ML18213A534
ML18213A534 | |
Person / Time | |
---|---|
Site: | Turkey Point |
Issue date: | 05/18/2018 |
From: | Martin K Friends of the Everglades, Harmon, Curran, Harmon, Curran, Spielberg & Eisenberg, LLP, Southern Alliance for Clean Energy, Tropical Audubon Society |
To: | NRC/SECY |
SECY RAS | |
Shared Package | |
ML18213A528 | List: |
References | |
License Renewal, RAS 54385, 50-250-SLR, 50-251-SLR | |
Download: ML18213A534 (133) | |
Text
SACE Hearing Request Attachment 5 Expert Report of Kirk Martin, P.G.
United States District Court Southern District Court of Florida Miami Division Case Number: 1:16-cv-23017-DPG Southern Alliance for Clean Energy Tropical Audubon Society Incorporated Friends of the Everglades Plaintiffs vs.
Florida Power & Light Company Defendant
Background
Florida Power & Light (FPL) maintains a cooling canal system (CCS) for operation of power generation units at their Turkey Point Power Generation Facility in southeast Miami-Dade County (Figure 1). The CCS consists of some 6000 acres of canals through which water is circulated for dissipation of heat created by the power generation units. The CCS is characterized as a closed-loop cooling system in that the same water is circulated through the extensive canal network without direct input of new water to the system. However, the CCS does not function as a closed loop system hydrologically in that as the warmed water is circulated, evaporation losses to the atmosphere remove freshwater from the canal system causing a concentration of salinity that exceeds typical ocean salinities by a factor of two or more. This increased salinity is accompanied by a corresponding increase in water density that causes hypersaline water to migrate downward into the underlying groundwater system and radially outward from beneath the CCS.
Figure 1 - General Location Map 1
Groundwater Contamination Groundwater salinity data from monitoring wells surrounding the CCS (Figure 2) shows that hypersaline water emanating from the CCS has moved westward of the CCS and L-31E Canal in violation of minimum criteria for groundwater specified in Florida Administrative Code 62-520.400 and in violation of Condition IV.1 of the FPL Turkey Point NPDES by allowing offsite discharges from the CCS to the surrounding groundwater system outside of the CCS area. The data show that hypersaline water from the CCS has moved more than two miles westward of the CCS and is currently influencing movement of the saline water interface within the Biscayne Aquifer more than four miles inland (Figure 3). Groundwater tritium data from the monitoring well network confirms that groundwater impacted by the CCS has extended more than four miles inland from the CCS (Figure 4). Exhibit A shows specific violations of the NPDES permit based on sampling of certain groundwater monitoring wells (shaded cells indicate exceedances of groundwater standards). The violations have continued after July 12, 2016, the date the original Complaint was filed in this case.
Figure 2 - Groundwater Monitoring Well Locations 2
Figure 3 -Hypersaline Plume in the Biscayne Aquifer Figure 4 - Tritium Plume in the Biscayne Aquifer 3
Groundwater data from beneath Biscayne Bay to the east is far less available than groundwater data in the Biscayne Aquifer due to the lack of groundwater monitoring stations within the Bay. However, the limited groundwater data that are available from beneath Biscayne Bay indicate that movement of the contaminant plume originating from the CCS is radial and likely extends as far east as the empirical data show the plume migration to the west. Tritium data from three groundwater sampling points in Biscayne Bay (Figure 5) show migration of the CCS contaminant plume to the east beneath Biscayne Bay (Figure 6) with tritium levels ranging between 800 and 3000 pCi/L for the deepest groundwater sampling points. Background levels for tritium in the Biscayne Aquifer should be less than 6.6 pCi/L in the absence of the influence of the CCS contaminant plume.
Figure 5 -Sampling Sites in Biscayne Bay Figure 6 - Groundwater Tritium Levels Beneath Biscayne Bay 4
Surface Water Contamination Elevated tritium levels are also indicated in surface water samples taken in deeper portions of Biscayne Bay far above background levels. Surface water sampling conducted at various water depths within Biscayne Bay show elevated concentrations in bottom samples collected in the canals adjacent to the perimeter berm surrounding the CCS. Specifically, water samples taken from sampling sites TTBBSW-6, TTPPSW-7 as well as TTBBSW-8, TPBBCSC-B, TPSWC-7, and TPBBSCS-M all show measured tritium levels ranging as high as 4000 pCi/L and well in excess of background levels for the Bay waters (Figure 7).
The elevated nutrient and tritium levels found at these surface water monitoring stations within Biscayne Bay east of the CCS are conclusive evidence of wastewater that originated within or beneath the CCS and demonstrate a direct hydrological connection between the CCS and the Bay. Bedrock immediately underlying the CCS and Biscayne Bay consists of the Miami Limestone and the Fort Thompson Formation, both of which contain highly porous and permeable limestone within the shallow substratum and provide direct connection of the groundwater and surface water environments. Deeper portions of Biscayne Bay that intersect permeable groundwater strata exist as both natural seeps and manmade excavations (dredged canals). Each connection is likely to facilitate movement of contaminated water from within and beneath the CCS to Biscayne Bay. Discharge of wastewater from the CCS to Biscayne Bay is a violation of Condition I.A.1 of the facility NPDES permit prohibiting discharges to surface waters. The specific violations of this provision during the five years before this lawsuit was filed and during the time since the lawsuit are shown as shaded cells in Exhibit B based on data provided to FDEP and Miami-Dade County by FPL.
Figure 7 - Surface Water Tritium Levels in Biscayne Bay Surface water sampling conducted in Biscayne Bay also indicate elevated nutrient levels likely originating from the CCS. Numeric Nutrient Criteria (NNC) established in Florida Administrative Code (FAC)62-302.532 were exceeded at several locations near Turkey Point violating Section VIII., 5 and 12 of the NPDES Permit, as well as provisions of the Clean Water Act and the Florida 5
Statutes. FAC 62-302 requires that the annual geometric mean (AGM) of a regulated nutrient not exceed the established criteria more than once in a three-year period. The sampling locations labeled TTBBSW-6 and TTPPBW-7 (Figure 5) show Nitrogen, Phosphorous, and Chlorophyll A levels in excess of the FAC NNC (Figures 8-10). Both sampling sites are located adjacent to or within manmade channels that connect Biscayne Bay to the outer edge of the CCS. TTBBSW-6 is adjacent to the channel known as the Barge Basin Canal and TTBBSW-7 is located within the Turtle Point Canal. Data from discrete depth sampling in and adjacent to these two canals as well as within the Old Card Sound Canal located at the southern end of the CCS all show bottom samples exhibiting significantly higher nutrient levels than do mid or top water samples. Sampling at sites TPBBSW-1 through TPBBSW-5 show violations of the FAC NNC for phosphorous without deeper excavations being present.
6
Figure 8. Nitrogen Levels in Biscayne Bay 7
Figure 9 - Phosphorous Levels in Biscayne Bay 8
Figure 10 - Chlorophyll A Levels in Biscayne Bay 9
Data from surface water monitoring stations in Biscayne Bay show particularly elevated nutrient concentrations when water levels are high in the CCS. Figure 11 shows water level conditions in the CCS along with ammonia concentrations at TPBBSW-6 and TPBBSW-7 indicating a correlation between driving head or water level stage in the CCS and ammonia levels in surface waters tidally connected to Biscayne Bay. The period of highest water levels in the CCS corresponds to water being added to the CCS from L-31E and other sources to reduce temperature and salinity within the CCS.
Review of Figure 11 indicates movement of wastewaters originating from the CCS to Biscayne Bay during times of high water level in the CCS and strongly suggests that the addition of significant amounts of water to the CCS will increase contaminant flows from the CCS to the surrounding groundwater system and to surface waters of Biscayne Bay.
Figure 11 - Ammonia Levels in Biscayne Bay Correlated to High Water Levels in the CCS 10
Data from electronic monitoring of salinity and water level at a cave site in Biscayne Bay (Figure
- 12) indicate that the salinity within the cave is higher when tides are low and lower when tides are high. The salinity levels at the mouth of the cave exhibit a pattern of pronounced increase upon each low tide event indicating water outflow from the underlying aquifer that is more saline than the surrounding surface water. The salinity levels of groundwater discharging from the cave are often hypersaline (>35 PSU) and show a strong correlation with salinity levels in groundwater measured within the adjacent CCS at monitor well TPGW-16. Figure 13 demonstrates this strong correlation and indicates that the source of hypersaline groundwater discharging from the cave is at least partially originating from the CCS. The strong correlation of deep surface water salinity at Biscayne Bay site TPBBSW-14D with salinity in the cave site and at the shallow zone of monitor well TPGW-16 indicate that both the cave and the deep surface water are hydraulically connected to the CCS through the groundwater.
Figure 12 - Location of Cave and Nearby Monitor Sites Figure 13 - Salinity for Biscayne Bay Cave Site, TPBBSW-14B, and TPGW-16S 11
Contaminant Remediation Based on my review of the proposed remedial actions being implemented by FPL, these actions will not stop the continued flow of contaminated water from the CCS to the surrounding groundwater system or to the surface waters of Biscayne Bay. It is likely that the violations of the NPDES permit discussed in this report will continue even if these remedial actions are implemented as planned.
The Consent Agreements between FPL and Miami Dade County DERM and between FPL and the FDEP focused on requirements for abatement and remediation of hyper-saline groundwater west and north of FPLs property. Principal components of the remediation plan entail installation of Biscayne Aquifer recovery wells located along the western edge of the CCS to extract hypersaline water from the aquifer and the addition of brackish water from the Upper Floridan Aquifer, saline water from Biscayne Aquifer wells, and freshwater from the L-31E canal into the CCS. The Biscayne Aquifer recovery wells are a critical factor in the proposed remediation and removal of the hypersaline plume from the Biscayne Aquifer. However, the well locations being well distant from the western extent of the plume will limit their ability to fully extract the hypersaline water. More importantly, the addition of fresher waters to the CCS, while improving the effectivity of the CCS for cooling water used at Turkey Point, will have an adverse effect on the proposed extraction program by increasing the driving head of the CCS into the Biscayne Aquifer and Biscayne Bay. The effect of the addition of significant volumes of water to the CCS will likely accelerate extraction of hypersaline water from immediately beneath the CCS but increase the driving head in the CCS resulting in increased outflow from the CCS through groundwater pathways into Biscayne Bay as well as reduce the ability of the recovery wells to extract the full extent of the hypersaline plume to the west.
Addendum 1 to the FPL/Miami-Dade Consent Agreement (August 2016) focused on the assessment and management of nutrient sources, specifically ammonia, exceeding DERM water quality standards in surface water monitoring stations tidally connected to Biscayne Bay. The proposed plan to mitigate the nutrient contamination within Biscayne Bay adjacent to the CCS consists primarily of backfilling the two manmade excavations at the Barge Basin Canal (sites TPBBSW-6 and 8) and the Turtle Point Canal (site TPBBSW-7). While backfilling of deeper excavations at these two sites will likely reduce the direct flow of contaminated groundwater into Biscayne Bay at those sites, only those two pathways for contaminant travel are being addressed, whereas numerous pathways exist. Other existing deep excavated sites such as the Old Card Sound Canal and unfilled continuations of Barge Bay and Turtle Point canals will continue to provide direct pathways for contaminant travel. In addition, numerous natural underground connections exist within the Biscayne Aquifer and sampling from deep seeps within Biscayne Bay indicate groundwater migration into the Bay especially during low tide events.
A groundwater flow model was developed by FPL to evaluate remediation alternatives. Five remedial strategies and 19 remedial alternatives were evaluated with the selected alternative being backfilling deeper areas of the Barge Basin to an elevation of -15 feet NAVD88 and backfilling deeper areas of Turtle Point to an elevation of -7 feet NAVD88. The groundwater model developed by FPL and relied upon by FDEP for evaluation of various remedial measures has a number of technical issues that should be corrected before the model can be used reliably to justify the remedial measures proposed by FPL. Review of the model indicates the following inadequacies:
- Inappropriate representation of canals in the model allowing only one way of water travel between the canals and the groundwater system 12
- Inaccurate representation of net recharge to the groundwater system that does not allow for accurate simulation of rainfall, runoff, evaporation and transpiration.
- Use of constant hydraulic coefficients over large areas of the model known to have highly varying aquifer characteristics
- Representation of an inappropriate hydraulic disconnect of the CCS from the underlying groundwater system during the remedial action simulations
- A lack of capture of existing contaminated groundwater in the lowermost portions of the aquifer
- Impacts to wetland systems adjacent to the CCS from the proposed remedial actions These opinions of model inadequacies are supported by technical reviews of the FPL model by University of Florida professor Dr. Lou Motz, SFWMD senior modeler Jeff Giddings, and U.S.
Geological Survey SEAWAT model code developer Dr. Weixing Guo.
Conclusions Given the inaccuracies associated with the FPL model used to develop the proposed remedial actions and the limitations of only addressing two possible hydraulic connections between the CCS and Biscayne Bay within a highly permeable groundwater matrix, the proposed remedial actions by FPL will not stop the continued flow of contaminated water from the CCS to the surrounding groundwater system or to the surface waters of Biscayne Bay. The hypersaline plume originating from the FPL CCS has dramatically impacted water quality in the Biscayne Aquifer west of the CCS and is the principle influence on the movement of the saline water interface in the Biscayne Aquifer that continues to threaten fresh drinking water sources in southern Miami-Dade County.
Impacts of the CCS plume are radial and adversely affecting water quality in Biscayne Bay to the east as indicated by nutrient and salinity data collected from Biscayne Bay surface water monitoring sites.
Proposed remedial actions have positive elements but are inadequate to fully extract the hypersaline plume from the aquifer or stop the flow of contaminated water into Biscayne Bay.
I reserve the right to supplement this report as new data and new information become available.
Qualifications My resume is attached as Exhibit C.
W. Kirk Martin, P.G. #79 Principal Scientist/ President Water Science Associates Inc.
13
EXHIBIT A Selected Groundwater Data from FPL Uprate Monitoring
