ML17312B214
| ML17312B214 | |
| Person / Time | |
|---|---|
| Site: | Palo Verde |
| Issue date: | 04/09/1996 |
| From: | Michael G ARIZONA PUBLIC SERVICE CO. (FORMERLY ARIZONA NUCLEAR |
| To: | Thomas C NRC (Affiliation Not Assigned) |
| Shared Package | |
| ML17312B213 | List: |
| References | |
| NUDOCS 9702110272 | |
| Download: ML17312B214 (6) | |
Text
Apr-09-96 16:53 PVNGS Nuclear Reg Affairs 602-393-5442 F(~/@
~o 'Qv/es 7r4~s Ay c<<iis 3a.ck.<en RE: Asst>>>>pf<<'l>>
<>I adlabatlc Row Th<>>s<<if l<<>>>><i li<)e tn pre<lict tl<iw in a crack. implies that we are neglecting heat transfer from
<I<'< t>>li< w;<II t t '>>ills). i.e we are <<ss>>n)mi>>)i >><liabatic H<iw. This assumption is reasonable since th<'csi<lcnce )i<>>c <it'he gas in the thin wall whicl) is inversely proportional to velocity (high vcl<icitics) is s>>>><ll <<.>>>>pared with the heat tra>>ster characteristic time which is inversely pro-lirti>al t<i s<<rtace <<rea (small surf'ace area).
$ Jgc - (acJ'~
hive arcvak.y<..s y -l3 <<M
< -IS ~
E4 QcKW Agjieg( ICluulJ)yrtanics Ha&Lao)-
spy Robm4
'D.
13(<. V(%
cJki.c.It)
Wrm refer~(eg
)n, g4.
sec6an l,.1.g
+k f w~ pi~v<o <Iy F8r+
9702ii0272 96i2i7 PDR ADOCK,05000528 P
I
,C 0
I
Apr-09-96 16-53 PYNGS Nuclear Reg Af'f'ayers 602-393-5442 P.03 PIPE AND DUCT FLOW 103 0
Table 6-15(a). Adiabatic Flow of a Perfecf Gas Through Plpcllne Componenfe.
1 <<S
~Qv
.01
.02
<<03
.Gh
.u5
<<06
<<0?
.GB
~ v9
.10 F 11
.12
.13
~ 14
~ 1$
.14
,17
<<1$
.19
,20
~ 21
~ c2 o3
<<21
~ 25
~io
.27
.28
.29
~ 30
~ 31
.32
~ 3o
.34
.35
~36
~ 37
'<<38
.39
~ 10
~ 41
~ 42
.43
~ 44
.15
<<46
~ 47
<<4$
<<49
.76835i04
.I9)55<04
.$ 4785i03
<<47443404 l3GI?5i03
.20$ 05t03
. ISI &3103
.11508<<03
.9Gu&0402
.72202<02
<<59020i02
.49020i02
~ 41255102
~ 351iv<<02
<<30183402
.2&15?+Oi
~ 22833<<02
.200$ a<<02
.1)726<<02
~ IS?32t02
~ 14030<<v2
.12562<<Gi
.1128S402
.101?7<02
<<920ii+Gi
. 83413> 0 I
.75801101
.o903$ 401
. 62919+01
~57594iOI
~ 52741>01
<<48370tOI
<<44422~01
.40ihstOI
.37&04iOI
.iho$ 3+GI
.61963401
.2'950?+01
.272$ 9iOI
.25ivvovl F 233'l040'I
.2IS?2ovl
.19973401
~ 18499401
<< I?iit>0 I
.15882>OI 14720iQI
.13615>OI
.12dhsoOI I ~ 00000
.99994
. )597C
.99912
.9989d
.99838
.99)ho
.9'9682
<<'99585
.994)$
<<9935>
.992I7
<<99069
.96909
~fil34
.98551'98353
<<$ 8<43
.9?r2I
.97687
<<9744 1
.5)183
<<969Ii
.96&33
~ 903%I
<<9&u37
.9572i
.95397
.95060
<<94713
~ 91355
<<93186
~ 93dOS
~ 9322G
<<92821
<<92413
.'91995
~ 915d8
~9lr32
.90ds?
<<90233
.89771
<<89300
.88821
<<'88334
~ 87839
<<87336
~ 86827
<<86310
<<85785 1.00000
.99995
.9998v
<<19955
.$ 1920
<<99875
<<99820
<<95)55
<<$ 9&81
.99594
.ffo02
..59&ri
.99283
.99l&0
<<99026
.9$ 8oo
<<f8731
.98568
<<98397
.98216
.r$02
<<f?82&
.97618
.97400
.97173
.9&937
.16&93
~ 9o440
'9&178
.95907
.55o29
.95341
.9501&
.94742
~ 94431
~ 94111 93784
<<93449
~ 93106
<<9275o
<<92399
~ 92031
<<'114d3
~ 91284
.90899
~ 90507
~ 90109
~ 89704
.89292
~Ejss?$
I 00000
~ 99999
.99994
<<99987
.99976
<<r99o3
.99546
~ 99927
<<99904
.99879
.99hSG
.99819
.99784
~ 9974?
