ML17213B177
| ML17213B177 | |
| Person / Time | |
|---|---|
| Site: | Saint Lucie |
| Issue date: | 03/21/1983 |
| From: | FLORIDA POWER & LIGHT CO. |
| To: | |
| Shared Package | |
| ML17213B176 | List: |
| References | |
| NUDOCS 8303250103 | |
| Download: ML17213B177 (26) | |
Text
ATTACHMENT ANALYTICALJUSTIFICATION OF THE SEISMIC TEST ADEQUACY OF THE ST.
LUCIE UNIT 2 CPC AND NI MODULES IN THE RPS CABINET (SUPPLEMENT NO. I)
&8303880 0800038+
I
-asosai T
I PDR ADDPK RDR A
h A
TABLE OF CONTENTS I)
Discussion
~Pa e
~
~
~
~
~
~
3 II)
Governing Equation
~
~
~
~
~
~
~
~
~
~
0
~
~
~
4 III)
Procedure
~
~
~
~
~
~
~
5 IV)
Minimum Overtesting of the RPS Cabinet at Frequencies of 5 Hz and Higher (S'tep 1 of Procedure)
~
~
~
~
~
~
~
~
~
~
~
6 V)
Calculation of Minimum Overtest Factors (90%)
for the RPS Cabinet (Step 2 of Procedure)
VI)
NIRRSmc:
Tabulated and Plotted with NI TRSm (Steps 3 and 4 of Procedure)
~
~
~
~
~
~
~
12
~
~
~
~
~
~
~
~
~
~
1 1
DISCUSSION The original analytical justification of the CPC and NI modules used a
frequency-dependent derating method to correct the in-cabinet (RPS) response spectra (RRS for subject modules) for overtesting of the RPS cabinet.
The procedure was found not to be acceptable.
A second procedure was recommended, which is to derate the module RRS by a single factor (in each direction).
This single factor would be determined by comparing the RPS cabinet's RRS and TRS in the frequency of 5Hz and higher.
This range is sufficient due to the fact that all natural or resonant frequencies of the RPS cabinet are 7Hz and higher, as determined by testing.
Also, the use of the 2nd procedure incorporates a
10% penalty to account for possible non-linear behavior of the cabinet.
Included herein is the derivation of the governing
- equation, data processing and the results of using the 2nd procedure..
Only the NI module is discussed herein because the CPC module results, while based on the first justification, were acceptable from the significant margin shown.
The results herein show that the NI module is indeed uglified for seismic based u on the testin of this module and the RPS cabinet.
The original analytical justification contains addition detail such as descriptions of abbreviations, references,
,etc.,'which may be helpful in the review of this (herein) document.
GOVERNING E UATION r
This equation is used to evaluate the degree of overtesting experienced by the RPS cabinet.
90% of this overtesting is used to correct the in-cabinet response
- spectra, A 105 penalty is taken to account for possible non-linear behavior of the cabinet.
Cabinet overtest
= TRs~
+
)
c c
c Cabinet overtest factor RRS
)
RRS 90K of cabinet overtest factor
=
+ 0.9 (TRS
- RRS
)
RRS RRS
+ 0.9'. TBS
- 0.9..RRS c
+ 0.1 RRS c
c RRS c 0
9 TRS
~ 0.1 RRS
=
[0.9 c
+ O.l]
c
PROCEDURE j
1)
Find minimum value of (TRS) cabinet for all frequencies 5H and higher.
Do this for each of the four test axes.
Horizontal of F/8 test Vertical of F/B test Horizontal of S/S test Vertical of S/S test 2)
Use the governing equation (0.9 c
+ 0.1) for each of the above.axes to determine overtest factors (90/).
3)
Divide NI RRS by the 905 overtest factors (appropriate factors with appropriate axes) to obtain the corrected RRS (RRS
) for the NI.