Groundwater Results 1st Quarter (June/July 2010)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 490 250 20 8.6 1100 TPGW4M 13000 7200 1600 325.4 28000 TPGW4D 16000 8600 1900 505.6 33000 TPGW5S 210 110 19 10.2 690 TPGW5M 8900 4900 860 293.5 17000 TPGW5D 12000 6500 1300 187.6 21000 TPGW6S 210 100 14 9.6 660 TPGW6M 8000 4000 880 1 18000 TPGW6D 7600 3800 800 12.8 17000 Groundwater Results 2nd Quarter (Sept 2010)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 420 210 16 18.5 1100 TPGW4M 12000 7000 1400 321 24000 TPGW4D 15000 8200 1700 611 27000 TPGW5S 230 100 17 20.4 720 TPGW5M 9500 5200 1000 175 19000 TPGW5D 11000 5800 1200 343 21000 TPGW6S 210 110 13 2.6 680 TPGW6M 7100 4100 1000 4.7 13000 TPGW6D 7500 4300 1100 17.9 14000
Groundwater Results 3rd Quarter (Dec 2010)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 470 240 18 15 1100 TPGW4M 15000 7200 1500 277 23000 TPGW4D 16000 9000 1700 581 28000 TPGW5S 220 110 16 4.5 660 TPGW5M 11000 5600 1200 218 19000 TPGW5D 12000 6400 1500 295 21000 TPGW6S 190 100 110 3.80 600 TPGW6M 7500 4200 700 14.7 12000 TPGW6D 8300 4300 820 23.2 13000 Groundwater Results 4th Quarter (Mar 2011)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 670 360 40 19.4 1400 TPGW4M 13000 6900 1500 246 22000 TPGW4D 16000 8400 2000 519 26000 TPGW5S 300 140 19 0.1 850 TPGW5M 10000 5400 1100 222 18000 TPGW5D 11000 5800 1300 283 20000 TPGW6S 190 90 9 5.1 620 TPGW6M 7900 3800 740 14.1 13000 TPGW6D 8400 4000 800 19.4 14000 TPGWG21 50 26 16 18.4 340 TPGWG21 4900 2100 130 17.8 8700 TPGWG28 3300 1200 190 31.1 5600 TPGWG28 15000 7300 1600 411 24000 TPGWG35 82 44 65 11.6 390 TPGWG35 6300 3200 890 0.7 10000
Groundwater Results 5th Quarter (Jun 2011)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 610 310 30 10.2 1400 TPGW4M 14000 6800 1400 281 24000 TPGW4D 15000 8000 1800 433 28000 TPGW5S 200 100 14 16.0 640 TPGW5M 9800 5500 980 156 20000 TPGW5D 11000 6100 1100 288 20000 TPGW6S 180 87 7 19.7 610 TPGW6M 7300 3800 680 5.7 14000 TPGW6D 7300 4000 770 32.7 14000 TPGWG21 43 26 14 22.5 340 TPGWG21 4600 2200 130 24 9300 TPGWG28 2000 1000 140 16.8 4400 TPGWG28 13000 6900 1700 410 24000 TPGWG35 65 41 62 7.7 400 TPGWG35 5900 3200 1100 15.9 10000 Groundwater Results 6th Quarter (Sept 2011)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 480 240 24 23.9 960 TPGW4M 15000 8400 1800 340 27000 TPGW4D 13000 7400 1500 520 24000 TPGW5S 210 110 17 31.6 650 TPGW5M 10000 5400 1000 224 19000 TPGW5D 10000 5700 1100 319 20000 TPGW6S 200 100 8 21.7 560 TPGW6M 7600 4100 690 14.3 13000 TPGW6D 8600 4300 800 32.3 14000 TPGWG21 55 30 12 14.8 320 TPGWG21 4800 2200 170 24.7 9600 TPGWG28 2300 1200 140 16.7 4300 TPGWG28 14000 7300 1500 430 25000 TPGWG35 43 28 45 2.2 300 TPGWG35 4600 2800 870 1.7 9100
Groundwater Results 7th Quarter (Dec 2011)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 490 220 20 14.9 300 TPGW4M 15000 6900 1800 297 21000 TPGW4D 17000 6600 2100 510 26000 TPGW5S 190 87 21 0.0 530 TPGW5M 12000 5700 1200 243 19000 TPGW5D 12000 6000 1400 315 20000 TPGW6S 190 88 10 0.3 360 TPGW6M 7200 3900 750 5.1 12000 TPGW6D 8000 4200 840 13.8 13000 TPGWG21 37 22 17 4.3 260 TPGWG21 4900 22000 170 22.3 8300 TPGWG28 2800 0.31 200 7.5 3900 TPGWG28 15000 1100 1800 424 23000 TPGWG35 48 29 45 18.7 350 TPGWG35 5900 3000 890 12.1 9500 Groundwater Results 8th Quarter (Mar 2012)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 500 260 25 31.3 1200 TPGW4M 14000 7300 1700 311 23000 TPGW4D 16000 8400 2000 536 28000 TPGW5S 240 140 20 11.5 830 TPGW5M 11000 5900 1200 255 22000 TPGW5D 11000 6100 1300 293 19000 TPGW6S 160 88 8 16.7 570 TPGW6M 7900 4200 800 23.9 14000 TPGW6D 8600 4500 860 27.6 15000 TPGWG21 36 21 13 21.2 230 TPGWG21 5300 2500 170 39.6 9300 TPGWG28 2700 1400 200 8.9 4700 TPGWG28 14000 7300 1700 405 23000 TPGWG35 74 45 79 9.1 390 TPGWG35 5700 3300 900 0.3 11000
Groundwater Results 9th Quarter (Jun 2012)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 270 140 7.4 19.1 840 TPGW4M 13000 7400 1600 322 26000 TPGW4D 15000 8500 1900 530 31000 TPGW5S 260 120 20 5.2 660 TPGW5M 11000 6000 1200 285.0 19000 TPGW5D 12000 6500 1400 351 21000 TPGW6S 160 80 8.2 5.8 470 TPGW6M 7600 4100 780 7.0 13000 TPGW6D 7800 4300 860 11.7 14000 TPGWG21 37 21 9 20.5 300 TPGWG21 5000 2800 180 18.4 9900 TPGWG28 3000 1600 220 9.2 5400 TPGWG28 14000 7800 1700 256.6 26000 Groundwater Results 10th Quarter (Sept 2012)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 410 210 20 9 960 TPGW4M 13000 6800 1600 306 23000 TPGW4D 16000 8100 2000 522 27000 TPGW5S 230 110 20 9 620 TPGW5M 11000 5900 1200 232 20000 TPGW5D 12000 6500 1400 344 21000 TPGW6S 160 84 9 2 560 TPGW6M 6400 3500 650 2 12000 TPGW6D 7500 4000 820 6 14000 TPGWG21 37 20 8 14 250 TPGWG21 5100 2700 180 32 9400 TPGWG28 2900 1400 210 6 4700 TPGWG28 14000 7500 1700 409 23000
Groundwater Results 11th Quarter (Dec 2012)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 470 220 19 3.2 1100 TPGW4M 15000 7500 1800 330.5 23000 TPGW4D 17000 8900 2200 481.3 28000 TPGW5S 220 100 21 10.3 630 TPGW5M 12000 6300 1300 286.8 20000 TPGW5D 13000 6600 1500 355.3 20000 TPGW6S 180 92 9.7 8.9 480 TPGW6M 7600 3800 770 0.6 12000 TPGW6D 8600 4400 910 12.6 13000 TPGWG21 43 23 12 10.2 280 TPGWG21 5900 2800 200 26.2 10000 TPGWG28 2800 1400 220 7.3 4300 TPGWG28 14000 8100 1800 381.4 24000 Groundwater Results 12th Quarter (Mar 2013)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 560 270 28 13.7 980 TPGW4M 16000 7500 2200 355.1 23000 TPGW4D 16000 8500 2100 542.3 28000 TPGW5S 300 140 23 21.2 680 TPGW5M 12000 6400 1300 284.3 20000 TPGW5D 13000 6400 1500 328.5 22000 TPGW6S 170 87 7.4 6.3 560 TPGW6M 8300 3900 920 6.0 13000 TPGW6D 8700 4100 980 9.5 14000 TPGWG21 46 23 16 13.3 270 TPGWG21 6200 2600 230 31.6 10000 TPGWG28 2900 1300 230 6.3 5200 TPGWG28 15000 7200 1900 394.9 23000
Groundwater Results 13th Quarter (Jun 2013)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 342 178 6.5 850 TPGW4M 13800 7540 350.4 21300 TPGW4D 16400 8800 482.5 25900 TPGW5S 204 100 4.1 613 TPGW5M 12100 6340 283.3 20800 TPGW5D 12700 6650 363.3 20800 TPGW6S 178 88.7 14.9 540 TPGW6M 7830 4130 3.1 12800 TPGW6D 8270 4280 7.6 13900 TPGWG21 51.7 23.2 10.3 268 TPGWG21 6250 2820 50.4 12000 TPGWG28 2670 1190 18.7 4460 TPGWG28 16000 7460 397.2 24300 TPGWG35 48.4 26.8 18.6 348 TPGWG35 5070 2450 15.1 8300 Groundwater Results 14th Quarter (Sept 2013)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 400 189 9.40 11.3 900 TPGW4M 15500 7080 1690 313.1 24000 TPGW4D 17600 8130 1990 487.4 27300 TPGW5S 170 80.6 16.9 6.0 507 TPGW5M 13100 5910 1340 301.4 19900 TPGW5D 13700 6170 1480 385.3 20500 TPGW6S 208 99.5 8.87 5.8 607 TPGW6M 8120 3790 825 1.7 13900 TPGW6D 8980 3970 872 5.7 14000 TPGWG21 46.6 23.9 10.5 5.4 292 TPGWG21 6440 2690 216 40.9 10900 TPGWG28 2210 988 173 6.5 4120 TPGWG28 15300 7140 1730 407.9 24100
Groundwater Results 15th Quarter (Dec 2013)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 460 228 12.3 1020 TPGW4M 15100 7330 294.2 22900 TPGW4D 16300 8400 459.0 26900 TPGW5S 202 98.5 16.8 613 TPGW5M 11900 6040 245.7 19900 TPGW5D 12500 6430 284.1 19900 TPGW6S 223 103 7.3 600 TPGW6M 7980 3950 4.5 13800 TPGW6D 8350 4050 2.8 13500 TPGWG21 45.6 24.8 7.9 308 TPGWG21 5540 2880 29.5 9700 TPGWG28 1910 941 17.0 3140 TPGWG28 14900 7070 382.7 24200 Groundwater Results 16th Quarter (Mar 2014)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 609 291 26.60 1.0 1390 TPGW4M 14000 7530 1780 337 23100 TPGW4D 15600 8700 2100 522 26900 TPGW5S 165 86.4 18.5 2.0 553 TPGW5M 11300 6060 1320 276 19300 TPGW5D 12400 6570 1490 356 20900 TPGW6S 212 104 9.06 20.0 693 TPGW6M 7740 3910 835 21.0 14700 TPGW6D 8070 4160 871 24.0 15700 TPGWG21 42.9 23.6 14.7 66.1 276 TPGWG21 5810 2700 209 36.1 10400 TPGWG28 676 350 104 2.8 960 TPGWG28 13800 7540 1760 405.5 23700
Groundwater Results 17th Quarter (Jun 2014)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 1310 575 12.6 2800 TPGW4M 14200 6470 321.6 24000 TPGW4D 15800 8300 451.8 27600 TPGW5S 156 76.7 9.1 527 TPGW5M 11000 4220 247.9 19300 TPGW5D 12000 6090 342.6 21900 TPGW6S 228 108 6.8 673 TPGW6M 7590 4060 7.8 13800 TPGW6D 8130 4320 9.4 14300 TPGWG21 46.9 25.3 4.6 280 0.29 TPGWG21 5840 2410 31.7 11000 10.26 TPGWG28 743 344 10.4 1170 1 TPGWG28 13900 5390 383.3 23300 25.12 Groundwater Results 18th Quarter (Sept. 2014)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 422 225 14.80 16.1 1100 TPGW4M 13800 6620 1660 305.3 25200 TPGW4D 15300 7540 1920 444.6 27200 TPGW5S 142 70.5 14.2 8.0 487 TPGW5M 11700 5360 1200 252.3 20700 TPGW5D 13800 5540 1390 310.6 22400 TPGW6S 223 106 7.40 10.5 640 TPGW6M 7510 35200 777 8.3 14100 TPGW6D 7940 36800 820 19.2 15100 TPGWG21 44.3 22.5 3.9 22.7 268 TPGWG21 6170 2490 203 45.0 10100 TPGWG28 549 359 99 8.0 1300 TPGWG28 13700 6170 1760 393.0 23100
Groundwater Results 19th Quarter (Dec. 2014)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 443 233 13.1 900 TPGW4M 14300 7320 295.9 23800 TPGW4D 15700 7920 434.2 29100 TPGW5S 113 57.0 18.2 360 TPGW5M 11500 5530 222.3 20000 TPGW5D 12500 6130 248.5 22300 TPGW6S 232 113 7.0 607 TPGW6M 7850 3700 17.4 14600 TPGW6D 8310 3810 24.0 14300 TPGWG21 41.1 23.6 13.6 268 TPGWG21 5980 2920 27.8 11000 TPGWG28 487 280 0.2 1120 TPGWG28 14100 7840 433.7 25100 Groundwater Results 20th Quarter (Mar. 2015)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 929 4100 46.80 20.5 1840 TPGW4M 14400 723 1620 311.6 25800 TPGW4D 15700 8720 1820 426.8 28200 TPGW5S 149 66.6 15.1 1.8 520 TPGW5M 11600 3930 1220 234.9 19800 TPGW5D 12700 4400 1400 349.2 21100 TPGW6S 219 108 6.40 15.5 676 TPGW6M 7950 3930 765 23.3 14100 TPGW6D 8390 4230 816 10.4 15000 TPGWG21 48.9 25.7 17.0 12.2 314 TPGWG21 6200 2590 199 38.9 10000 TPGWG28 785 406 107 8.3 1100 TPGWG28 14500 7970 1660 393.4 24000
Groundwater Results 21st Quarter (Jun. 2015)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 900 426 11 1400 1.9 TPGW4M 14100 7350 293 32300 26.0 TPGW4D 15500 8140 426 32500 28.5 TPGW5S 136 68.6 9 514 0.5 TPGW5M 11400 6040 231 18600 21.0 TPGW5D 12700 6670 340 20400 23.2 TPGW6S 255 124 20 760 0.7 TPGW6M 15500 3780 8 11900 14.3 TPGW6D 8560 3970 10 13900 15.1 TPGWG21 52.9 29.0 14.6 318 0.3 TPGWG21 6000 2740 41.1 10400 10.33 TPGWG28 399 232 6.6 812 0.85 TPGWG28 13900 7570 386.7 22500 25.84 Groundwater Results 22nd Quarter (Sep. 2015)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 487 244 15.8 19.3 1150 1.12 TPGW4M 12900 7530 1640 296.7 24500 25.80 TPGW4D 15500 8250 1860 422.7 26600 27.52 TPGW5S 151 74.4 15.9 9.4 526 0.49 TPGW5M 10700 5870 1170 228.4 18000 19.70 TPGW5D 11800 6700 1250 329.0 21100 22.71 TPGW6S 195 112 6.50 15.9 722 0.66 TPGW6M 7570 3850 801 24.1 14500 14.16 TPGW6D 7760 3780 847 20.7 15000 14.94 TPGWG21 44.4 24.8 13.0 1.7 310 0.29 TPGWG21 5410 2580 169 21.3 11200 10.27 TPGWG28 353 309 55 8.6 930 0.84 TPGWG28 14000 7470 1610 355.1 24200 25.79
Groundwater Results 23nd Quarter (Dec. 2015)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 613 326 10.9 1440 1.30 TPGW4M 14400 7480 339 24700 24.77 TPGW4D 15400 7950 453 27400 26.99 TPGW5S 157 85.9 1.8 532 0.47 TPGW5M 11100 6100 252 19900 20.16 TPGW5D 12200 6610 365 20500 22.43 TPGW6S 244 123 1.4 718 0.67 TPGW6M 7870 4050 4.7 13700 13.82 TPGW6D 7910 4250 2.4 13900 14.31 TPGWG21 41.8 22.6 14.9 288 0.26 TPGWG21 5840 2690 42.6 10600 9.5 TPGWG28 420 294 10.2 994 0.81 TPGWG28 14300 7380 353 24200 24.54 Groundwater Results 24th Quarter (Mar. 2016)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 507 240 20.9 11.7 1130 1.14 TPGW4M 15000 7150 1920 311.7 24500 25.27 TPGW4D 15200 7620 1910 495.4 26300 27.11 TPGW5S 134 61.4 13.6 5.93 486 0.45 TPGW5M 12000 5960 1330 277.64 20100 20.67 TPGW5D 12300 5770 1500 365 21300 22.43 TPGW6S 244 111 8.25 9.85 714 0.68 TPGW6M 7870 3340 821 6.06 15000 14.35 TPGW6D 7570 3480 883 6.99 14400 14.33 TPGWG21 36.3 19.0 8.02 24.76 256 0.23 TPGWG21 6080 2860 202 17.98 11400 9.94 TPGWG28 464 367 80.9 13.63 880 0.81 TPGWG28 14700 7190 1810 355.2 23000 24.82
Groundwater Results 25th Quarter (Jun. 2016)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 527 304 10.8 1230 1.15 TPGW4M 15600 7700 344.1 15600 25.45 TPGW4D 16600 8570 434.3 18200 26.82 TPGW5S 143 66.3 2.7 508 0.47 TPGW5M 15200 6130 251.4 13100 20.45 TPGW5D 14800 6740 353.2 16400 22.76 TPGW6S 212 114 5.8 658 0.62 TPGW6M 8090 3490 9.4 9600 13.77 TPGW6D 8780 3700 9.6 7700 14.54 TPGWG21 49.8 30.3 25.0 310 0.30 TPGWG21 6570 2890 37.9 8100 10.17 TPGWG28 400 213 14.7 804 0.75 TPGWG28 15500 7420 369.8 17900 24.84 Groundwater Results 26th Quarter (Sep. 2016)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 392 215 10.8 33.1 1060 0.96 TPGW4M 14400 7950 1730 328.5 18900 25.52 TPGW4D 12900 8410 1970 424.9 18700 27.48 TPGW5S 129 67.6 15.7 1.6 492 0.45 TPGW5M 11000 6210 1200 235.9 14000 19.39 TPGW5D 12600 6920 1450 399.9 17700 22.69 TPGW6S 227 112 5.89 13.3 676 0.66 TPGW6M 8260 3790 819 11.8 9800 13.77 TPGW6D 8550 4210 842 29.4 10200 14.48 TPGWG21 40.9 22.8 5.83 12.5 276 0.25 TPGWG21 5870 2660 155 36.0 7000 10.25 TPGWG28 387 204 72.4 9.1 822 0.78 TPGWG28 14400 7380 1740 385.0 17800 25.30
Groundwater Results 27th Quarter (Dec. 2016)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 557 282 22.6 1210 1.19 TPGW4M 14700 7030 324.0 19800 25.16 TPGW4D 16200 8020 413.9 19500 27.31 TPGW5S 102 52.4 11.7 1.6 442 0.41 TPGW5M 11600 6030 1290 263.6 16300 20.89 TPGW5D 13400 6600 1590 363.8 17900 22.46 TPGW6S 241 114 3.4 716 0.64 TPGW6M 8130 3830 2.6 11100 14.04 TPGW6D 8490 4030 3.8 9900 14.38 TPGWG21 43.0 21.6 21.3 282 0.24 TPGWG21 6500 2940 34.6 9100 10.42 TPGWG28 446 206 0.0 924 0.76 TPGWG28 14600 7130 361.4 17800 24.88 Groundwater Results 28th Quarter (Mar. 2017)
Monitori Chloride Sodium Sulfate Tritium TDS Salinity ng Site mg/L mg/L mg/L pCi/L mg/L PSU TPGW4S 1220 630 70.4 17.4 2190 2.12 TPGW4M 15200 7400 1780 336.0 20600 25.58 TPGW4D 17200 7910 1860 403.0 19400 26.82 TPGW5S 157 77.7 17.5 15.8 544 0.55 TPGW5M 10700 4830 1050 201.0 16700 17.87 TPGW5D 13600 6390 1530 355.0 21400 22.58 TPGW6S 258 139 6.82 5.7 712 0.65 TPGW6M 9000 3720 845 7.3 12700 13.92 TPGW6D 8430 4310 785 2.9 13000 14.65 TPGWG21 44.6 24.1 12.3 1.6 292 0.28 TPGWG21 6930 2610 228 34.6 12100 10.79 TPGWG28 514 269 78.2 2.7 1000 1.00 TPGWG28 15100 6720 1730 374.0 18100 25.26
EXHIBIT B Nutrient and Tritium Data Collected from Selected Surface Water Stations
EXHIBIT B SURFACE WATER RESULTS SHOWING CCS DISCHARGES Class I Permit Monitoring (modified from DERM Spreadsheet Result indicating CCS Discharge to Surface Water May 31 & Jun 1, 2015 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 300 67.4 2.48 0.0204 0.73 0.322 2.48 31.3 TPSWC2B 319 93.3 2.34 0.0107 0.75 0.375 2.34 41.5 TPSWC3B 410 96.4 2.34 0.0121 0.89 0.307 2.34 18.8 TPSWC4B 15700 2010 1.37 0.0101 27.58 0.228 1.37 24.1 TPSWC5B 2.1 21800 2970 0.67 0.00435 40 0.314 0.67 7.2 TPBBSW6 0.53 22700 2910 0.858 0.003 41.39 0.842 0.858 9.0 TPBBSW7 0.84 23200 2960 0.92 0.003 41.85 0.296 0.951 13.6 June 5 to 9, 2015 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 312 62.8 1.36 0.0138 0.77 0.334 1.36 42.3 TPSWC2B 322 92.8 1.62 0.0119 0.76 0.158 1.62 37.5 TPSWC3B 423 75.4 1.51 0.011 0.9 0.255 1.51 29.2 TPSWC4B 18300 2370 0.2 0.00362 32.52 0.105 0.22 32.8 TPSWC5B 22600 2960 0.2 0.003 39.96 0.1 0.22 16.1 TPBBSW6 22800 3070 0.2 0.003 41.61 0.166 0.22 9.8 TPBBSW7 23200 3090 0.236 0.003 41.53 0.226 0.236 10.8
Jun 15 & 16, 2015 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 482 50.8 2.68 0.0399 1.12 0.949 2.71 38.1 TPSWC2B 320 92.8 1.99 0.0154 0.76 0.176 1.99 46.9 TPSWC3B 389 75.9 2.06 0.00862 0.86 0.263 2.06 32 TPSWC4B 19300 2590 0.836 0.00766 34.78 0.23 0.836 39.4 TPSWC5B 1.3 22500 2980 0.57 0.003 40.21 0.1 0.57 22.4 TPBBSW6 0.8 22800 3320 0.248 0.0037 42.29 0.196 0.248 TPBBSW7 0.8 22900 3340 0.2 0.003 42.57 0.1 0.525 Jun 22 & 23, 2015 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 565 55.8 3.28 0.035 1.28 0.837 3.28 TPSWC2B 324 91.7 2.51 0.0131 0.76 0.156 2.51 TPSWC3B 435 76.1 1.89 0.00779 0.94 0.163 1.89 TPSWC4B 15700 2190 1.21 0.003 29.82 0.1 1.21 TPSWC5B 2.1 22100 3060 0.594 0.00579 40.15 0.1 0.594 TPBBSW6 0.53 23100 3180 1.09 0.003 42.28 0.1 1.09 TPBBSW7 0.84 23400 3130 0.562 0.003 4.88 0.1 0.562
Jun 29 & 30, 2015 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 520 52 3.36 0.0478 1.22 1.42 3.36 TPSWC2B 327 88.3 1.66 0.00478 0.77 0.446 1.66 TPSWC3B 400 71.9 1.68 0.00549 0.9 0.214 1.68 TPSWC4B 15300 2020 0.742 0.003 28.01 0.105 0.742 TPSWC5B 1.1 23300 2990 0.236 0.003 40.14 0.1 0.236 TPBBSW6 0.8 23400 3150 0.55 0.003 42.3 0.1 0.58 TPBBSW7 1.3 23100 3170 0.734 0.003 42.71 0.1 0.764 Jul 6 to 8, 2015 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 447 56.9 1.3 0.0194 1.06 0.1 1.3 TPSWC2B 341 88.6 1.67 0.00823 0.81 0.252 1.67 TPSWC3B 388 76.8 1.45 0.00501 1.06 0.142 1.45 TPSWC4B 16300 2130 1.04 0.0107 31.47 0.394 1.04 TPSWC5B 1.3 22300 3010 0.292 0.003 41.02 0.1 0.292 TPBBSW6 1.1 23200 3130 0.664 0.003 42.78 0.181 0.664 TPBBSW7 1.4 23300 3150 0.618 0.003 43.07 0.629 0.618
