4 0.40 T0600-0630 3.8 0.66 0630-0700-~ 5.8 0.73 4 k: 0700-0730 3.9 0.60 LO730-0800-1.7 0.46 J. .:0800-0830 1.4 0.40 0830-0900
- 1. 6 -
0.33 0900-0930
- 7. 3 0.53 4
-:0930-1000 - 8. 7 0.66 -1 1000-1030 9.1 0.80 i1030-1100-9.4 1.06-1100-1130. 7.8- '0.60 i
- 1130-1200
' 1 0. 46 _ 0.87 D1200-1230-12.9 1.13' 1{C
- 1230-1300-13.2 1.32-e s7 -[,
4
- a. 1.
.~'.~ 's ,,u.U s hX.OQ -~ _, - l~. .1, 19 . r" TOTAL WATER LOSS - WIND CORRELATION . L,' .. Table No.3 West Pond Test No. 2, !!ay 19-20,1973 p. L' Time Span Mean Wind mph Total Water Loss % I' 1300-1400 12.5 1.14 L. 1400-1430 13.0 1.17 1430-1500-13.5 1.37 r-l1500-1515 15.5 1.50 1500-1530 15.5 1.28 - 1530-1600 12.5 1.13 k. 1600-1630 12.5 1.10 L-1630-1700 12.7 1.19 T' 1700-1730 13.0 1.13 t. 1730-1800 12.3 1.33 1800-1830 12.5 1.50 1830-1900 10.4 1.43 1900-1930-8.5 1.09 1930-2000 7.5 0.89 f, 2000-2030 9.5 0.81 L-2030-2100 6.5 0.55 f[' 2100-2130 8.0 0.53 ~ L, 2130-2200 8,2 0.58 2200-2230 -7.0 0.84 .l~. 2230-2300 7.5 0.84 l' 2300-2330 3.5 0.77 2330-0030 2.0 0.62 4 0030-0130 2.5 0.187 L-0130-0230 4.6 0.37 [7' 0230-0300 4.0 0.76 tj 0300-0400 5.5 0.84 0400-0500 5.2 0.49 77 0500-0600 4.0 0.75 0600-0700 1.0 0.46 ' 0700-0800 3.5 0.81 0800-0900 5.4 0.81 i.. . 0900-1000 6.5 0.65 r' 1000-1100 5.5 0.60 - 1100-1200-R6. 5 ~ 0.75 ri U 4 n Li-c .fr Jd:
.c .;; p _, .g, ::,, p_, -,, yg g --...-..._.a~... m -, ~,r a t ,: :n n x.- 10 - 20 Ctl Table No.4 TOTAL WATER LOSS - WIND CORRELATION r' ' East Pond, Test No. 4, May 18-24, 1973 Date Time Span Mean Wind mph Total Water Loss % ri 5/18 2100-2400 3.40 0.206 5/19 0000-0300 1.00 0>113 g, 0300-0600 2.90 0.175 0600-0900 3.00 0.175 rr, t; 0900-1200 8.80 0.30 1200-1500 13.00 0.625 F-1500-1800 13.10 0.800 ~' 1800-2100 9.20 0.570 LJ 2100-2400 6.80 0.300 r; 5/20 0000-0300 3.30 0.150-0300-0600 4.90 0.100 0600-0900 2.80 0.150 T' 0900-1200 6.20 0.150 tj 1200-1500 6.40 0.200 1500-1800 6.00 0.230 r 1800-2100 6.70 0.240 u_ 2100-2400 -4.50 0.120 5/21 0000-0300 1.80 0.200 [- 0300-0700 2.00 0.100 1631-1930 6.20 0.384 u 1931-2230 6.20 0.359 r-2231-0130 2.00 0.056 5/22 0131-0430 1.40 0.051 t" 0431-0730 1.67 0.103 ,F', 0731-1030 3.33 0.113 1031-1330 5.08 0.166 t_ 1331-1630 5.75 0.176 gg -1631-1930 5.33 0.203 Lj 1931-2230 4.25 0.141 2231-0130 1.75 0.050 c' 5/23 0131-0430 3.00 0.089 0431-0730 4.00 0.100 L. 0731-1030 3.83 0.093 r 1031-1330 7.33 0.119 1331-1630 8.00 0.256 1631-1930 8.92 0.463 T' 1931-2230 6.75 0.209 t_ _2231-0130 5.58 0.100 5/24
- 0131-0430 3.92 0.149
' r~ ; 0431-0730, 3.33 0.000 L; 0731-1030-4.42 0.000 '1031-1330 -3.42 0.000 .f]= 1331-1600. 6.16 0.125 J- .16:1-1900 5.33 0.204 + a J: =
.= -.:~. "C :::; L: ~-- . ~.,, .r~ (_ '21
- r]'{
Table No.5 SPRAY EFFICIENCIES WEST POND TEST NO. 1 r-Catch Pan Number Pond p, Time 1 2 3 4 5 6 7 Outlet T May 18 1300 0.500 0.263 0.539 0.368 0.289 0.158 0.487 i. 1400 0.686 0.549 0.902 0.549 0.275 0.275 0.706
- l; 1500 0.488 0.513 0.563 0.375 0.213 0.513 0.250 0.519 T'
1600 0.356 0.517 0.575 0.356 0.253 0.494 0.160 0.448 1700 0.425' O.539 0.460 0.292 0.221 0.575 0.230 0.354 p-1800 0.491 0.543 0.526 0.336 0.267 0.586 0.276 0.349 1900 0.589 0.589 0.553 0.411 0.362 0.631 0.348 0.298 T' L< 2000 0.627 0.367 0.285 0.184 0.127 0.595 0.2'" 0.269
- r' 2100- 0.554 0.446 0.254 0.249 0.294 0.412 0.401 0.243 2200- 0.598 0.505 0.330 0.247 0.190 0.567 0.268 0.206 y-2300 0.574 0.415 0.246 0.159 0.149 0.477 0.318 0.205 L.
May 19 0000 0.309 0.333 0.156 0.147 0.191 0.456 0.412 0.186 t-0100 0.447 0.292 0.183 0.142 0.160 0.461 0.402 0.183 r-0200 0.476 0.173 0.121 0.143 0.506 0.277 0.165 0300 0.449 0.352 0.157 0.153 0.194 0.495 0.407 0.183 0400. 0.456 0.289 0.213 0.188. 0.301 0.180 .L 0500-0.490 0.226 0.176 0.176 0.373 0.203 0600 0.410 0.253 0.169 0.133 0.293 0.153 r-070,1-0.314 0.215 0.170 0.300 0.132 10800 0.305 0.108 0.202 0.350 0.274 0.165 0900 0.468 0.318 0.249 0.168 0.162 0.410 0.352 0.217 .a. 1000 .0.492 0.442 0.343 0.293 0.530 0.238 .0.218 '1100 ~ 0.431 0.464~ 0.354-0.221 0.177 0.232 0.226 u, 1200. 0.470~ 0.459 0.492: 0.381 0.343 0.459 0.331 0.232 l LJ .ps i3:
-- am a ,, Lw._... ; ..G. ~ '
- .% X Il ij 22 ro Table No. 6
, l.. SPRAY EFFICIENCIES WEST POND TEST NO. 2 r, Catch Pan Number Pond Time 'l 2 3 4 5' 6 7 Outlet ,j 'May 19 '1300 0.561 0.526 0.533 0.408 0.331 0.554 0.380 0.314 i ~ 1400 0.605 0.537 0.554 0.379 0.277 0.525 0.311 0.410 ~ Lj. 1500 0.626 0.544 0.648 0.489 0.379 0.533 0.374 0.434 1600 0.633 0.595 0.600 0.445 0.349 0.579 0.324 0.440 II 1700-0.600 0.581 0.526 0.372 0.269 0.536 0.287 0.400 1.. 1800 0.547 0.561 0.413 0.399 0.543 0.358 0.363 0.442 0.380 0.366 0.356 1900 0.292 0.307 r] 2000 0.346 0.299 LJ 2100 0.317 0.212 0.162 0.297 0.322 2200 0.324 0.320 0.344 0.28e T May 20 0000 0.482 0.418 0.203 0.171 0.207 0.386 0.418 0.309 1. 0100 0.428 0.370 0.144 0.125 0.171 0.447 0.451 0.296 0200 0.487 0.448 0.187 0.165 0.264 0.456 0.49; 0.297 0300 0.477 0.444 0.173 0.184 0.278 0.297 0.541 0.291 Li 0400 0.522 0.529 0.205 0.226 0.306 0.309 0.518 0.283 0500 0.520 0.557 0.218 0.240 0.391 0.300 0.546 0.279 I' 0600 0.552 0.394 0.229 0.163 0.156 0.429 0.517 0.285 i 0700 0.591 0.432 0.25 0.186 0.186 0.451 0.572 0.284 0800 0.621 0.504 0.458 0.337 0.265 0.508 0.375 0.314 f~ 0900 0.603 0.482 0.490 0.349 0.265 0.503 0.319 0.328 i-1000 0.544 0.373 0.320 0.192 0,164 0.458 0.416 0.382 1100 0.509 0.324 0.426 0.315 0.250 0.495 0.324 0.366 1 1200 0.528 0.455 0.449 0.263 0.170 0.528 0.297 0.373 L Table No. 7 m SPRAY EFFICIENCIES WEST POND TEST NO. 3 g; Catch Pan Number f Time 1 2 3 '4 5 15 7 ' lJ May 20- ~2300 0.538 0.532 0.323 0.260 0.251 0.545 2324 0.545 0.462 0.340 0.270 0.302 0.570 i 'l May 21 '0000 0.553 0.390 0.253 0.251 0.350 0.478 0324 0.486 0.573 0.326 0.267 0.253 0.453 .r 0400 0.482 0.585' O.345 0.280 0.269 0.427 0448 0.490-0.499 0.358 0.264 0.234 0.519 0912 0.397 0.424 0.301' O.214 0.167 0.527 0.342 1000 0.530 0.451 -0.403 0.285 0.254 0.572 0.472 L. 1036 0.545-0.509 0.411 0.309 0.252 0.658 0.446 1100 0.526' O.542 0.419 0.326 0;288 0.679 0.422 !~ . a.. L r; st
2 nw L 23 P.. Appendix 9A r-TABLE 9A-7 CRITICAL PARAMETERS FOR JUNE, 1951 O 'I Average Wind Speed 13.0 mph T~ Average Wind Speed (+107.) 14.3 mph i~ ; Average Wet Bulb Temperature 57.3 F I ^'
- g Average Dry Bulb Temperature 67.8 F I
TABLE 9A-8 CRITICAL PARAMETERS FOR AUGUST, 1958 r:
- L.
Average Wind Speed 8.3 mph l ', Average Wind Speed (-107.) 7.5 mph L Average Wet Bulb Temperature 64.3 F Average Wet Bulb Temperature (+10%) 70.7 F .(- Average of Daily Wet Bulb Temperature Minima 57.9 F i- ~ Average of Daily Wet Bulb Temperature Minima (+107.) 63.7 F Average of Daily Wet Bulb Temperature Maxima 71.3 F L. Average of Daily Wet Bulb Temperature Maxima (+107.) 78.4 F ..j, j Average of Daily Dry Bulb Temperature Minima 62.8 F p Average of Daily Dry Bulb Temperature Minima (+107.) 69.1 F Average of Daily Dry Bulb Temperature Maxima 94.5 F Average of Daily Dry Bulb Temperature Maxima (+107.) 104.0 F v t: r-Li m
- c-
<,q ,U e .T
- Amendment 19
'9A-69 Jl-
~ w r. f 24 Li M ,[' i, 4 W41),P;S/ g 4 ~ i* 'e (yjj) _ i, I #,f T' N 7... \\ Il M .LJ ,o S 2 ~ pg ~- 7 y k') g' x =g 4. = V u f' N o bet Lir s 039/'71 I l'3 /*3 t.. / 1 E \\ f T f [ }' I I ( } +, u x s y (1 ,, ye b (;); gl3)J,]
- ih il,:e
+ Yi N [g 3 .y' ut ".. r,- lu 1 3 Du h I l' N D M N ,C'99/ $Q + w L I- 'o Y B;h.3% L g \\ q N w e a f t 3% g $ y, b , ete' ~ 4 i I
- i i
b) $ 2E ~ ,p 4W ~ II E 2 + g a m s L. ? / \\ / s l- \\~g o ? ) A,r set } % ** ?' 'n Y ~ t JT I 1"31 ~T W lt:q [ + , $'G et ,G S/ 006 ,59/ 4 w s-e 'L '~1 0
LJ r " r. . ~ ~ r'
- r. -
e~ ') - 1 ~ ' 4 i l l i i PSYCH. PSYCH. PSYCH. O OO O RECORDING ANEMOMETER I SPRAY HE ADERS 3 9 / .e i N o D 8, 9,10 o JO H.E. " "15 e P POND SILL ,o m i4 I I,12,13 o 2' 5'
- 7 a s PITOT TUBE INSTR.