4)
Plot RRS (obtained in Step 3) against the NI RRS (RRS
) to evaluate mc m
adequacy of NI.sei smi c qual ificati on.
Min'imum over'testing of RPS Cabinet at frequencies of 5Hz and higher (data circled)
I
- step 1 of procedure-
~
~
~
~
S ~
~
~
100 AMtt}lchtt Et)Y}hotthffttll CoM}'.httY l}lc.
F0%hi 092200 R
F.
5 P
O.
H 10 E
R PS Ca 4(e.a."
C L
R A
T I
0 N
TRS 7Rs.
1.0
- 2. 0 4, 0
'8. 0 1G 3
F R EQUENCY (Hx)
=-TRS VEBTLCht SSF (i
125 200 t/a
)00 I
AMtltlchN a:ttYlttottNKNT$ CoMt'httY fttc.
Fotter 092200
~
pfj E
S P
Q N
S E
io PP" Cn G(n~k
~Q C
0 l
0 I
~ $ L S
I fx:r c RRS A ~~c
- 2. 0 TRS 'f{ORIZONT T1
~
~
l6 F REAUENCY (Ilx) hL SIOE TO BID 63 l2S 200 fl~'/r
'I
I
~
1
+E
~l l
,s
.f
/
I 0
~
C CULATION OF MINIMUM OVERTEST FACTORS 90%
FOR RPS CABINET
- step 2 of procedure-1)
Min)mum RRS of cabinet.
(TRS Hor (F/B) 3.9 1.5 Vert (F/B) 3.5 1.3 Hor (S/S) 3.0 1.5 Vert (S/S) 3.1 1.3 2.60 at 8H2 2.69 at 5H2 2.0 at 6.3H2 2.4 at 5H2 2) 90% Overtest Factors Hor (F/B)
(0 9
(TRS
) + 0 1)
~RRS 0.9 (2 ~ 60)
+ 0.1
=
r 2.44 Vert (F/B)
=
0.9 (2.69)
+ 0.1
= 2.52 Hor (S/S)
=
0.9 (2.0)
+ O.l =
Vert (S/S)
=
0.9 (2.4)
+ 0.1
=
1.90 2.25
NIRRS (Tabulated and Plotted with NI TRS
)
- steps 3
8 4 of procedure-
)
ecalculated Data under arrows (RRS
)]
mc Fre Hz Note 1
~H-FB
(.)
- 2.44-Note 2
~Y-FB
( )-:2.52-Note 3
~H-S S
(
) :1.90 =
Note 4
~Y-S S
( )-:225-1.0 1.28 1.6 2.7 3.3 4.9 1.4 2.0 2.9 3.1 4.0 1.2 1.2 1.6 2.9 3.1 3.2 1.5 1.6 1.7 2.4 2.8 3.7 1.2 1.6 2.0 4.0 1.6 4.2 1.7 6.0 3.2 4.2 1.9 2.5 7.7 3.2 6.7 2.7 6.2 3.3 9.2 4.1 3.2 7.9 3.2 7.4 2.9 10.7 5.6 8.4 3.7 4.0 8.3 3.4 8.7 '.5 11.0 5.8 7.0 3.1 5.0 6.3 8.0 10.0 12.5 16.0 20.0 7.9 7.7 8.0 8.0 8.0 5.7 4.6 3.2 3.2 3.3 3.3 3.3 2.3 1.9 6.9 8.4 8.2 11.0 9.2 7.5 5.8 2.7 3.3 3.3 3.7 3.0 2.3 8,4 8.2 8.5 6.3 6.0 5.0 6.0 4,4 4.3 4.5 3.3 3.2 2.6 3.2 5.6 7.5 9,0 11.0 11.0 8.0 8.0 2.5 3.3 4.0 4.9 4.9 3.6 3.6 25.0 5.2 2.1 6.2 2.5 '.9 3.1 5.9 2.6 32.0
- 40. 0 4.6 3.7 1.9 1.5
'.0 4.2 2.0 1.7 4.5 4.4 2.4 2.3 5.8 4.8 2.6 2.1 NOTES.. (1)
RRS compos>te of Run 012, channels 4, 14, 16, 23 2)
RRS composite of Run f12, channels 3, 15, 17, 24 3)
RRS composite of Run 0'6, channels 2, 14, 16, 23 (4
RRS composite of Run P6, channels 3, 15, 17, 24
I C
V t'o I
100-i;:..'i'ut steat>
Ewv>novus'>>'c Coaa~p,Nr itic.