Jul 13 & 14, 2015 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 468 54.5 1 0.475 1.1 0.127 1 TPSWC2B 367 86.7 1.56 0.00566 0.84 0.177 1.56 TPSWC3B 471 72 1.39 0.00588 1.03 0.156 1.39 TPSWC4B 16700 2170 0.88 0.003 30.78 0.063 0.88 TPSWC5B 0.83 23200 3050 0.49 0.003 42.08 0.0365 0.49 TPBBSW6 0.83 23700 3160 0.802 0.003 43.45 0.0646 0.802 TPBBSW7 0.8 23600 3180 0.792 0.003 43.63 0.0757 0.792 Jul 20 & 21, 2015 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 388 70.9 1.97 0.0192 0.96 0.844 2.23 TPSWC2B 363 110 1.84 0.0275 0.84 0.256 1.89 TPSWC3B 445 74.3 1.4 0.00804 0.96 0.164 1.4 TPSWC4B 16500 2230 1.03 0.0127 30.15 0.0495 1.03 TPSWC5B 2.1 22700 3000 0.2 0.003 39.38 0.0381 0.525 TPBBSW6 1.6 23100 3210 0.674 0.003 42.36 0.113 0.674 TPBBSW7 1.1 22400 3140 0.38 0.00537 42.87 0.099 0.38
Jul 27 & 28, 2015 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L Tritium TPSWC1B 397 60.7 1.63 0.0193 0.97 0.314 1.63 TPSWC2B 367 106 2.4 0.00941 0.88 0.541 3.4 TPSWC3B 330 76 1.37 0.00658 0.78 0.22 1.62 TPSWC4B 17800 2330 0.874 0.00849 31.44 0.0679 0.874 TPSWC5B 1.9 23000 3160 0.48 0.00448 41.65 0.0753 0.48 TPBBSW6 0.53 21300 2760 0.504 0.003 39.77 0.1 0.504 TPBBSW7 2.4 21800 3140 0.614 0.00492 41.93 0.0713 0.614 Aug 3 & 4, 2015 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 322 51.4 1.64 0.021 0.75 0.387 1.64 TPSWC2B 346 109 2.14 0.00834 0.77 0.304 2.14 TPSWC3B 338 101 1.56 0.00889 0.77 0.232 1.56 TPSWC4B 18400 2630 0.802 0.00548 31.81 0.0318 0.802 TPSWC5B 3.2 23100 3220 0.416 0.00481 38.22 0.026 0.416 TPBBSW6 1.3 21400 3080 0.564 0.003 37.34 0.0515 0.564 TPBBSW7 3.5 22600 3080 0.418 0.00353 38.12 0.0669 0.878
Aug 10 & 11, 2015 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 206 31.6 1.59 0.0156 0.56 0.489 1.59 TPSWC2B 367 110 2.06 0.00904 0.88 0.35 2.06 TPSWC3B 336 98.7 1.97 0.011 0.82 0.355 1.97 TPSWC4B 18900 2670 0.452 0.00775 35.66 0.0677 0.452 TPSWC5B 0.53 22600 3030 0.534 0.003 40.94 0.0573 0.606 TPBBSW6 0.53 23000 3080 0.684 0.003 42.05 0.117 0.684 TPBBSW7 2.7 23100 3120 0.8 0.012 42.45 0.0693 0.8 Aug 17 & 18, 2015 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 108 10.9 1.29 0.0109 0.33 0.253 1.38 TPSWC2B 374 74.1 1.89 0.00678 0.83 0.306 1.89 TPSWC3B 264 53.4 1.74 0.00539 0.61 0.288 1.74 TPSWC4B 18500 2610 0.774 0.0082 34.7 0.0427 0.774 TPSWC5B 2.1 20600 3070 0.388 0.003 40.82 0.0507 0.513 TPBBSW6 0.83 21600 3260 0.754 0.003 39.95 0.084 0.754 TPBBSW7 1.6 23500 3200 0.766 0.003 40.07 0.0893 0.766
Aug 24 & 25 2015 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 117 8.08 1.67 0.0212 0.33 0.373 1.67 TPSWC2B 394 65.5 2.2 0.0105 0.77 0.27 2.2 TPSWC3B 281 47.6 2.1 0.0142 0.61 0.23 2.1 TPSWC4B 18800 2510 0.892 0.00707 30.24 0.0816 0.892 TPSWC5B 0.8 21100 2840 0.588 0.003 33.79 0.0565 0.588 TPBBSW6 1.6 22400 3070 0.918 0.003 35.63 0.0499 0.918 TPBBSW7 7.5 22600 3040 0.786 0.0127 36.31 0.0789 0.786 Aug 31 & Sept 2 2015 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 139 27.3 0.632 0.0266 0.45 0.203 1.06 TPSWC2B 267 28.5 1.95 0.00642 0.56 0.241 1.98 TPSWC3B 253 23.5 1.98 0.0202 0.55 0.248 1.98 TPSWC4B 21700 2450 0.84 0.00739 34.45 0.1 38.7 TPSWC5B 21100 2900 0.34 0.003 39.24 0.103 24.8 TPBBSW6 1.1 21300 2890 0.718 0.00724 34.28 0.14 0.718 TPBBSW7 16 23400 3140 0.97 0.0226 36.82 0.239 0.97
Sept 8 & 9 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 65.5 18.5 0.356 0.003 0.27 0.11 0.65 16.4 TPSWC2B 184 8.33 1.25 0.003 0.36 0.162 1.25 55.7 TPSWC3B 161 6.94 1.33 0.00481 0.32 0.154 1.33 44.6 TPSWC4B 14800 2040 1.12 0.0165 25.35 0.133 1.12 49.5 TPSWC5B 2.9 20200 2650 0.636 0.00667 34.24 0.122 0.68 64.9 TPBBSW6 15 17500 2310 0.56 0.003 36.99 0.0828 0.56 9.4 TPBBSW7 0.8 22800 3120 1.29 0.0548 41.17 0.452 1.29 59.5 Results in blue text corrected based on corrections provided by FPL (Amy Blystone) via email on December 14, 2017 at 09:13 Sept 14 & 18 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 57.9 17.2 0.58 0.003 0.27 0.1 31.0 TPSWC2B 123 3.8 1.4 0.003 0.31 0.159 59.7 TPSWC3B 133 3.41 1.2 0.003 0.31 0.158 51.7 TPSWC4B 12900 1710 1.38 0.0134 21.46 0.571 1.38 TPSWC5B 2.1 24000 2850 0.724 0.00926 35.31 0.119 724 TPBBSW6 1.1 19900 2760 0.646 0.00651 36.25 0.14 0.646 TPBBSW7 4.5 22500 3050 1.43 0.076 40.38 0.744 1.43
Sept 21 & 22 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 133 23.1 0.384 0.00529 0.46 0.136 0.641 TPSWC2B 98.8 2.83 0.99 0.00355 0.29 0.148 0.99 TPSWC3B 78.6 2.96 1.04 0.00415 0.25 0.157 1.04 TPSWC4B 13600 1820 1.28 0.039 26.1 0.706 1.28 TPSWC5B 21 22200 3040 1.19 0.0241 41.88 0.134 1.19 TPBBSW6 2.4 20200 2730 0.718 0.0051 38.08 0.0888 0.718 TPBBSW7 9.3 24100 3240 1.66 0.0668 45.7 0.91 1.66 Sept 28 to Oct 2, 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 73.2 19 0.626 0.00574 0.33 0.392 0.776 TPSWC2B 122 2.35 0.93 0.00329 0.3 0.208 0.93 TPSWC3B 87.2 1.1 0.95 0.003 0.24 0.169 0.95 TPSWC4B 14500 1930 0.852 0.00486 24.76 0.214 0.852 TPSWC5B 13 22100 2980 0.994 0.0257 36.86 0.326 0.994 TPBBSW6 3.7 18600 2440 0.706 0.0169 33.7 0.156 0.706 TPBBSW7 2.9 24200 3170 0.99 0.11 42.05 1.08 0.99
Oct 5 to 7, 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 184 30 0.462 0.00536 0.67 0.178 0.652 TPSWC2B 117 1.69 1.2 0.00345 0.33 0.173 1.2 TPSWC3B 101 1.33 1.24 0.00341 0.31 0.189 1.24 TPSWC4B 14500 2400 0.718 0.00495 27.82 0.0862 0.718 TPSWC5B 4.6 18500 2600 0.434 0.00614 37.82 0.0489 0.434 TPBBSW6 5.6 17400 2480 0.65 0.0331 34.9 0.161 0.65 TPBBSW7 3.2 22800 3190 1.62 0.112 44.17 1.04 0.4 Oct 12 & 13, 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 80.3 19.8 0.362 0.00644 0.38 0.186 0.599 TPSWC2B 125 2.35 1.06 0.00353 0.35 0.157 1.06 TPSWC3B 112 1.9 1.01 0.003 0.32 0.167 1.01 TPSWC4B 16600 2230 0.656 0.00479 30.69 0.0938 0.656 TPSWC5B 8.5 21500 2710 0.732 0.00786 38.77 0.0584 0.785 TPBBSW6 1.6 17700 2390 0.45 0.003 32.75 0.137 0.45 TPBBSW7 6.7 24900 3200 1.79 0.12 44.76 0.98 1.83
Oct 19 & 20, 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 173 26 0.564 0.0283 0.52 0.156 0.743 TPSWC2B 119 2.41 0.918 0.00473 0.32 0.17 0.918 TPSWC3B 659 65.9 1.16 0.00603 0.73 0.279 1.16 TPSWC4B 16700 2140 0.652 0.003 29.71 0.0904 0.652 TPSWC5B 5.3 20400 2750 0.476 0.00969 35.9 0.074 0.476 TPBBSW6 0.53 10400 1460 0.78 0.00536 20.03 0.204 0.909 TPBBSW7 4.3 24300 3260 2.2 0.121 42.76 1.15 2.2 Oct 26 & 27, 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 244 33.5 0.598 0.00947 0.64 0.207 6.13 TPSWC2B 125 3.48 1.12 0.00944 0.35 0.195 1.12 TPSWC3B 557 59.8 1.38 0.0197 1.13 0.484 1.38 TPSWC4B 13300 1790 0.612 0.0115 25.44 0.11 0.612 TPSWC5B 2.7 18300 2490 0.89 0.00881 32.36 0.231 0.89 TPBBSW6 10 14900 1990 1.31 0.00731 28.62 0.481 1.31 TPBBSW7 3.7 23800 3180 1.73 0.126 41.85 1.48 1.73
Nov 2 & 4, 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 304 39.8 0.756 0.0067 0.71 0.323 0.874 TPSWC2B 164 8.39 1.19 0.00381 0.38 0.228 1.19 TPSWC3B 174 6.89 1.3 0.003 0.39 0.244 1.3 TPSWC4B 12500 1620 1.13 0.003 22.57 0.253 1.13 TPSWC5B 1.1 15900 2300 0.652 0.003 31.94 0.146 0.652 TPBBSW6 29 18400 2310 2.22 0.0365 31.28 1.32 2.22 TPBBSW7 8.8 24500 3190 2.64 0.14 41.74 1.94 2.64 Nov 9 to 13, 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 194 32.4 0.442 0.003 0.52 0.167 0.712 TPSWC2B 177 2.09 1.33 0.00625 0.39 0.228 1.33 TPSWC3B 237 3.51 1.56 0.00562 0.49 0.206 1.56 TPSWC4B 14500 1820 1.24 0.00415 25.27 0.374 1.24 TPSWC5B 5.3 19200 2530 0.536 0.0095 32.92 0.13 0.536 TPBBSW6 6.3 16500 2380 0.666 0.0167 29.9 0.22 0.666 TPBBSW7 12 25700 3350 3.26 0.199 42.97 2.66 3.26
Nov 16 to 19, 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 200 14.8 0.974 0.00446 0.42 0.19 1.05 TPSWC2B 122 2.34 1.23 0.003 0.25 0.16 1.23 TPSWC3B 106 1.66 1.01 0.003 0.23 0.139 1.01 TPSWC4B 15500 1980 1.01 0.00586 25.15 0.252 1.01 TPSWC5B 11 19600 2570 0.42 0.024 31.53 0.0889 0.42 TPBBSW6 2.9 15800 2080 0.838 0.00575 24.75 0.27 0.838 TPBBSW7 10 25800 3390 2.92 0.195 39.31 2.2 2.92 Nov 23 & 24, 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 228 18.8 0.812 0.00619 0.49 0.149 0.887 TPSWC2B 122 1.35 1.02 0.003 0.27 0.133 1.02 TPSWC3B 110 1.29 0.94 0.003 0.25 0.139 0.94 TPSWC4B 13600 1840 1.11 0.0055 21.67 0.239 1.11 TPSWC5B 9.3 20500 2780 0.518 0.00792 30.31 0.112 0.518 TPBBSW6 2.4 13500 1830 0.24 0.00413 20.85 0.13 0.278 TPBBSW7 22 26500 3360 3.28 0.230 39.79 2.52 3.28
Nov 30 to Dec 3, 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 189 11 0.804 0.00962 0.49 0.136 0.852 TPSWC2B 128 2.59 0.94 0.00326 0.29 0.179 0.94 TPSWC3B 218 8 1.14 0.0067 0.47 0.271 1.14 TPSWC4B 14700 1940 0.684 0.00627 26.05 0.0693 0.684 TPSWC5B 0.8 18100 2420 0.524 0.003 31.43 0.124 0.524 TPBBSW6 0.8 16700 2270 0.376 0.003 29.11 0.155 0.376 TPBBSW7 19 25000 3350 3.3 0.204 44.7 2.75 3.3 Dec 7 to 9, 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 94.4 1.88 0.452 0.005 0.22 0.154 0.452 98.2 TPSWC2B 55 0.43 0.59 0.005 0.15 0.0797 0.59 123 TPSWC3B 44 0.4 0.358 0.005 0.13 0.0793 0.358 79.7 TPSWC4B 1570 199 0.58 0.005 3.11 0.15 0.58 146.1 TPSWC5B 38 18300 2640 0.572 0.005 33.46 0.241 0.572 220.8 TPBBSW6 8 15600 2080 0.818 0.005 25.36 0.757 0.818 60.8 TPBBSW7 12 27300 3470 2.76 0.210 44.12 3.29 2.76 3162.8 Results in blue text corrected based on corrections provided by FPL (Amy Blystone) via email on December 14, 2017 at 09:13
Dec 14 & 15, 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 93.9 5.87 0.668 0.0216 0.24 0.128 0.668 TPSWC2B 53.4 0.4 0.548 0.0172 0.17 0.0841 0.548 TPSWC3B 40.1 0.4 0.61 0.0163 0.15 0.083 0.61 TPSWC4B 1010 88.6 0.604 0.0184 1.9 0.149 0.604 TPSWC5B 22600 3010 0.744 0.0164 39.7 0.437 0.779 TPBBSW6 13300 1750 0.404 0.0134 23.55 0.196 0.518 TPBBSW7 27400 3460 3.34 0.162 47.01 2.16 3.34 Dec 21 & 22, 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L TPSWC1B 90.9 1.1 0.818 0.005 0.24 0.126 0.818 TPSWC2B 69.4 1.23 0.692 0.005 0.21 0.119 0.692 TPSWC3B 52.1 0.4 0.834 0.005 0.19 0.129 0.834 TPSWC4B 552 59.9 0.624 0.00684 0.96 0.14 0.624 TPSWC5B 44 22800 3190 1.81 0.005 41.56 0.924 1.81 TPBBSW6 7.5 12700 1630 1.23 0.005 23.47 0.592 1.32 TPBBSW7 13 26900 3570 2.66 0.155 46.77 2.21 2.66
Dec 28 & 29, 2015 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L TPSWC1B 88.6 2.17 0.858 0.005 0.26 0.235 0.858 TPSWC2B 68.2 4.69 0.806 0.005 0.22 0.138 0.806 TPSWC3B 63 0.4 0.816 0.005 0.21 0.149 0.855 TPSWC4B 393 41.9 0.806 0.005 0.82 0.164 0.806 TPSWC5B 41 25700 3350 2.66 0.027 43.43 1.5 2.66 TPBBSW6 18 19200 2350 3.08 0.005 33.61 2.57 3.08 TPBBSW7 22 28400 3720 3.46 0.0209 47.53 2.7 3.46 Jan 4 & 5, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L TPSWC1B 95.6 0.97 1.090 0.00500 0.27 0.0988 1.090 TPSWC2B 91.9 1.38 1.110 0.00500 0.26 0.143 1.110 TPSWC3B 86.5 0.715 1.040 0.00500 0.25 0.207 1.040 TPSWC4B 391 33 1.010 0.05910 0.73 0.159 1.010 TPSWC5B 21.0 23800 3210 1.95 0.00500 42.83 1.64 1.95 TPBBSW6 23.0 19100 2360 2.40 0.04450 33.85 2.34 2.40 TPBBSW7 12 28300 3570 3.10 0.177 47.14 2.62 3.10
Jan 11 & 12, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L TPSWC1B 96.8 3.08 0.994 0.00500 0.27 0.101 0.994 TPSWC2B 92.0 0.94 0.914 0.00500 0.25 0.124 0.914 TPSWC3B 100.0 1.910 0.814 0.00500 0.27 0.123 0.814 TPSWC4B 11500 1450 0.562 0.00500 19.82 0.105 0.562 TPSWC5B 15.0 19500 2620 1.26 0.00500 35.59 0.551 1.26 TPBBSW6 7.7 18100 2270 0.41 0.02310 29.76 0.525 0.41 TPBBSW7 20 27500 3430 3.48 0.179 44.71 2.07 3.48 Jan 18 & 19, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L TPSWC1B 82.7 1.31 0.706 0.0121 0.25 0.0936 0.706 TPSWC2B 80.7 1.14 0.778 0.0125 0.22 0.105 0.778 TPSWC3B 80.5 0.724 0.796 0.01 0.22 0.0999 0.796 TPSWC4B 11700 1550 0.776 0.0155 20.67 0.147 0.776 TPSWC5B 5.3 20100 2630 1.02 0.028 35.54 0.698 1.02 TPBBSW6 8.5 17600 2160 1.46 0.0901 30.93 0.799 1.46 TPBBSW7 20 26300 3350 2.52 0.152 44.79 2.34 2.52
Jan 25 & 26, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L TPSWC1B 73.3 1.69 0.628 0.0108 0.21 0.104 0.628 TPSWC2B 72.6 1.21 0.690 0.0093 0.19 0.101 0.690 TPSWC3B 70.4 1.010 0.588 0.0074 0.20 0.132 0.588 TPSWC4B 13400 1950 1.900 0.026 25.19 1.24 1.900 TPSWC5B 18.0 21300 2820 1.44 0.034 37.23 0.831 1.44 TPBBSW6 65.0 17700 2280 1.63 0.159 29.87 0.42 1.63 TPBBSW7 16 27400 3670 2.54 0.131 46.56 2.87 2.54 Feb 1 to 3, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L TPSWC1B 75.2 5.86 0.605 0.0083 0.23 0.138 0.605 TPSWC2B 70.7 2.69 0.498 0.0110 0.21 0.122 0.498 TPSWC3B 71.2 5.390 0.512 0.0089 0.21 0.144 0.512 TPSWC4B 12800 1780 0.657 0.0054 23.54 0.216 0.657 TPSWC5B 34.0 19700 2700 1.03 0.0480 34.87 0.34 1.03 TPBBSW6 53.0 17200 2270 3.63 0.2590 30.93 2.34 3.63 TPBBSW7 12 26700 3570 2.87 0.1250 45.83 2.53 2.87
Feb 8 & 9, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L TPSWC1B 72.8 1.15 0.782 0.02 0.21 0.0913 0.811 TPSWC2B 80.1 0.68 0.847 0.02 0.21 0.128 0.847 TPSWC3B 61.6 0.541 0.805 0.02 0.19 0.105 0.805 TPSWC4B 14200 1820 1.630 0.02 22.48 0.876 1.630 TPSWC5B 40.0 22800 3000 1.83 0.0548 36.62 0.974 1.83 TPBBSW6 52.0 16300 2190 3.71 0.239 29.29 1.8 3.88 TPBBSW7 16 24100 3320 2.60 0.104 45.34 2.74 2.6 Feb 15 & 16, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L TPSWC1B 78.3 1.00 1.37 0.01 0.22 0.111 1.37 TPSWC2B 81.7 0.538 0.717 0.009 0.21 0.11 0.717 TPSWC3B 69.4 0.400 1.01 0.008 0.20 0.124 1.01 TPSWC4B 12100 1610 0.941 0.04 20.49 0.432 0.941 TPSWC5B 21 20200 2700 1.09 0.04 33.21 0.512 1.09 TPBBSW6 41 17000 2130 2.68 0.109 28.58 1.55 2.68 TPBBSW7 34 26400 3500 2.56 0.04 43.92 2.24 2.56
Feb 22 & 23, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L TPSWC1B 74.6 1.14 1.150 0.00540 0.23 0.115 1.150 TPSWC2B 90.8 0.57 1.020 0.00660 0.23 0.101 1.020 TPSWC3B 79.8 0.400 0.897 0.0023 I 0.22 0.117 0.897 TPSWC4B 12000 1500 1.300 0.01700 20.69 0.133 1.300 TPSWC5B 24.0 19800 2730 1.42 0.02630 34.99 0.547 1.42 TPBBSW6 64.0 16800 2400 5.24 0.20800 31.45 3.3 5.24 TPBBSW7 20 26100 3340 3.03 0.06500 44.60 2.18 3.03 Feb 29 to Mar 4, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 73.5 1.20 0.883 0.01030 0.26 0.0861 0.883 101.12 TPSWC2B 80.4 0.45 1.070 0.01070 0.24 0.0962 1.070 91.52 TPSWC3B 71.5 1.650 0.822 0.00920 0.23 0.0901 0.822 63.36 TPSWC4B 9920 1290 0.976 17.22 0.1 297.9 TPSWC5B 12.0 21800 2750 0.84 35.32 0.433 939 TPBBSW6 3.7 12000 1740 1.02 0.04560 25.02 0.432 1.02 36.48 TPBBSW7 15 20300 3150 2.88 0.05750 43.80 2.46 2.88 2572.8 Results in blue text corrected based on corrections provided by FPL (Amy Blystone) via email on December 14, 2017 at 09:13
Mar 7 & 8, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 88.0 1.90 0.784 0.01770 0.24 0.136 104.14 TPSWC2B 88.4 1.08 0.670 0.01400 0.24 0.115 118.45 TPSWC3B 81.8 2.210 0.656 0.02090 0.23 0.122 55 TPSWC4B 11900 1540 0.833 0.0186 21.46 0.094 0.833 TPSWC5B 4.7 17200 2230 0.48 0.0215 31.99 0.242 0.48 TPBBSW6 4.1 11600 1440 0.60 0.01680 21.51 0.132 0.60 TPBBSW7 32 25500 3060 2.19 0.07970 44.72 2.6 2.19 Results in blue text corrected based on corrections provided by FPL (Amy Blystone) via email on December 14, 2017 at 09:13 Mar 14 & 15, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 84.6 1.53 0.806 0.02330 0.25 0.151 0.806 TPSWC2B 84.3 1.16 1.060 0.02430 0.25 0.115 1.060 TPSWC3B 77.7 1.050 1.000 0.01260 0.25 0.106 1.000 TPSWC4B 11900 1610 0.618 0.0202 23.04 0.429 0.618 TPSWC5B 1.6 17700 2280 0.48 0.0211 30.28 0.176 0.48 TPBBSW6 1.9 16500 2150 0.38 0.02290 28.62 0.107 0.38 TPBBSW7 21 23700 3200 2.86 0.07050 44.01 2.35 2.86
Mar 21 & 22, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 85.9 91.70 0.914 0.02080 0.25 0.153 0.914 TPSWC2B 92.6 2.48 1.100 0.01780 0.25 0.152 1.100 TPSWC3B 88.9 0.867 0.898 0.01660 0.25 0.115 0.898 TPSWC4B 11700 1540 1.000 0.0171 20.47 0.0443 1.040 TPSWC5B 3.7 17400 2540 0.76 0.0218 33.03 0.17 0.76 TPBBSW6 2.7 15700 2240 0.65 0.02090 28.75 0.131 0.65 TPBBSW7 11 26600 3420 2.66 0.0568 44.01 2.38 2.66 Mar 28 & 29, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 83.4 3.46 1.020 0.02530 0.26 0.224 1.020 TPSWC2B 88.1 2.92 0.952 0.02130 0.25 0.16 0.952 TPSWC3B 86.4 1.810 0.806 0.02040 0.25 0.126 0.806 TPSWC4B 13500 1830 0.766 0.0218 23.97 0.0386 0.766 TPSWC5B 4.3 18700 2500 0.55 0.0226 32.07 0.0951 0.55 TPBBSW6 2.7 17500 2440 0.20 0.02470 30.75 0.122 0.11 TPBBSW7 13 24900 3190 3.24 0.05670 42.67 2.51 3.24
