ML16271A452

From kanterella
Jump to navigation Jump to search
WCAP-18107-NP, Revision 0, Analysis of Capsule V from the Exelon Generation Braidwood Unit 2 Reactor Vessel Radiation Surveillance Program.
ML16271A452
Person / Time
Site: Braidwood  Constellation icon.png
Issue date: 05/31/2016
From: Cronstrand P, Mays B
Westinghouse
To:
Office of Nuclear Reactor Regulation
References
BW160072 WCAP-18107-NP, Rev 0
Download: ML16271A452 (297)


Text

Westinghouse Non-Proprietary Class 3 WCAP-18107-NP May 2016 Revision 0 Analysis of Capsule V from the Exelon Generation Braidwood Unit 2 Reactor Vessel Radiation Surveillance Program

@Westinghouse

Westinghouse Non-Proprietary Class 3 WCAP-18107-NP Revision 0 Analysis of Capsule V from the Exelon Generation Braidwood Unit 2 Reactor Vessel Radiation Surveillance Program Benjamin E. Mays*

Materials Center of Excellence Peter C. Cronstrand*

Chemistry and Component Engineering - Sweden May2016 Reviewers: Elliot J. Long*

Materials Center of Excellence Arzu Alpan* .

Nuclear Operations and Radiation Analysis Approved: David B. Love*, Manager Materials Center of Excellence Laurent P. Houssay*, Manager

. Nuclear Operations and Radiation Analysis

  • Electronically approved records are authenticated in the electronic document management system.

Westinghouse Electric Company LLC 1000 Westinghouse Drive Cranberry Township, PA 16066, USA

© 2016 Westinghouse Electric Company LLC All Rights Reserved

Westinghouse Non-Proprietary Class 3 ii TABLE OF CONTENTS LIST OF TABLES ....................................................................................................................................... iii LIST OF FIGURES .................................................................................................................................... vi EXECUTIVE

SUMMARY

........................................................................................................................ viii 1

SUMMARY

OF RESULTS .......................................................................................................... 1-1 2 INTRODUCTION ........................................................................................................................ 2-1 3 BACKGROUND .......................................................................................................................... 3-1 4 DESCRIPTION OF PROGRAM .................................................................................................. 4-1 5 TESTING OF SPECIMENS FROM CAPSULE V ...................................................................... 5-1 5.1 OVERVIEW .................................................................................................................... 5-1 5.2 CHARPYV-NOTCH IMPACT TEST RESULTS ........................................................... 5-2 5.3 TENSILE TEST RESULTS ............................................................................................. 5-4 5.4 1/2T COMPACT TENSION SPECIMEN TESTS ........................................................... 5-4 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY ....................................................... 6-1

6.1 INTRODUCTION

........................................................................................................... 6-1 6.2 DISCRETE ORDINATES ANALYSIS ........................................................................... 6-2

. 6.3 NEUTRON DOSIMETRY .............................................................................................. 6-4 6.4 CALCULATIONAL UNCERTAINTIES ........................................................................ 6-5 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE ............................................................ 7-1 8 REFERENCES ............................................................................................................................. 8-1 APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS ............................................................................................. A-1 APPENDIX B LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS ...................... :............. B-1 APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD ........................................................ C-1 APPENDIX D BRAIDWOOD UNIT 2 UPPER-SHELF ENERGY EVALUATION ............................ 0-1 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 iii LIST OF TABLES Table 4-1 Chemical Composition (wt. %) of the Braidwood Unit 2 Reactor Vessel Surveillance Materials (Unirradiated) ................................................................................................... 4-3 Table 4-2 Heat Treatment History of the Braidwood Unit 2 Reactor Vessel Surveillance Materials ...

......................................................................................................................................... 4-4 Table 5-1 Charpy V-notch Data for the Braidwood Unit 2 Lower Shell Forging Irradiated to a Fluence of 3.73 x 1019 n/crrl (E > 1.0 MeV) (Tangential Orientation) ............................ 5-5 Table 5-2 Charpy V-notch Data for the Braidwood Unit 2 Lower Shell Forging Irradiated to a Fluence of3.73 x 1019 n/cm2 (E > 1.0 MeV) (Axial Orientation) .................................... 5-6 Table 5-3 Charpy V-notch Data for the Braidwood Unit 2 Surveillance Program Weld Material (Heat# 442011) Irradiated to a Fluence of 3.73 x 10 19 n/cm2 (E > 1.0 MeV) ................. 5-7 Table 5-4 Charpy V-notch Data for the Braidwood Unit 2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 3.73 x 10 19 n/cm2 (E > 1.0 MeV) ............................................ 5-8 Table 5-5 Instrumented Charpy Impact Test Results for the Braidwood Unit 2 Lower Shell Forging

[50Dl02/50C97]-l-1 Irradiated to a Fluence of 3.73 x 10 19 n/cm2 (E > 1.0 MeV)

(Tangential Orientation) ............................................................. ,..................................... 5-9 Table 5-6 Instrumented Charpy Impact Test Results for the Braidwood Unit 2 Lower Shell Forging

[50Dl02/50C97]-1-1 Irradiated to a Fluence of 3.73 x 1019 n/cm2 (E > 1.0 MeV)

(Axial Orientation) ......................................................................................................... 5-10 Table 5-7 Instrumented Charpy Impact Test Results for the Braidwood Unit 2 Surveillance Program Weld Material (Heat# 442011) Irradiated to a Fluence of 3.73 x 1019 n/cm2 (E > 1.0 MeV) .............................................................................................................................. 5-11 Table 5-8 Instrumented Charpy Impact Test Results for the Braidwood Unit 2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of3.73 x 10 19 n/cm2 (E > 1.0 MeV) ................ 5-12 Table 5-9 Effect of Irradiation to 3.73 x 1019 n/cm2 (E > 1.0 MeV) on the Charpy V-Notch Toughness Properties of the Braidwood Unit 2 Reactor Vessel Surveillance Capsule V Materials ................................................. ;...................................................................... 5-13 Table 5-10

  • Comparison of the Braidwood Unit 2 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper-Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions .................................................................................................. 5-14 Table 5-11 Tensile Properties of the Braidwood Unit 2 Capsule V Reactor Vessel Surveillance Materials Irradiated to 3.73 x 1019 n/cm2 (E > 1.0 MeV) .............................................. 5-15 Table 6-1. Calculated Fast Neutron Fluence Rate (E > 1.0 MeV) at the Surveillance Capsule Center at Core Midplane for Cycles 1-14 .................................................................................... 6-7 Table 6-2 Calculated Fast Neutron Fluence (E > 1.0 MeV) at the Surveillance Capsule Center at Core Midplane for Cycles 1-14 ........................................................................................ 6-8 Table 6-3 Calculated Iron Atom Displacement Rate at the Surveillance Capsule Center and at Core Midplane for Cycles 1-14 ................................................................................................ 6-9 Table 6-4 Calculated Iron Atom Displacements at the Surveillance Capsule Center at Core Midplane for Cycles 1-14 .............................................................................................. 6-10 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 iv Table 6-5 Calculated Azimuthal Variation of Maximum Fast Neutron Fluence Rates (E > 1.0 MeV) at the Reactor Vessel Clad/Base Metal Interface ........................................................... 6-11 Table 6-6 Calculated Azimuthal Variation of Maximum Fast Neutron Fluence (E > 1.0 MeV) at the Reactor Vessel Clad/Base Metal Interface ..................................................................... 6-12 Table 6-7 Calculated Azimuthal Variation of Maximum Iron Atom Displacement Rates at the Reactor Vessel Clad/Base Metal Interface ..................................................................... 6-13 Table 6-8 Calculated Azimuthal Variation of Maximum Iron Atom Displacements at the Reactor Vessel Clad/Base Metal Interface .................................................................................. 6-14 Table 6-9 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Braidwood Unit 2 ............................................................................................................................. 6-15 Table 6-10 Calculated Surveillance Capsule Lead Factors .............................................................. 6-15 Table 6-11 Calculated Maximum Fast Neutron Fluence (E > 1.0 MeV) at the Pressure Vessel Welds and Shells ....................................................................................................................... 6-16 Table 6-12 Calculated Maximum Iron Atom Displacements at the Pressure Vessel Welds and Shells

....................................................................................................................................... 6-17 Table 7-1 Surveillance Capsule Withdrawal Schedule .................................................................... 7-1 Table A-1 Nuclear Parameters Used in the Evaluation of Neutron Sensors .................................. A-11 TableA-2 Monthly Thermal Generation during the First 14 Fuel Cycles of the Braidwood Unit 2 Reactor .......................................................................................................................... A-12 Table A-3 Surveillance Capsules U, X, W, and V Fast Neutron Fluence Rates for Cj Calculation, Core Midplane Elevation .............................................................................................. A-16 TableA-4 Surveillance Capsules U, X, W, and V q Factors, Core Midplane Elevation .............. A-17 TableA-5 Measured Sensor Activities and Reaction Rates for Surveillance Capsule U .............. A-18 TableA-6 Measured Sensor Activities and Reaction Rates for Surveillance Capsule X .............. A-19 TableA-7 Measured Sensor Activities and Reaction Rates for Surveillance Capsule W .............. A-20 TableA-8 Measured Sensor Activities and Reaction Rates for Surveillance Capsule V ............... A-21 TableA-9 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule A ....... A-21 TableA:-10 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule B ....... A-22 Table A-11 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule C ....... A-22 Table A-12 Measured Sensor Activities *and Reaction Rates for Midplane EVND Capsule E ....... A-23 Table A-13 Measured Sensor Activities and Reaction Rates for Off-Midplane EVND Capsule D ........

...................................................................................................................................... A-23 Table A-14 Measured Sensor Activities and Reaction Rates for Off-Midplane EVND Capsule F .........

...................................................................................................................................... A-24 TableA-15 Least-Squares Evaluation of Dosimetry in Surveillance Capsule U (31.5° Azimuth, Core Midplane-Dual Capsule Holder) Cycle 1 Irradiation ................................................. A-25 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 v TableA-16 Least-Squares Evaluation of Dosimetry in Surveillance Capsule X (31.5° Azimuth, Core Midplane - Single Capsule Holder) Cycles 1 through Mid-Cycle Outage in Cycle 4 .A-26 Table A-17 Least-Squares Evaluation of Dosimetry in Surveillance Capsule W (31.5° Azimuth, Core Midplane- Single Capsule Holder) Cycles 1-7 Irradiation .......................................... A-27 Table A-18 Least-Squares Evaluation of Dosimetry in Surveillance Capsule V (29.0° Azimuth, Core Midplane-Dual Capsule Holder) Cycles 1-14 Irradiation .......................................... A-28 TableA-19 Least-Squares Evaluation of Dosimetry in EVND Capsule A (0.5° Azimuth, Core Midplane) Cycle 14 Irradiation ..................................................................................... A-29 Table A-20 Least-Squares Evaluation of Dosimetry in EVND Capsule B (14.5° Azimuth, Core Midplane) Cycle 14 Irradiation ..................................................................................... A-30 TableA-21 Least-Squares Evaluation of Dosimetry in EVND Capsule C (29.5° Azimuth, Core Midplane) Cycle 14 Irradiation ..................................................................................... A-31 Table A-22 Least-Squares Evaluation of Dosimetry in EVND Capsule E (44.5° Azimuth, Core Midplane) Cycle 14 Irradiation ..................................................................................... A-32 TableA-23 Least-Squares Evaluation of Dosimetry in EVND Capsule D (44.5° Azimuth, Top of Active Core) Cycle 14 Irradiation ................................................................................. A-33 Table A-24 Least-Squares Evaluation of Dosimetry in EVND Capsule F (44.5° Azimuth, Bottom of Active Core) Cycle 14 Irradiation................................................................................. A-34 TableA-25 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions - In-Vessel Surveillance Capsules .............................................. A-35 TableA-26 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions-Ex-Vessel Midplane Capsules .................................................. A-35 TableA-27 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions - Ex-Vessel Off-Midplane Capsules ........................................... A-35 TableA-28 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios - In-Vessel Surveillance Capsules ................................................................................................... A-36 TableA-29 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios - Ex-Vessel Midplane Capsules ........................................................................................................ A-36 TableA-30 Summary of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions-In-Vessel Surveillance Capsules and Ex-Vessel Midplane Capsules

...................................................................................................................................... A-37 TableA-31 Summary of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios - In-Vessel Surveillance Capsules and Ex-Vessel Midplane Capsules ............................................ A-3 7 Table C-1 Upper-Shelf Energy Values (ft-lb) Fixed in CVGRAPH ................................................ C-1 Table D-1 Braidwood Unit 2 Pressure Vessel 1/4T Fast Neutron Fluence Calculation ................... D-2 TableD-2 Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 57 EFPY ....................... D-4 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 vi LIST OF FIGURES Figure 4-1 Arrangement of Surveillance Capsules in the Braidwood Unit 2 Reactor Vessel ........... 4-5 Figure 4-2 Capsule V Diagram Showing the Location of Specimens, Thermal Monitors, and Dosimeters ................................................................................................................ 4-6 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-1-1 (Tangential Orientation) ............................ 5-16 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-1-1 (Tangential Orientation) ............................ 5-18 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-1-1 (Tangential Orientation) ............................ 5-20 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-l-1 (Axial Orientation) .................................... 5-22 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-1-1 (Axial Orientation) .................................... 5-24 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-1-1 (Axial Orientation) .................................... 5-26 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) .................................................. 5-28 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) .................................................. 5-30 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) .................................................. 5-32 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 2 Reactor Vessel Heat-Affected Zone Material ......................................................................................... 5-34 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 2 Reactor Vessel Heat-Affected Zone Material ......................................................................................... 5-36 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 2 Reactor Vessel Heat-Affected Zone Material ......................................................................................... 5-38 Figure 5-13 Charpy Impact Specimen Fracture Surfaces for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50Dl02/50C97]-1-1 (Tangential Orientation) ....................................... 5-40 Figure 5-14 Charpy Impact Specimen Fracture Surfaces for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50Dl 02/50C97]-l ... 1 (Axial Orientation) ............................................... 5-41 Figure 5-15 Charpy Impact Specimen Fracture Surfaces for the Braidwood Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) .................................................. 5-42 Figure 5-16 Charpy Impact Specimen Fracture Surfaces for the Braidwood Unit 2 Reactor Vessel Heat-Affected Zone Material ......................................................................................... 5-43 Figure 5-17 Tensile Properties for Braidwood Unit 2 Reactor Vessel Lower Shell Forging

[50Dl02/50C97]-1-l (Tangential Orientation) .............................................................. 5-44 Figure 5-18 Tensile Properties for Braidwood Unit 2 Reactor Vessel Lower Shell Forging

[50Dl02/50C97]-l-1 (Axial Orientation) ...................................................................... 5-45 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 vii Figure 5-19 Tensile Properties for the Braidwood Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat # 442011) ............................................................................................... 5-46 Figure 5-20 Fractured Tensile Specimens from Braidwood Unit 2 Reactor Vessel Lower Shell Forging

[50D102/50C97]-1-1 (Tangential Orientation) .............................................................. 5-47 Figure 5-21 Fractured Tensile Specimens from Braidwood Unit 2 Reactor Vessel Lower Shell Forging

[50D102/50C97]-1-1 (Axial Orientation) ...................................................................... 5-48 Figure 5-22 Fractured Tensile Specimens from the Braidwood Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) ....................................................................... 5-49 Figure 5-23 Engineering Stress-Strain Curves for Braidwood Unit 2 Lower Shell Forging

[50D102/50C97]-l-l Tensile Specimens FL4 and FL5 (Tangential Orientation) ......... 5-50 Figure 5-24 Engineering Stress-Strain Curve for Braidwood Unit 2 Lower Shell Forging

[50D102/50C97]-1-1 Tensile Specimen FL6 (Tangential Orientation) ......................... 5-51 Figure 5-25 Engineering Stress-Strain Curves for Braidwood Unit 2 Lower Shell Forging

[50D102/50C97]-1-1 Tensile Specimens FT4 and FT5 (Axial Orientation) .................. 5-52 Figure 5-26 Engineering Stress-Strain Curve for Braidwood Unit 2 Lower Shell Forging

[50D102/50C97]-1-1 Tensile Specimen FT6 (Axial Orientation) ................................. 5-53 Figure 5-27 Engineering Stress-Strain Curves for Braidwood Unit 2 Surveillance Weld Material Tensile Specimens FW4 and FW5 ................................................................................. 5-54 Figure 5-28 Engineering Stress-Strain Curve for Braidwood Unit 2 Surveillance Weld Material Tensile Specimen FW6 .................................................................................................. 5-55 Figure 6-1 Braidwood Unit 2 r,e Reactor Geometry Plan View at the Core Midplane without Surveillance Capsules and 12.5° Neutron Pad Configuration ....................................... 6-18 Figure 6-2 Braidwood Unit 2 r,e Reactor Geometry Plan View at the Core Midplane with a Single Capsule Holder and 20.0° Neutron Pad Configuration .................................................. 6-19 Figure 6-3 Braidwood Unit 2 r,9 Reactor Geometry Plan View at the Core Midplane with a Dual Capsule Holder and 22.5° Neutron Pad Configuration .................................................. 6-20 Figure 6-4, Braidwood Unit 2 r,z Reactor Geometry Elevation View .............................................. 6-21 FigureD-1 Regulatory Guide 1.99, Revision 2 Predicted Decrease in Upper-Shelf Energy as a Function of Copper and Fluence ..................................................................................... D-3 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 viii EXECUTIVE

SUMMARY

The purpose of this report is to document the testing results of surveillance Capsule V from Braidwood Unit 2. Capsule V was removed at 18.41 effective full-power years (EFPY) and stored in the spent fuel pool. Post-irradiation mechanical tests of the Charpy V-notch and tensile specimens were performed during Cycle 19 to satisfy license renewal commitments. A fluence evaluation utilizing the neutron transport and dosimetry cross-section libraries was derived from the Evaluated Nuclear Data File (ENDF) database (specifically, ENDF/B-VI). Capsule V received a fluence of 3.73 x 10 19 n/cm2 (E > 1.0 MeV) after irradiation to 18.41 EFPY. The peak clad/base metal interface vessel fluence after 57 EFPY (end-of-license extension) of plant operation is projected to be 2.95 x 10 19 n/cm2 (E > 1.0 MeV).

This evaluation led to the following conclusions: 1) The measured percent decreases in upper-shelf energy for the surveillance forging and weld materials contained in Braidwood Unit 2 Capsule V are less than the Regulatory Guide 1.99, Revision 2 [Ref. 1] predictions. 2) With consideration of surveillance data, all beltline and extended beltline materials exhibit adequate upper-shelf energy levels for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license extension (57 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2]. The upper-shelf energy evaluation is presented in Appendix D.

Lastly, a brief summary of the Charpy V-notch testing can be found in Section 1. All Charpy V-notch data was plotted using a symmetric hyperbolic tangent curve-fitting program.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 1-1 1

SUMMARY

OF RESULTS The analysis of the reactor vessel materials contained in surveillance Capsule V, the fourth capsule removed and tested from the Braidwood Unit 2 reactor pressure vessel, led to the following conclusions:

  • Charpy V-notch test data were plotted using a symmetric hyperbolic tangent curve-fitting program.

Appendix C presents the CVGRAPH, Version 6.02, Charpy V-notch plots for Capsule V and previous capsules, along with the program input data.

  • Capsule V received an average fast neutron fluence (E > 1.0 MeV) of 3.73 x 10 19 n/cm2 after 18.41 effective full-power years {EFPY) of plant operation.
  • Irradiation of the reactor vessel Lower Shell Forging [50Dl02/50C97]-l-1 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (tangential orientation), resulted in an irradiated 30 ft-lb transition temperature of 7.5°F and an irradiated 50 ft-lb transition temperature of 35.2°F. This results in a 30 ft-lb transition temperature increase of 28.4°F and a 50 ft-lb transition temperature increase of 32.8°F for the tangentially oriented specimens.
  • Irradiation of the reactor vessel Lower Shell Forging [50Dl02/50C97]-1-1 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (axial orientation), resulted in an irradiated 30 ft-lb transition temperature of 39.9°F and an irradiated 50 ft-lb transition temperature of 71.0°F. This results in a 30 ft-lb transition temperature increase of 63.3°F and a 50 ft-lb transition temperature increase of 62.9°F for the axially oriented specimens.
  • Irradiation of the Surveillance Program Weld Material (Heat# 442011) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of26.4°F and an irradiated 50 ft-lb transition temperature of 87.6°F. This results in a 30 ft-lb transition temperature increase of 45.6°F and a 50 ft-lb transition temperature increase of 45.4°F.
  • Irradiation of the Heat-Affected Zone (HAZ) Material Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -113.2°F and an irradiated 50 ft-lb transition temperature of -68.4°F.

This results in a 30 ft-lb transition temperature increase of27.5°F and a 50 ft-lb transition temperature increase of 33.4°F.

  • The average upper-shelf energy of Lower Shell Forging [50DI02/50C97]-1-1 (tangential orientation) resulted in an average energy decrease of 2 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 166 ft-lb for the tangentially oriented specimens.
  • The average upper-shelf energy of Lower Shell Forging [50D102/50C97]-1-1 (axial orientation) resulted in an average energy decrease of 9 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 144 ft-lb for the axially oriented specimens.
  • The average upper-shelf energy of the Surveillance Program Weld Material (Heat # 442011) Charpy specimens resulted in an average energy decrease of 5 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 64 ft-lb for the weld metal specimens.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 1-2

  • The average upper-shelf energy of the HAZ Material Charpy specimens resulted in an average energy decrease of 1 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 154 ft-lb for the HAZ Material.
  • Comparisons of the measured 30 ft-lb shift in transition temperature values and upper-shelf energy decreases to those predicted by Regulatory Guide 1.99, Revision 2 [Ref. 1] for the Braidwood Unit 2 reactor vessel surveillance materials are presented in Table 5-10.

J

  • Based on the upper-shelf energy evaluation in Appendix D, all beltline and extended beltline materials contained in the Braidwood Unit 2 reactor vessel exhibit adequate upper-shelf energy levels for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license extension (57 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2].
  • The maximum calculated 57 EFPY (end-of-license extension) neutron fluence (E > 1.0 MeV) for the Braidwood Unit 2 reactor vessel beltline using the Regulatory Guide 1.99, Revision 2 [Ref. 1]

attenuation formula (i.e., Equation# 3 in the Guide) is as follows:

19 2 Calculated (57 EFPY): Vessel peak clad/base metal interface fluence* = 2.95 x 10 n/cm 19 2 Vessel peak quarter-thickness (1/4T) fluence = 1.77 x 10 n/cm

  • This fluence value is documented in Table 6-6 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 2-1 2 INTRODUCTION This report presents the results of the examination of Capsule V, the fourth capsule removed and tested in the continuing surveillance program, which monitors the effects of neutron irradiation on the Exelon Generation (Exelon) Braidwood Unit 2 reactor pressure vessel materials under actual operating conditions.

The surveillance program for the Braidwood Unit 2 reactor pressure vessel materials was designed and recommended by Westinghouse Electric Company LLC. A detailed description of the surveillance program and the pre-irradiation mechanical properties of the reactor vessel materials are presented in WCAP-11188 [Ref. 3], "Commonwealth Edison Company Braidwood Station Unit No. 2 Reactor Vessel Radiation Surveillance Program." The surveillance program was originally planned to cover the 40-year design life of the reactor pressure vessel and was based on ASTM El85-82 [Ref. 4], "Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels." Capsule V was removed from the reactor after 18.41 EFPY of exposure and stored in the spent fuel pool. During Cycle 19, it was shipped to the Westinghouse Materials Center of Excellence Hot Cell Facility, where the post-irradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed.

This report summarizes the testing and post-irradiation data obtained from surveillance Capsule V removed from the Braidwood Unit 2 reactor vessel and discusses the analysis of the data.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 3-1 3 BACKGROUND The ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an important factor in ensuring safety in the nuclear industry. The beltline region of the reactor pressure vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment. The overall effects of fast neutron irradiation on the mechanical properties oflow-alloy, ferritic pressure vessel steels such as SA508 Class 3 (base material of the Braidwood Unit 2 reactor pressure vessel beltline) are well documented in the literature. Generally, low-alloy ferritic materials show an increase in hardness and tensile properties and a decrease in ductility and toughness during high-energy irradiation.

A method for ensuring the integrity of reactor pressure vessels has been presented in "Fracture Toughness Criteria for Protection Against Failure," Appendix G to Section XI of the ASME Boiler and Pressure Vessel Code [Ref. 5]. The method uses fracture mechanics concepts and is based on the reference nil-ductility transition temperature (RTNDT).

RTNDT is defined as the greater of either the drop-weight nil-ductility transition temperature (NDTT per ASTM E208-06 [Ref. 6]) or the temperature 60°F less than the 50 ft-lb (and 35-mil lateral expansion) temperature as determined from Charpy specimens oriented perpendicular (axial) to the major working direction of the forging. The RTNDT of a given material is used to index that material to a reference stress intensity factor curve (Krc curve) which appears in Appendix G to Section XI of the ASME Code [Ref. 5].

The Krc curve is a lower bound of static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed to the Krc curve, allowable stress intensity factors can be obtained for this material as a function of temperature. Allowable operating limits can then be determined using these allowable stress intensity factors.

RTNDT and, in turn, the operating limits of nuclear power plants can be adjusted to account for the effects of radiation on the reactor vessel material properties. The changes in mechanical properties of a given reactor pressure vessel steel, due to irradiation, can be monitored by a reactor vessel surveillance program, such as the Braidwood Unit _2 reactor vessel ra_diatiol! surveillance program, in which a surveillance capsule is periodically removed from the operating nuclear reactor and the encapsulated specimens are tested. The increase in the average Charpy V-notch 30 ft-lb temperature (ARTNDT) due to irradiation is added to the initial RTNDT, along with a margin (M) to cover uncertainties, to adjust the RTNDT (ART) for radiation embrittlement. This ART (initial RTNDT + M + ARTNDT) is used to index the material to the K1c curve and, in turn, to set operating limits for the nuclear power plant that take into account the effects of irradiation on the reactor vessel materials.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 4-1 4 DESCRIPTION OF PROGRAM Six surveillance capsules for monitoring the effects of neutron exposure on the Braidwood Unit 2 reactor pressure vessel core region (Peltline) materials were inserted in the reactor vessel prior to initial plant startup. The six capsules were positioned in the reactor vessel, as shown in Figure 4-1, between the core barrel and the vessel wall, at various azimuthal locations. The vertical center of the capsules is opposite the vertical center of the core. The capsules contain specimens made from the following:

  • Lower Shell Forging [50Dl02/50C97]-1-l (tangential orientation)
  • Lower Shell Forging [50Dl02/50C97]-1-1 (axial orientation)
  • Weld metal fabricated with weld wire Heat Number 442011, Linde Type 80 flux, which is equivalent to the heat number and Flux Type used in the actual fabrication of the intermediate shell to lower shell circumferential weld seam
  • Weld heat-affected zone (HAZ) material of Lower Shell Forging [50D102/50C97]-1-1 Test material obtained from the lower shell forging (after thermal heat treatment and forming of the forging) was taken at least one forging thickness from the quenched edges of the forging. All test specimens were machined from the '14 thickness location of the forging after performing a simulated post-weld stress-relieving treatment on the test material. Weld test specimens were removed from the weld metal of a stress-relieved weldment joining Lower Shell Forging [50D102/50C97]-1-1 and adjacent Intermediate Shell Forging [49D963/49C90Ll]-1-l. All heat-affected zone specimens were obtained from the weld heat-affected zone of Lower Shell Forging [50D102/50C97]-1-l.

Charpy V-notch impact specimens from Lower Shell Forging [50Dl02/50C97]-1-1 were machined in the tangential orientation (longitudinal axis of the specimen parallel to the major working direction) and also in the axial orientation (longitudinal axis of the specimen perpendicular to the major working direction).

