ML17249A787

From kanterella
Jump to navigation Jump to search
Forwards Response to NRC 800225 Request for Info Re Turbine Disc Integrity in Operating Westinghouse Low Pressure Turbines.Application for Withholding Proprietary Info & Affidavit Encl.Proprietary Version Withheld (Ref 10CFR2790)
ML17249A787
Person / Time
Site: Ginna Constellation icon.png
Issue date: 03/19/1980
From: White L
ROCHESTER GAS & ELECTRIC CORP.
To: Eisenhut D
Office of Nuclear Reactor Regulation
Shared Package
ML17249A788 List:
References
TASK-03-04.B, TASK-3-4.B, TASK-RR NUDOCS 8003250463
Download: ML17249A787 (129)


Text

REGULATORY

~ORMATION DISTRIBUTION SY M (RIDS) e ACCESSION NBR! 8003250<363 DOC ~ DATE ~ 80/03/19 NOTARIZED ~

NO FACIL:50 204 Rober t Emmet Ginna Nuclear Pl ant P Unit iE Rochester G

AUTH,NAME AUTHOR AFFILIATION I<HITE P Le De Rochester Gas L Electric Corp, RECIP ~ NAME RECIPIENT'FFILIATION EISENHUTED,G.

Division'f Operating Reactors DOCKET 05000200 SUBJECT! Forwards response to NRC 800225 request for. info re turbine disc integrity in operating Westinghouse low pressure turbines. Application for withholding proprietary info 8

affidavit encl.Proprietary version withheld (ref 10cfr2790).

DISTRIBUTION CODE:

PAOIS CDPIES RECEIVED:LTR L EN"CLig SIZE:

TITLE: Proprietary Info after Issuance of License NOTES: C44f W ~~diM9MX W iQX~~Eg.

REC IP IENT COPIES RECIPIENT COPIES ID CODE/NAME LlTTR ENCL ID CODE/NAME" LTTR ENCL ACTION:

02 BC gpss 4g'~

7 7

INTERNALS 01 REG FILE 11 TA/EDO 10 ENGR BR 16 PLANT SYS BR 18 EFFL< TRT SYS OEI D EXTERNAI.'9 ACRS NSIC" 16 1

09 I 8

E 12 CORE PERF" BR 15 REAC SFTY BR 17 EEB NRC PDR STS GROUP LEADR 16 I.PDR SMITHS'

~ W/Aff 1 2

2 1

1 1

1 1

1 1

0 0

pgnr

swee, Fi~E's TOTAL NUMBER OF COPIES REQUIRKDe LTTR ~

ENCL

4 lt 1

o o

H S

r P

r 8

i 9>yi<sw~.n9, i,9x>b,"-abber~;Y,; ~(

~b 4mb

~tr "4" 0

~xq

.5~4~

'~be%

g" -8'~e

'~ >,~ g" 'p 8 5+,4$

pb4 C)iA,Q

~

( qN D+

~ g'p

'HS g ~

=)

OaJ +

s

%.f R RECT Wp

+

0 ss

+0 qO

++*<<+

UNITEDSTATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555 ORANDUM FOR:

TERA Corp.

FROM:

SUBJECT:

US ~DC/TIDC/Distribution Services Branch Special Document Handling Requirements 1.

Please use the following special distribution list for the attached document.

2.

The attached document requires the following special considerations:

P Do not send oversize enclosure to the RRC PDR.

P Only one oversize enclosure vas received please return for Regulatory File storage.

zest, W~

Proprietary information send affidavit only to the

%tC PDR P Other:

(specify) cc:

DSB Files TELIC/DSB Authori"ed Si ature

sa zzmn irzsrnz zz7 z

!zzszv ROCHESTER GAS AND ELECTRIC CORPORATION ass sss ~ Ol lIeew,-

rt J,t state L

o 89 EAST AVENUE, ROCHESTER, N.Y. 14649 LEON O. WHITE. JR.

VIC E P RES I D E NT TEI.EPHONE AREA coDE 7te 546.2700 March 19, 1980 I

Mr. Darrell G. Eisenhut, Acting Director Division of Operating Reactors Office of Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission Washington, D. C.

20555 Subject Information in Response to NRC Request for Information of February 25, 1980, relative to Low Pressure Turbine Disc Integrity R. E. Ginna Nuclear Power Plant, Unit No.

1 Docket No. 50-244

Dear Mr. Eisenhut:

Enclosed are:

1.

One (1) copy Application for Withholding and one (1) copy AffidavitAW-80-3.

2.

One (1) copy Attachment A, Site Specific Question Answers-Including proprietary responses to Question l-d.

3.

One (1) copy Attachment B, Site Specific Question Answers Including non-proprietary responses to Question 1-d.

The purpose of this letter is to respond to your, request for information of February 25, 1980 relative to turbine disc integrity in operating Westing-house nuclear low pressure turbines.

Per your request in the subject letter, responses to the generic questions have been coordinated through a task force whose representation includes all owners of Westinghouse nuclear low pressure turbines and is chaired by Mr. Wayne Stiede of Commonwealth Edison.

The consensus responses to the generic questions have been sub-mitted to you by Westinghouse at the request of the task force.

Where we agree with the responses, we have referenced that transmittal in our attached responses.

~,l y The site specific responses contain proprietary information of the g~

Westinghouse Electric Corporation.

In conformance with the requirements of 10 CFR Section 2. 790, as amended, of the Commission's regulations, we agA~

c +

~Re ROC ~, ~P gp> ~~

L.POX

~

~~+

QPII6ss 50+69'

e I

E 1t 1

J JI.

I,

ROCHESTER GAS AND ELECTRIC C DATE March 19, 1980 TD Mr. Darrell G. Eisenhut, Acting Director SHEET NO.

2 are enclosing with the submittal an application for withholding from public disclosure and an affidavit.

The affidavit sets forth the basis on which the information may be withheld from public disclosure by the Commission.

Correspondence with respect to the affidavit or application for with-holding should reference AW-80-3 and should be addressed to Mr. R.

Williamson, Manager, Customer Order Engineering, Westinghouse Electric Corporation, Steam Turbine Divisions, Lester Branch Box 9175, Philadelphia, Pennsylvania 19113.

Very truly yours, L. D. Whi e, Jr.

Enclosures Subscribed and sworn to me on this /Pub day of March 1980.

GARY L. REISS NOTARY PUBUC, State ot N. Y. Monroe Co.

Mjr Commission Expires March 3019.,g/

Pf

'I h

g I

8

DOCKET iVO.

DATE:

T NOTE TO NRC AND/OR LOCAL PUBLIC DOCUMENT ROOMS from The following item submitted with letter dated

,is being withheld from public disclosure in accordance with Section 2.790.

PROPRIETARY INFOR4ATEON rI,'d

~

ro e e~<es ka Distribution Service's Branch

AW-80-3 March 14, 1980 Darrell G. Eisenhut Division of Operating Reactors Office of Nuclear Reactor Regulation US* Nuclear Regulatory Commission Washington DC 20555 APPLICATION FOR WITHHOLDING PROPRIETARY INFORMATION FROM PUBLIC DISCLOSURE

Subject:

R. E. Ginna Nuclear Power Plant Unit 1 Docket 450-244 Information in Response to NRC Request for Information of February 25, 1980, Relative to Low Pressure Turbine Disc Integrity.

Reference:

Appendix A letter from Leon D. White, Jr. to Eisenhut, dated 3/19/80

Dear Mr. Eisenhut:

This application for withholding is submitted by Westinghouse Electric Corporation ("Westinghouse" ) pursuant to the'rovisions of paragraph (b)(l) of Section 2.790 of the Commission s regulations.

Withholding from public disclosure is requested with respect to the subject information which is further identified in the affidavit accompanying this application.

The undersigned has reviewed the information sought to be withheld and is authorized to apply for its withholding on behalf of Westinghouse, STG-TOD.

The affidavit accompanying this application sets forth the basis on which the information may be withheld from public disclosure by the Commission and addresses with specificity the considerations listed in paragraph (b)(4) of Section 2.790 of the Commission's regulations.

Accordingly, it is respectfully requested that the subject information which is proprietary to Westinghouse and which is further identified in the affi-davit be withheld from public disclosure in accordance with 10CFR Section 2.790 of the Commission's regulations.

Correspondence with respect to this application for withholding or the accom-panying affidavit should be addressed to the undersigned.

Very truly yours, R. Williamson, Manager Customer Order Engineering Westinghouse Electric Corporation

0 8

II l(

AA ef:

AW-80-3 AFFIDAVIT COMMONWEALTH OF PENNSYLVANIA COUNTY OF DELAWARE:

Before me, the undersigned authority, personally appeared Robert Williamson, who, being by me duly sworn according to law, deposes and says that he is authorized to execute this Affidavit on behalf of Westinghouse Electric Corporation ("Westinghouse" ) and that the aver ments of fact set forth in this Affidavit are true and correct to the best of his knowledge, information, and belief:

Robert Williamson, Manager Customer Order Engineering K K II t l

A I

AAA'A Scvortt l0 apd 80b<,"/bed 0'orr ttte uiS..79....d~y OL......19.@..

,HENRY E. S UILLACE lIIotary Public, Marple Twp., Delaware Co.

My Commission Expires Oct. 18, 1980

P

,C

~

w

~

ll

I 5/

P C

(l) I am Manager, Customer Order Engineering in the Steam Turbine Generator Technical Operations Division of Westinghouse Electric Corporation and as such, I have been specifically delegated the function of reviewing the proprietary information sought to be withheld from public disclosure in connection with nuclear power plant licensing, and am authorized to apply for its withholding on behalf of the Westinghouse Power Generation Divisions.

(2) I am making this Affidavit in conformance with the provisions of 10 CFR Section 2.790 of the Commission's regulations and in conjunction with the Westinghouse application for withholding accompanying this Affidavit.

(3) I have personal knowledge of the criteria and procedures utilized by Westinghouse Power Generation Divisions in designating informa-tion as a trade secret, privileged or as confidential commercial or financial information.

(4)

Pursuant to the provisions of paragraph (b)(4) of Section 2.790 of the Commission's regulations, the following is furnished for con-sideration by the Commission in determining whether the information sought to be withheld from public disclosure should be withheld.

(i)

The information sought to be withheld from public disclosure is owned a'nd has been held in confidence by Westinghouse.

(ii)

The information is of a type customarily held in confidence by Westinghouse and not customarily disclosed to the pub-lic.

Westinghouse has a rational basis for determining the types of information customarily held in confidence by it and, in that connection, utilizes a system to determine when and whether to hold certain types of information in confi-dence.

The application of that system and the substance of that system constitutes Westinghouse policy and provides the rational basis required.

Onder that system, information is held in confidence if it falls in one or more of several

types, the release of which might result in the loss of an existing or potential com-petitiVe advantage, as follows:

(a)

The information reveals the distinguishing aspects of a process (or component, structure, tool, method, etc.)

where prevention of its use by any of Westinghouse's competitors without license from Westinghouse consti-tutes a competitive economic advantage over other companies.

(b) It consists of supporting data, including test data, relative to a process (or component, structure,

tool, method, etc.),

the application of which data secures a

competitive economic advantage, e.g.,

by optimization or improved marketability.

(c)

Its use by.a competitor would reduce his expenditure of resources or improve his competitive position in the

design, manufacture, shipment, installation, assurance of quality, or licensing a similar product.

(d) It reveals cost or price information, production capac-

ities, budget levels, or commercial strategies of West-inghouse, its customers or suppliers.

(e) It reveals aspects of past,

present, or future Westing-house or customer funded development plans and programs of potential commercial value to Westinghouse.

(f) It contains patentable

ideas, for which patent protec-tion may be desirable.

(g) It is not the property of Westinghouse, but must be treated as proprietary by Westinghouse according to agreements with the owner.

(h)

Public disclosure of this information would allow un-fair and untruthful judgments on the performance and reliability of Westinghouse equipment components and improper comparison with similar components made by competitors.

There are sound policy reasons behind the Westinghouse system which include the following:

(a)

The use of such information by Westinghouse gives West-inghouse a competitive advantage over its competitors.

It is, therefore, withheld from disclosure to protect the Westinghouse competitive position.

(b) It is information which is marketable in many ways.

The extent to which such information is available to competitors diminishes the Westinghouse ability to sell products and services involving the use of the information.

(c)

Use by our competitor would put Westinghouse at a com-petitive disadvantage by reducing his expenditure of resources at our expense.

(d)

Each component of proprietary information pertinent to a particular competitive advantage is potentially as valuable as the total competitive advantage.

If com-petitors acquire components of proprietary information, any one component may be the key to the entire puzzle, thereby depriving Westinghouse of a competitive advantage.

(e)

Unrestricted disclosure would jeopardize the position of prominence of Westinghouse in the world market, and ther eby give a market advantage to the competition in those countries.

(f)

The Westinghouse capacity to invest corporate assets in research and development depends upon the success in obtaining and maintaining a competitive advantage.

(iii)

The information is being transmitted to the Commission in confidence

and, under the provisions of 10 CFR Sec-tion 2.790, it is to be received in confidence by the Commission.

(iv)

The information is not available in public sources to the best of our knowledge and belief-(v)

The proprietary information sought to be withheld in this submittal is that which is appropriately marked inAttach-'.

~eKA4 A to letter from L. D. White, Jr. to

Eisenhut, dated March 19, 1980 concerning infor-mation in response to NRC request for information of February 25, 1980, relative to low pressure turbine disc integrity.

The information enables Westinghouse to:

(a)

Develop test inputs and procedures to satisfactorily verify the design of Westinghouse supplied equipment.

(b)

Assist its customers to obtain licenses.

Further, the information has substantial commercial value as follows.

(a)

Westinghouse can sell the use of this information to customer s.

(b)

Westinghouse uses the information to verify the design of equipment which is sold to customers.

I l

V '

(I"

~

~

~

~ '

(c)

Westinghouse can sell services based upon the exper-ience gained and the test equipment and methods developed.

Public disclosure of this information is likely to cause substantial harm to the competitive position of Westinghouse because it would enhance the ability of competitors to

design, manufacture, verify, and sell electrical equipment for commercial turbine-generators without commensurate expenses.

Also, public disclosure of the information would enable others having the same or similar equipment to use the information to meet NRC requirements for licensing documentation without purchasing the right to use the information.

The development of the equipment described in part by the information is the result of many years of development by Westinghouse and the expenditure of a considerable sum of money.

This could only be duplicated by a competitor if he were to invest similar sums of money and provided he had the appro-priate talent available and could somehow obtain the requi-site experience.

Further the deponent sayeth not.

Sheet 1

March 19, 1980 Attachment B

Subject:

Information in Response to NRC Request for Information of February 25, 1980, relative to Low Pressure Turbine Disc Integrity Site Specific Question Answers including non-proprietery responses to Question 1-d.

R. E. Ginna Nuclear Power Plant, Unit No.

1 Docket No. 50-244.

Site Specific Questions:

A.

B.

Turbine type:

The Rochester Gas 8 Electric, Ginna 51 unit consists of one tandem compound four flow, three casings, condensing, 1800 RPM turbine utilizing 40 in. last row blades in each low pressure element.

The low pressure element is designated as a Building Block 80.

Number of hours of operation for each LP turbine at time of last turbine inspection or if not inspected, postulated to inspection:

The LP-A rotor was used in the LP-1 turbine until February 10, 1979 and has 59,798.5 operating hours.

An inspection of this rotor was completed on March 15, 1980.

The LP-B rotor was used in the LP-2 turbine until March 24, 1978, refurbished, and installed in the LP-1 turbine on April 3, 1979.

It will have 61,103.25 operating hours when inspected during the 1980 A.I.&0 scheduled to begin on March 28, 1980.

The new LP-C rotor was manufactured and installed in the LP-2 turbine on May 21, 1978.

It will have 13,748 operating hours by the 1980 A.I.60 and 36,000 predicted operating hours when scheduled for inspection.

March 19, 1980 achment B

Sheet 2)

C.

Number of turbine trips and overspeeds.

The turbine has experienced a total of 140 manual and automatic trips including 15 overspeed trip tests.

D.

For each disc:

1.

Type of material including material specifications.

2.

Tensile properties data.

3.

Toughness properties data including Fracture Appearance Transition Temperature and upper energy and temperature.

4.

Keyway temperatures.

5.

Calculated keyway crack size for turbine time specified in 'B'bove.

6.

Critical crack size.

7.

Ratio of calculated crack to critical crack size.

8.

Crack growth rate.

9.

Calculated bore and keyway'stress at operating design overspeed.

10.

Calculated Kl data.

11.

Minimum yield strength specified for each disc.

See Appendix I for the answers to these questions.

II.

Provide details of the results of any completed inservice inspection of LP turbine rotors, including areas

examined, since issuance of an operating license.

For each indication

detected, provide details of the location of the crack, its orientation, and size:

The inspection of the LP-A rotor was completed on March 15, 1980.

This keyway/bore inspection included tangential and radial UT scans performed in the Westinghouse turbine facility in Charlotte, N.C.

The undocumented results are that there were no unacceptable ultrasonic examination indications.

A final documentation package is expected at a later date.

III. Provide the nominal water chemistry conditions for each LP turbine and describe any condenser inleakages or other sig-nificant changes in secondary water chemistry to this point, in its operating life.

Discuss the occurrence of cracks in any given turbine -as related to history of secondary water chemistry in the unit:

b

'Ik

(larch 19, 1980

achment, B

Sheet 3',

Since the start of operation in Narch of 1970, the steam generator water treatment program for Ginna has been con-sistent with the various Westinghouse recommended guidelines.

The contaminant control limits being maintained are at levels significantly lower than allowed by present guidelines.

From startup until November 1975 a period of about 45 effective full power (EFP) months, Ginna employed a phosphate treatment control program.

The Na/PO4 molar ratio was utilized as a major control parameter.

Until 1972, that ratio was generally maintained in the 2.1 2.3 range.

After 1972, while continuing to follow Westinghouse recommenda-tions, that maintained ratio range was modified upward to 2.3 2.5.

Although the phosphate treatment, program afforded a buffering protection in the event, of condenser inleakage, the industry-wide occurrences of steam generator tube degrada-tion prompted Westinghouse to recommend a change to an All Volatile Treatment, (AVT) Program.

For the 22 EFP months occurring between November 1975 and January

1978, Westinghouse AVT specifications were successfully maintained.

Chart I, Appendix II, provides typical 1977 blowdown chemistry.

Since it. was realized that, AVT could not, provide the ingress protection afforded by the phosphate treatment, it was RG&E management policy to reduce load and plug failed condenser tubes as soon as leakage was detected.

Station chemistry personnel felt that, with their use of continuous hotwell sodium monitors, inleakage rates as low as 100 cc/min were detectable.

In the few incidences of lake water leakages occurring during this period, the rates were typically from 190 to 570 cc/min.

At Ginna, increased blow-down was utilized to control the immediate ingress of con-taminants while an orderly power reduction was made for repair.

In most cases, Ginna was able to maintain AVT specifications even during these incidences of lake water ingress.

A major advantage in Ginna's utilization of Lake Ontario water for once-through cooling is that. this lake is fresh water with relatively low concentrations of potentially harmful con-taminents.

For example, seawater ingress would contain approximately 700 times the sodium concentration as that of Lake Ontario water at, the same inleakage rate.

Chart. II, Appendix II, provides typical chemical concentrations in Ginna cooling water.

Since January 1978 (approximately 23 EFP months),

Ginna has maintained AVT control specifications while operating a full flow, deep bed condensate polisher system.

Typical blowdown chemistry is shown in Chart III, Appendix II.

Operation of the polishers have afforded Ginna excellent protection against, the immediate effects of lake water inleakage.

With effective polisher operation, situations of known ingress have not resulted in any detectable deterioration of Steam Generator water quality.

Although the polishers afford pro-tection against ionic ingress, it has remained RG&E policy

iNarch 19, 1980 achment B

Sheet 41 to reduce load and plug leaking condenser tubes as soon as detectable.

During the 90 EPP months of Ginna operation, there have been twelve incidences of condenser leak induced power reductions.

Although there have been only the twelve events of actual on-line inleakage, approximately 225 condenser tubes are presently plugged.

These additional pluggings were pre-ventative in nature and done as the result of extensive inspections made during maintenance and refueling outages.

Many of the preventative pluggings were done during the early years of operation as the result of degradation due to vibration and steam erosion.

Condenser modifications made in 1972 have minimized those failure modes.

The last detectable condenser inleakage situation occurred approxi-mately 16 months ago in September 1978.

As previously indicated, full flow condensate polishers have afforded excellent protection in limiting the potentially harmful effects of condenser ingress on secondary water and steam quality.

See Appendix II for Typical chemistry charts.

IV. If your plant has not been inspected, describe your proposed schedule and approach to ensure that, turbine cracking does not exist in your turbine:

The IP-A rotor has been inspected at this time.

The LP-B rotor will be inspected during the 1980 A.I.&0 scheduled to begin on March 28th.

The LP-C rotor is planned to be inspected during the LP-2 turbine major inspection in 1983 with 36,000 predicted hours.

V.

If your plant has been inspected and plans to return or has returned to power with cracks, provide your proposed schedule for the next turbine inspection and the basis for this inspection schedule:

Not applicable.

VI.