Fna& 09220O R
E 5
P 0
N 10 E
n C
C E
L E
R n
T 0
N 1.0 RUN Nf)ADER..
6 Cf fAHt VuMOCR..
- 2. 0 63 4,0
- 8. 0 16 F REQUENCY (Ilx)
TRS ff0'ZONTAL l.'BIAXIAL PAIR NO.
I IN-PHASE)
- 1. 0 X OF t
TIChL DhMPING 125 2aO=
H,+
Ho~ /g
100
> ii:
AMlRfCAtl EtlVINO14Mttits Cowl asir
)tran.
l no~ 0922fl0 I
P 0
N
.10 a
C C
R T
0 2,0 I.O Q, P 0,0
)6 32 63 Fn~ou~wcv f~tx)
)
RUg N~ "<DER..
12 TRB - HORIZONTAL (BIAXIAt...PAIR NO.
1 OUT-OF-PHASE)
BSE
- i. 0 X oF t
t Tt;hl. DAHPING 1 25
'200 ff Ho~.~la
j II A
~ ~ICAL EIIVIIIONMCtI IS COMI'AttY INC.
FOIIM 09220O R
E 5
P 0
N 10>>
E C
c E
T l
0
),0 RUN NUMBER..
12 r.l-fANNFl NtlWBEH.
63 T'r T ~At 4,0 16 32 F REauEwcY (Hx)
TRS - VEf<TICAL t.'BIAXIAL PArR NO; i aUT-OF-PHASE).SSE 125 200
/~at ~/8
100 o'hl.htl E>5VIIIO1 hl( pl 55 C55IVll'AtJI lite.
Foaal 092200 L J~ ~
J I~
E S
P 0
N 10 E
A'.
A C
C E
n T
I 0
N RUN NUMDER..
6
- 2. 0 4,0 o.o to 32 63 F 0 EG UEN CY tf1 x)
TBS YERrICAL (DIAXiAI PAiR ND.
1 lN-PjlASE)
.V S nr-mirrCAt thHI rNG 125 200
'YI+
~
gart
>is
~ '
~
Qf'V'
~
S
~ ~
I
~
I I
I
100
,e AMfltlCAN EtlvlllOtiMCHlS COMI'AllY tllC.
Fo'kM 092280 R
E 5
P Q
r<
10 E
4
~<.~~4 A
C C
E L
E R
T 1
0 N
1.0 RUN H~'MBEf<..
10 h
- 2. 0
- 8. 0 g, p 16 63 F R EQUENCY (Hx)
Tgg - HIRIZOHThL (BIhXIAL PAIR Ii[0.
2 IH-PlthSE)
SSE 1.8 g Ot--
'rir.sl DAHPIHG 125 200 p~ v
~ //or. >gz
~ ~
100 AM
.AN Eflviac>r>Mr@is CnMr ~we tric.
FnaM 092200 l~
<~~
..i
.I
. I~~l ff E
5 P
0 N
10 E
n C
C 0
1.0 RUN NUWBER..
24
- 4. 0
- 2. 0
- 8. 0 16
32 63 F REQVKNCY fllx)
TRS VERTICAL (BIAXIALPAIR NO.
2 OUT'OF-P}tASE) BSE
- 1. 0 X OF LHITICAL DAHPIHG 125 200 V~
Yerbs P~