ML18011B037

From kanterella
Jump to navigation Jump to search
Rev 1 to Harris Uit Cycle 7 COLR for 950905.
ML18011B037
Person / Time
Site: Harris Duke Energy icon.png
Issue date: 10/10/1995
From:
CAROLINA POWER & LIGHT CO.
To:
Shared Package
ML18011B036 List:
References
NUDOCS 9510190003
Download: ML18011B037 (12)


Text

Harris Unit 1 Cycle 7 Core Operating Limits Report - Rev. 1 September 5, 1995 NFM&SA File: 2495-0056 9510190003 951010 PDR ADOCK 05000400 P PDR

Sheet 1 of 11 Harris Unit 1 Cycle 7 Core Operating Limits Report - Rev. 1 1.0 R T I This Core Operating Limits Report (COLR) for Shearon Harris Unit 1 Cycle 7 has been prepared in accordance with the requirements of Technical Specification 6.9.1.6.

The Technical Specifications affected by this report are listed below:

3/4.1.1.2 SHUTDOWN MARGIN - Modes 3, 4, and 5 3/4.1.1.3 Moderator Temperature Coefficient 3/4.1.3.5 Shutdown Rod Insertion Limit 3/4.1.3.6 Control Rod Insertion Limits 3/4.2.1 Axial Flux Difference 3/4.2.2 Heat Flux Hot Channel Factor - F<(Z) 3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor - F>>,

3/4.9.1.a Boron Concentration During Refueling Operations

Sheet 2 of 11 Harris Unit 1 Cycle 7 Core Operating Limits Report - Rev. 1 2.0 I T The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using NRC-approved methodologies specified in Technical Specification 6.9.1.6 and given in Section 3.0.

2.1 D W R I (Specification 3/4.1.1.2)

The SHUTDOWN MARGIN versus RCS boron concentration - Modes 3, 4, and 5 is specified in Figure 1.

2.2 r T e i (Specification 3/4.1.1.3)

1. The Moderator Temperature Coefficient (MTC) limits are:

The Positive MTC Limit (ARO/HZP) shall be less positive than +5.0 pcm/'F for power levels up to 70% RTP with a linear ramp to 0 pcm/'F at 100% RTP.

The Negative MTC Limit (ARO/RTP) shall be less negative than -45 pcm/'F.

2. The MTC Surveillance limit is:

The 300 ppm/ARO/RTP-MTC should be less negative than or equal to -37.0 pcm/'F.

where: ARO stands for All Rods Out HZP stands for Hot Zero THERMALPOWER RTP stands for RATED THERMAL POWER 2.3 (Specification 3/4.1.3.5)

Fully withdrawn for all shutdown rods shall be 231 steps.

2.4 (Specification 3/4.1.3.6)

The control rod banks shall be limited in physical insertion as specified in Figure 2. Fully withdrawn for all control rods shall be 231 steps.

2.5 (Specification 3/4.2.1)

The AXIALFLUX DIFFERENCE (AFD) target band is specified in Figure 3.

Sheet 3 of 11 Harris Unit 1 Cycle 7 Core Operating Limits Report - Rev. 1 2.6 F - F<(Z) (Specification 3/4.2.2)

I F<(Z) < F "~

  • K(Z)/P for P ) 0.5 Fo(Z) ( FoR~
  • K(Z)/0.5 for P < 0.5 where: P = THERMAL POWER/RATED THERMALPOWER
a. F<"~ = 2.45 for LOPAR and VANTAGE 5 fuel
b. F "r' 2.52 for SPC fuel
c. K(Z) is specified in Figure 4.

V(Z) Curve for PDC-3 Operation is specified in Figure 5. The V(Z) curve is sufficient to determine the PDC-3 V(Z) versus core height for Cycle 7 burnups through the end of full power reactivity plus a coastdown for a maximum cycle energy of 519 EFPDs.

2.7 - F>>, (Specification 3/4.2.3)

F>>, < F~" *(1+ PF>>i*(1-P))

where: P = THERMALPOWER/RATED THERMALPOWER

a. F~

"~ = 1.62 for LOPAR fuel

b. F~

R~ = 1.65 for VANTAGE 5 fuel c R~ 73 for SPC fuel F~ 1

d. PF>>, = 0.3 for LOPAR fuel
e. PF>>, = 0.35 for VANTAGE5 and SPC fuel 2.8 (Specification 3/4.9.1.a)

Through the end of Cycle 7, the boron concentration required to maintain K, less than or equal to .95 is equal to 2304 ppm. Boron concentration must be maintained greater than or equal to 2304 ppm during refueling operations.