April 4 & 5, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 87.2 3.88 0.676 0.02330 0.26 0.132 0.676 TPSWC2B 87.1 2.45 0.704 0.02050 0.25 0.123 0.704 TPSWC3B 86.0 3.790 0.642 0.01830 0.26 0.159 0.642 TPSWC4B 10400 1770 0.776 0.0188 21.81 0.065 0.776 TPSWC5B 4.8 19200 2670 0.37 0.0224 32.12 0.0949 0.37 TPBBSW6 1.6 17300 2460 0.29 0.02000 30.25 0.121 0.29 TPBBSW7 8 25300 3320 2.96 0.06840 42.41 2.68 2.96 April 11 & 12, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 92.5 4.74 0.922 0.02090 0.27 0.0848 0.922 TPSWC2B 88.3 2.85 0.952 0.01840 0.25 0.103 0.952 TPSWC3B 179.0 16.700 1.150 0.01750 0.44 0.135 1.150 TPSWC4B 16400 1960 0.664 0.0208 28.42 0.0447 0.664 TPSWC5B 7.5 19300 2710 0.86 0.036 33.78 0.162 0.86 TPBBSW6 1.6 15400 2180 0.54 0.01580 26.03 0.0675 0.59 TPBBSW7 13 25600 3460 2.90 0.06990 41.97 2.55 2.90
April 18 & 19, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 96.2 4.69 1.080 0.0222 0.27 0.072 1.080 TPSWC2B 124.0 10.90 1.080 0.0030 0.34 0.0959 1.120 TPSWC3B 233.0 19.600 1.720 0.0119 0.50 0.394 1.790 TPSWC4B 16700 2340 0.468 0.0194 28.36 0.0723 0.468 TPSWC5B 1.3 19400 2710 0.30 0.0200 32.17 0.25 0.30 TPBBSW6 3.7 15000 2160 0.78 0.0199 25.57 0.14 0.78 TPBBSW7 7 25000 3340 3.04 0.0597 41.44 2.64 3.04 April 25 & 26, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 107 5.44 1.10 0.0278 0.28 0.115 1.13 TPSWC2B 165 13.6 1.07 0.0172 0.39 0.156 1.14 TPSWC3B 268 19.0 1.80 0.0145 0.58 0.389 1.85 TPSWC4B 16600 2330 0.504 0.0204 28.47 0.0715 0.504 TPSWC5B 2.7 20100 2670 0.390 0.0218 33.46 0.0882 0.390 TPBBSW6 57 19100 2620 0.558 0.0301 31.59 0.0562 0.590 TPBBSW7 9.1 21900 3350 3.16 0.0548 41.79 2.77 3.22
May 2 & 3, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 110 5.76 1.13 0.0303 0.30 0.128 1.13 TPSWC2B 186 14.5 1.17 0.0214 0.43 0.14 1.17 TPSWC3B 151 11.0 1.69 0.0139 0.61 0.223 1.69 TPSWC4B 19700 2820 0.470 0.0196 33.63 0.0942 0.470 TPSWC5B 1.1 19000 2750 0.448 0.0175 33.03 0.0612 0.448 TPBBSW6 1.1 23100 2180 1.93 0.0168 30.15 0.0605 1.93 TPBBSW7 11 25100 3350 3.88 0.0610 42.02 2.7 3.88 May 9 & 10, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 126 7.43 0.92 0.0222 0.34 0.0938 0.92 TPSWC2B 201 16.0 1.25 0.0167 0.46 0.139 1.25 TPSWC3B 429 33.2 1.40 0.0151 0.85 0.178 1.40 TPSWC4B 21000 2930 0.730 0.0201 35.11 0.0748 0.730 TPSWC5B 2.1 19900 2850 0.530 0.0162 34.09 0.0862 0.530 TPBBSW6 0.5 18700 2620 0.61 0.0155 31.42 0.0491 0.61 TPBBSW7 30 24900 3340 3.82 0.0457 42.00 2.6 3.82
May 16 & 17, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 159 11.20 1.57 0.0420 0.45 0.0845 1.60 TPSWC2B 269 20.2 1.47 0.0300 0.57 0.124 1.47 TPSWC3B 511 42.1 1.22 0.0184 1.03 0.165 1.22 TPSWC4B 22400 2860 0.872 0.0235 35.00 0.0422 0.872 TPSWC5B 4.5 25800 3280 3.380 0.0454 34.89 0.156 3.380 TPBBSW6 3.5 20200 2670 0.48 0.0169 32.69 0.09 0.48 TPBBSW7 43 20100 2820 0.68 0.0212 41.57 2.83 0.68 May 23 & 24, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 121 22.50 2.12 0.0244 0.34 0.64 2.20 TPSWC2B 167 53.8 2.72 0.0089 0.43 0.729 2.82 TPSWC3B 170 25.7 1.56 0.0149 0.41 0.323 1.81 TPSWC4B 18100 2530 0.880 0.0133 32.14 0.0426 0.880 TPSWC5B 3.5 20900 2810 0.660 0.0169 35.74 0.143 0.660 TPBBSW6 4.3 20200 2620 0.51 0.0177 33.66 0.0836 0.51 TPBBSW7 51 24100 3050 3.06 0.0467 41.29 2.42 3.06
May 31 to Jun 3, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 132 21.20 1.94 0.0162 0.35 0.416 1.98 TPSWC2B 184 46.0 2.32 0.0128 0.44 0.441 2.35 TPSWC3B 164 40.5 1.95 0.0099 0.40 0.492 2.03 TPSWC4B 16000 2160 0.822 0.0197 26.96 0.0606 0.822 TPSWC5B 5.3 21200 2780 0.492 0.0178 34.35 0.0657 0.492 TPBBSW6 2.1 19200 2550 0.41 0.0218 31.64 0.12 0.44 TPBBSW7 37 23000 3010 2.76 0.0493 39.95 2.34 2.76 Jun 6 to 10, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 2.04 0.0283 0.35 0.443 2.04 79.0 TPSWC2B 1.88 0.0172 0.44 0.333 1.91 101.6 TPSWC3B 1.66 0.0130 0.54 0.243 1.71 92.2 TPSWC4B 0.756 0.0203 24.54 0.0595 0.756 84.0 TPSWC5B 1.6 0.338 0.0208 33.18 0.0742 0.338 35.5 TPBBSW6 1.6 17400 2550 0.39 0.0194 31.65 0.121 0.39 23.12 TPBBSW7 27 22800 3120 2.76 0.0642 40.20 2.72 2.79 1056.5 Results in blue text corrected based on corrections provided by FPL (Amy Blystone) via email on December 14, 2017 at 09:13
Jun 13 & 14, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 154 29.80 1.62 0.0179 0.38 0.418 1.62 TPSWC2B 151 31.2 1.28 0.0161 0.36 0.245 1.28 TPSWC3B 159 16.1 1.49 0.0185 0.40 0.261 1.49 TPSWC4B 10600 1570 1.170 0.0191 19.99 0.0862 1.170 TPSWC5B 2.1 20600 2780 0.790 0.0217 34.40 0.123 0.790 TPBBSW6 1.9 19800 2760 0.56 0.0232 34.14 0.0957 0.56 TPBBSW7 21 26400 2920 2.22 0.0720 38.99 2.01 2.22 Jun 20 & 23, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 155 20.30 1.59 0.0161 0.38 0.228 1.59 TPSWC2B 163 13.5 1.87 0.0140 0.37 0.202 1.87 TPSWC3B 192 17.7 1.58 0.0151 0.43 0.181 1.58 TPSWC4B 8760 1110 0.954 0.0139 15.04 0.14 0.954 TPSWC5B 3.7 19600 2670 0.974 0.0241 33.78 0.109 0.974 TPBBSW6 1.1 18100 2390 0.52 0.0478 32.60 0.0628 0.52 TPBBSW7 36 22000 2980 2.78 0.0425 38.52 1.89 2.78
Jun 27 & 28, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 157 17.60 1.54 0.0161 0.38 0.321 1.54 TPSWC2B 161 12.8 1.74 0.0184 0.37 0.226 1.74 TPSWC3B 187 14.8 1.58 0.0136 0.42 0.191 1.58 TPSWC4B 9040 1140 0.882 0.0140 15.01 0.106 0.882 TPSWC5B 2.9 19100 2610 0.582 0.0182 32.17 0.0921 0.582 TPBBSW6 2.9 18800 2600 0.56 0.0196 32.17 0.061 0.56 TPBBSW7 41 22400 2960 2.28 0.0360 38.00 1.83 2.28 Jul 5 & 6, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 155 14.20 1.73 0.0134 0.38 0.463 1.73 TPSWC2B 164 13.4 1.51 0.0089 0.38 0.249 1.51 TPSWC3B 186 7.5 1.55 0.0063 0.42 0.222 1.69 TPSWC4B 6280 829 1.520 0.0157 11.40 0.163 1.550 TPSWC5B 3.7 19500 2660 0.808 0.0248 32.96 0.13 0.808 TPBBSW6 3.5 20500 2740 0.93 0.0267 34.21 0.0775 0.93 TPBBSW7 18 22900 2910 2.84 0.0389 38.22 1.71 2.84
Jul 11 & 12, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 162 16.10 1.09 0.0127 0.39 0.193 1.09 TPSWC2B 175 13.6 1.02 0.0160 0.40 0.146 1.02 TPSWC3B 182 4.9 1.13 0.0180 0.42 0.157 1.13 TPSWC4B 6410 826 0.834 0.0103 10.95 0.123 0.834 TPSWC5B 4.8 20100 2710 0.518 0.0036 33.83 0.033 0.518 TPBBSW6 1.1 20900 2760 0.70 0.0304 35.30 0.0695 0.70 TPBBSW7 35 22900 2980 2.14 0.0075 39.09 1.75 2.14 Jul 18 & 19, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 162 16.50 1.05 0.0122 0.40 0.19 1.05 TPSWC2B 180 14.1 0.96 0.0125 0.40 0.169 0.96 TPSWC3B 346 18.0 0.91 0.0134 0.73 0.253 0.91 TPSWC4B 5260 655 0.808 0.0044 9.46 0.146 0.808 TPSWC5B 6.4 19700 2620 0.670 0.0139 33.79 0.0465 0.670 TPBBSW6 3.0 20200 2720 0.51 0.0054 34.26 0.0753 0.51 TPBBSW7 20 22000 2840 2.16 0.0201 39.02 2.06 2.16
Jul 25 & 26, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 165 16.90 1.20 0.0111 0.40 0.294 1.20 TPSWC2B 184 12.5 0.99 0.0222 0.41 0.173 0.99 TPSWC3B 802 61.0 1.19 0.0208 1.53 0.551 1.19 TPSWC4B 11000 1440 0.574 0.0499 19.14 0.0753 0.674 TPSWC5B 2.4 20300 2750 0.258 0.0132 34.75 0.141 0.258 TPBBSW6 0.8 19600 2650 0.28 0.0030 34.17 0.112 0.28 TPBBSW7 100 22200 2900 1.98 0.0201 38.62 2.15 1.98 Aug 1 & 2, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 181 17.30 1.34 0.0058 0.41 0.217 1.34 TPSWC2B 446 29.6 0.98 0.0030 0.85 0.159 0.98 TPSWC3B 1410 123.0 1.73 0.0030 2.49 0.389 1.73 TPSWC4B 17700 2300 0.516 0.0058 29.02 0.0898 0.516 TPSWC5B 2.9 22400 2870 0.522 0.0090 35.57 0.146 0.522 TPBBSW6 1.9 19000 2550 0.45 0.0030 32.24 0.119 0.45 TPBBSW7 86 23000 2990 2.58 0.0308 37.91 2.22 2.58
Aug 8 & 9, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 141 51.60 2.14 0.0167 0.41 0.0981 2.30 TPSWC2B 174 37.2 1.42 0.0179 0.44 0.353 1.64 TPSWC3B 2390 246.0 3.06 0.0544 4.43 1.95 3.06 TPSWC4B 16400 2220 0.448 0.0072 29.33 0.0461 0.448 TPSWC5B 2.7 20400 2770 0.354 0.0030 35.89 0.164 0.354 TPBBSW6 0.5 19200 2690 0.29 0.0056 35.54 0.085 0.29 TPBBSW7 50 21300 2860 2.62 0.0093 38.33 2.56 2.62 Aug 16 & 17, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 164 46.10 1.84 0.0173 0.44 0.508 1.88 TPSWC2B 324 51.4 1.45 0.0132 0.71 0.263 1.51 TPSWC3B 584 54.8 1.34 0.0128 1.16 0.31 1.34 TPSWC4B 11400 1570 0.806 0.0097 20.45 0.055 0.806 TPSWC5B 2.4 20600 2780 0.260 0.0044 35.34 0.0825 0.260 TPBBSW6 2.1 19700 2710 0.26 0.0136 33.81 0.0747 0.26 TPBBSW7 10 22100 2840 2.76 0.0595 38.07 2.25 2.76
Aug 22 & 23, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 342 52.70 1.40 0.0164 0.75 0.336 1.43 TPSWC2B 504 42.3 1.58 0.0206 0.99 0.311 1.58 TPSWC3B 398 23.8 1.47 0.0112 0.76 0.38 1.47 TPSWC4B 11600 1570 0.766 0.0084 20.52 0.104 0.766 TPSWC5B 19500 2710 0.558 0.0037 34.32 0.0996 0.558 TPBBSW6 18700 2560 0.83 0.0649 32.82 0.42 0.83 TPBBSW7 21400 2820 2.44 0.0712 36.65 1.98 2.44 August 29, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 365 42.20 1.45 0.0185 0.73 0.226 1.48 TPSWC2B 339 18.5 1.28 0.0154 0.66 0.194 1.28 TPSWC3B 694 58.2 1.56 0.0118 1.27 0.666 1.56 TPSWC4B 30.8 TPSWC5B 37.7 TPBBSW6 1 17300 2350 0.45 0.0032 30.12 0.0773 0.47 TPBBSW7 5.6 21500 2810 2.42 0.0664 37.41 2.25 2.45
Sep 6 & 7, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 292 22.10 1.10 0.0113 0.60 0.224 1.10 45.10 TPSWC2B 187 5.5 1.21 0.0066 0.38 0.179 1.21 32.60 TPSWC3B 119 2.94 0.954 0.0057 0.26 0.223 0.84 24.13 TPSWC4B 2880 317 1.070 0.0081 4.98 0.257 1.070 73.300 TPSWC5B 2.4 19800 2700 0.612 0.0030 33.39 0.14 0.612 53.800 TPBBSW6 11 19500 2630 0.472 0.0098 33.06 0.185 0.59 8.83 TPBBSW7 5.3 21100 2720 1.03 0.0632 37.25 1.85 1.03 287.70
Sept 13 to 16, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 253 18.90 1.06 0.0112 0.54 0.22 1.06 47.60 TPSWC2B 140 2.13 1.27 0.0100 0.32 0.13 1.27 44.10 TPSWC3B 114 1.8 1.09 0.0068 0.27 0.141 1.09 22.80 TPSWC4B 284 21 1.230 0.0043 0.59 0.17 1.230 TPSWC5B 0.5 18700 2570 0.858 0.0030 34.00 0.0937 0.858 TPBBSW6 13 19400 2420 0.56 0.0030 32.26 0.128 0.56 TPBBSW7 11.0 20800 2720 2.60 0.0676 37.39 1.81 2.60 Sept. 19 & 20, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 231 17.30 1.23 0.0053 0.50 0.17 1.23 TPSWC2B 140 1.5 1.31 0.0054 0.33 0.227 1.31 TPSWC3B 125 1.0 1.10 0.0063 0.30 0.192 1.10 TPSWC4B 213 8 1.260 0.0055 0.47 0.168 1.260 TPSWC5B 2.9 19300 2660 1.110 0.0030 33.97 0.0517 2.780 TPBBSW6 4 18100 2440 0.50 0.0030 32.15 0.102 0.50 TPBBSW7 20.0 21600 2760 1.70 0.0887 37.01 1.6 1.70
Sept. 26 & 27, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 195 5.19 1.12 0.0030 0.42 0.133 1.12 TPSWC2B 151 2.2 1.29 0.0030 0.35 0.21 1.29 TPSWC3B 141 1.4 1.29 0.0030 0.33 0.218 1.29 TPSWC4B 3920 449 1.310 0.0071 7.22 0.0522 1.310 TPSWC5B 5.1 18500 2450 0.490 0.0078 31.60 0.028 0.490 TPBBSW6 3 18000 2430 0.38 0.0030 31.76 0.0923 0.38 TPBBSW7 21.0 21700 2880 1.33 0.0645 37.14 1.17 1.33 Oct. 3 & 4, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 140 1.66 1.62 0.0106 0.33 0.143 1.62 TPSWC2B 101 0.843 1.50 0.0124 0.25 0.192 1.50 TPSWC3B 103 0.719 1.41 0.00804 0.25 0.177 1.41 TPSWC4B 10800 1370 0.920 0.00770 18.47 0.251 0.920 TPSWC5B 2.7 18200 2440 0.520 0.00586 31.18 0.026 0.520 TPBBSW6 2.7 17600 2350 0.552 0.00771 30.30 0.111 0.578 TPBBSW7 18 22600 2990 1.10 0.0513 37.47 1.27 1.10
Oct. 10 & 11, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 137 1.46 1.27 0.0132 0.32 0.21 1.27 TPSWC2B 103 0.640 1.37 0.0100 0.25 0.214 1.37 TPSWC3B 3240 408.000 1.04 0.00801 5.35 0.298 1.04 TPSWC4B 15100 2010 0.528 0.00307 25.56 0.0749 0.556 TPSWC5B 1.9 19500 2580 0.362 0.00467 32.05 0.112 0.362 TPBBSW6 2.1 16900 2080 0.464 0.00362 27.97 0.134 0.507 TPBBSW7 11 22300 2920 2.24 0.0205 36.95 1.75 2.24 Oct. 17 & 18, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 1290 129 1.28 0.00680 2.42 0.56 1.28 TPSWC2B 1420 134 1.19 0.00783 2.57 0.5 1.19 TPSWC3B 7840 1050 1.07 0.00616 13.92 0.391 1.07 TPSWC4B 13800 1810 0.570 0.00300 23.37 0.0443 0.570 TPSWC5B 0.50 16800 2270 0.374 0.00300 29.19 0.0901 0.374 TPBBSW6 1.9 13500 1760 1.68 0.00339 22.95 0.141 1.77 TPBBSW7 16 22900 2910 1.94 0.0226 37.56 1.89 1.94
Oct. 24 & 25, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 1200 113 1.05 0.00450 2.20 0.26 1.05 TPSWC2B 1180 109 0.68 0.00464 2.18 0.24 0.68 TPSWC3B 6880 918 2.30 0.00300 12.14 1.6 2.30 TPSWC4B 14600 1950 0.500 0.00300 25.75 0.104 0.500 TPSWC5B 0.80 17600 2460 0.280 0.00300 31.75 0.165 0.280 TPBBSW6 0.8 17500 2410 0.50 0.00425 29.46 0.26 0.50 TPBBSW7 19 21100 2720 1.73 0.0336 37.41 2 1.73 Oct. 31 & Nov 1, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 1160 106 0.92 0.01200 2.07 0.259 0.95 TPSWC2B 807 68 1.14 0.00543 1.46 0.444 1.17 TPSWC3B 7310 957 0.98 0.00456 12.39 0.214 0.98 TPSWC4B 12600 1670 0.494 0.00457 21.66 0.0921 0.521 TPSWC5B 0.80 15800 2160 0.268 0.00300 26.97 0.132 0.326 TPBBSW6 0.5 14600 1850 0.59 0.00422 25.66 0.375 0.65 TPBBSW7 30 22400 2850 2.82 0.0556 37.01 2.15 2.82
Nov 7 & 8, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 1000 90 1.09 0.01430 1.75 0.147 1.09 TPSWC2B 710 57 1.12 0.00892 1.26 0.172 1.12 TPSWC3B 4550 559 1.73 0.01230 7.46 0.777 1.73 TPSWC4B 11600 1500 0.920 0.00579 20.54 0.157 0.920 TPSWC5B 0.53 17200 2240 0.394 0.003 29.23 0.133 0.394 TPBBSW6 1.1 16000 2140 0.20 0.00300 25.86 0.19 0.18 TPBBSW7 25 21100 1880 2.74 0.0604 36.86 2.32 2.74 Nov 14 & 15, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 1050 96 1.03 0.01850 1.92 0.201 1.03 TPSWC2B 748 59 0.97 0.01120 1.38 0.26 0.97 TPSWC3B 3540 450 1.21 0.00826 6.44 0.539 1.21 TPSWC4B 14900 2060 0.428 0.00680 25.49 0.0922 0.428 TPSWC5B 0.80 17100 2400 0.508 0.00300 29.41 0.167 0.549 TPBBSW6 0.8 17800 2360 0.29 0.00701 30.31 0.36 0.29 TPBBSW7 22 21200 2720 2.76 0.0843 35.98 2.88 2.76
Nov 21 & 22, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 711 52 0.86 0.01340 1.32 0.138 0.86 TPSWC2B 364 28 1.06 0.01070 0.73 0.176 1.06 TPSWC3B 426 32 1.10 0.01100 1.01 0.131 1.10 TPSWC4B 13600 1840 0.564 0.00698 23.54 0.239 0.669 TPSWC5B 2.10 18800 2490 0.200 0.00859 31.05 0.177 0.225 TPBBSW6 1.9 18000 2430 0.20 0.00300 30.42 0.072 0.23 TPBBSW7 34 20900 2770 3.48 0.0935 36.43 2.39 3.48 Nov 28 & 29, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 893 78 1.63 0.01650 1.61 0.257 1.63 TPSWC2B 377 28 1.44 0.01020 0.75 0.168 1.44 TPSWC3B 2700 345 1.86 0.01010 4.87 0.634 1.86 TPSWC4B 59 TPSWC5B 59.8 TPBBSW6 14.0 17000 2360 0.20 0.01180 29.64 0.08 0.28 TPBBSW7 24 22300 2820 1.67 0.0960 36.05 2.41 1.67
Dec 5 to 8, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 1.15 0.00361 1.48 0.28 1.15 48.1 TPSWC2B 1.14 0.00489 0.80 0.237 1.14 51.3 TPSWC3B 1.62 0.00300 2.43 0.463 1.62 10.6 TPSWC4B 9100 1130 0.918 0.01010 15.94 0.132 0.918 67.4 TPSWC5B 0.53 18200 2440 0.476 0.00482 31.96 0.18 0.476 33 TPBBSW6 0.8 18100 2430 0.29 0.00412 31.03 0.047 0.29 5.3 TPBBSW7 16 22000 2630 1.83 0.1020 36.18 2.07 1.83 192 Dec 12 & 13, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 525 39 1.49 0.01910 1.01 0.245 1.49 TPSWC2B 265 13 1.24 0.01210 0.57 0.269 1.24 TPSWC3B 267 15 1.47 0.00964 0.60 0.294 1.47 TPSWC4B 16400 2080 0.426 0.00845 26.93 0.0479 0.465 TPSWC5B 1.10 18200 2380 0.210 0.00540 30.57 0.102 0.210 TPBBSW6 1.1 16200 2330 0.20 0.00858 30.57 0.109 0.23 TPBBSW7 10 22400 2680 2.66 0.1090 35.98 2.1 2.91
Dec 19 & 20, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 576 46 1.27 0.01690 1.10 0.338 1.30 TPSWC2B 256 13 1.25 0.01180 0.55 0.272 1.29 TPSWC3B 444 39 1.17 0.01380 0.79 0.426 1.17 TPSWC4B 10000 1330 0.808 0.01320 17.26 0.22 0.838 TPSWC5B 0.80 18900 2580 0.368 0.00401 31.44 0.203 0.368 TPBBSW6 0.5 16900 2330 0.26 0.00733 27.51 0.135 0.32 TPBBSW7 23 20900 2760 1.32 0.1030 35.38 1.9 1.32 Dec 27 & 28, 2016 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 417 28 1.45 0.01600 0.81 0.141 1.45 TPSWC2B 272 13 1.79 0.01160 0.55 0.157 1.79 TPSWC3B 214 10 1.16 0.01140 0.46 0.209 1.16 TPSWC4B 11000 1530 1.060 0.01050 19.53 0.0352 1.060 TPSWC5B 1.10 18400 2570 0.474 0.00405 31.74 0.0515 0.474 TPBBSW6 1.1 17000 2280 0.42 0.00300 27.82 0.0545 0.46 TPBBSW7 15 20900 2810 2.44 0.1230 35.05 1.85 2.44
Jan 3 & 4, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 462 34 0.70 0.01960 0.90 0.184 0.72 TPSWC2B 282 13 1.51 0.01670 0.59 0.198 1.52 TPSWC3B 215 11 1.33 0.01260 0.47 0.247 1.35 TPSWC4B 9250 1220 1.470 0.00300 15.70 0.0935 1.470 TPSWC5B 0.80 23000 2710 0.200 0.00300 32.24 0.0669 0.225 TPBBSW6 0.8 17200 2530 0.20 0.00695 30.33 0.0551 0.23 TPBBSW7 27 22400 2810 2.52 0.0961 34.86 2.19 2.52 Jan 9 & 10, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 379 23 1.37 0.01980 0.78 0.109 1.38 TPSWC2B 227 11 0.72 0.01120 0.50 0.223 0.75 TPSWC3B 160 1 1.10 0.01040 0.40 0.149 1.12 TPSWC4B 11800 1480 0.720 0.03260 18.80 0.0926 0.728 TPSWC5B 10.00 22600 2820 0.362 0.01170 33.94 0.184 0.362 TPBBSW6 0.5 15700 2120 0.23 0.00502 26.75 0.041 0.27 TPBBSW7 23 23800 2790 1.81 0.1180 35.23 1.81 1.81