LEGEND: HOUSE P e CATCH PAN 8 THERMISTOR O SUBMERGED THERMISTORS NUMBER RETURN LINE TOP TO BOTTOM 14 SPRAY HEAD TEMPERATURE THERMISTOR 15 POND OUTLET TEMP THERMISTOR D POINT GAGE-POND DEPTH FIG. 2 ' NEST POND SCHEMATIC 8 INSTRUMENT STATIONS t?
{.3 {_7 g r ps is, ) - } ~ c, , - ~ r -- ) g , ~. ; -g ~ i: 0.800 i i i i e i i i i i i i i i i i i 1
- --* POND LEVEL 2.80 o- -o MAKE UP FLOW RATE 0.75 0
- 2.60_ E . 0.700 g; C OFF AT 1000 m - 2.40 9 5 cn C E 0.650 l w E I N - 2.20 m m m E 0.600 s 7 f ON AT lil7 <t J1 'L 3: f 'h 2.00 "3 -d ,k / shi i,' 0FF AT 1809 f g g 9 $ 0.550 d V V t8 \\ i w I 11 11 'z: g 1I <t o 8 - 1.80 2 z Oo-0.500 1.60 0.450 l l 8 8 I l I i i i i i O 1200 2400 1200 2400 1200 2400 1200 5/18 5 /19 5/20 5/21 TIME ( hrs) FIG. 3 - POND LEVEL AND MAKE UP FLOW RATE (WEST POND) 1
] --~--{-g --,.., ,. ~ 7, 7 -s ,. ~. c 7, 3 g 0.850 i i i i i i i l l l l l l l l l l l l l l l 0.800 0.750 0.700 0.650 7 0.600 'd 1 6 0.550 0.560 0.450 0.400 0.350 1 I I I I I I I I I I i i i I I i i I I I T N - 1800 2400 0600 1200 1800 2400 0600 1200 1800 2400 0600 1200 1800 2400 0600 1200 1800 2400 0600 1200 1800 2400 0600 1200 1300 5/18 5/19 5/20 5/21 5/22 5/23 5/24 TlME g .ih FIG. 4 POND LE'/EL (EAST POND) I (: 1
y.v--;2 27 3 ,_ x g. - pc,, ... 4 - c-c.- ,. :.s w x- . 3 . 4 - ._ 3 r, ~..., +~> u, I -l ( i i l i I 22 i i I i i i i I i i i i i I i i i i i i I I i i 1 20 2 18 a E-I6 S l4 w Oi12 m o E 10 iic w' 8 e<rm 6 w B 4 2 0 I I I I I I I I I I I I I I I I I i 12001300 1400 1500 1600 1700 1800 1900 2000 2l00 2200 2300 2400 0100 0200 0300 0400 0500 0600 0700 0600 09001000 1100 1200 1300 N00N TIME (hrs) 5/18 FIG. 5 WIND SPEED (TEST NO. I 1 1
]C g-,,c ~ p-p; p-3 7I, (z r-; ( r-, r7,) j - 3 c-e i! t l' Ed i I I I I I I I I I I I I I I I I I I I I I I I 20 2 18 o. E gg o 14 w E l2 m. ta @ 10 8 w$6 m wg4 2 0 I I I I I I I I I I I I I I I I I I I I I I i 12001300140015001600170018001900 2000 2l00 2200 2300 2400 01000200 03000400 0500060007000800 09001000 l10012001300 N00N TIME (hrs) N00N 19 May 1973 20 May 1973 FIG. 6 WIND SPEkD (TEST No. 2) {. A
4 4 4 _ s "' e 30 P '-' O' [
- M *
- c. _... )
M^ "*q $w 6 gl gm __ _) Cs e g O - O s i .+ t t. e i I s 9 i I I 22 i i i i i i i i i i i i l l l l l l l l l 20 gi8 [ = r E lg o 14 wW n.12 8 <n r-g,o S 8 w (3 4 6 cr: W Q4 2 0 I I I I I I I I I I I I I I I I I I I I200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 0100 0200 0300 0400 0500 0600 0700 0800 0900 TIME (hrs) FIG. 7 WIND SPEED (TEST No.3) H 1
533--- g 7.., g,. 7 5 ,~ ~ 7 g_, .~ ,__y q _q 'I l-1 i I i c 22 i i i i i i i i i i i i i i i i i i i i i i i 20 2 18 a. E ~ 16 @ l4 w $ 12 . E_ i o .se 8 woE6 us %4 2 0 I I I I I I I I I I I I I I I I I I I I i i i 1 i i200 1500 1800 2l00 2400 0300 0600 0900 1200 1500 1800 2l00 2400 0300 0600 0900 12001500 1800 2l00 2400 0300 0600 0900 1200 1500 1800 2l00 5/21-5/22 5/23 5/24 a FIG. 8 WIND SPEED (NINE DAY TEST) n 5.'
{.3 - d (~~ F7 r~ r ~ ~; . ~ ~ ~
- t. ~1 r
i - ~~' ~ C7
- ~ l
~1 'l n- ] P' l-1 l } t l 220 i i i i i i i i i i i i i i i i i i 200 F 180 g 160 l m S 14 0 m m 120 o J u" _; 100
- o 30 t-60 40 20 t
0 I I I I I I I I I I I I I I I I I I I I i 15001600170018001900 2000 2l00 2200 2300 2400 0100 0200 0300 0400 0500 0600 0700 0800 09001000 ll0012001300 Tl ME u FIG. 9 TOTAL WATER LOSS RATE VS TIME (TEST No.1) j bl
_'_.-_L 1 _.., ^ _ _ l ?!YWd)II.d_ F l. 33 l l l I I r-1 I I I I 'i o L o O! F \\. o o r e
- i..
8 '~ mo N s.. e o r-o Z H en o w O H (. q o L. w2 ] 3 p
- r --
o <r o o en . t. N 0 u. W r o Q oW 2 . I. - o2 en e-en N& O u. a I m o w o H L N <[ N _r I J L I o N o o o I-l~ l N L 9 o 52 I I o u. m L U o L o e L. gow. I; I I I l l I I I I I I I I U o o O o 8o o o o o o o o o o m e e N o e e N m e e N s N N N N N n (wd6) 31V8 SS07 831VM 7V101
h]' l_-] E7 r I7 r ~'i F. 7 0 ^i i7 EJJ r ~l i' E1 i~7 r 'l r ~1 7.~l E7 r7 i 120 i i i i i i i i i i i i i i i i i i i 1 Il0 + l00 l 90 E 80 ~ 7o E o 60 a o 50 -i u u <r 40 m 20 10 y 0 l I I I I I I I I I I I I I I I I I I I I 1800 2400 0600 1200 1800 2400 0600 1200 1800 2400 0600 1200 1800 2400 0600 1200 1800 2400 0600 1200 1800 2400 0600 I200 1800 5/18 5/19 5/20 5/21 5/22 5 /23 5/24 TIME N FIG.ll
- TOTAL WATER LOSS RATE VS TIME (TEST No. 4)
- i
e .-~ %..a a a m. .%4..a+ ,+7 ,G.. N 4' .4 r-L d.
- < 4kweind.'s r
b-l 35 I b-i F: 1 i 1
- r-i l
6 l 4 l 1 l 1 l 1 l I l l t ) i i 1.5 i .r ^ .q. t i. t. i. l.0 .T ae u, f u) 'g o I _J s a + F 0.5 i q -- ,L 't
- f' L
l 0 i i i i i i i i i i i i i i i .!I" 0 2 4 6 8 10 12 14 16 WIND SPEED (mph)
- r
'L FIG.12 T0iAL WATER LOSS VS WIND SPEED (TEST No.1) ] p i ~ ,n u
^ ':'L N __.,_1 .c.._.. ' ~ ^ r. ~L' 36 .J
- m 1
I i l i I I l I I i I i i i
- [-
L l.5 L e 3 t. e
- r 1.
8e
- I
. L. 1.0 r a?
- 1-cn f-,
m e O e G _3 e e a I. 4 e F-o F-I' 0.5 e -~
- L.
- r
,g g-1
- L 0
i I i I i I i i i i i i i I i
- r 0
2 4 6 8 10 12 14 16 L WIND SPEED (mph) i[- !U FIG.13 TOTAL WATER LOSS VS WIND SPEED (TEST No.2) a o t e l n,
i i i i l i i i i i i i i i i i i [
- 1. 0 m
m o u _J 0.5 a HO i-t e. O i i i_ i I i i i i i i i i i i i i e 0 5 10 15 WIND SPEED (mph)
- . q o
e. hY FIG.14 TOTAL WATER LOSS VS WIND SPEED (TEST No.4) 's s-b6 4
i] O E~ ~~ r~ r~ r i r: r-C. ' l r7 r' + ~ 7 r ~1 .7 O ,c 7 7 s- -i I l.- f i i i i i i i i l i l i l0 WEST POND WEST POND TEST No.2 - TEST No.1 y C$ NEAST POND m ,o a a 0.5 = ru. 2, e e O 0 i i i i i i i i i i i e i i i i 0 5 10 15 i WIND SPEED (mph) { a P'!; ',j b FIG.15 DRIFT LOSS VS WIND SPEED (TESTS I,2 AND 4) F r:: ll
70 i i i i i i i i i i i i i i i i i WIND SPEED DIRECTION 12.0 240 60 0 6.2 250 o 3.4 21 0 P-U [; 50 o z w 12.0 mph M b 40 6.2 mph w way a g g 30 o o Em n. 3.4 mph m 20 w o o o <r m w 10 0 i I i I i l i I i I i i i I i I i i i 0 20 40 60 80 100 120 14 0 16 0 180 200 DISTANCE FROM EDGE OF SPRAY PATTERN ( ft. ) ElGml6-- N0ZZLE EEEICIENCLVS DISTANCE
il I Y' i t N+ e 0.219 0.101
- 0. l l 4 s
0.184 O 0.0768 0.239 0.0658 t FIG.17 PATTERN FOR AVERAGING 7) ( LOW WIND CASE 1
3 I_ 6 36 2 02 5 ) I 0 0 0 0 7 ) E S 4 A 5 6 C ~ 6 7 4 3 2 D 1 N 0 0 0 IW H p G I H ( y b g I G N I G A R E V A R O F N R E T ~ T A P 8 N 1 G I F 8 5 6 2 q 0 0 -c 7 0 0 I
~ a bl I 4" Fi ~ - ~ ~ ~~ gg -- g F -- i-~ ~ ~~ ~ T -'-' 7 ';~ 7 i i t i h I. l l l l l 1 I I I I I LOW WIND PATTERN 0.5 o HIGH WIND PATTERN ~ P O >-ozw G o U- 0.4 w-o W; e. m o e u N e u O O A o m 0.3 4 0-u) w i m w> < '0.2 I I I I i i i i i i i 0 1 2 3 4 5 6 7 8 9 10 11 12 WIND VELOCITY ( mph ) 1 FIG.19
- 7) VS. WIND SPEED
Page 43 i r-- 1.. ~ 67 4.. L A 64 63 / \\ / \\ / \\ 01 ( \\ j $0 r 59 l L. 58 4 57 / \\ / \\ F 55 i \\ TN \\ f \\ \\ / \\ N /, N 51 f Mid 01 02 03 M 05 08 07 08 09 10 11 12 13 14 15 16 17 18 'S 20 21 22 23 Mid 61 02 03 04 I HOUR OF DAY L-FIGURE 9A-22 DATA REPORTED AT 0400,1000 JUNE 1951, SACRAMENTO 1600, AND 2200 LOCAL TIME. AVER AGE WET-BULB TEMPERATURE r PEAK AT 1,00 LOCAL TIME ESTIMATED, (AVERAGE OF 120 OBSERVATIONS '~ . TO MATCH PROFILE WITH DRY-8ULB TAKEN AT 6-HOUR INTERVALS) ' TEMPERATURE PROFILE (SEPARATE GRAPH) f? u SMUD SMUD FSAR - 625 2-1-73 SACRAMENTO MUNICIPAL UTILITY DISTRICT C-iG m
e-Pegn 44 ao F-* 79 3 F 78 '\\ sp!j sQ 2 t / L // \\\\ // i E~ / \\ 73 72 L 71 .j 70 n-c L. F 6a I 67 i. 66 / I~ 65 (' h // N\\ N# \\ a e w 7-2 L,. g r-62 w 61 L. Mid 01 02 03 M 05 08 07 08 09 10 11 Noen 13 14 15 16 17 18 19 20 21 22 23 Mid 01 02 03 04 f HOUR OF DAY AVERAGE WET-BULB TEMPERATURE FIGORE 9A-26 INCREASED BY 10% (CURVE il AUGUST 1958, SACRAMENTO L PROFILE EXTENDED TO REACH ADJUSTED AVERAGE WET BULB TEMPERATURE ADJUSTED AVERAGE MAXIMUM AND MINIMUM WET-BULB VALUES (CURVE 2) 0 $' s u u n SMUD FSAR-629 2173 SACRAMENTO MUNICIPAL UTluTY DISTRICT U W J
Page 45 t 109 i 5 1 I TOTAL l gg8 A A E l N l {' l l %l E l E 107 D ^ s b E i I. l f STATION l t,. W AUXILI ARIES 4 l s< 106 l \\ y
- =
l ~ t l 105 l l = = l l r 304 1 1ll1111 I i1111ll I i 111111 1 I l illll ! I11ll11 Illllilli 104 105 106 101 102 103 107 u,. TIME AFTER ACCIDENT (SECONDS) 30 DAYS NOTES 1. REACTOR BUILDING AIR COOLERS START AT 35 SECONDS l
- 2. SUMP WATER REClRCULATION BEGINS AT 4800 SECONDS FIGURE 9A-30 HEAT RATE INPUT TO w.
