ML19289E901

From kanterella
Jump to navigation Jump to search
Responds to Aw Dromerick 790503 Questions Re Containment Depressurization,Net Positive Suction Head Analyses & Effects of Increased Calculated Svc Water Temps on Design of Charging Pump Coolers
ML19289E901
Person / Time
Site: North Anna  Dominion icon.png
Issue date: 05/23/1979
From: Brown S
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To: Harold Denton
Office of Nuclear Reactor Regulation
References
380, NUDOCS 7905290375
Download: ML19289E901 (14)


Text

s e

VinornrA ELECTRIC AND POW ER CO)1 m N Y Itzcuxonn,vanorx rr caudi May 23, 1979 Mr. 7.a rold R. Denton, Di rector Serial No. 380 Of fice of Nuclear Regulatory Commission LQA/ESG:esh Attn: fir. O. D. Parr, Chief Light Water Reactors Branch No. 3 Docket Nos. 50-338 Divis ion of Project Management 50-339 U. S. Nuclear Regulatory Commission Washington, DC 20555

Dear Mr. Denton:

Attached are responses to two questions concerning Attachment 4 of our March 8,1979 letter concerning our thermal performance test of the North Anna Service Water Reservoir. These questions were asked by Mr. A. W. Dromerick of the Staff during a telephone conversation on May 3,1979, and deal with con-tainment depressurization and net positive suction head analyses, and the effects of the increased calculated service water temperateres on the design of the charging pump coolers.

Please contact us should you require additional information.

Very tr y yours, Sam C. Brown, Jr.

Senior Vice President-Power Station Engineering and Construction Attachments 2048

?45 790529037'5

ATTACHMEtlT QUESTI0tl 1 Containment Depressurization and flet Positive Suction Heat Analyses. Tabl e or graphs should be prepared showing containment pressure as a function of time for the first three or four days of the transient when the Service Water temperature reaches maximum values. Similar information should also be provided on the sump temperature for the same period along with the other properties which determine the available f1PSH. All assumptions ~ and.

conclusions that are presented should be stated and justified.

RESP 0f1SE Containment Depressurization and flet Positive Suction Head Analyses The containment depressurization analysis summarized in FSAR Table 6.2-45 accounts for the service water temperature increase by using a constant temperature 20F higher than that listed. This assumption bounds the actual service water temperature transient for the first six hours follow-ing a LOCA.

Since the depressurization time and subatmospheric peak pressure both occur within the first three hours after the accident, the results listed in Table 6.2-45 are not affected by the service water temperature rise.

The limiting case for subatmospheric peak pressure (pump suction DER with 0

minimum ESF, 40 F RWST temperature, 950F initial service water temperature, 0

86 F initial containment temperature

'-Lh wet bulb and dry bulb, and 9.87 psia initial containment pressure) was repeated with the actual service water temperature transient for a period of three days following the accident.

Results of this analysis are shown on the attached plots of transients for containment pressure, temperature, condensing coefficient, and recirculation spray cooler duty.

The mass and energy release data for this analysis are also provided.

The FSAR will be amended to include this information in an upcoming amendment.

2048

?Tf6

. The higher service water temperature has a negligible effect on the contain-ment pressure since it occurs so late in time after the accident when the mass and energy release rates have significantly decreased.

The NPSH analysis presently in the FSAR, summarized in Tables 6.2-40 through 6.2-44, is unaffected by the service water temperature rise. As shown in Table 6.2-42, the minimum available NPSH to both the inside and outside recir-culation spray pumps results from a low (350F) service water temperature.

Any increase in service water temperature also increases the available NPSH.

The minimarr, NPSH available to the low head safety injection (LHSI) pumps o_ccurs 0

0 after a pump suction DER with minimum ESF, 50 F RWST temperature, and 93 F initial service water temperature.

As shown in FSAR Table 6.2-42, the case of 500F RWST temperature /930F initial service water (SW) temperature yields 0

a lower minimum NPSHA for the LHSI pump than the case of 40 F RWST temperature /

950F initial SW temperature.