Indicate whether an analysis and evaluation regarding turbine missiles has been performed for your plant and provided to the staff. If such an analysis and evaluation has been per-formed and reported, please provide appropriate references to the available documentation.

In the event that such studies have not. been

made, consideration should be given to scheduling such an action:

.I

'l

~

P T

March 19, 1980 achment B

Sheet 5',

The potential turbine missile hazard at Ginna has been extensively reviewed during the SEP review of Topic III-4.B, "Turbine Missiles".

This review began with an NRC evaluation of the Ginna FSAR (Appendix 14A) and continued with a Ginna site visit of September 6-8, 1978.

Following this site visit, the NRC completed a draft topic assessment.

(memo from D. K.

Davis to D. L. Ziemann, SEP Safety Assessment Input Ginna, 2/17/79).

RG&E provided comments to the Staff on 3/16/79 and a revised safety assessment was issued on April 18, 1979 (letter from Dennis L. Ziemann to Leon D. White, Jr., Topic III-4.B "Turbine Missiles" ).

The conclusion of this assess-ment. was:

"Therefore, we conclude that the overall probability of turbine missiles damaging the Ginna Nuclear Power Plant and leading to consequences in excess of the 10 CFR Part 100 exposure guidelines is acceptably low as specified in the S.R.P.

3.5.1.3 and the S.R.P.

2.2.3.

On the basis of these results, we consider the operation of the Ginna Nuclear Power Plant safe with regard to turbine

missiles, and the risk presented by this postulated
event, similar to that of plants licensed under current criteria.

This completes the evaluation for this SEP topic.

Since the plant conforms to current licensing criteria, no additional review is required."

Generic Questions:

Questions I through VIII have been answered by Westinghouse's letter of March 14, 1980 signed by J.

M. Schmerling in a generic response that was developed by the Westinghouse Turbine Disc Cracking Task Force of which we are a member.

Mr. Wayne Stiede of Commonwealth Edison, the Chairman of the Task Force, will also be responding as to the acceptability to the Task Force of the Westinghouse generic response.

Narch 19, 1980 achment B

Appends I

Sheet 1

Appendix I

0 I

1 I

l

March 19, 1980 "L~l'k'it~~

A chment B'ppendix Sheet 2

Notes on Answers to Site Specific Question 1.D Appendix I 1.

Type of material is Ni-Cr-Mo-V alloy steel similar to ASTM A-471.

The minimum yield strength specified for each disc is given in Section B.

2.

Tensile properties data of tests taken from the disc hub are given in Section B.

Data obtained from rim material are presented in Section C.

3.

Toughness properties are also presented in Sections B and C.

As described

above, Section B contains hub properties and Section C contains rim properties.

Upper shelf energy is not presented when it is the same as the room temperature energy.

4.

The keyway temperature is presented in Section G.

This the calculated temperature two inches from the exhaust face of the disc at the bore during full load operation with all moisture separator reheaters functioning.

5.

The maximum expected keyway crack size has been calculated for each disc on each rotor.

This was done by multiplying the crack growth rate by the time each rotor was in operation prior to the disc/bore inspection.

For rotors not yet in-spected the time used was the expected operating time to when the rotor will be inspected.

The crack growth rate is given in Appendix I, Section G, in response to question I.D.8.

6.

The critical crack size at 1800 rpm and at design overspeed is presented in Section F. It is calculated using the relationship:

March 19, 1980 achment B

Append I

Sheet 3

7.

8.

9.

10.

The rate of calculated crack size (A) to critical crack size (Acr) is the ratio of the results of item 5 of Appendix I to item 6 of Appendix I of this response.

4 The LP-C rotor disc data was not put in the Westinghouse computer in time for submittal.

This data is expected in approximately two weeks.

In order to verify our confidence in the safety of this rotor until the normal inspection outage, Westinghouse assured RGSE that the material and design is identical to IP-A and LP-B and that the parameters for LP-C will be very similar.

The worst case critical crack depths from the W

data for the discs of LP-A and LP-B were used to determine a

preliminary value of A/Acr for the LP-C discs.

These values were less than

.1 for the present operating hours and less than

.21 for the estimated hours to the normal inspection.

When the accurate data is available, the appropriate calcula-tion results will be forwarded to your office.

The crack growth rate is given in Section G.

These crack growth rates are the maximum expected rates based upon known cracks to date.

Westinghouse has changed the basis for determining these rates to utilize the NRC gray book operat-ing hours.

The crack growth rate of the number one and six discs of the BB 80 turbines should be assumed to be zero since these discs operate dry under normal operations.

The bore tangential stress at 1800 rpm and at design overspeed are presented in Section E.

The values presented include the stresses due to shrink fit and centrifugal force loads only.

The fracture toughness, K

, of each disc is calculated from the Charpy v-notch and tei5ile data.

The values, presented in Sections B and C are calculated at the upper shelf tempera-ture or room temperature, whichever gives the lower result.

The minimum yield strength specified for each disc is pre-sented in Section B.

Ay

bc,e a..c ID A ~ UNI~DENTIFTCATION 1 ~ BUILDING BLOCK 2 ~

UNIT CURTUUCR<

4 ~

LPN 5 ~

LOCATION 6 ~

DISCS

~>CCrUU.

LP TURBINE DISC INFORHATION b.c,c Y

S U ~ T ~

ELON R ~ A ~

FATT RATE VASES (KSI) 5 ~

(KSI

)

GATION 4 ~

4o 5 ~

6 ~

7 ~

8 ~

(DEG F)

IMPACT(FOLDS

)

IMPACT TEHP ~

<DEAF)

IMPACT EN'FTiLB%)

KIC(KSI4SQRT(IN ~ ) )

9 ~

10; U ~ 5 ~

ll~

U ~ 5 ~

B.

MATERIAL PROPERTIES (HUB)t cc 1 ~

TYPE J

J (MIN~

Y ~ 5 ~ f Q (KSI 1 )

2 'SUPPLIER:

%GOYA'EPPENSTALL Q,c,c (KS I )

~ (KSI)

ATION YES U

7 '

ELONG R ~ A ~

FAT(

R ~ T ~

VASES

) ~

2 0 3 ~

4 ~

5 ~e.

7 ~

(OEG F)

IMPACT(FT ALBER)

IHPACT TEHP (BEGS F1 IHPACT ENG ~

(F(+LB'

)

KIC

. (K SIP SORT ( IN ~ ) 1.

8 ~

UKASE 9 ~ 0+5 ~

C ~

MATERIAL PROPERTIES (RIM)

I h

,h "II R.

Ik R

E" ph.

c bJ <>C.

HN b> C+C sr bJ CJe t

3 '."

3 "C

3

="c 3 'c""3~

L ED BORE STRESS SPEED (RPH)"

'STRESS 1 ~

1800 (KSI) j 2 ~

2160 (120% )

(KSI )

G ~

SERVICE DATA 1 ~

OPER ~

TEMP ~

METAL TEMP ~

HUB (DEG ~ F )

2 ~

ESTIMATED MAX OA/DT (IN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO P

bCe t:

sN bCe t."

3 b,c,c CR KCJC HO 4J P

I/

c a

c 3

t:

b,c,c cU bJce s

C, 3

t:

3 ""C F ~

CRACK DATA 1 ~ A-CR-OP (1800 RPM)

(IN ~ )

2 ~

A-CR-OS (OVERSPEEO)

(IN

)

h,c,'c bJ('J~

10 I A ~ UN~OENTIFTCATION'

~ BUILDING BLOCK 2 ~

UNIT C U ST 0 IIVR I ~

LPa 5 ~

LOCATION 6 ~ DISCI mes~a LP TURBINE DISC INFORHATION b.c,e B ~

MATERIAL PROPERTIES (HUB)g < ~

1 TYPE

)HIN~

Y ~ 5 ~

(KSI) )

2.

SUPPLIER:

HIDVA~E HEPPENSTALL

"""3 ~

Y ~ 5 (KSI) 0 ~

U ~ T ~ 5 ~

(KSI

)

5 ~

ELONGATION 6 ~

R ~ A ~

7 ~ FATT (OEG+F)

Ba R ~ T ~

IMPACT(FT BULBS

)

9 ~

UKASE IMPACT TEMP ~

(DEAF) 10t" U ~ Sa IMPACT ENG ~

(FT LB ~ )

ll~

U ~ 5 ~ KIC (KSI45QRT I IN ~ l )

4.c,c

) ~

2 ~

3o 0 ~

So 6o 1 ~

YES U

T ~ 5 ELONG R ~ Ao FATT Ri7 VASES 8 ~

VASES 9 ~

VASES (KSI)

~

(KSI)

ATION (OEG ~ F)

IMPACT(FT LB ~

)

IMPACT TENT

<DEAF)

IMPACT ENG ~

(FT LB'

)

KIC

. IKSIPSQRT(IN ~ ) )

C ~

HATERIAL PROPERTIES (RIM)

D ~

CHEMISTRY C

0 F

3 "L

3 ED BORE STRESS SPEED 'IRPH)"

'STRESS

" -'-*Qg~

h 1 ~

1800 (KSI) 2 ~ 2160 (120%)

{KSI)

SN b,c,e b,c;e 3"

b,c,c, C

2 "t 3

C AL b.<ie cu bi<re 5

t 3

t:

F ~

CRACK DATA lo A-CR-OP l)800 RPHl

)INES) 2 ~

A-CR-OS (OVERSPEEO)

(

IN'

)

b,c,c "3

b, cie-G ~

SERVICE DATA

. ~

~ ~

1 ~

OPER ~

TEMP HE TAL TEMP ~

HUB (OEG ~ F )

2 ~

ESTIHATEO HAX OA/OT (IN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK OEPTH 5.

CALCULATEO A/Acr RATIO kc,e

bc;c p..t IO A ~ UN~DENTIFICATION I ~ BUILDING BLOCK 2 ~

UNIT CUITRIIER 4e LPN 5 ~

LOCATION 6 ~

DISCS fEST IIU LP TURBINE DISC INFORHATION b.c,c.

B.

MATERIAL PROPERTIES tHUB)J,<

1 ~

TYPE r

R lMIN~

Y ~ 5 ~

tKSI) )

2 ~

SUPPLIER:

810VA~E HEPPENSTALL 3 ~

Y ~ Se lKSI) 4 ~

U T

5 ~ tKSI) 5 ~

ELONGATION 6e R ~ A ~

7 ~

FATT lOEG ~ F) 8 ~

RATE INPACTlFT BULBS

)

9 ~

0'e IMPACT TEHP ~

)DEAF) 10e' IMPACT EN'FT

~ LB ~ 1 11 ~

U ~ 5 ~ KICtKSIISQRTt IN ~ ) )

Q, c,t-YES U ~ T ~ 5 ELONG RE AD FATT R ~ T ~

U ~ 5 ~

1 ~

2 ~

3 ~

4 ~

5 ~

6 ~

7 ~

lKSI

)

~ lKSI)

ATION l BEG ~ F )

IMPACTtFT ~

LB'

)

IMPACT TEHP ~

tOEG ~ F1 IMPACT EN'FT BULBS

)

KIC

. t K SIR'SQR I I IN ~ ) ).

8 ~

UKASE 9

U 5

C ~

MATERIAL PROPERTIES t RIM) 0 ~

CHEMISTRY C 0' 3~

L 3

I:

Ee BORE STRESS SPEED 'lRPN)"

'STRESS 4ce

~

1800 lKSI) 2 2160 t )20'C )

l KSI )

CR b C C HO L

3 "i:

Cpe

.L be~r~'U c

i c

F ~

CRACK DATA trrCp~

y 3 ""C' c'c 3

" t:"

1 ~ A-CR-OP t 1800 RPM) lIN~ )

2 ~ A-CR-05 lOVERSPEEO) l IN ~ 1 b,t.,t=

b,c,t-b,c,t

[

t G ~

SERVICE DATA 1 ~

OPER ~

TENP ~

METAL TENP ~

HUB tPEG ~ F) 2 ~

ESTIMATED HAX OA/OT lIN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO b,c,t.

~

~

ID bc;e A ~ UN~DENTIFTCATION I ~ BUILDING BLOCK 2 ~

UNIT CUSTUNER:

4 ~

Lpg 5 ~ LOCATION 6 ~

DISCS P 1ESl NU LP TURBINE DISC INFORMATION b.c,e 8 ~

MATERIAL PROPERTIES (HUB)LC C 1 ~

TYPE J

(HIN Y ~ 5 ~

(KSI) )

2 ~ SUPPLIER:

%NOVA C

HEPPENSTALL 3

Y ~ 5 ~

(KSI

)

U T

5 ~ tKSI) 5 ~

ELONGATION 6 ~

R ~ A ~

7 ~

FATT tDEG ~ F) 8 ~

R ~ T ~

IMPACT(FT BULBS

)

9 ~

VASES IHPACT TEMP ~

(DEAF)

IDR VASES IMPACT EN'FTULB~

)

11 ~

UR5 ~ KIC(KSI4 SORT(IN ~ ) )

Q(,,e 1 ~

2 ~

3 ~

4a 5 ~

6 ~

7 ~

YES VATES ELONG R ~ A ~

FAT(

R ~ I ~

U 5 ~

8 ~

UKASE 9

U 5

(KSI)

(KSI)

ATION (OEG F)

IMPACT(FTALB~

)

IHPACT TEHP ~

(DEAF)

IHPACT CNG ~

(FT BULBS

)

KIC

. (KSIP SQRT

( IN R ) ).

C ~

MATERIAL PROPERTIES I RIM)

I:

(UA P

s bc,e (D

s 0) 0 ~

CHEMISTRY b EAR As UEAU ss b,EAR, AN C

"T "3 "L

3 C:"

ED BORE STRESS SPCEO" (RPH )"

'STRESS 1 ~

1800 (KSI) 2 ~

2160 (120% )

t KSI )

b,c;e b,t.,e CR ~r CJC MO SPY~

Y brC~C C

2

- t:

2

-t

-3 AL kc,c cu bJce 5

b,c,w C

3 L

3 t:

3 FR CRACK DATA 1 ~ A-CR-OP

( 1800 RPM

)

t IN ~ )

2 ~ A-CR-05 lOVCRSPECO)

(IN ~ )

b. (,e r-:

)

G ~

SERVICE DATA I ~

OPER ~ TENT METAL TENT HUB (DC')

2 ~

ESTIMATED HAX OA/OT (IN/HR) 3.

ROTOR OPERATIHG HOURS 4.

CALCULATEO CRACK DEPTH 5.

CALCULATED A/Ac) RATIO kr,e

IO 8

b c;(

I~ UN~OENTIFTCATION'

~ BUILDING BLOCK 2 ~

UNIT OORTONER)

I ~ LPl 5 ~ LOCATION 6 ~

OISCES G NENl NO LP TURBINE DISC INFORHATION b.c,e (KSI

)

5 ~

(KSI

)

GATION Y ~ 5 ~

USTA ELON R ~ Ae FATT R ~ T ~

VASES O( ~

5 ~

6 ~

7 ~

8 ~

9 ~

(OEG.F )

IMPACT(FT BULBS

)

IMPACT TEHP ~

(DEAF)

IMPACT ENG ~

(FT LB ~

)

KIC

. (KSI+SQRT(IN ~ ) )

10; U.S.

ll~

U ~ 5 ~

8 ~

MATERIAL PROPERTIES (HUB)Q g ~

1 ~

TVPE J

~

(HIN~ Y.S ~

(KSI) )

2 ~

SUPPLIER:

.)TIOVA~E HEPPENSTALL Q,c,c YEAST VATES ELONG R ~ A ~

FAT(

RE 1 U

5 ~

(KSI

)

(KSI)

ATION 1 ~

2 ~

3 R( ~

Se 6 ~

7 ~

(OEG F)

IMPACT(FT BULBS

)

IHPACT TEHP ~

(DEAF)

IHPACT ENG ~

(FT BULBS

)

KIC

, (KSIPSQRT(IN ~ ) 1.

8 ~

UKASE 9

VASES Ce MATERIAL PROPERTIES (RIH)

I' I'

A (0 ':;

bc(

I 8

DE CHEMISTRY "C

3 """C" O'C ED BORE STRESS SPEED (RPH)"

STRESS 1 ~

1800 (KSI) 2.

2160 (120C)

(KSI) b,c,e t:

SN b<C CR &ic>C HO C

3 r

3 AL bR~a~'U beer+

5 E

3 r

3 c

F ~

CRACK DATA 1 ~ A-CR-OP (1800 RPH)

(IN ~ )

2 ~ A-CR;05 (OVERSPEEO)

( IN. )

b,c,(-

b, c>~.

b,c,(.

I I

I G ~

SERVICE DATA 1 ~

OPER ~

TEMP.

METAL TEMP ~

HUB (OEG ~ F )

2 ~

ESTIMATED HAX OA/OT (IN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO b,c;c I

V Oe(R

b c;(:

ID I A ~ UN~DENTTFTCATION I o BUILDING BLOCK 2 ~

UNIT CIIST 0 S ER:

R( ~

LP A 5 ~

LOCATION 6

DISCS ERWR ~

LP TURBINE DISC INFORHATION b.c,e 8 ~

MATERIAL PROPERTIES (HUB)Q c e 1 ~

TYPE R

(MIN. YR5 ~

(KSI) )

2 ~

SUPPLIER:

ZIOVAME HEPPENSTALL "3t Y ~ 5 ~ lKSI)

Qo U I ~ S ~ (KSI) 5 ~

ELONGATION 6 ~

R ~ A ~

7 ~

FATT lOEG ~ F) 8 ~

R ~ T ~

IHPACTlFT BULBS

)

9 ~

UKASE IMPACT TEMP ~

(DEAF) 10t" U ~ 5 ~

IMPACT ENG ~

(F1+LB ~

)

11 ~

U ~ 5 ~ KIC(KSIOSQRT(IN ~ ) )

Q,c,e 1 ~

2 ~

3 ~

5 ~

6 ~

7 ~

8 ~

YES U

T 5

ELONG R ~ A ~

FAT)

R ~ I ~

U 5 ~

VASES 9t U ~ 5 ~

(KSI

)

(KSI)

ATION (OEG ~ F )

IMPACT(FT BULBS

)

IMPACT TEHP ~

(DEAF)

IHPACT EN'FT BULBS

)

KIC

. (KSIPSQRT(IN ~ ) )

C ~

HATERIAL PROPERTIES (RIM) n I-g-(

I (8

CrCr g

)'.

+ I:

s (8

0 ~

CHEMISTRY C

3 "L "3 L

3 C.

ED BORE STRESS SPEED (RPH)" 'TRESS

~

1800 (KSI) 2 ~

2160 (1209 )

lKSI) b,c,'e b,c;e 3"

CR ~r r HO r l

....I/

C 3

"L 3

'"C AL bfere'U br Ere 5

I 3

t."

3 c

Ft CRACK DATA 1 ~ A-CR-OP (1800 RPH) lIN~ )

2 ~ A-CR-05 (OVERSPEEO)

(,IN. )

I,C,'e b,c e.

I G ~

SERVICE DATA 1 ~

OPER ~

TEMP ~

METAL TEMP t HUB (DEG ~ F )

2 ~

ESTIMATED HAX OA/OT (IN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO kc;e e

I-II O

l I

0 I

tg

~

p I

IO A ~ UN~OENTIFICATION 1 ~ BUILDING BLOCK 2 ~ UNIT CIISTOIIER:

0 ~ LPI 5 ~

LOCATION 6 ~

OISCES EXl MO LP TURBINE DISC INFORHATION b,c,e, 8.

MATERIAL PROPERTIES tMUB)gc<

1 ~

T'YPE tMIN Y ~ 5 ~

tKSI) )

2 ~ SUPPLIER:

)TIOVA~E HEPPENSTALL Yeso tKSI)

U ~ T ~ 5 ~ tKSI)

ELONGATION R ~ A ~

FATT tOEG F)

R AT ~

IMPACTtFT BULBS

)

U ~ 5 IHPACT TENT

)DEAF)

UKASE IMPACT EN'FTaLB~

)

Uos ~ KIC

.tKSI ~ 'SQRTt IN'

))

4 ~

Qr 5 ~

6o 7 ~

8 ~

9 ~

10 C ~

MATERIAL PROPERTIES tRIH)

Q,c;o

) ~

2 ~

3 ~

9 ~

5 ~

6 ~

7 ~

YES U

T ~ 5 ELONG R ~ A ~

FAT)

R ~ Ti U ~ 5 ~

8 ~

U ~ 5 ~

9 ~

VASES 1 KSI

)

~ tKSI)

ATION tOEG.F)

IMPACTtFT BULBS

)

IHPACT TEHP ~

tOEG ~ Fl IHPACT EN'FT BULBS

)

KIC

, tKSI+SQRTIIN~ ) ).

0 IST t

3 C,

c 0 "c "3 ED BORE STRESS SPEED lRPH)"

STRESS I ~

1800 tKSI) 2 ~ 2160 t 120%)

tKSI

)

s I b,'>C C

sB b,C,e 3

p bit>C C

sN b C'e t:

3 CR 4 CJC HO LPCJ4r P

QPCPC C

3 '"

C 3

"C bwcJ~'U

~EJe 5

r 3

t:

3 F ~

CRACK DATA I

J CJc 1 ~ A-CR-OP t1800 RPH) tIN

)

2 ~

A-CR-Os t OVER SPEED) t IN

)

A P

-g-. )

tO ':;

CJe l

tO

)

I I

Far '

G.