Jan 16 & 17, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 390 24 1.54 0.00300 0.79 0.147 1.54 TPSWC2B 205 7 1.46 0.01910 0.47 0.196 1.48 TPSWC3B 172 3 1.60 0.01260 0.44 0.278 1.63 TPSWC4B 14000 1820 0.512 0.00300 23.46 0.0529 0.538 TPSWC5B 0.80 19500 2560 0.418 0.00366 31.96 0.0922 0.445 TPBBSW6 0.8 17000 2300 0.20 0.00564 29.10 0.142 0.200 U TPBBSW7 25 19900 2690 2.42 0.1170 34.31 2.38 2.42 Jan 23 & 24, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 365 22 1.69 0.03280 0.76 0.115 1.69 TPSWC2B 196 7 1.52 0.02110 0.46 0.144 1.54 TPSWC3B 175 2 1.35 0.01680 0.44 0.328 1.39 TPSWC4B 11900 1580 0.656 0.01530 21.08 0.0389 0.661 TPSWC5B 1.60 19600 2620 0.256 0.01030 33.88 0.102 1.930 TPBBSW6 0.8 19500 2670 0.45 0.00347 34.16 0.0395 0.46 TPBBSW7 38 19900 2600 2.16 0.1250 34.53 2.29 2.16
Jan 30 & 31, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 348 20 1.03 0.02950 0.71 0.167 1.03 TPSWC2B 205 6 0.99 0.01990 0.45 0.155 1.00 TPSWC3B 181 2 1.20 0.01630 0.45 0.383 1.26 TPSWC4B 10700 1450 0.770 0.00858 19.12 0.162 0.791 TPSWC5B 12.00 19800 2640 0.200 0.00439 33.53 0.0805 0.225 U TPBBSW6 1.0 20800 2590 0.43 0.00300 33.01 0.0272 0.44 TPBBSW7 11 19800 2700 0.296 0.0030 33.68 0.0535 0.296 Feb 6 & 7, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 384 20 1.51 0.04160 0.73 0.283 1.51 TPSWC2B 196 6 0.02640 0.45 0.185 TPSWC3B 294 11 1.31 0.01750 0.64 0.885 1.34 TPSWC4B 9910 1270 0.666 0.00581 16.73 0.243 0.706 TPSWC5B 12.00 20800 2670 0.444 0.00944 33.35 0.126 0.444 TPBBSW6 6.1 21000 2740 0.45 0.01150 33.09 0.0306 0.45 TPBBSW7 1 20000 2690 0.20 0.0083 33.19 0.054 0.205 U
Feb 13 & 14, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 354 20 1.24 0.02570 0.71 0.156 1.24 TPSWC2B 210 6 0.85 0.01550 0.47 0.181 0.86 TPSWC3B 588 39 0.80 0.01270 1.14 0.801 0.83 TPSWC4B 9530 1240 0.856 0.00300 16.33 0.241 0.900 TPSWC5B 15.00 22100 2680 0.914 0.02890 34.38 0.15 0.914 TPBBSW6 0.8 20800 2700 0.61 0.00457 33.37 0.026 0.61 TPBBSW7 1 19500 2780 0.50 0.0039 33.61 0.253 0.50 Feb 20 & 21, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 374 20 1.31 0.03920 0.74 0.384 1.31 TPSWC2B 227 7 0.86 0.01870 0.49 0.172 0.89 TPSWC3B 1610 140 1.41 0.01460 2.90 1.13 1.42 TPSWC4B 9340 1190 0.816 0.00456 15.23 0.229 0.884 TPSWC5B 31.00 20700 2870 0.440 0.02180 34.75 0.152 0.440 TPBBSW6 1.3 21500 2770 0.20 0.00456 34.95 0.0277 0.205 U TPBBSW7 1 20000 2890 0.28 0.0046 34.85 0.0479 0.28
Feb 28 to Mar 1, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 362 20 1.45 0.03240 0.74 0.287 1.45 TPSWC2B 435 23 1.33 0.02200 0.84 0.397 1.38 TPSWC3B 2200 213 1.75 0.01980 3.83 0.917 1.77 TPSWC4B 14300 1840 0.530 0.00462 23.05 0.122 0.552 TPSWC5B 12.00 20900 2860 0.638 0.01080 34.84 0.149 0.638 TPBBSW6 1.1 23000 2790 0.40 0.00456 34.85 0.048 0.40 TPBBSW7 1 22300 2850 0.48 0.0046 35.80 0.0811 0.48 Mar 6 & 7, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 377 22 1.15 0.03610 0.78 0.126 1.15 71.4 TPSWC2B 639 47 1.24 0.00790 1.28 0.319 1.26 50.2 TPSWC3B 3000 340 1.07 0.02240 5.50 0.348 1.11 48.3 TPSWC4B 18000 2350 0.444 0.00456 30.47 0.1 0.450 26.37 TPSWC5B 2.10 25800 2750 0.602 0.00617 36.06 0.126 0.602 9.34 TPBBSW6 1.3 18200 2270 0.55 0.00693 28.86 0.0458 0.58 0.1 TPBBSW7 2 21200 2930 0.44 0.0072 35.73 0.0435 0.44 31.8
Mar 13 & 14, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 377 22 1.49 0.04600 0.76 0.131 1.50 TPSWC2B 1380 133 1.41 0.02190 2.51 0.261 1.45 TPSWC3B 2640 285 1.31 0.02160 4.75 0.433 1.33 TPSWC4B 16100 1920 0.680 0.00643 24.82 0.0929 0.688 TPSWC5B 6.70 27000 3110 0.518 0.00626 37.16 0.0584 0.518 TPBBSW6 0.8 22800 2880 0.37 0.00916 34.10 0.0932 0.39 TPBBSW7 1 21800 2760 0.45 0.0046 35.24 0.0729 0.45 Mar 20 & 21, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 388 21 1.54 0.02990 0.81 0.0854 1.54 TPSWC2B 1680 149 1.21 0.02350 3.03 0.287 1.21 TPSWC3B 2090 190 1.50 0.02040 3.77 0.326 1.51 TPSWC4B 13300 1740 0.742 0.00651 22.53 0.0622 0.750 TPSWC5B 6.90 22500 2980 0.766 0.00520 37.10 0.0512 0.766 TPBBSW6 3.2 19600 2580 0.47 0.00838 33.60 0.0687 0.48 TPBBSW7 1 20900 2760 0.55 0.0046 35.09 0.0459 0.55
Mar 27 & 28, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 394 22 1.45 0.04310 0.83 0.115 1.45 TPSWC2B 1600 136 1.26 0.02110 2.89 0.195 1.33 TPSWC3B 2890 300 1.45 0.01890 5.28 0.517 1.59 TPSWC4B 19000 2320 0.634 0.01340 29.34 0.0717 0.640 TPSWC5B 0.53 23000 2970 0.326 0.01120 36.16 0.0371 0.326 TPBBSW6 1.1 24200 2600 0.22 0.01170 32.02 0.045 0.22 TPBBSW7 1 24600 2860 0.29 0.0091 34.72 0.0575 0.29 Apr 3 & 4, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 428 27 1.66 0.03500 0.88 0.17 1.66 TPSWC2B 1620 150 1.70 0.02590 2.95 0.317 1.70 TPSWC3B 2520 270 1.73 0.01970 4.56 0.584 1.78 TPSWC4B 19200 2370 0.730 0.00700 30.72 0.201 0.730 TPSWC5B 0.53 23100 2960 0.662 0.00456 37.37 0.0374 0.662 TPBBSW6 1.1 22800 2900 0.66 0.00456 37.10 0.0469 0.66 TPBBSW7 2 23600 2810 0.57 0.0070 35.91 0.085 0.57
Apr 10 & 11, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 493 29 1.04 0.03140 0.93 0.115 1.04 TPSWC2B 1730 145 1.43 0.02520 2.99 0.1 1.43 TPSWC3B 2150 211 1.26 0.02200 4.18 0.105 1.26 TPSWC4B 22100 2840 0.636 0.00703 35.69 0.063 0.636 TPSWC5B 6.70 23400 3050 0.542 0.01260 38.63 0.0757 0.542 TPBBSW6 1.1 23900 3070 0.34 0.00516 38.76 0.026 0.34 TPBBSW7 1 24100 3050 0.59 0.0046 39.06 0.027 0.59 Apr 24 & 25, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 540 36 0.95 0.03640 1.08 0.0738 0.95 TPSWC2B 2030 182 1.15 0.02240 3.56 0.0857 1.16 TPSWC3B 12300 1550 1.60 0.01580 21.54 0.456 1.60 TPSWC4B 23900 3210 0.566 0.00554 41.09 0.0591 0.566 TPSWC5B 1.10 23500 3090 0.432 0.00456 40.36 0.0347 0.432 TPBBSW6 2.1 22400 3010 0.44 0.00580 39.13 0.0284 0.45 TPBBSW7 1 24900 3270 0.53 0.0046 40.11 0.0881 0.53
May 1 & 2, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 542 36 1.44 0.05830 1.09 0.103 1.44 TPSWC2B 2100 201 1.03 0.01560 3.66 0.107 1.03 TPSWC3B 13400 1510 1.45 0.00655 23.23 0.562 1.45 TPSWC4B 24700 3860 0.640 0.00456 42.18 0.0685 0.640 TPSWC5B 2.70 24000 3110 0.618 0.00456 41.13 0.0918 0.618 TPBBSW6 1.6 24500 3130 0.68 0.00456 39.76 0.0508 0.68 TPBBSW7 1 22700 3140 0.58 0.0046 40.28 0.105 0.58 May 8 & 9, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 594 40.0 1.12 0.0278 1.13 0.103 1.12 TPSWC2B 3190 400 1.08 0.0200 3.88 0.117 1.08 TPSWC3B 12300 1570 1.87 0.0412 21.62 0.29 1.87 TPSWC4B 26000 3300 1.12 0.0177 41.72 0.0878 1.12 TPSWC5B 6.1 25200 3330 0.822 0.0858 42.33 0.164 0.822 TPBBSW6 2.1 23900 3070 0.458 0.0216 40.25 0.0573 0.458 TPBBSW7 1.6 24600 3180 0.714 0.0113 40.25 0.0813 0.714
May 15 & 16, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 613 42.7 1.16 0.0227 1.21 0.0805 1.16 TPSWC2B 2150 221 1.02 0.0211 4.08 0.0714 1.02 TPSWC3B 10100 1400 1.83 0.0211 18.95 0.271 1.83 TPSWC4B 29400 2990 0.69 0.0068 39.19 0.0691 0.70 TPSWC5B 2.9 25100 3340 0.494 0.0133 42.25 0.026 0.494 TPBBSW6 0.8 23200 3170 0.490 0.0046 40.19 0.026 0.490 TPBBSW7 1.3 23200 3270 0.440 0.0046 41.27 0.0415 0.440 May 22 & 23, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 686 28.8 1.01 0.0218 1.28 0.147 1.01 TPSWC2B 2430 237 1.33 0.0172 4.27 0.14 1.33 TPSWC3B 11200 1490 1.83 0.0217 20.88 0.243 1.83 TPSWC4B 25200 3130 0.33 0.0049 39.74 0.112 0.33 TPSWC5B 1.6 26700 3330 0.288 0.0046 41.02 0.0374 0.288 TPBBSW6 0.5 18200 2650 0.262 0.0046 41.46 0.0632 0.262 TPBBSW7 1.3 25200 3410 0.208 0.0046 42.19 0.0743 0.208
May 30 & 31, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 629 44.8 1.18 0.0243 1.19 0.148 1.18 TPSWC2B 2410 243 1.28 0.0231 4.40 0.109 1.28 TPSWC3B 9890 1440 2.08 0.0272 19.02 0.597 2.08 TPSWC4B 22600 3130 0.82 0.0050 39.07 0.0769 0.83 TPSWC5B 22500 3260 0.428 0.0065 40.62 0.026 0.428 TPBBSW6 25900 3410 0.200 0.0046 39.19 0.0438 0.205 TPBBSW7 24600 3390 0.724 0.0081 42.02 0.19 0.724 Jun 5 to 7, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 573 45.1 1.04 0.0259 1.15 0.141 1.04 TPSWC2B 2370 254 1.31 0.0233 4.37 0.0363 1.31 TPSWC3B 4020 478 2.44 0.0288 7.41 0.467 2.44 TPSWC4B 21800 3030 0.67 0.0046 38.43 0.0778 0.67 TPSWC5B 1.9 23400 3290 0.346 0.0046 40.64 0.026 0.346 TPBBSW6 0.5 23500 3280 0.542 0.0046 39.73 0.0533 0.542 TPBBSW7 41.0 24600 3370 0.530 0.0046 41.81 0.114 0.530
Jun 14 & 15, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 1770 211.0 1.55 0.0172 3.29 0.27 1.98 TPSWC2B 2260 259 1.50 0.0168 4.16 0.146 1.71 TPSWC3B 3020 334 1.67 0.0174 5.40 0.216 1.73 TPSWC4B 16600 2280 0.92 0.0147 30.21 0.026 0.92 TPSWC5B 4.3 22400 3100 0.484 0.0104 40.03 0.093 0.484 TPBBSW6 1.3 20800 2850 0.306 0.0056 36.55 0.0619 0.318 TPBBSW7 25.0 24500 3330 0.802 0.0201 41.63 0.262 0.802 Jun 19 & 20, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 1780 207.0 2.04 0.0250 3.16 0.779 2.04 TPSWC2B 2090 234 1.60 0.0185 4.08 0.392 1.68 TPSWC3B 3100 295 1.39 0.0213 5.59 0.254 1.41 TPSWC4B 21900 1760 1.14 0.0147 25.89 0.0336 1.14 TPSWC5B 5.3 22800 3030 0.552 0.0087 39.70 0.11 0.552 TPBBSW6 0.8 17200 2540 0.432 0.0046 36.41 0.068 0.432 TPBBSW7 16.0 22900 3210 0.922 0.0268 40.89 0.493 0.922
Jun 26 & 27, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 1630 204.0 2.46 0.0180 2.89 0.764 2.46 TPSWC2B 1980 240 1.84 0.0188 3.63 0.306 1.88 TPSWC3B 2830 309 1.83 0.0174 5.14 0.22 1.86 TPSWC4B 11200 1680 1.33 0.0102 23.13 0.091 1.33 TPSWC5B 3.7 22000 2940 0.634 0.0067 37.25 0.0405 0.667 TPBBSW6 0.5 22300 2900 0.582 0.0046 37.72 0.0703 0.592 TPBBSW7 15.0 23700 3150 1.430 0.0284 40.17 0.533 1.430 Jul 5 to 8, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 1490 187.0 2.82 0.0139 2.52 0.98 2.82 TPSWC2B 1560 192 2.18 0.0332 2.60 0.251 2.18 TPSWC3B 2210 243 2.46 0.0359 3.99 0.412 2.46 TPSWC4B 10600 1370 1.19 0.0076 18.47 0.11 1.20 TPSWC5B 4.0 21900 2870 0.220 0.0074 38.66 0.0321 0.220 TPBBSW6 0.5 24600 3310 0.384 0.0046 39.46 0.0416 0.384 TPBBSW7 20.0 28700 3170 1.340 0.0347 40.45 0.636 1.340
Jul 10 & 11, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 1080 166.0 2.70 0.0273 1.97 0.674 2.70 TPSWC2B 980 139 1.95 0.0234 1.88 0.157 1.95 TPSWC3B 2510 250 3.92 0.0372 4.50 1.12 3.92 TPSWC4B 11300 1480 1.03 0.0108 19.24 0.136 1.04 TPSWC5B 9.3 23200 5900 0.294 0.0186 39.75 0.0502 0.294 TPBBSW6 0.8 21100 3190 0.492 0.0046 39.97 0.0419 0.492 TPBBSW7 55.0 23900 5490 1.600 0.0267 40.60 0.334 1.600 Jul 17 & 18, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 589 126.0 1.85 0.0299 1.22 0.381 1.86 TPSWC2B 606 98 1.88 0.0296 1.29 0.192 1.88 TPSWC3B 1290 131 1.93 0.0294 2.54 0.325 1.93 TPSWC4B 14100 1890 0.72 0.0082 24.95 0.0806 0.72 TPSWC5B 1.9 23400 3080 0.436 0.0046 38.97 0.0959 0.436 TPBBSW6 5.8 23100 3170 0.728 0.0089 37.83 0.0428 0.728 TPBBSW7 28.0 25300 3210 0.688 0.0068 40.90 0.0359 0.688
Jul 24 & 25, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 596 126.0 1.89 0.0240 1.22 0.218 1.89 TPSWC2B 557 68 1.64 0.0178 1.09 0.161 1.64 TPSWC3B 648 63 1.60 0.0182 1.24 0.21 1.60 TPSWC4B 12500 1570 0.98 0.0119 20.70 0.0502 0.98 TPSWC5B 2.1 24200 2990 0.602 0.0053 38.16 0.0567 0.602 TPBBSW6 4.5 21900 2940 0.676 0.0140 37.95 0.0349 0.676 TPBBSW7 8.5 24700 3170 1.230 0.0217 40.25 0.408 1.230 Jul 31 & Aug 1, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 602 94.0 1.55 0.0173 1.18 0.21 1.55 TPSWC2B 479 36 1.40 0.0144 0.93 0.16 1.40 TPSWC3B 350 1.32 0.0131 0.72 0.194 1.32 TPSWC4B 14100 1610 0.66 0.0094 22.54 0.0677 0.66 TPSWC5B 0.8 23000 2810 1.510 0.0046 37.64 0.0465 1.510 TPBBSW6 0.8 25800 2880 0.224 0.0046 38.68 0.0529 0.224 TPBBSW7 9.1 23000 2900 0.568 0.0108 40.08 0.276 0.580
Aug 7 & 8, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 601 90.0 1.75 0.0432 1.12 0.235 1.75 TPSWC2B 444 16 1.19 0.0141 0.84 0.159 1.19 TPSWC3B 439 40 1.92 0.0363 0.83 0.293 1.92 TPSWC4B 14800 1790 0.81 0.0112 23.71 0.0781 0.81 TPSWC5B 1.3 22300 2780 0.408 0.0049 35.59 0.0685 0.408 TPBBSW6 1.6 24400 3130 0.468 0.0077 37.98 0.0476 0.468 TPBBSW7 5.6 23700 3050 0.592 0.0118 39.33 0.0943 0.592 Aug 14 & 15, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 562 77.0 1.69 0.0196 1.10 0.209 1.69 TPSWC2B 386 18 1.50 0.0120 0.76 0.181 1.50 TPSWC3B 385 8 1.73 0.0139 0.74 0.354 1.73 TPSWC4B 12100 1520 0.76 0.0079 19.95 0.0553 0.76 TPSWC5B 1.9 25600 3020 0.584 0.0072 36.36 0.1 0.584 TPBBSW6 1.1 23000 2900 0.690 0.0046 36.93 0.0859 0.704 TPBBSW7 10.0 23900 2960 3.460 0.0320 39.73 0.94 3.460
Aug 21 & 22, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 505 60.5 1.50 0.0237 0.98 0.183 1.50 TPSWC2B 365 12 1.85 0.0162 0.71 0.142 1.85 TPSWC3B 371 5 1.65 0.0131 0.70 0.176 1.66 TPSWC4B 10600 1240 1.51 0.0281 16.42 0.125 1.51 TPSWC5B 4.4 23400 2900 0.702 0.0164 36.40 0.026 0.702 TPBBSW6 1.6 23100 3060 0.586 0.0064 35.84 0.0276 0.602 TPBBSW7 11.0 24300 3320 1.780 0.0468 38.81 1.01 1.790 Aug 28 & 29, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 486 69.0 1.46 0.0160 0.96 0.176 1.47 TPSWC2B 260 17 1.62 0.0115 0.54 0.156 1.63 TPSWC3B 192 12 1.55 0.0114 0.40 0.142 1.56 TPSWC4B 9730 1200 1.12 0.0138 16.38 0.582 1.13 TPSWC5B 8.5 22200 2840 0.634 0.0118 35.09 0.0535 0.640 TPBBSW6 1.4 21700 3010 0.890 0.0070 33.72 0.0484 0.910 TPBBSW7 2.1 23800 3260 1.710 0.0652 38.13 1 1.720
Sep 21 & 22, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 9080 1120.0 3.10 0.0282 15.61 1.96 3.10 TPSWC2B 1330 141 1.00 0.0046 2.52 0.115 1.00 TPSWC3B 856 81 1.16 0.0046 1.63 0.11 1.16 TPSWC4B 1780 139 1.20 0.0046 3.27 0.145 1.20 TPSWC5B 5.1 22100 2860 1.120 0.0046 38.38 0.428 1.120 TPBBSW6 9.6 19800 2410 1.750 0.0046 32.40 0.81 1.750 TPBBSW7 2.9 22700 2480 1.330 0.0284 38.16 0.789 1.340 Sept 26 to 28, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 9720 1250 3.9 0.082 15.4 3.05 TPSWC2B 1040 110 1.3 0.017 1.83 0.23 TPSWC3B 587 44.1 1.1 0.017 1.13 0.206 TPSWC4B 1970 215 1.3 0.012 3.33 0.247 TPSWC5B 23500 3930 1.9 0.029 37.08 0.781 TPBBSW6 22600 2960 3.6 0.044 31.62 2.26 TPBBSW7 30200 4150 2.4 0.074 38.12 1.29
Oct 2 & 3, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L SU mg/L mg/L pCi/L TPSWC1B 9680 1190 3.8 0.1 15.23 3.11 TPSWC2B 537 43.8 1.2 0.01 0.95 0.203 TPSWC3B 534 34.9 1.2 0.009 0.95 0.188 TPSWC4B 13900 1650 0.88 0.009 19.74 0.206 TPSWC5B 1.1 28300 3730 2.2 0.037 42.32 0.901 TPBBSW6 3.4 14100 1850 0.63 0.0082 24.43 0.321 0.89 TPBBSW7 1.3 25500 3420 2.7 0.074 38.1 1.51 October 9, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L Salinity unit mg/L mg/L pCi/L TPSWC1B 10200 1340 4.92 0.13 14.94 3.87 2.90 TPSWC2B 3790 453 1 0.011 6.01 0.626 1.00 TPSWC3B 4670 529 1.56 0.009 7.37 0.716 0.51 TPSWC4B 2290 268 1.2 0.011 3.65 0.255 1.20 TPSWC5B 1.1 21600 2890 0.85 0.0082 29.25 0.284 0.850 TPBBSW6 3.4 19600 2630 1.6 0.009 27.1 0.734 1.600 TPBBSW7 1.3 29400 4120 2.3 0.089 37.37 1.9 2.300
Oct 16 & 17, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L Salinity unit mg/L mg/L pCi/L TPSWC1B 10800 1280 4.4 0.082 14.69 3.37 4.40 TPSWC2B 330 21.6 1.3 0.018 0.67 0.231 1.30 TPSWC3B 351 17.5 1.2 0.01 0.71 0.244 1.20 TPSWC4B 2310 278 1.3 0.0082 3.14 0.234 1.30 TPSWC5B 2.1 22000 3080 2.4 0.0082 29.1 0.266 2.400 TPBBSW6 19 22900 3240 2.6 0.019 28.44 1.33 2.600 TPBBSW7 1.3 29200 4040 2.8 0.077 37.68 2.12 2.800 Oct 23 & 24, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L Salinity unit mg/L mg/L pCi/L TPSWC1B 9020 1080 6.2 0.287 14.49 6.02 6.20 TPSWC2B 2830 267 1.62 0.012 4.58 0.499 1.60 TPSWC3B 3450 346 1.55 0.0082 5.83 0.53 1.80 TPSWC4B 5000 634 1.21 0.013 10.2 0.216 1.20 TPSWC5B 20900 2910 1.36 0.012 28.27 0.387 1.400 TPBBSW6 21700 2950 3.23 0.019 28.54 1.68 3.200 TPBBSW7 29500 4000 3.49 0.09 37.16 2.89 3.500
Oct 30 & 31, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L Salinity unit mg/L mg/L pCi/L TPSWC1B 10300 1110 6.15 0.07 14.08 5.59 6.20 TPSWC2B 241 13.9 1.18 0.017 0.5 0.205 1.20 TPSWC3B 1420 112 1.49 0.016 2.51 0.266 1.50 TPSWC4B 1400 125 1.17 0.015 2.26 0.261 1.20 TPSWC5B 21600 3350 1.15 0.011 30.25 0.407 1.200 TPBBSW6 21500 2910 2.3 0.046 29.69 1.37 2.300 TPBBSW7 27200 3140 3.31 0.085 37.32 2.96 3.300 Nov 6 & 7, 2017 Ammonia as N, Chlorophyll aChloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L Salinity unit mg/L mg/L pCi/L TPSWC1B 9860 1090 6.13 0.12 13.31 5.69 6.10 TPSWC2B 584 39.4 1.53 0.027 1.08 0.302 1.50 TPSWC3B 1840 169 1.39 0.013 3.13 0.361 1.40 TPSWC4B 17700 1930 1 0.02 23.5 0.147 1.00 TPSWC5B 30500 4220 2.11 0.045 41.83 1.22 2.100 TPBBSW6 23400 3270 1.83 0.044 30.22 0.612 1.800 TPBBSW7 28200 3900 3.15 0.074 37.09 2.67 3.100