<<9970?
~ 99d&4
~ 99617
<<99568
<<9951&
.91461
.99104
.99343
<<99279
.99214
.99143
<<99071
<<98996
.98918
.98838
~ 98754
.9$ o&8
.985?f
~ 'iS487
.98393
~ '1829d
,98196
<<98093
<<97988
<<9?shu
<<'17769
<<97dS&
<<97511
<<f742i
'<<97301
~ 97178
.17052
<<969i I
-<<96753
~ 9645'9
~ 96524 C
C
's<<OOOOD
.99999
.9trv)
.95't93
.99988
<<99981
<<999)o
<<99foo
.99952
.99939
.99925 91909
.99892
.99873
.99853
.95832
<<99809
.99781
<<99?58
.9 9730
.99?M
.99&71
~ 99o39
.5940&
<<95571
.99535
.91497
.9r'458
.59hri
.1937$
.99332
~992b]
.99 '1l
<<99I93 9rrhh
.99Q54
~ 99042
~ 98989
<<iS934
~ 188?8
~ 98821
<<98763
<<98703
<<98611
<<98579
.98S15
<<98450
.98383
.9831&
<<98246 roT R 1
2 cr
~$
.00000
<<01140
,02280 03419
<<04557
,0$ o93
<<06827
.07959
.09088
'<<10214 e 11336
,12455
. I 35&9
<<rhhir
.rs?84
.r4$ 83
.17977
.r9044
.20145
~21'19
.22287
~ioohb
~ 2%398
~ 25441 2&4. 7
.2?$ 03
.28520
<<29528
.3052&
~31514
~ 32411
.33159
~ 34415
~ 353&0
~ 36294
<<37216
.38126
.39024
<<39910
.Iv?83
~ 41444
~ 42491
<<43325
~441+4
.41954
<<1571$
~4&$28
'.47213
.4804$
~ 48?S3
~
~
f
Analysis I. Exact Isothermal Given Hl, solve lor H:
U
~
2 Solve for pzt pz pl (Hl/Hz)
Solve for nz.Uzt Arllabatir t'lvcn Hl, solve for HZ.
- H I
(HIt (Y -
)
/zl)
YHI yaz l Hzil t (y - 1)HI/2ll I/2 M II (Y- ))M/2 I
S I
I YY:
I MI 7.
11 (y-l)H/2 Table 6-13. Subsonic Compressible Flow ln Uniform Pipes and Gucts.
Notation: D = hydraulic diameter [Eq. (6-10) J; f = friction factor [Eq. (6-6) J; L = span between points 1 and 2; M = Mach number, U/c, where c is speed of sound (Chapter 14); p = static pressure; T = absolute temperature; u = flow velocity; p -= gas density; ~ = ratio of specific heat at constant pressure to that at constant volume. See text forassumptions. Point 2 is a distance Ldownstream ofpoint 1, and subscripts 1 and 2 refer to fluid properties of these points. (Ref. 6-3, Vot. l. pp. 167, 182.)
Il t
fn0 I
ty U
z C0tnx gt7ttl0O 7c I0 lO I
~ ~
Ql (t)
ZL f)
I
- 2. Lov Harb number 2
<c I
(Y - l)H 2
- 3. Small Static Pressure Chang>>
and Lou Hach Humber Pl Pz r I Pl Pz Dl(pz/pl )
Uz ~ Ul(pi/pz)
Civen'Dl. p.
end Ul. solve for pz.'
2 DIUI I " (pz/Pl) 2 See frame I for Dz. Uzi See footnote (a).
Civen pl, pl. and U, solve for p:
I/2 2
I DIUI I+
I' 2
p -pu I
I I
Ser frame I for p U.
Solve for nz, UZ Tz.
I/y n - n (p /p )
Uz - U,(n,/pz)
T
~ T {p /p I {Y-I)/Y 2
'I 2
I Also ser text for solution proredure.
Given Dl, Ul. end pl, solvt'or pzt 2
I I
I - (p /p I) 2 p
2 See frame I for I, Uz. Tz.
Sre frJRP I fot n. Uz, T t:Iven p, pl, and Ul, solvr !or p I/2 p2 J pl DIUllfL0 + (y + I)/(2Y)l p
(y t 1)nIUI/{7Y)
/
Ol0 I
(t) lO (t)
I Ql M
(a) This formula is an exact alternate statement of the formula in fremr I.
'0 0
I f