The 20F difference in SW temperature has little effect on the NPSHA to the LHSI pump. A 20F higher SW temperature results in a slightly higher containment pressure and a slightly higher sump water vapor pressure.

Since these two contributions to the NPSHA have opposite signs, the net result is a negligible decrease in the NPSHA.

However, a 10 F difference in the RWST temperature has a more significant ef fect. The lower temperature causes a lower containment pressure due to a lower quench spray temperature, but there is a greater decrease in the vapor pressure of the su'p water due to the colder ECCS spillage originating from the RUST. This results in an increased NPSHA to the LHSI pump.

Therefore, 0

the 50 F RWST temperature /930F initial SW temperature yields a lower NPSHA to the LHSI pump.

2048 T47 The NPSH transient for the LHSI pumps which occurs after a pump suction DER 0

with minimum ESF, 50 F RWST temperature, and 930F initial service water temperature is shown in FSAR Figure 6.3-10.

The increased service watei temperature transient was accounted for in this analysis by assuming a constant service water temperature two degrees higher than the initial temperature. This bounds the actual service water temperature transient for several hours following a LOCA.

The minimum available NPSH for the LHSI pump occurs within the first hour after the accident when the pumps are first switched to the recirculation mode. The available NPSH then increases as the level of water in the sump increases and the sump water temperature decreases. The high service water temperatures occur so late in the transient that the effect on the NPSH available to the LHSI pumps is negligible, and the minimum NPSH is still found when the pumps are switched to the recirculation mode.

2048

?48

zE n5'm6i V 8

9 R

EE SD AS R CPE "0

T T F,A 1

SS REW O

N

.E O WN I CI T TMI A VT N NRS E

5 I OE R 0

SI SE NT W

1 A AF O Z5 P 2

R I 9 T R

,A D

E U TN N S N A R SSWAl USERH

)

'0 S

S S R T

EPF T

RI 1

D RE0ON N

PD4NU O

N E

C S

(

'0 R

C O

)

L R

E T

F A

'0 E

1 M

I T

'0 1

,g 8

?

a' O

a-o i

Es E_

$wEQ ds szwrz x au rE % ywe e

E' ' $' N$o XT NO F I 5 T9 A,T Z

TI S N NRWO s

EU RT I

0 I

S A

1 C

I SFT FE0S FR4R EP

,E OERW CD EO DP GE S A

NS P N "0

I A

N S C F, A 1

N S

ET EHI D S T T N R NRI O OI ON CWMNU 4

1 0

S 1

D N

O C

E S

(

'0 R

C l1 O

L R

E T

R F

'0 E

I1 M

\\

T I

t0

/

1

'0 1

OtC oaW O-8~

8 o

nY C J D ? v. t E'"

CmUCb5g Eu! E!"w s

-v a

r s m J', c

E m

C O_

/

t$"

b i

\\

=

E LtJ E

f Q

~

N g

w r

b O

cc o

H E

2 g-w Ea o

I i

i a a il gi a aiaits a iis:

1 i ilas i

i s ai i i a ilui a

TIME RFTER LOCR (SECONDS) z TEMPERATURE TRANSIENT 9

.v WORST CASE DEPRESSURIZ ATION j

MIN. ESF, PSDER,40F RWST,95F TX NORTH ANNA POWER STATION k

UNIT l N

m

s y'

3 8

m 0

(Y.

in.

I N

5 E

g-r m

w H

c o

x w

xw ti.

E 8

_s

^

m e

e 1--

e o

w to x

,ed e

i iiiiiii i

i i i i iii

.iiii.

