ML19289C519
| ML19289C519 | |
| Person / Time | |
|---|---|
| Site: | Brunswick |
| Issue date: | 01/11/1979 |
| From: | Utley E CAROLINA POWER & LIGHT CO. |
| To: | Ippolito T Office of Nuclear Reactor Regulation |
| References | |
| GD-79-103, NUDOCS 7901170229 | |
| Download: ML19289C519 (27) | |
Text
.
@@@a Carolina Power & Light Company January 11, 1979 FILE: NG-3514 (B)
SERIAL: GD-79-103 Office of Nuclear Reactor Regulation ATTENTION:
Mr. T. A. Ippolito, Chief Operating Reactors Branch No. 3 United States Nuclear Regulatory Commission Washington, D. C.
20555 BRUNSWICK STEAM ELECTRIC PLANT, UNIT NOS. 1 AND 2 DOCKET NOS. 50-325 AND 50-324 LICENSE NOS. DPR-71 AND DPR-62 SUPPRESSION POOL TEMPERATURE TRANSIENTS
Dear Mr. Ippolito:
This letter is to transmit our response to the "Part A: Non-Proprietary" questions from your January 13, 1978, letter. As stated in our October 10, 1978 letter, we have considered cases postulated from realistic operating conditions for Brunswick which address the concerns raised by the questions in your request for additional information.
These analyses were performed by United Engineers and Constructors, Inc., our architect / engineer on the Brunswick project. Attachment 1 to this letter is the response to Part A, No. 1, and Attachment 2 is the response to Part A, No. 2.
Please call us if you have any questions.
= tours very truly,
?d bz' A E. E. Utley Senior Vice President Power Supply JAM /mf Attachments 06(
\\
w ~.
411 Cayetteville Street
- P. O. Box 1551
- Ralergh. N C. 27602 gy
..w
.. n ~3
~
1 ATTACHMENT 1 CAROLINA PCWER & LIGHT COMPA'!Y BRUNSUICK STEAM ELECTRIC PLA*TT UNITS 1 & 2 SUPPRESSION POOL TEMPERATURE T1UL'ISICUS RESULTING FROM A STUCK OPEN RELIEF VALVE DECDGER 6,1978
i BACKCROU'O This information was prepared in support of the liRC's request for additional information regarding suppression pool tempera-ture transients dated January 13, 1978.
The data was co= piled for three cases:
1.
Stuck open relief valve, one RHR Cooler 2.
Stuck open relief valve, one RHR Cooler, one additional manual relief valve actuated.
3.
Stuck open relief valve, one RHR Cooler, two additional manual relief valves actuated.
SIMIARY Preliminary analyses indicated that the nu=ber of RHR Coolers utilized had no significant effect on torus temperature during the blowdown transient. Therefore, succeeding analyses were performed with only one RHR Cooler in the pool cooling mode.
The results for Case 1 show that the condensation instability 0
limit of 160 F would be exceeded by 3 F with a single stuck open relief valve.
Cases 2 and 3 utilize manual blowdown of one and two additional relief valves repsectively to depres-surize the reactor before the torus te=perature has the time to rise above the condensation instability limit.
The torus te=peratt.res determined were 141 F for one additional valve, 0
and 140 2 for two additional valves.
As indicated by the reactor :c=perature transient curves, the cooldown rate is rather severe for both of these cases.
O
d CASE 1 REACTOR VESSEL AND SUPPRESSION POOL PRESSURE-TDtPERATURE ANALYSTS FOL1,0* JING STUCK OPEN RELIEF VALVE I.
SEOUENCE OF EVEhTS 1.
At t = 0 relief valve opens and fails to shut.
2.
When the torus temperature reaches 110 F the reactor scrams and the main steam isolation valves are closed.
3.
At t = 60 secs, a.
one RHR cooler is operated on pool cooling b.
HPCI/RCIC start - water level in reactor remains constant.
4.
When the reactor pressure reaches 200 psig one RHR cooler is placed in shutdown cooling.
5.
When the reactor press tre reaches 150 psig HPCI/RCIC are stopped.
II. ASSUMPTIONS 1.
The feedwater and main stea= lines are isolated immediately after the reactor scram.
2.
The initial reactor vessel pressure is the set pressure of the relief valve (1,105 psig + 17.).
