ML17285A517

From kanterella
Jump to navigation Jump to search

Revised Tech Specs Re Power Flow Instability & Neutron Flux Noise Monitoring
ML17285A517
Person / Time
Site: Columbia Energy Northwest icon.png
Issue date: 06/01/1989
From:
WASHINGTON PUBLIC POWER SUPPLY SYSTEM
To:
Shared Package
ML17285A514 List:
References
TAC-72924, NUDOCS 8906070201
Download: ML17285A517 (59)


Text

INOEX LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE RE UIREMEHTS SECTION PAGE 3/4. 0 APPLICABILITY..;..........................................

3/4 0"1 3/4. 1 REACTIVITY CONTROL SYSTEMS 3/4.1. 1 SHUTDOWN MARGIN....................................'....

3/4 1"1 3/4.1. 2 REACTIVITYANOMALIES...................................

3/4 1"2 3/4. l. 3 CONTROL RODS Control Rod Operability................................

3/4 1-3 Control Rod Maximum Scram Insertion Times..............

3/4 1-6 Four Control Rod Group Scram Insertion Times...........

3/4 1-8 Control Rod Scram Accumulators.........................

3/4 1-9 Control Rod Drive Coupling.............................

3/4 1-11 Control Rod Position Indication...................

3/4 1-13 Control Rod Drive Housing Support......................

3/4 1-15 3/4.1.4 CONTROL ROD PROGRAM CONTROLS Rod Worth Minimizer....................................

3/4 1-16 Rod Sequence Control System............................

3/4 1-17 3/4.1..5 Rod-Block Monitor....,......,............................

STANDBY LIQUID CONTROL SYSTEM;.........................

3/4 1"18 3/4 1-19 3/4. 2 POWER DISTRIBUTION LIMITS 3/4.2.1 AVERAGE PLANAR LINEAR HEAT GENERATION RATE.............

3/4 2-1 3/4 2.2 APRM SETPOINTS.-.........................:..............

3/4 2-5 3/4.2.3 MINIMUM CRITICAL POWER RATIO...........................

3/4 2-6 3/4.2.4 LINEAR HEAT GENERATION RATE............................

3/4 2-9 3/4 2 5 (RESERVED FOR FFTR) 8906p7p2p>

89p60i PDR ADOCK pgppp3yy 3/4.2. 6 POWER/FLOW INSTABILITY...............;..;..-...-.....3/4 2-11 5TRSZLX1 Y 3/4.2.7 MONITORING..+~.

P

~

3/4 2-13

~ g. g 5VABzzzzp Noxr<ogge6-SXhl~ ~POPHHMoA 3/y 8-IS WASHINGTON NUCLEAR - UNIT 2 v

Amendment No. 62

I

~

, ~

V

i I

I BASES INDEX SECTION 3/4.0 APPLICABILITY..............;.............................

3/4. 1 REACTIVITY CONTROL SYSTEMS 3/4.1.1 SHUTDOWN MARGIN..................................

PAGE 8 3/4 0"1 B 3/4 1"1 3/4.1.2 REACTIVITYANOMALIES.............................

B 3/4 1-1 3/4.1.3 CONTROL RODS.....................................

B 3/4 1"2 3/4.1.4 CONTROL ROD PROGRAM CONTROLS.....................

8 3/4 1"3 3/4.1.5 STANDBY LIQUID CONTROL SYSTEM.....,..............

B 3/4 1-4 3/4. 2 POWER DISTRIBUTION l EMITS 3/4.2.1 AVERAGE PLANAR LINEAR HEAT GENERATION 3/4.2. 2 RATEo ~ ~

~

~

~ ~ ~

~

~

~

~

~ ~ ~

~ ~ ~

~ ~

~ ~

~ ~

~ ~ ~ ~ ~ ~ ~ ~

~ ~

~

~ ~

~ ~

~ ~

~

~

APRM SETPOINTSo

~

~ ~ ~ ~

~. ~ ~ ~ ~ o

~ ~ ~ ~ o ~ o ~ ~ o

'o ~ ~ ~

~ ~ o ~ ~ ~ o

~

~

8 3/4 2"1 B 3/4 2-2 3/4.2.3 MINIMUM CRITICAL POWER RATIO......................

B. 3/4 2-3 3/4.2.4'INEAR., HEAT GENERATION RATE-......................

B 3/4 2-4 3/4.2.5 (RESERVED FOR FFTR) 3/4.2. 6 POWER/FLOW INSTABILITY.........................

3/4.2. 7 vaexr.v 8 "MONITORING T~ XooP oPSRATXcW 3'9.g. 8 MAHXcZTYP1~i7olKHG SZNGLH LooP oP~7j',og 3/4. 3 INSTRUMENTATION B 3/4 2-4 B 3/4 2"5 8~Az-8 3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION........ B 3/4 3-1 3/4.3.2 ISOLATION ACTUATION INSTRUMENTATION..............

8 3/4 3-2 3/4.3. 3 3/4. 3.4 3/4.3.5 3/4.3. 6 EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION.................................

B 3/4 3-2 RECIRCULATION PUMP TRIP ACTUATION INSTRUMENTATION..................................

B 3/4 3-3 REACTOR CORE ISOLATION COOLING SYSTEM ACTUATION INSTRUMENTATION........................

B 3/4 3"4 CONTROL R00 BLOCK INSTRUMENTATION..................................

B 3/4 3"4 WASHINGTON NUCLEAR " UNIT 2 X11 Amendment No.

62

4 I

1

I

\\

LIST OF FIGURES INDEX FIGURE 3.1. 5-1 3.1. 5-2 PAGE 3/4 1-22 RE(UIREMENTS.........................................

'ODIUM PENTABORATE SOLUTION SATURATION TEMPERATURE...

3/4 1-21 SODIUM PENTABORATE TANK, VOLUME VERSUS CONCENTRATION, 3.2. 1-1 3.2.1-2 3.2. 1-3 3.2. 1-4 3.2. 1"5 MAXIMUMAVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AYERAGE PLANAR EXPOSURE, INITIALCORE FUEL TYPE SCR183.......'.................

MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE, INITIALCORE FUEL TYPE 8CR233........................

MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AYERAGE BUNDLE EXPOSURE ANF 8x8 RELOAD FUEL..................................

MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE, INITIAL CORE FUEL TYPE 8CR183................................

MAXIMUM'VERAGEPLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE, INITIAL CORE FUEL TYPE SCR233.............,....................

3/4 2"2 3/4 2-3 3/4 2-4 3/4 2-4A 3/4 2-48 3.2. 3-1 3.2. 4-1 3.2. 6-1 LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE ANF Sx8 RELOAD FUEL..........

OPERATING REGION LIMITS OF SPEC. 3.2.6................

3/4 2-10 3/4 2-12,

'EDUCED FLOW MCPR OPERATING LIMIT....................

3/4 2-8 3.2.7-'1 3.2.8-J 3.4.l. 1-1 3.4.6. 1-1 OPERATING REGION LIMITS OF SPEC. 3.2.7...............

GPzg~gg

@EGRET QHrfS Of-SPEC,.Z.2.f..

THERMAL POWER LIMITS OF SPEC. 3.4.1.1-1..............

MINIMUM REACTOR VESSEL METAL TEMPERATURE VERSUS REACTOR VESSEL PRESSURE (INITIALVALUES)......

3/4 2-14 sv s-ia 3/4 4-3a 3/4 4-20 3.4.6. 1-2

4. 7-1 3.9. 7-1 B 3/4 3-1 MINIMUM REACTOR VESSEL METAL TEMPERATURE VERSUS REACTOR VESSEL PRESSURE (OPERATIONAL VALUES).........

3/4 4-21 SAMPLE PLAN 2)

FOR SNUBBER FUNCTIONAL TEST..........

3/4 7"15 HEIGHT ABOVE SFP WATER LEYEL YS.

MAXIMUM LOAD TO BE CARRIED OVER SFP.................

3/4 9"10 REACTOR YESSEL MATER LEVEL...........................

B 3/4 3"8 WASHINGTON NUCLEAR - UNIT 2 Amendment No.

63

3/4. 2. 6 POWER/FLOW INSTABILITY LIMITING CONDITION FOR OPERATION 3.2.6 Operation with THERMAL POWER/core flow conditions which lay in~ QegioA 4 of Figure 3.2.6-1 is prohibited.