Nov 13 & 14, 2017 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L Salinity unit mg/L mg/L pCi/L TPSWC1B 9770 1080 8.57 0.122 12.83 5.12 8.60 TPSWC2B 1430 133 1.66 0.021 2.55 0.454 1.70 TPSWC3B 1980 199 1.54 0.018 3.84 0.535 1.50 TPSWC4B 18100 2420 0.43 0.0082 23.05 0.128 0.43 TPSWC5B 22200 3010 0.922 0.0082 28.65 0.203 0.920 TPBBSW6 17800 2430 1.11 0.052 22.41 0.437 1.100 TPBBSW7 29000 3910 3.22 0.074 36.96 2.4 3.200 Nov 21 & 22, 2017 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L Salinity unit mg/L mg/L pCi/L TPSWC1B 8160 880 7.42 0.135 11.78 5.49 7.40 TPSWC2B 2420 228 1.82 0.016 4.25 0.788 1.80 TPSWC3B 3090 279 2 0.011 5.33 0.793 2.00 TPSWC4B 14500 1910 0.241 0.0082 20.95 0.156 0.24 TPSWC5B 17600 2330 0.698 0.0082 24.94 0.18 0.700 TPBBSW6 20600 2850 0.877 0.0082 29.01 0.263 0.880 TPBBSW7 25200 3360 3.51 0.064 36.65 2.72 3.500
Nov 27 & 28, 2017 Ammonia as N, Chlorophyll Chloride Sulfate Nitrogen, Kjeldahl Phosphorus as P Salinity Dissolved Nitrogen, Total Tritium Sample ID mg/m3 mg/L mg/L mg/L mg/L Salinity unit mg/L mg/L pCi/L TPSWC1B 2620 278 3.6 0.054 4.36 1.32 3.60 TPSWC2B 3030 264 2.17 0.0082 5.22 0.712 2.20 TPSWC3B 3310 291 2.19 0.0082 5.75 0.743 2.20 TPSWC4B 16000 2090 0.619 0.0082 22.57 0.222 0.62 TPSWC5B 21800 2980 0.655 0.0082 30.11 0.223 0.650 TPBBSW6 20500 2870 0.694 0.014 28.39 0.377 0.690 TPBBSW7 26700 3600 3.79 0.057 36.97 2.98 3.800
Surface Water Results 1st Quarter (JunJul 2010)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Phosphorous Ammonia mg/L mg/L pCi/L mg/L mg/L mg/L mg/L TPBBSW1B 19000 2700 8 0.082 0.36 0.37 0.018 TPBBSW2B 21000 2900 11.5 0.08 0.26 0.26 0.018 TPBBSW3B 19000 3000 0.12 0.11 0.25 0.019 TPBBSW4B 20000 2900 0.05 0.3 0.33 0.02 TPBBSW5B 19000 2700 0.14 0.41 0.42 0.016 TPSWC1B 84 6.5 24.0 0.21 1.2 1.2 0.0072 TPSWC1T 85 5.9 9.6 0.16 1.1 1.1 0.0044 TPSWC2B 120 5.1 27.52 0.2 1.4 1.4 0.0065 TPSWC2T 130 4.7 34.24 0.22 1.3 1.3 0.0044 TPSWC3B 250 14 30.08 0.17 1.1 1.1 0.0046 TPSWC3T 200 10 35.84 0.12 1.2 1.2 0.0048 TPSWC4B 13000 1700 1276 0.65 1.7 0.89 0.02 TPSWC4T 9300 1200 890.01 0.8 1.7 1.7 0.011 TPSWC5B 261.6 TPSWC5T TPSWC6B 160 56 7.975 0.1 0.42 0.47 0.013 TPSWC6T 150 55 11.803 0.12 0.36 0.38 0.0044
Surface Water Results 2nd Quarter (Sept 2010)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Phosphorous Ammonia mg/L mg/L pCi/L mg/L mg/L mg/L mg/L TPBBSW1B 16000 2100 16.9 TPBBSW2B 11000 1200 12.6 TPBBSW3B 16000 2200 13.6 TPBBSW4B 18000 3300 6.9 TPBBSW5B 15000 2200 15.2 TPSWC1B 42 6.6 12.3 TPSWC1T 39 6.3 8.4 TPSWC2B 88 2.7 92.0 TPSWC2T 72 3.1 47.6 TPSWC3B 92 2.1 41.0 TPSWC3T 92 2.0 44.6 TPSWC4B 860 96 74.0 TPSWC4T 460 44 55.9 TPSWC5B 23000 2800 801.0 TPSWC5T 15000 2100 178.0 TPSWC6B 88 33 43.3 TPSWC6T 87 33 17.3
Surface Water Results 3rd Quarter (Dec 2010)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Ammonia Phosphorous mg/L mg/L pCi/L mg/L mg/L mg/L mg/L TPBBSW1B 19000 2500 11.4 TPBBSW2B 16000 2100 23.6 TPBBSW3B 17000 2100 30.5 TPBBSW4B 19000 2400 26.7 TPBBSW5B 17000 2200 24.6 TPSWC1B 73 2.4 85.8 TPSWC1T 79 2 110 TPSWC2B 110 3.4 125 TPSWC2T 150 3.8 114 TPSWC3B 200 8.8 40.8 TPSWC3T 160 6.7 66.4 TPSWC4B 16000 2000 310 TPSWC4T 11000 1400 405 TPSWC5B 21000 2700 946 TPSWC5T 19000 2600 479 TPSWC6B 170 43 3.5 TPSWC6T 140 45 10.1
Surface Water Results 4th Quarter (Mar 2011)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Ammonia Phosphorous mg/L mg/L pCi/L mg/L mg/L mg/L mg/L TPBBSW1B 20000 2600 19.3 0.053 0.31 0.34 0.017 TPBBSW2B 21000 2700 13.1 0.072 0.2 0.25 0.017 TPBBSW3B 21000 2700 13.4 0.052 0.26 0.29 0.016 TPBBSW4B 21000 3700 34.5 0.065 0.25 0.27 0.016 TPBBSW5B 20000 2500 26.4 0.064 0.24 0.26 0.017 TPSWC1B 150 18 69.1 0.2 0.47 0.47 0.042 TPSWC1T 120 18 102.5 0.16 1.3 1.4 0.033 TPSWC2B 310 29 46.9 0.081 0.49 0.78 0.011 TPSWC2T 310 28 63 0.11 0.84 0.94 0.018 TPSWC3B 750 78 26.8 0.1 0.57 0.57 0.016 TPSWC3T 470 43 35.8 0.097 0.54 0.54 0.013 TPSWC4B 20000 2100 226 0.13 1.1 1.1 0.025 TPSWC4T 10000 1300 403 0.38 0.92 0.94 0.018 TPSWC5B 21000 3000 152 0.038 0.18 0.25 0.025 TPSWC5T 21000 4000 136 0.036 0.33 0.34 0.021 TPSWC6B 99 71 24.7 0.026 0.29 0.29 0.013 TPSWC6T 100 73 4 0.029 0.2 0.25 0.0089
Surface Water Results 5th Quarter (Jun 2011)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Ammonia Phosphorous mg/L mg/L pCi/L mg/L mg/L mg/L mg/L TPBBSW1B 28000 3400 16.4 TPBBSW2B 28000 3200 12.1 TPBBSW3B 26000 3100 19.1 TPBBSW4B 26000 3000 9.8 TPBBSW5B 26000 3100 13.9 TPSWC1B 300 30 84.5 TPSWC1T 300 29 93.3 TPSWC2B 2500 250 74.3 TPSWC2T 1700 190 75.4 TPSWC3B 5300 640 35.0 TPSWC3T 1600 150 55.0 TPSWC4B 27000 3900 8.6 TPSWC4T 28000 3200 12.6 TPSWC5B 27000 3100 12.2 TPSWC5T 27000 3100 3.7 TPSWC6B 25000 2800 5.6 TPSWC6T 15000 1800 16.7
Surface Water Results 6th Quarter (Sept 2011)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Ammonia Phosphorous mg/L mg/L pCi/L mg/L mg/L mg/L mg/L TPBBSW1B 20000 2500 32.6 0.1 0.28 0.34 0.052 TPBBSW2B 19000 2600 26.5 0.063 0.37 0.39 0.048 TPBBSW3B 20000 2600 21.9 0.053 0.34 0.37 0.022 TPBBSW4B 21000 2600 30.6 0.06 0.43 0.46 0.047 TPBBSW5B 19000 2500 23.9 0.076 0.63 0.65 0.049 TPSWC1B 190 16 17.6 0.23 0.94 0.96 0.0044 TPSWC1T 170 26 18.1 0.23 1 1 0.0044 TPSWC2B 120 12 15.4 0.22 1 1.6 0.0044 TPSWC2T 120 11 13.7 0.22 1.1 1.1 0.0044 TPSWC3B 91 15 10.3 0.37 1.1 1.1 0.0044 TPSWC3T 95 8.8 15.2 0.23 1 1.3 0.0044 TPSWC4B 16000 2200 449 0.34 0.97 1 0.14 TPSWC4T 3000 350 209 0.34 1.1 1.1 0.0051 TPSWC5B 22000 2900 231 0.17 0.42 0.45 0.022 TPSWC5T 20000 2700 41.6 0.11 0.34 0.37 0.033 TPSWC6B 130 43 31.4 0.097 0.4 0.42 0.0044 TPSWC6T 140 44 19.8 0.11 0.51 0.54 0.0044
Surface Water Results 7th Quarter (Dec 2011)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Ammonia Phosphorous mg/L mg/L pCi/L mg/L mg/L mg/L mg/L TPBBSW1B 12000 1800 4.9 TPBBSW2B 12000 1800 0 (7.3)
TPBBSW3B 14000 2000 1.5 (6.5)
TPBBSW4B 17000 2400 6.9 TPBBSW5B 18000 2300 7.5 TPSWC1B 79 5 50.8 TPSWC1T 74 4 46.3 TPSWC2B 84 6 61 TPSWC2T 84 6 56.6 TPSWC3B 90 9 45.9 TPSWC3T 90 8.1 40.1 TPSWC4B 16000 2200 297 TPSWC4T 12000 1600 780 TPSWC5B 20000 2900 470.0 TPSWC5T 16000 2100 40.9 TPSWC6B 120 50 37.9 TPSWC6T 120 46 16.4
Surface Water Results 8th Quarter (Mar 2012)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Ammonia Phosphorous mg/L mg/L pCi/L mg/L mg/L mg/L mg/L TPBBSW1B 17000 2700 12 0.06 0.35 0.36 0.0180 TPBBSW2B 20000 3000 3 0.14 0.36 0.37 0.0180 TPBBSW3B 21000 2900 19 0.06 0.31 0.31 0.0180 TPBBSW4B 20000 3000 6 0.16 0.27 0.28 0.0180 TPBBSW5B 20000 2900 13 0.12 0.31 0.33 0.0180 TPSWC1B 150 71 154 0.26 1.30 1.30 0.0044 TPSWC1T 160 72 165 0.28 1.20 1.20 0.0044 TPSWC2B 140 76 131 0.34 1.30 1.30 0.0044 TPSWC2T 140 77 182 0.25 1.10 1.10 0.0044 TPSWC3B 150 56 108 0.15 0.77 1.00 0.0044 TPSWC3T 160 57 90 0.05 1.10 1.10 0.0044 TPSWC4B 14000 2000 1160 0.47 0.93 0.99 0.0210 TPSWC4T 14000 2000 1240 0.03 1.10 1.20 0.0200 TPSWC5B 19000 2600 312 0.55 0.77 0.79 0.0320 TPSWC5T 18000 2700 197 0.12 0.29 0.31 0.0200 TPSWC6B 140 64 249 0.12 0.26 0.0044 TPSWC6T 120 63 35 0.16 0.24 0.0044
Surface Water Results 9th Quarter (Jun 2012)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Ammonia Phosphorous mg/L mg/L pCi/L mg/L mg/L mg/L mg/L TPBBSW1B 17000 2400 10.6 TPBBSW2B 17000 2300 14.6 TPBBSW3B 16000 2300 17.5 TPBBSW4B 17000 2300 9.8 TPBBSW5B 14000 2000 8.6 TPSWC1B 140 11 33.3 TPSWC1T 120 11 40.6 TPSWC2B 120 6 26.8 TPSWC2T 130 4.8 29.6 TPSWC3B 100 4.9 20.6 TPSWC3T 100 4.7 20.7 TPSWC4B 2500 340 267 TPSWC4T 1400 200 178 TPSWC5B 21000 2900 534 TPSWC5T 14000 1900 32.3 TPSWC6B 110 44 4.4 TPSWC6T 100 47 0.8
Surface Water Results 10th Quarter (Sept 2012)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Ammonia Phosphorous mg/L mg/L pCi/L mg/L mg/L mg/L mg/L TPBBSW1B 15000 2100 11.1 0.29 0.87 0.90 0.0044 TPBBSW2B 17000 2400 11.7 0.31 1.0 1.00 0.0044 TPBBSW3B 17000 2400 14.4 0.26 1.3 1.30 0.0044 TPBBSW4B 17000 2400 15.3 0.26 0.94 0.96 0.0044 TPBBSW5B 15000 2200 20.4 0.28 0.93 0.94 0.0044 TPSWC1B 84 1.4 43.8 0.36 2 2.01 0.011 TPSWC1T 84 1.5 42.4 0.37 1.6 1.61 0.0044 TPSWC2B 74 1.3 51.4 0.41 1.6 1.61 0.0044 TPSWC2T 76 2.1 60.4 0.46 1.5 1.52 0.0044 TPSWC3B 76 3.7 37.0 0.37 1.4 1.42 0.0044 TPSWC3T 76 1.1 36.5 0.41 1.4 1.41 0.0044 TPSWC4B 370 38 54.3 0.2 1.1 1.11 0.0044 TPSWC4T 350 36 59.1 0.59 1.2 1.21 0.0056 TPSWC5B 21000 2800 1095 0.5 1.4 1.41 0.028 TPSWC5T 15000 2100 33.1 0.47 1.1 1.13 0.0044 TPSWC6B 76 31 14.2 0.063 0.38 0.39 0.0044 TPSWC6T 75 31 21.2 0.066 0.44 0.52 0.0044
Surface Water Results 11th Quarter (Dec 2012)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Ammonia Phosphorous mg/L mg/L pCi/L mg/L mg/L mg/L mg/L TPBBSW1B 18000 2600 6.9 TPBBSW2B 18000 2600 8.0 TPBBSW3B 19000 2700 12.3 TPBBSW4B 19000 2700 10.5 TPBBSW5B 18000 2500 11.0 TPSWC1B 120 6 42.5 TPSWC1T 120 6 34.4 TPSWC2B 390 42 50.3 TPSWC2T 360 39 59.6 TPSWC3B 3000 430 31.9 TPSWC3T 420 42 39.9 TPSWC4B 13000 1800 100.4 TPSWC4T 10000 1400 110.7 TPSWC5B 18000 2600 121.7 TPSWC5T 18000 2500 15.6 TPSWC6B 190 66 27.5 TPSWC6T 180 65 8.1
Surface Water Results 12th Quarter (Mar 2013)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Ammonia Phosphorous mg/L mg/L pCi/L mg/L mg/L mg/L mg/L TPBBSW1B 22000 3200 3.4 0.047 0.36 0.37 0.004 TPBBSW2B 22000 3100 13.6 0.045 0.34 0.35 0.004 TPBBSW3B 21000 3000 9.6 0.029 0.38 0.39 0.004 TPBBSW4B 21000 3100 22.7 0.069 0.29 0.30 0.004 TPBBSW5B 21000 3100 18.2 0.032 0.37 0.38 0.004 TPSWC1B 290 19 60.4 0.16 1.60 1.61 0.0470 TPSWC1T 260 18 69.3 0.087 1 1 0.0044 TPSWC2B 440 48 58.7 0.067 1 0.7 0.0044 TPSWC2T 440 48 50.3 0.09 0.9 0.9 0.0044 TPSWC3B 3900 540 25.6 0.08 0.5 0.5 0.0220 TPSWC3T 850 93 12.3 0.065 1 0.7 0.0044 TPSWC4B 20000 2600 55.6 0.045 0.40 0 0.00 TPSWC4T 18000 2500 93.7 0.12 0.4 0.4 0.0044 TPSWC5B 21000 2900 40.3 0.071 0.30 0.31 0.004 TPSWC5T 21000 3000 48.4 0.12 0.30 0.31 0.004 TPSWC6B 120 78 7.0 0.055 0.3 0.33 0.0044 TPSWC6T 120 77 9.2 0.052 1.90 1.93 0.0044
Surface Water Results 13th Quarter (Jun 2013)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Ammonia Phosphorous mg/L mg/L pCi/L mg/L mg/L mg/L mg/L TPBBSW1B TPBBSW2B TPBBSW3B 20900 0.5 TPBBSW4B 21300 27.3 TPBBSW5B 17000 7.5 TPSWC1B 55.2 34.3 TPSWC1T 53.9 42.4 TPSWC2B 106 64.3 TPSWC2T 106 72.5 TPSWC3B 95.4 67.0 TPSWC3T 95.6 62.7 TPSWC4B 19500 1636.7 TPSWC4T 16300 1447.2 TPSWC5B 21500 140.7 TPSWC5T 22900 135.7 TPSWC6B 89.5 9.0 TPSWC6T 83.5 7.2
Surface Water Results 14th Quarter (Sept 2013)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Ammonia Phosphorous mg/L mg/L pCi/L mg/L mg/L mg/L mg/L TPBBSW1B TPBBSW2B TPBBSW3B 19900 2580 8.7 0.0426 1.28 1.29 0.00220 TPBBSW4B 21200 2730 12.3 0.0415 0.935 0.94 0.00220 TPBBSW5B 20600 2620 23.6 0.0408 0.990 1.00 0.00440 TPSWC1B 119 1.03 28.3 0.233 2.92 2.94 0.00831 TPSWC1T 113 1.16 25.5 0.174 1.21 1.23 0.00315 TPSWC2B 118 0.713 33.0 0.166 1.29 1.30 0.00220 TPSWC2T 117 1.42 36.7 0.154 1.33 1.34 0.00289 TPSWC3B 116 3.11 24.8 0.132 1.15 1.18 0.00220 TPSWC3T 122 4.71 31.1 0.131 1.16 1.17 0.00220 TPSWC4B 18000 2310 57.1 0.0780 0.849 0.86 0.00220 TPSWC4T 9050 1040 190.7 0.240 1.02 1.05 0.00220 TPSWC5B 21500 2750 67.0 0.0260 0.743 0.75 0.00220 TPSWC5T 20900 2670 28.3 0.0361 0.549 0.57 0.00220 TPSWC6B 102 48.5 5.8 0.0793 0.512 0.54 0.00220 TPSWC6T 82.6 53.0 17.4 0.0879 0.591 0.62 0.00220
Surface Water Results 15th Quarter (Dec 2013)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Ammonia Phosphorous mg/L mg/L pCi/L mg/L mg/L mg/L mg/L TPBBSW1B TPBBSW2B TPBBSW3B 18200 8.0 TPBBSW4B 18000 3.0 TPBBSW5B 17300 5.0 TPSWC1B 139 17.0 TPSWC1T 115 30.0 TPSWC2B 120 19.0 TPSWC2T 119 25.0 TPSWC3B 364 15.0 TPSWC3T 122 8.0 TPSWC4B 10400 179.0 TPSWC4T 7290 87.0 TPSWC5B 18200 47.0 TPSWC5T 18000 13.0 TPSWC6B 101 6.0 TPSWC6T 97.8 12.0
Surface Water Results 16th Quarter (Mar 2014)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Ammonia Phosphorous mg/L mg/L pCi/L mg/L mg/L mg/L mg/L TPBBSW1B TPBBSW2B TPBBSW3B 19400 2850 17.0 0.1630 0.55 0.59 0.00220 TPBBSW4B 20200 2770 18.0 0.1110 0.544 0.59 0.00220 TPBBSW5B 17500 2550 3.0 0.0260 0.533 0.56 0.01130 TPSWC1B 141 8.91 53.0 0.439 0.87 0.90 0.01030 TPSWC1T 139 8.03 52.0 0.303 0.70 0.77 0.01220 TPSWC2B 183 13.000 47.0 0.186 0.82 0.84 0.00443 TPSWC2T 185 13.10 53.0 0.340 0.70 0.73 0.01840 TPSWC3B 301 19.60 33.0 0.231 0.76 0.78 0.00565 TPSWC3T 290 24.30 39.0 0.227 0.69 0.71 0.00566 TPSWC4B 6560 881 117.0 0.5960 0.952 1.05 0.00300 TPSWC4T 5240 681 139.0 0.386 1.05 1.15 0.00283 TPSWC5B 19300 2770 31.0 0.3820 0.396 0.42 0.00594 TPSWC5T 19500 2780 61.0 0.3030 0.385 0.41 0.00368 TPSWC6B 93 67.4 2.0 0.2850 0.300 0.34 0.00220 TPSWC6T 89.1 66.3 2.0 0.1780 0.321 0.35 0.00220
Surface Water Results 17th Quarter (Jun 2014)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Phosphorous Salinity Ammonia mg/L mg/L pCi/L mg/L mg/L mg/L mg/L PSU TPBBSW1B TPBBSW2B TPBBSW3B 22400 6.2 40.0 TPBBSW4B 21800 6.4 38.89 TPBBSW5B 22500 9.0 40.2 TPSWC1B 421 117.9 0.96 TPSWC1T 446 104.9 1.02 TPSWC2B 3270 107.3 6.21 TPSWC2T 3180 102.5 5.98 TPSWC3B 4020 67.0 7.32 TPSWC3T 2490 78.1 4.58 TPSWC4B 22400 37.1 38.32 TPSWC4T 20700 43.5 36.84 TPSWC5B 22900 12.4 38.96 TPSWC5T 22600 3.4 39.55 TPSWC6B 292 11.4 0.78 TPSWC6T 285 8.5 0.77
Surface Water Results 18th Quarter (Sept 2014)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Phosphorous Salinity Ammonia mg/L mg/L pCi/L mg/L mg/L mg/L mg/L PSU TPBBSW1B TPBBSW2B TPBBSW3B 21200 2890 11.4 0.0652 0.3 0.365 0.003 37.1 TPBBSW4B 21400 2760 7.1 0.915 0.3 1.215 0.003 36.7 TPBBSW5B 21800 2970 12.7 0.496 0.504 1.000 0.003 37.2 TPSWC1B 82.6 11.4 55.9 0.817 1.41 2.227 0.0484 0.3 TPSWC1T 59.2 6.24 84.0 0.827 1.07 1.897 0.0129 0.2 TPSWC2B 96.9 6.81 128.4 0.812 1.13 1.942 0.00872 0.3 TPSWC2T 101 5.14 161.3 0.829 1.15 1.979 0.00803 0.3 TPSWC3B 372 36.5 85.9 0.713 1.15 1.863 0.0103 0.8 TPSWC3T 123 4.53 119.2 1.12 1.24 2.360 0.00745 0.3 TPSWC4B 15900 2130 64.6 1.12 0.768 1.888 0.00395 28.1 TPSWC4T 8430 1060 145.8 0.975 1.37 2.345 0.00547 14.6 TPSWC5B 21900 2940 20.2 0.94 0.414 1.354 0.0022 38.0 TPSWC5T 20200 2720 22.5 0.0995 0.336 0.436 0.0022 35.2 TPSWC6B 128 58.8 11.7 0.465 0.3 0.765 0.0022 0.4 TPSWC6T 112 52.4 23.0 0.646 0.3 0.946 0.00466 0.4
Surface Water Results 19th Quarter (Dec 2014)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Phosphorous Salinity Ammonia mg/L mg/L pCi/L mg/L as N mg/L mg/L mg/L
- TPBBSW1B TPBBSW2B TPBBSW3B 15400 9.4 27.08 TPBBSW4B 18200 10.5 32.40 TPBBSW5B 15600 13.8 31.79 TPSWC1B 153 69.2 0.40 TPSWC1T 127 71.9 0.38 TPSWC2B 167 105.9 0.40 TPSWC2T 150 101.3 0.38 TPSWC3B 488 84.4 0.98 TPSWC3T 249 95.5 0.55 TPSWC4B 16700 50.0 29.61 TPSWC4T 11900 103.6 20.38 TPSWC5B 17700 64.0 31.91 TPSWC5T 17500 35.4 29.88 TPSWC6B 168 2.2 0.49 TPSWC6T 136 2.9 0.43
Surface Water Results 20th Quarter (Mar 2015)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Phosphorous Salinity Ammonia mg/L mg/L pCi/L mg/L as N mg/L mg/L mg/L
- TPBBSW1B TPBBSW2B TPBBSW3B 19700 2600 0.2 0.225 0.418 0.643 0.003 34.6 TPBBSW4B 19700 2030 6.4 0.155 0.424 0.579 0.003 35.0 TPBBSW5B 20300 2650 10.7 0.264 0.257 0.521 0.003 35.0 TPSWC1B 250 12.7 61.9 0.446 0.99 1.436 0.0262 0.6 TPSWC1T 241 11.7 78.3 0.367 0.822 1.189 0.0153 0.6 TPSWC2B 479 35.9 68.2 0.328 0.986 1.314 0.0101 0.9 TPSWC2T 380 25.3 60.6 0.163 0.938 1.101 0.0111 0.7 TPSWC3B 2060 229 45.4 0.114 0.974 1.088 0.049 4.0 TPSWC3T 551 44.2 44.4 0.364 0.918 1.282 0.0117 1.1 TPSWC4B 18300 2380 45.9 0.29 0.726 1.016 0.00585 31.5 TPSWC4T 17700 2220 53.4 0.392 0.65 1.042 0.00628 29.8 TPSWC5B 19900 2610 18.6 0.349 0.612 0.961 0.003 34.1 TPSWC5T 20600 2580 17.6 0.183 0.454 0.637 0.00338 34.7 TPSWC6B 95.1 62.2 12.7 0.131 0.396 0.527 0.003 0.4 TPSWC6T 93.2 62.5 15.5 0.234 0.248 0.482 0.003 0.4
Surface Water Results 21st Quarter (June 2015)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Phosphorous Salinity Ammonia mg/L mg/L pCi/L mg/L as N mg/L mg/L mg/L
- TPBBSW1B TPBBSW2B TPBBSW3B 22600 7.2 41.0 TPBBSW4B 22300 12.7 40.75 TPBBSW5B 22500 20.0 40.7 TPSWC1B 300 31.3 0.73 TPSWC1T 288 36.4 0.72 TPSWC2B 319 41.5 0.75 TPSWC2T 312 32.6 0.75 TPSWC3B 410 18.8 0.89 TPSWC3T 399 21.6 0.88 TPSWC4B 15700 24.1 27.58 TPSWC4T 12300 53.0 22.89 TPSWC5B 21800 7.2 40 TPSWC5T 21600 0.7 39.44 TPSWC6B 83 17.5 0.36 TPSWC6T 81 13.6 0.36