3.
The relief valve discharges at its ASME rated capacity.
4.
The total sensible ' heat in the reactor vessel is added to the reactor water in 1 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.
III. INITIAL CONDITIONS 1.
Reactor power is 2550 MWt.
2.
Reactor temperature is 560 F which is the saturation temperature corresponding to the reactor pressure of 1131 psia.
3.
Thevolumeofwaterinitiallyinthereactorgesselincludingthe water in the recirculation loops is 11,787 ft (Reference 1).
l 4
The volume of steam initially in the reactor vessel is 6,831 f t 3
(Reference 1).
I 5.
The reactor steam flow to the HPCI turbine is 74,000 lbs/hr initially and decreases to 36,000 lbs/hr linearly at reactor pressure of 150 psig.
0 6.
HPCI flow temperature is 85 F.
7.
HPCI turbine exhausts to the suppression pool at 8 psig.
8.
Suppression pool initial te=perature is 95 F.
? 9.
The volume of water in the pool initially is 87,600 ft3
- 10. The total free volume of the pool is 375,700 ft3,
- 11. The decay heat has been calculated for reactor power level of 2,550 F9t using the method of ANS 5.1.
- 12. The total gensible heat in the reactor (thick and thin metal) is 84 x 10 Btu (Reference 1).
IV. METHOD OF ANALYSIS The reactor pressure temperature transients have been calculated using the RELAP-4 code. The entire reactor vessel is modeled as one volu=e.
The torus temperature transients have been computed using TRESP com-puter code.
Figure 1 is a schematic of the Reactor Vessel Model for RELAP-4 V.
RESULTS OF ANALYSIS The reactor pressure-temperature and torus mass and energy rates are given in Tables 1 and 2.
The reactor pressure-temperature and torus water teeperature are illustrated in Figures 1 to 3.
The torus tc=perature is 1630F when the reactor pressure drops to 200 psig.
VI. CONCLUSIONS A',*D RECONDfENDATIONS The torus water temperature at reactor pressure of 200 psig is SOF lower than that reported in the previous analysis, but still is nigher 0
than the maximum limit of 160 F.
Therefore, additional relief valves will have to be opened to reduce the torus water temperature below 0
160 F.
VII. REFERENCES FS AR, BSEP Units 1 & 2, Vol. 10, pp. b5.56.1 - M.5.54. 7, April 1973.
i CASE 2 AND 3 REAcr0R VESSEL AND SUPPRESSION POOL P/T ANALYSIS' FOLL0b'ING SO AV WITH ADDITIONAL VALVES OPENING I.
SEQUENCE OF EVE!rrS 1.
At t = 0 sec relief valve opens and fails to shut.
0 2.
When the torus water temperature reaches 110 F the reactor is scramed and the mainstems isolation valves are closed.
3.
At t = 600 sees a.
One/Two additional relief valves are opened by the operator, b.
One RHB cooler is placed in pool cooling mode, c.
HPCI/RCIC start and the flows are manually controlled such that water level in the reacto'r remains constant throughout the transient.
4 When the reactor pressure reaches 200 psig shutdown cooling is initiated with one RHR coolar.
5.
When the reactor pressure reaches 150 psia HPCI/RCIC stop but enough cold water is injected into the reactor vessel by manus 11f operated LPCI to keep the reactor water level constant.
II. ASSUMPTIONS Same as Case 1 except that the total sensible heat in the reactor is added to the reactor water in one hour.
III. INITI AL CONDITIO7S Same as Case 1.
IV. METHOD OF ANALYSIS Same as Case 1.
V.
RESULTS OF ANALYSIS The reactor pressure-temperature histories are presented in Tables 3 and 4 for one and two additional relief valves opening respectively.
The mass and energy blowdowns for the two cases are given in Tables 5 and 6.
Figures 5 thru 7 illustrate the reactor pressure, reactor temperature and torus water te=perature history for one additional valve opening. The time history of reactor pressure, temperature and pool water te=perature is provided in Figures 8 thru 10 for two addi-tional valve openings.
. IV. SimMARY AND CONCLUSI0t!S 0
The torus temperature reaches 141 F when one additional valve is opened and 140 F when two adlitional valves are opened at the time the reactor pressure drops to 200 psig.