The core-region weld Charpy impact specimens were machined from the weldment such that the long dimension of each Charpy speciriien was perpendicular (normal) to the weld direction. The notch of the weld metal Charpy specimens was machined such that the direction of crack propagation in the specimen was in the welding direction.

Tensile specimens from Lower Shell Forging [50D102/50C97]-1-1 were machined both in the tangential and axial orientation. Tensile specimens from the weld metal were oriented perpendicular to the welding direction.

Compact tension test specimens (1/2T) from forging [50D102/50C97]-1-1 were machined in both the tangential and axial orientations. Compact tension test specimens from the weld metal were machined perpendicular to the weld direction with the notch oriented -in the direction of the weld. All specimens were fatigue precracked according to ASTM E399-12 [Ref. 7].

All six capsules contain dosimeter wires of pure iron, copper, nickel, and aluminum-0.15 weight percent cobalt (cadmium-shielded and unshielded). In addition, cadmium-shielded dosimeters of Neptunium (237Np) and Uranium (238U) were placed in the capsules to measure the integrated flux at specific neutron energy levels.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 4-2 The capsules contain thermal monitors made from two low-melting-point eutectic alloys, which were sealed in Pyrex 1 tubes. These thermal monitors were located in three different positions in the capsule.

These thermal monitors are used to defme the maximum temperature attained by the test specimens during irradiation. The composition of the two eutectic alloys and their melting points are as follows:

2.5% Ag, 97 .5% Pb Melting Point: 579°F (304°C) 1.5% Ag, 1.0% Sn, 97.5% Pb Melting Point: 590°F (310°C)

The chemical composition and the heat treatment of the various mechanical specimens in Capsule V are presented in Tables 4-1 and 4-2, respectively. The data in Tables 4-1 and 4-2 was obtained from the original surveillance program report, WCAP-11188 [Ref. 3], Appendix A.

Capsule V was removed after 18.41 EFPY of plant operation. This capsule contained Charpy V-notch specimens, tensile specimens, compact tension specimens, dosimeters, and thermal monitors.

The arrangement of the various mechanical specimens, dosimeters and thermal monitors contained in Capsule V is shown in Figure 4-2.

1 Pyrex is a registered trademark of Coming Incorporated.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 4-3 Table 4-1 Chemical Composition (wt.%) of the Braidwood Unit 2 Reactor Vessel Surveillance Materials (Unirradiated)<0 >

Lower Shell Forging [50Dl02/50C97]-1-1 Surveillance Weld Metal Element Note (b) Note (c) Notes (d,e) Notes (c,e) c 0.22 0.24 0.066 0.069 Mn 1.30 1.38 1.44 1.45 p 0.006 0.013 O.Dl5 0.011 s 0.004 0.009 0.012 0.013 Si 0.28 0.30 0.48 0.53 Ni 0.75 0.77 0.67 0.64 Mo 0.49 0.56 0.44 0.46 Cr 0.08 0.095 0.10 0.082 Cu 0.06 0.057 0.04 0.040 Al 0.025 0.024 0.004 0.007 Co 0.011 0.008 0.011 0.004 Pb 0.0003 max <0.001 0.0006 <0.001 w 0.005 max <0.01 0.010 <0.01 Ti 0.005 max 0.004 0.007 0.003 Zr 0.005 max <0.002 0.003 <0.002 v 0.01 max <0.002 0.005 <0.002 Sn 0.007 0.004 0.005 0.004 As 0.008 0.007 0.004 0.004 Cb 0.005max <0.002 0.004 <0.002 Nz 0.0084 0.009 0.013 0.012 B Not Reported <0.001 0.0007 <0.001 Notes:

(a) Data obtained from WCAP-11188, Tables A-.2 and A-3 [Ref. 3]

(b) Chemical analyses by The Japan Steel Works, LTD.

(c) Westinghouse analyses from the surveillance program test plate and weldment.

(d) Chemical analysis ofFiller Wire Qualification Test" by Babcock & Wilcox.

(e) The surveillance weld was fabricated with the same wire and flux type as that used in the intermediate to lower shell circumferential weld seam WF-562. The reactor vessel weld was fabricated using weld wire heat number 442011, with a Linde 80 flux, Lot Number 8061. The surveillance weld was fabricated using weld wire heat number 442011, with a Linde 80 flux, Lot Number 0344.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 4-4 Table 4-2 Heat Treatment *History of the Braidwood Unit 2 Reactor Vessel Surveillance MaterialsCa>

Time Material Temperature {°F) Cooling (hours)

Austenitizing: 6.5(b) Water Quenched 1600 +/- 25 Lower Shell Forging Tempered: 12.25Cb) Air Cooled

[50Dl02/50C97]-l-1 1225 +/- 25 Stress Relief: l J.75(c) Furnace Cooled 1150 +/- 50 Intermediate to Lower Shell Stress Relief: 1 l.75(c) Furnace Cooled Circumferential Weld Seam 1150 +/- 50 Surveillance Program Test Material Surveillance Program Test Post-Weld Stress Relief0 *d>:

14.25 Furnace Cooled Forging [50D102/50C97]-l-1 1150 +/- 50 Surveillance Program Test Post-Weld Stress Reliefc,d):

12.50 Furnace Cooled Weldment (Heat# 442011) 1150 +/- 50 Notes:

(a) Data obtained from WCAP-15369, Table 4-1[Ref.15].

(b) Data obtained from The Japan Steel Works, LTD. Material Test Reports.

(c) Data from Babcock & Wilcox Certifications.

(d) The stress reliefheat treatments received by the surveillance test forging and weldment have been simulated.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 4-5 REACTOR VESSEL CORE BARREL NEUTRON PAD

{301.5°) z (58.5 11 )

v (61 D) 90° (24, "J '(

!238.5°) x w (121.5")

PLAN VIEW ELEVATION VIEW Figure 4-1 Arrangement of Surveillance Capsules in the Braidwood Unit 2 Reactor Vessel WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 4-6 A1-.ISICO LEGEND: FL -LOWER SHELL FORGING [SOD102/50C97]-1-1 (TANGENTIAL)

FT - LOWER SHELL FORGING [50D102/SOC97]-l-1 (AXIAL)

FW - WELD METAL (HEAT# 442011)

FH - HEAT-AFFECTED ZONE MATERIAL Large Spacer Tensiles Compacts Compacts Charpys 6

FW27 FH27 FW24 FH24 5

4 I FWS I Fm I I FW6 I FWS I FW29 FW28 FH29 FH28 FW26 FW25 FH26 FH25 FW23 FW22 FH23 FH22 TOP OF VESSEL CENTER Np231 u23s Compacts Compacts Charpys Charpys Dosimeter Tensiles Charpys

[f§J

~

EE] EE]

FW21 FH21 FW18 FH18 FT30 FL30 FW20 FH20 FW17 FH17 556 FT29 FL29 FW19 FH19 FW16 ,"FH16 FT28 FL28 CENTER " ~

~ CENTER Cu Fe A1-.!5SCO Cu 579°F Al-.lSSCo (Cd) A1-.lSSCo (Cd)

MONITOR Charpys Charpys Charpys Compacts Compacts Tensiles EEJ EB FT27 FL27 FT24 FL24 FT21 FL21 FT6 FT26 FL26 FT23 FL23 FT20 FL20 FT17 FL17 FTS FT25 FL25 FT22 FL22 FT19 FL19 FT16 FL16 FT4 CENTER BOTTOM OF VESSEL Figure 4-2 Capsule V Diagram Showing the Location of Specimens, Thermal Monitors, and Dosimeters WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-1 5 TESTING OF SPECIMENS FROM CAPSULE V 5.1 OVERVIEW The post-irradiation mechanical testing of the Charpy V-notch impact specimens and tensile specimens was performed at the Westinghouse Materials Center of Excellence Hot Cell Facility. Testing was performed in accordance with 10 CPR 50, Appendix H [Ref. 2] and ASTM Specification E185-82

[Ref. 4].

Capsule V was opened upon receipt at the hot cell laboratory. The specimens and spacer blocks were carefully removed, inspected for identification number, and checked against the master list in WCAP-11188 [Ref. 3]. All of the items were in their proper locations.

Examination of the thermal monitors indicated that none of the three temperature monitors had melted.

Based on this examination, the maximum temperature to which the specimens were exposed was less than 579°F (304°C), assuming a uniform temperature throughout the capsule.

The Charpy impact tests were performed per ASTM Specification E185-82 [Ref. 4] and E23-07a [Ref. 8]

on a Tinius-Olsen Model 74, 358J machine. The Charpy machine striker was instrumented with an Instron 1 Impulse system. Instrumented testing and calibration were performed to ASTM E2298-15

[Ref. 9].

The instrumented striker load signal data acquisition rate was 819 kHz with data acquired for 10 ms.

From the load-time curve, the load of general yielding (Fgy), the maximum load (Fm) and the time to maximum load were determined. Under some test conditions, a sharp drop in load indicative of fast fracture was observed. The load at which fast fracture was initiated is identified as the brittle fracture initiation/load at initiation of unstable crack propagation (Fbr). The termination load after the fast load drop is identified as the arrest load/load at end of unstable crack propagation CFa). Fgy, Fm, Fbr, and Fa were determined per the guidance in ASTM Standard E2298-15 [Ref. 9].

The pre-maximum load energy (Wm) was determined by integrating the load-time record to the maximum load point via the instrumented Charpy software. The pre-maximum load energy is approximately equivalent to the energy required to initiate a crack in the specimen. Therefore, the propagation energy for the crack {Wp) is the difference between the total impact energy (Wt) and the pre-maximum load energy (Wm). Wt is compared to the absorbed energy measured from the dial energy (KV).

Percent shear was determined from post-fracture photographs using the ratio-of-areas method in compliance with ASTM E23-07a [Ref. 8] and A370-15 [Ref. 10]. The lateral expansion was measured using a dial gage rig similar to that shown in the same ASTM Standards.

Tensile tests were performed on a 250 kN Instron screw driven tensile machine (Model 5985) per ASTM E185-82 [Ref. 4]. Testing met ASTM Specifications E8/E8M-15a [Ref. 11] for room temperature or E21-09 [Ref. 12] for elevated temperatures.

1 Instron is a registered trademark oflnstron Corporation.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-2 The tensile specimens were, nominally, 4.230 inches long with a 1.000 inch gage length and 0.250 inch in diameter, per WCAP-11188 [Ref. 3]. Strain measurements were made using an extensometer, which was attached to the 1.000 inch gage section of the tensile specimen. The strain rate obtained met the requirements of ASTM E8/E8M-15a [Ref. 11] and ASTM E21-09 [Ref. 12].

Elevated test temperatures were obtained with a three-zone electric resistance split-tube Instron SF-16 furnace with an 11-inch hot zone. For the elevated tests, temperature was measured by two Type N thermocouples in contact with the gage section of the specimen per ASTM E21-09 [Ref. 12]. Tensile specimens were soaked at temperature(+/- 5°F) for a minimum of 20 minutes before testing. All tests were conducted in air.

The yield load, ultimate load, fracture load, uniform elongation and elongation at fracture were determined directly from the load-extension curve. The yield strength (0.2% offset method), ultimate tensile strength and fracture strength were calculated using the original cross-sectional area. Yield point elongation (YPE) was calculated as the difference in strain between the upper yield strength and the onset of uniform strain hardening using the methodology described in ASTM E8/E8M-15a [Ref. 11]. The final diameter and final gage length were determined from post-fracture photographs. This final diameter measurement was used to calculate the fracture stress (fracture true stress) and the percent reduction in area. The final and original gage lengths were used to calculate total elongation after fracture.

5.2 CHARPYV-NOTCH IMPACT TEST RESULTS The results of the Charpy V-notch impact tests performed on the various materials contained in Capsule V, which received a fluence of 3.73 x 1019 n/crrl (E > 1.0 MeV) in 18.41 EFPY of operation, are presented in Table 5-1 through 5-8 and are compared with the unirradiated and previously withdrawn capsule results as shown in Figures 5-1 through 5-12. The unirradiated and previously withdrawn capsule results were taken from WCAP-11188 [Ref. 3], WCAP-12845 [Ref. 13], WCAP-14228 [Ref. 14], and WCAP-15369 [Ref. 15]. The previous capsules, along with the original program unirradiated material input data, were updated using CVGRAPH, Version 6.02.

The transition temperature increases and decreases in upper-shelf energies for the Capsule V materials are summarized in Table 5-9 and led to the following results:

  • Irradiation of the reactor vessel Lower Shell Forging [50D102/50C97]-l-1 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (tangential orientation), resulted in an irradiated 30 ft-lb transition temperature of7.5°F and an irradiated 50 ft-lb transition temperature of 35.2°F. This results in a 30 ft-lb transition temperature increase of 28.4°F and a 50 ft-lb transition temperature increase of32.8°F for the tangentially oriented specimens.
  • Irradiation of the reactor vessel Lower Shell Forging [50D102/50C97]-1-1 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (axial orientation), resulted in an irradiated 30 ft-lb transition temperature of 39.9°F and an irradiated 50 ft-lb transition temperature of 71.0°F. This results in a 30 ft-lb transition temperature increase of 63.3°F and a 50 ft-lb transition temperature increase of 62.9°F for the axially oriented specimens.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 5-3

  • Irradiation of the Surveillance Program Weld Material (Heat # 442011) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 26.4°F and an irradiated 50 ft-lb transition temperature of 87.6°F. This results in a 30 ft-lb transition temperature increase of 45.6°F and a 50 ft-lb transition temperature increase of 45.4°F.
  • Irradiation of the HAZ Material Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -113.2°F and an irradiated 50 ft-lb transition temperature of -68.4°F. This decrease results in a 30 ft-lb transition temperature increase of 27.5°F and a 50 ft-lb transition temperature increase of 33.4°F.
  • The average upper-shelf energy of Lower Shell Forging [50Dl02/50C97]-l-1 (tangential orientation) resulted in an average energy decrease of 2 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 166 ft-lb for the tangentially oriented specimens.
  • The average upper-shelf energy of Lower Shell Forging [50D102/50C97]-1-1 (axial orientation) resulted in an average energy decrease of 9 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 144 ft-lb for the axially oriented specimens.
  • The average upper-shelf energy of the Surveillance Program Weld Material (Heat # 442011) Charpy specimens resulted in an average energy decrease of 5 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 64 ft-lb for the weld metal specimens.
  • The average upper-shelf energy of the HAZ Material Charpy specimens resulted in an average energy decrease of 1 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 154 ft-lb for the HAZ Material.
  • Comparisons of the measured 30 ft-lb shift in transition temperature values and upper-shelf energy decreases to those predicted by Regulatory Guide 1.99, Revision 2 [Ref. 1] for the Braidwood Unit 2 reactor vessel surveillance materials are presented in Table 5-10.

The fracture appearance of each irradiated Charpy specimen from the various materials is shown in Figures 5-13 through 5-16. The fractures show an increasingly ductile or tougher appearance with increasing test temperature. Load-time records for the individual instrumented Charpy specimens are contained in Appendix B.

With consideration of the surveillance data, all beltline and extended beltline materials exhibit adequate upper-shelf energy levels for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license extension (57 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2]. This evaluation is contained in Appendix D.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 5-4 5.3 TENSILE TEST RESULTS The results of the tensile tests performed on the various materials contained in Capsule V irradiated to 3.73 x 1019 n/cm2 (E > 1.0 MeV) are presented in Table 5-11 and are compared with unirradiated results as shown in Figures 5-17 through 5-19.

The results of the tensile tests performed on the Lower Shell Forging [50D102/50C97]-l-1 (tangential orientation) indicated that irradiation to 3.73 x 1019 n/cm2 (E > 1.0 MeV) caused increases in the 0.2 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3].

See Figure 5-17 and Table 5-11.

The results of the tensile tests performed on the Lower Shell Forging [50Dl02/50C97]-1-1 (axial orientation) indicated that irradiation to 3.73 x 1019 n/cm2 (E > 1.0 MeV) caused increases in the 0.2 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3].

See Figure 5-18 and Table 5-11.

The results of the tensile tests performed on the Surveillance Program Weld Material (Heat# 442011) indicated that irradiation to 3.73 x 10 19 n/cm2 (E > 1.0 MeV) caused increases in the 0.2 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3]. See Figure 5-19 and Table 5-11.

The fractured tensile specimens for the Lower Shell Forging [50Dl02/50C97]-1-1 (tangential orientation) material are shown in Figure 5-20, the fractured tensile specimens for the Lower Shell Forging

[50D102/50C97]-1-1 (axial orientation) are shown in Figure 5-21, and the fracture tensile specimens for the Surveillance Program Weld Material (Heat# 442011) are shown in Figure 5-22. The engineering stress-strain curves for the tensile tests are shown in Figures 5-23 through 5-28.

5.4 1/2T COMPACT TENSION SPECIMEN TESTS Per the surveillance capsule testing contract, the 1/2T Compact Tension Specimens were not tested and are being stored at the Westinghouse Materials Center of Excellence Hot Cell Facility.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 5-5 Table 5-1 Charpy V-notch Data for the Braidwood Unit 2 Lower Shell Forging Irradiated to a Fluence of 3.73x1019 n/cm2 (E>1.0 MeV) (Tangential Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number OF oc ft-lbs Joules mils mm  %

FL23 -10 -23 12.5 17 9 0.2 5 FL26 0 -18 32 43 25.5 0.6 10 FL24 10 -12 8 11 7 0.2 15 FL22 15 -9 18.5 25 16 0.4 15 FL20 15 -9 54 73 39 1.0 20 FL16 20 -7 19.5 26 18 0.5 15 FL25 25 -4 55 75 39 1.0 30 FL29 30 -1 51 69 39 1.0 20 FL27 50 10 77 104 53 1.3 40 FL30 72 22 94 127 65 1.7 45 FL17 125 52 122 165 81 2.1 75 FL28 175 79 140 190 88 2.2 90 FL19 200 93 162 220 84 2.1 100 FL18 210 99 165 224 83 2.1 100 FL21 220 104 170 230 89 2.3 100 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 5-6 Table 5-2 Charpy V-notch Data for the Braidwood Unit 2 Lower Shell Forging Irradiated to a Fluence of3.73x1019 n/cm2 (E>1.0 MeV) (Axial Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number OF oc ft-lbs Joules mils mm  %

FT24 -10 -23 18 24 12 0.3 5 FT22 10 -12 12 16 10 0.3 10 FT18 15 -9 30 41 23 0.6 15 FT21 25 -4 32 43 24 0.6 15 FT23 30 -1 9 12 8 0.2 15 FT20 35 2 42 57 32 0.8 25 FT29 45 7 14.5 20 14 0.4 15 FT27 50 10 57 77 39 1.0 30 FT28 60 16 36 49 29 0.7 25 FT26 72 22 42 57 33 0.8 30 FT16 125 52 96 130 68 1.7 60 FT19 175 79 107 145 77 2.0 80 FT30 200 93 144 195 87 2.2 100 FT17 210 99 139 188 92 2.3 100 FT25 220 104 150 203 81 2.1 100 WCAP-18107-NP May 2016 RevisionO

Westinghouse Non-Proprietary Class 3 5-7 Table 5-3 Charpy V-notch Data for the Braidwood Unit 2 Surveillance Program Weld Material (Heat# 442011) Irradiated to a Fluence of 3.73x1019 n/cm2 (E>1.0 MeV)

Sample Temperature Impact Energy Lateral Expansion Shear Number OF oc ft-lbs Joules mils mm  %

FW24 -50 -46 4 5 3 0.1 10 FW21 -30 -34 11 15 9.5 0.2 15 FW28 -10 -23 24 33 21 0.5 25 FW18 0 -18 27 37 25 0.6 30 FW19 10 -12 25 34 24 0.6 35 FW25 25 -4 31 42 26 0.7 35 FW29 30 -1 25 34 22 0.6 40 FW17 40 4 31 42 29 0.7 50 FW16 50 10 36 49 33 0.8 55 FW27 60 16 44 60 40 1.0 55 FW26 72 22 50 68 43 1.1 65 FW20 125 52 55 75 48 1.2 85 FW23 175 79 59 80 54 1.4 95 FW30 200 93 70 95 59 1.5 100 FW22 220 104 62 84 54 1.4 100 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-8 Table 5-4 Charpy V-notch Data for the Braidwood Unit 2 Beat-Affected Zone (BAZ) Material Irradiated to a Fluence of3.73x1019 n/cm2 (E>1.0 MeV)

Sample Temperature Impact Energy Lateral Expansion Shear Number OF oc ft-lbs Joules mils mm  %

FH29 -200 -129 4.5 6 2.5 0.1 5 FH23 -150 -101 41 56 20 0.5 10 FH22 -125 -87 16.5 22 10 0.3 5 FH30 -100 -73 31 42 19 0.5 15 FH27 -80 -62 34 46 21 0.5 15 FH18 -60 -51 48 65 29 0.7 20 FH20 -50 -46 93 126 51 1.3 40 FH25 -10 -23 62 84 34 0.9 45 FH21 30 -1 107 145 64 1.6 60 FH19 72 22 122 165 68 1.7 70 FH16 125 52 180 244 80 2.0 100 FH24 150 66 144 195 81 2.1 100 FH26 175 79 122 165 70 1.8 90 FH28 200 93 115 156 73 1.9 100 FH17 210 99 178 241 78 2.0 100 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-9 Table 5-5 Instrumented Charpy Impact Test Results for the Braidwood Unit 2 Lower Shell Forging [50D102/50C97]-1-1 Irradiated to a Fluence of 3.73x1019 n/cm2 (E>1.0 MeV) (Tangential Orientation)

Total Energy to Total Dial General Test Instrumented Difference, Max Maximum Time to Fracture Arrest Sample Energy, Yield Temp Energy, (KV-Wt)IKV Load, Load, Fm Fm Load, Fbf Load, Fa Number (oF) KV Load, F2Y Wt (%) Wm (lb) (msec) (lb) (lb)

(ft-lb) (lb)

(ft-lb) (ft-lb)

FL23 -10 12.5 11.49 8.08 9.08 3900 0.21 3100 3500 0 FL26 0 32 29.64 7.38 27.87 4300 0.48 3200 4200 0 FL24 10 8 5.62(a) 29.75(a) 3.27(a) 3700(a) 0.09(a) 3100(a) 3400(a) o<a)

FL22 15 18.5 15.49(a) 16.27(a) 2.60(a) 3900(a) 0.09(a) 3000(a) 3700(a) o<a)

FL20 15 54 50.90 5.74 34.76, 4300 0.60 3100 4200 0 FL16 20 19.5 15.44(a) 20.82<a> 3.58(a) 4300(a) o.12<a) 3000(a) 3800(a) o<a) 1 FL25 25 55 49.58 9.85 35.74 4400 0.60 3200 4300 700 FL29 30 51 47.55 6.76 33.48 4100 0.60 3000 4000 0 FL27 50 77 65.75 14.61 33.51 4200 0.60 2900 4000 1200 FL30 72 94 83.15 11.54 34.63 4300 0.60 3100 3600 1800 FL17 125 122 111.39 8.70 32.25 4100 0.60 2800 2300 900 FL28 175 140 128.82 7.99 31.76 4000 0.60 2700 2300 1500 FL19 200 162 148.94 8.06 41.79 4100 0.80 2400 0 0 FL18 210 165 151.50 8.18 54.48 4000 0.99 2600 0 0 FL21 220 170 155.22 8.69 50.74 3900 0.95 2500 0 0 Note:

(a) The difference between instrumented Charpy and dial values was greater than 15% for specimens FL16 and FL22 and greater than 25% for specimen FL24. The values were neither adjusted nor discarded as required by Reference 9 since this data is not required and is presented for informational purposes only.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-10 Table 5-6 Instrumented Charpy Impact Test Results for the Braidwood Unit 2 Lower Shell Forging (50D102/50C97]-l-l Irradiated to a Fluence of 3.73x1019 n/cm2 (E>1.0 MeV) (Axial Orientation)

Total Energy to Total Dial Time General Test Instrumented Difference, Max Maximum Fracture Arrest Sample Energy, to Yield Temp Energy, (KV-Wt)IKV Load, Load, Fm Load, Fbr Load, Fa Number KV Fm Load, Fl!Y

{°F)

(ft-lb) Wt (%) Wm (lb)

(msec) (lb)

(lb) (lb)

(ft-lb) (ft-lb)

FT24 -10 18 16.97 5.72 3.78 4300 0.12 3200 3800 0 FT22 10 12 10.63 11.42 337 3800 0.09 3100 3500 0 FT18 15 30 27.05 9.83 26.22 4000 0.47 3100 4000 0 FT21 25 32 29.83 6.78 28.11 4100 0.51 3100 3900 0 FT23 30 9 6.41<*> 28.11 (*) 330<*) 3700<*> 0.09<*) 3100<*> 3300<*) o<*>

FT20 35 42 34.65(*) 11.so<*> 28.23<*> 4100<*) o.so<*> 3000<*> 4100(a) o<a)

FT29 45 14.5 9.16(*) 36.83(*) 333(*) 3600<*> 0.09<*> 3100<*) 3600<*) o<*>

FT27 50 57 50.07 12.16 45.22 4400 0.80 3000 4000 0 FT28 60 36 28.66(*) 2039(*) 27.67(*) 4000<*> o.so<*> 3000<*> 4000<*> o<*>

FT26 72 42 33.64(*) 19.90(*) 21.14<*> 4100<*> o.so<*> 3000<*) 3900<*) o<*>

FT16 125 96 84.36 12.13 32.98 4100 0.60 2800 3400 1900 FT19 175 107 99.06 7.42 32.16 4000 0.60 2600 2900 1800 FT30 200 144 131.86 8.43 31.30 3900 0.60 2500 0 0 FT17 210 139 127.09 8.57 31.43 3900 0.61 2600 0 0 FT25 220 150 136.04 931 51.90 3900 0.95 2600 0 0 Note:

(a) The difference between instrumented Charpy and dial values was greater than 15% for specimens FT20, FT26 and FT28 and greater than 25% for specimens FT23 and FT29. The values were neither adjusted nor discarded as required by Reference 9 since this data is not required and is presented for informational purposes only.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-11 Table 5-7 Instrumented Charpy Impact Test Results for the Braidwood Unit 2 Surveillance Program Weld Material (Heat# 442011)

Irradiated to a Fluence of3.73x1019 n/cm2 (E>1.0 MeV)

Total Energy to Total Dial General Arrest Test Instrumented Difference, Max Maximum Time to Fracture Sample Energy, Yield Load, Temp Energy, (KV-Wt)IKV Load, Load, Fm Fm Load, Fbr Number KV Load, Fl!Y Fa

{°F)

(ft-lb) Wt (%) Wm (lb) (msec)

(lb)

(lb)

(lb)

(ft-lb) (ft-lb)

FW24 -50 4 3.78 5.50 2.97 3700 0.09 3200 3700 0 FW21 -30 11 9.51 13.55 4.12 3900 0.12 3300 3500 0 FW28 -10 24 22.26 7.25 14.65 3800 0.29 3100 3700 0 FW18 0 27 23.77 11.96 22.71 3800 0.44 3000 3800 0 FW19 10 25 20.63(a) 17.48(a) l 7.9ia) 3700(a) 0.36(a) 3000(a) 3600(a) 300(a)

FW25 25 31 26.05<a> 15.9ia) l8.05<a> 3700(a) o:36(a) 3000(a) 3700(a) 700(a)

FW29 30 25 20.62(a) 17.52(a) 17.so<a> 3700(a) 0.36(a) 30oo<a> 3500(a) 600(a)

FW17 40 31 26.71 13.84 17.85 3600 0.36 3100 3600 1100 FW16 50 36 32.02 11.06 17.59 3600 0.36 2800 3600 1500 FW27 60 44 40.35 8.30 24.67 3700 0.48 2900 3500 1400 FW26 72 50 45.46 9.08 14.32 3800 0.29 2900 3200 2100 FW20 125 55 49.78 9.49 24.25 3600 0.48 2700 3200 2300 FW23 175 59 55.10 6.61 23.37 3500 0.48 2600 1900 1500 FW30 200 70 63.70 9.00 30.46 3600 0.60 2500 0 0 FW22 220 62 56.90 8.23 13.19 3500 0.29 2600 0 0 Note:

(a) The difference between instrumented Charpy and dial values was greater than 15% for specimens FW19, FW25 and FW29. The values were not adjusted as required by Reference 9 since this data is not required and is presented for informational purposes only.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-12 Table 5-8 Instrumented Cha~y Impact Test Results for the Braidwood Unit 2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 3.73x10 9 n/cm2 (E>1.0 MeV)

Total Energy to Total Dial General Arrest Test Instrumented Difference, Max Maximum Time to Fracture Sample Energy, Yield Load, Temp Energy, (KV-Wt)IKV Load, Load, Fm Fm Load, Fbr Number KV Load, Fizy Fa

{°F) Wt (%) Wm (lb) (msec) (lb)

(ft-lb) (lb) (lb)

(ft-lb) (ft-lb)

FH29 -200 4.5 5.14 -14.22% 3.80 4900 0.09 3500 4900 0 FH23 -150 41 38.10 7.07% 32.39 4600 0.50 3900 4400 0 FH22 -125 16.5 16.63 -0.79% 3.88 4600 0.09 4000 4300 0 FH30 -100 31 29.25 5.65% 26.03 4400 0.43 3400 4300 0 FH27 -80 34 31.16 8.35% 30.37 4400 0.51 3400 4300 0 FH18 -60 48 44.57 7.15% 36.42 4400 0.60 3300 4200 0 FH20 -50 93 85.83 7.71% 36.26 4400 0.61 3300 3900 0 FH25 -10 62 55.85 9.92% 45.96 4300 0.76 3200 4200 1500 FH21 30 107 95.13 11.09% 57.61 4200 0.99 3100 3200 1400 FH19 72 122 111.66 8.48% 4.27 4300 0.11 2800 3100 1100 FH16 125 180 165.49 8.06% 44.31 4300 0.80 2700 0 0 FH24 150 144 132.29 8.13% 55.12 4100 0.98 2600 0 0 FH26 175 122 111.19 8.86% 55.01 4100 0.99 2700 2600 1100 FH28 200 115 102.69 10.70% 52.40 4000 0.95 2700 0 0 FH17 210 178 164.70 7.47% 52.34 4000 0.95 2600 0 0 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-13 Table 5-9 Effect of Irradiation to 3.73 x 1019 n/cm2 (E > 1.0 MeV) on the Charpy V-Notch Toughness Properties of the Braidwood Unit 2 Reactor Vessel Surveillance Capsule V Materials Average 30 ft-lb Transition Average 35 mil Lateral Expansion Average 50 ft-lb Transition Average Energy Absorption 2::

Material Temperature<a> {°F) Temperature<a> {°F) Temperature<a> (0 F) 95% ShearCb> (ft-lb)

Unirradiated Irradiated AT Unirradiated Irradiated AT U nirradiated Irradiated AT Unirradiated Irradiated AE Lower Shell Forging

[50Dl02/50C97]-1-1 -20.9 7.5 28.4 0.4 29.4 29.0 2.5 35.2 32.8 168 166 -2 (Tangential)

Lower Shell Forging

[50Dl 02/50C97]-1-1 -23.4 39.9 63.3 3.4 66.0 62.6 8.1 71.0 62.9 153 144 -9 (Axial)

Surveillance Weld Material -19.2 26.4 45.6 7.5 52.2 44.7 42.2 87.6 45.4 69 64 -5 (Heat# 442011)

Heat-Affected Zone

-140.7 -113.2 27.5 -80.0 -49.9 30.l -101.8 -68.4 33.4 155 154 -1 (HAZ) Material Notes:

(a) Average value is determined by CVGRAPH, Version 6.02 (see Appendix C).