THE SPRAY PONDS SMUD SMUD FSAR - 631 2-22-73 SACRAMENTO MUNICIPAL UTILITY DISTRICT
w w w m a n - n u. . ~... ._=. .:- -- - - -: n = y. =, 46 t. Appendix A Flow Calibration 1 (. b..
- 7..
.L. kw .f- \\ _. g 'l
- L l'
-(
- I~
t_. l .k. t m 't '== f j L. ign f ! i ,m i {Ll
i~ a. E f ' r f i r ~ '-~ r r r-t 3 71 i i i [ 2.0 I i i i i i i i t a WEST POND SMUD /
- 3.5% -
l9 WEST POND UC / o EAST POND y E / g I.8 / 7 / / ~ a / / w'g .7 7 / I 7 / / w / g I.6 / py t; / / 5 / / 9 / =/ u. l.5 y / l e I / I.4 y 1.3 I I I I i i i I 6 7 8 9 10 ll 12 13 14 15 SPRAY PRESSURE (psig) FIG. A-1 FLOW CORRELATION I i
9 48 n. 1 \\ PIPE WALL i r NORTH PITOT TRAVERSE a t B = g O PIPE WALL ~ zo P O 2 4 6 8 10 12 14 Go o a o4 t a. 8 SOUTH PITOT TRAVERSE 12 = a V = II.12 ft/sec r q, L 16 Q = 15,034gpm P = 17.215 in.Hg 20 24 0 2 4 6 8 10 12 14 VELOCliY (ft/sec) WEST POND FLOW CAllBRATION -TEST 1 VELOCITY PROFILES FIG. A-2 r L
. L_, t 8 L 49 ,~ t r' O 4 PIPE WALL 3 7-8 ~ NORTH PITOT TRAVERSE o 12 t 16 7 = t .c E 20 PIPE WALL ~ / $24 . ~. L 0 2 4 6 8 10 12 14 G o-a rm o c. o 4 i r-e 8 g-G ~ SOUTH PITOT TRAVERSE 12 ' I
- 7...
_V = 12.17 ft/sec 16 Q = 16,452 gpm r P = 19.736 in.Hg 'l 20 24 c 0 2 4 6 8 10 12 14 ( VELOCITY (ft/sec) t_ WEST POND FLOW Call 8 RATION - TEST 2 A VELOCITY PROFILES l -,- d FIG. A-3, 7,l
[L 50 r-L. F 0
- \\
E PIPE WALL ~ L 4 o I o L, 8 o ~ NORTH PITOT TRAVERSE j 12 g 16 t f E 20 L PIPE WALL ~ 9 24 / z i [- b 0 2 4 6 8 10 12 14 mo 0 n. [$ s S4 E r' L' 8 l SOUTH PITOT TRAVERSE l2 r. V = 12.25ft/sec 1 L 16 Q = l6,564 gpm P = 18.825 in.Hg L 20 24 O 2 4 6 8 10 12 14 VELOCITY (ft/sec) 7 L. if WEST POND FLOW CAllBRATION -TEST 2B l" VELOCITY PROFILES j FIG. A-4 u
I l st .L c-4 PIPE WALL D i 8 I NORTH PITOT TRAVERSE ( 12 t i r 16 7 i ~ .5 20 i. z l PIPE WALL r 9 24 r 0 0 2 4 6 8 10 12 14 L o r-w L o 4 E r-L 8 ~ r SOUTH PITOT TRAVERSE 12 ~ ~$. t- ._V =l1.773 ft/sec f 16 Q = 15,916 gpm P = 20.74 in. Hg 20 L. 24 f 0 2 4 6 8 10 12 14 VELOCITY (ft/sec) l' L f - L, EAST POND FLOW CAllBRATION -TEST 4A VELOCITY PROFILES I L. FIG. A -5 flc ..~,
r i. L 52 r-IL I 1. m N s PIPE WALL 4
- 7..
i 8 i ~ [~ NORTH PITOT TRAVERSE I 12 ~ ~ 2 16 L g ~ t S 20 PIPE WALL l ~ 24 b 0 2 4 6 8 10 12 14 80 a. H .u o 4 E I.. L. 8 ~ SOUTH PITOT TRAVERSE 12 i c ._V= ll.75 ft/sec Q = 15,885 g pm l6 P = 20.63 in. Hg F 20 L. 24 . = - 0 2 4 6 8 10 12 14 VELOCITY (ft/sec ) r L l' EAST POND FLOW Call 8RATl0N-TEST 48 VELOCITY PROFILES .l' FIG. A -6 u .q l'
T~ ~ -l-53 IL r i. N c i PIPE WALL i. 4 8 ~ \\ r-NORTH PITOT TRAVERSE p L 12 - t I 16 g i- .c [' 20 PIPE WALL t z 9 24 r C 0 2 4 6 8 10 12 14 g 9 s c. p i,.. p 4 i n. F 8 o (- SOUTH PITOT TRAVERSE 12 s V = 11.77ft/sec f 16 Q: 15,912 gpm L-P = 20.62 in. Hg F 20 L 24 0 2 4 6 8 10 12 14 VELOCITY (ft /sec) f' l l L. i E AST POND FLOW CAllBRATION - TEST 4C VELOCITY PROFILES t l [I' FIG. A -7 n !L
- n
- 2.. -
- i;7-- -
- b,
~ 54 ., ;e ((J- ' Appendix B . C. ih Pond Volume Data ~ I ri ! . Note: " Reading" refers to Depth Gage: -reading in' feet. Depth is. measured from low point in pond floor in feet.
- I.
<y .i i [ ^' L i['
- i..
6 't
- t_.
.W' -+ l r-- i t. !L c , Li - r7 - !.t. . L.-
- p
9~ .I L l'l !r. !1l i s-. ; ~
- -p' t
- ?
! b'- !. ~1,.- U.'.; t ~. L sue ~. v.