SERVICE DATA 1 ~

OPER ~ TENT ))ETAL TENT HUB tOEG ~ F) 2 ~

ESTIHATEO HAX OA/OT tIN/HR) b,c,c 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO

0 4

~

)

I

ID A ~ UNT~OENTTFTCATION 1 ~ BUILDING BLOCK 2 ~

UNIT CUSTOIIER; 4 ~

LPA 5 ~

LOCATiON 6 ~

DISCS Its~0 LP TURBINE DISC INFORMATION b.c,c, 8 ~

MAT 1 ~

ERI A L PROPERT IE S lHUB )g < <

TYPE r

s lHIN~

Y ~ 5 ~

E lKSI ) )

SUPPLIER:

~OVATE HEPPENSTALL 2 ~

3 ~

4 ~

5 ~

6 ~

7 ~

8 ~

Y ~ 5 ~ lKSI)

U ~ I ~ 5 ~

1 KSI

)

ELONGATION R ~ A ~

FATT lOEG ~ F)

R ~ T ~

IHPACTlFT BULBS

)

VASES IMPACT TENT lOEG F)

UKASE IHPACT EN'FT+LB~

)

U ~ 5 ~ KIC(KSI+SDRT(IN ~ ) )

9 ~

10:

C ~ HATERIAL PROPERTIES lR IH)

Q,c,e lKSI) lXSI)

ATION YES U~T ~ 5 ELONG RE A FATT R AT VASES 1 ~

2 ~

3 4 ~

5 ~

6 ~

T lOEG F)

IMPACTlFT LB ~ )

IMPACT TENT lOEG ~ F)

IMPACT ENG+

lFT BULBS

)

KIC

, l K.Sip SQR T ( IN t ) ).

8 ~

UKASE 9 ~ Vie 0 ~

E ~

b,c,e b,c,e CR brCrC C

AL br CrC FA CRACK DATA

.0 t"

~

....y j:

3 '"C CU bE'e 5

X t:

1 ~ A-CR-OP 1 1800 RPH) lIN~ )

2 ~ A-CR-05 lOVERSPEEO) l IN'

)

b,c,c b,c e.

b C

t CHEMISTRY b c,c, ss tr ci+

.ss Lsc,a C

""C 2

"l:

BORE STRESS SPEED TRPH)" STRESS 1 ~

1800 1 KSI) 2 ~ 2160 (120% )

lKSI )

Q Crt I

P+'"i I

~,

0)

)r.

F I

I s

n l

..-.g..I lO ",

G ~

SERVICE DATA 1 ~

OPER ~

TEMP ~

HETAL TEMP ~

HUB lDEG oF )

2 ~

ESTIMATED HAX OA/OT lIN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO k,c,e M

I I

s

'lg

~

J E

4 '

r

~

~

R 10 I bc,e A ~ UN~DENTIFTCATION 1 ~ BUILDING BLOCK 2~

UNIT CURTUIIER(

Et ~

LPa 5 ~

LOCATION 6 ~ DISCI EE~ U LP TURBINE DISC INFORHATION b.c,e, 8

HATERIAL PROPERTIES (HUB)Lc c I ~

TYPE (HIN~

Y ~ 5 ~

(KSI) )

2 ~

SUPPLIER:

1(IOVA~ HEPPENSTALL

""'R Y ~ 5 ~

(KSI)

, E 0 ~

U T ~ 5 ~ (KSI) 5 ~

ELONGATION 6 ~

R ~ A ~

7 ~

FATT (OEG.F)

ST R ~ T ~

IHPACT(FT ~

LB'

)

9 ~

UKASE IHPACT TEHP (DEAF) 10'+5 ~

IHPACT ENG ~

(FALSE

)

11 ~

U ~ 5 ~

KIC(KSIISQRT(IN~ ) )

(KSI

)

~ tKSI)

ATION (OEGRF)

IHPACT(FALSE

)

IHPACT TEHPR (DEAF)

IHPACT EN'FALSE

)

KIC

. (KSI+SQRT(INR) ).

Y 5

U ~ T 5

ELONG R ~ A ~

FATT R ~ T ~

URSA 1 ~

2 ~

3 ~

0 ~

5 ~

6 ~

7 ~

8 ~

UKASE 9

VASES C ~

HATERIAL PROPERTIES t R IH)

Q,c,c 0 ~

CHEHISTRY C

5 ""L "2'2 3

I:

ED BORE STRESS SPEED '(RPH)"" 'STRESS

bc,(

1 ~

lSOO t KSI) 2 ~ 2160 (1204 )

(KSI

)

b,c,(:

b,ce CRbCC HO bC C

3 C

3 C

AL b,c.e cU bice 5

b,c,c bc (t',

3 t: 3" t:"3 F

CRACK DATA b,c,e 1 R A-CR-OP

( 1800 RPH )

( IN ~ )

2.

A-CR-OS, (OVERSPEEO)

(IN

)

G ~

SERVICE DATA 1 o OPER ~

TEHP ~

HETAL TEHP ~

HUB t OEG,F )

2 ~ E5TIHATED HAX OA/OT (IN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO f;c;e

ID bc;e oE..f AR UN~DENTIFTCATION'

~ BUILDING BLOCK 2R UNIT EOOTOHER; Et ~ LPI 5 ~

LOCATION 6 ~ DISCI G

lETT RO'E CHEMISTRY c

0 "c ED BORE STRESS SPEED tRPH )"

'STRESS 1 ~

1800 (KSI) 2 2160 t 120X I (KSI )

LP TURBINE DISC INFORHATION b.c,c, Y

5 (KSI)

U ~ T ~ 5 ~ (KSI)

ELONGATION R ~ A ~

FATT (OEG.F)

R ~ T ~

IMPACT(FT BULBS

)

U 5

IHPACT TEMP ~

(DEAF)

VASES It(PACT EN'FT BULBS

)

U ~ 5 ~ KIC(KSIE SQRT t IN ~ ) l 3 ~

Et ~

5 ~

6 ~

T ~

8 ~

9 ~

10.

C.

MATERIAL PROPERTIES (RIH)

Q,c,e Y

5 ~

U T

5 ELONG R ~ A ~

FAIT RAFTS VASES 1 ~

2 ~

3 ~

0 ~

Sa 6 ~

7 ~

t KSI

)

~

(KSI)

ATION (DEAF)

IMPAC'f(FT~ LBR l IHPACT TEt(PE (DEAF)

IHPACT ENG ~

'(FTRLB ~

)

KIC(KSI+SQRT(IN ~ ) ).

8 ~

UKASE 9 ~

U 5 ~

p bee t:

3 5N bc~e t

3 cR b,C~C C

3 AL bi Cwe' CRACK DATA 1 ~ A-CR-OP 2 ~ A-CR-05 CU b.C;e 5

b,C.e.

C 3

I:

3 b.c,c, t1800 RPM)

(IN ~ )

(OVERSPEEO)

( INA) 8 ~

MATERIAL PROPERTIES (HUB)t C C 1 ~

TYPE (HIN~

Y ~ 5 ~

(KSI) )

2 ~ SUPPLIER:

ltIDVA~g, HEPPENSTALL I

n I

--=-

- - ~ (

II cia I

I t()

I I

)

I G ~

SERVICE DATA

~'c;c I

I I

1 ~

OPER ~ TENT METAL TENT HUB (DEAF) 2 ~

ESTIMATED HAX OA/DT (IN/HRl 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO

b t.-,(-./=

IO 8

A ~ UN~OENTIFTCATION 1 ~ BUILDING BLOCK 2a UNI T CSSTSSESI:

~

st LPN 5 ~

LOCATION 6 ~

OISCN cs~ s LP TURBINE DISC INFORMATION b.c,e 8 ~

MATERIAL PROPERTIES (HUB)Q g ~

1 ~

TYPE J

(MIN~

Y ~ 5 ~

(KSI

) )

2 ~

SUPPLIER:

.,7gOVA~E HEPPENSTALL 3 ~

Y ~ 5 ~

(KSI

)

sI ~

Ue I ~ 5 ~

(K 5 I I 5 ~

ELONGATION 6 ~

R+A ~

7 ~

FATT (DEAF) 8 ~

R AT ~

IMPACT(FT BULBS

)

9 ~

UPS~

IMPACT TEHP ~

(DEAF) 10 'KASE IHPACT EN'FT LB' ll~

U ~ 5 ~ KIC(KSIeSQRT(IN ~ ) )

Qc,e (KSI)

~

(KSI

)

ATION Y 5 ~

VATES ELONG RE AD FAT)

R ~ T ~

V+5 ~

1 ~

2 ~

3 ~

0 ~

5 ~

6 ~

7 ~

(DEAF)

IMPACT(FT LB'

)

IMPACT TEHP ~

(DEAF)

IHPACT EN'FT BULBS

)

KIC

. IKSI.+SORT(IN~ ) l.

8 ~

U 5 ~

9 U

5 ~

C ~

MATERIAL PROPERTIES (R IH)

A P

-- --&"I g

s (O

CiG s

'xL-

'0 s

e 0 ~

CHEMISTRY b

ss Is c cs,s 4<ic ss Isc e C

"C 3

"L 3

ED BORE STRESS

'SPEED '(RPH)'" 'STRESS 1 ~

1800 (KSI

)

2 ~ 2160

()20% )

(KSI I p

Lp(pC C

5N 4>Cp8 t:

3 CR tr~C~C C

3 AL YACC F ~

CRACK DATA HO t:

3

""C'U b.(.,e C

1 A-CR-OP (1800 RPH)

(IN ~ I 2 ~ A-CR-05 (OVERSPEEO)

(

IN'

)

G ~

SERVICE DATA 1 ~

OPER ~

TEMP ~

METAL TEMP ~

HUB (OEG ~ F I 2 ~

ESTIMATED HAX OA/OT (IN/HR) 3.

ROTOR DPERATII(G HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO f,c;c

~

Vl I

I

~

~,

+

~ e, I0 I bc,e j,I A ~ UN~DENTIFTCATION I ~ BUILDING BLOCK 2 ~ UNIT CUiTOIIER t( ~

LP a 5 ~

LOCATION 6 ~ DISCI i

LP TURBINE DISC INFORHATION b.c,c 8 ~

HATERIAL PROPERTICS (HUB)t c <

1 ~

TYPE ttlIN. Y.S.

~ (KSI) )

2 ~

SUPPLICR:

FIOVALE HEPPENSTALL 3 ~

Y ~ 5 ~

(KSI) 1 ~

U ~ T ~ 5 ~

(KSI

)

5 ~

ELONGATION 6 ~

R ~ A ~

7 ~ FATT (DEAF) 8 ~

R ~ T ~

IMPACT(FT BULBS

)

9 ~

UKASE IHPACT TEMP (DEG F) 10 '

~ Se IHPACT EN'FT LB ~

)

11 ~

Ue 5 ~ KIC

. (KSI45QRT ( IN ~ ) )

Q,c,e 1 ~

2 ~

3 ~

0 ~

5 ~

6 ~

7 ~

YES VATES ELONG R ~ A ~

FATT R ~ T ~

VASES 8 ~

U ~ 5 ~

9 ~

UKASE (KSI)

~

(KSI)

ATION (OEG F)

IHPACT(FT BULBS

)

IMPACT TEHP (DEAF)

IHPACT ENG ~

(FT ~

LB'

)

KIC

. (KSIP SQRT (IN~ ) ).

C ~ HATERIAL PROPERTIES t RIM) 0 I

-. I I

(I) ere

- Tt"

+

I'.

I 0 ~

CMCt(I5 T R Y "C

0 "C "3 ED BORE STRESS SPCEO 'tRPH)*'STRESS 1 ~

1800 tKSI) 2 2160 l ) 20' (KSI I Sr b ere C "3 SB brCia 3

p br Cpe t

3 5N b,C;e

'3 CR b,crC C

3 AL b. Cre F ~

CRACK DATA 1 ~ A-CR-OP 2 ~

A-CR 05 MP br CP N y

biCr

'C 3 ""'t:

cU b.r,e 5

b,c,e.

t:

3 C

3 (1800 RPH) lIN~ )

(OVERSPCCO)

(IN

)

iere Fr I

G ~

SERVICE DATA I

1 ~

OPER ~

TEt(P ~

METAL TCHP ~

HUB t BEG ~ F )

2 ~

ESTIMATED HAX OA/OT tIN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO I;c,e

0 p

a g j P

R O) n IO A ~ UN~OENTIFTCATION 1 ~ BUILDING BLOCK 2 ~ UNIT EUITURER(

4 ~

LPA 5 ~ LOCATION 6

OISCV 8 1EEl RU LP TURBINE DISC INFORMATION b.c,c 8 ~

MATERIAL PROPERTIES (HUB)LC D 1 ~

TYPE (MIN~

Y 5 ~

(KSI) )

2 ~

SUPPLIER:

.,HI OV A~E HEPP E NS TALL 3 ~

Y ~ 5 ~

(KSI) 1 a U ~ T ~ 5 ~

(KSI

)

5 ~

ELONGATION 6 ~

R ~ A ~

7 ~

FATT (DEAF) 8 ~

R ~ T ~

IMPACT(FT BULBS

)

9 ~

VASES IMPACT TEHP ~

(DEAF) 10 'KASE IHPACT EN'FT BULBS

)

11'se KIC(KSI45QRT(IN ~ ) )

Q, c,(-

) ~

2 ~

3 ~

E( ~

5 ~

6 ~

7 ~

8 ~

YES U

T ~ 5 ELONG R ~ A ~

FATT R ~ T ~

U 5 ~

VASES 9 ~

UKASE (KSI

)

(KSI)

ATION (DEAF)

IMPACT(FT BULBS

)

IHPACT TEHP ~

(DEAF)

IHPACT EN'FT BULBS

)

KIC

. (KSI+SQRT(INR) ).

C ~

HATERIAL PROPERTIES (RIM) bee 0 ~

CHEMISTRY C

0 "L "3 "L

3 C.

ED BORE STRESS

'SPEED (RPH)"

'STRESS I ~

1800 (KSI) 2 2160 (120@)

(KSI) bP ere b,c,e bj CJC Mo LJCJ C C

3 E

3 t:

AL brcr~'U, ~r ere t:

3 t:

3 C

F CRACK DATA 1 ~ A-CR-OP (1800 RPM)

(IN ~ )

2 ~ A-CR-OS, lOVERSPEEO)

(IN

)

b, c,(=

Y

'3'i<r4'-

b,c,e G ~

SERVICE DATA I

I ~

OPER TEMP ~

METAL TEMP ~

HUB lOEG ~ F) 2 ~

ESTIMATED HAX OA/OT (IN/HR) kc,e 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO

bc;e

~..C IO a

1 ~ UN~DENTIFTCATION'

~ BUILDING BLOCK 2 ~

UNIT CUSTOIIER 4 ~

LPa 5 ~ LOCATION 6

DISCS

~~csrvva..

LP TURBINE DISC INFORHATION b.c,c, 8 ~

HATERIAL PROPERTIES (HUB)t + c 1 ~

TYPE

{HIN~

Y ~ 5 ~

)KSI) )

2 ~ SUPPLIER:

7TIOVA~E HEPPENSTALL

"'1 Y ~ 5 ~

(KSI

)

4 ~

U ~ T ~ So tKSI) 5 ~

ELONGATION 6 ~

R ~ A ~

7 ~

FATT (DEAF) 8 ~

RE Ta IMPACT(FT BULBS

)

9 ~

UKASE IMPACT TEMP>>

{DEAF) 10; UKASE IMPACT EN'FT LB'

)

11 ~

U ~ 5 ~ KIC(KSIISQRT(IN~ ) )

Q,c,c 1 ~

2 ~

3 ~

4 ~

5 ~

6 ~

7 ~

YES U ~ T ~ 5 ELONG R ~ A ~

FATT RE 7 U

5 ~

8 ~

UKASE 9

UKASE (KSI

)

~ (KSI)

ATION

{OEG F)

IMPACT(FT BULBS

)

IMPACT TEHP ~

)DEAF)

IMPACT EN'FIT LB' KIC

. <KSIBSQRT(INe

) l.

C ~ HATERIAL PROPERTIES (RIH) 0 ~

CHEMISTRY c

0 "c" 3 "L

ED BORE STRESS SPEED 'IRPM)" " 'STRESS 1 ~

1800 (KSI) 2 ~

2160 (1204 )

l K 5 I )

kc,e 6,c;e cR brie HO L~

~

C 3

"E 3

"C AL bi C~C CU beC~C 5

1 t:

3 r:

F CRACK DATA 1 ~ A-CR-OP (1800 RPH)

(IN ~ )

2 ~

A-CR-05

)OVERSPEEO),( IN))

G ~

SERVICE DATA I ~

OPER ~

TEMP ~

METAL TEMP ~

HUB lDEG ~ F) 2 ~

ESTIMATED MAX OA/OT lIN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO 4,c,c

0

~ O a

a z

n IO I bc,c A ~ UN~OENTIFTCATION 1 ~ BUILDING BLOCK 2 ~

UNIT EOOTOIIER(

4 ~

LP ~

5 ~ LOCATION 6 ~

OISCES EEI IIO LP TURBINE DISC INFORHATION b.c,c 8 ~ HATERIAL PROPERTIES (HUB)Lc e 1 ~

TYPE J

O (HIN~

Y ~ 5 ~

(KSI) )

2 ~ SUPPLIER:

.TBOVA~E HEPPENSTALL 31 Y ~ 5 ~

(KSI

)

4 ~

U ~ T ~ 5 ~

(KSI

)

5 ~

ELONGATION 6 ~

R ~ A ~

7 ~

FATT (OEG.F) 8 ~

R ~ T ~

IHPACT(FT BULBS

)

9 ~

VASES IHPACT TEMP ~

(OEG F) 10o" U ~ 5 ~

IHPACT ENG ~

(FT LB ~ )

11 ~

U ~ 5 ~

KIC (KSI4'SQRT

( IN ~ ) )

1 ~

2 ~

3 4 ~

5 ~

6 ~

7 ~

YES U AT 5

ELONG R ~ A ~

FATT R ~ T UKASE (KS I )

~ (KSI)

ATION (OEG F)

IHPACT(FT BULBS

)

IHPACT TEHP ~

(DEAF)

IHPACT EN'FT BULBS

)

KIC

.(KSIP SQRT(IN'

)).

8 ~

UKASE 9

U ~ 5 C ~ HATERIAL PROPERTIES (RIH)

Q,c;e bc,c

(

n I

Q.. (

g O

(O ':;

0 ~

CHEHISTRY

=C 0

""C "2 L

3 ED BORE STRESS

'SPEED (RPH )"

'STRESS

'- bee 1 o 1800 (KSI) 2 ~ 2160 (120%)

(KSI) b,c,e t'N 6CC t:

3 cR b.ere.

, Ljcjc' brcre C,

~

"t: l C

3 AL brcjc', cu bric C,

3 t:

3 C

3 F

CRACK DATA 1 ~ A-CR-OP (1800 RPH)

(IN ~ )

2 ~

A-CR-OS (OVERSPEEO)

( IN ~

)

Ib,crc b

O G ~

SERVICE DATA

~ I, f,c;c

  • a a*

1 ~

OPER TEHP HETAL TEHP ~

HUB (OEG ~ F )

2 ~

ESTIHATED HAX OA/OT (IN/HR) 3.

ROTOR OPERATI((G HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Ac). RATIO

I

~ )

1 I

'h

IO A

UN~DENTIFICATION I ~ BUILDING BLOCK 2 ~ UNIT NURTURER'(

~

LP N 5 ~

LOCATION 6R DISCI ETT NU LP TURBINE DISC INFORHATION b.c,c, Y ~ 5 ~

(KSI

)

VATES'KSI)

ELONGATION R ~ A ~

FATT (DEG F)

RE 7 IHPACT(FT BULBS

)

U ~ 5 IHPACT TEMP ~

(DEAF)

UKASE IHPACT ENG ~

(FT LB ~

)

USSR KIC(KSje'SORT(IN ~ ))

4 ~

R< ~

5 ~

6 ~

7 ~

8 ~

9o 10:

8 HATERIAL PROPERTIES (HUB)LCC lo TYPE R

(MIN~

Y 5 ~

(KSI) )

2 ~ SUPPLIER:

HIOVA E

HEPPENSTALL 4, c',c 1 ~

2 ~

3 0 ~

5 ~

6 ~

7 ~

YES U I' ELONG RE AD FAT<

RE 7 VASES 8 ~

UKASE 9

U 5

(KSI)

~ (KSI)

ATION (DEAF)

IMPACT(FT.LB'

)

IHPACT TEHP (DEAF)

IHPACT EN'FALSE

)

KIC

. <KSIPSQRT<INR) I C

HATERIAL PROPERTIES (RIH) l n

..-g-. I

(

N cc I

<3)

+

1:

'CI

<O 0 ~

CHEMISTRY C

3 "T "2 "L

3 ED BORE STRESS SPEED lRPH)"

'STRESS 4 CJ(

le 1800 (KSI) 2 ~ 2160 l 1204 )

< KSI

)

G ~

SERVICE DATA 1

OPER ~

TEMP HETAL TENT HUB lDEG ~ F) 2R ESTIMATED HAX DA/OT (IN/HR) 3.