Surface Water Results 22nd Quarter (Sept 2015)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Phosphorous Salinity Ammonia mg/L mg/L pCi/L mg/L as N mg/L mg/L mg/L PSU TPBBSW1B TPBBSW2B TPBBSW3B 19600 2900 4.0 0.100 0.506 0.53 0.00300 38.67 TPBBSW4B 21700 2910 6.1 0.100 0.618 0.64 0.00300 38.96 TPBBSW5B 23200 3110 5.2 0.100 0.592 0.62 0.00300 41.51 TPSWC1B 57.9 17.2 31.0 0.100 0.580 0.82 0.00300 0.27 TPSWC1T 92.9 7.92 51.1 0.114 0.996 1.07 0.00300 0.28 TPSWC2B 123 3.80 59.7 0.159 1.40 1.43 0.00300 0.31 TPSWC2T 155 5.02 50.8 0.147 1.02 1.05 0.00300 0.34 TPSWC3B 133 3.41 51.7 0.158 1.20 1.23 0.00300 0.31 TPSWC3T 109 3.27 54.6 0.164 1.22 1.25 0.00300 0.31 TPSWC4B 21700 2450 38.7 0.100 0.840 0.87 0.00739 34.45 TPSWC4T 2620 328 51.1 0.262 1.39 1.42 0.00300 5.30 TPSWC5B 21100 2900 24.8 0.103 0.340 0.37 0.00300 39.24 TPSWC5T 19900 3740 16.3 0.100 0.258 0.28 0.00300 37.16 TPSWC6B 72.8 42.7 29.1 0.103 0.446 0.47 0.00300 0.38 TPSWC6T 91.2 43.0 14.5 0.100 0.590 0.62 0.00300 0.39
Surface Water Results 23rd Quarter (Dec 2015)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Phosphorous Salinity Ammonia mg/L mg/L pCi/L mg/L as N mg/L mg/L mg/L PSU TPBBSW1B TPBBSW2B TPBBSW3B 16100 11.2 27.86 TPBBSW4B 17300 8.1 33.00 TPBBSW5B 18200 15.5 30.78 TPSWC1B 94.4 1.9 98.2 0.154 0.452 0.45 0.00500 0.22 TPSWC1T 93.9 102 0.22 TPSWC2B 53 0.43 123 0.080 0.59 0.59 0.00500 0.15 TPSWC2T 55 85 0.15 TPSWC3B 44 0.40 79.7 0.079 0.36 0.36 0.00500 0.13 TPSWC3T 43 96 0.13 TPSWC4B 1570 199 105 0.150 0.580 0.58 0.00500 3.11 TPSWC4T 7930 208 14.03 TPSWC5B 18300 2640 88.8 0.241 0.572 0.57 0.00500 33.46 TPSWC5T 15800 42 28.76 TPSWC6B 94.1 12.7 0.33 TPSWC6T 90.2 9.1 0.34
Surface Water Results 24th Quarter (March 2016)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Phosphorous Salinity Ammonia mg/L mg/L pCi/L mg/L as N mg/L mg/L mg/L PSU TPBBSW1B TPBBSW2B TPBBSW3B 14500 2040 9 0.100 0.372 0.40 0.0163 25.60 TPBBSW4B 15300 2110 9.3 0.100 0.506 0.67 0.0167 26.23 TPBBSW5B 14600 2110 10.16 0.100 0.448 0.47 0.0161 26.57 TPSWC1B 88.0 1.9 104.14 0.136 0.784 0.81 0.0177 0.24 TPSWC1T 88.6 1.47 93.3 0.129 0.622 0.65 0.0145 0.24 TPSWC2B 88 1.08 118.45 0.115 0.67 0.70 0.014 0.24 TPSWC2T 92 1.15 118.55 0.163 0.72 0.76 0.0144 0.24 TPSWC3B 82 2.21 55.03 0.122 0.66 0.68 0.0209 0.23 TPSWC3T 83 0.92 66.73 0.124 0.57 0.60 0.0122 0.23 TPSWC4B 9920 1290 297.9 0.100 0.976 1.00 17.22 TPSWC4T 8920 1160 289.8 0.183 0.88 0.90 15.61 TPSWC5B 21800 2750 938.9 0.433 0.844 0.87 35.32 TPSWC5T 17400 2280 78.78 0.131 0.200 0.23 28.62 TPSWC6B 149.0 53.6 3.71 0.141 0.362 0.41 0.0069 0.46 TPSWC6T 121.0 147.0 29.54 0.135 0.334 0.36 0.0064 0.42
Surface Water Results 25th Quarter (June 2016)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Phosphorous Salinity Ammonia mg/L mg/L pCi/L mg/L as N mg/L mg/L mg/L PSU TPBBSW1B TPBBSW2B TPBBSW3B 20600 22.1 33.92 TPBBSW4B 18500 24.2 31.10 TPBBSW5B 16100 22.5 26.40 TPSWC1B 123.0 18.3 79.0 0.35 TPSWC1T 128.0 92.9 0.36 TPSWC2B 177 35.60 101.6 0.44 TPSWC2T 166 109.4 0.44 TPSWC3B 247 32.00 92.2 0.54 TPSWC3T 254 77.6 0.59 TPSWC4B 14300 84.0 24.54 TPSWC4T 12100 94.6 21.15 TPSWC5B 19800 35.5 33.18 TPSWC5T 20700 36.5 33.64 TPSWC6B 149.0 22.0 0.47 TPSWC6T 127.0 21.5 0.43
Surface Water Results 26th Quarter (Sept 2016)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Phosphorous Salinity Ammonia mg/L mg/L pCi/L mg/L as N mg/L mg/L mg/L PSU TPBBSW1B TPBBSW2B TPBBSW3B 18300 2460 13.8 0.100 0.590 0.59 0.0030 33.02 TPBBSW4B 17000 2340 1.9 0.100 0.550 0.55 0.0030 30.58 TPBBSW5B 15300 2070 31.3 0.100 0.662 0.66 0.0030 26.93 TPSWC1B 253.0 18.9 47.6 0.220 1.060 1.06 0.0112 0.54 TPSWC1T 168.0 6.14 38.6 0.134 1.390 1.39 0.0109 0.37 TPSWC2B 140 2.13 44.1 0.130 1.27 1.27 0.010 0.32 TPSWC2T 161 3.16 27 0.150 1.02 1.02 0.0118 0.36 TPSWC3B 114 1.76 22.8 0.141 1.09 1.09 0.0068 0.27 TPSWC3T 113 1.54 15.5 0.138 1.14 1.14 0.0093 0.27 TPSWC4B 13600 1810 30.8 0.100 0.484 0.48 0.00579 23.30 TPSWC4T 5740 730 78.5 0.337 0.76 0.76 0.00865 9.88 TPSWC5B 19700 2740 37.7 0.163 0.404 0.40 0.00585 34.01 TPSWC5T 15100 2100 17.6 0.100 0.808 0.81 0.00580 29.41 TPSWC6B 76.6 23.3 1.5 0.100 0.526 0.53 0.0109 0.34 TPSWC6T 77.5 22.7 1.7 0.100 0.552 0.55 0.0076 0.36
Surface Water Results 27th Quarter (Dec 2016)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Phosphorous Salinity Ammonia mg/L mg/L pCi/L mg/L as N mg/L mg/L mg/L PSU TPBBSW1B TPBBSW2B TPBBSW3B 18000 8.7 30.23 TPBBSW4B 19400 4 32.12 TPBBSW5B 18400 14.2 30.86 TPSWC1B 804.0 68.6 48.1 1.48 TPSWC1T 597.0 57.2 1.11 TPSWC2B 418 30.80 51.3 0.80 TPSWC2T 391 43.3 0.76 TPSWC3B 1330 154.00 10.6 2.43 TPSWC3T 244 25.9 0.52 TPSWC4B 10100 1250 59 17.24 TPSWC4T 9560 77.2 15.99 TPSWC5B 18500 2440 59.8 30.73 TPSWC5T 17600 33 29.46 TPSWC6B 209.0 10.7 0.55 TPSWC6T 169.0 13.3 0.49
Surface Water Results 28th Quarter (March 2017)
Total Monitoring Site Chloride Sulfate Tritium TKN TN Phosphorous Salinity Ammonia mg/L mg/L pCi/L mg/L mg/L mg/L mg/L PSU TPBBSW1B TPBBSW2B TPBBSW3B 23700 2890 17.4 0.100 0.200 0.21 0.1120 36.90 TPBBSW4B 23900 2930 1.28 0.100 0.284 0.28 0.0046 36.65 TPBBSW5B 22600 2840 6.4 0.100 0.346 0.35 0.0046 36.21 TPSWC1B 377.0 21.9 71.4 0.126 1.150 1.15 0.0361 0.78 TPSWC1T 376.0 22.00 55 0.126 1.140 1.14 0.0347 0.78 TPSWC2B 639 47.20 50.2 0.319 1.24 1.26 0.008 1.28 TPSWC2T 394 21.60 47.7 0.154 0.98 0.98 0.0253 0.82 TPSWC3B 3000 340.00 48.3 0.348 1.07 1.11 0.0224 5.50 TPSWC3T 1130 94.70 51.2 0.282 0.96 1.01 0.0208 2.14 TPSWC4B 18000 2350 26.4 0.100 0.444 0.45 0.00456 30.47 TPSWC4T 11400 1320 77.4 0.102 0.64 0.68 0.00456 18.30 TPSWC5B 25800 2750 9.34 0.126 0.602 0.60 0.00617 36.06 TPSWC5T 22400 2710 6.69 0.102 0.378 0.38 0.00456 35.77 TPSWC6B 95.6 60.2 5.06 0.100 0.200 0.20 0.0098 0.36 TPSWC6T 96.5 60.5 6.66 0.100 0.200 0.20 0.0096 0.36
EXHIBIT C RESUME OF KIRK MARTIN, P.G.
Associates W. Kirk Martin, P.G., CPG, CGWP President/Principal Scientist Mr. Martin has over 30 years of experience conducting groundwater resource Education investigations and managing complex integrated water resource programs. He B.S. - Geology, has special expertise in water supply development, groundwater hydraulic Florida Atlantic interpretations, and fresh/saline water relationships in coastal aquifers. He also University, 1981 has extensive experience in the application of statistical analyses, computer models and geophysical methods to the solution of water resource issues. He Graduate takes a total water management approach to water resource planning and Geophysics, Wright management challenges that provides for more creative solutions to address State University, multiple level issues. His project experience includes large-scale water supply, 1984 aquifer recharge, and injection well design, construction, testing, and evaluation. He has extensive knowledge of water policy and the regulations Registration governing water supply and water resource management. Mr. Martin has completed over 300 reports on regional and local geology/hydrology in Florida Professional and has provided the primary technical direction on development of over 500 Geologist: North mgd of raw water supply and over 100 mgd of aquifer recharge and wastewater Carolina (1987), disposal projects. Mr. Martin served as the principal hydrologist for three Florida, Kentucky, projects winning awards from the Governors Commission for a Sustainable Texas, and South Florida. He has worked with clients in the cities of Fort Myers, Alabama Jacksonville, Marco Island, Boca Raton, Cape Coral, Sanibel, Hollywood, Titusville, and Melbourne; and Palm Beach, Charlotte, Lee, Collier, St. Johns, Certifications Indian River, Hillsborough, Brevard, Pinellas, Miami-Dade, and Seminole Certified counties. He commonly serves as a technical advisor to state, regional, and Professional local governing bodies on water resource issues.
Geologist Water Supply Planning and Development Certified Technical Director, Collier County Wellfield Reliability Improvements and Groundwater Expansion Program, Collier County, FL, 2004-2014. Recognizing the increasing Professional uncertainty in securing critical raw water resources in a rapidly growing community of 240 square miles, Collier County elevated their water supply efforts to a programmatic status in order to ensure they could meet long-range needs in an environmentally sustainable manner. Mr. Martin serves as the lead technical resource for the program which provides management and direction of multiple engineers, scientists, and contractors in the planning, evaluation, design, permitting, construction, and operations of the Countys water supply facilities. Additionally, the program provides for strategic visioning and streamlining of water supply development with modifications to land development codes, standardized design, land acquisition, tactical permitting, and links to comprehensive plans and capital improvement programs. System elements include fresh, brackish and saline water supplies, supplemental wastewater reuse, aquifer storage and recovery, and hydrologic and operational monitoring and improvements. Among the many success of the program was using long term operating data to obtain a 40 percent increase in the CUP from a freshwater aquifer that had been declared off limits in the 1990s.
Technical Director, PRASA Water Resource Investigation, Arecibo, Puerto Rico, 2009-2011 Arecibo contains one of the most karstic aquifer regions in the world meaning that water supply capacity is high but that characterization and planning for water resource development can be challenging. Mr. Martin served as the technical director for a comprehensive hydrogeologic and geophysical investigation project to evaluate water supply development potential without
W. Kirk Martin, P.G., CPG, CGWP adversely impacting environmentally sensitive estuarine systems or creating conditions for saline water intrusion.
Technical Director, Saltwater Intrusion Data Analyses. Florida Keys Aqueduct Authority, 2012-2013.
Saltwater intrusion was limiting withdrawals from the authoritys most efficient water source. Mr.
Martin directed a team in a detailed statistical evaluation of a wide range of hydrogeologic data that showed that FKAA withdrawals were not the primary cause of saline water migration but that regional operation of upgradient canal control infrastructure was the critical factor in controlling salinity in the production aquifer.
Technical Director, Preliminary Design of the South Miami Heights Brackish Water Wellfield. Miami Dade Water and Sewer Authority, 2013-2014. Mr. Martin provided critical guidance in the planning of hydrogeological evaluations and development of a 25 mgd brackish water wellfield to supply raw water to the proposed MDWSA SMH Reverse Osmosis WTP. Key issues in the preliminary design were development of new wells in a highly urbanized area, provision for a robust testing and analysis program, and management and disposal of brackish water during construction and testing efforts.
Technical Director, Wellfield Performance Evaluation. City of Cape Coral Florida, 2013-2014. The City of Cape Coral has a long and successful history of brackish water development for reverse osmosis treatment. In addition, the City has planned reclaimed water ASR wells and additional Floridan Aquifer supply wells to meet future growth demands. Mr. Martin provided technical direction for a complete brackish wellfield performance evaluation to identify trends in productivity and water quality and any issues with individual wells or wellfield areas. Recommendations were provided for additional assessment of individual wells to determine potential causes of water quality degradation and remedial actions. Additionally, data and analysis developed for the project will be used in development of models for planning, design and operation of future production wells and ASR wells.
Technical Director, Wellfield Performance Evaluation. St. Johns County Utilities, 2013. Mr. Martin worked closely with SJCUD operations staff at the SR 214 brackish wellfield in evaluating historic and ongoing operational data including production rates, static and dynamic water levels, and production water salinity. Production wells with declining productivity or degraded water quality were identified for further analyses including dynamic video and geophysical logging to identify primary production intervals, contributions to flow, and production water quality with depth. Specific recommendations were provided for upgrades or modifications to well construction and operation of the most impacted wells. Additionally, Mr. Martin provided ongoing services to the operations staff in periodic evaluation of production data to optimize wellfield productivity and minimize raw water salinity over time. These efforts resulted in a more stabilized production water quality and general operational improvements of the SR 214 wellfield.
Lead Hydrologist, Water, Transportation, and Stormwater Optimization Study, Collier County, 2014. Mr. Martin provided the key technical evaluation for development of irrigation water supplies using available stormwater in concert with planned potable water supply development, reclaimed water production, and Irrigation Quality (IQ) supplemental water management in the Northeast Region of the Collier County Water-Sewer District (CCWSD). The evaluation of these supply sources included a combination of surface water and groundwater systems that maintained a focus on beneficial use and management of available stormwaters generated in the area. The results of the investigation identified multiple opportunities for storage of seasonally or temporally available sources using aquifer storage and recovery technology and surface water reservoirs where appropriate. Key recommendations were provided for numerous water supply development options depending upon area specific demands, resources, constraints, and permitting challenges.
Technical Director, Alternative Water Supply Evaluation and Implementation Plan Jacksonville Electric Authority, 2010-2011. JEA had completed preliminary evaluations of several alternative water supply (AWS) options as part of their Total Water Management Plans but needed a higher level of certainty as to the timing, quantity, type, and location of AWS alternatives. The effort included evaluation of 18 separate AWS options with prioritization based on a variety of time horizons, demand locations, and potential supply capacities. Evaluation criteria included environmental impacts, regulatory acceptability, technical feasibility, and costs. Key implementation strategies and
W. Kirk Martin, P.G., CPG, CGWP specific recommendations included a targeted reuse program to displace competing water users and to develop a salinity barrier adjacent to wellfields experiencing salt water encroachment, providing for recharge of the Upper Floridan Aquifer between the JEA wellfields and Keystone Heights, and desalination of surface water at the Northside Generating Station.
Technical Director, Integrated Water Supply Plan, Lee County, Florida, 2009-2011. Mr. Martin provided the key technical direction for a countywide integrated water supply plan, which included evaluation of all ground, surface, and reclaimed water supplies, as well as opportunities for storage of seasonally or temporally available sources using aquifer and recovery technology and surface water reservoirs where appropriate. Key recommendations were provided for numerous water supply development options depending upon area specific demands, resources, constraints, and permitting challenges.
Technical Reviewer, Emerald Coast Utilities Authority (ECUA) Northern Wellfield Conceptual Design, Pensacola, Florida, 2009. As a means to provide needed expansion and reliability in the utilitys raw water supply system, ECUA sought to develop a new wellfield north of their service area where potential competition for available resources was diminished, the water supply source was less susceptible to urban and industrial contamination, and saline water intrusion was not of concern.
Conceptual wellfield design parameters were developed and potential wellfield sites screened for hydrogeologic characteristics, parcel size, competing uses, land cover, ownership, potential environmental impacts, potential hydrologic impacts, distance to existing infrastructure, and costs.
Water Resource Director, Collier Rural Land Stewardship Area, Collier County, Florida, 2005.