10' 10' 10 10' 10" TIME AFTER LOCR (SECONDS) i z

,m W

RECIRC. SPRAY COOLER DUTY 5

WORST CASE DEPRESSURIZATION I

MIN. ESF, PSDER,40F RWST, 95F TX NORTH ANNA POWER STATION m

UNIT I N

TAM E S6.161. 7-1

- MASS AND ENERCY RFLTASES TO CONTAIN"NT FOLY.0"INC A PSDER L'ITH M!';D1H SAPLCUAR0i (Baced en LOCTIC)

NOTE: RATE OATA IS CO*l5Tf.NT OVER THE TIME INTERVAL AN3 IS EQUAL TO THE CHl.NOE IN THE INTEC7ATED OATA UVER TH[ TINE INTERVAL DIVIDED DY THE CURATION CF THE INTERVAL

..........-___.__....__....--_pAlt DATA _____...._...____..__________._, ____..___..-----------INTEC7ATED CATA----------------------

--T!!!2 INTERVAL---


ULUM00HH--------


SPILLAGE-------

. --TIME--


CLCHOOHN--------


SPILLA5E--------

--SIART-- ---EU3--

---Mia---

--ENERGY--

---itA55---

--Eh2RGY-

---MASS---

--EN ROY--

---hAS5---

--EMC"0Y--

(SEC)

ISEC)

(LEM/ LLC)

(DTJ/5EC)

(LD!!/5EC l (BTU /SEC). (SEC1 (LO!!)

(CTU)

(LCMI (CTU 0.0 0.1 0.1 Tal e 0'4 4.7016E*07 0.0 0.0 0.1 E.1229E+03 4.7046E+06 0.0 0.0 0.1 1.0 3.60?H em6

2. u a llE + 0 7 0.0 0.0 1.0 4.0557E*C4 2.3452E*07 0.0 0.0
  • 0 2.0 3.402LLsul 2.0334E+07 0.0 0.0 2.0 7.5301E+04 4.3767E+07 0.0 0.0 J.0 3.0 3.4749E604 2.0463E+07 0.0 0.0 3.0 1.1015E+05 6.4249E+07 0.0 0.0 3.0 4.0 3.447CE+04 2.03?4E407 0.0 0.0 4.0 1.4462E+05 0.4643E+07 0.0 0.0 4.0 5.0 3.3939E+04 2.0134E+07 0.0 0.0 I

50 1.7056E+05 1.0470E+00 3.0 0.0 5.0 d.0 3.3260E+04 1.9772E+07 0.0 0.0 6.0 2.1103E405 1.2455E+00 0.0 0.0 6.0 7.0 3.2329E+04 1.9243E*07 0.0 0.0 1.0 2.4 416 E 4 05 1.4377E+00 0.0 0.0 7.0 S.0 3.127(E+04 1.0553E+07 0.0 0.0 8.0 2.7543E+05 1.6234E+00 0.0 0.0 0.0 9.0 3.0326 +04 1.7092E+07 0.0 0.0 9.0 3.0576E+05 1.0024E+00 0.0 0.0 9.0 10.0 2.9476E+04 1.7257E+07 0.0 0.0 10.0 3.3523E+05 1.9749E400 0.0 0.0

(((ff) 10.0 11.0 1.9020E+04 1.2901E+07 0.0 0.0 11.0 3.5E05E+05 2.104SE+00 0.0 0.0 11.0 12.0 6.43o2E+03 6.7229E+06-0.0 0.0 12.0 3.6149E+05 2.172CE+00 0.0 0.0 12.0 13.0 4.2442E+03 5.0730E+06 0.0 0.0 13.0 3.6 573E+ 05 2.2227E400 0.0 0.0 Cj((j) 13.0 14.0 3.0201E+03 3.6504E406 0.0 0.0 14.0 3.6076E+05 2.2592E+00 0.0 0.0 14.0 15.0 1.9031E+03 2.3920E*06 0.0 0.0 15.0 3.7074E405 2.2032E+00 0.0 0.0 (fffh) 15.0 16.0 1.324EC+03 1.5976E*06 0.0 0.0 16.0 3.7207E+05 2.2991E+00 0.0 0.0 16.0 17.0 8.0431E+02 1.0656E406 0.0 0.0 17.0 3.7295E+05 2.3090E+08 0.0 0.0 17.0 10.5 6.4050E+02 7.7118E+05 0.0 0.0 18.0 3.1359E+05 2.3175E+00 0.0 0.0 CD' CC 10.0 19.0 4.9331E+02 5.9376E+05 0.0 0.0 19.0 3.7409E+05 2.3234C+00 0.0 0.0 CCCC 19.0 20.0 3.9194E+02 4.7182E*05 0.0 0.0 20.0 3.7440E*05 2.3202E+00 0.0 0.0 c :: 3 20.0 21.0 3.2356E+02 3.0194E+05 0.0 0.0 21.0 3.1400E*05 2.3321E+00 0.0 0.0 23.0 22.0 2.74ECE+02 3.3115E+05 0.0 0.0 22.0 3.7500E+05 2.3354E+00 0.0 0.0 22.0 23.0 2.3774E+02 2.0760E+05 0.0 0.0 23.0 3.7532E+05 2.3302E+00 0.0 0.0 C"'