c 55 i r- ,I _b EAS7 POND CALCUL47 IONS READING DEPTHtFT) ARE4(SQ.F7.) VOL.(CU.FT.) VOL(G4L4) f- .201 5 172 65059.938 308246.250 2305681.953 .202 5 173 65062.107 308311.314 2306168.627 203 5.174 65064.275 308376.379 2306655.317 .204 5.175 65066.443 308441.447 2307142 023 F 205 5.176 65068.611 308506,517 230762&+.7AA t 206 5.177 65070.779 308571.589 2308115.485 .207 5 178 65072.947 308636.663 2308602 240 r 208 5.179 65075.115 308701.739 2309089.011 209 5.180 65077.284 308766.818 2309575.799 .216 5.181 65079.452 308831.899 2310062.603 711 5:182 65081.620 308896.982 23105AQ:*23 7- .212 5.1R3 65083 789 308962.067 2311036.259 3 L .213 '.?84 65085.957 309027.154 2311523.111 .214 ts 85 65088.126 309092.243 2312009.980 .215 L.186 65090.294 309157.335 2312496.865 .216 5.187 65092.463 309222.429 2312983.766 .217 5 188 65094.631 3092&7.52A 2313A70:693 218 5 189 65096.800 309352.623 2313957.617 219 5.190 65098.968 309417.723 2314444.566 .220 5.191 65101.137 309482.825 2314931.532 .221 5.192 65103.306 309547.930 2315418.515 .222 5.193 65105.474 309613.037 2315905.513 .223 5.194 65107.643 309678,145-- 231'382:52a .224 5.195 65109.812 309743.257 2316879.559 .225 5 196 65111.980 309808.370 2317366.606 5.197 65114.149 309873.485-2317853.669- .226 .227 5 198 65116.318 309938.603 2318340.749 .228 5 199 65118.487 310003.723 2318827.845 r [~ .229 5.200 65120.656 31aD68+&4As. 211831's057 230 5.201 65122.825 310133.969' 2319802.085 .231 5 202 65124.994 310199.095: 2320289.229 ^ .232 5 203 65127.163 310264.223 2320776.390 .233 5.204 65129.332 310329.354 2321263.567 .234 5.205 65131.501 310394.487 2321750.760 l .235 5.206 65133.670 3La411.622_.._.2378737 07n L 236 5.207 65135.839 310524.759 2322725,195 237 5.208 65138.008 310589.896 2323212.437' .238 5.209 65140.178 310655.039 2323699.695 r .239 5 210 65142.347 310720.183 2324186.969 .240 5.211 65144.516 310785.329 2324674 260 241 5.212 65146.685 310850.477 g325161.467 t .262 5 213 65148.855 310915.627 2325648.890 L .243 5.214 65151.024 310980.779 2326136.229 .244 5.215 65153.194 311045.934 2326623.584 'f' .245 5.216 65155.363 311111.090 2327110.956 L .246 5 217 65157.532 311176.249 2327598.344 .747 5 218 65159.702 311241,410 23220a5: TAR .248 5.219 65161.872 311306.573 2328573.169 r .269 5.220 65164.041 311371.739 2329060.605 .250 5.221 65166.211 311436.906 2329548 058 .251 5.222 65168.380 311502.076 2330035.527 .252 5.223 65170.550 311567.248 2330523.012 Li .253 5 224 65172.720 3116324 422 211101?-51A .254 5 225 65174.889 311697.598 2331498 032 P
P s: L 56 j r [~ .255 5.226 65177.059 311762.776 2331985.566 .256 5 227 65179.229 311827.957 2332473 116 .257 5.228 65181.399 311893.139 2332960.682 r7 .258 5 229 65183.569 311958.324 2333448 265 '.259 5.230 65185.739 312023.511 2333935.864 .260 5.231 65187.908 312088.700 2334423.479 I' .261 5.232 65190.078 312153.892 2334911 111 -i- .262 5 233 65192.248 312219.085 2335398.758 .263 5.234 65194.418 312284.281 2335886.422 .264 5.235 65196.588 312349.479 2336374 102 .265 5 236 65198.759 312414.679 2336861.799 .266 5.237 65200.929 312479.881 2337349.511 .267 5 238 65203.099 312545.086 2337837.240 .268 5.239 65205.269 312610.292 2338324.935 E .269 5 240 65207.439 312675.501 2338812.746 .270 5 241 65209.609 312740.712 2339300.524 .271 5 242 65211.780 312805.925-2339788.318 t .272 5 243 65213.950 312871.140 2340276.128 .273 5 244 65216.120 312936.357 2340763.954 i
- f--
.274 5.245 65218.291 313001.577 2341251.796 i .275 5.246 65220.461 313066.799 2341739.655 .276 5 247 65222.632 313132.023 2342227.530 .277 5 248 65224.802 313197.249 2342715.421 (g .278 5.249 65226.973 313262.477 2343203.329 .279 5 250 65229.143 313327.708 2343691.252 .280 5 251 65231.314 3133?2.940 2344179.192 .281 5.252 65233.484 313458.175 2344667.148 .282 5 253 65235.655 313523.412 2345155 121 .283 5 254 65237.826 313588.651 2345643.109 r .284 5 255-65239.996 313653.892 2346131 114 .285 5.256 65242.167 313719.136 2346619.135 .286 5 257 65244.338 313784.381 2347107.173 .287 5 258 65246.509 313849.629 2347595 226 .I .288 5 259 65248.679 313914.879 2348083 296 .289 5 260 65250.850 313980.131 2348571.382 .290 5 261 65253.021 314045.386 2349059.484 .291 5.262 65255.192 314110.642 2349547.603 L .292 5 263 65257.363 314175.901 2350035.738 .293 5 264 65259.534 314241.162 2350523.889 .294 5.265-65261.705 314306.425 2351012.056 .295 5 266 65263.876 314371.690 2351500.240 .?96 5.267 65266.047 314436.957 2351988.439 .297 5 268 65268.218 314502.227 2352476.655 .298 5 269 65270.389 314567.498 2352964.88R .l .299 5 270 65272.561 314632.772 2353453.136 .300 5 271 65274.732 314698.048 2353941.401 .301 5 272 65276.903 314763.326 2354429.682 , i~ 302 5.273 65279.074 314828.607 2354917.979 .303 5.274 65281 246 314B93.889 2355406.292 .304 5 275 65283.417 314959.174 2355894.622
- r
.305' 5.276 65285.588 315024.461 2356382.968 i' .306 5 277 65287.760 315089.750 2356871.330 .397 5 278 65289.931 315155.041 2357359.709 ![ .308 5 279 65292.103 315220.335 2357868.103
- L
.309 5.280 _ 65294.274 315285.630 2358336.514 .310 5.281 65296.446 315350.928 2358824.942
- p e
,,,--s--~-, ,...,,,,,,,---r ,,,,w,- w--
F !L 57 IF 1 !L .311 5.282 65298,617 315416,228-2359313;355 312 5.283 65300.789 315481.530 2359801.845 r .313 5.284 65302.961 315546.834 2360290.321 .314 5 285 65305.132 315612.1' 2360778.813 4 .315 5.286 65307.304 315677.449 2361267.321 316 5.287 65309.476 315742.760 E361755.846 .c .317 5.288 65311 648 315808.073. 13622A4:3n? .318 5.289 65313.819 315873.388 2362732.944 319 5.290 65315.991 315938.706 2363221.517 I .320 5.291 65318.163 316004.025 2363710 107 321 5.292 65320.335 316069.347 2364198.713 .327 5.293 65322.507 316134.670 2364687.335 .323 5 294 65324.679 316199.996 2364174073 .324 5 295 65326.851 316265.325-2365664.628 .325 5 296 65329.023 316330.655' 2366153 299 .326 5 297 65331 195 316395.987 2366641 986 .327 5 298 65333 367 316461.322. 2367130.690 .328 5 299 65335.539 316526.659 2367619.409 329 5.300 65337.711 316591,998.- --2369109;145 r 330 5.301 65339.883 316657.339 2368596.897 .331 5 302 65342.056 316722.683 2369085.666 i 332 5.303 65344.228 316788.028 2369574.450 .333 5.304-65346.400 316853.376 2370063.251 .334 5 305 65348.573 316918.726-2370552 068 335 5.306 65350.745 316984.071--- 23710 A0 ;agg .336 5.30) 65352.917 317049.432 2371529.751 .337 5 308 65355.090 317114.708 2372018.617 .338 5 309 65357.262 317180.147 2372507.500 339 5.310 65359.435 317245.508 2372996.398 .340 5.311 65361.607 317310.871 2373485.313 i. .341 5.312 65363.780 317326,23E.- 237387 A : ?' A .342 5.313 65365.952 317441.603 2374463.191
- i
.343 5.314 65368.125 317506.972 2374952 154 .344 5 315 65370.297 317572.344-23754412134 .345 5 316 65372.470 317637.718 2375930.130 346 5.317 65374.643 317703.094-2376419.142 .347 5.318 65376.816 317763 A72 .237AQ02: 17S L .348 5 319 65378.988 317833.852 2377397.215 .349 5.320 65381.161 317899.235 2377886 276 l' .350 5 321 65383.334 317964.619 2378375.353 t .351 5.322 65385.507 318030.006 2378864.447 .352 5.323 65387.680 318095.395 2379353.557 i - .353 5 324 65389.853 318160.786-2379842:683 .354 5.325 65392.026 318226.180 2380331.825 .355 5 376 65394.199 318291.575 2380820.983 .356 5 3p7 65396.372 318356.973 2381310.158 I .357 5.398 65398.545 318422.373 2381799.349 L .198 5 329 65400.718 318487.775 2382288.556 .359 5 330 65402.891 318553.179 23a2.72h7&D_ lt .360 5.331 65405.064 318618.586 2383267.020 L. .361 5.332 65407.237 318683.994 2383756 276 .367 5.333 65409.411 318749.405-2384245.548 I .363 5.334 65411.584 318814.818 2384734.837 'r .364 5.335 65413.757 318880.233 2385224.142 L .365 5 336 65415.930 318945,650 13&5713 A61 e .366 5.337 65418.104 ,319011.070 2386202.800 i;r iw-
y t i 58 I .367 .5.338 65420.277 319076.491 2386692.154 . 368 5 339 65422.451 319141.915 2387181 523 lr .369 S.340 65424.624 319267.341 2387670.910 .370 5 341 55426.798 319272.769 2389160.312 i .371 5 342 65428.971 319338.199 2388649.731 l .377 5.343 65431.145 319403.632 2389139.166 .373 5 344 65433.318 319469.066 2389628.617 .374 5.345 65435.492 329534.503 2390118 084 .375 5.346 65437.665 319599.942 2390607.568 r~ .376 5.347 65439.839 319665.383 2391097.068 .377 5.348 65442.013 319730.927 2391586.584 .378 5.349 65444.197 319796.272 2392076.116 -.379 5.350 65446.360 319861.720 2392565.665 r .390 5.351 65448.534 319927.170 2393055 230 .381 5.352 65450.708 319992.622 2393544.812 .387 5.353 65452.882 320058.076 2394034.409 ~ .193 5.354 65455.056 320123.532 2394524.023 i .394 5.355 65457.230 320188.991 2395013.653 .385 5 356 65459.404 320254.452 2395503 299 r .396 5.357 65461.578 320319.915 2395992.962 L .387 5 35s 65463.752 320385.380 2396482.641 .388 5 359 65465.976 320450.847 2396972.336 .399 5.360 65468.100 320516.316 2397462.047 l o l .390 5.361 65470.274 320581.788 2397951.775 .371 5 362 65472 448 320647.262 2398441 519 ) 392 5.363 65474.622 320712.738 2398931.279 F .393 5 364-65476.797 320778.216 2399421.055 L. .394 5 365 65478.971 320843.696 2399910.848 .395 5 366 65481.145 320909.179 2400400.657 r- .396 5.367 65483.320 320974.663 2400890.482 .397 5 368 65485.494 321040.150 2401380.324 y .398 5 369 65487.668 321105.639 2401870.182 .399 5 370 65689.843 321171.130 2402360.056 r, 400 5.371 65492.017 321236.624 2402849.946 401 5 372 65494.192 321302.119 2403339.853 407 5 373 65496.366 321367.617 2403829.776 I~ 403 5.374 65498.541 321433.117 2404319.715 i_. 404 5.375 65500.715 321498.619 2404809.670 4n5 5.376 65502.890 321564.123 2405299.642 r 406 5.377 65505.065 321629.630 2405789.630 407 5.378 65507.239 321695.139 2406279.634 g~ 408 5.379 65509.414 321760.649 2406769.654 409 -5.380 65511 539 321826.162 2407259.691 4-10 5.381 65513.764 321891.677 2407749.744 411 5.382 65515.975 321957.194 2408239.813 412 5.383 65518.113 322022.714 2409729.399 413 5.384 65520.298 322088.235 2409220.001 L 414 5.385 65522.463 322153.759 2409710.119 415 5.386 65524.638 322219.285 2410200.253 l r .416 5.387 65526.813 322284.913 2410690 404 417 5 389~ 65528.998 322350.344 2411180.571 418 5.389 65532.163 322415.876 2411670.754 419 5 390 65533.338 322481.411 2412160.953 420 5.391 65535.513 322546.948 2412651.169 L 421' 5 392 65537.698 322612.487 2413141.401 422 5.393 65539.863 322678.028 2413631.649 -G L