Sheet 4 of 11 Harris Unit 1 Cycle 7 Core Operating Limits Report - Rev. 1 3.0 METHODOLOGY REFERENCES

1. XN-75-27(A), and Supplements 1, 2, 3, 4, and 5, "Exxon Nuclear Neutronics Design Methods for Pressurized Water Reactors," Exxon Nuclear Company, Richland, WA 99352.

(Methodology for Specification 3.1.1.2 - SHUTDOWN MARGIN - Modes 3, 4, and 5, 3.1.1.3 - Moderator Temperature Coefficient, 3.1.3.5 - Shutdown Bank Insertion Limits, 3.1.3.6 - Control Bank Insertion Limits, 3.2.1 - Axial Flux Difference, 3.2.2-Heat Flux Hot Channel Factor, 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor, and 3.9.1 - Boron Concentration).

ANF-89-151(A), and Correspondence, "ANF-RELAP Methodology for Pressurized Water Reactors: Analysis of Non-LOCA Chapter 15 Events," Advanced Nuclear Fuels Corporation, Richland, WA 99352.

(Methodology for Specification 3.1.1.3 - Moderator Temperature Coefficient, 3.1.3.5-Shutdown Bank Insertion Limits, 3.1.3.6 - Control Bank Insertion Limits, 3.2.1 - Axial Flux Difference, 3.2.2 - Heat Flux Hot Channel Factor, and 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

3. XN-NF-82-21(A), Revision 1, "Application of Exxon Nuclear Company PWR Thermal Margin Methodology to Mixed Core Configurations," Exxon Nuclear Company, Richland, WA 99352.

(Methodology for Specification 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

XN-75-32(A), Supplements 1, 2, 3, and 4, "Computational Procedure for Evaluating Fuel Rod Bowing," Exxon Nuclear Company, Richland, WA 99352.

(Methodology for Specification 3.2.2 - Heat Flux Hot Channel Factor, and 3.2.3-Nuclear Enthalpy Rise Hot Channel Factor).

XN-NF-84-93(A), and Supplement 1, "Steamline Break Methodology for PWRs,"

Exxon Nuclear Company, Richland, WA 99352.

(Methodology for Specification 3.1.1.3 - Moderator Temperature Coefficient, 3.1.3.5-Shutdown Bank Insertion Limits, 3.1.3.6 - Control Bank Insertion Limits, and 3.2.3-Nuclear Enthalpy Rise Hot Channel Factor).

Sheet 5 of 11 Harris Unit 1 Cycle 7 Core Operating Limits Report - Rev. 1 3.0 (Continued)

EXEM PWR Large Break LOCA Evaluation Model as defined by:

XN-NF-82-20(A), Revision 1 and Supplements 1, 2, 3, and 4, "Exxon Nuclear Company Evaluation Model EXEM/PWR ECCS Model Updates," Exxon Nuclear Company, Richland, WA 99352.

XN-NF-82-07(A), Revision 1, "Exxon Nuclear Company ECCS Cladding Swelling and Rupture Model," Exxon Nuclear Company, Richland, WA 99352.

XN-NF-81-58(A), Revision 2 and Supplements 1, 2, 3, and 4, "RODEX2 Fuel Rod Thermal Response Evaluation Model," Exxon Nuclear Company, Richland, WA 99352.

XN-NF-85-16(A), Volume 1 and Supplements 1, 2, and 3, Volume 2, Revision 1 and Supplement 1, "PWR 17x17 Fuel Cooling Test Program," Exxon Nuclear Company, Richland, WA 99352.

XN-NF-85-105(A), and Supplement 1, "Scaling of FCTF Based Refiood Heat Transfer Correlation for Other Bundle Designs," Exxon Nuclear Company, Richland, WA 99352.