APPLICABILITY:

OPERATIONAL CONDITION 1 g en THERMAL POWER is. greater than 39K of RATED THERMAL POWER and core flow is less than or equal to 45K of rated core flow.

deva,s

sacr, as pr aetieaI, gaS'z all easer aper, s

With THERMAL POWER/core flow conditions which lay in of Figure 3.2.6-1, initiate rs elle SURVEILLANCE RE UIREMENTS 4.2.6 The THERMAL POWER/core flow conditions shall be verified to lay outside Q'cn g of Figure 3.2.6-1 once per 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />sg ~hen a~4i'n~

in %he, re9ieo & APE,X'GA6$r.XV'.

WASHINGTON NUCLEAR - UNIT 2 3/4 2-11 Amendment No. 62

60 fC g

SD I

~o 5

3O 8

20 OQ j

ac J GM 20 30 40 50 Core Floe (.k Bated) 60 Operating Region. Llmlts of Speelf Ication 3.2.8 Fljure 3.2.6-1

P

70 6'o K

50 La o

40.

5 so o

20 OV 40 Re ion A A0

Ã0 I

Ifil U

O0g 20 30 40 50 Care Floe ('k Bated) eo 70 Operating Region Llmlts of Speclf Ication 3.2.6 Figure 3.2.6-4

~ ~

~

I

~

~

I I '

~ I I

I

~

I

~

~

~

~

~

~

~

1 ~

~

~

~

~

~

~

~

~

I's' I

I

~

~

~ ~

~

~

~

~

~

~ ~

~

~

~

~

~

~

~

~

~

~

~

~

~

~ '

~

~

0 o

t

~

~

~

~ 0 4 l

~

~

~

~

~

~

~

~

~ ~

~

~

(

~

~

~

~

0

~

~

~

~

~ '

~

~

~

~

~

~

~

~

~

~

~

~

~

~

I

~

~

~

~

~

~

~

I i

~

~

~

~

~

~ ~

~

~ '

~

~

~

~

~

~

~

~

~

~

~

~ I

~

~

~

~

I

~

~

~

o

~

~ ~

~

~

~

~

~

~

~

~

~

~ '

~

I II

~

I ~

~

~

~

~

~

s

~

~

4 ~

~

~

~ I

~

~

~

~

I

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

"'3/4.2 POWER DISTRIBUTION LIMITS 3/4.2.7 STABILITY MONITORING TWO LOOP OPERATION LIMITING CONDITION FOR OPERATION

3.2.7 ACTION

The stability monitoring system shall be operable*

and the decay ratio of the neutron signals shall be less than

.75 when operating in the region of APPLICABILITY.

APPLICABILITY:

OPERATIONAL CONDITION 1, with two r ecirculation loops in operation and THERMAL POWER/core flow conditions which lay in Region p'of Figure 3.2.7-1 C

a ~

With decay ratios of any two (?) neutron signals greater than

.75 or with two (2) consecutive decay ratios on any single neutron signal

greater, than.75:

Ps saon as Iara>tt aalu, 'kuv in OII cas~

uu<

-BOEB&TEH"~initiate action to reduce the decay ratio by either decreasing THERMAL POWER with control rod insertion or increasing core flow with recirculation flow control valve manipulation.

The starting or shifting of a recirculation pump for, the purpose of decreasing decay ratio is specifically prohibited.

b.

With the stability monitoring system inoperable and when operating in the region of APPLICABILITY:

~

~

~

~

~

s soon as ~r ncprcJ Zwfin pl~ <4<<~ ~+

EBXATELY-initiate action to exit the region of APPLICABILITY by either decreasing THERMAL POWER with control rod insertion or increasing cor e flow with recirculation flow control valve manipulation.

The starting or shifting of a recirculation pump for the purpose of exiting.

the region of APPLICABILITY when the stability monitoring system is inoperable is specifically prohibited.

Exit the region of APPLICABILITY'ithin-one (1) hour.

SURVEILLANCE RE UIREMENTS:

4.2.7.1 The provisions of Specification 4.0.4 are not applicable.

4.2.7.2 4.2.7.3 The stability monitoring system shall be demonstrated operable*

within one (1) hour prior to entry into the region of APPLICABILITY.

D clad Pak.tN-f OA alo4'4 l/a/M c.olcAs tlat 4y The decay ratios ~m-the stability monitoring system shall be moni tored AAW~g-ma&kvAp-marApul&Aen-when oper ating in the region of APPLICABILITY.

4:aM4 Th~

W.

N

- buHy-demonsti*a-ted to-be l~sthan-0-.75-once-every 24-heurs-when-epepat-Hig.

n-o-0-APPLKAfBLI-T+.

g~y g~ rnri,(I<. ~OniTOC.i~@.

SySTBW

+7a gCquSSP7O~

4'na

<</~~~Zi~~NI ~>~~~

~

~

ow fu~cPimg'

&4 QN'$ clliPI~4 &de>

d F'rpn4/ d'cd m5'o nulIN ptpk.-tasPeQ alan<<

eteRor Teve'ls A and C (or B and D) of one LPRM string in each of the nine core regions (a total of 18 LPRM detectors) shall be monitored.

A minimum of four (4)

APRMs shall also be monitored.

a l

W 1

g

)

I

=%i'u I

~

  • ~

h lt CL

~

sA

~ 4 ~,r*

ll I

l

~

~ ~,.< ~

s lt 1

70 BO 56

~e 40 So o

20 0

40 eglon A gg.pipngC 0"

A QP r

XI O

lTlU A0

<0::

20 40 60 Core Floe (A Bated) 70 Operating Region Llmlts of Speclllcatlon 3.2.7 Figure 8.2,7-1 0

J'/4.2 POWER DISTRIBUTION LIMIT 3/4.2.8 STABILITY MONITORING " SINGLE LOOP OPERATION LIMITING CONDITION FOR OPERATION 3.2.8 The stability monitoring system shall be operable*

and the decay r atio of the neutron signals shall be less than

.75 when operating in the region of APPLICABILITY.

APPLICABILITY:

OPERATIONAL CONDITION 1, with one recirculation loop in PPERERWRL PtlWERI fl El I 1

P gl g

1 I'lg 3.2.8-1.

ACTION:

'a 0 With decay ratios of any two (2) neutr on signals greater than

.75 or with two (2) consecutive decay ratios on any ingle neutron signal greater than.75:

q

~,'(

gT-I'flenmesh myA'S- ~y~rm PNEBSRELY-initiate action to reduce the decay ratio by either decreasing THERMAL POWER with control rod insertion or increasing core flow with recirculation flow control valve manipulation.

The starting or shifting of a recirculation pump for the purpose of decreasing decay ratio is specifically prohibited.

b.

With the stability monitoring system inoperable and when operating in the region of APPLICABILITY:

gg So~

gS Vy~ica/

gorg in all COgeg iaryIAz~y tK fefnid<5>

QWEBSRELY-initia4e action to exit the r egion of APPLICABILITY by decreasing THERMAL POWER via control rod insertion.

Exit the region of APPLICABILITYwithin one (1) hour.

SURYEILLANCE RE UIREMENTS:

4.2.8.1

--= The provisions of Specification 4.0.4 are not applicable.

4.2.8.2, 4.2.8.3 The stability monitoring system shall be demonstrated operable*

within one (1) hour prior to entry, into the region gf APPLICABILITY..

y<gp~k-Tgsy)t'mg ni5g yylues Jlcas/ur<

4y The-decay ratios"Crom-the stability monitoring system shall be monitored

$eRe~g-reaebi-v+ty wmarbp&at+en-when operating in the region of APPLICABILITY.

PE~EH P-g 1

g~

demon ~de-be+ass then-0.75-once-ever y-24hours-when-operAA-ag P'PHS&tHP....,';

I I,'

~

~

~Ze g y+Q br+ ~ p gg<~ ~y p~~gaTo f0+ wsk. wWW ~iSICJ O'W~

  • etector Vdvels A and'C (or B and 0) of one LPRM strMg in efch of the nine core regions (a total of 18 LPRM detector s) shall be monitor ed.

A minimum of four (4)

APRMs should also be monitored.

3/4 2-15

1 Q'

O 30

~

20 0

eglon Region 8 Line X A

OR 33Q IVI Q

O0 20 40 50 Core Floe (% Bated) 70 Operating Region Umlts of Speclflcatlon 3.2.?

Figure 3.2.7-,4

I

70 60 5O 0

g0 I

30

~

20 0

eglon R'c ion B

'R ro~.Y/'lon A

Q I

x0 allU A0 20 40 50 Coro Floe {% Rated) 8'perating Region Utnlts ot Speclllcatlon 3.2%

Flgore 3.2+'t

~

~

(S llf

')

l J

3/~.4 REACTOR COOLANT SYSTEM 3/4.4. 1 RECIRCULATION SYSTEM RECIRCULATION LOOPS LIMITING CONOITION FOR OPERATION 3.4.1.1 Two reactor coolant system recirculation loops shall be in operation.