r 11 59 r i-423 5.394 65542.039 322743.571 2444421.916 ---- 424 5.395 65544.214 322809.117 2414612.195 r 425 5 396' 65546.389 322874.665 2415102.492 426 5 397 65548.564 322940.215 2415592.805 427 5 398 65550.740 323005.767 2416083 135 428 5.399 65552.915 323071.321 2416573.481 r 629 5.400 65h55.090 323136,877-244 7063 + 843 410 5.4n1 65557.266 323202.436 2417554 222 431 5.402 65559.441 323267.997 2418044.616 F 432 5.403 65561.617 323333.560 2418535 027 L 433 5.404 65563.792 323399.125 2419025.455 434 5.405 65565.968 323464.692 2419515.898 r 435 5.406 65568.144-323530.262-2434006;358- - .436 5.407 65570.319 323595.833 2420496.834 i" 437 5.408 65572.495 323661.407 2420987.327 438 5 409 65574.671 323726.983 2421477.835 r 439 5 410 65576.846 323792.562 2421968.360 L-446 5 411 65579.022 323858.142 2422458.901 441 5.412 65581,198 323923,72A 2423948;458 C 442 5.413 65583.374 323989.309 2423440 033' L: 443 5.414 65585.549 324054.896 2423930.623 444 5.415 65587.725 324120.485 2424421.229 r 445 5 416 65589.901 324186.076-2424911 852 446 5.417 65592.077 324251.670 2425402.491 447 5.418 65594.253 324347,265-2435893;146 448 5 419 65596.429 324382.863 2426383.817 r, 449 5.420 65598.605 324448.'463 2426874.505 L 650 5.421 656c0.781 324519.065' 2427365 209 451 5.422 65602.957 324579.670 2427855.929 P 457 5.423 65605.134 324645.276 2428346.666 L. 453 5 424 65607.310 324710,885: 242BB37;t18 454 5.425 65609.486 324776.496 2429328.188 .455 5.426 65611 662 324842.109 2429818.973 r 456 5 427 65613.838 324907.724-2430309.775 457 5.428 65616.015 324973.341 2430800.59S 458 5 429 65618.191 325038.961 2431291 427 I., 459 5.430 65620.367 325104,5E3- -2431]Ag;gTA L' 460 5.431 65622.544 325170.207 2432273.145 461 5 432 65624.720 325235.833 2432764 028 467 5 433 65626.897 325301.461 2433254.927 463 5.434 65629.073 325367.091 2433745.843 464 5.435 65631 250 325432.724-2434236.775 e 465 5 436 65633.426 325498.359 2A3A727:7?3 466 5 437 65635.603 325563.996 2435218.688 467 5.418 65637.780 325629.635 2435709.669 468 5.439 65639.956 325695.276 2436200.666 r 469 5,440 65642.133 325760.920 2436691 679 t> 470 5 441 65644.310 325826.565 2437182.709 471 5.442 65666.486 325892.213 2437673:755 r 477 5.443 65668.663 325957.863 2438164.817 471 5.444 65650.840 326023.515 2438655.896 i" 474 5 445 65653.017 326089.170 2439146.990 p 475 5 446 65655.194 326154.826 2439633.102 476 5 447 65657.371 326220.485-2440129.229 477 5.449 65659.548 326286.146 2444622:371 474 5.449 65661.725 326351.809 2441111.533 P L
L. 60 r-i. 479 5.450 65663.902 326417.474 2441602.709 480 5 451 65666.079 326483.142 2442093.901 r 481 5 452 65668.256 326548.812 2442585 110 487 5 453 65670 433 326614.483 2443076.335 483 5 454 65672.610 326680.157 2443567.577 484 5.455 65674.787 326745.833 2444058.834 ~ 485 5.456 65676.964 326811.512 2444550.108 486 5 457 65679.142 326877.192 2445041.399 487 5.458 65681.319 326942.875 2445532.705 P 488 5 459 65683.496 327008.560 2446024.028 L 489 5 460 65685.674 327074.247 2446515.367 490 5.461 65687.851 327139.936 2447006.723 491 5.462 65690 023 327205.628 2447498.094 7, 499 5 463 65692.206 327271.321 2447989.482 493 5.464 65694.383 327337.017 2448480.887 .*94 5.465 65696.561 327402.715 2448972.307 I_ 495 5 466 65698.738 327468.415 2449463.744 4 1 .e96 5 467 65700.916 327534.117 2449955.197 497 5.468 65703.093 327599.822 2450446.667 r 498 5.469 65705.271 327665.528 2450938.152 i~ 499 5.470 65707.449 327731.237 2451429.655 500 5.471 65709.626 327796.948 2451921 173 .501 5 472 65711.804 327862.661 2452412.707 r 502 5.473 65713.982 327928.377 2452904.258 .503 5.474 65716.160 327994.094 2453395.826 .504 5 475 65718.337 328059.814 2453887.409 ,.505 5.476 65720.515 328125.536 2454379.009 L .506 5.477 65722.693 328191.260 2454870 625 .507 5 478 65724.871 328256.986 2455362 257 r .508 5 479 65727.049 328322.715 2455853.906 L .509 5 480 65729.227 3283SS.445 2456345.571 .510 5.481 65731 405 328454.178 2456837.252 .511 5.482 65733.583 328519.913 2457328.950 r .512 5 483 65735.761 328585.650 2457820.664 .513 5 484 65737.939 328651.390 2458312.394 514 5.485 65740.118 328717.131 2458804.140 I_ .515 5 486 65742 296 328782.875 2459295.903 L .516 5.487 65744.474 328848.621 2450187.682 .517 5 488 65746.652 328914.369 2460279.477 518 5.489 65748.830 328980.119 2460771.289 i .519 5 490 65751.009 329045.871 2461263 117 .520 5.491 65753.187 329111.626 2461754.961 .521 E.492 65755.365 329177.383 2462246.822 .522 5.493 65757.544 329243.142 2462738.699 i-523 5.494 65759.722 329308.903 2463230.592 524 5.495 65761.901 329374.666 2463722.501 .52s 5 496 65764.079 329440.431 2464214.427 L 526 5.497 65766.258 329506,199 2464706.369 527 5 4')B 65768.436 329571.969 2465198.327 r .528 5.t99 65770.615 329637.741 2465690.302 I 529 5.500 65772.794 329703.515 2466182.293 . 530 5.501 65774.972 329769.291 2466674.300 .531 5.502 65777.151 329835.070 2467166.323 .532. 5.5n3 65779.330 -329900.851 2467658.363 . Lt .533 5.504 65781.509 329966.634 2458150.419 q 330032.419 2+58042.492 .534 5 505 65783.687 L
y 1. 61 r-C .535 5.506 65785.866-334098,206 2469134 591 .536 5.507 65788.045 330163.995 2469626.686 r" .517 5 508_ 65790 224 330229.787 2470118.807 .538 5.509 65792.403 330295.581 2470610.944 539 5.510 65794.592 330361.377 2471103.098 .546 5.511 65796.761 330427.175 2471595.269 i r- .541 5 512 65798.940 330492,975-24720&7:455 -W .547 5.513 65801.119 330558.778 ,2472579.658 543 5.514 65803.298 330624.582 2473071.877 544 5.515 65805.477 .330690.389 2473564 113 i .545 5.516 65807.656 330756.198 2474056.364 658 9.835 330822.010 2474548.632 .546 5 517 0 P 547 5 518 65812e015 330887.823-24750403915 L .548 5 519 65814.194 330953.639 2475533 217 l .549 5 520 65816.373 331019.456 2476025.534 .556 5 521 65818.552 331085.276 2476517.867 .551 5 522 65820.732 331151.099 2477010 217 552 5.523 65822.911 331216,923 2477502.583 .553 5 524 65825.091 331282,744 at?'99t.?65 'I .554 5 575 65827.270 331348.578 2478487.364 L. .555 5.526 65829.450 331414.409 2478979.778 ) .556 5 527 65831 629 331480.242 2479472.209 .557 5 528 65833.8n9 331546.077' 2479964.657 .558 5.599 65835.988 331611.915 2480457.120 .550 5 530 65838,168 331677.754-2450949.500 .560 5.531 65860.347 331743.596 2481442 097 561 5.532 65842.527 331809.440 2481934.609 L .562 5.533 65844.707 331875.286 2482427 138. .563 5 534 65846.88? 331941.134 2482919.684 .564 5.535 65849.0L6 332006.985~ 2483612 245 L. .565 5.536 65851.246 334073,837 3493804;e23 566 5.537 65853.426 332138.692 2484397.417 I .567 5 539 65855.606 3322n4.549 2484890.028 .568 5 539 65857.786 332270.408 2485382 654 .569 5.540 65859.966 332336.270 2485875.297 570 5 541 65862.146 332402.133 2486367.957 I. .571 5 542 65864.326 333467,999 24969602632 L-572 5.543 65866.506 332533.867 2487353.324 .573 5 544 65868.686 332599.737 2487846 033 .57A 5.565 65870.866 332665.609 2488338.757 i .575 5 546 65873.046 332731.484 2488831 498 .576 5.547 65875.226 332797.360 2489324 256 r 577 5.548 65877.406 332863,239 24S9917:028 .578 5.5A9 65879.586 332929.120 2490309.819 .579 5 550 65881 767 332995.003 2490802 625 580 5.551 65883.947 333060.889 2491295.448 .591 5.552 65886.127 333126.776 2491788.286 L. 587 5.553 65888.308 333192.666 2492281.142 583 5.554 65890.498 333258.558 249272':013 594 5.555 65892.668 333324.452 2493266.901 .585 5 556 65896.849 333390.348 2493759.805 .596 5 557 65897.029 333456.247 2494252.725 .597 5.558 65899.210 333522.147 2494745.662 ,p .598 5.559 65901.390 333588.050 2495238.615 i L 589 5.560 65903.571 '333653.955. 2495731:5aa l .990 5.561 65905.752 333719.962 2496224.570 l r1 LJ
,I il 62 r t. .. -.5%F - - 5,h2 45997.932 -333?5h772 2496717.572 .592 5 563 65910.113 333851.683 2497210 590 r; .593 5.564 65912.294 333917.597 2497703.625 .594 5 565 65914.474 333983.513 2498196.675 .595 5.566 65916.655 334049.431 2498689.743 .596. 5.567 65918.836 334115.351 2499182.826 y .597 5.568 65921.0L7 33A181.274 2499675.926 i .598 5.569 65923.198 334247.198 2500169 042 .599 5.570 65925.379 334313.125 2500662.175 f' .600 5.571 65927.560 334379.054 2501155.323 i .601; 5 572 65929.741 334444.985 2501648.485 .602 5 573 65931.922 334510.918 2502141.670 .603 5 574 65934.103 33A576.854 2502634.868 .604 5.575 65936.284 334642.792 2503128 082 605 5.576 65938.465 334708.732 2503621.312 606 5 577 65940.646 334774.674 2504114.559 .607 5 578 65942 827 334840.618 2504607.822 i 608 5.579 65945.003 334906.564 2505101.101 609 5 580 65947.189 334972.513 2505594.397 r 610 5 581 65949.371 335038.464 2506087.708 .611 5 582 65951.552 335104.417 2506581 037 u .612 5 583 65953.733 335170.372 2507074.381 613 5.584 65955.915 335236.329 2507567.742 .614 5 585 65958.096 335302.289 2508061.119 .615 5 586 65960 277 335368,250 2508554.513 .616 5 587 -65962 459 -335434.214 2509047.923 617 5.588 65964.640 335300.180 2509541.349 L. .618 5.589 65966.822 0'3566.149 2510034.792 .619 5.590 65969.003 335632.119 2510528.250 r 620 5.591 65971.185 335698.092 2511021.726 .621 5 592 65973+367 335764.066 2511515.217 u .622 5 593-65975.548 335830.043 2512008.725 -f .623 5 594 65977.730 335896.023 2512502.249 .624 5.595 65979.912 335962.004-2512995.789 625 5.596 65982.093 336027.987~ 2513489.346 .626 5 597 65984.275 336093.973 2513982.919 i'I .622 545s8 65986+45.7 116153,36L 2514476.509 L. .628 5 599 65988.639 336225.951 2514970.114 .629 5.600 65990.821 336291.943 2515463.736 ir~ .63h 5 601 65993.003 3363S7.938 2515957.375 .631 5 602 65995.185 336423.934 2516451.029 632 5.603 65997.367 336489.933 2516944.700 _.A33_..... _.5.604 65999.549. 336555J34 2517438.388 .634 5.605 66001.731 336621.937 2517932 091 635 5.606 66003.913 336687.943 2518425.811 .636 5 607 66006.095 336753.950 2518919.548 .637 5 608 66008.277 336819.960 2519413.300 t 638 5.6n9 66010.459 336885.972 2519907.069 439_.. --- 5.610 66012.641 - 334.95 b 986 2520400.855 640 5 611 66014.824 337018.002 2520894.656 641 5.612 66017.006 337084.021 2521388.474 .642' 5 613 66019 188 337150 041 2521882 309 643 5.614' 66021.370 337216.064 2522376 159 I. .644 5.615 66023.553 337202.089 2522870 026 L p! . -... -. 5. 616.. 66025 735 337348.116 2523363.909 646 5.617 66027.918 337414.146 2523857.809 p
1^ L 63
- 1.,
i t- .647 5.618 66030.100 -337480.17-7--- 262t351.735 648 5 619 66032.283 337546.211 2524845.657 r- .649 5.620 66034.465 337612.247 2525339.606 [' .65n 5 621 66036.648 337678.285 2525833 571 651 5.622 66038.830 337744.325 2526327.552 .657 5.623 66041.013 337810.368 2526821.549 651 5.624 66043.195 337&Ia#412----2527315;563 L-654 5.625 66045.378 337942.459 2527809.593 655 5.626 66047.561 338008.508 2528303.640 F .656 5 627 66049.744 338074.559 2528797.703 .657 5.628 66051.926 338140.613 2529291.782 658 5.629 66054.109 338206.668 2529785.878 r .659 5.630 66056.292 334372.726 -35342Ja ;9ee .660 5 631 66058.475 338338.786 2530774 118 661 5.632 66060.658 338404.848 2531268.262 .662 5 633 66062.841 338470.912 2531762.423 7' 663 5 634 66065.024 338536.979 2532256.600 t .664 - 5 635 66067.207 338603.047 2532750.794 .665 5 616 66069,390 - 338669.1LS - -2533245.00' ? 666 5.637 66071.573 338735.191 2533739.230 .667 5.638 66073.756 338801.266-2534233.472 t .668 5.639 66075.939 338867.344 2534727.731 669 5.640 66078.122 338933.423 2535222.006 670 5.641 66080.305 338999.505 2535716.298 .671 5 642 66082+4S4 - --339065.599 253$210.506 .672 5 643 66084.672 339131.675 2536704.930 I .671 5 644 66086.855 339197.763 2537199 270 L 674 5.645 66089.039 339263.854-2537693.627 675 5.646 66091.222 339329.947 2538188.000 'r .676 5 647' 66093 405 339396.041 2538682 390 t 677 5.648 66095,5ES 339662.135 25391?6.796 678 5.649 66097.772 339528.238-2539671.218 .679 5 650 66099.956 339594.339 2540165.657 'p .680 5 651 66102.139 339660.443 2540660 111 L 681 5.652 66104.323 339726.548 2541154.583 .682 5 653 66106.506 339792.656 2541649.070 .683 5 654 66108,6.90 339858.767 25+2143;5?A L 686 5.655 66110.874 339924.879 2542638.094 .685 3 656 66113.057 339990.993 2543132 631 .686 5 657 66115.241 340057.110 2543627 184 .687 5 658 66117.425 340123.229 2544121 753 '~ 688 5 659 66119.609 340189.350 2544616.338 689 5 660 66121.792 340255,623.- -2545110;940 7 .690 5.661 66123.976 340321.599 2545605.559 691 5 662 66126.150 340387.726 2546100 193 .692 5.663 66128.344 340453.856 2546594.844 .693 5.664 66130.528 340519.988 2547089.511 o 694 5.665 66132.712 340586.122 2547584 195 695 5.666 66134.896 340652,259 25ingve,ggg .696 5.667 66137.080 340718.397 2548573.611 697 5 668 66139.264 340784.538 2549068.344 .64 8 5 669 66141.448 340850.681 2549563 093 699 5 670 66143.632 340916.826 2550057.858 l,' 700 5 671 66145.817 340982.973 2550552.640 C .701 5.672 66148.001 341049.123. 94Ein47 ata e 702 5.673 66150.185 341115.274 2551542.252 ( [ c ~. _ _., -..