The above tempera-tures are significantly lever than the maximum pool temperature ILuit of 160 F fcr stable condensation.
It should be noted that for these cases the reactor cooldown rates, as illustrated in Figures 6 and 9, are quite severe as compared to the desirable rate of 100 F/hr.
4 TABLE 1 REACTOR PRESSURE-TEMPERATURE TPESIENTS FOLLOWING RELIEF VALVE STUCK OPEN TIME REACTOR PRESSURE REACTOR TEMPERATURE (Secs)'
(Psia)
( F) 0 1131.0 559.7 320 1131.0 559.7 400 1136.6 560.4 500 1107.4 557.1 600 1065.0 552.3 700 740.4 509.4 800 533.2 473.7 900 411.6 447.4 1000 402.0 445.1 1200 383.0 440.4 1400 362.3 435.0 1600 342.9 429.8 2000 301.8 420.6 2370 286.3 413.1 2770 263.3 405.6 3170 242.5 398.3 3570 223.1 391.1 3720 216.2 388.4 a
TABLE 2 FLOW RATE AND EhTrlALFY OF STEAM TO TORUS FOLLOWING STUCK OPEN RELIEF VALVE TIME MASS FLOW RATE ENTHALPY (Secs)
(Lbs/Sec)
(Btu /lbe) 0 232.8 1187.7 320 232.8 1187.7 370 23';.7 1187.2 420 233.0 1187.5 270 230.0 1188.2 520 225.9 1189.0 600 238.2 1188.0 660 190.9 1193.6 720 1,55.0 1197.3 780 128.1 1199.1 840 107.8 1199.1 920 94.2 1198.6 1040 91.8 1198.4 1240 87.8 1198.0 1440 83.2 1197.7 1640 79.2 1197.1 1840 75.7 1196.9 2240 69.7 1195.7 2620 64.9 1194.7 3220 58.1 1193.0 3720 52.5 1191.8
TABLE 3 REACTOR PPISSURE-TIMPERATURE HISTORY FOLL0kT G SOR7 (ONE ADDITIONAL VALVE OPE'! PIG)
TIME REACTOR PRESSURE P2 ACTOR TEMPERATJRE (Sec)
(Psia)
( F) 0 1131.0 559.7 320 1131.0 559.7 100 1136.6 560.4 500 1107.4 557.1 600 1065.0 552.3 700 635.2 492.4 800 410.2 447.1 900 285.8 412.9 1000 225.7 392.1 1200 208.9 385.5 1400 189.3 377.2 1600 173.2 369.9 1800 164.6 365.8 2000 157.4 362.3 2300 150.0 358.2 a
o h
4
TABLE 4 REACTOR PRESSURE-TDLSERA URE HISTORY FOL'.C'a"21:0 SORV (TO ADDITIONAL VALVES OPENII;G)
TIME PIACTOR PRESSUFI FIACTOR TEYJE?m'RE (Sec)
(Psia)
( ?)