ROTOR OPERATII<G HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO p

bee t:

5N bee t:

3 f,<.-,c CR 4r CJC C

3 AL br CJC F ~

CRACK DATA 1 ~ A-CR-OP 2 ~ A-CR-05 Mp L+Cp CR y

QJ<NJC

'C 3

"t."

CU b.re 5

b,C.C.

t:

3 3

bRCJC (1800 RPH)

(IN ~ )

(OVERSPEEO)

< IN

)

M

~

<0 I

~

0

e )

~L

IO I A

UN~OENTTFTCATION 1 ~ BUILOING BLOCK 2a UNIT CUSTOIIER ff ~

LPA 5 ~

LOCATION 6 ~

OISCES p 1csl so LP TURBINE DISC INFORMATION b.c,t i

Y ~ So lKSI)

~ 0 ~ T ~ So lKSI

)

~

ELONGATION

~

R ~ A ~

~

FATT lOEG ~ F)

~

R ~ T ~

IHPACTlFT BULBS

)

~

VASES IHPACT TEHP ~

lOEG ~ F)

~

UKASE IHPACT EN'FT LB'

)

~

U ~ 5 ~ KIC

. tKSI4'SORT t IN ~ ) )

5 6

7 8

9 10 8 ~

MATERIAL PROPERTIES tHUB)t C C 1 ~

TYf'E J

tMIN~

Y ~ 5 ~

tKSI) )

2 ~

SUPPLIER TTIOVA~E HEPPENSTALL Q. t,,e 1 ~

2 ~

3 sf ~

5 ~

6 ~

7 ~

YES U ~ I ~ 5 ELONG RE AD FATT RENT+

VASES 8 ~

UKASE 9

U 5

lKSI

)

~ lKSI)

ATION lOEG F)

IMPACTl F T ~ LB ~ )

IMPACT TEHP ~

lOEG ~ F)

IHPACT EN'FT

~ LB ~

)

KIC

. lKSI+SQRTlINe) ).

C ~

MATERIAL PROPERTIES lRIH) 0 ~

CHEMISTRY bc,c ss fscc ss bc,s C

""L "3 "L

ED BORE STRESS SPEEO TRPH )'-'TRESS 4c,t 1 ~

1800 tKSI) 2 ~ 2160 I 12QV )

l KS I )

G ~

SERVICE DATA 1 ~

OPER ~

TEMP METAL TEHP ~

HUB lDEG ~ F) 2 ~ ESTIHATEO HAX OA/OT lIN/HR)

P br CrC C,

SN b trC 3

kt.-,c CR t'cCqC'O brt r C

2 f:

a t:

AL b,C,'C CU bcCC t:

3 t:

3 t:

F ~

CRACK DATA 1 ~ A-CR-OP l 1800 RPM) t IN ~ )

2 ~ A-CR;OS lOVERSPEEO) lIN ~

)

b,c,'c b,c e.

3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acf RATIO

"~

IO I bc,c Aa UN~OENTTFICATION I ~ BUILDING BLOCK 2o UNIT CUiTOIIER) ii ~

LP I 5 ~

LOCATION 6 ~

DISCS tES~D LP TURBINE DISC INFORHATION b,c,c (KSI)

So (KSI)

GATIQN Y ~ 5 ~

Uo T e ELON R ~ A ~

FATT RATE UKASE ii ~

5 ~

6 ~

7 ~

8 9 ~

(DEAF)

IMPACT(F7~LB'

)

IMPACT TEMP (DEAF)

IMPACT EN'FT

~ LB ~

)

KIC

. (KSI4SQRT(IN ~ ) )

10 VASES ll~

U ~ 5 ~

8 ~

MATERIAL PROPERTIES (MUB)Q c ~

I ~

TYPE l HIM~

'Y ~ 5 ~

(KSI ) )

2 ~

SUPPLIER:

,HIOVA~g HEPPENSTALL 1 ~

2 ~

3o ii ~

5 ~

6 ~

7 ~

8 ~

9 ~

YES (KSI)

U ~ TAS ~ (KSI)

ELONGATION R ~ A ~

FATT (OEG F)

R ~ T ~

IMPACT(FT BULBS

)

U 5 ~

IMPACT TEHP ~

(DEAF)

UKASE IMPACT EN'FT BULBS

)

U~S ~ KIC

( K 5 IP SORT ( I N ~ ) ).

C.

MATERIAL PROPERTIES lRIM)

Q,c,c DE CHEMISTRY C

O'""C 3 '"C 3

C.

E BORE STRESS "SPEED lRPH)"'TRESS

( g p 1 ~

1800 (KSI)

]

2 2160

()204)

(KSI) bPC~C CR b,CPC C

bCe AL b Ce F ~

CRACK DATA HO V

C 3

"C" Cu b.CC 5

L 3

I:

1 ~ A-CR-OP (1800 RPH)

(IN+)

Zo A"CR-05 lOVERSPEEO)

( INo) b, C,'c b, c~c.

3 G ~

SERVICE DATA I ~

OPER ~

TEMP ~

METAL TEMP ~

HUB (OEG ~ F) 2 ~

ESTIHATEO HAX OA/OT (IN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK OEPTH 5.

CALCULATED A/Acr RATIO kc;c

~

1

)

o

, v'.jo p

~

o

~ f "oo g

~ '

p I

I

~

bc,e ID A ~ UN~DENTIFICATION 1 ~ BUILDING BLOCK 2 ~

UNIT cusT0IIER) 0 ~

LPN 5 ~ LOCATION 6 ~

OISCN ES~0'P TURBINE DISC INFORMATION b.c,e Y ~ So (KSI)

. E U ~ I ~ 5 ~

(KSI

)

ELONGATION R ~ A ~

FATT (DEAF)

R AT IMPACT(FT BULBS

)

UKASE IMPACT TEMP ~

(DEAF)

UKASE IMPACT EN'FT

~ LB ~

)

UoS ~ KIC

. (KSI15ORT(IN ~ ) )

4 ~

9 ~

5 ~

6 ~

7 ~

8 ~

9 ~

10 11 ~

B. MATERIAL PROPERTIES (HUB)g<<

1 ~

TYPE r

(HIN~

Y ~ 5 ~

(KSI ) )

2 ~ SUPPLIER:

HlOVA~ HEPPENSTALL Q,c;e YES U ~ T ~ 5 ELONG R ~ A ~

FAT)

RE 7 VASES lo 2 ~

3 ~I ~

5 ~

6 ~

7 ~

(KSI

)

~ (KSI)

ATION (OEG.F)

IMPACT(FALSE

)

IHPACT TEHP (DEAF)

IHPACT EN'FALSE

)

KIC

. (KSIpSQRT(IN ~ ) ).

8 ~

UKASE 9 ~

UKASE C

MATERIAL PROPERTIES (RIM)

pF o oo o

0 ~

CHEMISTRY C

0 C "3 "L

ED BORE STRESS SPEED (RPH )"

'STRESS

"- bee 1 ~

1800 (KSI) 2 2160 (1204)

(KSI)

G ~

SERVICE DATA 1 ~

OPER ~ TENT METAL TENT HUB (DEAF) 2 ~

ESTIHATEO HAX OA/OT (IN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO p

br CrC 5N t)Prcr C kc;e MP ~re C C.

3

'C AL bi CrC CU k C~C C,

1 C

3 t:

F CRACK DATA 1 ~ A-CR-OP l 1SOO RPH)

(IN ~ )

2.

A-CR;OS (OVERSPEED),(

IN'

)

b,c,c Q,CrC.

~ )

I t

10

~

AR UN~DENTIFTCATION 1 ~ BUILDING BLOCK 2 ~

UNIT TORTURER; Et ~

LP A 5 ~ LOCATION 6 ~

DISCS lEU~O C ~ HATERIAL PROPERTIES t RIM)

Q,c,c YES U ~ T ~ 5 ELONG RE AD FATT R ~ T ~

VASES 1 ~

2 ~

3 ~

Et R 5 ~

6 ~

7 ~

8 ~

UKASE 9

VASES tKSI)

~ tKSI)

ATION tOEG ~ F)

IMPACTtFTRLB~ )

IHPACT TENT tDEG ~ F)

IHPACT ENG ~

tFT BULBS

)

KICtKSI+SQRTtINR) )

0 ~ CHEltISTRY "C 0'F "3 L

3 ED BORE STRESS SPEED tRPH)"

'STRESS 1 ~

1800 I KSI) 2 ~ 2160 t1208 l

)KSI) b,c,e 6,t.,c 3"

CR b~C~C MO b~CaC V

L 3

C 3

C AL biCiC CU biCqC C '3 r

3 F

CRACK DATA 1 ~ A-CR-OP t 1800 RPH l I IN ~ )

2 A-CR-05 tOVERSPEEO) t IN ~ )

LP TURBINE DISC INFORHATION b.c,c 8

MATERIAL PROPERTIES tHUB)L C C 1 ~

TYPE J

tMINR Y ~ 5 ~

tKSI) l 2 ~

SUPPLIER

)TI OVA~< HEPPENS TALL

3; Y ~ 5 ~

tKSI)

Et ~

U TO 5 tKSI) 5 ~

ELONGATION 6 ~

R ~ A ~

7 ~

FATT tDEG F) 8 ~

R ~ T ~

IMPACT)FT~ LB ~ l 9 ~

VASES IMPACT TEMP ~

tOEG F) 10 'RSA IMPACT EN'FT LB ~

)

11 'RSA KIC

. tKSI+SQRT t IN ~ ) )

)U

~

n I

l cc v

I, Ft o

tD O

I I

4

~

~

O G ~

SERVICE DATA 1 ~

OPER ~

TEHP, METAL TEMP ~

HUB t DEG ~ F l 2 ~

ESTIMATED MAX OA/OT tIN/HR) kt.,e tt)~

I I

3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO

t

~

s e

ID bc,e le UN~DENTIFTCATION 1 ~ BUILDING BLOCK 2 ~

UNIT CUiTOIIER 4 ~

LPV 5 ~ LOCATION 6 ~

OISC$

IES~ 0 LP TURBINE DISC INFORMATION b,c,c Y ~ 5 ~

tKSI

)

USTA Ss tKSI)

ELONGATION R ~ A ~

FATT tOEG ~ F)

R ~ T ~

IMPACTtFT BULBS

)

U ~ S ~

IMPACT TENT tOEG ~ F)

U ~ S ~

IHPACT ENG ~

tFT BULBS

)

UoS ~ KIC

.tKSI4SQRTtIN ~ ))

4 ~

0 ~

5 ~

6o 7 ~

8 ~

9 ~

10 "

B.

MATERIAL PROPERTIES tMUB)g<<

1 ~

TYPE tMIN~

Y ~ So tKSI) )

2 ~ SUPPLIER-

}HOVKE HEPPENSTALL

) ~

2 ~

3 ~

0 ~

So 6 ~

7 ~

YES'

~ T ~ S ELONG R ~ A ~

FATE RE Ti UKASE 8 ~

U ~ S ~

9 U ~ So tKSI) tKSI)

ATION tOEG F)

IMPACTtFT ~

LB'

)

IMPACT TEHP ~

tOEG ~ F)

IMPACT EN'F'toLB~

)

KIC

. tKSI+SQRTIIN~ ) }.

C MATERIAL PROPERTIES t R IH)

Q,c,e I'

I I:

)

A I"

.g.. I pc,c tt) ':,'

"F)- sI I

+

l'-

tD 0 ~

CHEMISTRY C

0 "C

2 "L

3 ED BORE STRESS SPEED tRPH }" 'STRESS 1 ~

1800 t KSI) 2 2160 t120X )

tKSI) p bp CpC C

SN b,C;e t:

3 CR ~.Ci+...

MO C

3 E

AL 4i Ce+

CU t:

3 t:

l>cJ+

y br Cic

'C b,r C s

b,4'itt'-

3 C

3 F

CRACK DATA 1

A-CR-OP t1800 RPH) tIN ~ )

2.

A-CR-OS tOVERSPEED) t IN.)

G ~

SERVICE DATA 1 ~

OPER ~

TEHP ~

METAL TEMP ~

HUB tOEG F )

2 ~

ESTIHATEO HAX OA/OT tIN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO b,c,c

"I I 0 I

'ac

10 A

UN~DENTIFICATION 1 ~ BUILDING BLOCK 2 ~ UNIT CUSTDIIER(

4 ~ LPI 5 ~

LOCATION 6 ~ DISCI EX~0 LP TURBINE DISC INFORMATION b.c,e 3

Y ~ 5 ~

(KSI)

~

U ~ T ~ 5 ~

(KSI

)

~

ELONGATION

~

R ~ A ~

~

FATT (OEG.F)

~

R T ~

IMPACT(FT BULBS

)

~

VASES IHPACT TEMP ~

(DEAF)

~

UKASE IHPACT EN'FT LB ~

)

~

U ~ 5 ~ KIC

. (KSIt SORT(IN ~ ) )

5 6

7 8

9 10 B.

MATERIAL PROPERTIES (MUB)g<c le TYPE J

(MIN~

Y ~ 5 (KSI) )

2 ~

SUPPLIER:

lTIOVK HEPPENSTALL 1 ~

2 ~

3 ~

0 ~

5 ~

6 ~

7 ~

Y ~ 5 ~

U AT 5

ELONG RE AD FATT R ~ T ~

U 5 ~

8 ~

U ~ 5 ~

9 ~

VASES (KSI)

~

(KSI

)

ATION (OEG F)

IMPACT(FT.LB'

)

IHPACT TEHP ~

(DEAF)

IMPACT EN'FALSE

)

KIC

. (KSIiSQRT(IN.) ).

C.

MATERIAL PROPERTIES (R IH)

Q,c;c 0 ~

CHEMIS'TRY L"

0 "C "2 "L

3 C:

ED BORE STRESS SPEED-(RPH) '- "STRESS

~

1800 (KSI) 2 ~ 2160 (1204 )

(KSI

)

kC,C CR b,C,C MO l,C~a...

V C.

3 C

3 C

b,(~C AL b.C'C Cu b~CC 5

t 3 '--c.

F ~

CRACK DATA 1 e A-CR-OP (1800 RPH)

(IN ~ )

2 ~

A-CR-OS lOVERSPEEO)

(IN~ )

b,c,'c b,c e-G ~

SERVICE DATA

~"

k(.",e 1 ~

OPER ~

TEMP ~

METAL TEMP ~

HUB (OEG ~ F) 2 ~

ESTIMATED HAX OA/OT lIN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO

OV

~

Iw a"

E IO I bi,e LP TURBINE DISC INFORHATION b.c,e A

UN~OENTIFICATION 1 ~ BUILOING BLOCK 2U UNIT IUITIIE R l

~

4 ~ l.PI 5 ~

LOCATION

6. DISCI EET RO 8 ~

HAT 1 ~

2 ~

Do 4 ~

5 ~

6 ~

7 ~

8 ~

9a 10 ~

11 ~

ERIAL PROPERTIES (HUB)g c c TYPE (HIN~ Y.S ~

~

(KSI l )

SUPPLIER:

T(I OV ALE HEPPENSTALL Y ~ 5 (KSI)

U ~ T ~ 5 ~

(KSI)

ELONGATION R ~ A ~

FATT (OEG.F)

R ~ I ~

IMPACT(FT BULBS

)

UKASE IMPACT TEMP ~

lOEG ~ F)

UKASE IHPACT EN'FIT LB' Use KIC

.(KSIo'SQRTl IN'

))

(KSI

)

~

(KSI

)

ATION YES U AT 5

ELONG R ~ A ~

FATT R ~ T ~

VASES 1 ~

2 ~

3 4 ~

So 6 ~

7 ~

(OEG F)

IMPACT(FT LB'

)

IMPACT TENT (DEAF)

IHPACT EN'FT BULBS

)

KIC

, (K.S I.+ SQRT

( IN ~ I ).

8 ~

U 5 ~

9 ~

VASES C.

HATERIAL PROPERTIES (RIH)

Q,c,c

" ff-m 0 ~

CHEMISTRY C

0 "L "3 "L

3 ED BORE STRESS SPEED (RPH)"

'STRESS

- '- gee 1 ~

1800 (KSI) 2 2160 (120% )

l KSI )

G ~

5 E R VICE 0 A)'

1 ~

OPER ~

TEMP ~

METAL TEMP ~

HUB (OEG ~ F )

2 ~

ESTIMATED MAX OA/OT (IN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO P

br CrC t:

3 5 N t7rCr(r C;

3 I;r,e Cr HO 0r g

y c

a

-c 3' AL biCr~'U ~r ~i+

5 c

s I

3 I:

F ~

CRACK DATA 1 ~ A-CR-OP (1800 RPHl l IN ~ )

2 ~ A-CR;05 (OVERSPEEO)

(IN<< l f,(.,c

-3' b> CrC.

b,c,e

(>

g~ <o March 19, 1980 A

chment B

Appendix Sheet 1

Appendix II

0 e)~

t I

i4 i

. March 19, 1980 Att hments B

Appends. II Sheet 2

CHART I TYPICAL 1977 BLOWDOWN CHEMISTRY RESULTS 0.4-0.7pMHOS 1.5"3.5pMHOS

(-)0.15-0.05ppm

< 0.05"0.10ppm 7-15ppm 8.6"9.1 PARAMETER Cation Conductivity Conductivity Free Hydroxide Chloride Sodium Ph WESTINGHOUSE CONTROL

< 2.0pMHOS None

<.15ppm Hone None 8.5-9.2 CHART II CONDENSER COOLING WATER CHEMISTRY PARAMETER PH Total Hardness Alkalinity Silica Sodium Sulfate Sodium Calcium Magnesium Chlorides Total Solids Total Dissolved Solids Suspended Solids HOM'1AL RANGE 7.5-9.0 100-175ppm 50-125ppm 0.1-1.0ppm 20"45ppm 10-25ppm 30-50ppm 5-10ppm 15-40ppm 150-250ppm 150-250ppm 5-20ppm

I

~gt,,(q I

I

-s

w-'y ~.

e r

" triarch 19, 1980 Attachments B

Appendix II Sheet 3

CHART III TYPICAL 1979 BLOM30WN CHEHISTRY RESULTS

0. 15-0. 25pHHOS 1.2-1.8

(") 0. 15"0. 05ppm

0. 005-0. 015ppm 0.005-0.015ppm 8.5-9.0 PARMKTER Cation Conductivity Conductivity Free Hydroxide Chloride Sodium PH WESTINGHOUSE CONTROL

< 2.0pHHOS None

<.15ppm

<.15ppm

.10ppm 8.5-9.2

4 I

II 1

I

Sheet 1

March 19, 1980 Attachment A

Subject:

Information in response to NRC Request for Information of February 25, 1980, relative to Low Pressure Turbine Disc Integrity Site Specific Question Answers including Proprietary Responses to Question 1-d.

R. E. Ginna Nuclear Power Plant, Unit No.

1 Docket No. 50-244.

Site Specific Questions:

I.

A.

Turbine type:

B.

The Rochester Gas

& Electric, Ginna 01 unit consists of one tandem compound four flow, three casings, condensing, 1800 RPM turbine utilizing 40 in. last row blades in each low pressure element.

The low pressure element is designated as a Building Block 80

'umber of hours of operation for each LP turbine at time of last turbine inspection or if not, inspected, postulated to inspection:

The LP-A rotor was used in the LP-1 turbine until February 10, 1979 and has 59,798.5 operating hours.

An inspection of this rotor was completed on March 15, 1980.

The LP-B rotor was used in the LP-2 turbine until March 24, 1978, refurbished, and installed in'the LP-1 turbine on April 3, 1979.

It will have 61,103;25 operating hours when inspected during the 1980 A.I.&0 scheduled to begin on March 28, 1980.

The new LP-C rotor was manufactured and installed in the LP-2 turbine on May 21, 1978.

It will have 13,748 operating hours by the 1980 A.I.SO and 36,000 predicted operating hours when scheduled for inspection.

,March 19, 1980 achment.

A Sheet 2)

C.

Number of turbine trips and overspeeds.

The turbine has experienced a total of 140 manual and automatic trips including 15 overspeed trip tests.

D.

For each disc:

1.

Type of material including material specifications.

2.

Tensile properties data.

3.

Toughness properties data including Fracture Appearance Transition Temperature and upper energy and temperature.

4.

Keyway temperatures.

5.

Calculated keyway crack size for turbine time specified in 'B'bove.

6.

Critical crack size.

7.

Ratio of calculated crack to critical crack size.

8.

Crack growth rate.

9.

Calculated bore and keyway stress at operating design overspeed.

10.

Calculated Kl data.

11.

Minimum yield strength specified for each disc.

See Appendix I for the answers to these questions.

II.

Provide details of the results of any completed inservice inspection of LP turbine rotors, including areas

examined, since issuance of an operating license.

For each indication

detected, provide details of the location of the crack, its orientation, and size:

The inspection of the LP-A rotor was completed on March 15, 1980.

This keyway/bore inspection included tangential and radial UT scans performed in the Westinghouse turbine facility in Charlotte, N.C.

The undocumented results are that there were no unacceptable ultrasonic examination indications.

,A final documentation package is expected at a later date.

III. Provide the nominal water chemistry conditions for each LP turbine and describe any condenser inleakages or other sig-nificant changes in secondary water chemistry to this point in its operating life.

Discuss the occurrence of cracks in any given turbine as related to history of secondary water chemistry in the unit:

i<i!