(b) Upper-shelf Energy (USE) values are a calculated average from unirradiated and Capsule V Charpy test results for specimens that achieved greater than or equal to 95% shear.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-14 Table 5-10 Comparison of the Braidwood Unit 2 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper-Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions Capsule 30 ft-lb Transition Upper-Shelf Energy Fluence Temperature Shift Decrease Material Capsule (x 10 19 n/cm 2, Predicted<*> Measured Cb> Predicted<*> Measured<hl E> 1.0MeV) (OF) (OF) (%) (%)

u 0.387 27.3 o.o<c) 15 o<d>

Lower Shell Forging x 1.15 38.4 o.o<c) 20 1

[50Dl 02/50C97]-l-l (Tangential) w 2.07 44.3 4.6 23 1 v 3.73 49.6 28.4 26 1 u 0.387 27.3 o.o<c) 15 10 Lower Shell Forging x 1.15 38.4 33 .8 20 5

[50D102/50C97]-1-1 (Axial) w 2.07 44.3 33.1 23 4 v 3.73 49.6 63.3 26 6 u 0.387 30.2 o.o<c) 15 10 Surveillance Weld Material x 1.15 42.6 26.1 20 1 (Heat# 442011) w 2.07 49.1 23.7 23 1 v 3.73 55.0 45.6 26 7 u 0.387 --- o.o<c) -- - o<d) x 1.15 - -- o.o<c) --- 19 Heat-Affected Zone Material w 2.07 -- - 3.7 --- o

1.0 MeV) Test 0.2% Ultimate Fracture Fracture Fracture Uniform Total Reduction Sample Yield True Material Temp. Strength Load Strength Elongation Elongation inArea Number Strength Stress {°F) (ksi) (ksi) (kip) (ksi) {ksi) (%) (%) (%) FL4 76 78.4 99.1 2.94 59.9 191 10.6 25.5 68.6 Lower Shell Forging [50D 102/50C97]-1-1 FL5 150 75.5 95.4 2.77 57.4 194 9.2 22.9 70.4 (Tangential) FL6 550 70.5 94.8 3.06 63 .2 160 8.5 21.6 60.4 FT4 76 77.8 98.0 3.19 65.0 185 10.3 24.1 65.0 Lower Shell Forging [50D102/50C97]-1-1 FT5 150 74.9 94.7 2.94 60.0 188 10.1 23.5 68.2 (Axial) FT6 550 69.5 93.0 3.12 64.6 161 9.2 20.2 59.9 FW4 78 81.5 96.3 3.31 68.5 178 8.5 20.5 61.4 Surveillance Weld Material FW5 150 77.3 90.l 3.18 64.3 166 8.1 19.5 61.4 (Heat# 442011) FW6 550 74.4 88.8 3.31 67.5 161 5.3 16.6 58.0 WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-16 Lower Shell Forging [50D102/50C97]-1-1 (Tangential) CV Graph 6.02: Ilyperbolic Tangent Curve Printed on 2!5/2016 8:41 AM Curve I Plant Capsule Material Ori. Heat # I I Braidwood 2 UNTRR I SA508CL3 Timgenti al [SOD 102/50C97]- 1-1
j. I I 2 Draidwood 2 u SA508CL3 Tangential (50Dl02/50C97]-
I I 1-1 3 I Braidwood 2 x SA508CL3 Tangential [50Dl02/50C97j-I I 1- 1 4 I Braidwood 2 w SA508CL3 Tangential (50D 102/50C97]- I I 1-1 5 Braidwood 2 v SA508CL3 Tangential (50Dl02/50C97]- 1-1 I I Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [SOD102/50C97]-1-1 (Tangential Orientation) WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-17 Lower Shell Forging 150D102/50C971-1-1 (Tangential) CVGraph 6.02: Hyperbolic Tangent Curve Printed on 2/5/2016 8:41 AM 200 0 1 A 180 - 2 ~ A 0 1;).- .....i ['A, ~ '~v ~ ['-> 160 - 140 ..... 8 A 3 4 5 L~ JIv .M .. ~ ...... <~ ~ v
  • v I
t1: 120 , ...... 8 ,*- 'Jt'~ bJ) 100 ~ = {;;i;;l n j 80 z A [.I u - l J [J 60 40 ~ t¥ - ;1 -~... 20 ~~ .,. ...... ~ - t1 Q I I I I I I I 0 -300 -200 -100 0 100 200 300 400 500 600 Temperature (° F) Curve Fl uence LSE USE d-USE T (@_,30 d-T @.30 T @ 50 d-T @ 50 I - -- 2.2 168 0 -20.9 0 2.5 0 2 - -- 2.2 176 8 -30.5 -9.6 -0.8 -3 .3 3 --- 2.2 167 -I -30.5 -9.6 2.6 0.1 4 - -- 2.2 166 -2 -16.3 4.6 12 9.5 5 --- 2.2 166 -2 7.5 28.4 35.3 32.8 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-1-1 (Tangential Orientation)- Continued WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-18 Lower Shell Forging [50Dl02/50C97]-1-1 (Tangential) CVGraph 6.02: Hyperbolic Tangent Curve Printed on 2/5/2016 8:40 AM Curve Plant Capsule Material Ori . Heat # l Braidwood 2 UNTRR SA508CL3 Tangenti al I[50DI02/50C97]- 1- 1 2 Braidwood 2 u SA508CL3 Tangential [500 I 02/50C97]- I -I 3 Braidwood 2 x s 508CL3 Tangential [50DJ02/50C97]- 1-1 4 Braidwood 2 w SA508CL3 Ttmgential [50Dl02/50C97]- 1- 1 5 Braidwood 2 v SA508CL3 Tangential [50Dl02/50C97J-1-1 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-l-1 (Tangential Orientation) WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-19 Lower Shell Forging 150D102/50C971-1-1 (Tangential) CYGraph 6.02 : Hyperbolic Tangent Curve Printed on 2/5/2016 8:40 AM 100 0 1 A.... 0 90 - 1,.. .... ,l'1,\ A ... ..... A 2 80 - 8 3 ~ ~ C'('.~ . J_ A V /\ 1, f l). s 70 - A 4 5 ~flh 6 Cf I/, J ill:. = 60
  • -c f l).
c: ~ 50 c i ~* 0.. ~ A l '~ a ~ ~ Ii- ~ 40 0
  • II l
I *
.I
~ 30 ..J ,~5 ) J 20 ~ I J ~*~ j 10 A ~ {i~ ~ 0 I I I I I I -300 -200 -100 0 100 200 300 400 500 600 0 Temperature ( F) Curve Fluence LSE USE d- USE T @_,35 d-T @.35 I --- I 87. 18 0 0.4 0 2 --- I 87.82 0.64 0 -0.4 3 - -- I 88.28 1.10 1.7 13 4 - -- l 83 .06 -4.12 21.4 21 5 --- l 85.62 -1.56 29.4 29 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-1-l (Tangential Orientation) - Continued WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-20 Lower Shell Forging [50D102/50C97]-1-1 (Tangential) CVGraph 6.02: Hyperbolic Tangent Curve Printed on 215/2016 8:39 AM Curve Pl ant Capsule Material Ori. Heat ti - f-l Braidwood 2 I NTRR SA508CL3 Tangential [50D 102/50C97]- 1-1 2 Braidwood 2 l SA508CT .3 Tangenti al [50D102/50C97]- 1-1 3 Braidwood 2 x SA508CL3 Tangential [50D102/50C97]- 1-1 4 Braidwood 2 w SA508CL3 Tangential [500102/50C97]- 1-1 5 Braidwood 2 v SA508CL3 Tangential [50Dl02/50C97]- I 1-1 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-1-1 (Tangential Orientation) WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-21 Lower Shell Forging (SOD102/SOC971 1 (Tangential) CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 2/5/2016 --* - .... _ 8:39 AM . r /I 100 .~~ ~ ,__ 0 1 ~ en/- 90 A 2 80 ,__ 8 3 70 ,__ A 4 5 .. Ao.A .a/k ~~ Ao.A ""' ~* ~ QI 60 -= .c ... rJ'J so Ii,.. t j r:.. QI ... ~ A QI Q.. 40 ... ' .~n - 0 - ,J.J 30 20 ! ~ ~~ a 10 I J~~ 0 ... /_ ~~ - I -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) Cu rve Fluence LSE USE d- USE T~SO d-T@SO 1 --- 0 100 0 39. 1 0 2 --- 0 100 0 5.8 -33.3 3 -- - 0 JOO 0 78.5 39.4 4 -- - 0 100 0 64.6 25 .S 5 --- 0 100 0 76 36.9 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50Dl02/50C97]-1-1 (Tangential Orientation)- Continued WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-22 Lower Shell Forging [50D102/50C97]-1-1 (Axial) CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 1/13/2016 I :57 P 1 -- Curve I Plant Braidwood 2 Capsule UNTRR Material SA508CL3 Ori. Axial Heat # [50D 102'50C97]- 1-1 2 Braidwood 2 l SA508CL3 Axial [50D 102/50C97]- 1-1 3 Braidwood 2 x SA508CL3 xial [50Dl02/50C97] - I 1-1 4 Braidwood 2 w SA508CL3 Axial [50D 102/50C97]- 1-1 5 Braidwood 2 v SA508CL3 Axial (50DI02/50C97J-1-1 I Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-1-1 (Axial Orientation) WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-23 Lower Shell Forging 150Dl02/50C971-l-l (Axial) CYGraph 6.02 : Hyperbolic Tangent Curve Printed on 1/13/20 16 1:57 PM 0 1 140 A 2 11-~L-l-~::JJ~~~E:::::f~~ 8 3 D
  • 4 120 .....,....,__~ t--t-~~--t~~----,t-r:it-h~-+-~~--+-~~--t~~~t--~---f o b::::+/-~~::=_C_J___.i.,__J_~L_l--L-_J_~
-300 -200 -100 0 100 200 300 400 500 600 0 Temperature ( F) Curve Fluence LSE USE d-U SE T (ti]30 d-T @3 0 T {a)50 d-T @)50 I -- - 2.2 153 0 -23.4 0 8.1 0 2 --- 2.2 137 -16 -23 .5 -0.10 8.1 0 3 --- 2.2 145 -8 10.4 33 .8 46.7 38.6 4 - -- 2.2 147 -6 9.7 33 . 1 43 .8 35.7 5 --- 2.2 144 -9 39.9 63 .3 71 62 .9 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50Dl02/50C97]-1-1 (Axial Orientation)-Continued WCAP-1 8107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-24 Lower Shell Forging [50D102/SOC97]-1-1 (Axial) CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 11 13/2016 1:58 PM Curve Plant Ca psule Materia l Ori . Heat # l[50D1021- 150C97]- ~ l Braidwood 2 I UNlRR SA508CL3 Ax; at 1 I I 2 Braidwood 2 u SA508CT .3 . xial [50DI02/50C97]- 1-1 3 Braidwood 2 x s 508CL3 xial [50D l02/50C97)- 1-1 w 4 Braidwood 2 I SA508CL3 Axial [50D102/50C97J-1-1 5 Braidwood 2 v SA508CL3 Axial [500 102/50C97]- 1- 1 Figure 5-5 Cbarpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-1-1 (Axial Orientation) WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-25 Lower Shell Forging f50D102/SOC971-1-l (Axial) CV Graph 6.02 : Hyperbolic Tangent Curve Printed on I /13 /2016 1:58 PM 100 0 0 0 1 0 90 - v ~ ..c"1 -"' u ~~ A 2 r~ 80 - a 3 ~ \ H, ~ 70 -
  • 4 J; ~ -Q ~iii'
-*-= s 0 ~ 60 A ~
  • ~
) r~ ~ ~ J ~ '/ Q = ~ 50 0.. ~1 ' J .J ~I ii>< r-J () -~ J.. 40 ( ii' ~ 30 ~ ~ ~I'!: ~ .J r: ~ .<J ,Q 20 10 '~ ~ ~ ~u -A ,. ~u. 0 T -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) Curve Fluence LSE USE d-USE T (@,,35 d-T (@_,35 1 -- - I 9104 0 3.4 0 2 --- I 83 .7 -7.34 9.5 6.1 3 --- I 88.21 -2 .83 37.4 34 4 -- - l 77.22 -13 .82 51.3 47.9 5 --- 1 92. 16 1.12 66 62.6 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50Dl02/50C97]-l-1 (Axial Orientation)- Continued WCAP-18107-NP May 2016 Revision 0 L Westinghouse Non-Proprietary Class 3 5-26 Lower Shell Forging (50D102/50C97]-l-1 (Axial) CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 1/13/2016 1:59 PM Curve Plant Capsu le Material Ori. Heat # I Braidwood 2 I UNI RR SA508CL3 Axial I[50DI02/50C97]- I 1- 1 ' [50DI02/50C97]- 2 Braidwood 2 SA508CJ .3 . xial I -I 3 Braidwood 2 x s 508CL3 xial [50Dl02/50C97] - 1- 1 4 Braidwood 2 w SA508CL3 Axial [50D 102/50C97]- 1-1 5 Braidwood 2 v SA508CL3 Axial [50D102/50C97]- 1-1 I Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-1-1 (Axial Orientation) WCAP-18 107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-27 Lower Shell Forging 150D102/50C971-l-l (Axial) 100 - - .. - CV Graph 6 .02 : Hyperbolic Tangent Curve Printed on 1/ 13/2016 1:59 PM ~ ~ - 90 - 0 l /.T 80 - A 8 2 3 Llo~/_J
  • r
  • 4
~ 70 .... A 5 ci: 60 ~ .c 00 c 50 t1 ~ I ~ CJ ~ 40 I ... L_ Q. 30 )- r-J.~b r_ 20 f~ I C1°** I to /_J +~~ r ~ kZ ~ ~ I 0 -300 -200 -100 "" 0 100 200 300 400 500 600 Temperature (° F) Curve Fluence LSE USE d-USE T@SO d-T~SO 0 100 0 62.5 0 2 0 100 0 17.1 -45.4 3 0 100 0 112.4 49.9 4 0 100 0 101.3 38.8 5 0 100 0 100.4 37.9 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-1-1 (Axial Orientation) - Continued WCAP-18107-NP May 2016 Revision 0 J Westinghouse Non-Proprietary Class 3 5-28 S urveillance Program Weld Metal CVGraph 6.02: Hyperbolic Tangent Curve Printed on 1/1312016 2:03 PM Curve Plant Capsule Material Ori . Heat # 1 Braidwood 2 UNIRR WELD IA 442011 2 Braidwood 2 u WELD IA 442011 3 Braidwood 2 x WELD IA 442011 4 Braidwood 2 w WELD NIA 442011 s Braidwood 2 v WELD IA 442011 70 60 [ I} ~ I 50 c:: bl) i.. 40 ~ ~= z 30 u 20 0 ........-.~--~----~---~--------~--~----~--~--.....~--~------.... -300 -200 -100 0 100 200 300 400 500 600 Temperature (° F) Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) WCAP-1 8107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-29 Surveillance Program Weld Metal CVGraph 6.02: Hyperbolic Tangent Curve Printed on 1113/2016 2:03 PM Cun'e Fluence LSE USE d-USE T @30 d-T @,30 T @50 d-T @50 1 --- 2.2 69 0 -1 9.2 0 42.2 0 2 -- - 2.2 62 -7 I -20 -0.80 57.7 15.5 3 I - -- 2.2 I 68 -1 I 6.9 26.l 44.7 2.5 4 I - -- 2.2 68 -1 I 4.5 23.7 71.8 29.6 5 I --- 2.2 I 64 -5 I 26.4 45.6 87.6 45.4 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) - Continued WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-30 Surveillance Program Weld Metal CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 1/1312016 2:04 PM Curve Plant Capsule Material Ori . Heat # 1 Braidwood 2 u IRR WELD IA 442011 2 Braidwood 2 u WELD NIA 442011 3 Braidwood 2 x WELD IA 442011 4 Braidwood 2 w WELD NIA 442011 s Braidwood 2 v WELD IA 442011 80 0 e 1 70 A 2 a 3 60 $ 4 ~ 6 -*-==
l 50 0
~ = ~ c.. 40 ~ ~ ~ ~ 30 ~ ~ 20 ol==s~~~_!__L-'-L~---'-_J_--J...._J_....L-l_~ -300 -200 -100 0 100 200 300 400 500 600 Temperature (° F) Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) WCAP-18107-NP May 2016 Revision 0 -~ ~ - - Westinghouse N on-Proprietary Class 3 5-3 1 Surveillance Program Weld Metal CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 1113/2016 2:04 PM Curl'e Fluence LSE USE d-USE T @35 d-T @35 1 --- 1 73 .67 0 7.5 0 2 - -- 1 60. 15 - 13.52 24.7 17.2 3 - -- I 65 .09 -8.58 29.6 22. 1 4 --- I 55 .61 - 18.06 65.7 58 .2 5 --- 1 56.57 - 171 52.2 44.7 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) - Continued WCAP-1 8107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-32 Surveillance Program Weld Metal CVGraph 6.02: Hyperbolic Tangent Curve Printed on 111312016 2:04 PM Curve Pla nt Capsule Material Ori. Heat # 1 Braidwood 2 U IRR WELD NIA 442011 2 Braidwood 2 u WELD IA 442011 3 Braidwood 2 x WELD IA 442011 4 Braidwood 2 w WELD NIA 442011 s Braidwood 2 v WELD IA 442011 100 -* - ~ - ~*;!- 90 ....... 0 1 ~ 6 2 -,~ 7 I _Jr.li 't 80 ....... 8 3 .... $ 4 f ~ I 70 ..... - l/ .... 0 ' l-ci: QJ .c 60 -~ rJ1 .... a ~ 50 ... = QJ CJ l-QJ 40 r c~i Q. 30 ..... .... ~f
  • _11.
a 20 ... ~fl'J A 10 - /LT 0
  • A~ ,~
-* I ' I I I I -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-33 Surveillance Program Weld Metal CVGraph 6.02: Hyperbolic Tangent Curve Printed on 11 13/2016 2:04 PM Curve Fluence LSE USE d- USE T @50 d-T @50 1 --- 0 100 0 24.1 0 2 - -- 0 100 0 30.6 6.5 3 - -- 0 100 0 3 1.7 7 .6 4 --- 0 100 0 30.9 6.8 5 --- 0 100 0 44.5 20.4 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442011)-Continued WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-34 Heat-Affected Zone CVGraph 6.02: Hyperbolic Tangent Curve Printed on 11 13/2016 2:09 PM Curve Plant Capsule Material Ori . I Heat ti J Braidwood 2 NIRR SA508CL3 N IA [50D102'50C97]- 1-1 2 Braidwood 2 l SA508CL3 NiA I[50DI02150C97]- 1-1 3 Braidwood 2 x SA508CL3 N/ [50Dl02150C97]- 1-1 4 Braidwood 2 w SA508CL3 NIA [SOD 102150C97]- 1-1 5 Braidwood 2 \I SA508CL3 NIA [50D102150C97]- I 1-1 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 2 Reactor Vessel Heat-Affected Zone Material WCAP-1 8107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-35 Heat-Affected Zone CVGraph 6.02: Hyperbolic Tangent Curve Printed on 1/ 13/2016 2:09 PM 250 Po-----~--------------------------------------------------- .ll. 0 I A 2 200 8 3 .ll. $ 4 .ll. 150 crtJ 0 i;;;;;..-1._ _;.o___,1_ _....i...._ _...__.__ _..L..-----1"----L..--..L-.....l.--....l---""---L.--..L..-----l"--.....I...---' -300 -200 -100 0 100 200 300 400 500 600 Temperature (° F) Curve Flue nee LSE USE d-USE T (a),_,30 d-T @30 T @SO d-T @SO I -- - 2.2 155 0 -1 40.7 0 - 10 1.8 0 2 --- 2.2 200 45 -175.9 -35.2 -117.4 -15.6 3 --- 2.2 125 -30 - 151 -10.3 -123 . 1 -21.3 4 --- 2.2 157 2 -1 37 3.70 -87 .3 14.5 5 --- 2.2 154 -1 - 113.2 27.5 -68 .4 33.4 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 2 Reactor Vessel Heat-Affected Zone Material - Continued WCAP-18107-NP May2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-36 Heat-Affected Zone CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 1113/2016 2:09 PM Curve Plant Capsule Material Ori . Heat # l Braidwood 2 UNTR.R SA508CU NI A [SOD I 02150C97]- i l -1 2 Braidwood 2 u s 508Cl .3 NIA [50DI02/50C97]- 1-1 3 Braidwood 2 x SA508CL3 NI [50Dl02150C97] - 1-1 4 Braidwood 2 w SA508CL3 NI A (50Dl02150C97j-I 1-1 5 Braidwood 2 v SA508CL3 NI A [500 !02150C97 j-I 1-1 Figure 5-11 Cbarpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 2 Reactor Vessel Heat-Affected Zone Material WCAP-18107-NP May 20 16 Revision 0 Westinghouse N on-Proprietary Class 3 5-37 Heat-Affected Zone CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 1/13/2016 2:09 PM 90 --------------------------......------.--------------..-------------. a 80 0 1 W---+_QAA-4.©::..;+:,.,~::::::t:::::::::::::::::t=::::::::=t=::::::::=1 A 2 8 3 .E"2 70 60
  • 4
--~--1~~-t-~_,..,,,.._..~~~-t-~~-t-~~+-~___,t--~---+~~-* 0 '---'-~;s..;;--1.~...1.---1~-'-~...__--'-~"""---L~_._~1---i..~.____._~....._--1~~ -300 -200 -100 0 100 200 300 400 500 600 Temperature ( F) 0 C urve Fluence LSE SE d- USE T @,,35 d-T @,,35 I --- I 78 .6 0 -80 0 2 - -- I 70.64 -7.96 -101.6 -2L6 3 --- I 72.87 -5.73 -106.4 -26.4 4 --- I 81.71 3. 11 -49.8 30.2 5 -- - I 78.6 0 -49.9 30.1 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 2 Reactor Vessel Heat-Affected Zone Material - Continued WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-38 Heat-Affected Zone CVGraph 6.02: Hyperbolic Tangent Curve Printed on 1113120162:10 PM Curve Plant I Capsule Material Ori . Heat # l Braidwood 2 I NTRR SA508CL3 N IA [500 I02150C97]- I I 1-1 2 Braidwood 2 u SA508CJ ,3 "!'----~'---A-f--~--+~~-+~~-+-~~ A 2 80 8 3 t-t-~-1---t:",_.,.-Hli-+--+-~~-+~~~-t--~~-t-~~-+~~---t
  • 4 70 A 5 r-+--t---1r.l*BH~t--~-+--~~+-~-t~~-+-~---i
~ ~ 60 ~~~-+--~~-1.!f-~-lllH*'r-~-A-~~--t~~~+---~~-t-~~--t~~-----1 rJJ .... 50 ---~~--+-~~--~~lff-+-~~--+-~~--+~~~-+-~~-+-~~---~~~1 c ~ c.J t Q. 40 J--~~-+-~--1-1+1---l~,._,f-+~~~f--~~+-~~-+-~~-+~~~~~---t 0~~~9--L-1---1.---1.__JL_.1.--J_.....1-_L-1---1.---1.__J~~ -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) Curve Fluence LSE USE d-USE T (ti)SO d-T @SO I --- 0 100 0 -28.7 0 2 -- - 0 100 0 -104 -75 .3 3 -- - 0 JOO 0 -31 .6 -2 .9 4 -- - 0 100 0 -20.6 8.1 s - -- 0 100 0 1.2 29.9 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 2 Reactor Vessel Heat-Affected Zone Material - Continued WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-40 FL23, -10°F FL26, 0°F FL24, 10°F FL22, 15°F FL20, 15°F FL16, 20°F FL25, 25°F FL29, 30°F FL27, 50°F FL30, 72°F FL17, 125°F FL28, 175°F FL19, 200°F FL18, 210°F FL21, 220°F Figure 5-13 Charpy Impact Specimen Fracture Surfaces for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-l-1 (Tangential Orientation) WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-41 FT24, -l0°F FT22, 10°F FT18, l5°F FT21, 25°F FT23 , 30°F FT20, 35°F FT29, 45°F FT27, 50°F FT28, 60°F FT26, 72°F FT16, 125°F FT19, 175°F FT30, 200°F FT1 7, 210°F FT25, 220°F Figure 5-14 Charpy Impact Specimen Fracture Surfaces for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50Dl02/50C97]-1-1 (Axial Orientation) WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-42 FW24, -50°F FW21, -30°F FW28, -10°F FW18, 0°F FW19, 10°F FW25,25°F FW29,30°F FW17,40°F FW16, 50°F FW27,60°F FW26, 72°F FW20, 125°F FW23, 175°F FW30,200°F FW22,220°F Figure 5-15 Charpy Impact Specimen Fracture Surfaces for the Braidwood Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) WCAP-18107-NP May 2016 Revision 0 Westinghouse N on-Proprietary Class 3 5-43 FH29, -200°F FH23 , -150°F FH22, -125°F FH30, -100°F FH27, -80°F FH18, -60°F FH20, -50°F FH25, -10°F FH21 , 30°F FH19, 72°F FH16, 125°F FH24, 150°F FH26, 175°F FH28, 200°F FH1 7,210°F Figure 5-16 Charpy Impact Specimen Fracture Surfaces for the Braidwood Unit 2 Reactor Vessel Heat-Affected Zone Material WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-44 120.0 Ultimate Tensile Strength 100.0 -+---~u- ~ _--------------------------
  • o; 80.0 60 .0 0.2% Yield Strengln e
Cii 40 .0 20 .0 -+------------------------------- 0 . 0 +------.------.------,------r--------,-----~ 0 100 200 300 400 500 600 Temperature ('Fl Legend: _. , * , and
  • are unirradiated
!}., o, and o are irradiated to 3.73 x 10 19 n/cm 2 (E > 1.0 MeV) 80 Area Reduction 70 60 50 ~ ~ 40 ~
I c
Total Elongation 30 {] 20 10 Uniform Elongation 0 0 100 200 300 400 500 600 Temperature ('F) Figure 5-17 Tensile Properties for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-1-1 (Tangential Orientation) WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-45 120.0 . +------------ U_lli_m_at_e_T_en_s_ile_ Str _ e_n_,, gth_ _ _ _ _ _ _ _ _ _ _ __ 100 0 0 --0 80 .0 - -- - - ~ 0.2% Yield Strength ., 60 .0 u; 40 .0 20.0 + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0.0 0 100 200 300 400 500 600 Temperature {°F) Legend: .&. , * , and
  • are unirradiated Li, o, and o are irradiated to 3.73 x 10 19 n/cm2 (E > 1.0 MeV) 80 - ----
Area Reduction 70 60 50 ~ ~ 40 n
i Q
I 30 20 o-- - - - - Total Elongation 10 Uniform Elongation 0 0 100 200 300 400 500 600 Temperature {°F) Figure 5-18 Tensile Properties for Braidwood Unit 2 Reactor Vessel Lower Shell Forging [SOD102/SOC97]-1-1 (Axial Orientation) WCAP-18107-NP May 2016 Revision 0 Westinghouse Non-Proprietary Class 3 5-46 120.0 100.0 + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 Ultimate Tensile Strength A-_ - - - -
  • 80.0 r----=---=::::::;;======::::::=====::::~~==~~==:---1*
~ ~ 0.2% Yield Strength
l 60 .0 + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Vi 40 .0 _,__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ 20 .0 + - - - - - - - - -- -- - - - - - -- - - -- -- - -- - -- 0.0 0 100 200 300 400 500 600 Temperature (' F) Legend: * , * , and
  • are unirradiated
~' o, and o are irradiated to 3.73 x 10 19 n/cm2 (E > 1.0 MeV) 70 Area Reduction 60 50 40 ~ ~ ~
J 0 30 20
-u Total Elongation -~
0 I