23.0 24.0 1.9456E+02 2.3626E+05 0.0 0.0 24.0 3.7551C+05 2.3406E+00 0.0 0.0 rs?

24.0 25.]

2.902CE+02 3.0654E405 1.0052E+02 6.0135E+03.

25.0 3.7501E+05 0.3445E+00 1.0052E+02 6.0135E+03 Ij{,

25.0 26.0 4.1914E+02 5.4312E+05 2.6945E+03 1.6049E+05.

26.0 3.7623E+05

?.3499E+00 2.7950E403 1.6550E+0~

26.0 27.0 2.9231E+02 3.0142E+05 2.4666E+03 1.4629E+05.

27.0 3.7652E+05 2.3537E+00 5.2617E+03 3.1277E405 CX3 27.0 20.0 3.2975E402 4.2965E+05 9.6162E+02 5.6004E*04.

20.0 3.7605E+05 2.3500E+08 6.2233E+03 3.6967E+05 El' 20.0 29.0 3.7706E+02 4.905dE+05 1.2512E+02 7.3771E+03.

29.0 3.7723E+05 2.3629E+00 6.3404E+03 3.7705E+05

  • ~J t

'(JF1 79.0 30.0 3.1907E+02 4.1669E+05 3.2617E+01 1.7714E+03.

30.0 3.7755E+05 2.3671E+00 6.3010E+03, 3.7000E+05 m

(sms 3u.0 35.0 4.9555E+02 6.4131E+05 5.705SE+03 3.0009E+05.

35.0 3.0000E+0S 2.3972E+00 3.4910E+04 1.9193E+06 J'

35.0 40.0 5.0944E+02 E.5009E+05 5.2055E+03 2.7913E+05.

40.0 3.0257C+05 2.4321E+00.6.0937E+04 3.3149E+26 40.0 45.0 5.0112E+02 6.46?lE+05 4.7461E+03 2.5194E605.

45.0 3.0500E+C5 2.4644E+00 0.4660Ee04 4.5746E+CS Ch 45.0 50.0 4.9192E+02 6.3422E*05 1.5412E+03 6.3799E+04.

50.0 3.0754E+05 2.4961E+00 9.2374E+C4 4.9936E+C6 I~

to i

tJ 1 of 3

TM LE 56.161.2-1 (C0_NT ' D) h0TEI RATE DATA IS ECNSTANT CVER THf TINE INTERVAL AND IS ECUAL TO THE CHANGE IN THE INTEG7ATED DATA OVER THE TIME INTERVAL DIVIDED BY THE OURATICN CF THE INTERVAL


RATE DATA-------------------------------


INTECRATE3 DATA----------------------

--TIME INTERVAL---


CLCMOOHN--------


SPILLAGE-------

. --7I E -


ELCNDOMM--------


5?ILLAGE--------

--S T AR T-- --- E r o --

-.-DA55---

--ENERGY--

---HASS---

--ENERGY-

---l!A55---

--ENERGY--

---M SS---

--EM:PSY--

(SEC)

(SEC)

( LtH l/ SE C )

(DTU/5EC)

(LCH/SEC)

(BTU /SEC)

[5EC)

(LOH)

(BTU)

(LCH)

(CTU) 59.0

!3.0

't. 01 M E e 02 6.2003E+05 1.3927E+02 1.0943E+04.