APPLICABILITY:

OPERATIONAL CONOITIONS 1" and 2".

ACTION:

a ~

With one reactor coolant system recirculation loop not in operation:

Within 15 minutes:

that core flow is greater than to 39K of rated c

flow or that THERM R/core flow conditions lay below the in re 3.4.1.1-1.

With core flow less than 39K re flow and THERMAL POWER/core flow cond's above the n Figure 3.4.1.1-1, initiate'ct o reduce THERMAL POWER to the line in gure 3.4.1.1-1 or increase core flow to er than or equal to-39K of rated core flow within the next

~ct 9.4.g cpx1 Yerify that the requirements of LCO 3.2.4 are met, or comply with the associated ACTION statementS 8.X Within 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />s:

a)

Place the recirculation flow control system in the Local Manual (Position-Control) mode, and b)

Increase the MINIMUM CRITICAL POWER RATIO (MCPR) Safety Limit. by 0.01 to. 1.07 per Specification 2.1.2,

and, c)

Reduce the Maximum. Average Planar Linear Heat Generation Rate (MAPLHGR) for General Electric fuel limit to a value of 0.84 times the two recirculation loop operation limit per Specification 3.2.1,

and, d)

Reduce the volumetric flow rate of the operating recircula-tion loop to < 41,725"" gpm.

"See Special Test Exception 3.10.4.

""This value represents the actual volumetric recirculation loop flow which produces 100K core flow at 100K THERMAL POWER.

This value was determined during the Startup Test Program.

WASHINGTON NUCLEAR - UNIT 2 3/4 4"1 Amendment, No 62

4.

INSERT 8 2.

Verify that THERMAL POWER/core flow conditions lay outside Region 8 of Figure 3.4.1.1-1.

~~n Wsn" +~$

pg s~

Rs pracTlcAJ hut I'n al( c ~er ~a+n>~ /P 1

With THERMAL POWER/core flow conditiors which lay in Region 8 of Figure 3.4.1.1-1, EBBRB+ initiate action to exit Region 8

by either decreasing THERMAL POWER with control rod insertion or increasing core flow with flow control valve manipulation.

Within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> exit Region B.

The starting or shifting of a recir culation pump for the purpose of exiting Region 8 is specifically prohibited.

ga ~

~

~

s'I <S~

L ~

ll

~

V

e A ~

~

REACTOR COOLANT SYSTEM comRoLLED cot LIMITING CONDITION FOR OPERATION Continued ACTION:. (Continued) e)

Perform Surveillance Requirement 4.4.1.1.2 if THERMAL POWER is < 25K~" of RATED THERMAL POWER or the recirculation loop flow in the. operating loop is < 10K"~ of rated loop flow.

-f)

Reduce-reci-ra&ation loop-f1~-in-the-operating-loop-untR

-the-cor e-p&teMP-nome-does-not-deviate-f romthe-estab Hwhed-cope->ate-rP-noise-patterns-by-more-than MG~

The provisions of Specification 3.0.4 are not applicable.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

b.

With no reactor coolant system recirculation loops in operation, ediatel initiate measures to place the unit in at least HOT SHUTDOWN within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.-

SURYEILLANCE RE UIREMENTS 4.4.1.1.1 With one reactor coolant system recirculation loop not in operation, at least, once per 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> verify that:

a.

The recirculation flow control system is in the Local Manual (Position Control) mode, and b.

The volumetric flow rate of the operating loop is < 41,725 gpm.""

This value represents the actual volumetric recirculation loop flow which produces 10N core f1 "w at 100Ã THERMAL POWER.

This value was determined during the Startup Test Program.

~"Final values were determined during Startup Testing based upon actual THERMAL POWER and recirculation loop flow which will sweep the cold water from the vessel bottom head preventing stratification.

WASHINGTON NUCLEAR - UNIT 2 3/4 4-2 Amendment No.

62

  • t g

~

'p

, ~

Fi

CONTROLLED COPE REACTOR COOLANT SYSTEM

.,SURVEILLANCE RE UIREMENTS (Continued a-RGO~-of~he-es4a~ed-e~e-Core flow is greater than or equal to 39K of rated core flow when core THERMAL POWER is greater..than the limit specified in "Figure 3.4.1.1-1.

.. 4. 4.1.1. 2 With one reactor coolant s'ystemrecirculation loop not in operation, within no more than 15 minutes prior to either THERMAL POWER increase or recir-culation loop flow increase, verify that the following differential temperature requirements are met if THERMAL POWER is < 25 """ of RATED THERMAL POWER or the recirculation loop flow in the operating recirculation loop is

< 10M"~* of rated ]

-loop flow:

a.

< 145.F between reactor vessel steam space coolant and bottom head drain line coolant, b.

< 50~F between the reacto~ coolant within. the loop not in operation and the coolant in the reactor pressure

vessel, and c.

< 50 F between the reactor coolant within the loop not in operation and the operating loop.

The differential temperature requirements of Specification 4.4.1.1. 2b.

and c.

do not apply when the loop not in operation is isolated from the reactor pressure vessel.

4.4. 1. 1.3 Each reactor coolant system recirculation loop flow control valve shall be demonstrated OPERABLE at least once per 18 months by:

N a.

Verifying that the control valve fails "as is" on loss of hydraulic pressure (at the hydraulic control unit), and b.

Verifying that the average i ate of control valve movement is:

r 1.

Less than or equal to 13 of stroke per second

opening, and 2.

Less than or equal to 11 of stroke per second closing.

"~~Final.values were determined during Startup.Testing based upon actual THERMAL POWER and recirculation loop flow which will sweep the cold water from the vessel bottom head preventing stratification.

WASHINGTON NUCLEAR - UNIT 2 3t4 4-3 Amendment Ho.

16

4 l I',t.

J 4

I'

r

~

s

~

sl I

0 r

Delete 70 eo

~

so

~a g+

40 30 20 0

eglon gC fO/l B p

-C Heglon C t

o0 330 U

AO.

20 40 50 Coro Flow f4k Bated)

Operating Region Llmlts of BpeclfIcation 3.-.-:

Figure awe~-g

i p

f

c, POWER DISTRIBUTION LIMITS I

BASES

~La 0

POWER/FLOW INSTABILITY (Continued)

Predicated on the SIL 380 endorsement, WNP"2 has divided the power/flow map on the following boundary lines:

l.

8N rod line 2

45K core flow line 3.

Joo f'oaL/i~

4.

Natural Circulation flow line

( ee, A) 5.

Minimum.- Forced Circulation f normal recirculation lineu mgre conservakive.

i e ~Do% radlinc. or a. liw dRinirg o. cclco decgy W40 &0.9 se of annual licensing submittals, a 3X margin f lock line is taken il the opportunity t s

no Technical Specifica" tion changes under the 0 CFR 50.59.

This 3~ provides margin to assure that vend ity calculate an easily support the allowable operati son.

For calculational ease the oundary is linearized en two points, (24K Fl'ow, 39Ã Power) and (45K Flow, Power).

svaez~zv~

MONITORING-~ CaoP oPHRMZON 3/4.2.7 At the. high power/low flow corner of the operating

domain, a small prob>>

ability of limit cycle neutron flux oscillations exists depending on combina" tions of operating conditions (e.g.,

rod patterns, power shape).

To provide assurance that neutron flux limit cycle oscillations are detected and sup-d d,dddd didlld d

ii~

d idd i

d dii operating in this region.

Gicclea( cfaxry r+laS This division conforms to the SIL 380 recommendations.

'5 For LCO 3.2. 6, the region of concern is bounded by

, the natural circulation flow line, and the core ow one.

a cul ate decay ratios betwee~~wo~~w-

~es-and-on-the-APRMmod-b&ck 1@ac-a4nus-3X must be less than.9.

0 eratio in the region between the two flow lines and abov is forbidden due to the potential for boiling instabilities.

Stability tests at operating BWRs were reviewed to determine a generic region of the power/flow map in which surveillance of neutron flux noise levels should be performed.

A conservative decay ratio of 0.75 was chosen as the basis for determining the generic region for surveillance to account for the plant to plant variability of decay ratio with core and fuel designs.

This generic region has been determined to correspond to a core flow of less than or equal to 45K of rated core flow and a thermal power greater than that spe~W~~

d d~ ~

r "dr I'"

flux noise limits are also established to ensure early detection of limit cycle ne oscillations.