i L 64 r L. 703 5 674-66152.369 341181.428 2552037.083 704 5 675 66154.554 34-1247.584-2552531.930 r 705 5 676 66156.738 341313.742 2553026.793 .706 5 677 66158.922 341379.903 2553521 673 707 5 678 66161.107 341446.065 2554016 569 .708 5.679 66163.291 341512.230 2554511.481 n .709 5 680 66165.476 341578.397 2555006.410 U 710 5 681 66167.660 341644.566 2555501.355 711 5.682 66169.845 341710.737 2555996.316 .712 5 683 66172.029 341776.911 2556491 294 C '.713 5 684 66174.214 341843.087 2556986.288 714 5.685 66176.398 341909.264 2557481.298 ( .715 5.686 66178.533 341975.445 2557976.325 [~ .716 5 687 66180.768 342041.627 2558471.368 717 5 688-66182.953 342107.811 2558966.428 718 5 689 66185.137 342173.998 2559461.503 719 5.690 66187.322 342240.187 2559956.596 l- .720 5.691 66189.507 342306.378 2560451.704 .721 5.692 66191.692 342372.571 2560946.829 T' 722 5.693 66193.877 342438.766 2561441.970 .723 5 694-66196.062 342504.964-2561937.128 6, 7?4 5.695 66198.247 342571.163 2562432.302 725 5.696 66200 432 342637.365 2562927.492 r' 726 5.697 66202.617 342703.569 2563422.698 727 5.698 66204.802 342769.776 2563917.921 .728 5 699 66206.987 342835.984-2564413 160 (' 729 5.700 66209.172 342902.195 2564908.416 L .730 5.701 66211.357 342968.407 2565403.688 .73i 5 702 66213.542 343034.623 2565898.976 f 732 5.703 66215.727 343100.840 2566394.281 y .733 5.704 66217.913 343167.059 2566889.602 734 5.705 66220.098 343233.281 2567384.939 r. 735 5.706 66222.293 343299.504-2567880.293 .736 5.707 66224.468 343365.730 2568375.663 .717 5.708 66226.654 343431.958 2568871.050 738 5.709 66228.839 343498.189 2569366.452 7, .739 5.710 66231.025 343564.421 2569861.871 740 5.711 66233.210 343630.656 2570357.307 u 741 5.712 66235.396 343696.893 2570852.759 .742 5 713 66237.581 343763.132 2571348 227 ' u .743 5 714 66239.767 343829.373 2571843.711 744 5.715 66241.952 343895.617 2572339.212 .745 5 716 66244 138 343961.862 2572834.729 746 5.717 66246.324 344028.110 2573330.263 L .747 5.718 66248.509 344094.360 2573825.813 748 5.719 66250.695 344160.612 2574321.379 I# 749 5.720 66252.881 344226.867 2574816.962 i_ 750 5.721 66255.067 344293.123 2575312.561 L 751 5.722 66257.252 344359.382 2575808.176 .757 5.723 66259.438 344425.643 2576303.808 753 5.724 66261.624 344491.906 2576799.456 t' .754 5 725 66263.810 344558.171 2577295 120 i 755 .b.726 66265.996 344624.439 2577790.801 I 756 5.727 66268.182 344690.708 2578286.498 J .757 5.728 66270.368 344756.980 2578782 211 .758 5 729 66272.554-e 344823.254-2579277.941 p a ~
IL 65 r U .759 5.730 66274,740 344489.530 25797.t335e? 760 5.731 66276.926 344955.809 2580269.450 ,n 761 5.732 66279.113 345022.089 2580765 229 767 5 733 66281.299 345088.372 2581261.024 763 5.734 66283.485 345156.657 2581756.835 764 5.735 66285.671 345220.944 2582252.663 765 5 736 66287.857 345287,234 2582744,54m L 766' 5 737 66290.044 345353.525 2583244.368 767 5.738 66292.230 345419.819 2583740.245 r; 768 5.739 66294.416 34548? 115-2584236 139 3 L 769 5.740 66296.603 345552.413 2584732 048 776 5.741 66298.789 345618.713 2585227.974 r- .771 5.742 66300.976 345685,016 3585733+&17 772 5.743 66303.162 345751.320 2586219.876 773 5.744-66305.349 345817.627 2586715.851 774 5 745 66307.535 345883.936-2587211 842 , [. 775 5.746 66309.722 345950.247 2587707.850 i; 776 5 747 66311.909 346016.561 2588203.874 .777 5 748 66314.095 346482,876- -2599699.915 / .778 5 749 66316.282 346149.194-2589195.972 779 5.750 66318.469 346215.514 2589692.045 780 5.751 66320.656 346281.836 2590188.135 r 781 5.752 66322.842 346348,161 2590684.241 787 5.753 66325.029 346414.487 2591180.363 783 5 754 66327.214 346390.916- - 2591676;502 784 5 755-66329.403 346547.147 2592172.657 .(. .785 5.756 66331.590 346613.480 2592668.829 .L 786 5 757 66333.777 346679.815' 2593165 016 787 5.758 66335.964 346746.152: 2593661.221 r 788 5 759 66338.151 346812.492 2594157.441 .789 5 760 64340 334-346879.934 259t653;67" t' 790 5.761 66342.525 346945.178 2595149.931 791 5 762 66344.712 347011.524-2595646.201 797 5.763 66346.899 347077'.873 2596142 487 L 793 5.764 66349.086 347144.223 2596638.789 .794 5 765-66351.274 347210.576-2597135.108 795 5.766 66353.441 347276 931 -35976?!;t43 2 LJ .796 5 767 66355.648 347343.288 2598127.795' .797 5 768 66357.835 347409.647 2598624 162' .798 5 769 66360.023 347476.009 2599120.547 (~ 799 5 770 66362.210 347542.373 2599616.947 800 5.771 66364.398 347608.739 2600113.364 801 5 772 66366.585 347675,107 - 2600608:T*? 802 5.773 66368.773 347741.477 2601106 247 803 5.774 66370.960 347807.849 2601602.713 t 806 5.775 66373.148 347874.224-2602099 195 805 5.776 66375.335 347940.601 2602595.694 L 806 5.777 66377.523 348006.980 2603092 209 807 5 778 66379.710 348073,361 2603599;741 .808-5.779' 66381.898 348139.744-2604085.288 i .809 5 780 66384 086 348206.130 2604581.853 .810 5.781 66386.274 348272.518 2605078.433 811 5 782 66388.461 348338.908 2605575.030 I, .81E 5 783 663905649 348405.300 2606071.643 L .833 5 784 66392.837 348471.694 2646E&&+27? 814 5.785 66395.025 348538.091 2607064.919 -Q 1-
r-L 66 F LJ 815 5.784 66397.213 348644 490 2607561.582 2 .816 5 787 66399.401 348670.890 2608058 260 r .817 5 788 66401.589 346737.294-2608554.955 .818 5 789 66403 777 348803.699 2609051 667 t 819 5.790 66405.965 348870.106 2609548.395 820 5.791 66408.153 349936.516-2610045 139 .821 5.792 66410.341 349002.928 2610541.900 i 822-5 793 66412.529 349069.342 2611038.677 823 5.794 66414.717 349135.758 2611535.470 F 824 5 795 66416.905 349202.176 2612032.280 L i .825 5 796 66419.093 349268.597 2612529.106 .826 5.797 66421 282 349335.020 2613025.948 . 827 5.798 66423.470 349401.445 2613522.807 g 828 5 799-66425.658 349467.872 2614019.683 829 5.800 66427.847 349534.301 2614516.574 830 5.801 66430 035 349600.733 2615013.482 1 .831 5.802 66432.224 349667.167 2615510.406 i, 832 5.803 66434.412 349733.603 2616007.347 .833 5 804-66436.600 349800.041 2616506.304 [ 834 5 805' 66438.789 349866.481 2617001 278 Lj .835 5.806 66440.978 349932.923 2617498.267 .836 5 807 66443.166 349999.368 2617995 274 p-- 837 5 808 66445.355 350065 815~ 2618492.296 838 5 809-66447.543 350132.264 2618989.335 .839 5,810 66649.732 350198.715 2619486 391 840 5.811 66451.921 350265.169 2619983.462 (. 841 5.812 66454.109 350331.624 2620480.550 L .842 5 813 66456 298 350398.082 2620977.655 843 5.814-66458.487 350464.542 2621474.776 r .844 5 815 66460 676 350531.004 2621971.913 L .845 5 816 66662.865 350597.469-2622469.066 846 5 817 66465.054 350663.935-2622966.236 847 5.818 66467.243 350730.404-2623463.423 7 -- 848 5 819 66469.432 350796.875 2623960.625 I' 849 5.820 66671.621 350863.348 2624457.844 (' L. r 'l. I j g f L. U g! U
- C
,a
+Ih I f(h' NNN 'Ik(kh
- \\
IMAGE EVALUATION TEST TARGET (MT-3) I l.0 '! N lat U tu lilil=5 g,3 1.1 [ '" E 1.8 1.25 1.4 1.6 4 6" MICROCOPY RESOLUTION TEST CHART 4% 4 Nf>/;/ h+yk.4 4,, y
9*%ls>;>, sjk8% 5' 2 \\ IMAGE EVALUATION \\ TEST TARGET (MT-3) !lHH i!M 1.0 b$ Ela 1.1 b* $N3 1.25 1.4 1.6 4 6" MICROCOPY J 3 2LUiiON TEST CHART p% + +4 8e+h(g 819 $>r# <A y 1 w 4 l 0