Inarch 19, 1980 achment A

Sheet 3I Since the start of operation in March of 1970, the steam generator water treatment program for Ginna has been con-sistent with the various Westinghouse recommended guidelines.

The contaminant control limits being maintained are at levels significantly lower than allowed by present guidelines.

From startup until November 1975 a period of about 45 effective full power (EFP) months, Ginna employed a phosphate treatment control program.

The Na/PO4 molar ratio was utilized as a major control parameter.

Until 1972, that ratio was generally maintained in the 2.1 2.3 range.

After 1972, while continuing to follow Westinghouse recommenda-tions, that maintained ratio range was modified upward to 2.3 2.5.

Although the phosphate treatment program afforded a buffering protection in the event.of condenser inleakage, the industry-wide occurrences of steam generator tube degrada-tion prompted Westinghouse to recommend a change to an All Volatile Treatment (AVT) Program.

For the 22 EFP months occurring between November 1975 and January

1978, Westinghouse AVT specifications were successfully maintained.

Chart I, Appendix II, provides typical 1977 blowdown chemistry.

Since it was realized that. AVT could not provide the ingress protection afforded by the phosphate treatment, it was RG&E management policy to reduce load and plug failed condenser tubes as soon as leakage was detected.

Station chemistry personnel felt that with their use of continuous hotwell sodium monitors, inleakage rates as low as 100 cc/min were detectable.

In the few incidences of lake water leakages occurring during this period, the rates were typically from 190 to 570 cc/min.

At. Ginna, increased blow-down was utilized to control the immediate ingress of con-taminants while an orderly power reduction was made for repair.

In most cases, Ginna was able to maintain AVT specifications even during these incidences of lake water ingress.

A major advantage in Ginna's utilization of I,ake Ontario water for once-through cooling is that this lake is fresh water with relatively low concentrations of potentially harmful con-taminents.

For example, seawater ingress would contain approximately 700 times the sodium concentration as that of Take Ontario water at. the same inleakage rate.

Chart II, Appendix II, provides typical chemical concentrations in Ginna cooling water.

Since January 1978 (approximately 23 EFP months),

Ginna has maintained AVT control specifications while operating a full flow, deep bed condensate polisher system.

Typical blowdown chemistry is shown in Chart III, Appendix II.

Operation of the polishers have afforded Ginna excellent protection against the immediate effects of lake water inleakage.

With effective polisher operation, situations of known ingress have not resulted in any detectable deterioration of Steam Generator water guality.

Although the polishers afford pro-tection against ionic ingress, it has remained RG&E policy

0 C,

l

-i I

l

~

A

0 Aarch 19, 1980 achment A

Slleet 4) to reduce load and plug leaking condenser tubes as soon as detectable.

IV.

During the 90 EFP months of Ginna operation, there have been twelve incidences of condenser leak induced power reductions.

Although there have been only the twelve events of actual on-line inleakage, approximately 225 condenser tubes are presently plugged.

These additional pluggings were pre-ventative in nature and done as the result of extensive inspections made during maintenance and refueling outages.

Many of the preventative pluggings were done during the early years of operation as the result of degradation due to vibration and steam erosion.

Condenser modifications made in 1972 have minimized those failure modes.

The last detectable condenser inleakage situation occurred approxi-mately 16 months ago in September 1978.

As previously indicated, full flow condensate polishers have afforded excellent protection in limiting the potentially harmful effects of condenser ingress on secondary water and steam quality.

See Appendix II for Typical chemistry charts.

If your plant has not been inspected, describe your proposed schedule and approach to ensure that turbine cracking does not exist in your turbine:

The LP-A rotor has been inspected at this time.

The LP-B rotor will be inspected during the 1980 A.I.SO scheduled to begin on March 28th.

The LP-C rotor is planned to be inspected during the LP-2 turbine major inspection in 1983 with 36,000 predict'ed hours.

V.

VI.

If your plant has been inspected and plans 'to return or has returned to power with cracks, provide your proposed schedule for the next turbine inspection and the basis for this inspection schedule:

Not applicable.

Indicate whether an analysis and evaluation regarding turbine missiles has been performed for your plant and provided to the staff. If such an analysis and evaluation has been per-formed and reported, please provide appropriate references to the available documentation.

In the event that such studies have not been

made, consideration should be given to scheduling such an action:

Il o

k f

f

, March 19, 1980 achment A

Sheet 5;

The potential turbine missile hazard at Ginna has been extensively reviewed during the SEP review of Topic III-4.B, "Turbine Missiles".

This review began with an NRC evaluation of the Ginna FSAR (Appendix 14A) and continued with a Ginna site visit of September 6-8, 1978.

Following this site visit, the NRC completed a draft, topic assessment (memo from D. K.

Davis to D. I. Ziemann, SEP Safety Assessment, Input Ginna, 2/17/79).

RG&E provided comments to the Staff on 3/16/79 and a revised safety assessment was issued on April 18, 1979 (letter from Dennis L. Ziemann to Leon D. White, Jr., Topic III-4.B "Turbine Missiles" ).

The conclusion of this assess-ment was:

"Therefore, we conclude that the overall probability of turbine missiles damaging the Ginna Nuclear Power Plant and leading to consequences in excess of the 10 CFR Part 100 exposure guidelines-is acceptably low as specified in the S.R.P.

3.5.1.3 and the S.R.P.

2.2.3.

On the basis of these results, we consider the operation of the Ginna Nuclear Power Plant safe with regard to turbine

missiles, and the risk presented by this postulated event similar to that of plants licensed under current criteria.

This completes the evaluation for this SEP topic.

Since the plant conforms to current licensing criteria, no additional review is required."

Generic Questions:

Questions I through UIII have been answered by Westinghouse's letter of March 14, 1980 signed by J.

M. Schmerling in a generic response that was developed by the Westinghouse Turbine Disc Cracking Task Force of which we are a member.

Mr. Wayne Stiede of Commonwealth Edison, the Chairman of the Task Force, will also be responding as to the acceptability to the Task Force of the Westinghouse generic response.

,Inarch 19, 1980 achment A

Appendi Sheet 1

Appendix I

.11arch 19, 1980 achment A

Appendi Sheet 2

Notes on Answers to Site Specific Question 1.D Appendix I 1.

Type of material is Ni-Cr-Mo-V alloy steel similar to ASTM A-471.

The minimum yield strength specified for each disc is given in Section B.

2.

Tensile properties data of tests taken from the disc hub are given in Section B.

Data obtained from rim material are presented in Section C.

3.

Toughness properties are also presented in Sections B and C.

As described

above, Section B contains hub properties and Section C contains rim properties.

Upper shelf energy is not presented when it, is the same as the room temperature energy.

4.

The keyway temperature is presented in Section G.

This the calculated temperature two inches from the exhaust face of

. the disc at the bore during full load operation with all moisture separator reheaters functioning.

5.

The maximum expected keyway crack size has been calculated for each disc on each rotor.

This was done by multiplying the crack growth rate by the time each rotor was in operation prior to the disc/bore inspection.

For rotors not yet. in-spected the time used was the expected operating time to when the rotor will be inspected.

The crack growth rate is given in Appendix I, Section G, in response to question I.D.8.

6.

The critical crack size at 1800 rpm and at design overspeed is presented in Section F. It is calculated using the relationship:

i'-, c) e A,R (<<f) =

1.21 KIC 2

R g BORE Where K

is the lower of either the room temperature or upper sAFlf fracture toughness.~B R

is the bore. stress given in Section E in answer to I.8.5.

Q is the shape factor based upon an A:2C ratio of 1:4.

This is a change from previous Westinghouse calculations where a 1:10 ratio was conservatively applied.

The 1:4 ratio is supported by observed keyway crack geometries, and agrees with the ratio we believe the U.S. Nuclear Regulatory Commission uses for their analyses.

R is the radius of the keyway.

Q = 1.35 R =.375"

1 l

I l<

4

lp

,, triarch 19, 1980 achment A

Appendi Sheet 3

7.

The rate of calculated crack size (A) to critical crack size (Acr) is the ratio of the results of item 5 of Appendix I to item 6 of Appendix I of this response.

The LP-C rotor disc data was not put in the Westinghouse computer in time for submittal.

This data is expected in approximately two weeks.

In order to verify our confidence in the safety of this rotor until the normal inspection outage, Westinghouse assured RGSE that the material and design is identical to LP-A and LP-B and that the parameters for LP-C will be very similar.

The worst case critical crack depths from the W

data for the discs of LP-A and LP-B were used to determine a

preliminary value of A/Acr for the LP-C discs.

These values were less than

.1 for the present operating hours and less than

.21 for the estimated hours to the normal inspection.

When the accurate data is available, the appropriate calcula-tion results will be forwarded to your office.

8.

The crack growth rate is given in Section G.

These crack growth rates are the maximum expected rates based upon known cracks to date.

Westinghouse has changed the basis for determining these rates to utilize the NRC gray book operat-ing hours.

The crack growth rate of the number one and six discs of the BB 80 turbines should be assumed to be zero since these discs operate dry under normal operations.

9.

The bore tangential stress at, 1800 rpm and at design overspeed are presented in Section E.

The values pres'ented include the stresses due to shrink fit and centrifugal force loads only.

10.

The fracture toughness, K

, of each disc is calculated from the Charpy v-notch and te@ile data.

The values, presented in Sections B and C are calculated at the upper shelf tempera-ture or room temperature, whichever gives the lower result.

11.

The minimum yield strength specified for each disc is pre-sented in Section B.

\\

I I

CO

~

A ~ t)NIT I! ENT IFICATION 1 ~ BUILD NG BLOCK 80 2.Usl!

3 ~

CUSTO st ~

LP!s 5 ~

LOCAT ka OISCk 7 ~

TEST ER D ~

GINNA ttl ROCHESTER GCE 1

GOV

..1 T020803 LP TURBINE DISC INFORHATION k.c,(j:

8 ~

HA 1 ~

2 ~

3 ~

4 ~

5 ~

6 ~

7 ~

8 ~

9 ~

10

'lew TERIAL PROPERTIES (HUB)

TYPE

) brcr(2

( HIM ~

Y ~ S ~

I. ) 50 ~ 0J t KS I )

SUPPLIER:

HIOVALL HCPP Y ~ 5 ~

(KS I

)

U. To S ~

(KSI

)

ELONGATION R ~ A ~

FATT (DEAF)

RE 7 IHPACT(FT LB'

)

VASES IHPACT TCHP ~

(DEAF)

UKASE IHPACT ENGR'FT

~ LB ~

)

UKASE KICt Ksls SORT ( IN. ) )

VO

)

NSTALL 152 '00 168 F 000 16 ~ 5 sos

~ 7

-120.0 st 9 ~ 0 75 '

s(9 ~ 0 177 '2 C ~ HATERIAL PROPERTIES (R IH) b,c~

1 ~

2 ~

3o st ~

5 ~

6 ~

7 ~

Y ~ 5 U

T ~

CLON R ~ A ~

FATT RE 7 VASES (KSI )

5 ~

(KSI )

GATI ON (OEG F)

IHPACTtFT ~

LB'

)

IHPACT TEHP ~

(DEAF)

IHPACT ENG ~

(FT LB ~

)

KIC(KSI4SQRT ( IN ~ ) )

'8. U.S.'

~

U ~ 5 129 F 000 is!I 500 19 '

61+i

-120 '

72 '

0 '

)!9o0 165.66 0 ~ CHCHIS)RY NI baC g3.6g NN r6,c,c C-293 b c,('

3

, 6.cc Q.27+

SB pre C

P bee.

Q ~ 008+

5N 4r Cr C

CR 6~Cr HO -r r hcc t ) s79$

t s!7+

AL b.cr~

cu 6rcc C

3 t:

6,cc b cra C i006$

bc,c, 378 280-003 59,798.5 zero 0/3.15'

~

CRACK DATA

'C 6> Cr 1 ~

A CR-OP "(1800 RPH)

(IN

)

f 9.)03 2 ~

A-CR-OS (OVCRSPCFO)

(IN~.I

.L3 ~ 15+

i fe BORC STRESS SPEED (RPH

)

STRESS 6 cc r

I ~

1800 (KSI

)

I 50 ~ 000 I

!s'.;!'!~ sssp ssossss

'sss!,

Lss soog s(

t G ~

SERVICE DATA 1 ~

OPER ~

TCHP ~

HETAL TCHP ~

HUB (DEG ~ F )

2 ~

CSTIHATEO HAX OA/DT (IN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

A/Acr RATIO 6 c,c.

e Bl gi

)

0).!

Q

~

+so s

~ ~

op s s'

~

sos P's

'I s

\\ss

(

,", I s.s; ssl ss {

sst

'sl ss (

g; s s-oi;0 s ~

s ss st sit

~

b.c,~

IO V

- OC'0101001 I'

LP TURBINE OISC INFORHATION b.c,e 80 2 ~ UNIT CIIST( <ER<

4o LPN 5a LOCAl ON 6 ~

OISC)

T fEKl 10' GINNA el ROCHESTER GEE 1

GOV 2

015003 A ~ UNT~: ENTIFICATION 1 ~

BUILC'G BI.OCK

" 3 ~ Y.S ~

(KSI) 4e U+7 ~ Si (KSI) 5 ~

ELONGATION 6 ~

RE AD 7 ~

FATT (DEAF) 8 RENT+

IMPACT(FT BULBS

)

9 ~

UKASE 1HPACT TEMP (OEG F)

10. U.S.

IMPACT ENG.

(FELON

)

II~

Uo 5 ~ KIC(KSIeSQRT(IN

) )

121 ~ 500 137 F 500 18 ~ 4 5'

-100 0

80 '

15 ~ 0 80 5

21'8 8 ~

MATERIAL PROPERTIES (HUB)g ~~

io TYPE

~rCrC 10 r..a">>

2a SUPPLIER:

. IIIOVALS HEPP NS TALL 1 ~

2 ~

3 4 ~

5 ~

6 ~

7 ~

V+5'

~ 1 ~

ELON R ~ A ~

FA)T RE 1 VASES 8 ~

UKASE 9

VASES (KSI) 5 ~

(KSI )

GATION (OEG F l IHPACT(FT LB'

)

IHPACT TEHP ~

(BEGS F)

IMPACT EN'FT

~ LB ~ l KIC(KSI~SQRT(IN ~ ) ).,

C ~

MATERIAL PROPERTIES (RIM) b,c',r.

120 ~ 0"(

132 ~ 0':(

21 ~

e 69

-100..(

72.!

50-(

72 I

199 ~ 7!

b.c,(

g.

Lc~c t".)7'g SB b.c;(

52 '00 I ~

1800 2 ~ 2160 () 20% l (K51)

(KSI) 0 ~

CHEMIS fRY C

3 C

3 kC,c,

  • 5 h.C' t 4;07$

Ea BORE S(RESS SPE 0

(RPH}="

STRESS p

b,C~t t

+010 g SN C

3 6p C~ C

{1 74$

AL b)CpC 3

F%

CRACK DATA 1 ~ A-CR-OP 2

A-CR-05 MO

~

~

Vt:." 3 j

t:.-'3 C"8 '"

VJ N

5'2

}

G ~

SERVICE DATA OpER

'TEMp METAL TEMP ~

HUB (OEG ~ F) 2.

ESlIHATEO HAX OAiOT (1@MR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

Ca1culated A/Acr RATIO 274

.190-004 59,798.5 1.136"

.265 b.c,c

I

~ li

III

~

I i

~

1 II I ~

'I 1$

I ~

I ~

s 21 j22 2$

I

~ 24'$

~ 21

, 2I I 2 ~

2$

I IO

'$2 h,c,t IO I: 0080101001 A ~ UNI I IDENTIFICATION 1 ~

BUI -DING BLOCK 80 22..UN) I 3."CUS TONER=.-

4'Pt 5 ~ LO(

~ T ION 6.2 DIS',)t.

7 ~

TES 'O ~

GINNA

)$ 1 ROCHESTER GCE 1

GOV 3

T014996 0 ~

CHEH STRY Cig t -2'5 g NI ED BORE STRE55 Sl EED"lRPH)'TRESS 1 ~ lt 00 txSI) 2 ~, 2) ti0. t)20'L).

tKSIl MN 4C~C

~ 24 Q AS 42 C~

Qp cjC t

.)7$

bpdqC t:

3 "b,c c 59 '00 L,C,C t

~ 009 3 SN

>i<iC LP TURBINE DISC INFORMATION b,C,C 8 ~

MATERIAL PROPERTIES lHUB 1 ~

TYPE t MIN Y

So I ) )0.0 2 ~

SUPPLIER:

MIDVALE 3 ~

Y ~ 5 ~

tKSI )

4 ~

U ~ I 5

tKSI) 5 ~

ELONGATION 6 ~

R ~ A ~

7 FAIT lOEG F) 8 R

7 ~

IMPACTlFT LB.)

9 ~

UKASE IMPACT TEHP ~

tOEG ~ F) 10 'KASE IHPACT EN'FT LB ~

)

Il~

U ~ 5 ~ KIC tKSI2'SQRTtIN ~

)

TO tKSI) )

HEPP NSTALL C.

HATERIAL PROPERTIES tRIM) 4r,c c-121

~ 500 135 F 000 19 '

58 F 6

-120 ~ 0 67%0 75 '

67' 192'8 CR 4~C~C t ).58$

A L 1$)CiC 3

F ~

CRACK DATA Y ~ Si U ~ T ~ 5 ELONG R ~ A ~

FATT RsT ~

U ~ 5 ~

tKSI)

~

lKSI )

ATION

) ~

2 ~

3 ~

4 ~

5 ~

6 ~

7 ~

lOEG F)

IMPACTtFT+LB ~

)

IMPACT TENT tOEG ~ F)

IMPACT EN'FT BULBS

)

KICtKSI+SQRT' IN ~ )

1 8 ~

VASES VASES MO 4,C~C.

CU ltd C>G 9a Q

2. C t

+01)$

I ~

A-CR-OP t 1800 RPM) tIN~ )

4.41 t

2 A-CR-05 t OVERSPELO).)IN~ )...... I 3 31.J 121 ~ 500 135 io'.)0

)9%0 58 ~ 6

-120 '

70 as 0 '

70 as 197'3 K

, tO I,c,c, rt I I I

'. ~.$

2 4

/

~ ~

G.

SERV'CE DATA 1 ~

OFER ~

TEMP ~

METAL TEMP ~

HUB lDEG ~ Fl I

2 ~

ESTIMATED MAX DA/OT lIN/HRl 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH

5. Calculated A/Acr RATIO 223

.673-005 59,798.5

.403"

.121 g,c;e

0 li I

I s

b,c,c IO 1

0080101001 b,c,(

80 2 ~

UN)

'US'ONER) 4, LPA 5 ~

LOC 7 ION 6 ~

01>>

tt

~ TES

NO ~

G I 01 N A tt )

ROC'HESTER GCE 1

GOV 4

"TD15006

'I ~ 'UNIT IDENTIFICATION 1'>>

BUI.DING BLOCK LP TURBINE DISC INFORMATION C.

MATERIAL PROPERTIES (RIM) 6 c.a 1 ~

Y 5 ~

(KSI) 2 ~

U ~ T ~ 5 ~

(KSI) 3>>

ELONGATION 4 ~

R ~ A ~

5 FAT) (DEAF) 6 ~

R ~ I ~

IMPACT(FT ~

LB'

)

7 ~

U>>ST INPACT TENT (DEAF) 8 ~

UKASE IMPACT ERG'FT LB ~ l 9 ~

U ~ 5 ~

KIC(KSI+SQRT (IN~ l )

2 ~ SUPPLIER.

NIDV ALE H

3 ~

Y ~ Si (KSI

)

U ~ T ~ 5>>

(KSI) 5 ELONGATION 6 ~

R ~ A ~

7.

FATT (OEG F) 8 ~

R T ~

IMPACT(FT LB 9 ~

0'>>

IHPACT TENP>>

(DEGAS Fl 10 ~

UKASE IMPACT EN'F I ~ LB ~ )

ll>>

U ~ 5 ~ KIC(KSI0SQRT(IN ~ ) )

118 F 500 133 F 000 19 F 6 be 6

-95>>0 76 5

75 ~ 0 76 5

204 ~ 49 BE MATERIAL PROPERTIES (HUB)L C C, 1 ~

TYPE

)-

-)

~

~

TC (NIN~ Y.s ~

L)00 ~ OJ (KSI) )

EPP NST ALL 118 F 000 132 F 000 21 '

67 '

95 '

98 I) 0 ~ I) 98 ~ )

233 '

Qc,c, DE CHE)';STRY b

t: "3 t:

NI

&.<~C T3163 t:

ED BORE STRESS EEO (RPH

) 'STRESS 1 ~ I 00 (KSI) 2,2.'60 (120')

(Ksl l G ~

SERV. CE DATA Hf

~ 28$

AS b,C;C SI.3 SB b,c,e 49 ~ 600 b,C,C 23 b,cc P

kGC-CR t

.008) t

).54'N

~rCr C AL bp+pC E

~

L 3

F' CRACK DATA 1 ~ A-CR-OP 2 ~ A-CR-05 MO k7~C~C V

Sr~ C c."'j c "3 CU bq Ci&

5 ti Cg 3

gc.e (1800 RPH)

(1N

)

s.be I

(OVERSPEEO)

( IN.)