(Methodology for Specification 3.2.1 - Axial Flux Difference, 3.2.2 - Heat Flux Hot Channel Factor, and 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

XN-NF-78-44(A), "A Generic Analysis of the Control Rod Ejection Transient for Pressurized Water Reactors," Exxon Nuclear Company, Richland, WA 99352.

(Methodology for Specification 3.1.3.5 - Shutdown Bank Insertion Limits, 3.1.3.6-Control Bank Insertion Limits, and 3.2.2 - Heat Flux Hot Channel Factor).

ANF-88-054(A), "PDC-3: Advanced Nuclear Fuels Corporation Power Distribution Control for Pressurized Water Reactors and Application of PDC-3 to H. B. Robinson Unit 2," Advanced Nuclear Fuels Corporation, Richland, WA 99352.

(Methodology for Specification 3.2.1 - Axial Flux Difference, and 3.2.2 - Heat Flux Hot Channel Factor).

Sheet 6 of 11 Harris Unit 1 Cycle 7 Core Operating Limits Report - Rev. 1 3.0 (Continued)

9. WCAP-9272-P-A, "WESTINGHOUSE RELOAD SAFETY EVALUATION METHODOLOGY," July 1985 (W Proprietary).

(Methodology for Specification 3.1.1.2 - SHUTDOWN MARGIN - Modes 3, 4, and 5, 3.2.2 - Heat Flux Hot Channel Factor, and 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

10. WCAP-10266-P-A, Rev. 2, "The 1981 Version of the WESTINGHOUSE ECCS EVALUATIONMODEL USING THE BASH CODE," March 1987 (P Proprietary).

(Methodology for Specification 3.2.2 - Heat Flux Hot Channel Factor).

11. WCAP-11837-P-A, "EXTENSION OF METHODOLOGY FOR CALCULATING TRANSITION CORE DNBR PENALTIES," January 1990 ~ Proprietary).

(Methodology for Specification 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

12. EMF-92-081(A), and Supplement 1, "Statistical Setpoint/Transient Methodology for Westinghouse Type Reactors," Siemens Power Corporation, Richland, WA 99352.

(Methodology for Specification 3.1.1.3 - Moderator Temperature Coefficient, 3.1.3.5-Shutdown Bank Insertion Limits, 3.1.3.6 - Control Bank Insertion Limits, 3.2.1 - Axial Flux Difference, 3.2.2 - Heat Flux Hot Channel Factor, and 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

13. EMF-92-153(A), and Supplement 1, "HTP: Departure from Nucleate Boiling Correlation for High Thermal Performance Fuel," Siemens Nuclear Power Corporation, Richland, WA 99352.

(Methodology for Specification 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

14. XN-NF-82-49(A), Revision 1, and XN-NF-82-49(P), Revision 1, Supplement 1, "Exxon Nuclear Company Evaluation Model EXEM PWR Small Break Model," Exxon Nuclear Company, Richland, WA 99352.

(Methodology for Specification 3.2.1 - Axial Flux Difference, 3.2.2 - Heat Flux Hot Channel Factor, and 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

k ~

Sheet 7 of 11 Harris Unit 1 Cycle 7 Core Operating Limits Report - Rev. 1 Figure 1 Shutdown Margin Versus RCS Boron Concentration 8000 I I I I I I I I I I J I

I I

I 7000 I I I I I I I I I I I I I

L L I

J I

(2600400)

I I I I I I I I I 6000 I I I

I I

I I I I I I I I I I I I I I I I I I I I E I I I I I I I

I 6ooo I J I I J I I I I I I I I I I I I I I I 2' I I I I I I I 1

I I MODE.4 WINCHJJQ RCPs I I T

IQ OPERIolTION,,'AND I I I I CL'000 I MODE 5'I I J I J I I I I I I I I I I I I I I I I I -I I I I I I 0CI l I I

'I I

I I

""--r"-".--"-1---

I I I I

I 1

I I T

I I

I- 3000 I

I I

I L

I I

I I

I I

I J

I I

I I

I K I l

I I

I I

I I

I I

I I

I I

I I

I V) l I I I ($ 600,2/00)

I I

I

'I 'MOD/.3, AIIDMOBS 4 'I I I I

I I

I I

I I

I WIQ AT LEAST ONE I I

I I

I I I l RCP IN OPERA'ATION F4 '