0 1131.0 559.7 320 1131.0 559.7 400 1136.6 560.4 500 1107.4 557.1 600 1065.0 552.3 700 532.8 473.6 800 307.4 419.6 900 200.0 381.8 1000 148.4 357.6 d
1
TABLE 5
'fASS FLOW RATE A'iD EITRAL?Y OF STIAM TO TORUS (ONE ADDITIONAL VALVE OFDiriG)
TIME MASS FLOW RATE EITFJL"Y (Sec)
(Lbs/Sec)
(Btu /Lb=)
0 232.8 1187.7 320 232.8 1187.7 370 234.7 1187.2 420 233.0 1187.5 470 230.0 1188.1 520 225.9 1189.0 570 221.3 1190.0 599
.218.4 1190.4 600 456.6 1189.2 720 246.5 1201.3 840 152.2 1200.4 1020 98.8 1195.4 1200 92.7 1194.4 1480 81.8 1192.3 1780 74.7 1190.7 2080 70.6 1189.6 2480 56.3 1193.5 3080 50.5 1191.2 3620 45.6 1190.0
\\
TABLE 6 MASS FLC'J RATE A!!D D;TdAI2Y OF STEAM TO TORUS (Tw'O ADDITIO!iAL VALVES OPD;I??G)
TIME MASS FLO'4 RATE ETdAI2Y (Sec)
(Lbs/Sec)
(Stu/Lb=)
0 232.8 1187.7 320 232.8 1187.7 370 234.7 2287.2 420 233.0 1187.6 470 230.0 1188.1 520 225.9 1189.0 570 221.3 1190.0 599 218.4 1190.4 600 680.2 1189.3 720 301.8 1201.9 840 168.3 1197.3 1020 86.4 1193.8 1300 79.2 1192.4 1500 74.1 1191.3 1800 67.8 1189.9 2000 64.5 1189.1 3620 45.3 1183.1 h
e -
- =
=
=a w-
=e
m Steam HFCI Turbine 7
Relief blve Discharge Water HPCI Flow Decay Heat a
Sensible Heat Figure 1 Schematic Of The Reactor Vessel Model For FILAP-4
a m
r
-c
)sc r
0 e
S g
1(
S N
EP t
O V
R E
O V
S LA g
V n
0' i
e F
w E
o I
l L
l E
o R
F R
s u
E t
T n
F e
A is E
s C
n M
a C
I r
O T
T SI er 5
uss e
3 r
E P
L less C
e G
V C
'9 ro tca C
e C
R 0$
O 2
e
.\\
r ce J ?
.? oN 5
u t'
g c'
eo.no~
.9
- Je U. a.rt i
c(
F sto.ov
<> }t oh lsc<
AHMA oH*
mm m
oo Lee_
.r (I
LJ c'
c-o_
t)o n
n 94 as, o
n 1
50 t>
a h
c5 H
si-p O.
i ow
()
()
CJ.
e
()
O y
a e
e r
r y
a a
a i
g 4' I
J.00 40 30 3C.00
.23.00 160.CC
.? 30. C 0 0.0.C?
23C.G0 J.:3. 03 353 00 400.00 440 0C TI!!E AFTER RELIEF VAINE OPENS (10 Secs) i Figure,3 Reactor Vessel Temperature Transients Following SORV 1
e g
o O.
o
.e v
o o.
o
.Ow o
e
'?o
.o n
to O
o U
O.
C/)
o
_J Q
^
n v
9 l
o en G
z U
A
- en O
W c::
n A
C o
U2 c
ec
.r w
c CJ w
w 3
J
.o.4 N
o e
+
0 o
a:
w o
.o W
ca r.0u co n
W w
2 V.
O O
H n
to.
u g
c N
o U
O.
U o
nW o.r.d o
C.
E GJh oo u
_o G
"n n
3 en O
3 o
wo o
s v
0 o
O N
32
, n...4
<,n,..,'.
A.,' 9
-. c' >
- n...A,
.r.,-
w
. c. c.. -
.. C <.
..cs.
o, we.
ou.
ou o
w e
w (l ) 2EM3M1 a
o O.
o e
e, a
m o
?
C" o
o
.y a
m se>
o Q
m
.d m e u
y
-R c c m -
o o ~
- e o
v o
o M
., = c es y
c o.
s o O
V o w >
o
> e
- o a
< m
.n, e
ce W -
O o
>-4 3
u 1
o W m o
c: -
.c c
~
a: A W
w
=
L.
a cv o
W
- =4
.u
=
=
c H
=
n H
o e
o w
u m
o m
mow f.e o
o u
0 A
u v
u c
v M
I o
O O
{
p U
DC*0$
00*CdI OC*CZ
' CO*CCI CC"dS 00'09 OC*C) 00*CZ 00*w u
- sM w
(Isa 01) ansszaa su e
t
=w m'> e enummye
ec=
-ca c.
c o
a o
o O.
.~n
^M tn =
o U =
o O O
' o*
.=
c w
-v -
LO o
z o
y o
C
.. r ti
>J<
o 0
o.
o
- a..,
.o
~
ca
-E WM
, a
' o.
.o W
O H
u
.c w
a o
=
o n
a>
.~
o O
oo e
Oo
.o, oo CC'?
CC Oh CC*CC't CC'CCE CC* Ob 00* CSS i i 1
U ) ununcmn uomvu I
t o
e M
I e
"*Mmom eem om.