10

'l! ~

Unifonn Elongation  :

0 0 100 200 300 400 500 600 Temperature ('F)

Figure 5-19 Tensile Properties for the Braidwood Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442011)

WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-47 FL4 - Tested at 76°F FLS - Tested at 150°F FL6 - Tested at 550°F Figure 5-20 Fractured Tensile Specimens from Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-1-1 (Tangential Orientation)

WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-48 FT4 - Tested at 76°F FT5 - Tested at 150°F FT6 - Tested at 550°F Figure 5-21 Fractured Tensile Specimens from Braidwood Unit 2 Reactor Vessel Lower Shell Forging [50D102/50C97]-1-1 {Axial Orientation)

WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-49 FW4 -Tested at 78°F FW5 -Tested at 150°F FW6 - Tested at 550°F Figure 5-22 Fractured Tensile Specimens from the Braidwood Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442011)

WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-50 110...-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

100

  • * *** ** * *** *** ** ** *** * * :_~:....:._~ * -~..!. :...:...:.._:..:_ ** ~ ** * * * * ******** * ** * **:*** * *** * ** ** ** **** * **** ********* * ***

.. .~

90

  • 1 I  :  :

80 ... . . * *** * ** **** **** *** **** *** *** *:** *** * *** ** ** **** **** *** * *** ** ** ** *:* ** . ... . .. . . . .. .. . .... .. . .. .. ... . .

70 ** *** ** ** *** * *** ** ** ** *** * ******** *:** ****** ****** *** *** **** ** ** ** ** * **:** ** *** **** * .. .. ...... .... . . ... .. . .

60 ******* *** ***** ***** *** **** ****** *:*** *** ***** **** **** ** *** ** ** **** ** *:** ** ** ** *** ****** ** .... ....... ... . .

VI .. ..

VI Q) 50 ....... .. .... ............ ' ' .. ' ' ... * ~ .. .. ........ . .. ' ' .. . ' ... . ' .. ' . .. . ' *:*. ' .. . .. .. ' ' ... .. ' ....... . . .. ..... .

I,_ .. ..

+.J l/) 40 1.' ... . ' .... ... . .... .... ' ' .. ' ' ... *: .. ..... ............. ' ... ' ... .... *:*.' ....... ' .... ' ... ' ' ... ' ..... .. .. .

1'  :  :

30 1***** ******* ** **** ******** ... . **** *: ******* *** ******** *** *** ***** *** ** *:** ** ** * ... ...... ... . .... ...... .. .. . .

20 Il* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * -~* * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * **

  • 10 i .. . .. .. .... .. .. . .... .. . . . . . .. ... . . : . . .. .. .... . ... ... . ... ... .. .. .. .. .. -~* . ... . .. .. . .... ..... .... . . . . ... . ... .

o+-~~~~+-~~~~-+-~~~~-+-~~~~-+-~~~~-+~~~~--1 0 10 20 30 Strain [%]

Tensile Specimen FL4 Tested at 76°F lQQ-r-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--.

~ /:== ::C~:.::::: .:*:::: * *: : .:: ::*:::.: : : . : .: : : : : : * :

70 ... ... .. ........ .... ... .. ........ .... . ......... .... .. .. ..... .. ...... ...... .... .. ... .... .. .. .. ....... .... ....

Ul

.Y 60 * *** * ** ** ** * * * ** ** *** * * * ***** ** *** * ~** ** ** ** ** * **** * *** ** ***** * ******

  • T* * **** * *\*** ** ** ************ *******

L......J Ul so Ul Q) 1-

+.J 40 *::::::*:::::::: : :::::::::::::::::i::* ..

  • :::*::::::::: ::::::::: ::*: ::::J:::::::::: ..

l/) . .

30 .. . *** ** ******** .. .. ... ... .. ..... ...... .. **** ******** ** *** **** ** *** ... .. ..... .. .. .. .. .. .. ... ..... .... .... .. ..... .

20 ...... .. ...... ... ... .... .... . *** * *:* .

10 ... *** ** ** *** ** ***** ***** ... . ** ** **. *** ..... ...... ... .. .. ... ... ...... .......

0 0 10 20 30 Strain (%]

Tensile Specimen FL5 Tested at 150°F Figure 5-23 Engineering Stress-Strain Curves for Braidwood Unit 2 Lower Shell Forging

[50D102/50C97]-1-1 Tensile Specimens FL4 and FL5 (Tangential Orientation)

WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-51 100 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~----.

90 .............. . ~ ....... ; .. .... ~.

80 ..... **************************** *:************************** * *** * **:************************************

70 ***********************************:***********************************:

60 ,**** *******************************'.***********************************:****** ................ .. .......... .

ti) 50 ***********************************:*************** * ******** * **** ******:******* *****************************

Vl QJ I...

.µ 40 ***********************************'.********************* *** ********** *:* **** **** ......................... .

(/) .. ..

30 ** *********************************:***********************************:-**********************************

20 :***********************************i****************

                                      • =************************************

10 ***************** ............. *****:*** .............................. **:**************** ................... .

o +-~~~~+-~~~~--~~~~-+-~~~~-+~~~~--1~~~~---1 0 10 20 30 Strain[%]

Tensile Specimen FL6 Tested at 550°F Figure 5-24 Engineering Stress-Strain Curve for Braidwood Unit 2 Lower Shell Forging

[50D102/50C97]-1-1 Tensile Specimen FL6 (Tangential Orientation)

WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-52 100 ....... .. ....... .... ......... ... .. : ................................... :................................... .

~ *~-~:--:~ * :* . ~-: =

70 60

~

  • ~

...... ... .... ... .. .... .. . .... * * *** ~ * ** * ** * ** * ** ***** * ** ** ** **** * ***** * ~** ****** *** ... ... ...... .. ......... .

(f)

(f)

Q) 50 ................................. ................................. "'." ............................... ..

  • ~

.µ L.. . .

tf) 40 ....... ***** ******** ** ******** ** **:*** . *********** ** ******* ***** **** ** *=** . ****** ******* ** ***** :*** *** *******

30 I * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * .. .; * * ** * * * * *** * * ** * * * * * * * * * * * * * * * * * * * *~*. * * * * * * ** * * * ** * ** *** * * * * * * * * * * ** * * *

  • 20 ... . ............ ... ... ........... ..... ........ ...... . . .... ..... ... *:* .................................. .
  • ~*

10 ... .. . ... . .. . ...... ...... ....... **:************* . .. . *** ** **************:*** . ***** * **** ******** *** ** ** ********

o +-~~~~-+-~~~~-+-~~~~-+~~~~--+~~~~___,1----~~~~

0 10 20 30 Strain[%]

Tensile Specimen FT4 Tested at 76°F 100.....--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

90 80 .......... ....... ....... .. ... ..... ., ... .... **** ***** ***** **** ** *** ** *-*** . ................................ .

70 .......................................... .. , ......... .............. ................................... .. ..... .

(f) 60 ................................... . ~ .. .. ... ..................... .. ..... .*. . . . .. . .. . . . . . .......... .... .. .. . .

~ . .

L.......I (f) 50 .................................. .,. .....................................-.................................. .

(f)

Q) ... ..

40 ... ., ........ ... .......... , ........ ., ............................. ******.*** . ............................... .

L .

.µ tf) .. ..

30 ...... ... ....... ........ ....... .. .... .. ..

20 ....... .. ... . ***** ******* ******* ***:** . ** ** ******* *** **** ***** ** ** ** ** **:** . *** ***** *** ** ******* ** ** ** ** *** ** *

~

10  : O O I

  • O I I I O O O I t O O > I O O O I O 0 0 O 0 O O I I 0 I 0 t 0 0 O
  • 0 0 0 0 0 0 o I I 0 O 0 0 0 0 I 0 0 0 0 t
  • 0 I I I 0 0 0 0 0:0 0 I I 0 I 0 I 0 0 I t 0 I 0 I I 0 0 I I I 0 I I I 0 0 0 0 0 0
  • 0 0 0 0

0 10 20 30 Strain [%]

Tensile Specimen FT5 Tested at 150°F Figure 5-25 Engineering Stress-Strain Curves for Braidwood Unit 2 Lower Shell Forging

[50D102/50C97]-1-1 Tensile Specimens FT4 and FT5 (Axial Orientation)

WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-53 100 ,-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--.

90 ******** * **** ~~~ ---*:****** ~*

I  :

  • 80 :***** *****************************'.****** ** ************** ***** ***** *:** ******** ****** **** ********* *** ** **

70 I **' * '* * * * '*** * * ** ** * * * ** ** * * ** *~* *' * ** * * * * * * * * * * * * * * * * ** * * * *' ** * * *~* * '* * * *** * * * * * * * * * * * * * * ** * * * * *** **

  • Vl 60 **** *** *** ** ** ******** ****** ** *** * *:*** ******* ***** ***************** * **:** * **** ************* ** **** ** ******* *

.Y Vl so ' .. '.' ' ...... ' ......... ' .. ' .. . .... .. .... ....... . ' .... ' ' .... ... **:*.'

    • ~'

Vl Q) .

L

.µ (J) 40 ***********************************'.***********************************:*********

30 ***********************************:***********************************:-******************

20 ;................... .. .............. ; ...................................:................................... .

'I 10 :** ..... .... ' ........... . ' ...... **: ............... . ' ............ ' .... *~*' ............ ' ........ ' ... .. ' .. .

o +-~~~~+-~~~~+-~~~~-+-~~~~-+-~~~~-+-~~~~~

0 10 20 30 Strain[%]

Tensile Specimen FT6 Tested at 550°F Figure 5-26 Engineering Stress-Strain Curve for Braidwood Unit 2 Lower Shell Forging

[50Dl02/50C97]-1-1 Tensile Specimen FT6 (Axial Orientation)

WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-54 110 100 .... .. .. .. .. ...... ........ ... .. ....... .. ... .. ...... ... .... ...... .. .. .. ........ .. ... ........ ....... .. .... .. ..

r-i

~

Ul 90 80 ~=-.- -. - ** :. - - * . _ * * *** * * * * :* * * *:*: :* * *: :**:* : * :*

70 *,*** .... ...... ... ******************1****************

'--' 60 . .

Vl .. ..

....... ,........ ,********* ******** *i*** .. **** ......... *** ** **** *** ** ** ** *=** .. **** .... ***** **** ********* *******

Ul (JJ 50 I....

40 ................................... ... ......................................*. . . . . . . . . .. ... .. .. ... .. ... ... ... .. .

.j...J

~

(J')

30 ' .. .. .. .. .... ... ..... ..... .. .. .... ... .... .......... .... ... ....... .........*...... .. .. ..... ......... .... ... ... . .

~

20 :... .... ... .. .. ....... .... ... ... ... ... ....................................-........... ..... ............. ... ... .

10 ................ ......... .. ....... ,,,,, . ............. ............. ..................................

o--~~~~--~~~~~.....-~~~~--~~~~--~~~~~--~~~~-

o 10 20 30 Strain [%]

Tensile Specimen FW4 Tested at 78°F 100 90 ** * * *** ~ ** ~- --~~* *********** ** ** ** *** * *** *** * * *T* *** ** * ** *** *** * ** ** *** * *** ** * ****

  • 80 .. .. ... ... .**********************1****************. - ** ******* *.... **-..-** *................................ .

70 ..........................................................................................................

r-i

~

Ul 60 .. ........ ..... ...... ... ...................... ..... ...... ... .. .. ... ... .. .. .. ...... ... .... ... .. .... ...... ..

Ul Ul so .. ........ .. .. .. .. ... .... ... ... ... ...... .

(JJ

.j...J (J')

40 ........ ***************************J********************

30 ' ** ** ******* *** *********** **** *** **:. ***********************************=************************************

20 ** ** ** * **** *** * ** *** **** *** * **** **:** ** ** * ********* ** * ** *** ** *** *** * **:*************** * ******** ************

10 " ************ ............. *********'.**************** ................. **:*** ................................ .

o--~~~~--~~~~~.....-~~~~--~~~~--~~~~~--~~~~-

o 10 20 30 Strain[%]

Tensile Specimen FW5 Tested at 150°F Figure 5-27 Engineering Stress-Strain Curves for Braidwood Unit 2 Surveillance Weld Material Tensile Specimens FW4 and FW5 WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-55 100 ...-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

90 ................. .......................................................................................... .

-/ _...J- - - - - ~- - ~

80 .. ********************************'.********** . ******* *** *************:****************

70 '. . ................................. ; ................................ *~** ................................ .

\  :

60 ... ' .... ' ... ' ... ' ' ... ' ... ' ... ' ' ... '~ .. ' ' ............ ' ... ' .. '\ ' .. ' . .. . ' *~* . ' ' .. ' ........ ' ' ....... ' ... ' ' .. ' ' . '

Vl Vl 50 :***********************************: .. .. .. .. ... ...... ....... \ ********+***********************************

<lJ L

\  :

40 ******************************* ** **:************************** ********:************************************

(f) .. ..

30 .... ' ............. ... ..... *********: *** .......... .. .. .. . ' ........ ******~ ....................... ' ' ...... .. . .

20 :* ... ' ....... . ' ................ ' ... '~ ....... ' ..... .. ..... ' ....... ' ..... *~*.' ............................ .... .

10 ... .. .. .. .... .. .. ********* .... *****:*** .............................. **:-** ................. ********* ...... .

o +-~~~~-+-~~~~--+~~~~~+-~~~~-+-~~~~--1~~~~----1 0 10 20 30 Strain [%]

Tensile Specimen FW6 Tested at 550°F Figure 5-28 Engineering Stress-Strain Curve for Braidwood Unit 2 Surveillance Weld Material Tensile Specimen FW6 WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-1 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY

6.1 INTRODUCTION

This section describes a discrete ordinates (Sn) transport analysis performed for the Braidwood Unit 2 reactor to determine the neutron radiation environment within the reactor pressure vessel and surveillance capsules. In this analysis, fast neutron exposure parameters in terms of fast neutron fluence (E > 1.0 MeV) and iron atom displacements (dpa) were established on a plant- and fuel-cycle-specific basis. An evaluation of the most recent dosimetry sensor set from Capsule V, withdrawn at the end of the 14th plant operating cycle, is provided. In addition, the sensor sets from the previously withdrawn and analyzed capsules (U, W, and X) were re-analyzed and are presented. Comparisons of the results from these dosimetry evaluations with the analytical predictions served to validate the plant-specific neutron transport calculations. These validated calculations subsequently form the basis for projections of the neutron exposure of the reactor pressure vessel for operating periods extending to 60 effective full-power years (EFPY).

The use of fast neutron fluence (E > 1.0 MeV) to correlate measured material property changes to the neutron exposure of the material has traditionally been accepted for the development of damage trend curves as well as for the implementation of trend cuive data to assess the condition of the vessel.

However, in recent years, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations and positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves and improved accuracy in the evaluation of damage gradients through the reactor vessel wall.

Because of this potential shift away from a threshold fluence toward an energy-dependent damage function for data correlation, ASTM Standard Practice E853-13, "Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results," [Ref. 16] recommends reporting displacements per iron atom (dpa) along with fluence (E > 1.0 MeV) to provide a database for future reference. The energy-dependent dpa function to be used for this evaluation is specified in ASTM Standard Practice E693-94, "Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom" [Ref. 17]. The application of the dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel wall has already been promulgated in Revision 2 to Regulatory Guide 1.99, Radiation Embrittlement of Reactor Vessel Materials" [Ref. 1].

All of the calculations and dosimetry evaluations described in this section and in Appendix A were based on nuclear cross-section data derived from ENDF/B-VI and used the latest available calculational tools.

Furthermore, the neutron transport and dosimetry evaluation methodologies follow the guidance of Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" [Ref. 18]. Additionally, the methods used to develop the calculated pressure vessel fluence are consistent with the NRC-approved methodology described in WCAP-14040-A, Revision 4, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves" [Ref. 19].

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-2 6.2 DISCRETE ORDINATES ANALYSIS The arrangement of the surveillance capsules in the Braidwood Unit 2 reactor vessel is shown in Figure 4-

1. Six irradiation capsules attached to the neutron pad are included in the reactor design that constitutes the reactor vessel surveillance program. The capsules are located at azimuthal angles of 58.5°, 61.0°,

121.5°, 238.5°, 241.0°, and 301.5°, as shown in Figure 4-1. These full-core positions correspond to the octant symmetric locations shown in Figures 6-2 and 6-3: 29.0° from the core cardinal axes (for the 61.0° and 241.0° capsules) and 31.5° from the core cardinal axes (for the 58.5°, 121.5°, 238.5°, and 301.5° capsules). The stainless steel specimen containers are 1.63-inch by 1.25-inch and are approximately 60 inches in height. The containers are positioned axially such that the test specimens are centered on the core midplane, thus spanning the approximate central 5 feet of the 12-foot-high reactor core.

From a neutronic standpoint, the surveillance capsules and associated support structures are significant.

The presence of these materials has a significant effect on both the spatial distribution of neutron fluence rate and the neutron spectrum in the vicinity of the capsules. However, the capsules are far enough apart that they do not interfere with one another. In order to determine the neutron environment at the test specimen location, the capsules themselves must be included in the analytical model.

In performing the fast neutron exposure evaluations for the Braidwood Unit 2 reactor vessel and surveillance capsules, a series of fuel-cycle-specific forward transport calculations were carried out using the following three-dimensional flux synthesis technique:

q>(r, 0, z) = q>(r, 0)

  • cp~~r;) (Eqn. 6-1) where cp(r,0,z) is the synthesized three-dimensional neutron flux distribution, cp(r,0) is the transport solution in r,0 geometry, cp(r,z) is the two-dimensional solution for a cylindrical reactor model using the actual axial core power distribution, and cp(r) is the one-dimensional solution for a cylindrical reactor model using the same source per unit height as that used in the r,0 two-dimensional calculation. This synthesis procedure was carried out for each operating cycle at Braidwood Unit 2.

For the Braidwood Unit 2 transport calculations, the r,0 models depicted in Figure 6-1 through 6-3 were utilized because, with the exception of the neutron pads, the reactor is octant symmetric. These r,0 models include the core, the reactor internals, the neutron pads - including explicit representations of octants not containing surveillance capsules and octants with surveillance capsules at 29° and 31.5°, the pressure vessel cladding and vessel wall, the insulation external to the pressure vessel, and the primary biological shield wall. These models formed the basis for the calculated results and enabled making comparisons to the surveillance capsule dosimetry ~va~uations. In develo~ing these analytical models, nominal design dimensions were employed for the various structural components. Likewise, water temperatures, and hence, coolant densities in the reactor core and downcomer regions of the reactor were taken to be representative of full power operating conditions. The coolant densities were treated on a fuel-cycle-specific basis. The reactor core itself was treated as a homogeneous mixture of fuel, cladding, water, and miscellaneous core structures such as fuel assembly grids, guide tubes, et cetera. The geometric mesh description of the r,0 reactor model in Figure 6-1 consisted of 257 radial by 131 azimuthal intervals. The geometric mesh description of the r,0 reactor models in Figure 6-2 and Figure 6-3 consisted of 255 radial by 143 azimuthal intervals. Mesh sizes were chosen to assure that proper convergence of the inner WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 6-3 iterations was achieved on a pointwise basis. The pointwise inner iteration flux convergence criterion utilized in the r,0 calculations was set at a value of0.001.

The r,z model used for the Braidwood Unit 2 calculations is shown in Figure 6-4 and extends radially from the centerline of the reactor core out to the primary biological shield and over an axial span from an elevation below the lower core support to several feet above the upper core plate. As in the case of the r,0 models, nominal design dimensions and full power coolant densities were employed in the calculations.

In this case, the homogenous core region was treated as an equivalent cylinder with a volume equal to that of the active core zone. The stainless steel former plates located between the core baffle and core barrel regions were also explicitly included in the model. The r,z geometric mesh description of these reactor models consisted of 153 radial by 216 axial intervals. As in the case of the r,0 calculations, mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a pointwise basis.

The pointwise inner iteration flux convergence criterion utilized in the r,z calculations was also set at a value of 0.001.

The one-dimensional radial model used in the synthesis procedure consisted of the same 153 radial mesh intervals included in the r,z model. Thus, radial synthesis factors could be determined on a meshwise basis throughout the entire geometry.

The core power distributions used in the plant-specific transport analysis for each of the first 19 fuel cycles at Braidwood Unit 2 included cycle-dependent fuel assembly initial enrichments, burnups, and axial power distributions (note that Cycles 1 through 18 have been completed; Cycle 19 is based on the expected core design for this cycle and an assumed cycle length of 1.5 EFPY). This information was used to develop spatial- and energy-dependent core source distributions averaged over each individual fuel cycle. Therefore, the results from the neutron transport calculations provided data in terms of fuel-cycle-averaged neutron fluence rate, which when multiplied by the appropriate fuel cycle length, generated the iricremental fast neutron exposure for each fuel cycle. In constructing these core source distributions, the energy distribution of the source was based on an appropriate fission split for uranium and plutonium isotopes based on the initial 235U enrichment and bum.up history of individual fuel assemblies. From these assembly-dependent fission splits, composite values of energy release per fission, neutron yield per fission, and fission spectrum were determined.

All of the transport calculations supporting this analysis were carried out using the DORT discrete ordinates code [Ref. 22] and the BUGLE-96 cross-section library [Ref. 21]. The BUGLE-96 library provides a coupled 47-neutron, 20-gamma-group cross-section data set produced specifically for light-water reactor (LWR) applications. In these analyses, anisotropic scattering was treated with a P5 Legendre expansion, and angular discretization was modeled with an S16 order of angular quadrature. Energy- and space-dependent core power distributions, as well as system operating temperatures, were treated on a fuel-cycle-specific basis.

Selected results from the neutron transport analyses are provided in Tables 6-1 through 6-12. In Tables 6-1 and 6-2, the calculated exposure rates and integral exposures expressed in terms of fast neutron fluence rate (E > 1.0 MeV) and fast neutron fluence (E > 1.0 MeV), respectively, are given at the radial and azimuthal center of the surveillance capsule positions, i.e., for the 29.0° and 31.5° dual capsule holder locations and 31.5° single capsule holder location. In Tables 6-3 and 6-4, the calculated exposure rates and integral exposures expressed in terms of iron atom displacement rate (dpa/s) and iron atom WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 6-4 displacements (dpa), respectively, are given at the radial and azimuthal center of the surveillance capsule positions, i.e., for the 29.0° and 31.5° dual capsule holder locations and 31.5° single capsule holder location. All surveillance capsules have been removed from Braidwood Unit 2, therefore results are not presented beyond Cycle 14 (as there are no capsules receiving fluence). These results, representative of the average axial exposure of the material specimens, establish the calculated exposure of the surveillance capsules.

Similar information in terms of calculated fast neutron fluence rate (E > 1.0 MeV), fast neutron fluence (E > 1.0 MeV), dpa/s, and dpa, are provided in Tables 6-5 through 6-8, for the reactor vessel inner radius at four azimuthal locations, as well as the maximum exposure observed within the octant. The vessel data given in Tables 6-5 through 6-8 were taken at the clad/base metal interface and represent maximum calculated exposure levels on the vessel. From the data provided in Table 6-6, it is noted that the peak clad/base metal interface vessel fluence (E > 1.0 MeV) at the end of Cycle 18 (i.e., after 24.07 EFPY of plant operation) was l.25E+ 19 n/cm2*

Table 6-6 and Table 6-8 include both plant- and fuel-cycle-specific calculated neutron exposures at the end of Cycle 18, at the end of projected Cycle 19, and at further projections to 60 EFPY. The calculations account for the uprate from 3411 MWt to 3586.6 MWt that occurred during Cycle 9, and incorporate an uprate from 3586.6 MWt to 3645 MWt that occurred during Cycle 17. The uprated reactor power level is however represented by 3658 MW to account for calorimetric uncertainties. The projections are based on the assumption that the average core power distributions and associated plant operating characteristics from the designs of Cycles 18 and 19 are representative of future plant operation. The future projections are based on the uprated reactor power level of 3645 MWt, but represented by 3658 MW to account for calorimetric uncertainty.