r, L 67 F L WEST POND CALCULA7 IONS READING DEPTH (F7) AREA (SQ.F7.) VOL.(CU.F7~.) VOL:( SALi. ) p 451 5.425 65414.723 324427.682 2426719 061 i, 457 5.426 65416.847 324493.087 2427208.288 453 5.427 65418.971 324558.494 2427697.532 454 5.429 65421.095 324623.903 2428186.791 i 455 5.429 65423.219 32.46a9.314 2A286.7A.a66 l 456 5.430 65425.344 324754.727 2429165.357 457 5.431 65427.468 324820.142 2429654.664 f~ 458 5.432 65429.592 324885.560 2430143.986 i 459 5.433 65431.717 324950.979 2430633.325 46n 5.434 65433.841 325016.401 2431122.679 461 5.435 65435.965 325081.821 2'31'12:0Ao 467 5.436 65438.090 325147.251 2432101.435 463 5.437 65440.214 325212.679 2432590.837 464 5.438 65442.339 325278.109 2433080.255 465 5.439 65444.463 325343.541 2433569.689 L 466 5 440 65446.588 325408.976 2434059 138 i 467 5 441 65448.712 125476.412. 2A3ASAa: 69A 468 5.442 65450.837 325539.851 2435038.085 ~ 469 5.443 65452.962 325605.292 2435527.582 470 5.444 65455 086 325670.735 2436017.095 r-471 5.445 65457.211 325736.180 2436506.624 l 477 5 446 65459.336 325801.627 2436996 169 l 473 5.4A7 65461.461 325f W7A--. 2 A 37 A85 : 7 28 474 5 448 65463.586 325932.527 2437975.306 .475 5 449 65465.710 325997.981 2438464.898 i 476 5.450 65467.835 326063.437 2438954.506 477 5.451 65469.960 326128.894-2.439444.130 r~ 3478 5 452 65472.085 326194.354-2439933.770 L 479 5.453 65474,210 1262E9,816-2AA0A23.A26 480 5 454 65476.335 326325.280 2440913 098 49i 5.455 65478.460 326390.747 2441402.785 j-4'97 5 456 65480.585 326456 215' 2441892.488 493 5 457 65482.710 326521.686 2442382 208 494 5.458 65484.836 326587.158 2442871.943 .a95 5.459 65486.961 .3264M?:A13 ___24A3361:6ea ,L 496 5.460 65489.086 326718.110 2443851.461 487 5.461 65491.211 326783.589 2444341.243 J' 488 5 462 65493.336 326849.070 '2444831 042 (- 499 5 463 65495.462 326914.553 2445320.856 490 5 464 65497.587 326980.038 2445810.687 491 5.465 65499.712 327045.525. 24442nn 511 497 5.466 65501.838 32.7111.015 2446790.395 L 493 5.467 65503.963 327176.507 2447280 273 494 5.469 65506 099 327242.001 2447770.167 495 5.469 65508.214 327307.497 2448260.076 u 496 5 470 65510.340 327372.995 2448750 002 497 5 471 65512.465 327438.495 24A9210: eat [ 498 5.472 65514.591 327503.997 2449729.901-L 499 5.473 65516.716 327069.502 2450219.874 500 5.474 65518.842 327635.008 2450709.863~ .501 5 475 65520.968 327700.517 2451199.868 507 5.476 65523.093 327766.028 2451689.888 .503. 5.477. 65525.219 327631.541 2452170:e25 .504 5.4 3 65527.345 327497.056 2452669.978 U a n I
f LJ 68 (~ L .505 5.479 65529.471 327962.573 2453160 046 506 5.480 65531.596 328028.092 2453650 130 r 507 5.49. 65533.722 328093.614 2454140.230 .508 54. 65535.848 328154.137 2454630 346 L .509 5 483 65537.974 328224.663 2455120.478 .510 5.484 65540.100 328290.191 2455610.626 j .511 5.485 $5542.226 328355.721 2456100.790 L .512 5 486 65544.352 328421.253 2456590 969 .513 5 487 65546.478 328486.787 2457081 164 q 514 5.488 65548.604 328552.323 2457571.376 ( .515 5 489 65550.730 328617.861 2458061 603 .516 5.490 65552.856 328663.402 2458551.846 .517 5.491 65554.982 328748.944-2459042 105 r-518 5.492 65557.109 328814.689 2459532.379 .519 5.493 65559.235 328880.036 2460022.670 .520 5 494 65561 361 328945.585 2460512.976 521 5.495 65563.487 329011.136 2461003.299 t .522 5.496 65565.614 329076c689 2461493.637 .523 5.497 65567.740 329142.245 2461983.991 r1 .524 5.498 65569.866 329207.802 2462474.361 .525 5.499 65571.993 329273.362 2462964.747 .526 5 500 65574.119 329338.924 2463455 149 .527 5 501 65576.246 329404.487 2463945.566 p. 528 5.502 65578.372 329470.053 2464436.000 1' .529 5 5n3 65580.499 329535.622 2464926.449 .530 5 504 65582 625 329601.192 2465416.919 f' 531 5.505 65584,752 329666.764 2465907.396 L .532 5 506 65586.879 329732.339 2466397.8-93 .533 5 507 65589.005 329797.915' 2466888.406 r 534 5.508 65591.132 329863.494-2467378.934 [~ .535 5 509 65593.259 329929.075 2467869.479 .536' 5 510 65595.385 329994.658 2468360.039 .537 5 511 65597.512 330060.243 2468850.616 I- .538 5.512 65599.639 330125.830 2469341.204 L .539 5 513 65601.766 330191.419 2469831.816 540 5.514 65603.893 330257.011 2470322.440 F .541 5.515 65606.020 330322,604 2470813.080 L; .542 5.516 65608.147 330388.200 2471303.736 .543 5.517 65610.274 330453.798 2471794.408 .544 5.518 65612.401 330519.398 2472285.095 [ .545 5.519 65614.528 3305E5.000 2472775.799 3546 5 520 65616.655 330650.604 2473266.51R .547 5.521 65618.782 330716.210 2473757 253 7 .548 5.522 65620.909 330781.819 2474248.005 ,L .549 5 523 65623.036 330847.429 2474738.772 550 5.524 65625.163 330913.042 2475229.554 f .551 5.525 65627.291 330978.657 2475720 353 L .557 5.526 65629.418 331044.274 2476211 168 .553 5 527 65631.545 331109.893 2476701.998 554 5.578 65633.672 331175.514 2477192.845 ![- l3 - .556 5.530 65637.927 331306.763 2478174.585 .555 5.529 65635.800 331241.137 2477683.707 .557 5 531 65640.055 331372.390 2478665.479 .558 5 532 65642.182 331438.020 2479156 389 L .559 5.533 65644.310 331503.652 2479667.315 .560 5 534 65646.437 331569.286 2480138 257 b u
\\ r-L 69 ) P l L .561 5.535 65644.565 334634 922-2464649;21^ .562 5.536 65650.692 331700.560 2481120 189 p- .561 5.537 65652.820 331766.200 2481611.177 .564 5.518 65654.947 131831.843 2482102 182 .565 5.539 65t57.075 331277.487 2482593 203 566 5.540 65659.203 331963.134-2483084 240 567 5.541 65661.330 3 4 2 0 2 8,7 8 3-. -4A83575 293 Q .568 5.542 65663.458 332094.433 2484066.362 .569 5.543 65665.586 332160.086 2484557.447 F .576 5.544 65667.714 332225.742 2485048.547 t .571 5 545 65669.842 332291.399 2485539 664 .577 5.546 65671.970 332357.058 2486030.796 c .573 5.547 65674.097 332A224724-2A!6521;96^ .574 5.548 65676.225 332488 383 2487013.108 .575 5 549 65678.353 332554.049 2487504.288 .576 5 550 65680 481 332619.717 2487995.484 .577 5 551 65682.669 332685.387 2488486.696 .578 5 55p 65684.737 332751.059 2488977.924 .579 5.553 65686.866 332&16,734- -249*469;167 P .580 5 554 65688.994 33E882.410 2489960.427 l g .581 5 555 65691.122 332948.089 2490451.702 .587 5 556 65693.250 333013.769 2490942.993 .583 5.557 65695.378 333079.452 2491434 300 p .584 5.558 65697.507 333145.137 2491925.623 .585 5 559 65699.h35 313210;e?' 2A92A16;96? .586 5.560 65701.763 333276.513 2492908.317 [ .587 5.561 657 3.892 333342.204 2493399.688 0 L .588 5 562 65706.020 333407.892 2493891 074- .589 5'.563 65708.148 333473.593 2494382.477 657 0.277 333539.291 2494873.895 [" .59n 5.564 1 L .591 5.565 65712.405 -hul-2495365.329 657 4.534 333670.692 2495856.780 .592 5 566 1 .593 5 567 65716.662 333736.396' 2496348 246 657 8,791 333802.103 2496839.728 .594 5.568 1 .595 5 569 65720.919 333867.811 2497331.225 .596 5.570 65723.048 333933.521 2497822.739 [ .597 5.571 65725.177 333980;23*- 2A9931A;268 657 7.305 334064.94E-2498805.814 L. .598 5 572 2 .599 5.573 65729.434 334130.665' 2499297.376 .600 5.574 65731 563 334196.384-2499788e953 s 601 5.575 65733.692 334262.105' 2500280.546 602 5.G76 65735.821 334327.828 2500772 155 663 5.577 65737.949 334393;553-- 2501?'3:798 .604 5.578 65740.078 334459.281 2501755.421 L 605 5.579 65742.207 334525.010 2502247.078 606 5.580 65744.336 334590.742 2502738.750 4 C .607 5 581 65746.465 334656.476 2503230.439 c 608 5.582 65748.594 334722.212 2503722.143 .609 5 583 65750.723 334787 E5a 2504?13:86A e .610 5.584 65752.852 334853.690 2504705.600 611 5.585 65754.981 334919.432 2505197.352 .612 5.586 65757.110 334985.176 2505689.120 .613 5 587 65759.240 335050.923 .2506180.904 .614 5.588 65761.369 335116.672 2506672.704 a 615 5.589 65763.498 335182422- -. 2547M.54'2 616 - 5 590 65765.627 335248.175 2507656.351 U e
I' L 70 {^ .617 5 591 65767.757 335313.930 2508148 199 618 5.592 65769.896 335379.687 2508640.062 619 5.593 65772.015 335445.447 2509131.941 .620 5.594 65774.145 335511.208 2509623.836 621 5.595 65776.274 335576.972 2510115.748 .622 5.596 69778.403 335642.737 2510607.675 I' 623 5.597 65780.533 335708.505 2511099.617 i. .624 5.599 65782.6'62 335774.275 2511591.576 .675 5.599 65784.792 335840.047 2512083.551 r .626 5 600 65786.922 335905.821 2512575.542 .627 5.601 65789.051 335971.597 2513C67.548 628 5.602 65791.191 336037.376 2513559.5'r0 .629 5 603 65793 310 336103.156 2514051.609 4 .630 5.604-65795.440 336169.939 2514543.663 .631 5.605 65797.570 336234.724 2515035.733 .632 5 606 65799.700 336300.511 2515527.819 7 633 5.607 65801.829 336366.300 2516019.921 !c 634 5 608 65803.959 336432.091 2516512 039 .635 5 609 65806.089 336497.884 2517004 173 r 636 5.610 65808.219 336563.679 2517496.322
- ("
.637 5 611 65810.349 336629.477 2517988.488 .638 5.612 658 2.479 336695.277 2518480.669 1 639 5.613 65814.609 336761.07B 2519972.866 I .646 5 614 65816.739 336826.982 2519465 090 .641 5 615 65818.869 336892.688 2519957 309 642 5.616 65820.999 336958.496 2520449.554 P .643 5 617 65823.129 337024.307 2520941.815 L .644 5 619 65825.259 337090.119 2521434 092 .645 5 619 65827.389 337155,934 2521926.384 r- .646 5 620 65829.519 337221.750 2522418.693 647 5.621 65831 65-0 337287.569 2522911.017 .648' 5.622 65833.780 337353.390 2523403 358 649 5 623 65835.91n 337419.213 2523895.714 c .650 5 624 65838.041 337485.039 2524388.087 L 651 5 625 65840 171 337550.966 2524880.475 652 5.626 65842.301 337616.695 2525372.879 (" .653 5 627 65844.432 337682.527 2525865 299 L .654 5 62s 65846.562 33774s.360 2526357.735 .655 5 629 65848.693 337814.196 2526850.197 r 656 5 630 65850.823 337880.034 2527342.654 657 5.631 65852.954 337945.876 2527835.138 L 658 5 632 65855.084 339011.716 2528327.637 .659 5 633 65857.215 338077.561 2529820 153 ,( 660 5.634 65859.345 338143.407 2529312.684 L .661 5.635 65861.476 339299.256 2529805 231 .66? 5 636 65863.607 339275.106 2530297.794 I .663 5 637 65865.738 339340.959 2530790.374 t .664 5 639 65867.868 339406.914 2531282.969 l 665 5.639 65869.999 338472.671 2531775.579 i 666 5 640 65872.130 339538.530 2532268.206 'I. 667 5.641 65874.261 339604.392 2532760.849 L .668 5.642 65876.392 339670.255 2533253.507 .669 5.643 65878.523 339736.121 2533746 192 P .670 5 644-65880 653 339801.988 2534238 872 b .671 5 645 65882 784 338867.858 2534731 579 l 672 5 646 65884.915 338933.730 2535224.301