" "~
n
.:c m
=.;
o 1
R
=
o
.o n
=
m o
e o
u c
T
?
v2
=
d C
n o
u v
ca 4
8
=
o W
.o c
N Q
Oc e
v o
o
=
c o
~
e es e
=
o e
3 M
o.
o e
.o e
a s
w w<
o a
o e
=.
a s
o
.e s
E a
uP oo e
W o
. u.
-we
%e oo e
8
.oo we M
o
.=
o 9
e U
.o u
O H
o o
i o
o y
00
- C,.
?
~00 05 OC at 00 C:t 00 Ost co ciZ CO CC:
Co*09I 00 CZI
.E, o
m (d ) HERIVE2dK2.7. EZIYli Sa'dC.T.
o e
4 s
6 88 ed.e. -
N
4 o
3 2.')
o E
.c n
=ac O
oo e
u o
.ta w
n nn >
t.
a o.:
(? 5 d o - o o v -
N h
CA -
= r e e o : <
o o C
o e :
-Z
> i-
- v
<> >M ao % O w in c,
w o a ::,
N w =
%
- 3 e c o u m o
p m
.8
- c a
e
-= u
- =
o H u o
O
- o
=
O
~
u b
o o
u o.
o
.o n
o aw 4
u
. o C
o u
u o
e u
i co o
o o.
W
.p 00*Cd!
Co-Oil CO*CZI ' 00 001 00 05 CO*09 C0 C)
CO*C; OC*u O
w%
(ISd 01) 22nSSTdd 201DVIE
s ne CfC C
=
o 5:'
o
-C o
.~
o n
=>
o O
M r-E
^ :
ga C1 C
U Q
u v2 -
o T
o =
o.
o v
.e O
ct e?.
2
= H w v O
O >
0 R O o
.o
> v2 n -
< ec
> =
o s =
o W
O
~ -
o
=0 O
~
c A ce e a
H c sa.
a u
o <
.N C
u =
O C
m W
H H O
o s2 w
r$
U u
C 6o O
o E
O O
H
_o uou u=
o
.5 o.
co cis
- ess
- :s>
- c6 c c:t co oi:
cc est
- - :s ec d*
e ouz to (2 ) HEnIVE3e3G.T. 'dOIOVTd o
w p
a e
A co
.=
oc O
O u
L*
O
,u
.o
-e o
o.
o
=
.O
.Nn u
=
o
.m o
c m.
g
~2 d e U >
n o
co v
C o
v e a.
O o
f.a c;
.e z
u
.x
- o -3 o
e c o
o a -
.o
< o w
> u N e u w o
C U
d O
u -
o c:: e
.o es E
~
u L
H H L
o
< u o.
u o
e :
.w a
H wvc.
=
o r
9 5
.o O
No u
=
3 o
o r:
z o
w o
H Cw o
C o
b 00'0IE 00*0$0 00'0f0 00*0C0 00*0$
00*001
~00*06 00 07 00 t, to W
(30
~
ATTACHMENT 2 SUPPRESSION POOL TEMPERATURE MONITORING SYSTEM BRUNSWICK STEAM ELECTRIC PLAh7 UNITS 1 & 2 A.
SYSTEM DESCRIPTION The water and air temperature in the suppression pool is continuously monitored by the plant computer and recorded in the central control room.
Fifteen temperature sensing elements are provided and located as shown in Sketch SK-CT-1278, Sheet 1.
Six (6) of the sensors provide the input to the computer for logging and annunciation and the remaining nine (9) supply the input signal to two multipoint temperature recorders in the control room.
Annunciation is also available from each recorder when a predetermined temperature setting (145*F) is exceeded.
As shown in Sketch SK-CT-1278, there are six (6) locations where the safety relief valves (SRV) discharge into the torus. Two (2) or three (3) temperature sensors are provided at each location to measure the water and/or air temperature.
The sensors are so arranged that seven (7) are in Div. I and eight (8) are in Div. II.
Also, at each of the six (6) locations, one of the sensors is of opposite division (see SK-CT-1278, Sheet 3).
B.
SYSTEM ARRANGEMENT The bulk type temperature sensors and associated cabling and hardware are mounted and supported as shown in SK-CT-1278, Sheet 2.