The calculated fast neutron exposures for all six surveillance capsules withdrawn from the Braidwood Unit 2 reactor are provided in Table 6-9. These neutron exposure levels are based on the plant- and fuel-cycle-specific neutron transport calculations performed for the Braidwood Unit 2 reactor. From the data provided in Table 6-9, Capsule V received a fast neutron fluence (E > 1.0 MeV) of 3.73E+19 n/cm2 after exposure through the end ofthe 14th fuel cycle (i.e., after 18.41 EFPY).

Updated lead factors for the Braidwood Unit 2 surveillance capsules are provided in Table 6-10. The capsule lead factor is defined as the ratio of the calculated fluence (E > 1.0 MeV) at the geometric radial and azimuthal center of the surveillance capsule to the corresponding maximum calculated fluence at the pressure vessel clad/base metal interface. In Table 6-10, the lead factors for capsules that have been withdrawn from the reactor (Capsules U, W, X, V, Z, and Y) were based on the calculated fluence values for the irradiation period corresponding to the time of withdrawal for the individual capsules.

Table 6-11 presents the maximum fast neutron fluences (E > 1.0 MeV) and Table 6-12 presents the maximum dpa for pressure vessel materials.

6.3 NEUTRON DOSIMETRY The validity of the calculated neutron exposures previously reported in Section 6.2 is demonstrated by a direct comparison against the measured sensor reaction rates and via a least-squares evaluation performed for each of the capsule dosimetry sets. However, since the neutron dosimetry measurement data merely WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-5 serve to validate the calculated results, only the direct comparison of measured-to-calculated results for the most recent surveillance capsule removed from service is provided in this section of the report. For completeness, the assessment of all measured dosimetry removed to date, based on both direct and least-squares evaluation comparisons is documented in Appendix. A.

The direct comparison of measured versus calculated fast neutron threshold reaction rates for the sensors from Capsule V, which was withdrawn from Braidwood Unit 2 at the end of the 14th fuel cycle, is summarized below.

Reaction Rate (rps/atom)

Reaction MIC Measured (M) Calculated (C)

Cu-63(n,a)Co-60 4.02E-17 3.57E-17 1.13 Fe-54(n,p)Mn-54 3.82E-15 3.86E-15 0.99 U-238(Cd)(n,f)Cs-137 2.20E-14 2.06E-14 1.07 Np-237(Cd)(n,f)Cs-137 l.99E-13 1.99E-13 1.00 Average 1.05

% Standard Deviation 6.3 The measured-to-calculated (MIC) reaction rate ratios for the Capsule V threshold reactions range from 0.99 to 1.13, and the average MIC ratio is 1.05 +/- 6.3% (lo'). This direct comparison falls within the

+/- 20% criterion specified in Regulatory Guide 1.190 [Ref. 18]. This comparison validates the current analytical results described in Section 6.2; therefore, the calculations are deemed applicable for Braidwood Unit 2.

6.4 CALCULATIONAL UNCERTAINTIES The uncertainty associated with the calculated neutron exposure of the Braidwood Unit 2 surveillance capsule and reactor pressure vessel is based on the recommended approach provided in Regulatory Guide 1.190. In particular, the qualification of the methodology was carried out in the following four stages:

1. Comparison of calculations with benchmark measurements from the Pool Critical Assembly (PCA) simulator at the Oak Ridge National Laboratory (ORNL).
2. Comparisons of calculations with surveillance capsule and reactor cavity measurements from the H.B. Robinson power reactor benchmark experiment.
3. An analytical sensitivity study addressing the uncertainty components resulting from important input parameters applicable to the plant-specific transport calculations used in the neutron exposure assessments.
4. Comparisons of the plant-specific calculations with all available dosimetry results from the Braidwood Unit 2 surveillance program.

WCAP-18107-NP May2016 Revision 0

~~~~~~~~~~~~~~---===----

Westinghouse Non-Proprietary Class 3 6-6 The first phase of the methods qualification (PCA comparisons) addressed the adequacy of basic transport calculation and dosimetry evaluation tecfuiiques and associated cross sections. This phase, however, did not test the accuracy of commercial core neutron source calculations nor did it address uncertainties in operational or geometric variables that impact power reactor calculations. The second phase of the qualification (H.B. Robinson comparisons) addressed uncertainties in these additional areas that are primarily methods-related and would tend to apply generically to all fast neutron exposure evaluations.

The third phase of the qualification (analytical sensitivity study) identified the potential uncertainties introduced into the overall evaluation due to calculational methods approximations, as well as to a lack of knowledge relative to various plant-specific input parameters. The overall calculational uncertainty applicable to the Braidwood Unit 2 analysis was established from results of these three phases of the methods qualification.

The fourth phase of the uncertainty assessment (comparisons with Braidwood Unit 2 measurements) was used solely to demonstrate the validity of the transport calculations and to confirm the uncertainty estimates associated with the analytical results. The comparison was used only as a check and was not used in any way to modify the calculated surveillance capsule and pressure vessel neutron exposures previously described in Section 6.2. As such, the validation of the Braidwood Unit 2 analytical model based on the measured plant dosimetry is completely described in Appendix A.

The following summarizes the uncertainties developed from the first three phases of the methodology qualification. Additional information pertinent to these evaluations is provided in Reference 20.

Description Capsule and Vessel IR PCA Comparisons 3%

H. B. Robinson Comparisons 3%

Analytical Sensitivity Studies 11 %

Additional Uncertainty for Factors not Explicitly Evaluated

~~~~~~~~~~+-~~~~~~~~~~

5%

Net Calculational Uncertainty 13%

The net calculational uncertainty was determmed by combining the individual components in quadrature.

Therefore, the resultant uncertainty was treated as random, and no systematic bias was applied to the analytical results. The plant-specific measurement comparisons described in Appendix A support these uncertainty assessments for Braidwood Unit 2.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 6-7 Table 6-1 Calculated Fast Neutron Fluence Rate (E > 1.0 MeV) at the Surveillance Capsule Center at Core Midplane for Cycles 1-14 Neutron Fluence Rate (n/cm2-s)

Cycle Total Single Cycle Length Time Dual Capsule Holder Capsule (EFPY) (EFPY) Holder 29.0° 31.5° 31.5° 1 1.18 1.18 9.61E+10 l.04E+ll l.03E+ll 2 1.12 2.30 6.98E+10 7.86E+l0 7.76E+10 3 1.12 3.42 7.27E+10 7.91E+l0 7.80E+10 4AlaJ 0.82 4.24 7.16E+10 7.79E+10 7.68E+10 4BcaJ 0.34 4.58 7.23E+10 7.87E+10 7.76E+10 5 1.27 5.85 6.34E+10 6.84E+10 6.74E+10 6 1.34 7.19 6.31E+10 6.87E+10 6.78E+10 7 1.37 8.56 6.65E+10 6.92E+10 6.81E+10 8 l.40 9.96 5.88E+10 6.16E+l0 6.07E+10 9 1.36 11.33 5.41E+10 5.88E+10 5.80E+10 10 1.45 12.78 5.08E+10 5.53E+10 5.46E+10 11 1.38 14.15 5.45E+l0 5.94E+10 5.86E+10 12 1.44 15.60 6.19E+10 6.57E+10 6.47E+10 13 1.45 17.04 6.llE+lO 6.45E+10 6.36E+10 14 1.37 18.41 6.26E+10 6.69E+10 6.60E+10 Note:

(a) Cycle 4 was divided into sub-cycles 4A and 4B because surveillance Capsule X was removed during a mid-cycle outage in Cycle 4.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-8 Table 6-2 Calculated Fast Neutron Fluence (E > 1.0 MeV) at the Surveillance Capsule Center at Core Midplane for Cycles 1-14 Neutron Fluence (n/cm2)

Cycle Total Single Cycle Length Time Dual Capsule Holder Capsule (EFPY) (EFPY) Holder 29.0° 31.5° 31.5° 1 1.18 1.18 3.57E+18 3.87E+18 3.81E+18 2 1.12 2.30 6.04E+18 6.65E+18 6.57E+18 3 1.12 3.42 8.60E+18 9.44E+18 9.31E+l8 4A 0.82 4.24 1.05E+19 1.15E+19 1.13E+19 4B 0.34 4.58 1.12E+l9 1.23E+19 1.21E+l9 5 1.27 5.85 1.38E+19 l.50E+19 l.48E+l9 6 1.34 7.19 1.64E+19 l.79E+19 1.77E+19 7 1.37 8.56 l.93E+19 2.09E+19 2.07E+19 8 1.40 9.96 2.19E+19 2.37E+l9 2.33E+19 9 1.36 11.33 2.43E+19 2.62E+19 2.58E+19 10 1.45 12.78 2.66E+l9 2.87E+19 2.83E+19 11 1.38 14.15 2.89E+l9 3.13E+ 19 3.09E+19 12 1.44 15.60 3.18E+19 3.43E+19 3.38E+l9 13 1.45 17.04 3.46E+19 3.72E+19 3.67E+l9 14 1.37 18.41 3.73E+19 4.01E+19 3.96E+19 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 6-9 Table 6-3 Calculated lronAtom Displacement Rate at the Surveillance Capsule Center and at Core Midplane for Cycles 1-14 Iron Atom Displacement Rate (duals)

Cycle Total Single Cycle Length Time Dual Capsule Holder Capsule (EFPY) (EFPY)

Holder 29.0° 31.5° 31.5° 1 1.18 1.18 l.89E-10 2.05E-10 2.02E-10 2 1.12 2.30 l.37E-10 l.54E-10 l.52E-10 3 1.12 3.42 1.42E-10 l.55E-10 l.53E-10 4A 0.82 4.24 l.40E-10 l.53E-10 l.50E-10 4B 0.34 4.58 1.42E-10 1.54E-10 l.52E-10 5 1.27 5.85 1.24E-10 l.34E-10 l.32E-10 6 1.34 7.19 l.23E-10 l.34E-10 l.32E-10 7 1.37 8.56 l.30E-10 l.35E-10 l.33E-10 8 1.40 9.96 1.lSE-10 1.20E-10 1.18E-10 9 1.36 11.33 l.06E-10 l.15E-10 l.13E-10 10 1.45 12.78 9.90E-11 l.08E-10 l.06E-10 11 1.38 14.15 l.06E-10 l.16E-10 l.14E-10 12 1.44 15.60 l.21E-10 l.28E-10 l.26E-10 13 1.45 17.04 1.19E-10.

  • l.26E-10 l.24E-10 14 1.37 18.41 l.22E-10 l.30E-10 l.28E-10 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 6-10 Table 6-4 Calculated Iron Atom Displacements at the Surveillance Capsule Center at Core Midplane for Cycles 1-14 Iron Atom Displacements (dpa)

Cycle Total Single Cycle Length Time Dual Capsule Holder Capsule (EFPY) (EFPY) Holder 29.0° 31.5° 31.5° 1 1.18 1.18 7.03E-03 7.62E-03 7.50E-03 2 1.12 2.30 l.19E-02 1.31E-02 1.29E-02 3 1.12 3.42 l.69E-02 1.85E-02 1.83E-02 4A 0.82 4.24 2.06E-02 2.25E-02 2.22E-02 4B 0.34 4.58 2.21E-02 2.41E-02 2.38E-02 5 1.27 5.85 2.70E-02 2.95E-02 2.91E-02 6 1.34 7.19 3.22E-02 3.52E-02 3.47E-02 7 1.37 8.56 3.79E-02 4.lOE-02 4.04E-02 8 1.40 9.96 4.30E-02 4.63E-02 4.56E-02 9 1.36 11.33 4.75E-02 5.13E-02 5.05E-02 10 1.45 12.78 5.20E-02 5.62E-02 5.53E-02 11 1.38 14.15 5.66E-02 6.12E-02 6.03E-02 12 1.44 15.60 6.21E-02 6.71E-02 6.60E-02 13 1.45 17.04 6.76E-02 7.28E-02 7.17E-02 14 1.37 18.41 7.29E-02 7.84E-02 7.72E-02 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 6-11 Table 6-5 Calculated Azimuthal Variation of Maximum Fast Neutron Fluence Rates (E > 1.0 MeV) at the Reactor Vessel Clad/Base Metal Interface Cycle Total Neutron Fluence Rate (n/cm2-s)

Cycle Length Time oo lEFPY) lEFPY) 15° 30° 45° Maximum 1 1.18 1.18 1.27E+10 2.04E+10 2.28E+10 2.55E+10 2.55E+10 2 1.12 2.3 1.0lE+lO 1.48E+l0 1.79E+10 2.llE+lO 2.llE+lO 3 1.12 3.42 1.02E+10 1.54E+10 1.75E+10 1.94E+10 1.94E+10 4A 0.82 4.24 1.04E+10 L55E+10 l.72E+10 l.90E+10 l.90E+10 4B 0.34 4.58 l.04E+10 l.56E+10 1.74E+10 1.93E+10 l.93E+10 5 1.27 5.85 9.69E+09 l.43E+10 1.58E+10 1.68E+10 1.68E+10 6 1.34 7.19 9.38E+09 l.42E+10 1.59E+10 1.72E+10 l.72E+10 7 1.37 8.56 8.00E+09 1.41E+10 l.63E+10 l.47E+10 l.75E+10 8 1.40 9.96 9.16E+09 1.38E+10 l.47E+10 l.30E+10 1.58E+10 9 1.36 11.33 9.08E+09 1.21E+10 1.32E+10 1.35E+10 1.36E+10 10 1.45 12.78 8.25E+09 1.12E+10 1.27E+10 l.28E+10 1.30E+l0 11 . 1.38 14.15 9.34E+09 l.25E+l0 1.37E+10 1.41E+10 l.41E+l0 12 1.44 15.60 9.04E+09 1.38E+l0 l.53E+10 l.46E+10 l.62E+10 13 1.45 17.04 8.80E+09 1.35E+ 10 1.49E+ 10 l.35E+l0 l.57E+10 14 1.37 18.41 9.80E+09 1.42E+10 1.58E+l0 1.SlE+lO l.64E+10 15 1.43 19.85 9.50E+09 l.47E+10 1.61E+10 l.51E+10 l.73E+10 16 1.41 21.26 9.92E+09 l.51E+10 1:63E+l0 1.50E+10 1.76E+l0 17 1.45 22.71 9.38E+09 1.48E+10 l.61E+10 1.48E+l0 l.74E+10 18 1.36 24.07 l.04E+l0 l.44E+10 1.50E+10 l.53E+l0 1.59E+10 19(a) 1.50 25.57 9.32E+o9 1.42E+l0 1.60E+10 1.51E+10 1.69E+10 Note:

(a) Values beyond end of cycle (EOC) 18 are projected. Braidwood Unit 2 is currently operating in Cycle 19.

Cycle 19 core design was used with an assumed cycle length of 1.5 EFPY.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 6-12 Table 6-6 Calculated Azimuthal Variation of Maximum Fast Neutron Fluence (E > 1.0 MeV) at the Reactor Vessel Clad/Base Metal Interface Cycle Total Neutron Fluence (n/cm2)

Cycle Length Time oo ID 15° 30° 45° Maximum

<EFPY) IBFPY) 1 1.18 1.18 4.71E+17 7.56E+17 8.48E+17 9.47E+17 9.47E+17 2 1.12 2.3 8.17E+17 1.26E+18 1.46E+18 1.67E+18 l.67E+l8 3 1.12 3.42 l.18E+18 l.80E+18 2.07E+l8 2.35E+18 2.35E+18 4A 0.82 4.24 l.45E+18 2.21E+18 2.52E+18 2.84E+18 2.84E+18 4B 0.34 4.58 l.56E+18 2.37E+18 2.70E+18 3.05E+18 3.05E+18 5 1.27 5.85 1.94E+18 2.94E+18 3.33E+18 3.72E+18 3.72E+18 6 1.34 7.19 2.34E+18 3.54E+18 4.00E+18 4.45E+18 4.45E+18 7 1.37 8.56 2.69E+18 4.15E+18 4.71E+18 5.09E+18 5.09E+18 8 1.40 9.96 3.09E+18 4.76E+l8 5.36E+18 5.66E+18 5.66E+18 9 1.36 11.33 3.48E+18 5.28E+18 5.92E+18 6.23E+18 6.23E+18 10 1.45 12.78 3.85E+18 5.79E+18 6.50E+18 6.82E+l8 6.82E+18 11 1.38 14.15 4.26E+18 6.33E+18 7.10E+18 7.43E+18 7.43E+18 12 1.44 15.60 4.65E+18 6.93E+18 7.76E+18 8.06E+18 8.09E+18 13 1.45 17.04 5.05E+18 7.54E+18 8.44E+18 8.68E+18 8.81E+18 14 1.37 18.41 5.47E+18 8.16E+18 9.12E+18 9.33E+18 9.52E+18 15 1.43 19.85 5.90E+18 8.82E+18 9.85E+18 l.OOE+19 l.03E+19 16 1.41 21.26 6.35E+18 9.50E+18 l.06E+19 1.07E+19 l.11E+19 17 1.45 22.71 6.78E+18 1.02E+19 l.13E+19 l.14E+19 l.19E+l9 18 1.36 24.07 7.19E+l8 l.07E+19 l.19E+19 l.20E+l9 l.25E+19 19(a) 1.50 25.57 7.63E+18 1.14E+19 l.27E+19 l.27E+19 l.33E+19 32.00 9.63E+18 1.43E+19 1.58E+19 1.58E+19 1.66E+19 36.00 1.09E+19 1.61E+19 l.78E+19 1.77E+19 l.87E+19 40.00 1.21E+19 1.79E+19 1.97E+19 l.96E+19 2.08E+19 44.00 1.34E+19 1.97E+19 2.17E+19 2.15E+19 2.28E+19 48.00 1.46E+19 2.15E+19 2.36E+19 2.35E+19 2.49E+19 52.00 1.59E+19 2.33E+19 2.56E+19 2.54E+19 2.70E+19 54.00 1.65E+19 2.42E+19 2.66E+19 2.63E+19 2.80E+19 57.00 1.74E+19 2.56E+19 2.81E+19 2.78E+19 2.95E+19 60.00 1.84E+19 2.69E+19 2.95E+19 2.92E+19 3.11E+19 Note:

(a) Values beyond EOC 18 are projected. Braidwood Unit 2 is currently operating in Cycle 19. Cycle 19 core design was used with an assumed cycle length of 1.5 EFPY.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-13 Table 6-7 Calculated Azimuthal Variation of Maximum Iron Atom Displacement Rates at the Reactor Vessel Clad/Base Metal Interface Cycle Total Iron Atom Displacement Rate (dpa/s)

Cycle Length Time oo ID 15° 30° 45° Maximum

<EFPY) <EFPY) 1 1.18 1.18 1.97E-11 3.13E-11 3.53E-11 4.04E-11 4.04E-11 2 1.12 2.3 1.57E-11 2.28E-11 2.76E-11 3.33E-11 3.33E-ll 3 1.12 3.42 1.59E-11 2.37E-ll 2.70E-11 3.07E-11 3.07E-11 4A 0.82 4.24 l.61E-11 2.39E-11 2.66E-11 3.0lE-11 3.0lE-11 4B 0.34 4.58 l.62E-11 2.41E-11 2.69E-11 3.05E-11 3.05E 5 1.27 5.85 l.51E-11 2.20E-11 2.44E-11 2.66E-11 2.66E-11 6 1.34 7.19 l.46E-11 2.19E-11 2.46E-11 2.71E-11 2.71E-11 7 1.37 8.56 l.25E-11 2.17E-11 2.52E-11 2.34E-11 2.68E-11 8 1.40 9.96 1.43E-11 2.12E-11 2.27E-11 2.06E-11 2.43E-11 9 - 1.36 11.33 l.41E-11 1.87E-11 2.05E-11 2.14E-11 2.14E-11 10 1.45 12.78 l.28E-11 1.73E-11 l.97E-11 2.02E-11 2.02E-11 11 1.38 14.15 l.45E-11 l.93E-11 2.12E-11 2.24E-11 2.24E-11 12 1.44 15.60 l.41E-11 2.13E-11 2.36E-11 2.31E-11 2.48E-11 13 1.45 17.04 1.37E-11 2.08E-11 2.30E-11 2.14E-11 2.42E-11 14 1.37 18.41 l.52E-11 2.18E-11 2.44E-11 2.39E-11 2.52E-11 15 1.43 19.85 l.48E-ll 2.27E-11 2.48E-11 2.40E-11 2.65E-11 16 1.41 21.26 1.54E-11 2.32E-11 2.52E-11 2.38E-ll 2.70E-11 17 1.45 22.71 1.46E-11 2.27E-11 2.49E-11 2.35E-11 2.67E-11 18 1.36 24.07 l.62E-ll 2.21E-11 2.31E-11 2.42E-11 2.43E-11 19(a) 1.50 25.57 l.45E-11 2.19E-11 2.48E-11 2.39E-11 2.59E-11 Note:

(a) Values beyond EOC 18 are projected. Braidwood Unit 2 is currently operating in cycle 19. Cycle 19 core design was used with an assumed cycle length of 1.5 EFPY.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-14 Table 6-8 Calculated Azimuthal Variation of Maximum Iron Atom Displacements at the Reactor Vessel Clad/Base Metal Interface Cycle Total Iron Atom Displacements (dpa)

Cycle Length Time oo ID 15° 30° 45° Maximum

<EFPY) (EFPY) 1 1.18 1.18 7.33E-04 1.16E-03 1.31E-03 1.SOE-03 1.SOE-03 2 1.12 2.3 1.27E-03 1.94E-03 2.25E-03 2.64E-03 2.64E-03 3 1.12 3.42 1.83E-03 2.78E-03 3.20E-03 3.72E-03 3.72E-03 4A 0.82 4.24 2.25E-03 3.40E-03 3.89E-03 4.50E-03 4.50E-03 4B 0.34 4.58 2.42E-03 3.65E-03 4.18E-03 4.82E-03 4.82E-03 5 1.27 5.85 3.02E-03 4.53E-03 5.15E-03 5.88E-03 5.88E-03 6 1.34 7.19 3.64E-03 5.45E-03 6.19E-03 7.03E-03 7.03E-03 7 1.37 8.56 4.18E-03 6.39E-03 7.28E-03 8.04E-03 8.04E-03 8 1.40 9.96 4.81E-03 7.33E-03 8.28E-03 8.96E-03 8.96E-03 9 1.36 11.33 5.41E-03 8.12E-03 9.15E-03 9.86E-03 9.86E-03 10 1.45 12.78 5.99E-03 8.91E-03 l.OOE-02 l.08E-02 l.08E-02 11 1.38 14.15 6.62E-03 9.75E-03 l.lOE-02 l.18E-02 l.18E-02 12 1.44 15.60 7.23E-03 l.07E-02 l.20E-02 1.28E-02 l.28E-02 13 1.45 17.04 7.86E-03 l.16E-02 1.30E-02 l.37E-02 l.37E-02 14 1.37 18.41 8.51E-03 l.26E-02 l.41E-02 1.48E-02 1.48E-02 15 1.43 19.85 9.18E-03 l.36E-02 1.52E-02 l.58E-02 l.58E-02 16 1.41 21.26 9.87E-03 l.46E-02 l.63E-02 1.69E-02 l.70E-02 17 1.45 22.71 l.05E-02 l.57E-02 l.75E-02 1.80E-02 l.82E-02 18 1.36 24.07 l.12E-02 l.65E-02 1.84E-02 l.89E-02 l.92E-02 19(a) 1.50 25.57 l.19E-02 l.76E-02 1.96E-02 2.0lE-02 2.04E-02 32.00 l.50E-02 2.20E-02 2.44E-02 2.SOE-02 2.55E-02 36.00 l.69E-02 2.48E-02 2.74E-02 2.80E-02 2.87E-02 40.00 l.89E-02 2.76E-02 3.05E-02 3.lOE-02 3.18E-02 44.00 2.08E-02 3.04E-02 3.35E-02 3.41E-02 3.50E-02 48.00 2.27E-02 3.32E-02 3.65E-02 3.71E-02 3.82E-02 52.00 2.47E-02 3.59E-02 3.95E-02 4.0lE-02 4.13E-02 54.00 2.56E-02 3.73E-02 4.llE-02 4.17E-02 4.29E-02 57.00 2.71E-02 3.94E-02 4.33E-02 4.39E-02 4.53E-02 60.00 2.86E-02 4.15E-02 4.56E-02 4.62E-02 4.77E-02 Note:

(a) Values beyond EOC 18 are projected. Braidwood Unit 2 is currently operating in cycle 19. Cycle 19 core design was used with an assumed cycle length of 1.5 EFPY.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 6-15 Table 6-9 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Braidwood Unit 2 Cumulative Neutron Fluence Iron Atom Irradiation Capsule Irradiation Time (E>l.OMeV) Displacements Cycle(s) lEFPY) (n/cm2) (dpa) u 1 1.18 3.87E+18 7.62E-03 x 1-4A 4.24 l.15E+19 2.25E-02 w 1-7 8.56 2.07E+19 4.04E-02 v 1-14 18.41 3.73E+19 7.29E-02 ylaJ 1-10 12.78 2.66E+19 5.20E-02 z(a) 1-10 12.78 2.83E+19 5.53E-02 Note:

(a) Capsules Y and Z were removed and placed in the spent fuel pool. No testing or analysis has been performed on these capsules.

Table 6-10 Calculated Surveillance Capsule Lead Factors Capsule Location Status Lead FactorCb>

58.5° (Capsule U) Withdrawn EOC 1 4.08 238.5° (Capsule X) Withdrawn during a mid-cycle outage in Cvcle 4 4.03 121.5° (Capsule W) Withdrawn EOC 7 4.06 61° (Capsule V) Withdrawn EOC 14 3.92 241° (Capsule Y) (a) Withdrawn EOC 10 3.90 301.5° (Capsule Z)laJ Withdrawn EOC 10 4.15 Notes:

(a) Capsules Y and Z were removed and placed in the spent fuel pool. No testing or analysis has been performed on these capsules.