BWR cores t ic X~~ neutron flux noise caused T ow noise.

Typical neutron C.

flux noise or 1-12 of rated power (pe have been reported for ange of 1aw ta high rocirculatian loop f1ow during ho dual WASHINGTON NUCLEAR " UNIT 2 B 3/4 2-5 Amendment No.62

INSERT G Stability monitoring is performed utilizing the ANNA system.

The ANNA system shall be used to monitor APRM and LPRM signal decay ratios when operat-ing in the region of concern.

3/4.2.8 STABILITY MONITORING - SINGLE LOOP OPERATION The basi.s for 'tability monitoring during single loop operation is con-sistent with that given above for two loop operation.

The defined region where surveillance is required is larger for single loop operation due to a potential reduction in the stabilizing effect of forced circulation.

INSERT C

Stability monitoring is performed utilizing the ANNA system.

The system shall be used to monitor APRM and LPRM signal decay ratio and peak-to-peak noise values when operating in the region of concern.

A minimum number of LPRM and APRM signals are required to be monitored in order to assure that both global

(

in-phase) and regional

<out-of-phase) oscillations are detectable.

Decay ratios are calculated from 30 seconds worth of'data at a sample rate of 10 samples/second.

This sample interval results in some inaccuracy in the decay ratio cal-culation.

but provides rapid update in decay ratio data.

A decay ratio of 0.75 is selected as a decay ratio limit for operator response such that sufficient margin to an instability occurrence is maintained.

When operating in the region of applicability.

decay ratio and peak-to-peak information shall be continuously calculated and displayed.

A surveil-lance requirement to continuously monitor decay ratio and peak-to-peak noise values ensures rapid response such that changes in core condi-tions do not result in approaching a point of instability.

3/4. 2. 8 STAB I L I TY MON I TOR I NG S I NGLE LOOP OPERATION The basis for stability monitoring during single loop operation is consistent with that given above for two loop operation.

The smaller size of the region of allowable operation.

Region C. is due to a limit on the allowed flow above the 80% rodline.

When operating above the 80%

rodline in single loop operation.

the core flow is required to be greater than 39X ~

h HE u IE 4

~

4 4

,I

~

H

)

I 4

EI '

C 4

ll l 4

H 4

14 4

f>>

4 H

4

~

I E

>> )

4 I>>I Jc C"

7 7

'j 7

t t

CONTROLLED COPY POQER OISTRIBUTION LIMITS, BASES NEUTRON FLUX NOISE MONITORING (Continued) r irculation loop operation.

Stability tests at operating BMRs have demon str ed.that when stability related neutron flux limit cycle oscillations ccur they suit in peak-to-peak neutron flux limit cycles of 5-10 times the ypical values.

Therefore, a'ctions taken to reduce neutron flux noise levels xceeding three (3) imes the typical value are sufficient to ensure early de ction of limit cycle eutron flux oscillations.

Typically, eutron flux noise levels show a gradual incr se in absolute magnitude as core low is increased (constant control rod p tern) with two reactor recirculatio loops in operation.

Therefore, the aseline neutron flux noise level obtained a

a specific core flow can be app ed over a range of core flows.

To maintain reasonable variation betwe the low flow and high flow ends of the flow rang the range over which a pecific baseline is applied should not exceed 20Ã of rat core flow with two ecirculation loops in opera-tion.

Oata from tests and ope ting plants ind ate that a range of 20K of rated core flow will result in approxi tely a 50K 'rease in neutron flux noise leve1 during operation with two re ulati loops.

Baseline data should be taken near the maximum rod line at wh h

e majority of operation will occur.

However, baseline data taken at lower r lines (i.e, lower power) will result in a conservative value since the neu on lux noise level is proportional to the power level at a given core flo In the case of single loop eration (SLO), the normal neutron flux noise may increase more rapidly whe reverse flow occur in the inactive jet pumps.

This justifies a smaller fl range under high flow 0 conditions.

Baseline data should be taken at fl intervals which correspon to less than a 50K in-crease in APRM neutron f x noise level. If baseline da are not specifically available for SLO, th baseline data with two recirculats loops in operation can be conservativel appl'ied to SLO since for the same core low SLO,pill exhibit, higher ne on flux noise levels than operation with t loops.

However, because of'ever e flow. characteristics of SLO, the core flow/dr e flow re-lationship is fferent than the two loop relationship and therefo the base-line data fo SLO should be based on the active loop recirculation d

ve flow, and not th core flow.

Because of the uncertainties involved in SLO a high reverse ows, baseline data should be taken at or below the power speci

'ed in Fi e 3.4.1.1-1.

This will result in approximately a 25K conservative base ne value if compared to baseline data taken near the rated rod line an wi therefore not result in an overly restrictive baseline"value, while oviding sufficient margin to cover uncertainties associated with SLO.

MASHINGTON NUCLEAR - UNIT 2 B 3/4 2 6 Amendment No. 62

PLANT PROCESS CO ER REPLACEMENT SYSTEM P

S OVERVIEW The Washington Public Power Supply System" Unit 2 Process Computer system consists of a DEC VAX 8200 CPU and peripherals as follows:

o 12.0 MB Memory o

Floating Point Processor o

Battery Backup o

Disk Controllers o

RA60 Disk Drive o

RA81 Disk Drives o

TS05 Tape Drive with UNXBUS controller o

UNIBUS Adaptors o

DMZ-32AP Multipurpose Communication Controllers o

LA100 Console Terminal o

VT241, VT340 CRTs and IBM-PS-2 o

Alarm Printers (CITOH 600)

The Telemetry Front o

10 EMR o

2 EMR o

3 EMR o

40 EMR o'0 EMR o

3 EMR o

80 EMR o

1 EMR o

2 EMR o

3 EMR o

3 EMR o

15 EMR o

1 EMR o

1 EMR o

5 EMR End consists of the following:

609-19-0-0-4447A PCM Equipment cases 609-19-0-0-4447B PCM Equipment cases 609-19-0-0-4447C PCM Equipment cases 620-01 Dual signal conditioners 621-03 Thermocouple/EMF, Plug-in 671-01-1 Analog multiplexer 671-01-2 Analog multiplexer 681-01-4-1-3-68.0-255-0 PCM Encoder 681-01-4-1-3-136.0-255-0 PCM Encoder 683-04 Serial to parallel interface 687 Central tim'ing cards 688 Voltage detect cards 741 Time Code Generator/Translator 715 Multiplex Preprocessor 760 Buffered Data Channels SOFTWARE Prior to the inclusion of the ANNA system the PPCRS software consists of five major subsystems (1)

Front End

Setup, (2)

Acquisition Control, (3)

Real Time

Displays, (4)

Historical Displays and (5)

NSS Calculations and Displays.

All of the required setup files.and parameter description files necessary to use the system can be viewed built or modified using subsystem 1,

the Front End Setup subsystem.

Following setup, the starting of

data, processing control functions, and stopping data are controlled from subsystem 2,

the Acquisition Control subsystem.

Data can be monitored as it actively passes thru the system in real time using subsystem 3,

the Real Time Display subsystem.

Subsystem 4,

the Historical Display subsystem, allows the user to analyze data retrieved from the circular history files or alarm files from the disk storage devices.

Subsystem 5,

The NSS calculation and Display allows the user the ability to review such items as control rod,positions LPRM/APRM readings, Heat Balance and TIP information.

An overview of the subsystems is included in enclosure 1.

ATTACHMENT 2

0 sd,ltr 1,',>>.".'

Jq

'>>",4, v g>>'>>s

~

44, kr r,

4

'dv r4fi't

<<f MM lt It I 'der

>>,<<d Cd I E.p.r 4

4 l(

4, I

d, J

I

)

1,

>(.1fMA,~

4 d 4

[,, )>>

I 4

'I ll lt

'4 I

~

C I 's ys 4)<

4

)

>t<<k 4

4>>

d,.'"

r 4

),4

.s'bc d")4

~

FFJ 4 'I4, M I (g

C.",I d =d 4

)

~'4

)ir,",I" 4 fiM"4 K'-"d f!

frd'>>

d d

4, 4

>>4 g

IP

)

4 4

ed 4) d

<<>> 4 l 4

4 4

I c

))

A I

sr d

1 tv' lir,g tl4 ~

444 k

>'1P':")

<<OP>>

I J

4 4

4 ~ 4) 44 lf rr

)t~

I r d>>4 I

It')

I'I>>

k."!~ '

",d,"

4 4

r"

".:>>I )

4 4

4 a

~

tv) ~

4 I Its

)lj g rv d

4

'.')

dg>> I >>1 I'>>

4 f)d'I 'I 44 ~ Q r ',.d'1 4 f

~

, I 4 II 4

v

'4<<)

t 4

I

'4(>> <<4<<

4 ll "j'll 4 It gl 4

w 14

)

w...'

rs II I

I 4

(

~

t 4

I I I 4

"4 d

v tI er,'

M' d

f I

I>

M

) k"

">'drr I,*

4'>>)

~

~

4 I

4

,el 4

I kts "W>>,l

~ V Ir"<<

>> IIr

The user accesses al PCRS functions via a

me tree.