55.0 3.0994E+05 2.5271E+C0 9.307CE+04 5.C403E+C6 55.0 60.0 4.6; ateD2 6.0120E+05 1.6055E+02 1.1936E+04 60.0 3.9229E+05 2.5572E+00 9.3073E+C4 5.1CL0E+06 60.0 72.5 4.4T)0 leu 2 5.7S65E+05 1.3927E+02 9.6003E+03 72.5 3.9709E+05 2.(293E+C0 9.5614E+C4 5.22G4E+06 72.5 05.0 4.2??5C+02 5.4314E+C5 1.3702E+02 0.554EE+03.

85.0 4.0319E*05 2.6970E+C0 9.7327E+C4 5.3353E+C6 05.0 105.0 4.C200E402 5.1372E 05 1.1600E+02 6.6067E+03.

105.0 4.1123E+05 2.7999E+C0 9.9663E+C4 5.4690E+C6 105.0 140.0 3.7720E+C2 4.7922E+05 1.0035E+02 5.4297E+03 140.0 4.2443E+05 2.9676E+00 1.0346E+C5 5.6591E*C6 140.0 190.0 3.4101E+02 4.2955E+05 1.7700E+02 7.5958E+03.

193.0 4.4140E+05 3.1004E+00 1.1031E+05 6.0320E+C6 190.0 240.0 2.4330E+02 3.0551E+05 3.6030E+02 4.6000E+04.

240.0 4.536EE+05 3.3352E+00 1.303:E+05 0.3??0:+C6 040.0 290.0 2.CS?4E+02 2.5272E+C5 4.3534E+02 6.6554E604 290.0 4.639EE+05 3.4615E+00 1.5209E+C5 1.1667E+07 290.0 340.0 2.0061E+02 2.4040E+05 4.4067E+02 6.5750E+04 340.0 4.7390E+05 3.5017E+00 1.7412C+05 1.4?ESE+C7 340.0 390.0 1.9621E+02 2.3329E+05 4.4500E+02 6.5625E+C4$

391.0 4.0379E+C5 3.6904E+CO 1.9630E+05 1.02!6C+07 390.0 500.0 1.C406E+02 1.2351E+05 5.3725E+02 9.1493E+04.

500.0 4.9523E+05 3.0342E+00 2.5540E+05 2.0300E<07 500.0 650.0 9.5971E+01 1.1369E+05 5.4537E*02 9.1517E+04.

650.0 5.0963E+05 4.0040E+00 3.3700E+C5 4.200EE*07 650.0 900.0 0.0953E+01 1.0413E+05 5.5242E+02 0.9070E+04.

900.0 5.3107E+05 4.2651E*00 4.7539E+05 6.4495E+07 900.0 1450.0 7.9033E+01 9.3159E+04 5.6243E602 6.0003E404 1450.0 5.7534E+C5 4.7775E+C0 7.0472E+05 9.7497E+07 1450.0 2200.0 6.3377E+01 7.3365E*04 5.0342E+02 5.3409E+03 2200.0 6.2207E+05 5.3277E+C0 1.2223E+C6 1.0150E+00

(((fj) 2200.0 2950.0 5.0666E+01 5.0394E+04 5.9003E+02 5.4726E*03.

2950.0 6.6007E+C5 5.7657E+00 1.6700E+06 1.0561E+00 2750.0 3730.0 4.3665E+01 5.0217E*04 5.1934E*02 1.7869E*04.

3730.0 6.9493E+05 6.1574E+C0 2.1027E+06 1.1954E+C3 3730.0 5:30.0 4.0730E+01 4.6002E+04 5.1043E*02 5.5170E*04.