- LJ
L 71 ~ ~ .673 5 647 65887.046 336999.604 253E717,039 674 5.648 65889.178 339065.480 2536209.793 .675 5.649 65891.309 339131.359 2536702.563 p- .676 5 650 65893.440 339197.239 2537195.349 .677 5.651 65895.571 339263.122 2537688.151 .678 5.652 65897.702 339329.006 2538180.969 I 679 5 653 65899.833 339394.893 2538673;&42_- .680 5.654 65901 965 339460.782 2539166.652 681 5.655 65904.096 339526.673 2539659.517 p 6BP 5.656 659 6.227 339592.567 2540152.399 0 j .683 5.657 659 8.359 339658.462 2540645 296 0 684 5 658 65910 490 339724.359 2541138 209 .685 5.659 659 2.621 33S794,25E 2541631;139 1 l 686 5.660 65914.753 339856.161 2542124 083 L 687 5.661 65916.884 339922.065 2542617.044 .688 5 662 65919.016 339987.971 2543110 021 ( .689 5 663 65921.147 340053.879 2543603.014 .690 5 664 659 3.279 340119.789 2544096 022 2 .691 5.665 65925.410 340185.701 25ttSS9.0t? .692 5 666 65927.542 340251.616 2545082.087 .693 5 667 65929.674 340317.533 2545575 144 g .694 5 668 65931.805 340383.451 2546068.216 .699 5 669 65933.937 340449.372 2546561 304 I.., .696 5 670 65936.069 340515.295 2547054.409 .697 5 671 65938.201 344E81v334-- 25675t'e529 698 5.672 65940.333 340647.148 2548040.665 F 699 5.673 65942.464 340713.077 2548533.817 L 700 5 674 65944.596 340779.009 2549026.984 701 5.675 65946.728 340844.942 2549520 168 r-707 5 676 65948.860 340910.878 2550013 368 703 5.677 65950.992 340976,846 3550506;5?? 704 5 678 65953.124 341042.756 2550999.815 705 5 679 65955.256 341108.698 2551493 062 706 5.680 65957.388 341174.642 2551986.326 707 5 681 65959.520 341240.589 2552479.605 .708 5 682 65961 652 341306.537 2552972.900 t' 709 5.683 65963.785 34 L372,488- -2553A66.211 L 710 5 684 65965.917 341438.441 2553959.538 711 5 685 65968.049 341504.396 2554452.881 r-712 5.686 65970 181 341570.353 2554946 240 713 5.687 65972.314 341636.312 2555439.615 j 714 5 688 65974.446 341702.273 2555933 005 715 5.689 65976.578 341768,237 2556A!6;+12- - I. .716 5.690 65978.711 341834.202 2556919.834-i 717 5 691 65980.843 341900.170 2557413 273 718 5 692 65982.975 341966.140 2557906.727 719 5.693 65985 108 342032.112 2558400 198 l (~' 720 5.694 65987.240 342098.086 2558893.684 721 5.695 65989.373 342164.062 25531a7: 1aa l, .722 5 696 65991.506 342230.041 2559880.704 723 5.697 65993.638 342296.021 2560374.238 .724 5.693 65995.771 342362.004 2560867.788 725 5 699 65997.903 342427.98S 2561361.354 726 5.700 66000.036 342493.975 2561854.935 L .727 5.701 66002.169 342559.964 2562348 511 728 5.702 66004.302 342625.955 2562842 147 1C it
FL 72 729 5.703 66006.434 342691.949 2563335.776 .730 5 7n4 66008.567 342757.944 2563829.422 p 731 5 70s 66010.700 342823.942 2564323 093 737 5.706 66012.833 342889.941 2564816.760 1 733 5.707 66014.966 342955.943 2565310.453 .734 5 708 66017.099 343021.447 2565804 163
- c. -
735 5 709 66019.232 343087.953 2566297.888 b 736 5 710 66021.365 343153.961 2566791 629 .737 5 711 66023.498 343219.471 2567285.386 F .738 5.712 66035.631 343285.984 2567779.158 ( 739 5.713 66027.764 343351.998 2569272.947 740 5.714 66029.897 343418.015 2568766.752 741 5.715 66032.030 343484.034 2569260.572 r 742 5.716 66034.163 343550.055 2569754.409 .743 5 717 66036.297 343616.n79 2570248.261 744 5.719 66038.430 343682.103 2570742.130 745 5.719 66040.563 343748.13' 2571236.014 i I 746 5 720 66042.697 343814,160 2571729.914 .747 5 721 66044.830 343880.191 2572223.831 1 -F 748 5 722 66046.963 343966.225 2572717.763 i 749 5.773 66049.097 344012.261 2573211.711 750 5.724 66051.230 344078.299 2573705.675 .751 5.725 66053.364 344144.339 2574199.655 .757 5 726 66055 497 344213.381 2574693.650 .753 5.727 66057.631 344276.425 2575187.662 .754 5 729 66059.764 344342.472 2575681 690 .755 5 729 66061 898 344408.521 2576175.733 756 5.730 66064.031 344474.571 2576669.793 .757 5.731 66066.165 344540.624 2577163.868 f 758 5 732 66068.299 344606.679 2577657.960 i 759 5 733 66070.433 344672.736 2578152 067 760-5.734 66072.566 344738.796 2579646.190 761 5.735 66074.700 344804.857 2579140.330 e .} .762 5 736 66076.834 344870.920 2579634.485 .763 5 737 66078.968 344936.986 2580128.656 764 5.738 66081.102 345003.054 2580622.843 .765 5.739 66083.235 345069.124 2581117.046 i- .766 5.740 66085.369 345135.196 2581611.264 767 5.741 66087.503 345201.270 2582105.499 i 768 5.742 66089.637 345267.346 2582599.750 .769 5 743 66091 771 345333.425 2583094 017 770 5.744 66093.906 345399.505 2583588.299 771 5.745 66096.040 345465.58B 2584082.59R r .777 5.746 66098.174 345531.673 2584576.912 .773 5 747 66100.308 345597.760 2585071.242 774 5.749 66102.442 345663.949 2585565.599 lf' .775 5 749 66104.576 345729.940 2586059.951
- L 776 5.750 66106.711 345796.033 2586554.329
.777 5.751 66108.845 345862.129 2587048.723 r .778 5.752 66110.979 345928.226 2587543.133 .779 5 753 66113.114 345994.326 2588037.559 ' g~ 780 5.754 66115.248 346060.429 2588532.001 .781 5 755 66117 392 346126.532 2589026 459 .787 5.756 66119.517 346192.639 2589520.933 .783 5.757 66121.651 346258.746 2590015.423 784 5.758 66123.796 346324.957 2590509.928
73 .785 5.759 66125.920 346390.96& 2591006.450 786 5.760 66128.055 346457.084 2591498.987 .787 5.761 66130.189 346523.201 2591993.541 788 5.762 66132.324 346589.320 2592488 110 .759 5.763 66134.459 346655.441 2592982 696 .79n 5.764 66136.593 346721.564 2593477 297 791 5.765 66138.728 346787.689-2543S71.?!^ 797 5.766 66140.863 346853.816 2594466 547 793 5.767 66142 998 346919.946 2594961 196 796 5 768 66145.132 346986.078 2595455.861 795 5.769 66'147 267 347052.212 2595950 542 796 5.770 66149.402 347118.347 2596445 239 .797 5 771 66151.537 347184,4&& 2544S39.?52 .798 5 772 66153.672 347250.626 2597434.681 .799 5.773 66155.807 347316.768 2597929.426 800 5.774 66157.942 347382.913 2598424 186 .801 5 775 66160.077 347449.059 2598918.963 .802 5.776 66162.212 347515.208 2599413.755 .803 5.777 66164.347 347581.359-25???08.556 .804 5 778 66166.482 347647.512 2600403.388 .805 5 779 66168.618 347713.667 2600898.229 .806 5.780 66170.753 347779.924 2601393 085 l .807 5.781 66172.888 347845.984-2601887.957 .808 5.782 66175.023 347912.145 2602382.845 .809 5 783 66177 154 347978.309 -26429 7' + 7 t
- 810 5.784 66179.294 348044.475 2603372.670
.811 5.785 66181.429 348110.642 2603867.606 .812 5 786 66183.565 348176.813 2604362.558 813 5.787 66185.700 348242.985 2604857.525 816 5.788 66187.835 348309.159 2605352.509 .815 5 789 66189.971 344375,335 - - 4645S + '. 5 0 * .816 5.790 66192.106 348441.514 2606342.525 817 5 791 66194.242 348507.695 2606837.556 818 5.792 66196.377 348573.878 2607332.604 819 5.793 66198.513 348640.063 2607827.668 820 5.794 66200.649 348706.250 2608322.747 821 5.795 66202.784 34E772,A3S -260gaiv ;gi3 .822 5.796 66204.920 348838.630 2609312.954 .823 5.797 66207.056 348904.824 2609808.081 .826 5.798 66209.192 348971.019 2610303 225 .825 5.799 66211.327 349037.217 2610798.384 .826 5.800 66213.463 349103.417 2611293.559 .827 5.801 66215.599 349169.619 26LL788.250 .82R 5.802 66217.735 349235.823 2612283.957 .829 5.803 66219.871 349302.029 2612779 180 .836 5.8n4 66222.007 349368.238 2613274.419 .831 5.805 66224.143 349434.448 2613769.674 .832 5.806 66226.279 349500.661 2614264.945 .833 5.8n7 66228.415 349566,876. 26167AO:23? __ .834 5.BnB 66230.551 349633.093 2615255.534 { .835 5.809 66232.687 349699.312 2615750.853 L 836 5.810 66234.823 349765.533 2616246 188 837 5 811 66236.959 349831.756 2616741.538 .83R 5.812 66239.095 349897.982 2617236.905 .839 5.813 66241.232 349964,210 2617732+242- .84n 5.814 .66243.368 350030.439 2618227.686 _ _ _ _ _ _ _ -}}