The user selects the function desired by typing the appropriate alphabetic character followed by a carriage return, which directs the user to a submenu. If the user enters an alphabetic character followed by a numeric selection, (i.e.

F5),

then item 5 on submenu F would be executed immediately without responding to submenus.

"'ach menu has a status block that defines the overall health of the system.

Figure 1

shows the status block that was presented to the user prior to the inclusion of the ANNA system.

Figure 2 shows the menus available at that time.

With the inclusion of ANNA, a separate menu was included for ANNA functions (Figure 3),

the status block was updated (Figure 4) and the main menu provided access to the new functions (Figure 5).

The ANNA system, as

stated, is presently functional on the PPCRS computer.

In order to optimize its calculational time, procurement is in progress to expand the PPCRS capabilities by adding a second dedicated CPU to perform the required ANNA calculations.

The second CPU will be networked to the VAX 8200 and required plant data will be transmitted to the new computer at ten samples per second per point.

Post the completion of the calculations the results will be transmitted back to the original computer.

Utilizing this philosophy the results will be available to users of both machines in a faster time frame than presently exists.

Figures 6 and 7 show the existing and phase two configuration.

ATTACHMENT 2

a I'

X

~ X

-; Ig III 1

~

Xfp I

At il.

'.ti<<f a lI','

~

X

~

'fata<<C ah Aiba.

I I

iix I

"I'p A

'If<<I) r ">>

II<<I S1 tA~',

a

~ "I

<<<<h p,

i

>>tf

'p p

I I

if I'! C f <<ak<<

)'Jt.

M a>>h a

A ft >>

<<,ff I

if

<<A X

X X<<ii" I

i

">>A" j A<< ~ )

~

PAtI'

<<P A f1XX I <<

t p

r

  • ,a"

>><<)t'X1 fhf IA>

AXC'* iCC t

A 8

7 APAP

,pt <<,

k,<<

4<<r-"

a 'It'I al I

~XAAY p j>"r )

AX

~'1 'fr'A, g

g 1

'i lh f

PX

<<>> 'f '"

I I

I

,r,

<< I ~.*

Ct'<<

I'l)<<

I l

~ I I'X<<

4v

~

h FIGUR 1 SYSTEM STATUS BLOCK (PR NA)

ANALOG 1 ANALOG 2 ANALOG 3 DXGXTAL EMR 715 HISTORY ALARM CVT CALC VAX CPU

-PPCRS ->

TDAS-PRIME CPU FIGURE 2 PPCRS MENUS (PRE-ANNA) h WNP2 MAXN MENU Terminal XD RTA1:

ADMIN ANALOG 1 ANALOG 2 ANALOG 3 DIGITAL EMR 715 HISTORY ALARM CVT CALC

VAX, CPU

-PPCRS ->

<--TDAS-PRIME CPU Fn Front End Setup Maintenance An Acquisition Control Rn Real Time Analysis Hn Historical Analysis Nn NSS Functions I

Ln, Logging

& Report Functions Pn Plant Status Displays HE HELP EX EXIT TO VMS LO LOGOFF SYSTEM WNP2 FRONT END SETUP MENU Terminal XD RTA1:

ADMIN ANALOG 1 ANALOG 2 ANALOG 3 DIGITAL.

EMR 715 HXSTORY ALARM CVT CALC VAX CPU

-PPCRS ->

TDAS-PRIME

'PU 1

Parameter Data Base Functions',

2 Active/Inactive Links 3

Load EMR 715 Preprocessor 4

Prime Computer Data Rate 5

Dynamic Updates 6

,Calibration HE HELP Xnformation h

EX Return to MAIN MENU ENTER MENU SELECTION

C v

P l )Iv>>>> f A Uvf I>>"

"<<g>>1

>>vffI>>>>, >>>>f IJ f )

R vP-f>>4$ >>f

)>>,/ 'g I I>>ft)

Yrt>>rT!<< f ff Nlf&f J'N'V "

")sfA,)

~

.~

<<a

<<'.rN'> Ji.~'1.. <'1>>>> rV

)rlk r Yr a~'1 f f >><>>(j'.,',j k Pf)3 xrfN

~ J II

, fC t>>1 4>>'>>>>'$>> rr>> )

~

llg14 f 'J g J

>> )"rlL.6'>.) Og.rpYi

(<LS f>> ">>f f')>> 'g

.g>>"'gy>>

g f "I L1 ~'-

f r> "8 'i<1 3 i I f "

<<1 IVI >>'",ll

)

~

(< f f.s>>r>>

a ~a t.x f'J/a'l>'f

>>""I'c' f.l '>'ft'( 3'f

. ~

v f '>Y~,.'f>><

Jq>>~

~

~ j>>jv4>>(>>

R ~ fIp

~ J,">>.'ll>

Iv+vl fP f"1y

.'a>>fA )

I

" s). I w 1 Vl>> ",

F>>g

.?fh > /"I$

a f ~."vf,. <<j f6 i I'.fr r)>>[ r 'fJ ',. ('~

n>>.',.3s>>,<<t fr' f I>> ~~

< '>>vit'>>tr 'kr>> f, f

r>>l '"

f'.)r>>a'I t 4 '>>>>>>

Ck>>:

v'

>r>

i Cg'<<4; 4

rf<5 f J>k'C>>vf r>>41 fr>> l>>'I EC>>I>>1 II

>>ff

~

~

WNP2 ACQUISITION CONTROL MENU Terminal RTA1:

ADMIN ANALOG 1 ANALOG 2 ANALOG 3 DIGITAL EMR 715 HXSTORY ALARM CVT CALC VAX CPU

-PPCRS ->

TDAS-PRIME CPU' START Data Acq.

Ec Derived Processing 6

START. Derived Processing 2

STOP Data Acq.

Fc Derived Processing 7

STOP Derived Processing 3

MONITOR Data Acquisition 8

START TDAS Data XFR to PPCRS 4

START PPCRS Data XFR to PRIME 9

STOP TDAS Data XFR to PPCRS 5

STOP PPCRS Data XFR to PRIME HE HELP Information EX Return to MAXN MENU ENTER MENU SELECTXON WNP2 REAL TIME MENU Terminal ID RTA1:

ADMIN ANALOG 1 ANALOG 2 ANALOG 3 DXGITAh HISTORY EMR

'LARM 715 CVT CALC VAX CPU

-PPCRS ->

TDAS-PRIME CPU 1

GRAPHIC (4 Parameter) 2 FULL Descriptor (4 Parameter) 3 ALARM Monitor (16 Parameter) 4 ALPHANUMERIC Monitor (32 Parameter) 5

SUMMARY

DISPLAY/PRINTOUTS 6

LAST 20 MESSAGES (ACK/NAK)

HE HELP Information ENTER MENU SELECTION EX Return to MAIN MENU

i j

'I 0'>

L-

~ A1

<t'< }

p'.."

~

> <<" f

'Fw}ji 'w""'}<)i 1 f))r>><<('i>>)>>(

X

~ f'l l

) A (1

'~ "<'I H.)".)'W t

<."<<t

. W"'f>>;

t, "4Q

<<l".(f'J

'I THi'."fe g I P)SP SP

'l PIP "f'c.'

<<1 r )I}WW C

()I'..'f~" Al~>N.~"

Wl<<<S):ti~8 N."Pail

" ff"f N'i lrq'.

"'PCfr'T' pff>><<>>f>>f j

~

1V> ")

t

~

~~

~

i'?2'ISTORICAL ANALYSIS NU Terminal RTA1:

ADMIN ANALOG 1 ANALOG 2 ANALOG 3 DIGITAL EMR 715 HXSTORY ALARM CVT CALC VAX CPU

-PPCRS ->

-TDAS-FRXME CPU 1

GRAPHIC (4 Parameter) 3 ALPHANUMERXC Monitor (32 Parameter) 2 PULL Descriptor (4 Parameter) 4 SECONDARY File Maintenance HE HELP Information EX Return to MAIN MENU ENTER MENU SELECTION WNP2 NSS MENU Terminal ID RTA1:

ANALOG 1 ANALOG 2 ANALOG 3 DIGITAL EMR 715 HISTORY ALARM CVT CALC VAX CPU

-PPCRS ->

<TDAS-PRXME CPU 1

Control Rod Position Display 2

Control Rod Status Display 3

LPRM/APRM Readings Display 4

Heat Balance and APRM Calib.