Each sensor is rigidly supported from the platform near the SRV discharge point. Cabling is routed through conduits to the drywell and out to the control room. Division separation is maintained by routing each division cabling through separate penetrations (see SK-CT-1278, Sheet 3).
GENERAL.'CO trtJTATION SHEET
'de:r,e;
~-
.'. 9 -
..;.,.. y.
t
. rose sois,
tr mited eragineerse-m 7;
.,p;.,
.,.o. uo.. 9.d. 2.e.t.....
I aims or.cowaar GdBR4!.Mi 29Erf./ Ad#r. Go..
._._ sue cr no..../...
.or. 3 o^re...e.4.f//.B......
i
~. : suo:acr. [2R.y2
- CKMLERMVE.C. MR.MT28.C....
_... eow. av er cvo av...
Is
.O*
i'c.'C
]j l
l"!1
>f" r.
~
_ ; (.
e p
TG
@^
/
\\\\g
// /
N s
'9 c
A e
-..-q 3
9c
/
\\
/
('
\\ g\\
i
/g\\
9 a
rs 4
3 II s
s.
a ur 0 i f, e.
- 4 $l.
5-Q l.
rli?'
iso'
'rOR US
.e v
SK - CT ~ / 2 7 8 SN. /
GENERAL. CkfMPUTATION SHEET h.mited eriglileers._m
~ o. e n.?:..o.i......
- .w usus or couraus.CSEP.4 fee.ERWKR./.23ME....C2 eneeruo....2......or..,
o^ve...c4/!.?ll.f......
eueacr...Z9RM.F.....?XMEEE.4.WRK...txt.9NTeRJ...........*................ eoue. ev cgr. ero,, _,
1 s
W
+
./
w E
Q.
i E
{
as. so t.e-i u
4 g
Ah we.s s. 4 -
PfM41MAnov If
\\ /
\\/
EL,2 0'~ o i:
Et. fil/044 '
- 1-r:
.c Y. e PLATFEWM pG,s g,f p v
c y
j e
s
==
i
. s =. -.
g,,,
.,y l RTD'% TMt. BOX / ZvNCi Box 4 i.-
1 SEcnoW A i-'A
,o SK-C T- /2 78 Sif. 2
GENERAL'CCf/.PUTATION SHEET mited engineers-m s.o. ua. EKR?..2!.......
unun or cownnv..CdE24tMt EO.WC&..d[. 41.4N.[.. 2??................. sue er no.... 3.......or.3 o AT e../.?.h?. /?.d.......
eusaer 79R.y.L. ZKetET&dDIRE....MRW/Z.MS.....'........
....... cow. aY4Ar.c*wo ov...
d I,
, 3
.q,
- pg TE PgNETK47 SON /03A fgi?;
cAc.Tr118-5 DN =
1'EM??
E:dCoRDEL r.!?
G h...'I. d' >$ Te cAC-TR-776
., ' ~
2
... : 1..
C.AC.73118 6 ffMETMM 0V /018
, ? i.
72 pt v. Z' 1,
3 n-CAc Tr.218 7 li l-
. l,
- ' c r
.c
' ~,
want TE A
cAc.TE.1251-14
' l{
- ;l 0 Ain TE PEwerxArtw to47 8
I. ' ~
CA c.7r./258./ 7 ara 7E CA C - Thl'- / 2 5*8 6 cac rs.tzss.to oo v. z-
.z.
i
.An TE DIV. Z t
7 cy,yy.pg gg.g, t.
4 AK T2 h(NCTRATIM 104A B
CAC.71/258*20 1
wra 72
- i[
CAC.7T./25$.2/
- Li d.
l AIR TE
l
'O cAs7K.3244
.DIV, Z
- }. ' E-
. : AtR TE
.TE.3245 T/C PENETRATioM
'l*
h h hl.'s ', ',i:. WArtt TE
.i
! 3 l.' !g,
/2 c.rg.yy4g
., d,:, jp '
4VAtoo c0MruTE#.
l
. '] J.
AIR TK 13
.yg.323g pg y, y y Ts CAC.TE.3254
~1l* C PENETRAT10N TE
'5 M.TE.3215 l [jN
,.!;D. ; :,y;h-t
$ x - c T - / 2 *1 8 S!!. B m
. ei d
- fi. 4 e ; d'.