5230.0 7.5600E+05 6.0594E+C0 2.0023E+C6 2.0231E+CS 5230.0 6730.0 3.6161E+01 4.1560E+04 5.154CE+02 5.4400E+04 6730.0 8.1026E+05 7.4029E+00 3.6614E406 2.C392E+00 6730.0 0230.0 3.4114E+01 3.9236E+04 5.1736E402 5.4924E*04.

0230.0 0.6144E+05 0.0714E+00 4.4375E+06 3.6631E+C3

[hE[!h 0230.0 9730.0 3.251EE+01 3.7397E+04 5.1005E402 5.5406E+04.

9730.0 9.1021E+05 0.6324E+00 5.2150E+06 4.4945E+00 9730.0 11:30.0 3.1302E+01 3.6092E+04 5.1990E+02 5.5000E+04. 11230.0 9.5720E+05 9.1730E+00 5.9956E+C6 5.3316E+C0 L____a 11230.0 12730.0 3.C435E+01 3.4990E+04 5.?CO2E*02 5.6007E404. 12730.0 1.0029E+C6 9.6900E+C0 6.7760E+C6 6.1717E+CO

(({f_y}

12730.0 14230.0 2.9511E*01 3.3966E+04 5 0172E+02 5.6069E*04. 14230.0 1.0472E+06 1.0200E+09 7.5594E+06 7.0127E+C0 c__

c p 14230.0 15730.0 2.073EE+01 3.3048E+04 t5.2256E402 5.6024E+04. 15730.0 1.0904E+06 1.0704E+09 0.3433E+C6 7.0:31E+r0 e'-"

15730.0 10550.0 2.7713E401 3.1063E604 5.2360E402 5.5030E+04. 18550.0 1.1605E+C6 1.1600E+C9 9.0201E+C6 9.4277E+C3

{}gg)

INJ 10350.0 21730.0 2.641CE+01 3.0359E+04 5.2515E+02 5.5430E+04. 21730.0 1.2525E+C6 1.2560E+C9 1.1490E+07 1.1191E+0?

CZ3 21730.0 29230.0 2.4514E+01 2.0173E+04 5.2735E402 5.4661E+04. 29230.0 1.4363E*06 1.4601E409 1.5445E+07 1.529CE+C9 h

45>

29230.0 36730.0 2.2403E401 2.5744E+04 5.2972E+02 5.3947E+04. 36730.0 1.6044E+C6 1.6612E+09 1.9410E+07 1.933?E+C9 C33 36730.0 44230.0 2.0052E+01 2.3961E+04 5.3139E+02 5.3690E+04. 44230.0 1.7600E+06 1.0409E+0?

2.3403E+07 2.13:3E+07 44030.0 51730.0 1.9755E+01 2.2700E+04 5.3249E+02 5.3780E+04. 51730.0 1.9009E406 2.0111E+09 2.7397E+07 0.7397E+09

{}d 51730.0 59230.0 1.2E33E+01 2.1642E+04 5.3334E402 5.4110E+04. 59230.0 0.0500E+06 2.1734E+09-3.1397E+07 3.145:E+C9 E

59030.0 66730.0 1.0125E+01 2.0829E+04 5.3400E+02 5.4367E404. 66730.0 2.1061E+06 2.3097E409 3.5402E+07 3.5533E+C9 JD" 66730.0 74230.0 1.7527E+'

2.0143E+04 5.3450E*02 5.4491E+04. 74230.0 2.3175E+06 2.4007E+09 3.9412E+G7 3.9600E409 na i

W n

e

TABLE S6.161.2-1 (CONT'D)

-~

NOTE: RATE DATA IS CCNSTANT CVER THE TIME INTERVAL AN3 I5 EQUAL TO THE CHANGE IN THE INTEC7ATED DATA OVER THE TIME INTERVAL DIVIDED BY THE OL'RATICN OF THE INTERVAL

..---_----._._.----RATE DATA------------------------------.


INTEGRATED CATA----.-----------------

--T It t: It ti ER VAL---


CLCMDCHM--------


SPILLACE-----...