HE HELP 5

TIP Data Acquisition 6

Immediate POWERPLEX MON Run 7

DASEDIT (CR,

LPRM, HEAT BAL.)

8 Control Rod R Heat Balance Disp.

EX Return to MAIN MENU ENTER MENU SELECTION

l)C"i ) t Vi rr>'ftr 1

'J;,Lw9fS

".tf 1/c>T f"> f i"f" fry IN '1'"'f'0'1 4 1 HrfA

l l "'5! (f l 1 rwr.. ra LC>'it

>lcd'-.ffr "w'wig

~Cfl'l"'>>

c

'w',P, f"r 8pf )O'1 gf~ I 1'icfr)'fw:1 f fr fJcfr,rz PV>>

Sll wB c! f';

<<)(>wf..'g r')ck lA'PA a)< l"1 p".Rkf, I.I0 f rr yr. 1 cr i t ~f 8tr,) r, l <.'ic.A L/'.8 '1'l 'wfff Pt).C>.),8:))

lwl "C"ff'.AO

.real>i'<f "W >rwWW fr>>rf WW'">>ff 0 r>C>H

.'C; r JnC

.'W UP.HF; Af Y'1 or rrxtr h

>11 X";f

I C

i AIPQ LOGGING R REPORT Term.ID RTA1:

ADMIN ANALOG 1 ANALOG 2 ANALOG 3 DIGITAL EMR 715 HISTORY ALARM CVT CALC VAX CPU'PPCRS-TDAS-PRIME CPU 1

Thermal Power R Net Heat-Rate 5

2 Jet Pump Operability

>> 3 6 Hour Historical and Delta Data 7

4 APRM/Core Thermal Power CCC

,8 HE HELP EX Return to MAIN MENU ENTER MENU SELECTION WNP2 PLANT STATUS MENU Term.ID RTA1:

ADMIN ANALOG 1 ANALOG 2 ANALOG 3 DIGITAL HISTORY EMR ALARM 715 CVT CALC VAX CPU

-PPCRS ->

<TDAS-PRIME CPU 1

2 3

4 5

Reactor Heat Balance Display 6

Steam Cycle Display 7

Circulating Water Display 8

Cooling Tower Display 9

Power to Flow R Reactor'isplay RHR Shutdown Cooling Display Main Turbine Display Main Generator Display Reactor Heatup/Cooldown Display HE HELP EX Return to MAIN MENU ENTER MENU SELECTION

~

  • reI >ig)vgvfP iftS

~ 8 i)qe y

) ) )

"g<<)y)4 xi' I'JlA <<".7)f )" I" P.AI<<'I<<1 41

);,I 4 vvgr>>

vigfftfl

>q ) (el 'i!)<g

!II I Cfc)

< (f i>4))'!5 4C,>

X ')f>>

")1.

II ">)4:iA V)

Ig 'JX'

) jli)iri f(iI'"? < itt

).:) I) Vt pa(>>

t ld 4 a) f ($,) I K'(I

" 4HA g& fg

)<<J

XGURE 3 ANNA,MAIN MENU ANALOG 1 ANALOG 2 ANALOG 3 EMR 715 HISTORY ALARM CVT CALC VAX CPU PPCRS

<-TDAS-ANNA PRIME CPU SPWR

=

CTP GMWE WT 1

START ANNA Data Acquisition 2

STOP ANNA Data Acquisition 3

START ANNA Calc. Monitor 4

STOP ANNA Calc. Monitor 5

Tabular Log lt 6

Decay Ratio/Frequency BAR Graph HE HELP 7

8 9

10 11 Regional Autocorrelation Power to Flow Autocorrelations ANNA AR Autoregressive Analysis ANNA OPERABXLXTY Display Set Signal Selection and Limits EK Return to MAIN MENU FIGURE 4 ANNA STATUS XNFORMATXON (DAS AND CALC OPERATIONAL)

ANALOG 1 ANALOG 2 ANALOG 3 EMR 715 HISTORY ALARM CVT CALC VAX CPU PPCRS

<-TDAS-ANNA PRIME CPU 4PWR =

CTP GMWE WT ANNA STATUS INFORMATION (DAS AND CALC NOT OPERATIONAL S. NOT WXTHIN APPLICABLE POWER RANGE)

E ANALOG 1 ANALOG 2 ANALOG 3 EMR 715 HISTORY ALARM CVT CALC VAX CPU PPCRS TDAS-N/A ANNA PRIME CPU SPWR

=

CTP GMWE W7 ANNA STATUS INFORMATION (DAS OPERATXONAL AND CALC NOT OPERATIONAL)

ANALOG 1 ANALOG 2 ANALOG 3 EMR 715 HISTORY ALARM CVT CALC VAX CPU PPCRS

<-TDAS-DAS ANNA PRIME CPU RPWR =

CTP GMWE =

WT

~

~

r

~

rl <<'III

'tar f

~ tt

<< I()<<) P gt

]'ra ll)j, t 8

() j f J.

If("1 a I Vfrl f

)I'J tt (I()

It ta/I I

I Jlra

~

<< It)'Ig'JI<<f)t r)

Js ') Av',v '.

) ~ )

) ai fgr()

'<<1%()J J)

~

l

<<fIfIrP

. J C<<IYI<<)

If, lf dl

<< f))

fl r<<g r "I 11 Ia h I

~ 'J II,)fIt~ a TP I

I f a ~)) t.)<<

~ ~ )I,lf Ml(

/

tl <<J ff J".'

1 I

J

'I I

Ii,) 'rra, a It

)

t ANN STATUS INFORMATION

,(DAS AND CALC NOT OPERATXONAL AND WITHIN APPLXCABLE POWER RANGE)

'L

'p ANALOG 1 ANALOG 2 ANALOG 3 EMR 715 HXSTORY ALARM CVT CALC VAX CPU PPCRS

<-TDAS-

/

ANNA PRIME CPU 4PWR =

CTP GMWE =

WT FIGURE 5

PPCRS MAIN MENU (POST XNCLUSXON OF ANNA)

ANALOG 1 ANALOG 2 ANALOG 3 HXSTORY EMR ALARM 715 CVT CALC VAX CPU PPCRS

<-TDAS-

ANNA, PRIME CPU 4PWR =

CTP GMWE =

WT Fn Rn Hn Historical Analysis Front End Setup Maintenance m

Acquisition Control J

Real Time Analysis Nn NSS Functions Ln Logging f Report Functions Pn Plant Status Displays Dn Decay Ratio (ANNA)

HE HELP EX EXIT TO VMS LO LOGOFF SYSTEM

1Ivg )I "lI/< tvI vIP

'i f

(",'>l)vA/ "

l""'f()'3 lvI>f/'.'>t II~I'lA N I ll'IiI '0 (it/lA Ij'I I,'[Pi',"<O'I P!l"l"I() 'l"')~",

( 8/l C

C V

( "IVT3R vIrIr>>

v/'4 l

/t,X/')t'r DNA 9Q A)I,~IJaTVY. I

'I'hi.'>'I) 0'/'

A <

N GH')'," 0 iIP'Jv"<?'"l

> VI~V

~ t I l' VI 1I P/ (lfVV AY.Vih V

ajr

~

f)~10) A'p.)fi). 8

<$D JC)c" I,'t I llew'I'"l l Ll. I c'

8 vt' CvlfA

.v)Il1 I Iv,"4"l2 Ilail

." v '.'.,v J All/3

.y J~vi k '$40 I ~ l <<I Illl NJ'l,0 '8 "I'I<:v)()I(

vVPfg V

vIv

~ IvfQvvl v lil

b I

FIIGUBE 6 PILAMTPBGCESS CQliNPUTEB BEPLACEMEMT S"Il'STEM (PPCBS)

( PBESEMT CQMIFIIGUBATIIGM)

PILAMl IIMPUTS ANALOGl DIGITAL INPUT SUBSYSTEN

$280 ANALOGS AT 20 SANPLES ISECOND

$536 DIGITALSAT 250 SANPLESISECOND HSTCRCAL REALTIME/ HISTORIC DATATRANSFER PBE-PBGCESSGB DATACONPHESSION E U CONVERSION ALARMCHECKING II3EC VAX-82QQ AlARMCSPlAY REALTIMEDISPLAYS DERIVEDPAIW:lERS HSfOFKALDSPLAYS NSS DSPlAYS AhNACALCUNTKNS AWAOSPlAYS TERMINALSAND PRINTERS

4

'44$ I ~'

4' 4 Lr Ef ffP

~I g<i4

)< g~

S4 '>>

flfg,l'r4

<>I

" 'q if' C.