(b) The capsule lead factors are slightly different from those determined in Reference 23 (for example, 3.90 vs 3.89 for Capsule Y). These differences could be attributed to the change from RadTrack Version 1.1.1 to 2.0 or some input data may now carry more significant figures. RadTrack is a graphical user interface (GUI) that encompasses Westinghouse's currently-approved tluence calculation and dosimetry analysis methodology.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 6-16 Table 6-11 Calculated Maximum Fast Neutron Fluence (E > 1.0 MeV) at the Pressure Vessel Welds and Shells Fast Neutron Fluence (n/cm2 Material 24.07EFPY 25.57EFPY 30EFPY 36EFPY Outlet Nozzle Forging to 3.26E+l6 3.50E+16 4.48E+l6 5.10E+16 Vessel Shell Welds (WR-20)

Inlet Nozzle Forging to 4.33E+16 4.64E+l6 5.95E+16 6.76E+l6 Vessel Shell Welds (WR-19)

Nozzle Shell 4.11E+l8 4.38E+18 5.53E+18 6.25E+l8 Nozzle Shell to Intermediate Shell 4.11E+18 4.38E+l8 5.53E+l8 6.25E+18 Circumferential Weld (WR-34)

Intermediate Shell l.24E+l9 l.32E+19 l.65E+19 l.85E+l9 Intermediate Shell to Lower Shell l.21E+l9 l.29E+19 l.59E+19 l.79E+l9 Circumferential Weld (WR-18)

Lower Shell l.25E+l9 l.33E+19 l.65E+19 l.85E+l9 Lower Shell to Lower Vessel Head 5.62E+l5 5.99E+15 7.44E+l5 8.34E+l5 Circumferential Weld (WR-29)

Fast Neutron Fluence (n/cm2 Material 48EFPY 54EFPY 57EFPY 60EFPY Outlet Nozzle Forging to 6.95E+l6 7.87E+16 8.33E+16 8.79E+16 Vessel Shell Welds (WR-20)

Inlet Nozzle Forging to 9.20E+l6 l.04E+17 l.10E+17 l.16E+l 7 Vessel Shell Welds (WR-19)

Nozzle Shell 8.40E+l8 9.48E+18 l.OOE+l9 l.06E+19 Nozzle Shell to Intermediate Shell 8.40E+l8 9.48E+l8 l.OOE+l9 l.06E+19 Circumferential Weld (WR-34)

Intermediate Shell 2.46E+19 2.77E+l9 2.92E+19 3.08E+l9 Intermediate Shell to Lower Shell 2.37E+l9 2.65E+19 2.80E+19 2.94E+l9 Circumferential Weld (WR-18)

Lower Shell 2.45E+l9 2.75E+l9 2.89E+19 3.04E+19 Lower Shell to Lower Vessel Head l.10E+l6 l.24E+16 l.31E+16 l.37E+l6 Circumferential Weld (WR-29)

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-17 Table 6-12 Calculated Maximum Iron Atom Displacements at the Pressure Vessel Welds and Shells Iron Atom Displacements (dpa)

Material 24.07 EFPY 25.57 EFPY 30EFPY 36EFPY Outlet Nozzle Forging to 8.64E-05 9.18E-05 l.16E-04 1.31E-04 Vessel Shell Welds (WR-20)

Inlet Nozzle Forging to 9.59E-05 1.02E-04 1.29E-04 1.45E-04 Vessel Shell Welds (WR-19)

Nozzle Shell 6.30E-03 6.71E-03 8.48E-03 9.58E-03 Nozzle Shell to Intermediate Shell 6.30E-03 6.71E-03 8.48E-03 9.58E-03 Circumferential Weld (WR-34)

Intermediate Shell 1.90E-02 2.02E-02 2.53E-02 2.84E-02 Intermediate Shell to Lower Shell 1.86E-02 1.98E-02 2.45E-02 2.75E-02 Circumferential Weld (WR-18)

Lower Shell 1.92E-02 2.04E-02 2.53E-02 2.84E-02 Lower Shell to Lower Vessel Head 3.55E-05 3.77E-05 4.67E-05 5.23E-05 Circumferential Weld (WR-29)

Iron Atom Displacements (dpa)

Material 48EFPY 54EFPY 57EFPY 60EFPY Outlet Nozzle Forging to 1.75E-04 1.98E-04 2.09E-04 2.20E-04 Vessel Shell Welds (WR-20)

Inlet Nozzle Forging to l .95E-04 2.20E-04 2.32E-04 2.44E-04 Vessel Shell Welds (WR-19)

Nozzle Shell l.29E-02 1.45E-02 1.54E-02 1.62E-02 Nozzle Shell to Intermediate Shell 1.29E-02 l.45E-02 1.54E-02 l.62E-02 Circumferential Weld (WR-34)

Intermediate Shell 3.78E-02 4.25E-02 4.49E-02 4.72E-02 Intermediate Shell to Lower Shell 3.64E-02 4.09E-02 4.31E-02 4.53E-02 Circumferential Weld (WR-18)

Lower Shell 3.75E-02 4.21E-02 4.44E-02 4.67E-02 Lower Shell to Lower Vessel Head 6.92E-05 7.76E-05 8.19E-05 8.61E-05 Circumferential Weld (WR-29)

WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-18 N

N 0

85.8 171.5 257.2

[cml Figure 6-1 Braidwood Unit 2 r,0 Reactor Geometry Plan View at the Core Midplane without Surveillance Capsules and 12.5° Neutron Pad Configuration WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-19 0

N r-:_

N

©

.._,_,...._~~-~~--+- "

85.8 171.5 257.2 343.~R

!cml Figure 6-2 Braidwood Unit 2 r,9 Reactor Geometry Plan View at the Core Midplane with a Single Capsule Holder and 20.0° Neutron Pad Configuration WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-20 0

N CJ'

.._.__._~~~~~~~-'-o w 85.8 17t5 257.2 3 43.o>R

[cml Figure 6-3 Braidwood Unit 2 r,9 Reactor Geometry Plan View at the Core Midplane with a Dual Capsule Holder and 22.5° Neutron Pad Configuration WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-21

];

~ +-~~~~~~~---,---,

en

~

w N

.q-

~ .,_~~~~~~~----1

~

'E0 IX)

-.i IX)

N I

w -+-~~~~~~~~

";b.o 85.8 171.5 257.2 343.o R

[cml Figure 6-4 Braidwood Unit 2 r,z Reactor Geometry Elevation View WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 7-1 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE The following surveillance capsule removal schedule (Table 7-1) meets the requirements of ASTM El 85-82 [Ref. 4].

Table 7-1 Surveillance Capsule Withdrawal Schedule Capsule ID and Capsule Lead Withdrawal Capsule Fluence Status Location Factor<a> EFPY(b,c> (n/cm 2, E > 1.0 MeV)(c) u (58.5°) Withdrawn (EOC 1) 4.08 1.18 3.87E+18 x (238.5°) Withdrawn (EOC 4A) 4.03 4.24 l.15E+ 19 w (121.5°) Withdrawn (EOC 7) 4.06 8.56 2.07E+19 z Cd) (301.5°) Withdrawn (EOC 10) 4.15 12.78 2.83E+19 y (e) (241.0°) Withdrawn (EOC 10) 3.90 12.78 2.66E+19 y<O(61.0o) Withdrawn (EOC 14) 3.92 18.41 3.73E+19 Notes:

(a) Updated in Capsule V dosimetry analysis; see Table 6-10.

(b) EFPY from plant startup.

(c) Updated in Capsule V dosimetry analysis; see Table 6-9.

(d) Capsule Z was removed and placed in the spent fuel pool. Capsule Z could be reinserted into the Braidwood Unit 2 reactor vessel to provide meaningful metallurgical data for 80 years of plant operation. If Capsule Z were reinserted into either vacant 31.5° dual-capsule location, it would receive the projected 80-year (76 EFPY) fluence of 3.96 x 10 19 n/cm2 in 5.4 EFPY. Capsule Z would exceed two times the projected 80-year (76 EFPY) fluence of 7.93 x 10 19 n/cm2 in 24.2 EFPY. However, since the Braidwood Unit 2 surveillance capsule positions have relatively high fast flux, reinsertion of this capsule can be revisited at a later date if an additional 20-year license extension is sought.

(e) Capsule Y should remain in the spent fuel pool. Potential reinsertion and/or testing of this capsule can be revisited at a later date if additional metallurgical data are needed for Braidwood Unit 2.

(f) The neutron fluence exposure of Capsule V is greater than once, but less than twice the peak vessel fluence (2.95 x 10 19 n/cm2) at 57 EFPY; therefore, Capsule V satisfies the requirements for a license renewal capsule for 60 years of plant operation.

WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 8-1 8 REFERENCES

1. U.S. Nuclear Regulatory Commission, Regulatory Guide 1.99, Revision 2, Radiation Embrittlement ofReactor Vessel Materials, May 1988.
2. Code of Federal Regulations, 10 CFR 50, Appendix G, Fracture Toughness Requirements, and Appendix H, Reactor Vessel Material Surveillance Program Requirements, Federal Register, Volume 60, No. 243, December 19, 1995.
3. Westinghouse Report WCAP-11188, Revision 0, Commonwealth Edison Company Braidwood Station Unit No. 2 Reactor Vessel Radiation Surveillance Program, December 1986.
4. ASTM El85-82, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, E706 (IF), ASTM, 1982.
5. Appendix G of the ASME Boiler and Pressure Vessel (B&PV) Code,Section XI, Division 1, Fracture Toughness Criteria for Protection Against Failure.
6. ASTM E208-06, Standard Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature ofFerritic Steels, ASTM Intemaional, 2006.
7. ASTM E399-12, Test Method for Plane-Strain Fracture Toughness of Metallic Materials, ASTM International, 2012.
8. ASTM E23-07a, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, 2007.
9. ASTM E2298-15, Standard Test Method for Instrumented Impact Testing of Metallic Materials, ASTM International, 2015.
10. ASTM A370-15, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM International, 2015.
11. ASTM E8/E8M-15a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, 2015.
12. ASTM E21-09, Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, ASTM International, 2009.
13. Westinghouse Report WCAP-12845, Revision 0, Analysis of Capsule U from the Commonwealth Edison Company Braidwood Unit 2 Reactor Vessel Radiation Surveillance Program, March 1991.
14. Westinghouse Report WCAP-14228, Revision 0, Analysis of Capsule Xfrom the Commonwealth Edison Company Braidwood Unit 2 Reactor Vessel Radiation Surveillance Program, March 1995.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 8-2

15. Westinghouse Report WCAP-15369, Revision 0, Analysis of Capsule W from Commonwealth Edison Company Braidwood Unit 2 Reactor Vessel Radiation Surveillance Program, March 2000.
16. ASTM E853-13, Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results, ASTM International, 2013.
17. ASTM E693-94, Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms ofDisplacements Per Atom (DPA), E706 (ID), ASTM, 1994.
18. Regulatory Guide 1.190, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence, U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March2001.
19. Westinghouse Report WCAP-14040-A, Revision 4, Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Coo/down Limit Curves, May 2004.
20. Westinghouse Report WCAP-16083-NP, Revision 1, Benchmark Testing of the FERRET Code for Least Squares Evaluation ofLight Water Reactor Dosimetry, April 2013.
21. RSICC Data Library Collection DLC-185, Revision 1, BUGLE-96, Coupled 47 Neutron, 20 Gamma-Ray Group Cross Section Library Derived from ENDFIB-VI for LWR Shielding and Pressure Vessel Dosimetry Applications, March 1996.
22. RSICC Computer Code Collection CCC-650, DOORS 3.2: One, Two- and Three Dimensional Discrete Ordinates Neutron/Photon Transport Code System, April 1998.
23. Exelon Nuclear Report, MUR Technical Evaluation, (Non-Proprietary Version), Attachment 7 to Braidwood Station, Units 1 & 2, Byron Station, Unit 1 & 2, Request for License Amendment Regarding Measurement Uncertainty Recapture (MUR) Power Uprate, June 2011 (ADAMS Accession No. ML111790042).

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-1 APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS A.1 NEUTRON DOSIMETRY Comparisons of measured dosimetry results to both the calculated and least-squares adjusted values for all surveillance capsules and ex-vessel neutron dosimetry (EVND) withdrawn and analyzed to date at Braidwood Unit 2 are described herein. The sensor sets have been analyzed in accordance with the current dosimetry evaluation methodology described in Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" [Ref. A-1]. One of the main purposes for presenting this material is to demonstrate that the overall measurements agree with the calculated and least-squares adjusted values to within +/- 20% as specified by Regulatory Guide 1.190

[Ref. A-1], thus serving to validate the calculated neutron exposures previously reported in Section 6.2 of this report.

A.1.1 Sensor Reaction Rate Determinations In this section, the results of the evaluations of the four surveillance capsules analyzed to date as part of the Braidwood Unit 2 Reactor Vessel Materials Surveillance Program are presented. The capsule designation, location within the reactor, and time of withdrawal of each of these dosimetry sets were as follows:

Capsule Azimuthal Withdrawal Time Irradiation Time Location (EFPY)

Surveillance Capsule U 58.5° End of Cycle 1 1.18 Surveillance Capsule X 238.5° During a mid-cycle outage in Cycle 4 4.24 Surveillance Capsule W 121.5° End of Cycle 7 8.56 Surveillance Capsule V 61° End of Cycle 14 18.41 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-2 The passive neutron sensors included in the evaluations of surveillance Capsules U, X, W, and V are summarized as follows:

Sensor Material Reaction Of Interest Capsule U CapsuleX CapsuleW CapsuleV Copper 63 Cu(n,a,)6°Co x x x x Iron 54Fe(n,p)54Mn x x x x Nickel 58Ni(n,p)58 Co x x x Note (a)

Uranium-238(Cd) 238U(n,f)FP x x x x Neptunium-237(Cd) 237Np(n,f)FP x x x x Cobalt-Aluminum(b) 59 Co(n,y) 6°Co x x x x Notes:

(a) The nickel monitors were not considered for Capsule V. The reaction product has a relatively short half-life (70.82 days, see Table A-1), and decayed away beyond utility in the intervening period between when Capsule V was pulled (October 2009) and when it was counted (December 2015).

(b) The cobalt-aluminum monitors for this plant include both bare and cadmium-covered sensors.

This section also includes the results of the evaluations of the four midplane EVND capsules and two off-midplane capsules analyzed to date. The EVND was irradiated during Cycle 14, then removed and analyzed. The capsule designation, azimuthal location outside the vessel, and axial location were as follows:

Capsule Azimuthal Location Axial Location from Cardinal Axis EVND Capsule A 0.5° Core Midplane EVND Capsule B 14.5° Core Midplane EVND Capsule C 29.5° Core Midplane EVND Capsule E 44.5° Core Midplane EVND Capsule D 44.5° Top of Active Core EVND Capsule F 44.5° Bottom of Active Core WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-3 The passive neutron sensors included in the evaluations of EVND Capsules A, B, C, D, E, and F are summarized as follows:

Sensor Reaction Of Capsule Capsule Capsule Capsule Capsule Capsule Material Interest A B c D E F Copper 63 Cu(n,cx.)6°Co x x x x x x Titanium 46Ti(n,p) 46 Sc x x x x x x Iron 54Fe(n,p)s4Mn x x x x x x Nickel 58 Ni(n,p)58Co x x x x x x Niobium 93Nb(n,n')93~ x x x x x x Cobalt- 59Co(n,y)6°Co x x x x x x Aluminum(a)

Note:

(a) The cobalt-aluminum monitors for this plant include both bare and cadmium-covered sensors.

Pertinent physical and nuclear characteristics of the passive neutron sensors analyzed are listed in Table A-1.

The use of passive monitors such as those listed above do not yield a direct measure of the energy-dependent neutron fluence rate at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time- and energy-dependent neutron fluence rate has on the target material over the course of the irradiation period. An accurate assessment of the average neutron fluence rate level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:

  • the measured specific activity of each monitor,
  • the physical characteristics of each monitor,
  • the operating history of the reactor,
  • the energy response of each monitor, and
  • the neutron energy spectrum at the monitor location.

Results from the radiometric counting of the neutron sensors from Capsules U, X, and Ware documented in References A-2, A-3, and A-4, respectively. The radiometric counting of the sensors from Capsule V was carried out by Pace Analytical Services, Inc. The radiometric counting followed established ASTM procedures. Results from the radiometric counting of EVND irradiated during Cycle 14 are documented in Reference A-5.

The irradiation history of the reactor over the irradiation periods experienced by Capsules U, X, Wand V was based on the monthly thermal power generation of Braidwood Unit 2 from initial reactor criticality through the end of the dosimetry evaluation period. Analysis of the EVND used Cycle 14 monthly thermal generation data. For the sensor sets utilized in the surveillance capsules and EVND, the half-lives of the product isotopes are long enough that a monthly histogram describing reactor operation has proven to be an adequate representation for use in radioactive decay corrections for the reactions of interest in the WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-4 exposure evaluations. The irradiation history applicable to surveillance Capsules U, X, W, and V and EVND irradiated during Cycle 14 is given in Table A-2.

Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:

A R =-------------

No FY L __!}_ Cj [1- e-A.tj] [e-"-td,j]

Pref where:

R Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pref (rps/nucleus).

A Measured specific activity (dps/g).

No Number of target element atoms per gram of sensor.

F Atom fraction of the target isotope in the target element.

y Number of product atoms produced per reaction.

Average core power level during irradiation period j (MW).

Prer Maximum or reference power level of the reactor (MW).

Calculated ratio of cl> (E > 1.0 MeV) during irradiation period j to the time weighted average cl> (E > 1.0 MeV) over the entire irradiation period.

Decay constant of the product isotope (1/sec).

Length of irradiation period j (sec).

Decay time following irradiation periodj (sec).

The summation is carried out over the total number of monthly intervals comprising the irradiation period.

In the equation describing the reaction rate calculation, the ratio [Pj]/[P red accounts for month-by-month variation ofreactor core power level within any given fuel cycle as well as over multiple fuel cycles. The ratio Cj, which was calculated for each fuel cycle using the transport methodology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in :fluence rate level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycle WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-5 irradiation, Cj is normally taken to be 1.0. However, for multiple-cycle irradiations, the additional Cj term should be employed. The impact of changing fluence rate levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low-leakage to low-leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another.

The fuel-cycle-specific neutron fluence rates and the computed values for Cj are listed in Tables A-3 and A-4, respectively, for Capsules U, X, W, and V. These fluence rates represent the capsule- and cycle-dependent results at the radial and azimuthal center of the respective capsules at core midplane.

Prior to using the measured reaction rates in the least-squares evaluations of the dosimetry sensor sets, additional corrections were made to the 238U cadmium-covered measurements to account for the presence of 235U impurities in the sensors, as well as to adjust for the build-in of plutonium isotopes over the course of the irradiation. Corrections were also made to the 238U and 237Np sensor reaction rates to account for gamma-ray-induced fission reactions that occurred over the course of the surveillance capsule irradiations. The correction factors corresponding to the Braidwood Unit 2 fission sensor reaction rates are summarized as follows:

Correction Capsule U CapsuleW CapsuleX CapsuleV 235 U Impurity/Pu Build-in 0.8690 0.8396 0.8071 0.7511 23sU(y,f) 0.9665 0.9670 0.9696 0.9682 Net 238U Correction 0.8399 0.8119 0.7826 0.7272 237Np(y,f) Correction 0.9903 0.9903 0.9911 0.9906 The correction factors for surveillance Capsules U, X, W, and V were applied in a multiplicative fashion to the decay-corrected cadmium-covered uranium fission sensor reaction rates.

Results of the sensor reaction rate determinations for surveillance Capsules U, X, W, and V are given in Tables A-5 through A-8. In Tables A-5 through A-8, the measured specific activities, decay-corrected saturated specific activities, and computed reaction rates for each sensor are listed. The cadmium-covered fission sensor reaction rates are listed both with and without the applied corrections for 235U impurities, plutonium build-in, and gamma-ray-induced fission effects.

Results of the sensor reaction rate determinations for midplane EVND Capsules A, B, C, and E are given in Tables A-9 through A-12. Results of the sensor reaction rate determinations for off-midplane EVND Capsules D and Fare given in Table A-13 and A-14. In Tables A-9 through A-14, the measured specific activities, decay-corrected saturated specific activities, and computed reaction rates for each sensor are listed.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-6 A.1.2 Least-Squares Evaluation of Sensor Sets Least-squares adjustment methods provide the capability of combining the measurement data with the corresponding neutron transport calculations resulting in a best-estimate neutron energy spectrum with associated uncertainties. Best-estimates for key exposure parameters such as fluence rate (E > 1.0 MeV) or dpa/s along with their uncertainties are then easily obtained from the adjusted spectrum. In general, the least-squares methods, as applied to dosimetry evaluations, act to reconcile the measured sensor reaction rate data, dosimetry reaction cross sections, and the calculated neutron energy spectrum within their respective uncertainties. For example, Ri +/-oR; == L,Caig +/-ocr;)(cpg +/-o'Ps) g relates a set of measured reaction rates, R;, to a single neutron spectrum, <pg, through the multigroup dosimeter reaction cross sections, O'ig, each with an uncertainty 8. The primary objective of the least-squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location of the measurement.

For the least-squares evaluation of the Braidwood Unit 2 dosimetry, the FERRET code [Ref. A-6] was employed to combine the results of the plant-specific neutron transport calculations and sensor set reaction rate measurements to determine best-estimate values of exposure parameters [fluence rate (E > 1.0 MeV) and dpa] along with-associated uncertainties for the four in-vessefcapsuies ancf slx ex-vessel capsules analyzed to date.

The application of the least-squares methodology requires the following input:

1. The calculated neutron energy spectrum and associated uncertainties at the measurement location.
2. The measured reaction rates and associated uncertainty for each sensor contained in the multiple foil set.
3. The energy-dependent dosimetry reaction cross sections and associated uncertainties for each sensor contained in the multiple foil sensor set.

For the Braidwood Unit 2 application, the calculated neutron spectrum was obtained from the results of plant-specific neutron transport calculations described in Section 6.2 of this report. The sensor reaction rates were derived from the measured specific activities using the procedures described in Section A.1.1.

The dosimetry reaction cross sections and uncertainties were obtained from the SNLRML dosimetry cross-section library [Ref. A-7].

The uncertainties associated with the measured reaction rates, dosimetry cross sections, and calculated neutron spectrum were input to the least-squares procedure in the form of variances and covariances. The assignment of the input uncertainties followed the guidance provided in ASTM Standard £944-13, "Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance"

[Ref. A-8].

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-7 The following provides a summary of the uncertainties associated with the least-squares evaluation of the Braidwood Unit 2 surveillance capsule and EVND sensor sets.

Reaction Rate Uncertainties The overall uncertainty associated with the measured reaction rates includes components due to the basic measurement process, irradiation history corrections, and corrections for competing reactions. A high level of accuracy in the reaction rate determinations is ensured by utilizing laboratory procedures that conform to the ASTM National Consensus Standards for reaction rate determinations for each sensor type.

After combining all of these uncertainty components, the sensor reaction rates derived from the counting and data evaluation procedures were assigned the following net uncertainties for input to the least-squares evaluation:

Reaction Uncertainty 63Cu(n,a.)6oCo 5%

46Ti{n,p)46Sc 5%

54Fe{n,p)54Mn 5%

58Ni{n,p)58Co 5%

93Nb(n,n')93~ 5%

238U{n,f)FP 10%

237 Np{n,f)FP 10%

59Co{n,y)60Co 5%

These uncertainties are given at the 1cr level.

Dosimetry Cross Section Uncertainties The reaction rate cross sections used in the least-squares evaluations were taken from the SNLRML library. This data library provides reaction cross-sections and associated uncertainties, including covariances, for 66 dosimetry sensors in common use. Both cross sections and uncertainties are provided in a fine multigroup structure for use in least-squares adjustment applications. These cross sections were compiled from recent cross-section evaluations, and they have been tested for accuracy and consistency for least-squares evaluations. Further, the library has been empirically tested for use in fission spectra determination, as well as in the fluence and energy characterization of 14 MeV neutron sources.

For sensors included in the Braidwood Unit 2 surveillance program, the following uncertainties in the fission spectrum averaged cross-sections are provided in the SNLRML documentation package.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-8 Reaction Uncertainty 63Cu(n,a.)6oCo 4.08-4.16%

46Ti(n,p)46Sc 4.50-4.87%

s4Fe(n,p)54Mn 3.05-3.11%

58Ni(n,p )58 Co 4.49-4.56%

93Nb(n,n')93m:Nb 6.96-7.23%

23sU(n,f)131Cs 0.54-0.64%

237Np(n,f)137 Cs 10.32-10.97%

59Co(n,y)6°Co 0.79-3.59%

These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated with the sensor sets used in LWR irradiations.

Calculated Neutron Spectrum The neutron spectra inputs to the least-squares adjustment procedure were obtained directly from the results of plant-specific transport calculations for each surveillance capsule and EVND capsule irradiation period and location. The spectrum for each capsule was input in an absolute sense (rather than as simply a relative spectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data were treated equally with the measurements.

While the uncertainties associated with the reaction rates were obtained from the measurement procedures and counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with the SNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the following relationship:

where R.. specifies an overall fractional normalization uncertainty and the fractional uncertainties Rg and Rg* specify additional random groupwise uncertainties that are correlated with a correlation matrix given by:

Where:

(g-g')2 H=---

2y2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-9 The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes the short-range correlations over a group range y (0 specifies the strength of the latter term). The value of() is 1.0 when g = g', and is 0.0 otherwise.

The set of parameters defining the input covariance matrix for the Braidwood Unit 2 calculated spectra was as follows:

Fluence Rate Normalization Uncertainty (Rn) 15%

Fluence Rate Group Uncertainties (Rg, Rg*)

(E > 0.0055 MeV) 15%

(0.68 eV < E < 0.0055 MeV) 25%

(E <0.68 eV) 50%

Short Range Correlation (0)

(E > 0.0055 MeV) 0.9 (0.68 eV < E < 0.0055 MeV) 0.5 (E <0.68 eV) 0.5 Fluence Rate Group Correlation Range (y)

(E > 0.0055 MeV) 6 (0.68 eV < E < 0.0055 MeV) 3 (E< 0.68 eV) 2 A.1.3 Comparisons of Measurements and Calculations Results of the least-squares evaluations of the dosimetry from the Braidwood Unit 2 surveillance capsules withdrawn to date are provided in Tables A-15, A-16, A-17, andA-18 for surveillance Capsules U, X, W, and V, respectively. Results of the least-squares evaluations of the EVND midplane capsules withdrawn to date are provided in Tables A-19, A-20, A-21, andA-22 for EVND Capsules A, B, C, and E, respectively.

Results of the least-squares evaluations of the EVND off-midplane capsules withdrawn to date are provided in Tables A-23 and A-24 for EVND Capsules D and F, respectively. In these tables, measured, calculated, and best-estimate values for sensor reaction rates are given for each capsule. Also provided in these tabulations are ratios of the measured reaction rates to both the calculated and least-squares adjusted reaction rates. These ratios of MIC and M/BE illustrate the consistency of the fit of the calculated neutron energy spectra to the measured reaction rates both before and after adjustment. Additionally, comparisons of the calculated and best-estimate values of neutron fluence rate (E > 1.0 MeV) and iron atom displacement rate are tabulated along with the BE/C ratios observed for each of the capsules. Note that for surveillance Capsule V, nickel foils were omitted due to their lack of meaningful information. The reaction product has a relatively short half-life (70.82 days, see Table A-1), and decayed away beyond utility in the intervening period between when Capsule V was pulled (October 2009) and when it was counted (December 2015).

The data comparisons provided in Tables A-15 through A-22 show that the adjustments to the calculated spectra are relatively small and within the assigned uncertainties for the calculated spectra, measured sensor reaction rates, and dosimetry reaction cross sections. Further, these results indicate that the use of WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-10 the least-squares evaluation results in a reduction in the uncertainties associated with the exposure of the surveillance capsules. From Section 6.4 of this report, the calculational uncertainty is specified as 13% at the 1cr level.

Further comparisons of the measurement results with calculations are given in Tables A-25 through A-27 for in-vessel surveillance capsules, BYND midplane capsules, and EVND off-midplane capsules, respectively. In these tables, calculations of individual threshold sensor reaction rates are compared directly with the corresponding measurements. These threshold reaction rate comparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculated energy spectra. Calculations of fast neutron exposure rates in terms of fast neutron fluence rate (E > 1.0 MeV) and dpa/s are compared with the best-estimate results obtained from the least-squares evaluation of the capsule dosimetry results in Tables A-28 and A-29 for in-vessel surveillance capsules and EVND midplane capsules, respectively.

These comparisons yield consistent and similar results with all measurement-to-calculation comparisons falling within the 20% limits specified as the acceptance criteria in Regulatory Guide 1.190 [Ref. A-1].

The measurement-to-calculation comparisons based on individual sensor reactions without recourse to the least-squares adjustment procedure are summarized in Table A-30. A similar comparison for exposure rates expressed in terms of fast (E > 1.0 MeV) flux and iron atom displacement rate (dpa/s) is summarized in Table A-31.

These data comparisons show similar and consistent results with the linear average MIC ratio of 0.98 in excellent agreement with the resultant least-squares BE/C ratios of 0.97 and 1.00 for neutron flux (E > 1.0 MeV) and iron atom displacement rate, respectively. The comparisons demonstrate that the calculated results are validated within the context of the assigned 13% (lcr) uncertainty.