I I 2000 INQUEST 3 I I I I I

I (1600,1710) I I

I I I I I I I I I I I I I I I I I MODE 5 1000 T

I I r -rI I I '1 I

I I

I (350,1000) I I

I I

I I

I I I

I I I I I I I I I 0 200 400 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 REQUIRED RCS BORON CONCENTRATION (ppm)

Modes 3, 4, and 5/Drained Applicable to Mode 4, with or without RCPs in operation

Sheet 8 of 11 Harris Unit 1 Cycle 7 Core Operating Limits Report - Rev. 1 Figure 2 Rod Group Insertion Limits Versus Thermal Power (Three-Loop Operation) 240 220

(.554, 231) 200

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

C BANK C 180

~ ~ ~ ~ '

~ ~ ~ ~ \~~ ~ ~ ~ ~ ~ ~ ~ ~ \ ~ ~

.(.

160 ~ ) ~ ~ ~ I 1,!186 )

140

(0,:128) ~ I I~~ ~~ ~ ~ ~ ~

120 ~ ~ ~ ~ ~ ~ ~ ~

O E ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I~ ~ ~~~ ~ ~ I~~ ~ ~ ~ 0 ~ ~~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~

U)

O 100 B'ANK D '

Q.

hC 80

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 'I ~ ~ ~ ~ ~ I~ ~ II~ ~ ~ \ ~ ~ ~ ~

K 60 40

~ ~ ~ ~ ~ ~~~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~

20

~ ~ ~ ~ ~

~

(00) .

~ ~ ~ I~~~

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 FRACTlON OF RATED THERMAL POWER (Fully withdrawn shall be 231 steps)

Note: Control Banks A and B must be withdrawn from the core prior to power operation.

Sheet 9 of 11 Harris Unit 1 Cycle 7 Core Operating Limits Report - Rev. 1 Figure 3 Axial Flux Difference Limits as a Function of Rated Thermal Power 120

~ ~ ~ ~ \~~ ~ ~ ~ ~

110 ~>

~ ~ II~ ~ I ~ ~ ~ ~ ~ I~ ~ ~ ~

(-10,100) i (7, 100) 100 I

~ ~

UNACCEPTABLg: UNACCEPTABLE 90

~ ~ 'I ~ ~ ~ ~ ~ ~ ~ ~ ~

O eo I \~I ~ ~ ~ ~ ~ ~ ~ 0 ' ~

~ ~ ~ ~ ~ I4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ '

~ ~ ~ ~ ~ '

~ ~ ~ ~

70 IJJ z ACCEPTABLE ~ ~ ~ ~ ~ ~0 ~ ~ \~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~

eo I ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0 (-~~ 50): (28,.:50):

50 O ~ ~ ~ ~ ~ I 40 ~ ~ ~ ~ ~ ~ ~

O \ ~~ ~ I~~I ~ ~ ~ ~ ~ ~ ~ ~

CL o 30

~ ~ ~ ~ ~ ~ \ ~ I~ ~~~ ~ ~ ~ ~ ~~~ ~ ~ ~

20 ~ ~ ~ 'I ~ ~ \ ~ ~

,P I~ ~ \~~~~~~ ~ ~ ~ ~ ~~ I~ ~ ~ ~ ~ ~~ ~ ~ I~

10 I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0

-50 -40 -30 -20 -10 0 10 20 30 40 50 AXIAL FLUX DIFFERENCE (% DELTA I)

(DEVIATION FROM TARGET AFD)

Note: At power levels less than HFP, the deviation is applied to the target AFD appropriate to that power level. The target AFD varies linearly between the HFP target and zero at zero power.

g ~

Sheet 10 of 11 Harris Unit 1 Cycle 7 Core Operating Limits Report - Rev. 1 Figure 4 K(Z) - Local Axial Penalty Function for FQ(Z) 1,2

~ I 'I ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 'I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ '

~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 'I ~ ~ ~ ~ ~ ~ ~ I~~ ~~~ ~ ~ ~

(o;o, ).o): (6.6, 1.0) 1 (12.0, 6.925) 0 ~ ~~ ~ t~~~~~ \~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 'I 0.9 0