. ~

I K,l. '.

&4 eL

-Ll Lw F4&

. e.

k I '4 &F ~ $

IL ~ 5~

F4 RY II J 444>>

I4 44 I F $

1

'$P'f I) +l'f J

r 4

r Fi 4

0 Q

Wr re tete il IP 4'

ff4 '~r.e44 ',

f'hre

'I le 41 f'i

~ 4 Fe

, ere F>4 r,

jl 4

le" f Il

~

],! i I/ ffLI'I C. 4 ff4 pi

'r lb 4III' r

1 0

1 4

Ei 4'

IFIIGUBE 7

( PIHIASE TNfQ CQMIFIIGUBATIIQM)

PILAMTIIMPUTS 1280 ANALOGSAT20 SAMPLES/SECOND 4586 DIGITALSAT250 SAMPLES/SECOND PBE-PBQCESSQB DATACOMPRESSION E.U. CONVERSION ALARMCHECKING DESIl.TS I>

DATA REALTIME II3EC lIM-8200 AIARMOSPLAY REALTNEDSPIAYS IEPJVED PARAMETERS HSTORICALDSPIAYS NSS DSPlAYS, ANNACALCUIATIONS ANNADSPLAYS TERMINALS TERMINALSAND PRINTERS

y I(

P (>>

I E "I~ tr at'U UW'tt t, I I It.'th ~ Ptt t

~

IIXU~ rr

'tttl 5 7trtt D 0

'4 ~ Uti

~ t ~

tg UP 'c 1th

. ~

v4 g IP r

tf

~I h

Urtext

. e I I '1-ttt I,

tt r p r tt 'at a

t 4 tt~ a Uter "Itha ra" 'ht' rPt PU tt h

UUV h III P

4". I:t I I

h%4PII

'UPrrP Wt Vl" Jt tt Yr" tt 4

'I 41 4

'<<rU Ip

~lrJ 'Eg I.<<.f IS I~I "f

PUII,,'rt q

I y

p j,t tlt

~

.IC. Ul>>

I I

lt I

Pt'I I, )

It I

j 4<<'~/

U I

11

]fan I

3 4

\\ <<.c 'Lkt A wP lt ISC t ttt.r'I

~

t Irl II I

~

~

tIII'.-

I kl It

'Ur iI +t

all 4

'1 PAGE 1 OF 2

OVERVIEW OF FRONT END SETUP SUBSYSTEM The Front end setup subsystem

creates, edits, and deletes the'iles necessary to load the telemetry equipment with the

" user's requested setup.

The rate at which information is passed to the PRIME computer from the,VAX. is controlled from this subsystem.

The FRONT END SETUP subsystem consist of the following functions:

1 o

Loading the 715 Multiplex preprocessor o

Setting the preprocessor,input links to ACTIVE or INACTIVE o

Adding, Deleting, Modifying parameter's in the data base which is used for setting up the preprocessor o

DYNAMICALLYupdate parameters in'he EMR 715 multiplex preprocessor while data acquisition is active.

OVERVIEW OF ACQUISITION CONTROL SUBSYSTEM The acquisition control subsystem is used to start and stop the taking of data from the EMR 715 multiplex processor into the VAX 8200 computer

system, and allow the user to monitor the acquisition of data buffers from the telemetry frontend.

Data recorded into the circular history file will be input from preprocessor output port number one.

The circular alarm data file's input will be from the preprocessor's output port number two.

Data used in constructing the Current Value

Table, (CVT),

will be received from the preprocessor's output port number three.

This subsystem also controls the outputting of selected parameters from the Current Value Table in the VAX 8200 computer to the Prime computer via parallel computer interface.

,The ACQUISITION CONTROL subsystem consists of the following functions o

START accepting data into the VAX 8200 computer.

o STOP accepting data into the VAX 8200 computer.

o MONITOR data buffer acquisition in the VAX 8200 computer.

o START sending selected

- parameter data to the Prime computer.

o STOP sending selected parameter data to the Prime computer.

OVERVIEW OF REAL-TIME DISPLAY SUBSYSTEM The real-time display subsystem provides the capability to examine data from the preprocessor during data acquisition via the current value table, (CVT), and to display the data on stripcharts and alphanumeric scrolling and non-scrolling displays.'he alarm summary function provided receives its data from output port two of the preprocessor and not from the CVT.

Operator requested summaries, parameters currently in alarm, etc.

will be displayed using a VT241 CRT.

I))

L

<<1>>

j",

) "

>> )ti

> l.f W

'>>.AI 1 ), (I vv,

~ >>)<<il ij!')I I>> I W

/g

>>v i'

II) f 1 l' f I P<<.(M'I

'()1,

'I le I

I<<')<<<<'

il lf

,')I>> '

I"i<<jg(.W;~

>> I) )

1,)

f I ( '.I(IL'MI>>'"

M<< '" l,l <<

I

. I 'v f II'l' 1

)

~ I>>,

<>

))1

~

I K,W ( I'llj>>

I>>.IWW> $ >> <'j J<<'-."

> 1 LI I 7

) 'Iili (

I'i','

l

<<il et 1 1"" Ilf*>>af)>: I) ~ Iw, /I') "8 If Ifj

<<f"'.>>1

" If f 1$.(

')'Iv<<)IIIl 'I I">>we Iv I: " 'I

'<<) (

I WI) "I>>

). '>j) '.). Llj"

'iI>>

)jl,(.j)I, >,

'I, W) <>W i'/

>> l>I I('lW,'<<'))if) i"

>>>>WC MI i

~ I E>>4') )>> -)

1 I >>,II )

1 I e>>l(] )5l I

Kr"I) 1 I/I ~

~

l)>>w,

", I',>>Iv,(

I)) )

7 I

<<<<(>>,I I<<).

-I I'

~

I

) '>)

'1' r >'f(

'>) j>>II 'ff)f'

.,'(

Wf1 1

r>>'

)lj>>

I J>>1"

>>.)

'I>

~

)>a I

1 I li'II>>,

"lira '

1)ifI,.'>>II<<)'1<<( 't>

)IW

!)Ii >>.Wi,<<>>

'" i

> I<<r>>)

~ " 'l,l. ~ 'I I

>>',I 3>>

lj.

I l. <<1>>>>)1 Iv V)()),if1 "t I I )fl 1>>1 fi 1I ll r f

~

~ sj>>

'f'I ff i

I f' I,

(

'I'.

">>j'I')v I<

  • ',II>>1>>>> ( if f W 1>) <<1(l <<ill 'I 1 SM>> >>i I)'1 1 I, )il') " ~ ) flil >(1I>> i II I W..">>7 I'I fj ~ I '>> a t ) " 'I.>>I iilfI p '>>> Iift>> i=) I i I ) I') l iM fl fl)I(iI,.l>> A TI Wl (IM <<I)lf( I j>>v ~ y II IIvl fil.>> ' I'I)iN pi j! I I/ ) l 11 I I I 1 Ii<< jj = ) lj 'j, I I <

    > ') '4l,r I il I 9(<<lf WM>, I M<< 11 ) MLI II")lt K,i I I I li>> ", j

    • il I
    f > I f)jl",I'a I iv, 7>, (I ~i I I I >>I <<>>ItI) "~ I v >I() I > I'1 1>> 'h) ~ I ~ il ~ 1 ~ I.. 'I pv ~ 'lw 'i' ijj. 'k >>I I f r), t) > I>> Iv)i I )Si',I IW<< I <<( I 11<< J 4 ~ 1 '>>>>i' "'I I. I <<j>>. I I ( ) <<( (II ~ '<<I'i )>> I \\ I\\ ie 'I 1 ~ 1 1> I ~ I lfi~ ."'j<<v r lk I ll~ ~ I i>I ~ I 'The REAL-TIME functions 'PAGE'OF 2 DXSPLAY subsystem consists of the following o 4 parameter GRAPHIC scrolling strip charts on a VT241. o 4 parameter FULL Descriptor scrolling display. o 16 parameter ALARM Monitoring display using the CVT as the ,data source o 32 parameter ALPHANUMERIC non-scrolling display. o Operator ALARM

    SUMMARY

    monitoring.