Based on these comparisons, it is concluded that the calculated fast neutron exposures provided in Section 6.2 of this report are validated for use in the assessment of the condition of the materials comprising the beltline region of the Braidwood Unit 2 reactor pressure vessel.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-11 TableA-1 Nuclear Parameters Used in the Evaluation of Neutron Sensors Surveillance Capsules Product Fission Reaction of Half-Iife(a) Target Atom 90% Response Fraction<a> Yield Interest RangeCb> (MeV)

(Days) (%)

63 Cu (n,a) 6°Co 1925.5 0.6917 5.0-11.9 NIA 54fe {n,p) s4Mn 312.11 0.05845 2.1- 8.5 NIA 58Ni (n,p) 58Co 70.82 0.68077 1.5 - 8.3 NIA z3su (n,f) mes 10983.07 1.0000 1.3-7.0 6.02 237Np (n,f) 137Cs 10983.07 1.0000 0.34-3.8 6.17 59Co (n,y) 6°Co 1925.5 0.0015 non-threshold NIA Ex-Vessel Neutron Dosimetry Product Fission Reaction of Half-Iife(a) Target Atom 90% Response Fraction<a> Range<c> (MeV) Yield Interest

<Days) (%)

63 Cu (n,a) 6°Co 1925.5 0.6917 5.2-12.6 NIA 46Ti (n,p) 46Sc 83.79 0.0825 4.1-11.2 NIA s4Fe (n,p) s4Mn 312.11 0.05845 2.0-9.3 NIA 58Ni (n,p) 58Co 70.82 0.68077 1.3 -9.1 NIA 93Nb (n,n') 93~ 5890.0 l.000 0.3 -4.6 NIA 59Co (n,y) 6°Co 1925.5 0.00438 non-threshold NIA Notes:

(a) Half-life data are from ASTM E1005-10 [Re£ A-9]; target atom fraction data are from ASTM E1005-10 [Re£ A-9], with the exception of 59Co, which is from the materials specification for the cobalt foils.

(b) The 90% response range is defined such that, in the neutron spectrum characteristic of the Braidwood Unit 2 sur\reillance capsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit. All surveillance capsules exhibit a similar response range with minor variations; the listed values are for surveillance Capsule V (with the exception of 58Ni, which was not used for Capsule V - in this case, Capsule W is used).

( c) The 90% response range is defined such that, in the neutron spectrum characteristic of the Braidwood Unit 2 EVND capsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit. All EVND capsules exhibit a similar response range with minor variations; the listed values are for EVND Capsule E.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-12 TableA-2 Monthly Thermal Generation during the First 14 Fuel Cycles ofthe Braidwood Unit 2 Reactor Cyclel Cycle 2 Cycle3 Cycle 4A Month MWt-h Month MWt-h Month MWt-h Month MWt-h May-88 116073 May-90 85374 Nov-91 122919 May-93 1937581 Jun-88 533248 Jun-90 1472014 Dec-91 2015229 Jun-93 2342521 Jul-88 1169397 Jul-90 2415715 Jan-92 2422273 Jul-93 2415905 Aug-88 1916252 Aug-90 2451032 Feb-92 1949523 Aug-93 2458798 Sep-88 984844 Sep-90 2318122 Mar-92 2275870 Sep-93 2391762 Oct-88 498112 Oct-90 2316935 Apr-92 2356176 Oct-93 1449593 Nov-88 1618294 Nov-90 2262639 May-92 1605206 Nov-93 2408486 Dec-88 1961212 Dec-90 2397002 Jun-92 2144813 Dec-93 2491223 Jan-89 2244107 Jan-91 2498943 Jul-92 2379800 Jan-94 1667825 Feb-89 724667 Feb-91 2085837 Aug-92 2256254 Feb-94 2220994 Mar-89 303269 Mar-91 2465072 Sep-92 2171245 Mar-94 2522680 Apr-89 2278398 Apr-91 2364969 Oct-92 2465600 Apr-94 337197 May-89 1675139 May-91 1620535 Nov-92 2191093 Jun-89 1714433 Jun-91 2225330 Dec-92 2439339 Jul-89 1857133 Jul-91 2343558 Jan-93 2399465 Aug-89 2099116 Aug-91 1686282 Feb-93 1930384 Sep-89 1908625 Sep-91 616849 Mar-93 249733 Oct-89 2202479 Oct-91 0 Apr-93* 0 Nov-89 2283637 Dec-89 2472337 Jan-90 1961079 Feb-90 1251329 Mar-90 537829 Apr-90 0 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-13 Table A-2 (cont.) Monthly Thermal Generation during the First 14 Fuel Cycles of the Braidwood Unit 2 Reactor Cycle4B Cycles Cycle 6 Cycle 7 Month MWt-h Month MWt-h Month MWt-h Month MWt-h May-94 62421 Nov-94 768974 May-96 1055524 Nov-97 823552 Jun-94 2255220 Dec-94 2497819 Jun-96 2440428 Dec-97 2521367 Jul-94 2507249 Jan-95 2520337 Jul-96 2500074 Jan-98 2108233 Aug-94 2263461 Feb-95 2279240 Aug-96 2531092 Feb-98 1934344 Sep-94 2422475 Mar~95 2525597 Sep-96 2439919 Mar-98 2514507 Oct-94 513830 Apr-95 2257489 Oct-96 2529792 Apr-98 2438838 May-95 1941115 Nov-96 2441614 May-98 2519109 Jun-95 2431948 Dec-96 2520596 Jun-98 2452226 Jul-95 2471174 Jan-97 2527817 Jul-98 2535785 Aug-95 2465290 Feb-97 2277566 Aug-98 2529717 Sep-95 2433346 Mar-97 2518645 Sep-98 2448068 Oct-95 2525801 Apr-97 2425177 Oct-98 2546789 Nov-95 2437770 May-97 2528888 Nov-98 2453031 Dec-95 2513286 Jun-97 2440632 Dec-98 2536624 Jan-96 2519358 Jul-97 2525136 Jan-99 2532937 Feb-96 2338534 Aug-97 2342665 Feb-99 2229402 Mar-96 1068728 Sep-97 1996840 Mar-99 2510984 Apr-96 0 Oct-97 0 Apr-99 1337992 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-14 Table A-2 (cont.) Monthly Thermal Generation during the First 14 Fuel Cycles of the Braidwood Unit 2 Reactor Cycle 8 Cycle 9 Cycle 10 Cycle 11 Month MWt-h Month MWt-h Month MWt-h Month MWt-h May-99 792775 Nov-00 1971851 May-02 1492764 Nov-03 924855 Jun-99 2481789 Dec-00 2523191 Jun-02 2576463 Dec-03 2208313 Jul-99 2566856 Jan-01 2535345 Jul-02 2664202 Jan-04 2648166 Aug-99 2575841 Feb-01 2260181 Aug-02 2423204 Feb-04 2490418 Sep-99 2514570 Mar-01 2529666 Sep-02 2578984 Mar-04 2666704 Oct-99 2620200 Apr-01 2445489 Oct-02 2670503 Apr-04 2575907 Nov-99 2620200 May-01 2433139 Nov-02 2526727 May-04 2662466 Dec-99 1792748 Jun-01 2486507 Dec-02 2380652 Jun-04 2566145 Jan-00 2566309 Jul-01 2571305 Jan-03 2666831 Jul-04 2666522 Feb-00 2416809 Aug-01 2565886 Feb-03 2405353 Aug-04 2666585 Mar-00 2585039 Sep-01 2478229 Mar-03 2661555 Sep-04 2575742 Apr-00 2135902 Oct-01 2271153 Apr-03 2577220 Oct-04 2669419 May-00 2566309 Nov-01 1558485 May-03 2663979 Nov-04 2579875 Jun-00 2474009 Dec-01 2533510 Jun-03 2566897 Dec-04 2525664 Jul-00 2486923 Jan-02 2531767 Jul-03 2659507 Jan-05 2662794 Aug-00 2536590 Feb-02 2285984 Aug-03 2666221 Feb-05 2408374 Sep-00 2477204 Mar-02 2539072 Sep-03 2580656 Mar-05 2365701 Oct-00 1650194 Apr-02 1538311 Oct-03 2617346 Apr-05 1285249 Nov-03 214518 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-15 Table A-2 (cont.) Monthly Thermal Generation during the First 14 Fuel Cycles of the Braidwood Unit 2 Reactor Cycle 12 Cycle 13 Cycle 14 Month MWt-h Month MWt-h Month MWt-h May-05 2234513 Nov-06 2279455 May-08 1131033 Jun-05 2580389 Dec-06 2665455 Jun-08 2578649 Jul-05 2660557 Jan-07 2665584 Jul-08 2666012 Aug-05 2666131 Feb-07 2407312 Aug-08 2666139 Sep-05 2580543 Mar-07 2656050 Sep-08 2579919 Oct-05 2669803 Apr-07 2578858 Oct-08 2664427 Nov-05 2578547 May-07 2643254 Nov-08 2583710 Dec-05 2667850 Jun-07 2578834 Dec-08 2460020 Jan-06 2665952 Jul-07 2665497 Jan-09 2665967 Feb-06 2406134 Aug-07 2432497 Feb-09 2407999 Mar-06 2666219 Sep-07 2578997 Mar-09 2662427 Apr-06 2573991 Oct-07 2664925 Apr-09 2423673 May-06 2665488 Nov-07 2583048 May-09 2665478 Jun-06 2579266 Dec-07 2665056 Jun-09 2579925 Jul-06 2665790 Jan-08 2665146 Jul-09 2572861 Aug-06 2664719 Feb-08 2414961 Aug-09 2279475 Sep-06 2579118 Mar-08 2661487 Sep-09 2579821 Oct-06 1202474 Apr-08 1658214 Oct-09 924927 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-16 TableA-3 Surveillance Capsules U, X, W, and V Fast Neutron Fluence Rates for Cj Calculation, Core Midplane Elevation q>(E > 1.0 MeV) [n/cm2-s]

Cycle Length Fuel Cycle (EFPY) CapsuleU CapsuleX CapsuleW Capsule V 1 1.18 l.04E+ll l.04E+ll l.03E+ll 9.61E+l0 2 1.12 7.86E+10 7.76E+10 6.98E+10 3 1.12 7.91E+10 7.80E+10 7.27E+10 4A 0.82 7.79E+l0 7.68E+10 7.16E+10 4B 0.34 7.76E+10 7.23E+10 5 1.27 6.74E+10 6.34E+10 6 1.34 6.78E+10 6.31E+l0 7 1.37 6.81E+10 6.65E+10 8 1.40 5.88E+10 9 1.36 5.41E+10 10 1.45 5.08E+10 11 1.38 5.45E+10 12 1.44 6.19E+10 13 1.45 6.llE+lO 14 1.37 6.26E+10 Time-Weighted Average -- l.04E+ll 8.57E+10 7.65E+10 6.41E+10 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-17 TableA-4 Surveillance Capsules U, X, W, and V Ci Factors, Core Midplane Elevation Ci Cycle Length Fuel Cycle (EFPY) CapsuleU CapsuleX CapsuleW CapsuleV 1 1.18 1.00 1.22 1.34 1.50 2 1.12 0.92 1.02 1.09 3 1.12 0.92 1.02 1.13 4A 0.82 0.91 1.00 1.12 4B 0.34 1.02 1.13 5 1.27 0.88 0.99 6 1.34 0.89 0.98 7 1.37 0.89 1.04 8 1.40 0.92 9 1.36 0.84 10 1.45 0.79 11 1.38 0.85 12 1.44 0.97 13 1.45 0.95 14 1.37 0.98 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-18 TableA-5 Measured Sensor Activities and Reaction Rates for Surveillance Capsule U Corrected Average Measured Saturated Reaction Average Target Reaction Activity Activity Rate Reaction Isotope Rate (dpslgia> (dps/g) (rps/atom) Rate (rps/atom)

(rps/atom) 63 Cu (n,a) 6°Co 5.41E+04 4.30E+05 6.55E-17 63 6 6.06E-17 6.06E-17 Cu (n,a) °Co 4.78E+04 3.80E+05 5.79E-17 54Fe (n,p) 54Mn 4.81E+04 3.82E+05 5.83E-17 54Fe (n,p) 54Mn l.31E+06 4.03E+06 6.40E-15 5.88E-15 5.88E-15 s4Fe (n,p) 54Mn l.16E+06 3.57E+06 5.66E-15 5

8Ni (n,p) 58Co l.14E+06 3.51E+06 5.57E-15 58 Ni (n,p) 58 Co 4.99E+06 5.78E+07 8.28E-15 7.68E-15 7.68E-15 58 Ni (n,p) 58 Co 4.46E+06 5.17E+07 7.40E-15 59 Co (n;y) 6°Co 4.44E+06 5.14E+07 7.36E-15 59 Co (n,y) 60eo 1.08E+07 8.58E+07 5.60E-12 5.54E-12 5.54E-12 59 Co (n,y) 60 eo l.07E+07 8.50E+07 5.54E-12 59 eo(ed) (n,y) 60eo 1.06E+07 8.42E+07 5.49E-12 59 eo(ed) (n,y) 60eo 5.42E+06 4.30E+07 2.81E-12 2.86E-12 2.86E-12 59 Co(ed) (n,y) 60eo 5.57E+06 4.42E+07 2.89E-12 238 U(Cd) (n,f) 137es 5.56E+06 4.42E+07 2.88E-12 / 3.95E-14 3.32E-14 237 Np(ed) (n,f) 137es l.54E+o5 6.01E+06 3.95E-14 3.46E-13 3.43E-13 Note:

(a) Measured activity decay corrected to October 17, 1990.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-19 Table A-6

  • Measured Sensor Activities and Reaction Rates for Surveillance Capsule X Corrected Average Measured Saturated Reaction Average Target Reaction Activity Activity Rate Reaction Isotope (dps/g)<a> Rate (dps/g) (rps/atom) Rate (rps/atom)

(rps/atom) 63 Cu (n,n) 6°Co 1.35E+05 3.68E+05 5.61E-17 63 Cu (n,n) 6°Co 1.23E+05 3.35E+05 5.llE-17 5.24E-17 5.24E-17 63 Cu (n,n) 6°Co l.20E+05 3.27E+05 4.99E-17 54Fe (n,p) 54Mn l.71E+06 3.23E+06 5.13E-15 s4Fe (n,p) S4Mn 1.53E+06 2.89E+06 4.59E-15 4.76E-15 4.76E-15 s4Fe (n,p) s4Mn 1.52E+06 2.87E+06 4.56E-15 58Ni {n,p) 58 Co 9.39E+06 4.92E+07 7.04E-15 58Ni (n,p) 58 Co 8.48E+06 4.44E+07 6.36E-15 6.58E-15 6.58E-15 58Ni (n,p) 58 Co 8.43E+06 4.42E+07 6.32E-15 s9Co (n;y) 6oco 2.27E+07 6.18E+07 4.03E-12 59 Co (n;y) 6°Co 4.llE-12 4.llE-12 2.35E+07 6.40E+07 4.18E-12 59Co(Cd) (n,y) 6°Co 2.32E+07 6.32E+07 4.12E-12 59 Co(Cd) (n,y) 6°Co 2.19E-12 2.19E-12 l.20E+07 3.27E+07 2.13E-12 238 U(Cd) (n,f) 137Cs l.24E+07 3.38E+07 2.20E-12 3.54E-14 2.87E-14 237Np(Cd) (n,f) 137Cs 1.26E+07 3.43E+07 2.24E-12 2.35E-13 2.33E-13 Note:

(a) Measured activity decay corrected to August 30, 1994.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-20 TableA-7 Measured Sensor Activities and Reaction Rates for Surveillance Capsule W Corrected Average Measured Saturated Reaction Average Target Reaction Activi~ Activity Rate Reaction Isotope (dps/g) a) Rate (dps/g) (rps/atom) Rate (rps/atom)

(rps/atom) 63 Cu (n,a) 6°Co 1.88E+05 3.35E+05 5.12E-17 4.73E-17 4.73E-17 63 Cu (n,a) 6°Co l.68E+05 3.00E+05 4.57E-17 63 Cu (n,a) 6°Co 1.65E+05 2.94E+05 4.49E-17 54 54 Fe (n,p) Mn 1.76E+06 3.19E+06 5.06E-15 4.68E-15 4.68E-15 s4Fe (n,p) S4Mn l.55E+06 2.81E+06 4.46E-15 54 54 Fe (n,p) Mn 1.57E+06 2.85E+06 4.52E-15 58 58 Ni (n,p) Co 7.41E+06 4.95E+07 7.09E-15 6.63E-15 6.63E-15 ssNi (n,p) ssco 6.66E+06 4.45E+07 6.37E-15 58 58 Ni (n,p) Co 6.72E+06 4.49E+07 6.43E-15 59 Co (n,y) 6°Co 3.14E+07 5.60E+07 3.66E-12 3.68E-12 3.68E-12 59 60 Co (n,y) Co 3.18E+07 5.67E+07 3.70E-12 59 Co (n,y) 6°Co 3.15E+07 5.62E+07 3.67E-12 59 Co(Cd) (n,y) 6°Co 1.60E+07 2.86E+07 1.86E-12 1.93E-12 1.93E-12 59 6 Co(Cd) (n,y) °Co 1.66E+07 2.96E+07 1.93E-12 59 Co(Cd) (n,y) 6°Co 1.70E+07 3.03E+07 1.98E-12 238 U(Cd) (n,f) mes 8.49E+05 4.94E+06 3.25E-14 3.25E-14 2.54E-14 237 Np(Cd) (n,f) mes 6.60E+06 3.84E+07 2.45E-13 2.45E-13 2.43E-13 Note:

(a) Measured activity decay corrected to October 15, 1999.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-21 TableA-8 Measured Sensor Activities and Reaction Rates for Surveillance Capsule V Corrected Average Measured Saturated Reaction Average Target Reaction Activity Activity Rate Reaction Isotope (dps/g)<a> Rate (dps/g) (rps/atom) Rate (rps/atom)

{rps/atom) 63 Cu (n,a) 60Co l.06E+05 2.87E+05 4.38E-17 63 Cu (n,a) 6°Co 9.36E+04 2.54E+05 3.87E-17 4.03E-17 4.03E-17 63 Cu (n,a) 6°Co 9.24E+04 2.51E+05 3.82E-17 54 54 Fe (n,p) Mn 1.78E+04 2.61E+06 4.14E-15 s4Fe (n,p) S4Mn 1.56E+04 2.28E+06 3.62E-15 3.83E-15 3.83E-15 54 54 Fe (n,p) Mn l.60E+04 2.34E+06 3.72E-15 59 Co (n;y) 60Co 1.55E+07 4.20E+07 2.74E-12 59 Co (n;y) 60 Co 1.63E+07 4.42E+07 2.88E-12 2.82E-12 2.82E-12 59 Co (n;y) 6°Co 1.60E+07 4.34E+07 2.83E-12 59 Co(Cd) (n,y) 6°Co 8.73E+06 2.37E+07 1.54E-12 59 Co(Cd) (n,y) 6°Co 8.82E+06 2.39E+07 1.56E-12 1.55E-12 1.55E-12 59 Co(Cd) (n,y) 6°Co 8.78E+06 2.38E+07 l.55E-12 238 U(Cd) (n,f) 137Cs l.34E+06 4.61E+06 3.02E-14 3.02E-14 2.20E-14 237 Np(Cd) (n,f) 137Cs 9.17E+06 3.15E+07 2.0lE-13 2.0lE-13 1.99E-13 Note:

(a) Measured activity decay corrected to October 19, 2015.

TableA-9 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule A Average Measured Saturated Reaction Target Reaction Activity Activity Rate Isotope {dps/g)(a) Rate

{dps/g) (rps/atom)

(rps/atom) 63 Cu (n,a) 60Co 4.28E+02 2.67E+03 4.07E-19 4.07E-19 46 Ti (n,p) 46Sc 2.98E+03 5.46E+o3 5.26E-18 5.26E-18 54Fe (n,p) s4Mn 9.85E+03 l.73E+04 2.74E-17 2.74E-17 s4Fe (n,p) S4Mn 9.85E+03 l.73E+04 2.74E-17 58 Ni (n,p) 58Co l.26E+05 2.54E+05 3.64E-17 3.64E-17 93Nb (n,n') 93m:Nb 4.74E+o4 8.36E+05 1.29E-16 1.29E-16 59 Co (n,y) 6°Co 3.14E+05 1.96E+06 4.37E-14 4.37E-14 59 Co(Cd) (n,y) 6°Co l.73E+05 1.08E+06 2.41E-14 2.41E-14 Note:

(a) Measured activity decay corrected to December 17, 2009.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-22 TableA-10 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule B Average Measured Saturated Reaction Target Reaction Activity Activity Rate Isotope (dps/gia) Rate (dps/g) (rps/atom) (rps/atom) 63 Cu (n,a) 6°Co 5.44E+02 3.39E+03 5.17E-19 5.17E-19 46Ti (n,p) 46 Sc 3.88E+03 7.11E+03 6.85E-18 6.85E-18 54Fe (n,p) 54Mn l.39E+04 2.44E+04 3.87E-17 3.83E-17 s4Fe (n,p) s4Mn 1.36E+04 2.39E+04 3.79E-17 58 Ni (n,p) 58Co 1.64E+05 3.30E+05 4.73E-17 4.73E-17 93Nb (n,n') 93~ 6.16E+04 1.09E+06 1.68E-16 l.68E-16 59Co (n,y) 6°Co 5.22E+05 3.25E+06 7.27E-14 7.27E-14 59Co(Cd) (n,y) 6°Co 2.67E+05 1.66E+06 3.72E-14 3.72E-14 Note:

(a) Measured activity decay corrected to December 17, 2009.

TableA-11 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule C Average Measured Saturated Reaction Target Reaction Activity Activity Rate Isotope (dps/gia) Rate (dps/~) (rps/atom)

(rps/atom) 63 Cu (n,a) 6°Co 5.41E+02 3.37E+o3 5.14E-19 5.14E-19 46Ti (n,p) 46 Sc 3.83E+o3 7.02E+o3 6.76E-18 6.76E-18 54Fe (n,p) 54Mn l.42E+04 2.49E+o4 3.95E-17 3.95E-17 s4Fe (n,p) s4Mn 1.42E+04 2.49E+o4 3.95E-17 ssNi (n,p) ssco 1.75E+05 3.53E+o5 5.05E-17 5.05E-17 93Nb (n,n') 93~ 6.87E+o4 1.21E+06 1.87E-16 l.87E-16 s9Co (n,y) 60Co 5.92E+05 3.69E+06 8.24E-14 8.24E-14 59Co(Cd) (n,y) 6°Co 3.03E+05 1.89E+o6 4.22E-14 4.22E-14 Note:

(a) Measured activity decay corrected to December 17, 2009.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-23 TableA-12 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule E Average Measured Saturated Reaction Target Reaction Activity Activity Rate Isotope (dps/g)(a) Rate (dps/g) (rps/atom)

(rps/atom) 63 Cu (n,a) 60 Co 3.67E+02 2.29E+03 3.49E-19 3.49E-19 46Ti (n,p) 46 Sc 2.62E+03 4.80E+03 4.63E-18 4.63E-18 54Fe (n,p) 54Mn 1.04E+04 1.83E+04 2.90E-17 2.85E-17 s4Fe (n,p) 54Mn l.01E+04 1.77E+04 2.81E-17 58Ni (n,p) 58 Co 1.32E+05 2.66E+05 3.81E-17 3.81E-17 93N1J (n,n') 93~ 6.43E+04 l.13E+06 l.75E-16 1.75E-16 59 Co (n,y) 60Co 3.66E+05 2.28E+06 5.09E-14 5.09E-14 59Co(Cd) (n,y) 60Co 2.22E+05 1.38E+06 3.09E-14 3.09E-14 Note:

(a) Measured activity decay corrected to December 17, 2009.

TableA-13 Measured Sensor Activities and Reaction Rates for Off-Midplane EVND Capsule D Average Measured Saturated Reaction Target Reaction Activity Activity Rate Isotope Rate (dps/gia) (dps/g) (rps/atom)

(rps/atom) 63Cu (n,a) 6oco 1.35E+02 8.41E+o2 1.28E-19 1.28E-19 46Ti (n,p) 46 Sc 1.17E+03 2.14E+o3 2.07E-18 2.07E-18 s4Fe (n,p) s4Mn 3.81E+o3 6.69E+o3 l.06E-17 l.lOE-17 S4Fe (n,p) S4Mn 4.09E+o3 7.18E+o3 l.14E-17 58Ni {n,p) 58Co 5.87E+04 l.18E+o5 l.69E-17 l.69E-17 93N1J (n,n') 93~ 2.61E+04 4.60E+o5 7.lOE-17 7.lOE-17 s9co (n,y) 6oco 1.71E+05 l.07E+o6 2.38E-14 2.38E-14 59Co(Cd) (n,y) 6°Co 9.90E+04 6.17E+05 1.38E-14 l.38E-14 Note:

(a) Measured activity decay corrected to December 17, 2009.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-24 TableA-14 Measured Sensor Activities and Reaction Rates for Off-Midplane EVND Capsule F Average Measured Saturated Reaction Target Reaction Activity Activity Rate Isotope Rate (dps/gia) (dps/g) (rps/atom) (ms/atom) 63 Cu (n,a) 6°Co l.30E+02 8.10E+02 l.24E-19 l.24E-19 46Ti (n,p) 46Sc l.07E+03 l.96E+03 l.89E-18 l.89E-18 54 Fe (n,p) 54Mn 4.15E+03 7.28E+03 l.16E-17 1.12E-17 s4Fe (n,p) s4Mn 3.89E+03 6.83E+03 l.OSE-17 ssNi (n,p) ssco 5.70E+04 l.15E+05 l.64E-17 l.64E-17 93Nb (n,n') 93~ 2.13E+04 3.76E+05 5.SOE-17 5.SOE-17 59 Co (n,y) 6°Co 2.52E+05 1.57E+06 3.51E-14 3.51E-14 59 Co(Cd) (n,y) 60Co l.23E+05 7.66E+05 l.71E-14 l.71E-14 Note:

(a) Measured activity decay corrected to December 17, 2009.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-25 TableA-15 Least-Squares Evaluation of Dosimetry in Surveillance Capsule U (31.5° Azimuth, Core Midplane - Dual Capsule Holder) Cycle 1 Irradiation Reaction Rate (rps/atom)

Reaction Best-Measured Calculated MIC M/BE BE/C Estimate (M) (C)

<BE) 63 Cu (n,a) 6°Co 6.06E-17 5.33E-17 5.75E-17 1.14 1.05 1.08 54Fe (n,p) 54Mn 5.87E-15 6.06E-15 5.95E-15 0.97 0.99 0.98 58Ni (n,p) 58 Co 7.68E-15 8.52E-15 8.16E-15 0.90 0.94 0.96 59Co (n,y) 6°Co 5.54E-12 5.08E-12 5.49E-12 1.09 1.01 1.08 59 6 Co(Cd) (n,y) °Co 2.86E-12 3.27E-12 2.89E-12 0.87 0.99 0.88 238 U(Cd) (n,f) 137Cs 3.31E-14 3.31E-14 3.18E-14 1.00 1.04 0.96 237Np(Cd) (n,f) 137 Cs 3.43E-13 3.26E-13 3.28E-13 1.05 1.04 1.00 Average of Fast Energy Threshold Reactions 1.01 1.01 1.00 Standard Deviation 8.9% 4.6% 5.0%

Best-Calculated Parameter  % Unc. Estimate  % Unc. BE/C (C)

<BE)

Fluence Rate E>l.OMeV 1.05E+ll 13 1.0IE+ll 6 0.95 (n/cm2-s)

Fluence Rate E>O.l MeV 4.69E+ll - 4.62E+ll 10 0.98 (n/cm2-s) dpa/s 2.03E-10 13 l.98E-10 8 0.97 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-26 Table A-16 Least-Squares Evaluation of Dosimetry in Surveillance Capsule X (31.5° Azimuth, Core Midplane - Single Capsule Holder) Cycles 1 through Mid-Cycle Outage in Cycle4 Reaction Rate (rps/atom)

Reaction Best- MIC M/BE BE/C Measured Calculated Estimate (M) (C)