L 4.OOJ 1 ~ O'R TEMP ~

METAL TEMP ~

HUB (OEG ~ F )

2 ~

ESTIMATED HAX DA/DT (IN/MR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO 188

.300-005 59,798.5

.1794

.0448 A 4

0

'i l

e r

b.c,(.

ID 5

)

D0801010D1 E ~ UNIT IDENTIFICATION I ~

BUILDING BLOCK 80 2s. UNIT 3 ~

CUSTOHER 4 ~

LPA 5 ~ LOCATION

.()~DISCS....

7 ~

TEST NO ~

GINNA A 1 ROCHESTER GEE 1

GOV 5

TO5321 LP TURBINE DISC INFORMATION h.c,e TERIAL PROPERTIES (HUB)$ CC, TYPE TB (HINa Y ~ 5 ~

L.90 0

tKSI ) )

EPP NSTALL 8 ~

MA 1 ~

2 ~

3 ~

4 ~

C 6 ~

7+

Bo 9 ~

10 ~

SUPPLIER.

MIDVAL H

Y ~ 51 (KSI)

U I ~ 5 ~

(KSI

)

ELONGATION R ~ A ~

FATT (OEG F)

R AT ~

IMPACT(F'I~ LBa)

U ~ Si IMPACT TEMP ~

(DEAF)

U ~ Sa IMPACT ENG ~

(FT LB'

)

U ~ 5 ~ KIC(KSIASQRT l IN ~ ) )

98 F 500 116 ~ 500 20 49 '

-87 '

74 5

75 '

74.5 185 F 11 1 ~

2 ~

3 ~

4 ~

5 ~

6 ~

7 ~

YES U ~ T ~

ELON R,A.

FATT R AT ~

VASES 8 ~

0 '

9 ~

V+ST (KSI )

5 ~

(KSI)

GAT ION (OEG ~ F )

IHPACTlFT BULBS

)

IHPACT TEMP (DEAF)

IMPACT EN'FT

~ LB ~

)

KIC(KSI4SORT(IN ~ ) )

Ce MATERIAL PROPERTIES (RIH) b,c,c 101.000 11T ~ OOC 23 ~

('01.'7

~

'61(.

0 ~ C 96 ~

l'14'.

-IQ

"(D

- ~

'I Q L~

~)

ld

).e STRESS 0 ~

CHEM)

ENTRY L"J NI

~icosa f 3 ~ 4g ED BORE:STRESS SPEED (RPM)

Hh b~C

~ 31$

b,ci 4 3

SI l

.24$

b~c~c C

3 b,CC 4c,e L

~ 010/

3 b,c L1166$

AL E

3 F

CRACK DATA MO bC;C, t: "'3 I:

CU b, CrC I j "t:

S,c,e.

F 13 QQcc.

5

~ 00+7 b oc.

1 ~

18 10 2)).Q.1 20. (1204) tKSI) t 50 F 500 l (KSI)

, L 58 '00/

A-CR-OP

( 1800 RPM)

(IN'

)

7 4'91 2 ~

A CR OS. (OVERSPEED)

(IN'

)....

L 31)2$...,

G ~

SERV' DATA

) ~

Ol';R ~ TfMP ~

HETAL

~ TEHP ~

HUB (OEG F )

2 ~

ES (I MATE 0 MAX OA/DI l IN/HR )

3.

ROTOR OPERATI)(G HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO 178

.234-005 59,798.5

.1399"

.0438 I;c,e.

"(D'I

~-l~

T I

C

b. c,e ID 8

) 0080101001

'A ~ UNIT IDENTIFICATION I ~ BUIl.DING BLOCK 80 2 ~

UNI T 3i CUSTOHER:'

~

LPN 5 ~

LOCATION 6 ~

DISC%

7 TEST NO GINNA A)

ROCHESTER GCE" 1

GOY

. 6 j014988 0

CHEMISTRY g C r

$ 3o 48/

E ~.BORE ZTRESS SF'.ED (RPH)

STRESS L

1 o 1~30 (KSI )

2 ~ 2o60 ll20t)

(KSIl 4

G ~

SERV)CE DATA TERIAL PROPERTIES lHUB)

TYPE r.C./

TB lMIN~ Y*So L 90 ~ 0$ (KSI) )

SUPPLIER-HIOVALE HEPPENSTALL BE HA 1 ~

2 ~

3 ~

4 ~

5 ~

6 ~

7 ~

8 ~

9o Y ~ 5 ~

(KSI

)

U. T. S.

tKSI )

ELONGATION RE A FATT lDEG ~ Fl R ~ T ~

IMPACT(FT LB' UKASE IMPACT TENT (DEAF)

UKASE 'HPACT ENG ~

(FALSE

)

U ~ 5 ~

KIC (KSI+SQRT(IN

) )

104 '00 121.500 21 0

58 F 1 102 ~ 5 82 0

75 '

10'2 '

ZOO ~ 29 ll~

C ~

MATERIAL PROPERTIES lRIH) b,c,e YES U ~ I ~

ELON R ~ A ~

FATT R ~ T ~

UKASE (KSI) 5 ~

(KSI )

GATION lo 2 ~

3 4 ~

5 ~

6 ~

7 o (DEAF)

IMPACT(fT ~ LB ~ )

IMPACT TENT (DEAF)

IMPACT EN'FToLB~

)

KIC (KSISSQRT t l)l~ ) )

8 ~

U ~ 5 ~

9 ~ 0'o bqEie 5 I

QcCpc, 15$

I co so b.ca C

3 4, c,(.

43 '00 49 F 500 P

b~C'PC Q

~ 009 Q SN

&C4 C

3

$ c,(

CR l.CC.

r ) o67]

bid L

F ~

CRACK DATA 1 ~

A CR-OP t

2 ~ A-CR-05

(

HO bc~

4((-

L"-45 g

$.12 g

~ace~

5

~sept t:

3 "E" "'3 I

1800 RPH) l IN ~ )

j To15 OVERSPEEO) (IN,),L5.43 J.

LP TURBINE DISC INFORMATION b,(:,(

103 F 000 120 F 000 22 '

67 '

-102o5 69 '

-50oO 69 ~ 0 181 ~ 34 Qc(

I()

e." O I ~

l 1

I

~ c I ~

)>

,.,li I +

i'CT

'(D

) oS iI IW.

jX (M

I L

1 ~ O'R ~ TENT METAL TEMP ~

HUB (DEAF) 2.

Ec TIHATED HAX OA/OT tIN/HR) 3.

ROTOR OPERATI)(G HOURS 4.

CALCULATED CRACK DEPTH

"-"- 5.

CALCULATED A/Acr RATIO 203

.429-005 59,798.5 zero 0/5.43 1

I P

~

4,g (.

I0 A: 0080101002 I~

I~

I ~

IO 22

..2 ~. UNIT 3 ~

CUSTOHER 1 4 ~

LPA 5 ~

LOCATION EIa. DISCt 7 ~

TES1 NO ~

GINNA Al ROCHESTER GEE 1

GEN 1

TD20832 A ~

UNIT IDENTIFICATION 1 ~

BUILDING BLOCK 80 ERIAL PROPERtIES (HUB)g TYPE rx TC (HTN o Y ~ 5 100 ~ OQ tKSI ) )

8 ~

HAT 1 ~

EL 107 ~ 000 129 500 ZZ ~ 0 64 '

-90 0

89r0 75 0

1ER:

BETHLEHEH 5

(KSI)

(KSI)

ATION SUPPL Y

S ~

Ur T.S ELONG R ~ A ~

FA11 R ~ T ~

UKASE 2 ~

3 ~

5 ~

67r 8 ~

9 ~

(OEGrf )

IHPAC1tfToLBr)

IHPACT TEHP (DEG F)

IHPACT EN'f T ~ (.8 ~ )

KIC(KSIASQRT (IN~ ) )

89 0

211 '5 10 ~

U ~ 5 ~

Il ~

U ~ 5 ~

LP TURBINE DISC INFORHATION 4~c/t'/C 1 ~

23r 4 ~

Sr 6 ~

7 ~

Y ~ 5 ~

U ~ T ~ 5 ELONG R ~ A FATT F 7

'ASES 8 ~

Uo So 9 ~

Uo5 ~

(KSI)

~

(KSI

)

A1 ION (DEG F)

IHPACT(FT ~

LB'

)

IHPAC't TEHP ~

lOEG ~ F)

IHPACT EN'Ft LB F 1 KICtKSI ASORT t IN ~ ) )

C ~

HATER IAL PROPERTIES t RIH) 106 ~ 003 123 ~ 50 i 22 ~ 3 6923

-90r.2 89 ~ 0 752 0 89t t) 210 ~ t 2 6C,C SI19 SB 0, c'c.

1 ~

'00 lKSI) ge.I(160,! $ 20A)

(KSI)

D ~

CHEHISTRY Q C~C Q C C

'.Iaaf C

~ 22]

IO "t:""3 I:

3 t.

'o ED BORE STRESS 1

EED (RPHl STRE55 56 '00 G ~

SERE iCE DATA II I

1 ~

t. 2ER ~

1EHP HETAI. TEHP ~

HUB (OEG ~ F )

"I 2 ~

t. STIHATEO HAX OA/OT (INIHR)

~III 3.

ROTOR OPERATlt(6 HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO bc,e p

L~C/

t

~ 010 Q SN k'r C/g t, C,t-378

.1075-003 59,79S.5 zero 0/4.63 CR 4 C/C Q) r89$

F ~

CRACK DATA HO

~i C/C I.50$

Cu C,

L.C AO C o08 b,C C o012j lo A-CR-OP (1800 RPH l (1No) f 5'8 1

A-CR-OS (OVERSPEEO)

( Ih ~

)..

., L 4 63$

r ID tt 4.c e 0080101002 LP TURBINE DISC INFORMATION b,c,'t 2 ~

UNIT CUSTOMER:

4 ~ LP!

5 ~ LOCATION 6 ~

DISCS

~ T~O ~

GINNA s)

ROCHESTER T05002'UNTT IDENTIFICATION 1 ~ BUILDING BLOCK 80 GEE 1

GEN

?

B ~

HA

) ~

2 ~

3 4 ~

5 ~

6 ~

7 ~

8 ~

9 ~

10 ~

11

'UPPLIER.

HIOVALC H Y

5 (KSI )

0 ~ T ~ 5 (KSI )

ELONGATION R

Ao FATT (OEG F)

R AT ~

IMPACT(FT BULBS

)

U ~ 5 ~

I.'IPACT TEMP ~

(OEG F)

UKASE IMPACT ENG ~

tFT ~ LB ~

)

0 ~ 5 KIC(KSI>SORT(IN

) )

122 F 500 136 F 000 20 2

67 7

-88 '

80 5

75 '

8' 213.44 TERIAL PROPERTIES (HUB)yC TYPE TO (HIN Y ~ 5 Cl)0 ~ 04 (KSI

) )

EPP NSTALL

) ~

2 ~

3 ~

4 ~

5 ~

6 ~

7 ~

8 9o Y ~ 5 (KSI)

U ~ 7 ~ 5 ~ lKSI)

ELONGATION R ~ A ~

FATT (DEAF)

R T ~

IMPACT(FT BULBS

)

VASES IHPACT TENT (DEAF)

U 5 ~

IMPACT ENGR'FT BULBS

)

U ~ 5 ~ KIC(KSI'~SQRT (IN ~ ) )

C MATERIAL PROPERTIES lRIH)

Q,ca 121 F 00(

137 F 00("

21 ~

L'7 AC

-88 ~ (

84

(

0 ~ (,

84 '

217 ~ 1(

0 ~

CHEMISTRY C

b,CrC HN biCr C.

Sl t "+2'

~27$

f o)7 NI 6>CrC AS t)rCrC'B t:""'7 "t:" j c

bc,e 3

t:

bc e.

C P

b,C;t.'

010)

SN b Ce CR 4pcr C t ) ~74j b,ce C

b,c i(.

~ 1 ']

5 kC+

~ 008$

ED BORE STRESS

'SPF EO" (RPH )'"

STRESS 1 ~

18i)0 (KSI) 2 ~ 2li>0 (1208 )

t KS I )

bc,e 52 '00 F

CRACK DATA 1

A-CR-OP l 1800 RPM)

( INi) 2 ~

A-CR-OS lOVERSPEED) l IN ~ )

G ~

SERVICE DATA 1 ~

OP(.R ~

TE)IP ~

HETAL (EHP ~

HUB (OEG F )

2 ~ ES" IHATEO HAX DA/OT (IN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH

---..5.

CALCULATED A/Acr RATIO 274

.190-004 59,798.5

1. 136"

. 276 L.c,c

k,c,(.

IO

((

( (080101002

~

~

~

I 1

~.UNI T

~

CUSTOHER) 4 ~

LP4 5 ~

LOCATION

~DISCt 7 ~

TEST NO ~

GINNA A)

ROCHESTER GEE 1

GEN 3,.

'029800 k eUNI I IDENTIFI CAIION 1 ~

BUILOING BLOCK 80 LP TURBI

>cc 8 ~

HA 1 ~

NE OISC INFORHATION TERI AL PROPERTIES

{HUBi TYPE CJC TO

{HIN~

Y ~ 5

$1)0 ~ {LI lf(SI ) l SUPPLIER:

HIOVAH HEPPENSTALL 2 ~

3 ~

4 ~

5 ~

6 ~

7 ~

8 ~

9 ~

114 F 500 132 000 21 '

65 '

-120 '

74 as 75 '

Yose

{KSI)

U T

5

{KSI )

ELONGATION R ~ A ~

FATT

{OEG ~ F)

R AT ~

IHPACT{FT BULBS

)

VASES IHPACT

)EH'DEAF)

UKASE IHPACT ENG ~

{F {eLBe l 0 ~ 5 ~ KIC{KslesQRT { IN ~ ) )

74.5 198 '3 10 ~ll~

C HATER IAL PROPERTIES

{RIH) bc,c, 1 ~

2 ~

3 ~

4 ~

5 ~

6 ~

7 Y ~ 5 ~

{KSI )

U T ~ 5 lKSI)

ELONGATION R ~ A ~

FAT)

(OEG F)

R AT. IHPACT{FT LB'

)

VASES IHPACT TEHP ~

lOEG ~ F)

VASES IHPACT EN'FT BULBS

)

U ~ 5 ~ KIC{KSI+SQRT{IN~ ) )

8 ~

9 ~

114 '0.

132 F 00 21 '

66 '

-120

'6'

~

76

'01' 6.c. (

P kcr{

Q

~ 008 g SN b.C.C-L

- j ED BORE STRESS SPEEO

{RP 1 ~

1800 2 ~ +)60

{120 G ~

SERVICE OATA

{",7 U,c,c

~

4I 1 ~

OPER ~

TEHP ~

METAL ITEHP HUB

{OEG ~ F )

2 ~

ESTIHATEO HAX OA/OT {IN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH

-- -.5.

CALCULATED A/Acr RATIO 223 673-OOJ+

59,798.5

.4024"

.114 0 ~

CHEHISTRY QJC+(JHNJJCJ(JS I

IPJCjC I:"3 "

t: "3 C."9 C I'-

as b,c a sB b,c.

'"0

]

I 3

H)

STRESS Qc;c

{KSI) 52 ~ 400 lKSI),.

59 ~ 700 CR JC 1.65 ]

AL 4CC E

3 F

CRACK OATA 1 ~

A-CR-OP 2

A-CR-Os

){0 t:."'

Cu 4'-

3 Q,c.e I.12$

b,c.(s P>>0)0$

f,.c.~--

{1800 RPH)

(IN ~ )

F 71

{OVERSPEEO)

{INz.l

P 1

'1

b,c,c 10 8:

. 080101002

'A "UNIT IDENTIFICATION 1 ~ BUIt DING 8).OCK 2 ~ Ukl e'USlOHCR LPs 5.

LOCATION 6 ~ DISCI

~

EST

'ND ~

GINtlA ul ROCHESTER 7015005 80 GCE 1

GEN LP L,c,~

TURBINE DISC INFORHATION CRIAL PROPCRTIES lHUB1 TYPE Picnic TC tMIN>>

Y ~ 5>>

$ 100>>Q tKSI) )

SUPPL t)IOVALL HEPPEttSTALL 8 ~

MAT 1 ~

IER.

(K51)

~

tK51 )

ATION 2 ~

3 ~

0 ~

5 ~

6 ~

1 ~

8 ~

9 ~

YES U ~ T ~ 5 ELONG R

A ~

FA'TT R ~ T ~

UKASE 122 000 139 ~ ODO 21 '

63>>8

-107 as 10 '

75 '

l BEG F )

IMPACT)FT>>LB'

)

IMPACT TEttP ~

lDEG ~ F)

IMPACT CNG ~

lFT ~ LB ~

)

KIClKSIiSQRTlIN~ ) )

10 ~

U ~ 5 ~

ll>>

UKASE 10 5

198 '0 C

MATERIAL PROPERTIES lR IH) pc,c 1 ~

Y ~ 5>>

lKSI) 2 ~

U T

5 ~

lKSI

)

3 ~

ELONGATION 0 ~

R ~ A ~

5 ~

FATT )DEAF) 6 ~

R>>T IMPACTIFT BULBS

)

7 ~

U ~ ST IMPACT TEMP ~

lOCG ~ F) 8 ~

0 'T IMPACT ENG lFT BULBS

)

9 ~

VASES KIC tKSI+SQRTIIN ~ ))

120 000 132 ~ 5( ')

21 '!~

68>> 2 10' 82 '

-7S ~

~t 82

'13 as <

DE CHEMIS'TRY t: 25$ ':

.N I br Cr

+'.3 OI

C MN SIC~

51

~28]

t

~ 3 AS b.Cr SB L

bc,c

'j b.c,e p

/CHIC

~ 008 Q b,c,c.

L CR brcrC P I.SV]

4c.~

3 HO Q CrC j.

~ 33 CU ~.C-y

<Cre, P.)2"Qf c c.

F 007)

ED BORC STRESS SPEED tRP)t)

STRESS" I ~

1800 lKSI) 2 ~ 2160 l 1208) tK51)

G ~

SERVICE DATA S8.200

4. c,c b.c,c.

F>>

CRACK DATA 1 ~

A-CR-OP 2 ~

A CR-05

." 6c c;--

r 1 1600 RPH) l IN ~ )

5 ~ 293

"'OVERSPEED) llN~),L 3>>TQJ.

168

.300-005 59,798.5

.1793"

.048 1 ~

OPER ~

TEMP ~ METAL,TEMP ~

HUB lDEG ~ F )

2 ~

ESTIMATED HAX DA/DT lIN/HR) 3.

ROTOR OPERATIIIG HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO TD t.c c I

5v 5

I I

l

~t/)

~~

Tt)

I, I

t

e 0

'I A

~

4 I

'7

A ~

UNIT 1)ENTIFI CATION 1 ~

BUILD)ING BLOCK

.24..UNIT 3 ~

CUSTOHER lt ~

LP s 5 ~ LOCATION IIICa..

7 ~

TEST N04 GINNA a)

ROCHESTER T D1.4) 9 9 II b,c,e lo t.L003010) 0023 I

80 GEE 1

GEN 5

LP TURBINE DISC INFORHATION 4r cia 8 ~

HAT 1 ~

IER.

tKSI)

~ lKSI)

ATION 2 ~

3 ~

0 ~

5 ~6r 7 ~

Br 9 ~

112 500 127 F 500 20 6

62 1

110 0

70 5

75 0

Y 5 ~

U ~ 7 ~ 5 ELONG R ~ A ~

FATT R ~ T ~

UKASE lDEG ~ F )

IHPACT)FT BULBS

)

IHPACT TENT lOEG ~ F)

IMPACT EN'FTrLB~

)

KIC t K ST +SORT t IN ~ ) )

70 '

10'.ST

-11 U ~ 5 ~

191 '3 ERIAL PROPERTIES tHUB)g c e, C ~

TYPE tHIN Y

5 C100 0$ tKSI) )

SUPPL

)lIOVALE HEPPQNSTALL HATER IAL PROPERTIES lRIH)

I ~

Y ~ 5 ~

l KSI )

2 ~

U ~ T ~ 5 ~

lKSI

)

3 ELONGATION 9 ~

R ~ A ~

5 ~ FA)T lOEG ~ F) 6 ~

RATE IHPACTlFT BULBS

)

7 ~

VASES IHPACT TEHPr tOEG F) 8 ~

VASES IHPACT EN'FT BULBS

)

94 U ~ 5 ~ KICtKSI+SORTtlN

) )

112 ~ 500 128 F 000 21 '

65 '

-110 0

79 '

-75 ~ 0 7% F 5 196 ~ 83 I

~ I (h

I l'II II 1 I ~

l

~

I ~

~ 1

,IIIj I ~

'r.

IHt'I ~

D ~

CHEHISTRY b,C,C b, c.e E"g' ED BORE STRESS SPEED lRPH) 'TRESS Lyte 5 I

}P~ C~ e

~ 29$

P 4)0]

.s b,i,c sB b.c,e 3

kc.e b.c,c-f.OOB gbee b~c~e b, c.

C J

F ~

CRACK DATA bc c HO cu b,chic.

3 t.

b.c,c

~ )2$

bp C~C

~ 008]

k.c.c.