    OVERVXEW OF HXSTORICAL DISPLAY SUBSYSTEM The historical display subsystem provides the capability to examine data from the stored secondary circular history files by presenting the data on stripcharts and alphanumeric 'scrolling and non scrolling displays.

    This subsystem also provides the capability for the user/analyst to create new secondary files from the current history

    file, to delete secondary files which already exist, and to list the secondary files which exist.

    The HISTORICAL DISPLAY subsystem consists of the following functions 0

    0 0

    0 4 parameter GRAPHXC scrolling strip charts on a VT241.

    4 parameter FULL Descriptor scrolling display.

    32 parameter ALPHANUMERIC non-scrolling display.

    SECONDARY file maintenance.

    OVERVXEW OF HISTORICAL NSS SUBSYSTEM The NSS display subsystem provides the capability to calculate and examine information of interest to the reactor engineers, STAs and control room staff.

    The NSS DISPLAYS subsystem consists of the following functions:

    0 0

    0 0

    0 0

    0 0

    Control Rod Position Display Control Rod Status Display LPRM/APRM Readings Display Heat Balance and APRM Calib.

    TIP Data Acquisition Immediate POWERPLEX MON Run DASEDIT (CR,

    LPRM, HEAT BAL'.)

    Control Rod fc Heat Balance Disp.

    ~UUU w'vf I U*a vj l

    p" I',

    IZ

    .f."">4'I

    .", 'I"A;IM.".l'.)A.

    '~ f.

    UZf

    ~4 a

    'fi.

    Url U ) <<. Uaff~

    ~

    ~ f>>f f f>>)Z"

    )UZ>><fa f.')'f 4

    II PU'ZUg f

    i f,.

    ) l(""

    FUla) f 4

    a,l S

    . J.Z

    ".Z~ f>>) f r U,',

    <<f

    ~ >if tv)i>>"g!)

    4 UUZ I,

    < f'4 ) aa fl,,f '-'

    ff Z

    "1 M

    "<<<<! <<4>fif-,;>>,

    ,f "4 f(lf 'U f 'j f '>tylk 4) ia$

    r

    • fUZ() 4 f, l "P

    f v) J

    )fVU a<](

    U t Utg i,,

    grig 44 1',",i 4

    <aa ffg U 'UfZ4 ~

    lt tZ 4) 4

    <<fif Z

    'g.f '

    4 ~ Q f

    ,")f)4',""all)

    Z-t'l'> j

    'i'">>f 'U~f

    ) t:f"vlff v'.,"

    ' J 4,'v'Z) I 'UI'C Z'.f '<<<<ff f 4>'f")".') f; ZI7f II'Zfff>f~(,'

    I fa faffr,f >>Zr<<w 4'- J'ffZ)

    'i" f )

    i wed'3<<

    Z.,ia

    'Zg Z,

    f

    )ffay wf ~,

    w1

    ~ dg, 4,'."

    Z.Z,

    )

    ~ fz fff..)

    II w

    -)r

    <<j JU[.f fU f,ff) f L

    )i$ f UI, t

    U U

    wU agl4

    )iU f ')

    I Illf 1(a )

    ~a U

    )'Zwl lal)

    ~ ff f >V "4 <t<<a

    << 'f' El <j Z a f) f'ff) )

    >II)f>>a) f<<,) Z.f ft

    ~

    w

    )

    f! ~ a' luff

    <1f, 'd('< l"'-

    ',Pkfpa

    ~ f aaUUN f J

    <<)U f)fa Z f'

    ~ Z,"~ ) f -tl P U<<

    "f )3 af' J

    " 4<<",)Za,

    ~

    <>Z )it"'i" fI"'P 4 ')ll')

    UU ~ ) fglw 4

    4 4

    y I

    U 0,'vtavU aalu '

    'avv al 4 r,,

    'i i

    Z Ua 4

    a Iia>>

    4

    <<a)~Z,,Z l 't

    >>i" Uap 4

    'Za

    )la&

    4 46! f,'<< f f.w"

    <<4 f

    '<< ft f i

    U

    ~ tf ')

    .;1 f)fff~

    ~,"

    f.>>" vg',w Z Z> P,w J

    Z,f Z.'4 I

    ')

    l v<<4<<,>

    'f ',].f l

    '.Z f "f ) f Ilf U

    ~I)L'v a fgP v

    gf wr Za'I )

    a)Z., f UiCU" ll f i'll j

    if f,

    U lia a,f;fr,'f!

    a)Z<

    li

    ~

    4(ILUZ L

    a>>fff

    ~ ~g) iU

    )

    4

    ,,Z>><<ff,f')f, f ), ""' f'

    ')'f w <<U,

    f f

    ) li

    .Pf f

    ~ '-

    f) f"

    <<)Q' f fct Z -z'vz f,

    J af'<<

    fa'

    , f45'I'l. 4, "fw 4

    ~",J Z,Z 0 t l v

    4' v<<a l

    ATTACHMENT 3 PROPOSED ADVANCED NEUTRON NOISE MONITOR OPERABILITY CHECK PROCEDURE PURPOSE The'purpose of this test is to demonstrate. the operability of the Advanced Neutron Noise Analysis (ANNA) System upon reaching the area of the Power to Flow bounded by 10 to 60 percent Core Flow and 20 to 70 percent Core Thermal Power.

    1 A)

    PPCRS is operable to support this procedure.

    PRECAUTIONS Successful completion of this procedure is required to demonstrate operability of the stability monitoring system as required by Technical Specification (TS) 4.2.7.2 or TS 4.2.8.2.

    • Rt"

    'None PROCEDURE Step

    1) At the STA PPCRS terminal in the control room demand the Decay Ratio Menu (D).

    Step Step Step Step Step Step Step

    ~ Step

    2) If the ANNA status indicator shown in the System Status block of the menu indicates ANNA is not online, start the DAS and/or CALC programs by requesting functions 1 and/or 3.
    3) Verify the ANNA status indicator shows'hat the ANNA system is online.
    4) Initiate function 10, ANNA Operability Di'splay.
    5) Verify the ANNA Operability Status display is presented as shown similar to figure 1.
    6) Within 60 seconds verify that the Data Acquisition Status on the display indicates Operable.
    7) Verify.that the time of last calculations is within a minute of the time displayed at the top right of the screen.
    8) Verify that the ANNA Monitor Status is Active.
    9) Initiate a hard copy of the screen for inclusion with this completed procedure by entering Ctrl P

    r Step

    10) Enter a Ctrl Z and verify the return to the Decay Ratio menu.

    Step 11)

    Demand the NSS menu.

    Ce w~

    fP ~

    Step Step Step

    12) Initiate function 3 the LPRM/APRM Display
    13) Initiate a hard copy of the display for inclusion with this completed procedure by entering Ctrl 'P 14)

    Compare the applicable LPRM readings between the outputs from step 9 and 13 and verify agreement within 5 'percent of rated readings.

    Step

    15) Test Complete.

    Ficiure 1

    ,ANNA CURRENT SCAN VALUES APRM E

    LPRM 32-17C APRM B

    DR X.XX FQ X.XX DR X.XX FQ X.XX 8P-P X.X DD-MMM-YYYYHH:MM:SSLPRM 32-17C

    ~P-P XX.X THE

    DETECTOR

    'LPRM 08-41 A LPRM 32-49 A

    LPRM 48-41 A

    LPRM 16-25 A

    LPRM 24-33 A LPRM 48-25 A LPRM 16-17 A

    LPRM 32-17 A LPRM 48-17 A

    APRM CH A APRM CH B

    APRM CH C ANNA SYSTEM IS OPERATIONAL READING 'ETECTOR READING XX.XX LPRM 08-41 C

    XX.XX XX.XX LPRM 32-49 C

    XX.XX XX.XX LPRM 48-41 C

    XX.XX XX.XX LPRM 16-25 C

    XX.XX XX-XX LPRM 24-33 C

    XX.XX XX.XX LPRM 48-25 C

    XX.XX XX.XX LPRM 16-17 C

    XX.XX XX.XX LPRM 32-17 C

    XX.XX XX.XX LPRM 48-17 C

    XX.XX XX.XX APRM CH D XX.XX XX.XX APRM CH E XX.XX XX.XX APRM CH F XX.XX LAST CALCULATION DD-MMM-YYYYHH:MM:SS.MS ANNA STATUS RUNNING Ctrl Keys: Z=Ezit P=Print E

    "4 N

    cI

    ~K A