Mr. Martin provided the water resource expertise for development of the first rural land stewardship area designation in Florida. The resulting effort garnered a prestigious award from the Governors Commission for a Sustainable Florida and established an innovative incentive-based system for preservation of critical wetlands and wildlife habitat over a 300-square-mile area at no cost to the public.
Lead Hydrogeologist, Wellfield Design, Construction, and Management, Collier County, Florida, 1984 to 2010. Mr. Martin provided primary hydrogeologic expertise for all development activities for the Collier County wellfields, including over 35 freshwater wells and over 45 brackish water wells with depths of up to 1200 feet and with a combined capacity of over 80 mgd.
Lead Hydrogeologist, Water Supply Planning and Wellfield Design, Construction, and Management, Cape Coral, Florida, 1983 to 1994. Mr. Martin provided primary hydrogeologic expertise for planning and development activities for the citys wellfields, including wellfield layout for over 40 brackish supply wells and design and construction of over 20 brackish water wells with an installed capacity of over 40 mgd.
Lead Hydrogeologist, Hobart Park and South County Brackish Supply Wellfields, Indian River County, Florida, 1992 to 2010. Mr. Martin provided hydrogeologic oversight for expansion and rehabilitation of the countys South County Reverse Osmosis Water Treatment Plant (ROWTP) wellfield and design, permitting, and construction of the Hobart Park ROWTP wellfield with capacities of 6 mgd and 4 mgd respectively.
Technical Director, Evaluation of Groundwater Under Direct Influence (GWUDI) and Well Rehabilitation and Expansion, Valdosta, Georgia, 2004 to 2010. Mr. Martin served as the hydrogeologic advisor for the City of Valdosta, Georgia, in assessing GWUDI for the citys primary wellfield and developed a plan of action to minimize the potential for a single well GWUDI declaration from affecting other wells in the wellfield. A comprehensive study of UDI contributing areas and features was undertaken, including groundwater modeling in development of a wellfield expansion program from 15 to 45 mgd.
Lead Hydrogeologist, Screened Well Design and Construction, Various Clients. Mr. Martin was the lead hydrogeologist for over 100 mgd capacity of screened well design and construction. Clients have included the City of Titusville, City of Boca Raton, City of Deerfield Beach, Palm Beach County, Town of Jupiter, Cape Hatteras, Dare County, City of Hollywood, U.S. Sugar Corporation, Citrus Producers, and others.
W. Kirk Martin, P.G., CPG, CGWP Managed Aquifer Recharge/Aquifer Storage and Recovery Project Director, Irrigation Aquifer Storage and Recovery System Permitting, Cape Coral, Florida, 2012. Mr. Martin provided technical oversight and direction for the permitting of five ASR wells for seasonal storage of irrigation quality water to support the citys reuse and stormwater harvesting program to irrigation demands throughout the city.
Project Director, Irrigation Aquifer Storage and Recovery System, Collier County, Florida, 2012-2014. Mr. Martin provided technical direction and hydrogeologic services for the design, permitting, and construction oversight for two irrigation quality Aquifer Storage and Recovery wells to provide critical seasonal storage of large volumes of irrigation quality water that allows more efficient and effective utilization of the countys reclaimed water and supplemental irrigation sources. The wells will provide for storage of up to 240 million gallons annually of a combination of municipal reclaimed water, raw groundwater, and canal water to help in the overall integrated management of available water resources to the county.
Technical Advisor, Irrigation Quality Aquifer Storage and Recovery, Cape Coral, Florida, 2010.
Mr. Martin provided critical technical analysis in hydrogeologic interpretation and recommendation for siting an irrigation quality (IQ) water aquifer storage and recovery (ASR) system for the city. The site included unusually high salinities that threatened existing city production wellfields. Mr. Martin identified innovative groundwater management opportunities that protected the existing water supplies and provided important seasonal storage of surface water and municipal reclaimed water.
Technical Advisor, Aquifer Storage and Recovery System, Seminole County, Florida, 2009 to 2011.
The St. Johns River Water Management District (SJRWMD) has sponsored an ASR program to explore alternative water supply sources. Mr. Martin is providing technical review and advisement services for the Seminole County ASR projects, which have a combined budget of $5 million. The ultimate use of these ASR wells will be to facilitate the countys/citys ability to store and recover potable water when a surface water treatment plant is developed on the St. Johns River. In the near-term, the ASR systems will be used for seasonal demand management such as excess wet-season surface water flows.
Technical Advisor, Aquifer Storage and Recovery System, Sanford, Florida, 2009 to 2011. The St. Johns River Water Management District (SJRWMD) has sponsored an ASR program to explore alternative water supply sources. Mr. Martin is providing technical review and advisement services for the Sanford ASR projects, which have a combined budget of $5 million. The ultimate use of these ASR wells will be to facilitate the countys/citys ability to store and recover potable water when a surface water treatment plant is developed on the St. Johns River. In the near-term, the ASR systems will be used for seasonal demand management such as excess wet-season surface water flows.
Technical Advisor, Miami-Dade Water and Sewer Department Water Reclamation Project, Miami-Dade County, Florida, 2010. Under constraint by conditions of their Water Use Permit (WUP) and by legislative requirements to severely reduce ocean outfall of treated wastewater, the Miami-Dade Water and Sewer Department (MDWASD) undertook a progressive project that included very high-level wastewater treatment with indirect potable recharge to the Biscayne Aquifer. A complete understanding of the groundwater hydraulics was required for design and permitting of the recharge facilities. Options evaluated included recharge to an existing mote and multiple configurations of shallow injection wells.
Technical Director, Reclaimed Water ASR Testing, Design, and Permitting, Hillsborough County, Florida, 2004. Mr. Martin provided hydrogeologic direction for the reclaimed water test program that resulted in recommendation of the storage and recovery components due to unfavorable hydrogeologic characteristics but continued use of the system for aquifer recharge and provision of a groundwater salinity barrier.
Technical Director, Manatee Road Aquifer Storage and Recovery System Construction and Expansion, Collier County, Florida, 1999 to 2010. Mr. Martin provided project oversight for the design and permitting of the expansion of the Manatee Road ASR system and the construction of four additional ASR recharge and recovery wells, associated monitor wells, a 6 MG prestressed concrete storage tank, and associated piping and instrumentation. He also oversaw the evaluation of the
W. Kirk Martin, P.G., CPG, CGWP operational data from the existing ASR wells to identify changes in the operating protocols that would allow for maximization of system performance.
Technical Director, Livingston Road Reclaimed Water Aquifer Storage and Recovery System, Collier County, Florida, 2009 to 2011. Mr. Martin directed testing, design, and conceptual operations for the reclaimed water ASR program. Options developed for the site included use of reclaimed water, partially treated surface water, and raw groundwater for seasonal recharge and use to supplement the countys reclaimed water system as part of an overall integrated water management program for the county.
Project Director, Feasibility Study of Salinity Barrier by Injection, Hollywood, Florida, 2007. Mr. Martin served as project director for this aquifer recharge and salinity management project that included testing the feasibility of using direct injection of reclaimed water to control movement of the salinity interface threatening the Citys primary water supply. The project established a program to test the feasibility of injecting highly treated effluent (reclaimed water) from a Class I wastewater treatment facility into areas where saltwater intrusion contaminated the Biscayne Aquifer as a means to maintain and possibly increase use of the Biscayne Aquifer for municipal supply.
Lead Hydrogeologist, Construction and Testing of the Potable Water Aquifer Storage and Recovery System for Lee County Utilities, Lee County, Florida, 1994 to 1996. Mr. Martin provided hydrogeologic oversight for the construction and testing of the first potable water ASR system in Southwest Florida. Since that early success, the system has been expanded to include five ASR wells and proves to be a critical component in the countys water management program.
Deep Injection Well/Wastewater Disposal Project Director, Deep Injection Well Design and Permitting for the SWROWTP, Cape Coral, Florida, 2012. Mr. Martin provided technical direction and hydrogeologic services for the design and permitting of a Class I injection well at the Citys Southwest Reverse Osmosis Water Treatment Plant and Water Reclamation Facility. The evaluation included determination of optimum casing selection and construction completion to provide for a full disposal capacity for the SWROWTP and the SWWRF with a cost savings to the City of approximately $2 million over a conventional design approach. The project approach also included meeting critical milestones to comply with a FDEP Consent Order.
Technical Advisor, West Water Treatment Plant Concentrate Injection Well System, Deerfield Beach, Florida, 2007. Mr. Martin was involved in the design, permitting, and construction of a concentrate pump station related to a deep injection well system. The injection well design utilized a tubing and packer with a pressurized annulus. Included in the well design was a dual zone monitor well so that regulatory water quality monitoring requirements could be complied with. The entire system is designed to dispose of approximately 4 mgd of concentrate.
Lead Hydrogeologist, North County Regional Water Treatment Plant, South County Regional Water Treatment Plant, and South County Water Reclamation Facility, Collier County, Florida, 1995 to 2005. Mr. Martin provided hydrogeologic direction for design, permitting, and construction of six deep injection wells for the Collier County water (RO concentrate) and wastewater departments with a combined injection capacity of over 60 mgd.
Technical Director, Wastewater Treatment Plant Class I Injection Well (IW-2), Marco Island, Florida, 2009. Mr. Martin provided oversight of the design, permitting, and construction of the injection well and wellhead, and the design and permitting of the piping, controls, and instrumentation for the injection well system. As an additional component of this project, Mr. Martin directed investigation of the feasibility of utilizing approximately 1.5 mgd of reclaimed water treated to potable water standards from the Marco Island WWTP for injection into aquifer recharge wells designed to both replenish the Hawthorn Aquifer System and to attenuate the effects of saltwater intrusion on the citys RO production wells.
Technical Director, Reverse Osmosis Water Treatment Plant, Floridan Aquifer Wellfield, and Deep Injection Well, Clewiston, Florida, 2007. Mr. Martin provided technical direction for the City of Clewiston water treatment plant, Floridan aquifer wellfield, and deep injection well. Mr. Martin directed engineering services to design, permit, and bid the injection well system. The injection well
W. Kirk Martin, P.G., CPG, CGWP design of approximately 4 mgd capacity considered both initial concentrate and potential wastewater disposal needs.
Technical Director, Babcock Ranch Community Concentrate and Wastewater Injection Well System, Charlotte County, Florida, 2010. For the Deep Injection Well IW-1 and Dual Zone Monitor Well, Mr. Martin provided hydrogeological direction for design and permitting of the Class I industrial deep injection well used to dispose of reverse osmosis reject concentrate and for wastewater effluent wet weather disposal.
Technical Advisor, South Beaches Wastewater Underground Injection Permitting, Brevard County, Florida. Mr. Martin directed the preparation of an Underground Injection Control operation permit application for a deep injection well system and evaluated hydrogeologic and well integrity criteria for an existing deep injection well system. Detailed evaluation of water quality signature and age resulted in over $7 million in savings to the county as they did not have to modify the injection system or their wastewater treatment process.
Lead Hydrogeologist, Pinewoods Reverse Osmosis and Membrane Softening Water Treatment Plant Injection Well Evaluation, Lee County, Florida, 2010. Mr. Martin provided technical oversight of the deep well evaluation and rehabilitation resulting in more than doubling the well capacity.
Further analysis was provided to modify waste blending operations to provide improved well performance.
Technical Advisor, Lake Region Water Treatment Plant Disposal Well System, Palm Beach County, Florida, 2008. Project included design, permitting, and construction oversight for a 10 mgd LPRO water treatment plant (WTP), a raw water Floridan Aquifer wellfield, a raw and finished water pipeline, and deep injection well for concentrate disposal to serve the Cities of Belle Glade, South Bay, and Pahokee. Mr. Martin provided technical oversight for the design of the injection well system and associated monitor wells.
Lead Hydrogeologist, Concentrate and Wet Weather Wastewater Disposal Injection Well, Island Water Association, Sanibel, Florida, 1998. Mr. Martin provided hydrogeologic evaluation, design, and permitting services for the deep injection well system for the Island Water Association and the City of Sanibel.
Professional Activities Member, Association of Groundwater Scientists and Engineers Member, American Institute of Professional Geologists Member, Florida Water Environment Association Member, American Water Works Association Member, American Water Resources Association Publications/Presentations Martin, Kirk, S. Magenheimer, Apparent Upward Migration Determination: Multi-Level Diagnostic Strategies That Can Save Your Deep Injection Well, Groundwater Protection Council Underground Injection Control Conference, 2013.
Martin, Kirk, J. Mills, L. Wiseman, Patching Holes: Successful Remediation of Production Wells Under the Direct Influence of Surface Water, FSAWWA Annual Meeting, 2012.
Martin, Kirk. What in the World is Going on with Water? Florida Watershed Journal, 2012.
Martin, Kirk. A Coastal Wellfield Salinity Barrier Using Reclaimed Water: Managing the Biscayne Aquifer from Both Sides Now. Presented at the FSAWWA Florida Section Fall Conference, 2012.
Martin, Kirk, G. Reilly, J. Sorrells. Lessons Learned from Three Decades of Integrated Water Management. FSAWWA Annual Meeting, 2012.
Martin, Kirk. One Water - Integrated Solutions and Lessons Learned. Presented at the AWRA Florida Section Meeting, 2012.
W. Kirk Martin, P.G., CPG, CGWP Martin, Kirk. Public Private Partnerships: A Better Way to Manage Water in Florida? Presented at the University of Florida Water Institute Symposium, 2012.
Martin, Kirk. A Coastal Wellfield Salinity Barrier Using Reclaimed Water: Managing the Biscayne Aquifer from Both Sides Now. FSAWWA Annual Meeting, 2011.
Martin, Kirk. Public/Private Partnerships for Better Water Supply Management. 25th Annual Florida Chamber Environmental Permitting School, 2011.
Martin, Kirk. ASR: Is it a Viable Solution for Effluent Management. Florida Water Environment Association Effluent Disposal Seminar, 2010.
Martin, Kirk. Is There Hope for ASR? Emerging Solutions to the Arsenic Issue. FSAWWA, 2010.
Martin, Kirk, R. Cavalieri, K. Hoskins. Integrated Water Resource Master Planning. 2nd Annual University of Florida Water Institute Symposium, 2010.
Martin, Kirk. Aquifer Storage and Recovery: Potential for Saudi Arabia. Total Water Solutions Workshop - Ministry of Water and Energy, Kingdom of Saudi Arabia, 2010.
Martin Kirk. Case Studies Addressing EPAs Draft Numerical Nutrient Criteria. CDM SmithU - NNC Workshop, 2010.
Martin, Kirk, R. Cavalieri, K. Hoskins. Development of an Integrated Water Resources Plan for Lee County Utilities. AWWA-FWEA Florida Water Resources Conference, 2010.
Martin, Kirk, P. Mattausch, K. Probst, J. Sciandra. Water Levels and Water Resource Management:
Real World Data Still Matters. FSAWWA Water Resources Conference, 2009.
Martin, Kirk. Water Resource Planning for Private Development. Presented at Land Development East Conference & Expo, 2007.
Martin, Kirk. Sustainable Water Resource Development: West Side Story. Presented at FS AWWA Florida Water Resources Conference, 2006.
Martin, Kirk, L. Turner, and L. Wiseman. Aquifer Storage and Recovery System Implementation:
Techniques for Improving Success. Presented at FS AWWA Florida Water Resources Conference, 2006.
Martin, Kirk, R. Maliva, and W. Guo. Predictive Modeling of Brackish Water ASR System Performance. Presented at FSAWWA Florida Water Resource Conference, 2005.
Martin, Kirk and T. Missimer. Natural Hydraulic Entrapment of Relict Saline Water in Semi-Confined Aquifers. Presented at Southwest Florida, NGWA/AGWSE Annual Meeting, 2004.
Martin, Kirk, R. Maliva, T. Missimer, and R. Blind. Conjugate Use of Aquifer Storage and Recovery with Desalination to Meet Expanding Potable Water Demand. Presented at 79th Annual Florida Water Resources Conference Technical Proceedings, 2004.
Martin, Kirk, T. Missimer, and W. Guo. Hydraulic Entrapment of Relict Saline Water within Semi-Confined Aquifers of Southwest Florida. Presented at Gulf Coast Association of Geological Societies, SEPM Transactions, 2003.
Martin, Kirk, R. Maliva, W. Guo, and T. Missimer. 2003. Evaluation of Hydrogeology and Recovery Efficiencies of ASR in Brackish Water. Program Abstract, American Water Resources Association Annual Meeting.
Martin, Kirk, T. Missimer, W. Guo, and D. Thompson. Concentrate Chemistry as a Control for Reverse Osmosis Water Treatment Plant Design: Tampa Bay Water Brackish Water Plant.
Presented at AWWA Annual Conference, 2003.
Martin, Kirk, R.G. Maliva, and T.M. Missimer. Aquifer Storage and Recovery for Management and Supply of Water to Meet Recreational Irrigation Demands. Proceedings of the Florida Water Resources Conference, 2003.
W. Kirk Martin, P.G., CPG, CGWP Martin, Kirk, R.G. Maliva, G.P. Kennedy, T.M. Missimer, E.S. Owosina, and J.A. Dickinson.
Dolomitization-Induced Aquifer Heterogeneity: Evidence from the Upper Floridan Aquifer, Southwest Florida. Geological Society of America, Bulletin. v. 114, p. 419-427, 2002.
Martin, Kirk, W. Guo, T.M. Missimer, and M. Coates. Reverse Osmosis Water Treatment Plant Concentrate Disposal by Deep Well: Regulatory Compliance by Increasing Fluid Density.
Proceedings of the Florida Water Resources Conference, p. 487-496, 2002.
Martin, Kirk, T.M. Missimer, W. Guo, and D.M. Thompson. Concentrate Chemistry as a Control of Deep Well Disposal and Effects on Membrane Treatment Plant Design: The TBW Brackish Water RO Plant. Proceedings of the 2002 Biennial Conference Exposition of the American Membrane Technology Conference, 2002.
Martin, Kirk, R.G. Maliva, G.P. Kennedy, T.M. Missimer, E.S. Owosina, and J.A. Dickinson. Aquifer Heterogeneity Related to Dolomitization, Lower Hawthorn Aquifer (Late Oligocene - Early Miocene),
Collier County, Florida. Proceedings of the Geological Society of America Annual Meeting in Boston, Massachusetts, 2001.
Martin, Kirk and T.M. Missimer. The Hydrogeology of Lee County, Florida. In Geology and Hydrology of Lee County, Florida Durward H. Boggess Memorial Symposium: Florida Geological Survey Special Publication 49, ed. T.M. Missimer and T.M. Scott. p. 91, 2001.
Martin, Kirk, T.M. Missimer, and R.R. Wright. Seawater as an Industrial Water Supply Source:
Economic Methods for Water Supply Development. Proceedings of the International Water Conference, Pittsburgh, (Abs.), Pennsylvania, 1998.
Martin, Kirk, C.W. Walker, and F. Bloetscher. Aquifer Hydrodynamics During Initial Freshwater Injection into a Brackish Water Aquifer, Collier County, Florida, Aquifer Storage and Recovery System. Proceedings of the AWRA Symposium, Conjunctive Use of Water Resources: Aquifer Storage and Recovery, p. 341-347, 1997.
Martin, Kirk, T.M. Missimer, and A.O. Owosina. Wastewater Reuse for Control of Water Quality Degradation in the Floridan Aquifer: A Case for Conjunctive Use of Brackish Groundwater and Treated Effluent in Southeast Florida. Proceedings of GIS and Water Resources, American Water Resources Association, 1996.
Martin, Kirk, A.O. Owosina, and T.M. Missimer. Modeling of Pumping-Induced Water Quality Changes in the Upper Floridan Aquifer at the North Collier County, Florida Wellfield. Proceedings of the 1996 Biennial Conference and Exposition of the American Desalting Association, The Water Supply Puzzle, How Does Desalting Fit In, p. 666-685, 1996.
Martin, Kirk, F. Bloetscher, C.W. Walker, and T.M. Missimer. Aquifer Storage and Recovery to Meet Peak Water Demands in Southwest Florida. Proceedings of Conserv 96, Responsible Water Stewardship, American Water Resources Association, p. 825-829, 1996.
Martin, Kirk, F. Bloetscher, C.W. Walker, and V.C. Vaughn. Water Resource Management Planning for Collier County. Florida Water Resources Journal, Vol. 47, No. 10, p. 35-39, 1995.
Martin, Kirk, S.J. Calise, and P.G. VanBuskirk. Aquifer Storage and Recovery Feasibility in Lee County, Florida. Presented at 70th Annual Florida Water Resources Conference in Jacksonville, Florida, 1995.
Martin, Kirk, F. Bloetscher, F.K. Dent, and C.W. Walker. Innovative Water Treatment Capacity and Storage Planning to Meet Future Water Supply Availability and Regulatory Requirements.
Proceedings of the AWWA Annual Conference, 1994.
Martin, Kirk. Consumptive User Permitting With Respect to Interbasin Transfers. Short Course Text, Florida Chamber Growth Management Conference, 1992.
Martin, Kirk, T.M. Missimer, B.J. Peck, F. Bloetscher, and G. Alford. Raw Water Supply Development for a Membrane Treatment Facility in Collier County, Florida. Proceedings of the American Water Works Association Annual Conference, 17 p., 1992.
W. Kirk Martin, P.G., CPG, CGWP Martin, Kirk, N.J. Peck, and T.M. Missimer. Upward Movement of Saline Water at the Dare County, North Carolina Wellfield: An Example of Bed Scale Tortuosity. Abstracts with Programs, Geological Society of America, 1992.
Martin, Kirk, B.J. Peck, and T.M. Missimer. Solute Transport Modeling of Pumping Induced Salinity Changes in the Upper Floridan Aquifer System, City of Cape Coral, Florida. Proceedings of the American Institute of Hydrology Annual Meeting, 1991.
Martin, Kirk, T.M. Missimer, D.D. Kuyk, and S.K. Kiss. Design, Materials Selection, and Performance of the City of Cape Coral Wellfield, Cape Coral, Florida. Proceedings of AWWA Membrane Technology and Its Applications in the Water Industry Conference in Orlando, Florida, 33 p., 1991.
Martin, Kirk, T.M. Missimer, L.E. Horvath, J.L. Andersen, and D.A. Todd. Modeling of Pumping-Induced Groundwater Quality Changes at the Dare County, North Carolina Wellfield. National Water Supply Improvement Association Proceedings of the Second Biennial Conference in San Diego, 37 p., 1988.
EXHIBIT D TESTIMONY OF KIRK MARTIN, P.G.
During the past four years, I testified in the following matters by deposition and/or at trial:
- 1. In re Florida Power and Light Company Turkey Point Power Plant Units 3-5 Modification to Conditions of Certification. Case No. 15-1559EPP (Florida Division of Administrative Hearings, December 1-4, 2015).
- 2. Miromar Lakes, LLC., v. South Florida Water Management District and Alico East Fund, LLC, Case No. 15-5621 (2016).
EXPERT FEE Kirk Martins hourly rate is $195 per hour.