~ll 14I'

~I lh I'I

~ ~

~ I 1 ~

1800 lKsl)

}

so.soo

}

g)60

! )208

)

lKSI)

L-58 ~

NOD G ~

SERVICE DATA 1 ~

Ol'ER ~

TEHP ~

HETAL TEHP HUB l BEG F )

2 ~

ESTIHATEO HAX OA/Of lIN/HR) 3.

ROTOR OPERATI)tG HOURS 4.

CALCULATED CRACK DEPTH 5 ~

CALCULATED A/Acr RATIO 178

.234-005 59,798.5

.1399"

.0409 Qc,c 1 ~

A-CR-OP l1800 RPH) lIN.)

2.

A-CR-OS.tovERSPEED) t IN'

)

41 4 ~

~ h

~ ~

41 14 I.

r

~ I

.hh 4444

...r'

~

0 I

~

~

L2. C;e P'o I :Lc sa)01002@

2 ~

UNIT X

EUET 'MERg""

4 ~ LPI 5 ~

LOCA ~ ION I

~ OISC-T TEXT MU GINNA

<<1 ROCHESTER GEE 1

GEN 6...

T05'355 f

j l ~ UNIT"-.:OENTIFICATION 1 ~

BUILDING BLOCK 80 LP TURB IN

~Ge B ~

HAT 1 ~

2 ~

3 ~

5 ~6.

7e 8 ~

9e 10

'lew E DISC INFORMATION ERIAL PROPERTIES (HUB)t C C, TYPE TB (HIN~

Y ~ 5 C 90 ~ 03 (KSI ) )

EPP NSTALL SUPPLIER.

HIOVALE H Y ~ 5 ~

(KSI)

U ~ 7 ~ S.

tKSI)

ELONGATION R ~ A ~

FATT tDEG.F)

R ~ 1 ~

IMPACT t F T ~ LB ~ l U ~ 5 IMPACT TEMP ~

tOEG ~ F)

VASES IMPACT ENG ~

'FALSE

)

UKASE KIC(KSI4SORT(IN ~ ) )

91 '00 109 500 24 '

69 '

-120 '

127e5 15 ~ 0 127 '

237 F 15 t KSI) 5 ~

(KSI

)

GATION le 2 ~

3e

, 4 ~

5 ~

6 ~

1 ~

YUSe U ~ 1 ~

ELON R ~ A ~

PATT R ~ T ~

0 '

(OEG F)

IMPACT(FELON

)

IMPACT TEHP ~

loEGUF)

IHPACT ENG ~

(FT LB ~ I KIC(KSI +SQRT (IN~ I )

8 ~

U ~ 5 9 ~

UKASE C ~

MATERIAL PROPERTIES (RIH) 4,C,C 91 F 000 110 F 000 24 '

11 ~ 5 120 '

139 '

0 ~ 0 139 ~ 0 24'4 L.c.c ff 0 ~

CHEHI'1 TRY

~

C criCre

~

1 f27 $

/rr Cr C C 3e 40)

ED BORE STRESS SPEED (RPH)

STRESS 1 ~

1800 (KSI) 2 2160 (1202 )

(KS1)

Ge SERVICE DATA

~ 34) br Cre.

3" 43 F 500 5 I b'e C t

.21) ss bee C

3 I.c.e-P-

4CC L.008$

k. C,C t:

3 4,C,C CR I

1 ~ 76$

fP Cre t:

3 F ~

CRACK DATA 1

A-CR-OP 2 ~

A-CR-OS 4,c;e L.45$

,b,c~

'c j b.c,t.

L F 14

b. c,e

~ 007 g CrrCr~

(1800 RPH)

(IN ~ )

t )OUI 7 1

(OVERSPEED) lIN ).....g 1 77$

1 ~

OPER ~

TEMP METAL TEMP ~

HUB (OEG F) 2 ~

ESTIMATED HAX DA/OT (IN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO 203

.429-005 59,798.5 zero 0/7.77 f

Q 0

ll, J

I

IO s

}.080101003

)

LP TURBINE DISC INFORMATION 80

..2 ~

UNI!

3 e CUS TONER:

!I ~

LP I 5 ~

LOCI I ION 6a OIS:I 7 ~

TE5)

NO ~

GINNA N)

ROCHESTER GEE 2

GOV 1

7020831 A ~ 'UNIT IDENTIFICATION 1 ~ BUI: DING BLOCK B.

MA 1

2 ~

3 ~

!I ~

5 ~

6o 7 ~

Bo 9o Y ~ 5 U ~ T ~ S ELONG R ~ A ~

FAIT R ~ T ~

UKASE IKSI )

~ lKSI)

ATION 108 F 000 127.000 20 '

60 '

-95 '

9!I ~ 0 75 0

IOEG.F )

IMPACTIF T ~ LB ~ )

IMPACT TENT IDES F)

IMPACT ENG IF'B ~

)

KIC IKSIJSQRTIIN ~ ))

10 'ASES I) ~

U.ST 9!I ~ 0 218 '3 TERI AL PROPERTIES lHUB)Lc ~

TYPE ArCrC'TC lHIN Y ~ 5 I 100 0 J IKSI

) )

SUPPLIER:

BE THLEHEH STEEL t.c c-Y Se U ~ I ~

ELON R ~ A ~

FATT RATE VASES

)o 2 ~

3 ~

4 ~

5 6 ~

7 ~

IKSI) 5 ~

IKSI )

GATION IOEG F )

IMPACTIFTeLB ~

)

IMPACT TEHP ~

IDES F)

IHPACT EN'F)&LB~

)

KICIKSI+SQRT(IN.) )

8 ~

U.ST 9o VASES C ~

HATERIAL PROPERTIES lRIH)

)0!I ~ SC 12 3 ~ So l 22 ~

68 ~

-95 o '.

9Q ~ L 75 a:)

9!I ~ 0 215 ~ '

6 c.e V~! -, '-

I lg-I

~

4M Mh

~acre 5 I P

~ 29 ]

I i)9 b,c.e C,

3 C,

STRESS b c c I KS I )

I 50~000 1 IKSI )

I 56 300/

e CHEMISTRY

>r I

&c~

I 3 ~ 7II) 1 E~

BORE STRESS SPEED lRPH) 1 ~ )830 2160,t)20$ )

G ~

SERVICE DATA I

I I ~

OPER ~ TENT HETAL,TENT HUB lOEG ~ F) 2 ~

ESTIMATED MAX OA/OT lIN/HR) 3.

ROTOR OPERATING'OURS 4.

CALCULATED CRACK DEPTH

~.-- 5.

CALCULATED A/Acr RATIO I

b,c.e 3

b.c.e p

f,c,c 010 b.c c C

3 CR b,C,C

() ~ 89 ]

b,c.c 3

HO f +50 Q cu yacc C

b c.c f +08 b.c,c

~ 0)2 J Qc.r 378

.1075-003 F

CRACK DATA

-b.c.c;

'[1.98 j

61,103.25 zero 0/4.98 1 ~

A-CR-OP I 1800 RPM)

I IN ~ )

2 ~

A CR 0$

IOVERSPEEO),

I IN+ I

0 0

J I

4,CrC ID 8

~

VO80101003 80 2 ~

UNIT CUS" )HER:

4 (PA 5.

LOCn(ION 6.'ISC)

TES:

NO ~

GINNA NI ROCHESTER GEE 2

GOV

.?....

T01 5001 A ~ UNIT"IDENTIFICATION I>> BUIL')INO BLOCK LP TURBINE DISC INFORHATION b~CrC

~

SUPPLIER.

MIOVALE H Y ~ 5 ~

(KSI )

U. T ~ S.

(KSI)

ELONGATION RE AD

'FATT (OEG.F)

RE 7 IMPACT(FT ~ LB UKASE IMPACT TEMP>>

(DEAF)

UKASE IMPACT E'NG ~

(FT>>LB'

)

VASES KIC(KSI~SQRT(IN ~ ) )

127 000 140 SOO 20 '

58 '

-75 0

67 0

75 0

3 ~

4 ~

5>>

6>>

8 ~

9>>

10'7 0

196 '5 11 ~

B HATERIAL PROPERTIES (HUB)gc ~,

1 ~

TYPE TO (MIN~ YES I

110 ' J (KSI))

2 EPPENSTALL C ~

HATERIAL PROPERTIES (RIM) k.c.c 1 ~

Y 5 ~

(KSI) 2 ~

U ~ T 5 ~

(KSI) 3 ~

ELONGATION 4 ~

R ~ A ~

5 ~

FATT (OEG F) 6 ~

RE 7 IMPACT(FT~ LB>>)

7 ~

VASES IMPACT TEMP ~

lOEG ~ F) 8 ~

U 5 ~

IMPACT ENG ~

(FT ~ LB>>)

9 ~

U ~ 5 ~

KIC(KSI45QRT(IN ~ ) )

129 'G 141 ~ OP:

19>>.

64>>'..

-75>> fi 67 '

75

~.

67>> ')

197 ~ 6.?

l.("e D ~

CHEMISTRY bC~

4 CG>>

4 C 0

': '213 f:

273 C

)7]

b>C~C A5 4r rC SB brEre C" "O' 3

t:

ED BORE STRESS 5)EED (RPH)"

STRESS 4,c.c I ~ 1;00 l KS I )

f 52.900 1

~ 2'0 l 120Y )

l XSI )

L 60 ~ OOOJ G ~

SERVICE DATA b'C '

~

%>>>>'.c;e, I

A-CROP l)800 RPM)

(IN

)

f 4.5) t 2

A-CR-05 lOVERSPEEO)

(IN>>),

L 3 ~ 42),

bc~

b.c,e

, kc.e PC HOr>Vr 5)l. 4'e AL 8 <PO cU 6' 5

&cc L

~

O

~

r.

S" t.-S-F ~

CRACK OAT A 1 ~

OPER ~

TEMP ~

HE 7AL TEMP ~

HUB (DEG,F )

2 ~

ESTIHATED HAX DA/DT (IN/HR) 3.

ROTOR OPERATIHG HOURS 4.

CALCULATED CRACK DEPTH

~

5.

CALCULATED A/Acr RATIO 274

.190-004 61,103.25 1.160"

.339

IO a:[0780)01003)

LP TURBINE DISC INFORMATION 2A.UNI1 3i CUS1'HER:

4 ~

LPA 5 ~ LOCI'ON ke.OI5( ~

7 ~

1ES)

No ~

GINNA 01 ROCHESTER GCE 2

GOV Toi4999 A ~

UNI 'I OE NTIFI CA TION 1 ~ BUIL IhG BLOCK 80 BE HAT Ia 2 ~

3 ~

4 ~

5 6 ~

zo Be 9e 10

'RIAL PROPERTIES (HUB)

TYPE (HIN~

YEAS+

C))0 ~ 0l (KSI)

SUPPLIER:

MIOVALE HEPP Y ~ 5 (KSI)

U ~ T ~ 5 ~ (KSI)

ELONGATION R ~ A ~

FAT1 (OEG F)

R ~ T ~

IMPACT t FT ~ LB ~ )

VASES IMPACT TEHP loEG ~ F)

UKASE IHPAC1 EN'FT LB

)

U ~ 5 ~ KIC(KSI4SQRT (IN ~ ) )

To

)

NSTALL 116 ~ 000 130.000 21 '

65 '

-1)5 0

70 '

75 '

70 5

193 72 (KSI) 5 (KSI

)

GAT ION

) ~ YES 2 ~

USTA 3 ~

ELON 4 ~

R ~ A ~

5 ~

PATT 6 ~

R ~ T ~

7 ~

VASES (DEAF)

IMPACT(FT ~

LB'

)

IMPACT TENT (DEAF)

IMPACT EN'FT BULBS

)

KIC(KSI~SQRT (IN.) )

8 ~

U ~ 5 9

UKASE C

MATERIAL PROPERTIES (RIH) 117 50(.

130 ~ Sol 21 ~ a 67 '

-115 '

74 ~ '

~ I 74' 200 '

0 ~

CHEMI '. TR Yt:"3 Mh SI P

.17 g SB 009 ]

SN CR58)

MO C "33 V

t

~ Ilg 8

BORE TRESS "SP EO'RPM) 'TRESS I ~

18 0

tKSI) 52 400 gl 0.,(1204),

lKSI )..

59 700 G ~ SERVI:E DATA

~

~

1 OPl:.R ~

TEHP ~

HETAL 'TEMP ~

HUB tOEG ~ F )

2 ~ E57IHATEO MAX OA/01 (IN/HR) 3.

ROTOR OPERATII(G HOURS 4.

CALCULATED CRACK DEPTH S.

CALCULATED A/Acr RATIO 223

.673-005 61,103.25

.4112"

.122 F ~

CRACK DATA 1 ~

A-CR-OP l 1800 RPH)

( IN+ )

I 4 ~ 471 2 ~

A-CR-05 lOVERSPEEO)

(IN L...[

3 ~ 36 J,

U)

(7)~

6c,c ID I: 0080101003 I ~

~ I I~

I ~

I ~

~I I ~

~ ~

'A ~ UNIT "IDENTIFICATION I ~ BUILDING BLOCK 2 ~

UNI T 3 ~

CUSTOHER:

It ~

LP I(

5 ~

LOC (TION 6,DISCI

TE.Ir-NO.

2 ~ SUPPLIER.

NIOVALE H

3s Y ~ So (Ksl

)

It+

U ~ 7 ~ So tKSI) 5 ELONGATION 6 ~

RE A 7

FAIT (OEG F) 8 ~

R ~ T ~

IHPACTtFT LB'

)

9 ~

UKASE INPACT TENT (DEAF) 10 ~

UKASE INPACT ENG ~

(FT ~ LB0) 1 1 ~

0 ~ 5 ~ KIC(KslosORT(IN ~ ))

GINNA V)

ROCHESTER GEE 2

GOV T015007 112 F 500 127 F 500 22 '

67 '

-105 0

BED TSAR 0

88 0

215'6 LP TURBINE DISC INFORHATION b.c.c.

8 ~ HATCRIAL PROPERTICS (HUB)Q c c, 80 1

TYPE g

g l

TC (t!IN~

Y ~ 5 ~

L)00 ~ 0J (KSI ) )

~

EPP NSTAI.L C ~

HA7ERIAL PROPERTIES (RIH) 4 c.c,

) ~

Y ~ 5 ~ t KSI) 2 ~

U ~ T ~ 5 ~ (Ksll 3 ~

ELONGATION It ~

R ~ A ~

5 PATT

<OEG F) 6 ~

RE 7~

INPACT(FTeLB ~

)

7 ~

UKASE IHPACT TENP ~

(DC')

8 ~

U ~ Sa IHPACT EN'FT LB ~

)

9 ~

U ~ 5 ~ KIC(KSI+SQRT (IN

) )

1) lt 0! 0 130 '00 21 0

67 3

-105 0

Te s

-50 0

76 5

200 ~

9 gy

~

bc,e IQ t (D

Q I I~

I~

0 ~

CHE)IISTRY C,"3 Nl bC.C,

$ 3ie g H N

'4CI C'

~ 28$

AS Q CC t:

3 Sl 4c<

~ 32 ]

SB Qr CrC p

6cc F 008 ]

su CR b,C;t-'""3 C "'1 biCrC CU 4 <C I:

3 t: j f.r.c Q,C C

~ 007]

E~

BORI STRESS

' ": PEED (RP)()

STRCSS 5,cc F ~

CRACK OAT A 1 ~

800 2.: leo

( IZOT )

t KSI)

(KSI) 58 200

>>I)

G ~

SER ICE DAT A

~II[

1 ~

PER~

7ENP ~

NE TAL TCt(P ~

HUB (DEG ~ F )

f ~I 2 ~

STIHATCD NAX OA/OT (IN/HR)

I 188

.300-005 b,c,c

) ~

A-CR OP

< 1800 RPN)

(IN ~ )

2 ~

A-CR-OS (OVCRSPCCO) t lttt)

Mj (Tt (Ttrt I;

t ~ I

~ gt'tl.l I.~,I fl

'H 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO 61,103.25

.103"

.040 1

4 I

~

~

b,c,c IO I: 00801010D 3

~e UNIT IDENTIFICATION 1 ~ BUILDING BLOCK 80 2~

UNI T 3 ~

CUS TONER:

4 ~ LPI 5 ~

LOCATION ka DISCS 7 ~

TEST N04 1

GlhNA 41 ROCHESTER GEE 2

GOV 5

1014991 LP

'IURBI 6.'c~c B4 t{A

) ~

NE'ISC INFORHATION IER.

(KSI

)

~

{KSI )

ATION 2 ~

34 4 ~

5 ~

6 ~

7 ~

8 ~

9 ~

Y 5 ~

U ~ I ~ 5 ELONG RE AD FATT R ~ T ~

U 5 ~

109 F 000

)Z).'OOO 23 2

es.4

-80 '

111 5

75 '

{DEAF)

IHPACT(FT ~ LB F 1 IHPACI TCHP4 (DEAF)

IHPACT CNG ~

(rT.LB.)

KIC(KSI+SQR I ( IN. ) 1 10 'KASE 114 U45 ~

111 5

240 '1 C ~ HAICRIAL PROPERTIES (RIH) 5 c.c 1 ~

20 3 ~

4 ~

5 ~e.

7 ~

8 ~

9 ~

I ~ 5 ~

('KSI 1 U ~ I ~ 5 ~

(KSI

)

ELONGATION R ~ A rATT (OEG.F 1

R ~ I ~

IHPACT(FELON

)

UKASE

)HPACT IEHP ~

(OEG ~ F )

U ~ 5 IHPACT EN'r T ~ LB ~ 1 U.S.

XIC(KSI +SORT (IN~ )

1 0 ~

CHCHI5 RY t."" 3 t:

I '"'3 E ~. BORE 5" RESS

~

SPE( 0 (RPH)

STRESS 14 180(

(KSI)

.gp,g)6(

(1204)

(KSI) b4C4C SI 4r C C

.ze g t

.zs ]

AS

&gCPA SB b4 J

g,wc 50 500 bc,c L

F 008 ]

bc,c C.

t 1 ~ 76j 4c~~

t' HO t CC'

.44]

cU b~c~o

&c,e P.lz ]b,cc P.Oo7 $

F.

CRACK DATA 1.

A-CR-OP (1800 RPH)

{IN~ )

2 ~

A CR OS (OVCRSPCEOI

( IN4),

'7 ~ 67 TERIAL PROPERTICS (HUB) Lc-g TYPE vier~ IC (HIN~

Y 54 L 100 ~ 09 (KSI) )

SUPPL HIOVALE HEPPENSIALL 112 F 00(

125 50{

24 ~ C 67 '

-80 96 ~ {

-50 ~ I 96 ~ {

225 ~ 0(

b"c' Q c.e

~ 4

.IIB L,1

{I

~ 4

'..i.

~

~IIII

~ I ~

~ ~ I L.I

~ I

.'j

~ 'I III I ~'I I;i

.' Ii I ~ II I

~I

' I I4, I~

G ~

SCRVIC(

DATA I ~

OPEI

~ TENT HCTAL TCHP ~

HUB (DEAF) 2 ~

CSI HATED HAX OA/O'I (IN/HR) 3.

ROTOR OPERATI)(G HOURS 4.

CALCULATED CRACK OEPTii

--" 5.

CALCULATED A/Acr RATIO 178

.234-005 61,103.25

.143"

.025 b,c,{'

~

14 1I 1I 1 ~ I

4 I I 4

b,c,e IO A :L0080101003

'A ~ UNIT IDENTIFICATION 1 ~ BUILDING BLOCK 80 2 ~

UNIT CU>TOIIER>

4 ~

LPs 5 ~ LOCATION

~

6 ~ DISCI 7

FEST NO GINNA tt 1 ROCHESTER GEE 2

GOV 6

7014989'P TURBINE DISC INFORHATION b,c,c 8 ~

HATERI AL PROPERTIES (HUB)f C C 1

TYPE TB (HIN~

Y ~ 5 ~

C 90 ~ Q3 (KSI ) )

2 SUPPLIER:

t(IDVALE HEPPEt(STALL 98 F 500 113 500 23 0

66 ~ 2

-105 '

96 '

75 '

3 ~

4o 5 ~

6 ~

7o 8 ~

9 ~

Y ~ 5 ~

(KSI )

U ~ T 5 ~ (KSI)

ELONGATION R ~ A ~

FATT (OEG F)

R.T. IHPACT(FT.LB.)

UKASE IHPACT TEHP ~

(OEG F)

VASES IHPACT EN'FT

~ LBo)

U ~ 5 ~ KIC(KSIQSQRT(IN ~ ) )

96 '

211 '9 10 '

~ HATERIAL PROPERTIES (RIH) 5 C,C.

YES Uol ~ 5 ELONG R.AD FATT R ~ T ~

U 5

1 ~

2 o 3 ~

5o 6 ~

7 8 ~

U ~ 5 ~

9 ~

VASES (KSI)

~

(KSI)

ATION (DEG F)

IHPACT (F'(.LB ~

)

IHPACT TENT lOEG ~ F)

IHPACT EN'FALSE

)

KIC(KSI+SQRT(IN ~ ) )

P

LCe,

~ 010 Q SN

b. C'.C CR

&/Crc' 1o74j IP.C,,e F ~

CRACK DATA f,c>c

~ 45 )

CU

~r<iC k,c,c.

12 ]

b,c',c.

~ 008j 1 ~

A-CR "OP l 1800 RPH)

( IN

)

8 ~ 043 2

A-CR-OS (OVERSPEEO) lIN~ )

6o)2 J bc'c g c'c Gc'

"'"t""3 C "3 "t

,I b,c,c-As b c,c.