. --TIME--


ELCW20HM--------


EPILLACE--------

.-0!A7T--...END--

- - - M '. S S - - -

--ENECGY--

---HAS S- --

--ENERGY-

---MASS---

--:NERGY--

---Ut05---

--EN2ROY--

ISEC)

(SEC)

( LOM/ SEC )

(DTU/SEC)

(LDM/SEC)

(BTU /SEC)

(SEC)

(LCtti (BTU)

(LE!!)

(DTU) 71rtu.0 01710.0 1.10.71#01 1.9fa5E+04 5.3511E+02 5.4378E+04. 81730.0 2.4454E+06 2.6276E+09 4.3425:+07 4.3692E+07 c17 0.0 69250.0 1.6% tiest 1.9010E+04 5.3565E+02 5.4102E+04. 89230.0 2.5699E*06 2.7706E+09 4.7440.07 4.77E6:+0?

07230.0 96730.0 1.6P lLt e 01 1.0653E.04 5.3613E+02 5.3767E+04. 96730.0 2.6915E+06 2.9104E+09 5.lq43E+07 5.1722:407 96730.0 104230.0 1.535;Ee01 1.0223E+04 5.365?E+02 5.3425E+04.'104230.0 2.0104E+06 3.0471E+09 5.5400E+07 5.5795E+09 104230.0 111730.0 1.551SE+01 1.7657E+04 5.3700E+02 5.3093E+04. 111730.0 2.927CE+06 3.1010E+09 5.9515E+07 5.9777t+09 111730.0 119230.0 1.5240E+01 1.7507E+04 5.3730E+02 5.2904E+04. 119230.0 3.0413E+06 3.3123E+09 6.3546E+07 6.3745E+07 119230.0 126730.0 1.4973E,01 1.7001E+04 5.3766E+02 5.2903E+04. 126730.0 3.1536E+06 3.4413E+0?

6.7570E+07 6.7713:+07 126730.0 134230.0 1.4717E.01 1.6900E+04 5.3790f+02 5.2995E+04. 134230.0 3.2640C+06 3.5601E+09 7.1610E+07 7.1637E+09 134230.0 141730.0 1.4401E+01 1.6636E+04 5.3010E+02 5.3129E+04. 141730.0 3.3726E+06 3.6929E+09 7.564CE+07 7.5672E+09 141730.0 149230.0 1.4253E+01 1.6375E+04 5.3029E+02 5.3206E+04. 149230.0 3.4795E+C6 3.0157E+09 7.9605E+07 7.966?E+09 149230.0 156730.3 1.4545E+01 1.6136E+04 5.3047E+02 5.3431E+04. 156730.0 3.5049E+06 3.9367E+09 8.3724E+07 0.3676E+C9 156730.0 164230.0 1.3C36E+01 1.5395E+04 5.3070E+02 5.3320E+04. 164230.0 3.6006E+06 4.0559E+09 8.7764E+07 0.767EE+09 164230.0 171729.9 1.3327C+01 1.5654E+04 5.3902E+02 5.3001E+04. 171709.9 3.7900E+06 4.1733E+C9 9.1C07[+07 9.16E2E+09 171729.9 179229.9 1.3417E+01 1.5410E+04 5.3936E+02 5.2571E+04. 179229.9 3.G915E+06 4.2009E+C9 9.5252E+07 9.5593E40?

179229.9 186729.9 1.321CE+01 1.5175E+04 5.3960E+02 5.2101E+04. 186729.9 3.9906E+06 4.4027E+09 9.9379E+07 9.95012+07 106729.9 194229.9 1.3024E+01 1.4949E+04 5.4003E*02 5.1615E*04. 194229.9 4.0003E+06 4.5140E+09 1.0395E+08 1.0337E+10 194229.9 201729.9 1.2012E+01 1.4706E404 5.4036E+02 5.1109E*04. 201729.9 4.1044E+06 4.6251E+09 1.0000E+00 1.C721E+10 201729.9 209229.9 1.0631E+01 1.4499E+04 5.4050E+02 5.1050E+04. 209229.9 4.2791E+06 4.7339E+C9 1.1206t+00 1.1104E+10 209029.9 216729.9 1.246SE+01 1.4312E+04 5.4072E+02 5.1129E+04. 216729.9 4.3726E+06 4.8412E+09 1.1611E+00 1.1400E+10 (fff[)

216729.9 2:4229.9 1.2307E+01 1.4127E+04 5.4005E+02 5.1284E+04. 224229.9 4.4649E+06 4.9472E+0?