O ~ ~ I' ~ ~

~ ~ ~ ~ \~~~~\~~ ~ ~ I~ ~ ~ ~

0.8 z

hC 0 ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ II ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0.7 Q

O LLI N

0.6 II tI ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ '

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

, CL O

0.5

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0.4

~ ~ ~ 1 0 '

~~ 0 ~ 'I ~ ~ ~ ~ ~~ ~

0.3

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ I ~ ~ ~ I I ~ ~

0.2 0 1 2 3 4 5 6 7 8 9 10 11 12 CORE HEIGHT (Feet)

Sheet 11 of 11 Harris Unit 1 Cycle 7 Core Operating Limits Report - Rev. 1 Figure 5 V(Z) Versus Core Height

1. 250 Height

~v 4

0.000 1.000 10.200 l. 112 1.225 0 200 1. 000 <<10 400

~ 1.000 0.400 1.000 *10.600 1. 000 0.600 1.000 <<10 800 1.000 0.800 1.000 <<11.000 1.000 1.000 1.000 ~ 11.200 l. 000 1.200 1.200 1.000 <<11.400 1. 000 4 400 1. 000 ~ 11. 600 1.000 I

'I 1. 600 1.0QO <<11. 800 '000 I I 4

1. 800 1. 172 <<12. 000 1.000 I ~ I I II ~

1.175 I I I I ~ 4 . I ~ ~ 2.000 1.167 k I ~ I I I 2.200 1.162 k

I I It II, I 2.400 l. 155 I

I ~ k kA I 4 I 4 4

~ 'I I'.150 2.600 2.800

1. 149
1. 142 I

I I

I I I I ik r -I- -k

~ 41 I

~

I I 4 ~

3.000 l. 134 I I I I I I I

I I I lk I I

I I

~

t 1

I I

1 I 1 3.200 l. 126 L J 'L I J J L 3.400 1. 118

'4 I I ~ I I I I I 3.600 1. 110

'.125 1-I I. -Ik1-

~ I I

tl P

I I I il I

'l

~

I I I'lk-r-ra-r Ik I I I

I I

I I I 3.800 1. 107 t I ~ I I I I I I

I I i I

4 I 4.000 1. 107 1 I l I I I I 1 I 4 I, 4.200 1.. 111

~ I I I I I I I I ~ ~ I kl 4.400 l. 124

~I I I I

t I

I I

I I

I I

I lk'kl I

I 4.60Q l. 134 1.100 ~ I C 4 4.800 1. 143 I

I 1 'I I I t'

4 t

li I

I t

ll I

I 4 5.000 l. 150 I I I I I I t I ~ 5.200 1. 156

'I 1' '1 f' I, I ~ I 5.400 1. 160 I

I ~

I I

I

~

II

~ I I

~

I I

I I

I

~

I I I I I 5.600 l. 162

l. 163

~

1.075 tl JI' J I L 4 5.800 I I I I I I I I I I

l. 162

~

t II ~ I I I I I 1 I I I I I 6.000

~ I I I 4

I I

~'

I I t I

I I <<

'l, ll

~

I I

6.200 l. 159 I

I I I I

~ I I I

I I

I

~

I 1

I ~

I 1

I I

I 6.400 1.157 1.050 I I I I I I I 6.600 1.160 I I I I ~ 3 r I ~

I I t I 6.800 1. 159 I I I I t ) I I 1 I I I I 7.000 1. 158

"'.025 1 I J

I I

I I I

I I

I I I I.

I J I 7.200 l. 156 I I I I I I I I I 4 7.400 1. 154 I,

1

" I ~ I I I I I I I l' ~ I t T I I r t' I rI I 7.600 1. 149

l. 143 4
I I I I I I ~ tt 7.800 I

( I I

~

I I I

~

'I I

~

I 'I I

4 I I I

~

'I 8.000 8.200

l. 137
1. 131 I I

~ I

~

I 4

4

'I t . 4 8.400 l. 126 1.000 0 2 3 4 5 8 7 8 8 10 11 12 8.600 l. 122 1

8.800 1. 115 CORE HEIGHT (feet) 9.000 1. 109 9.200 1. 103 9.400 1 ~ 100 9.600 1. 100 9.800 1. 103 Note: Top and bottom 1st excluded 10.000 1. 108 as per Technical Specification 4.2.2.4.