58 bc,e t: "'"3 E

3 I 3

E ~

BORE F (RESS SP),0 (RPH)

STRESS L pc 1 ~

18(> 3 (KSI

)

43 F 500 2 ~ 2161 l120't) lKSI) 49 ~ 500 95 F 000 111 F 000 24 ~ I ~

72 ~..

105 ~

l'05

~ !>

-75 '

105 ~ !i 218 F 76 gQC 9':

t'

~

SERVII i DATA 1 o OPL.)o TEHP ~

HETAL TEHP HUB lOEG F )

2 ~

EST (HATED HAX OA/OT (IN/HR) 3.

ROTOR OPERATII(G HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO 203

.429-005 61,103.25 zero 0/6. 12

~Cpc lo>

(I

~> ~

1 1I J

(X)

C) 4,c,(

ID I<:$0080)01004

<0 I ~

2 ~. UNIT 3 ~

CUSTOHE'R.

<< ~

LP<<

So LOCATION

.6~.DISCI Ta TEST NO ~

GINNA

<<1 ROCHESTER T037<<9 i" UNIT IDENTIFICATION I ~

BUILDING BLOCK 80 GEE 2

GEN 1

LP TURBINE DISC INFORMATION

~CPM 8 ~

HA I ~

2 ~

3 ~

<< ~

5 6 ~

7 ~

8 ~

9o Y

5 ~

U ~ T 5

ELONG R ~ A ~

FATT RE I 0'o 103 ~ 000 117 F 000 22 '

65 '

-120 ~ 0 90 '

75 '

(KSI)

~

(KSI )

ATION (OEG F)

IMPACTtFT ~ LB

)

IMPACT TEMP ~

(DEAF)

IMPACT EN'FT BULBS

)

KIC(KSI+SQRT(IN

) )

90 '

209 '<<

10 'ASES

]I~

UKASE TERIAL PROPERTIES (HUB)g TYPE

~/Ci& TB (HIN~

YeS ~

L 90 ~ OJ (KSI))

SUPPLIER:

MIOVALE MEPPENSTALL

) ~

2 ~

<< ~

5 6 ~

7 ~

8 ~

9o Y ~ 5 ~

(KSI

)

U ~ I ~ 5 ~ lKSI)

ELONGAT ION R ~ A ~

FA)T (OEGeF)

RATE IMPACT(FT BULBS

)

0' 'MPACT TEMP ~

lOEG ~ F)

VASES IMPACT EN'FALSE

)

U.S ~

KIC(KSIiSQRT(IN.) )

C ~

MATERIAL PROPERTIES 1 RIH) bc,e, 98 'C(

115.0C<

23 ~:

70 ~.

-120 ~ l 88 ~ I

-75 ~ l 88 ~ I 201 ~

7',c e

1

<1

'. ~

l4 I~

DE CHEHISTRY v~c~

f.Zsg C '"'3 C

EY BORE

~ STRESS S't'EEO tRPH)

STRESS 1 ~

1600 (KSI)

.gg. 2 60 (120%)

(KSI)

HN fpc+

~ 32]

f

~ 29 AS ~iC~

58 bc,c 50 ~ 000 kc,e j

b.c.<):

'3 p

bc(-

~ 009 g SN k t 3'R b+i C Ho

b. C~C C 1.73(

b,c~c cU b c~c C

3

't, F ~

CRACK DATA 1 ~ A-CR-OP l 1800 RPH)

(IN

)

Ze A-CR-OS (OVERSPEEO)

(IN' V

b>Ci<

~ 15 b.c,e

~ 009/

-gee 5 83 G ~

SERV..CE DATA f

1 ~

Ol'ER ~

TEMP ~

HETAl, TEHP ~

HUB lOEG F )

2 ~

E:sTIHATEO HAX DA/DT (IN/HR) 3.

ROTOR OPERATIHG HOURS 4.

CALCULATED CRACK DEPTH

- - 5.

CALCULATED A/Acr RATIO 378

.1075-003 61,103.25 zero 0/4.52 kc,e.

< ~

4

~ ~

)

,1,.

I i 1

k,c,c, IO

- 0080101004 2<<

UNIT i

CUSTOHER'

~

LP<<

5 ~

LOCATION 6<<DISC<<

I TE ST" NO ~

GINNA <<)

ROCHESTER GEE 2

GEN

...?...

T015000 "

II UNTl IOENTTFICATION

~

I ~ BUILDING BLOCK 80 TERIAL PROPERTIES (HUB)gag lYPE TO (HIN~

Y Sa Q 110 OQ(KSI) )

EPPENSTALL BE HA 1 ~

SUPPLIER.

HIOV ALE H

Yes

~

(KSI

)

U ~ T ~ 5 ~

(KSI

)

ELONGATION R ~ A ~

FATT (DEG Fl RABID IHPACT(FT KALB

~)

UKASE IHPACT TEHP ~

(DEAF)

U ~ 5 ~

IHPACT EN'FALSE )

U ~ 5 ~ KIC(KSI+SQRT(IN ~ ) )

2 ~

3 ~

4 ~

5 ~

6 ~

"'7 ~

Si 9 ~

122 500 134 F 000 19 '

60 F 6 82+5 8'

75 '

80 '

213 '4 10 ~

LP TURBINE DISC It(FORHATION L<<~ c~c.

1 ~

2 ~

3 ~

4 ~

5 ~

eo 7 ~

8 9 ~

Y ~ 5 ~

(KSI)

U ~ T 5 ~

(KSI )

E L OtIGA 7 I ON Ri<< ~

FAIT (DEAF)

R ~ T ~

IHPAC'l(FALSE

)

U ~ 5 ~

IHPACT TEHP ~

(OEG ~ F l UKASE IHPACT ERG'FALSE

)

U ~ 5 ~ KIC(KSI<SQRT {IN~ ) )

C HATERIAL PROPERTIES (R IH) 6,c,~

119 SOI 132 00:

2) ~

ee.;

82

'6'

~

86 ~:

218 ~ 6 6,c,e 0 ~ CHEHISTRY t""3

.I ~<a Q

4 )'07$

HN ~i i 5I kC/~

C

~ 27$

Q 17$

AS ~ C>+

SS p

lr,c,e.

~ Ol op SN 4<<CpC CR

~act C Q

1 i74$

b,cc tl~c~c v

6 4g 45 cu bee s

b c'c

~ 008$

Ea BOR 1 ~

2 ~

G ~

SER Ii 2 ~

E STRESS SPEED (RPH)" 'TRESS Lc~

1 i)00 (KSI) f 52 ~ 900 l z(eo t)zai)

(Ksl)

L eo.ooog

)'CE DATA

( 'ER ~

TEHP ~

HETAL TEHP ~

HUB (OEG ~ F )

I jTIHATED HAX OA/DT (IN/HR) 274

.190-004 4,c.c F ~

CRACK DATA 1 ~ A-CR-OP 2 ~ A-CR-05

~

5

~

~

@CpCr (1800 RPH)

(IN

)

f s.4o l (OVERSPEED)

(IN<<)

. L 4 ~ I)J 3.

ROTOR OPERATft(G HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO 61,103. 25 1.160"

.282

i T=

h.c,c V )] t,080101004/

LP TURBINE DISC INFORHATION b,C'r C ERIAL PROPERTIES

)HUB)$ C,~

TYPE s

w

'O (HIN~

Y ~ 5 ~

I 110 0 J

<KSI

) )

SUPPLIER-HIOVALE HEPPENSTALL BE HAT 1 ~

C ~

HATER IAL PROPERTIES (RIH)

A ~ UNIT IDENTIFICATION I ~

BUILDING BLOCK 80 k,,c,c 2 ~..UNIT 3 ~

CUSTOHERt 4 ~ LPi 5 ~

LOCATION 6a DISCN 7 ~

TEST No+

GINNA sl ROCHESTER 2 ~

3 ~

4 ~

5 ~

6 ~

7 ~

Ba 9 ~

GCE 2

GEN 3

Y ~ 5 Vie 5 ELONG R ~ A ~

FATT R ~ T ~

UKASE (KSI)

~

(KSI )

ATION

{KSI) 5 ~

IKSI)

GAT10N Y ~ 5 ~

U ~ 7 ~

E).ON R ~ A ~

FAT)

RATE VASES 116 F 000 131

~ OOC 21 '

67 '

110 AC 69 AC

-75 AC 1 ~

2 ~

3 ~

4 ~

5 ~

6 ~

7 ~

115 ~ 000 129.500 20 4

63 as

-110 '

72 as 75 '

(OEG ~ F )

IHPACT(F7

'B'

)

1HPACT TENT (DEAF)

IHPACT ENG ~

(F I ~ LB ~ )

KIC(KSICSORT(IN+) )

T014998 (DEAF)

]HPACT{FT ~ IB ~

)

IHPACT TEHP ~

(DEAF)

IHPACT EN'FT

~ LB ~

)

KIC(KSI+SORT(IN ~ ) )

69 ~ I 72 as 8 ~

U ~ 5 ~

9 ~

VASES 10 U ~ 5 ~

II~

U ~ Se 191 '6 195 '1 I

I I

, b,c.c, 6 '3l b c.e HN L,Ci~

SI ~.,C

~ 24 ]

f o)7)

AS kCC SB 5 cC t-1':

t,c r.

) KSI)

I 52 400 1

(Ks I )

P 59 700$

f,c,c

~ 11 Q,c,c t

~ 011$

p Qc 8'R 4,crc f

.oo9j

$ 1.58]

SN t

t t

DE CHEHISTRY C

t-..25)

.NI Q~ C/g, f 3 ~ 40]

F ~

CRACK DATA E

SORE STRESS y

SPEED lRPH)

'Q;c,e STRESS 1 ~

1800 2<..2160..(120' 1 ~

A-CR-OP

)1800 RPH)

(IN'

)

f 4.sa 1

2 ~

A-CR-OS (OVERSPEED)

(IN+)

P 3'4/

b.c c, 1

N

't

+.c

.~4'.,

q q4 G ~

SERVICE DATA

~

)

I ~

OPER ~

TENPIN HETAL,TEHP ~

HUB (OCG F) 2 ~

ESTIHATED HAX OA/OT (IN/HR) 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Ac)

RATIO 223

.673-005 61,103.25

.4112"

.1195

~

L~

~

~ ~

~

)

C) 2 ~

UNIT 3,

CUST>>ltE>>t 4 ~

LPA 5 ~

LOCA7ION 6, OI SCA 7 ~

TEST'NO ~

GINMA al ROCHESTER GCC 2

GEN 4

'701.5004'),

~e UNIT" YOENTIFICA'IION I ~ BUIL(.ING BLOCK 80 3 ~

4 ~

5 ~6.

7 ~

8 ~

9 ~

10 ~

11 ~

Y ~ 5 ~

(KSI

)

U ~ T ~ 5 ~

(KSI

)

ELONGATION R ~ A ~

FAIT (OEG.F)

R 7 ~

IHPACT (F7 LB ~ )

UK'HPACT TENT (OEG F)

Uese IHPACT ENG ~

(FT BULBS

)

U ~ 5 ~ KI C(KSIOSQRT(IN>>) )

110 F 000 122 500 21 '

67 0

80 ~ 0 86 '

75 '

86 '

210 ~ 42 LP TURB INC OISC INFORMATION Cp Ce O'TERI L PR0PERTlcs (HUB)J cC C ~

I e TYPE TC (HIM~

Y ~ Se CIOO ~ OJ (KSI) )

2 SUPPLIER:

HIOVALE HEPPEMSTAL(. ~>+

HATERIAL PROPERTIES (RIH) 1 ~

Y ~ 5 ~

(KSI )

2 ~

U I 5 ~

(KSI) 3 ~

ELONGATION 4 ~

RE A Se FA(T (OEG ~ F) 6 R ~ I ~

IHPACT(FALSE

)

7 U.st IHPACT TENT (OEG>>F) 8 ~

UKASE IHPACT EN'FALSE

)

9 ~

U ~ 5 ~ KIC(KSI+SQRT(IN ~ ) )

107 ~ SO(

118 SOC 22 I 68

'80 C 86>>C 75 '

86 ~ C 208>>l'1

,bc..e l

0 ~

CHEHISTRY c

f e'2TQ NI kw CiC "t

31 38$

f ED BORE STRESS SPECO (RPH)

STRESS HN S,CjC'l

&,( C' 30$

t

~ 18$

.s L,~C.

sB b<.~

C b,c.(.

6,C.'(

c R 4<id

~ 008)

Q I 72]

SM C

3 E

j F ~

CRACK OATA

, bee, bee 45 j Q'>>12$

cu

+i( C 5

&cN

>>009$

gC W t

  • j>>

I ~

1800 2>>

2160 (1201 )

G.

SERVICE OATA (KSI) t KSI) 49 '00 b,c,~

I ~

A-CR-OP (1800 RPH)

( IN ~ )

l 6>>01 2

A-CR-05 (OVERSPCEO), (INe), L 4 ~ 26 J

't I ~

OPERe ICHP ~

HE'TAL TCHP>>

HUB tOEG ~ F)

I-2 ~

ESTIHATEO HAX OAIOT (IN/HR) 3.

ROTOR OPERATING HOURS

"~ +I'.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO

~,

188

.300-005 61,103.25

. 183"

.0429

h Jl l~ I I I

U

h,c,<

Io N

)

3080101004 l4

~I I ~

le 80 24..UN. t 3."CU.". <ONER) 4 ~

LPI.

5 ~ LOL'7ION

.6'. DI:.IS 7 ~ TE"I NO ~

GINNA N 1 ROCHESTER GEE 2

GEN 5

7014993 A ~ UNI" IDENTIFICATION I ~

BU DING BLOCK LP TURBI brCr G NE DISC IttFORHAT ION 8 ~

HA 1 ~

2 ~

3 ~

4 ~

5 ~

6 ~

7 ~

8 ~

9 ~

118 000 137 F 000 19 '

57 '

-97.5 65.0 75 '

Y ~ 5 ~

(KSI )

U I ~ 5 ~

(KSI)

ELONGATION R ~ A ~

FAIT (DEAF)

RE 7 IMPACT(FALSE

)

Ues ~

IHPACT TEHP ~

<DEAF)

UKASE IMPACT EN'FALSE

)

Ues ~

KIC

<KSI +SORT t IN ~ ) )

65 '

186'3 lo ~

llew TERI AL PROPERTIES

<HUB)$ (r<r TYPE TC

<HINe Yes ~

L)00.0 J <KSI) )

SUP)'LIER)

HIOVALE, HEPPENSTALL C g 1 ~

2 ~

3 4 ~

5 ~

6 ~

7 ~

8 ~

9 ~

Y ~ 5 ~

<KSI)

U ~ T ~ 5 ~

<KSI

)

ELONGATION RE AD FAIT

<OEG.F)

R ~ T ~

IHPACT<FT ~ LB ~

)

U 5 ~

IMPACT TENT

<OEGeF)

U ~ 5 ~

IMPACT EN'FT BULBS

)

U 5 ~ KIC

<KSIVSQRT<IN~ l )

C ~

HATERIAL PROPERTIES

<RIH) 121 ~. 30 138.

00 2(

~ 5 6 II( ~ 1

-9:

~ 5 58 '

-5<) ~ 0 58.5 178 '6

<B L,c,c 0 ~

CHEMISTRY bee r

I(N ST L"3 C."3 E.

'I NI

~rCr C AS

~iCr G SS T

t 3.23)

Ie E ~

BORE STRES5 5PEED '(RPH)

STRESS QCre 1 ~

1800

<xsl)

I 50.5001

>>..2, 216o.<lyons)

<Ksl)

L 58'.400)

I~

G ~

SERVICE DATA le I

1 ~

OPER ~

TEMP ~

METAL TEMP ~

HUB (DEGeF )

"I 2 ~

ESTIMATED HAX OA/OT

< IN/HR)

I ~ I 3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH

- 5.

CALCULATED A/Acr RATIO II' II-r I

II' le-(

l,c,e

~ 008 g St<

~J

, bc,e.

178

.234-005 61,103.25

.143"

.044 CR kgCg C f ).66$

b,C.G C

3 HO CU 6c,c 4 g b,ce bc,e Q.12 krrC 4

~ 008)

F ~

CRACK DATA

". L~.e 4'8 1 ~

A-CR-OP t)800 RPH)

<IN

)

2, A-CR-05 t OVERSPEED)

< IN ~ I

Ct)

CO h,(.-,e.

ID 8

)

0 080101004 4

NE DISC INFORHATION LP TURB I

~c~c A'2 UNIT IOCNT IFI CATI ON 8 ~

HA I o BOIL)ING BLOCK 80 li 2 ~ UNIT 3e"CUSTJHER:

4 ~

LPA 5 ~

LOCATION 6 ~

OISCA 7

'TEST NOI GINNA 41 ROCHESTER GEE 2

GEN 6

T032484 2 ~

3 ~

4 ~

5 ~

6 ~

7 ~

8 ~

9 ~

10I 11

'CRIAL PROPERTIES (HUB)gg p TYPE I

w

~~

TD (HIN ~

Y ~ 5 ~

1 110 ~ 0 J(XSI) )

SUPPL ICR:

HIDVALC HCPPENSTALL Y ~ 5 ~

(KS I )

U I ~ 5 ~

tKSI )

ELONGATION R ~ A ~

FAIT (DEG F)

RoT ~

IHPACT(FT LB'

)

UeS ~

IHPACT TEKP ~

(OEG F)

VASES IHPACT ENG ~

(FOLDS

)

U ~ 5 ~ KIC(KSI4SORT ( IN

) )

111.000 126 F 000 23,4 69 7

-120 '

100iD 75 0

100 '

228'5 c,(

) ~

2 ~

3 ~

4 ~

5 ~

6 ~Ti Y ~ 5 Ui) ~

ELON RE Ai FATT RE I VASES tKSI) 5, (KSI )

GAT ION (OEG F)

IHPACT(FTsLB ~

)

IHPACT TENPIN tOEG ~ F)

IHPACT EN'FOLDS

)

KIC(KSI +SORT (IN~ ) )

8 ~ U.S 9o 0 '

CQ HATCRIAL PROPERTICS (RIH) 115 ~ DOC 129 ~ 50C 22 '

68 '

120.0 96 AC

-50 '

96 '

227 F 80 n

g 4 c.e 4 ~+~

Sr kC (-

t

~ 28 1 Q

~02$

&C C SB

&CC I:

j I,c.e.

l hl

.~

t 3 ~ 5

~

ED BORE STRESS

,I

'SPEED (RPH) 1 1800 II 2 ~ 2160 (IZOZ)

(KSI)

(KSI) 49 F 500 0 ~

CHEHISTRY C

m,t:A'.

f e26 g bc@,

3g STRESS bc.e 007 )

t:

bee

, l,ce I'.87j b,c c.cu b c,e r.

F.

CRACK DATA 1 ~ A-CR-OP (1800 RPH)

(IN

)

2 ~

A-CR-OS tOVERSPCED) lIth.)

b,c.c.

F 14 5~c~(

1006 g 9 ~ 46 ji 'I ll G ~

SERVICE DATA

~l

~ 0

~;ll 1 ~

OPER TCHP ~

HETAL TCHP ~

HUB tOEG F) 2 ~

E 5 TIHATED HAX DA/DI (IN/HR )

3.

ROTOR OPERATING HOURS 4.

CALCULATED CRACK DEPTH 5.

CALCULATED A/Acr RATIO 203

.429-005 61,103.2S zero 0/7.22 1

(<<j t4l

~

"March 19, 1980 A

achment A

Appendix Sheet 1

Appendix II

r>

y

<p+i PtAi March 19, 1980 Att hments A

Appends.. II Sheet 2

CHART I TYPICAL 1977 BIOWDOWN CHEMISTRY RESULTS 0.4-0.7pMHOS 1.5-3.5pMHOS

(-)0.15-0.05ppm

< 0.05"0.10ppm 7-15ppm 8.6"9.1 PARAMETER Cation Conductivity Conductivity Free Hydroxide Chloride Sodium Ph WESTINGHOUSE CONTROL

< 2.0pMHOS None

.15ppm None None 8.5-9.2 CHART II CONDENSER COOLING WATER CHEMISTRY PARAMETER PH Total Hardness Alkalinity Silica Sodium Sulfate Sodium Calcium Magnesium Chlorides Total Solids Total Dissolved Solids Suspended Solids NOMlAL RANGE 7.5"9.0 100-175ppm 50-125ppm O.l-l.oppm 20-45ppm 10-25ppm 30-50ppm 5-10ppm 15-40ppm 150-250ppm 150"250ppm 5"20ppm

O.

)

'arch 19, 1980 Attachments A

Appendi lX Sheet 3

CHART III TYPICAI 1979 BLOWDOWN CHEHISTRY RESULTS 0, 15-0. 25pMHOS 1.2-1.8

(-)0.15-0.05ppm 0.005-0.015ppm 0.005-0.015ppm 8.5-9.0 PARAMETER Cation Conductivity Conductivity Free Hydroxide Chloride Sodium PH WESTINGHOUSE CONTROL

< 2.0pHHOS None

<.15ppm

<.15ppm

.10ppm 8.5-9.2

I I

II CO r4

, ~

II' 4

7 VI h'

~'+