1.2017E+00 1.1072E+10 h) 2:4229.9 231729.9 1.2147E+01 1.3943E+04 5.4096E+02 5.1476E*04. 231729.9 4.5560E+06 5.0517E+09 1.2423E+00 1.2250E+10

[h{[j]

231729.9 239229.9 1.2000E+01 1.3776E+04 5.4106E+02 5.1667E+04. 239229.9 4.6460E+06 5.1551E+09 1.2000E+0S 1.064?E+10 229029.9 246729.9 1.185fE+01 1.3609E+04 5.4121E*02 5.1600E+04. 246729.9 4.7349E+C6 5s2571Ee09 1.3234E+0S 1.3033E+10 24672).9 254229.9 1.1707E+01 1.3430E+04 5.4140E+02 5.1517E+04. 254229.9 4.0227E+06 5.3579E+07 1.3640E+00 1.3400E.10 (ffff) 254209.9 261729.9 1.1563E+01 1.3273E+04 5.4161E+02 5.1283E+04. 261729.9 4.9095E+C6 5.4575E+09 1.4047E+03 1.3204E+10 c====>

=

N g

m a

n r

b N

5 N

e %s I

S*

k.

e. T'

Question 2 Provide a

technical strc:ta ry of the design and temperature requirements for both the old and the new charging pump coolers.

All modifications to service water piping systems as well as the instrumentation system should be noted and justified.

RESPONSE

The old charging pump coolers required the following flow rates:

Service Water Temo 950F 1070P Pump Lube Oil IIx 19 gpm 40 gpm Gear Lube Oil IIx 15 gpm 15 gpm Seal Water IIx 3 qpm 5 opm Total 37 gpn 60 gpm The require

  • flows at the increased service water temperature could not be provided with the existing service water piping configuration and coolers.

Therefore, the charging pump lube oil and gear box coolers were replaced with larger coolers meeting the original specification requirements and requiring less flow with resulting smaller pressure drops.

The new coolers have tM following flow requirements:

Service Water Temp 950F 1100F Pump Lube Oil IIx 7 gpm 15 gpm Gear Lube Oil Ex 5 gpm 10 gpu The charging pump seal coolers have not been changed;'however,-

the coolers are now piped in parallel rather than in series in 2048

?S6

2 order to reduce the pressure drop through the charging pump cooler skid.

The required flow for each of the two seal coolers is S gpm at 1100F and 3 gpm at 950F.

The total flow per charging pump at 950F in 18 gpm and at 110 0F is 35 gpm.

Piping on the skid has been rerouted, enlarged, and changed to stainless steel wherever possible to reduce pressure drops and future fouling.

Two new supply and return headers were added to the service water system and dedicated to provide service water for the charging pump gear lube oil and seal coolers only.

The original two supply and return headers now provide water only for the charging pump lube oil coolers.

This modification reduces the pressure drop to and from the charging pump skid thus assuring the required water flow at 1100F to the charging pumps.

Instrumentation System Service water flow to the pump lube oil coolers is controlled with a temperature control valve which maintains the proper lube oil temperature.

Both temperature indication and high temperature alarm is provided in the control room.

Service water flow to the gear box and seal coolers is monitored by measuring pressure drop across the parallel cooler arrangement.

Local indication is provided with an alarm in the control room.

Su=ery The modification to the charging pump cooling system while changing flow paths, service water flow, and method of monitoring 2048

?S7

3 flow does not af fect the basic operation or saf ety function of the system, nor does it effect the operation of safety-related equipment.

2048

?S8

.