(BE) 63 60 Cu (n,a) Co 5.23E-17 4.54E-17 4.95E-17 1.15 1.05 1.09 54 54 Fe (n,p) Mn 4.76E-15 5.06E-15 4.93E-15 0.94 0.96 0.98 58 Ni (n,p) 58 eo 6.58E-15 7.lOE-15 6.84E-15 0.93 0.96 0.96 59 60 eo (n,y) eo 4.llE-12 4.12E-12 4.08E-12 1.00 1.01 0.99 59 60 eo(ed) (n,y) eo 2.19E-12 2.66E-12 2.22E-12 0.82 0.99 0.83 238 U(ed) (n,f) mes 2.87E-14 2.73E-14 2.58E-14 1.05 1.11 0.95 237 Np(ed) (n,f) mes 2.32E-13 2.67E-13 2.40E-13 0.87 0.97 0.90 Average of Fast Energy Threshold Reactions 0.99 1.01 0.98 Standard Deviation 11.3% 6.7% 7.2%

Best-Calculated Parameter %Unc. Estimate %Unc. BE/C (C)

<BE)

Fluence Rate E> l.OMeV 8.65E+l0 13 8.04E+l0 6 0.92 (n/cm2-s)

Fluence Rate E>0.1 MeV 3.83E+ll - 3.56E+ll 10 0.92 (n/cm2 -s) dpa/s l.66E-10 13 l.56E-10 8 0.93 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-27 TableA-17 Least-Squares Evaluation of Dosimetry in Surveillance Capsule W (31.5° Azimuth, Core Midplane- Single Capsule Holder) Cycles 1-7 Irradiation Reaction Rate (rps/atom)

Reaction Best- MIC BE/C Measured Calculated M/BE Estimate (M) (C) (BE) 63Cu (n,a.) 6oCo 4.73E-17 4.09E-17 4.59E-17 1.16 1.03 1.12 54Fe (n,p) 54Mn 4.68E-15 4.51E-15 4.77E-15 1.04 0.98 1.06 58Ni (n,p) 58 Co 6.63E-15 6.32E-15 6.68E-15 1.05 0.99 1.06 59 Co (n,y) 6°Co 3.67E-12 3.33E-12 3.64E-12 1.10 1.01 1.09 59Co(Cd) (n,y) 6°Co l.92E-12 2.17E-12 l.95E-12 0.89 0.99 0.90 238U(Cd) (n,f) 137Cs 2.54E-14 2.42E-14 2.51E-14 1.05 1.01 1.04 237Np(Cd) (n,f) 137 Cs 2.43E-13 2.37E-13 2.42E-13 1.03 1.00 1.02 Average of Fast Energy Threshold Reactions 1.07 1.00 1.06 Standard Deviation 5.0% 1.9% 3.5%

Best-Calculated Parameter %Unc. Estimate %Unc. BE/C (C)

(BE)

Fluence Rate E>l.OMeV 7.68E+l0 13 7.88E+10 6 1.02 (n/cm2-s)

Fluence Rate E>O.lMeV 3.39E+ll - 3.46E+ll 10 1.01 (n/cm2-s) dpa/s 1.47£..10 13 l.51E-10 7 1.02 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-28 Table A-18 Least-Squares Evaluation of Dosimetry in Surveillance Capsule V (29.0° Azimuth, Core Midplane- Dual Capsule Holder) Cycles 1-14 Irradiation Reaction Rate (rps/atom)

Reaction Best- MIC M/BE BE/C Measured Calculated Estimate (M) (C) lBE) 63 Cu (n,a) 60eo 4.02E-17 3.57E-17 3.90E-17 1.13 1.03 1.09 54Fe (n,p) 54Mn 3.82E-15 3.86E-15 3.97E-15 0.99 0.96 1.03 59eo (n,y) 60eo 2.82E-12 2.99E-12 2.80E-12 0.94 1.01 0.94 59 eo(ed) (n,y) 60eo 1.55E-12 1.94E-12 1.57E-12 0.80 0.99 0.81 238 U(ed) (n,f) mes 2.20E-14 2.06E-14 2.09E-14 1.07 1.05 1.02 237 Np(ed) (n,f) mes l.99E-13 l.99E-13 1.99E-13 1.00 1.00 1.00 Average of Fast Energy Threshold Reactions 1.05 1.01 1.04 Standard Deviation 6.3% 3.9% 3.7%

Best-Calculated Parameter %Unc. Estimate %Unc. BE/C (C) lBE)

Fluence Rate E> 1.0MeV 6.47E+10 13 6.54E+l0 6 1.01 (n/cm2 -s)

Fluence Rate E>O.l MeV 2.84E+ll - 2.85E+ll 10 1.00 (n/cm2-s) dpa/s l.24E-10 13 1.25E-10 8 1.00 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-29 TableA-19 Least-Squares Evaluation of Dosimetry in EVND Capsule A (0.5° Azimuth, Core Midplane) Cycle 14 Irradiation Reaction Rate (rps/atom)

Reaction Best- BE/C Measured Calculated MIC MIBE Estimate (M) (C)

<BE) 63 Cu (n,a) 6°Co 4.07E-19 4.38E-19 3.98E-19 0.93 1.02 0.91 46 46 Ti (n,p) Sc 5.26E-18 5.87E-18 5.24E-18 0.90 1.00 0.89 s4Fe (n,p) 54Mn 2.74E-17 3.llE-17 2.77E-17 0.88 0.99 0.89 58 58 Ni (n,p) Co 3.63E-17 4.35E-17 3.83E-17 0.84 0.95 0.88 93Nb (n,n') 93°Nb l.29E-16 l.23E-16 l.25E-16 1.05 1.03 1.01 59 Co (n,y) 6°Co 4.37E-14 4.00E-14 4.36E-14 1.09 1.00 1.09 59 6 Co(Cd) (n,y) °Co 2.41E-14 2.28E-14 2.41E-14 1.06 1.00 1.06 Average of Fast Energy Threshold Reactions 0.92 1.00 0.92 Standard Deviation 8.7% 3.1% 5.9%

Best-Calculated Parameter %Unc. Estimate %Unc. BE/C (C)

<BE)

Fluence Rate E>l.OMeV 5.25E+08 13 5.01E+08 6 0.95 (n/cm2-s)

Fluence Rate E>0.1 MeV 4.91E+09 - 5.13E+09 10 1.04 (n/cm2-s) dpa/s l.68E-12 13 l.71E-12 8 1.02 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-30 Table A-20 Least-Squares Evaluation of Dosimetry in EVND Capsule B (14.5° Azimuth, Core Midplane) Cycle 14 Irradiation Reaction Rate (rps/atom)

Reaction Best- MIC MIBE BE/C Measured Calculated Estimate (M) (C)

<BE) 63 Cu (n,a) 60Co 5.17E-19 5.30E-19 5.06E-19 0.98 1.02 0.96 46Ti (n,p) 46 Sc 6.85E-18 7.29E-18 6.82E-18 0.94 1.00 0.94 54Fe (n,p) 54Mn 3.83E-17 4.02E-17 3.75E-17 0.95 1.02 0.93 58Ni (n,p) 58Co 4.73E-17 5.65E-17 5.lOE-17 0.84 0.93 0.90 93Nb (n,n') 93mm l.68E-16 l.66E-16 l.64E-16 1.01 1.02 0.99 59Co (n;y) 6°Co 7.27E-14 7.39E-14 7.28E-14 0.98 1.00 0.98 59 Co(Cd) (n,y) 60Co 3.72E-14 3.59E-14 3.71E-14 1.03 1.00 1.03 Average of Fast Energy Threshold Reactions 0.94 1.00 0.94 Standard Deviation 6.8% 3.9% 3.6%

Best-Calculated Parameter  % Unc. Estimate  % Unc. BE/C (C)

(BE)

Fluence Rate E>l.OMeV 7.01E+08 13 6.64E+08 6 0.94 (n/cm2-s)

Fluence Rate E> 0.1 MeV 6.76E+09 - 6.81E+09 10 1.00 (n/cm2-s) dpa/s 2.31E-12 13 2.30E-12 8 0.99 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-31 TableA-21 Least-Squares Evaluation of Dosimetry in EVND Capsule C (29.5° Azimuth, Core Midplane) Cycle 14 Irradiation Reaction Rate (rps/atom)

Reaction Best-Measured Calculated MIC MIBE BE/C Estimate (M) (C)

<BE) 63 6 Cu (n,a) °Co 5.14E-19 5.25E-19 5.03E-19 0.98 1.02 0.96 46 46 Ti (n,p) Sc 6.76E-18 7.27E-18 6.82E-18 0.93 0.99 0.94 s4Fe (n,p) s4Mn 3.95E-17 4.llE-17 3.87E-17 0.96 1.02 0.94 58 58 Ni (n,p) Co 5.05E-17 5.82E-17 5.35E-17 0.87 0.94 0.92 93Nb (n,n') 93~ 1.87E-16 1.82E-16 l.83E-16 1.03 1.02 1.00 59 6 Co (n,y) °Co 8.24E-14 8.50E-14 8.25E-14 0.97 1.00 0.97 59 Co(Cd) (n,y) 6°Co 4.22E-14 4.13E-14 4.21E-14 1.02 1.00 1.02 Average of Fast Energy Threshold Reactions 0.95 1.00 0.95 Standard Deviation 6.2% 3.5% 3.2%

Best-Calculated Parameter %Unc. Estimate %Unc. BE/C (C)

(BE)

Fluence Rate E>l.OMeV 7.64E+08 13 7.37E+08 6 0.96 (n/cm2-s)

Fluence Rate E>O.l MeV 7.73E+09 - 7.86E+o9 10 1.01 (n!cm2-s) dpa/s 2.61E-12 13 2.62E-12 8 1.00 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-32 Table A-22 Least-Squares Evaluation of Dosimetry in EVND Capsule E * (44.5° Azimuth, Core Midplane) Cycle 14 Irradiation Reaction Rate (rps/atom)

Reaction Best- MIC M/BE BE/C Measured Calculated Estimate (M) (C)

<BE) 63 Cu (n,a) 60Co 3.49E-19 3.73E-19 3.41E-19 0.93 1.02 0.91 46 46 Ti (n,p) Sc 4.62E-18 5.22E-18 4.67E-18 0.89 0.99 0.89 54 Fe (n,p) 54Mn 2.85E-17 3.llE-17 2.83E-17 0.92 1.01 0.91 58 58 Ni (n,p) Co 3.81E-17 4.51E-17 4.04E-17 0.84 0.94 0.89 93Nb (n,n') 93~ 1.75E-16 l.63E-16 1.69E-16 1.08 1.03 1.04 59 Co (n,y) 6°Co 5.09E-14 5.43E-14 5.1 lE-14 0.94 1.00 0.94 59 6 Co(Cd) (n,y) °Co 3.09E-14 3.13E-14 3.08E-14 0.99 1.00 0.98 Average of Fast Energy Threshold Reactions 0.93 1.00 0.93 Standard Deviation 9.6% 3.6% 6.8%

Best-Calculated Parameter  % Unc. Estimate %Unc. BE/C (C)

(BE)

Fluence Rate E> l.OMeV 6.80E+08 13 6.60E+08 6 0.97 (n/cm2-s)

Fluence Rate E> 0.1 MeV 7.06E+09 - 7.43E+09 10 1.05 (n/cm2-s) dpa/s 2.33E-12 13 2.41E-12 8 1.03 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-33 TableA-23 Least-Squares Evaluation of Dosimetry in EVND Capsule D (44.5° Azimuth, Top of Active Core) Cycle 14 Irradiation Reaction Rate (rps/atom)

Reaction Best-Measured Calculated MIC M/BE BE/C Estimate (M) (C) (BE) 63 Cu (n,a) 6°Co 1.28E-19 1.69E-19 1.33E-19 0.76 0.96 0.79 46Ti (n,p) 46 Sc 2.07E-18 2.38E-18 1.96E-18 0.87 1.05 0.82 54Fe (n,p) s4Mn 1.lOE-17 1.42E-17 1.15E-17 0.77 0.95 0.81 58Ni (n,p) 58 Co 1.69E-17 2.06E-17 1.70E-17 0.82 0.99 0.83 93Nb (n,n~ 93~ 7.lOE-17 7.36E-17 6.93E-17 0.97 1.02 0.94 59 Co (n,y) 6°Co 2.38E-14 2.56E-14 2.38E-14 0.93 1.00 0.93 59Co(Cd) (n,y) 6°Co l.38E-14 l.47E-14 1.38E-14 0.94 1.00 0.94 Average of Fast Energy Threshold Reactions 0.84 0.99 0.84 Standard Deviation 10.2% 4.2% 7.0%

Best-Calculated Parameter %Unc. Estimate  % Unc. BE/C (C)

<BE)

Fluence Rate E>l.OMeV 3.07E+08 13 2.74E+08 6 0.89 (n/cm2 -s)

Fluence Rate E>O.lMeV 3.19E+09 - 3.09E+o9 10 0.96

{n/cm2-s) dpa/s 1.06E-12 13 l.OOE-12 8 0.94 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-34 Table A-24 Least-Squares Evaluation of Dosimetry in EVND Capsule F (44.5° Azimuth,.

Bottom of Active Core) Cycle 14 Irradiation Reaction Rate (rps/atom)

Reaction Best- MIC M/BE Measured Calculated BE/C Estimate (M) (C)

<BE}

63 Cu (n,a) 6°Co l.23E-19 l.67E-19 l.29E-19 0.74 0.96 0.77 46Ti (n,p) 46 Sc l.89E-18 2.34E-18 l.86E-18 0.81 1.02 0.79 s4Fe (n,p) s4Mn l.12E-17 1.40E-17 1.llE-17 0.80 1.00 0.80 58Ni (n,p) 58 Co l.64E-17 2.03E-17 1.63E-17 0.81 1.01 0.80 93Nb (n,n') 93~ 5.79E-17 7.35E-17 5.89E-17 0.79 0.98 0.80 59Co (n,y) 6°Co 3.51E-14 2.60E-14 3.47E-14 1.35 1.01 1.33 59Co(Cd) (n,y) 6°Co 1.71E-14 l.49E-14 1.71E-14 1.15 1.00 1.15 Average of Past Energy Threshold Reactions 0.79 0.99 0.79 Standard Deviation 3.7% 2.4% 1.6%

Best-Calculated Parameter %Unc. Estimate  % Unc. BE/C (C)

<BE}

Fluence Rate E> 1.0 MeV 3.06E+08 13 2.49E+08 6 0.81 (n/cm2-s)

Fluence Rate E> 0.1 MeV 3.21E+09 - 2.69E+o9 10 0.83 (n/cm2 -s) dpa/s l.06E-12 13 8.85E-13 8 0.83 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 A-35 TableA-25 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions - In-Vessel Surveillance Capsules MIC Reaction Capsule Capsule Capsule Capsule Std. Dev.

Average u x w v 63 Cu (n,a.) 6°Co 1.14 1.15 1.16 1.13 1.15 1.1%

54:fe (n,p) 54Mn 0.97 0.94 1.04 0.99 0.99 4.3%

58Ni (n,p) 58 Co 0.90 0.93 1.05 - 0.96 8.3%

238U(Cd) (n,f) 137 Cs 1.00 1.05 1.05 1.07 1.04 2.9%

237Np(Cd) (n,f) 137 Cs 1.05 0.87 1.03 1.00 0.99 8.2%

Average of MIC Results 1.03 8.1%

TableA-26 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions - Ex-Vessel Midplane Capsules MIC Reaction Capsule Capsule Capsule Capsule Std. Dev.

Average A B c E 63 Cu (n,a.) 60Co 0.93 0.98 0.98 0.93 0.96 3.0%

46Ti (n,p) 46 Sc 0.9 0.94 0.93 0.89 0.92 2.6%

. ~e(n,p)~ 0.88 0.95 0.96 0.92 0.93 3.9%

- 58Ni (n,p) 58Co 0.84 0.84 0.87 0.84 0.85 1.8%

93Nb (n,n') 93°Nb 1.05 1.01 1.02 1.08 1.04 3.0%

Average of MIC Results 0.94 7.4%

TableA-27 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions - Ex-Vessel Off-Midplane Capsules MIC Reaction Capsule Capsule D F 63Cu (n,a.) 6oCo 0.76 0.74 46Ti (n,p) 46 Sc 0.87 0.81 54Fe (n,p) 54Mn 0.77 0.80 ssNi (n,p) ssco 0.82 0.81 93Nb (n,n') 93°Nb 0.97 0.79 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-36 TableA-28 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios - In-Vessel Surveillance Capsules Fast Fluence Rate Iron Atom Capsule (E > 1.0 MeV) Displacement Rate BE/C BE/C u 0.95 0.97 x 0.92 0.93 w 1.02 1.02 v 1.01 1.00 Average 0.98 0.98 Standard deviation 4.9% 4.0%

TableA-29 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios - Ex-Vessel Midplane Capsules Fast Fluence Rate Iron Atom Capsule (E>l.OMeV) Displacement Rate BE/C BE/C.

A 0.95 1.02 B 0.94 0.99 c 0.96 1.00 E 0.97 1.03 Average 0.96 1.01 Standard deviation 1.4% 1.8%

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-37 TableA-30 Summary of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions - In-Vessel Surveillance Capsules and Ex-Vessel Midplane Capsules In-Vessel Ex-Vessel Midplane Combined Reaction Avg.MIC Std. Dev. Avg.MIC Std. Dev. Avg.MIC Std. Dev.

63 Cu (n,a) 6°Co 1.15 1.1% 0.96 3.0% 1.05 1.5%

46Ti (n,p) 46 Sc - - 0.92 2.6% - -

s4Fe (n,p) s4Mn 0.99 4.3% 0.93 3.9% 0.96 2.9%

58 Ni (n,p) 58 Co 0.96 8.3% 0.85 1.8% 0.90 4.5%

93Nb (n,n') 93~ - - 1.04 2.9% - -

238 U(Cd) (n,f) 137 Cs 1.04 2.9% - - - -

237 Np(Cd) (n,f) 137 Cs 0.99 8.2% - - - -

Average 1.02 8.1% 0.94 7.4% 0.98 5.5%

Table A-31 Summary of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios - In-Vessel Surveillance Capsules and Ex-Vessel Midplane Capsules In-Vessel Ex-Vessel Midplane Combined Parameter Avg. Std. Avg. Std. Avg. Std.

BE/C Dev. BE/C Dev. BE/C Dev.

Fast Fluence Rate (E > 1.0 MeV) 0.98 4.9% 0.96 1.4% 0.97 2.6%

Iron Atom Displacement Rate 0.98 4.0% 1.01 1.8% 1.00 2.2%

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-38 A.2 REFERENCES A-1 U.S. Nuclear Regulatory Commission Regulatory Guide 1.190, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence, March 2001.

A-2 Westinghouse Report, WCAP-12845, Revision 0, Analysis of Capsule Ufrom the Commonwealth Edison Company Braidwood Unit 2 Reactor Vessel Radiation Surveillance Program, October 1989.

A-3 Westinghouse Report, WCAP-14228, Revision 0, Analysis of Capsule W from Commonwealth Edison Company Braidwood Unit 2 Reactor Vessel Radiation Surveillance Program, July 1994.

A-4 Westinghouse Report, WCAP-15369, Revision 0, Analysis of CapsuleX from Commonwealth Edison Company Braidwood Unit 2 Reactor Vessel Radiation Surveillance Program, March 1999.

A-5 Westinghouse Report WCAP-17333-NP, Revision 1, Ex-Vessel Neutron Dosimetry Program for Braidwood Unit 2Cycle15, October 2012.

A-6 A. Schmittroth, FERRET Data Analysis Core, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979.

A-7 RSICC Data Library Collection DLC-178, SNLRML Recommended Dosimetry Cross-Section Compendium, July 1994.

A-8 ASTM Standard E944-13, Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance, E 706 (IIA), 2013.

A-9 ASTM Standard E1005-10, Standard Test Method for Application and Analysis of Radiometric Monitors for Reactor Vessel Surveillance, E 706 (IIIA), 2010.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 B-1 APPENDIXB LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS

  • "FLXX" denotes Lower Shell Forging [50D102/50C97]-1-1, tangential orientation
  • "FTXX" denotes Lower Shell Forging [SOD 102/50C97]-1-1 , axial orientation
  • "FW:XX" denotes weld material
  • "FHXX" denotes heat-affected zone material Note that the instrumented Charpy data is not required per ASTM Standards E185-82 or E23-07a.

WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-2 IOOIJOO la.d-1 ftlll rm.-1 .(131*

'°"'*"

e i ""*"

.....00 1000.00 000 000 1 00 200 3.00 T\lne-l (~ l FL23: Tested at-10°F

.....00 1000.00 ooo l--~~-.LIOW1JlllA4!>LLL.a.Ln.U..O."-'---"'-.ll4llL.aLli!:h.L:.....J:!l!!.....U...Llll<W><"-"'l-Ll......J:u...JllOoo...n....LL"""-"""-"'--'-"'6-...._b...-l-1-...A..A..L!o...J

~00 ilO

'fllne..l (N )

500 FL26: Tested at 0°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-3 0000.00 Loe4-I 34 7211 Tine-1-C ..211111 5000.00

.....00 e

j 300000 2000.00 11100.00 0.00 000 LOO 200 3.00 "o 5.00 8.00 Tine-l (mt l FL24: Tested at 10°F 60GO.OO Lo.d-1 1043 lb imt-1 -0UMS 51)(\G.OQ e

~ 3'<10.00

"'4.00 10IX1.0tl FL22: Tested at 15°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-4 200000 FL20: Tested at 15°F S000.00 Loed-1 2'3JIJ sooooo 2000.00 1000.00 FL16: Tested at 20°F WCAP-18107-NP May 2016 Revision 0

Westinghouse N on-Proprietary Class 3 B-5 200000 FL25: Tested at 25°F

~.00 2l>OO.OO

  • 00 '-~~~~....LIJ....,1.LU.lll.ll:L.U-..J.:.loho!JULl-il....l.:1.Jll

~ ... ...

.....L>-...1""6..L>L.n....L.ll..L.i.o..,.,,.,...._.,~_,_,~.._,_=>--L,__,....._Qo.....O....-'lo..&......-"'-Ll.--"

n..1 cn 1 FL29: Tested at 30°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-6 IOOOIOl.ol4-1 0.!1~

.....00 100000 FL27: Tested at 50°F

..., ...~------------------------------------~

'°"*"

FL30: Tested at 72°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-7

- ....., .(l071M 5000.00

'" 200 1lne-1 (111S )

... 500 ...

FLl 7: Tested at 125°F 600Q.001.o..s.134Mlb

~.00

  • ~ l--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-"-~

aoo LOO uo rn.-1 (n J FL28: Tested at 175°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-8 6000.00 load- 1 0.00l) nne-1 .Q.45 ms S000.00 e

i J000.00 20.00 IOG0.00 0.00 0.00 . .. 200 3.00 soo ....

r -

  • l (m )

FL19: Tested at 200°F sooo.oo ~--------------------------------------~

S000.00

'-" 2'0 3.00 Tine- I ClllS I

... 5.00 ...

FLIS: Tested at 210°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-9 80GOIO~IOOO~

500000 ooo l-------~--~--~-----~--~---~--~--~--"'"'-~~....,

0 00 200 l .00 500 eoo

° r... 1fme)

  • OO FL21: Tested at 220°F 5000.00

.... oo 2000.00 o.oo l---..l.J....,~...a.1c_µ_LU..1JL.JJL.O,L.._.,..,_..

0.00 LOO

"' 100 T'ifle.l (lnl)

......ULJJ...._...,_-'-'-""-....,"-O'-'LI~-"'"--"""-'...__."""-_._,_.._,__......JUo_....,,'-""-LM._...,"'-'-"'-"""'

500 FT24: Tested at-10°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-10 IOOOOO l.IM4-1 12.5311 l'ille-1 -C4SIM e

~ l000.00 200000 1GOOOO 0.00 000

'" 200 3.00 Tilnl-1 (. . )

  • OO 500 ...

FT22: Tested at 10°F SOW.DO e

j lCIQOOO FT18: Tested at 15°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-11 500000*

2QOO QQ I

I 000 ~~~....U"'-'-".LI.J..llU-MOLI....1-""'U.11-LJ..1.LL.J...L....._...._...._'°"'".u...

100 2.00

.........,u:.........

)00

'hn9- 1 ( ITll)

"-"'.i...=..._,,..._..,.._.,._..~~....._-<.1......,._,......._..._..,.....o.-'.l....l.J.-<

FT21: Tested at 25°F

!e: ]00000 2000.00 10WJIO 0.00 0.00 nn.-1(1N)

FT23: Tested at 30°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-12 5000.00

'°"""

FT20: Tested at 35°F 1000.00

... 200 nr.-t (ft) o.oo l-JIL...LlL:Lll~ll..l-4.l-Lll!W<i,Allll.I:LA.il+.J2--"""'-....cJJ,J."-41d..J>IWO..L.o~""-'o....~....a.J...-C-...O.O...-.....O.J.......,_..__..._"-l 100

" MC FT29: Tested at 45°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-13 e

j 100000 200000

, ... 00 FT27: Tested at 50°F SOOOOOL~I 24 3711 Jlne.1 .0 451111 5000.00

""°"'

e

~ 300000 2000.00

,., l .00 .... S.00 n-1 c- 1 FT28: Tested at 60°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-14 100000

"' 200 ....

Tcne-l{INI) ooo ~---"--"--"-.l'.Jl.l_u-'-"-.lL!l..L.1...Ll.."-'!;.l.JLl!::J....J..C'-4.'U!!~CL.LLI.el:l...A.,.O..~JY!,.,.b....&.....,.._._~.,,_,;i.,,..............,...,4-"'--~~

FT26: Tested at 72°F o.ooL---------...:...!.:....::.i..~a~Y~~~~6oC.tC!>.O~~'>..L',_"""'~-----~~..J

.... 1.00

'" 3.00 Tme-1 (11111 '"" ...

FT16: Tested at 125°F WCAP-18 107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-15 aooooo u.6-1 20 n*

FT19: Tested at 175°F sooo.oo ~---------------------------------------,

5000.00 1.00 ,... ,..

Til!e-l (r.IJ FT30: Tested at 200°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-16 S000.00

"' 200

  • OO 500 000 FT17: Tested at 210°F

~0'-00 lCVtlOO

__.._~~-

o.oo 100 l .00 r-.1 (n ) "' 6.00 FT25: Tested at 220°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-17 800001) ~--------------------------------------,

500000 e

~ l000.00 FW24: Tested at-50°F 6000.00- - - - - - - - - - - - - - - - - - - - - - - - - -- - - -- - - -- ----,

5000.00

!e 300000 t OOOOO FW21: Tested at -30°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-18 SO<IO.OO Lo>>.I Z7!13b Tme.-1 -OJeftll 500000 e

100000 lGOOOO 0.00

  • OO 500 6 .00 000

'" 200 3.00 TIN-1 (n )

FW28: Tested at-10°F r.,_-1 -OUllB 5000.00 2000.00 1#0200 o.oo l-----"-'--'--'.LUll.L.l'---<..L-""'.ILJ,.L.OL>...W.OUO..,._..u....=LUAo--"'.....,,~""'-'"""-.C......LLILI:>il.A:l"'-",_,::u_-4-..c.....D..._

Thle-l (N }

_....__,_LJ+---""'--...O.....""'

500 6.00 FW18: Tested at 0°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-19 iOOOOO l.old-I , . . . ni.-1 -0'2 . .

!00000 e

1000.00 0 00

$00 100 000

"' 200 3.00 fint.1 (1119)

  • OO FW19: Tested at 10°F 8000.00

.....00

-00 e

IOCIOOO 000

.,0 *.oo

"" '*" 200 100 l'ftle.l (r.t ) "'

FW25: Tested at 25°F WCAP-1 8107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-20 600U0 r---------------------------------------~

t 000.00 FW29: Tested at 30°F

..... oo r---------------------------------------~

r.m.l (n )

FWl 7: Tested at 40°F WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-21 I000.00 ~------------------------------------~

"o 200 l.00 *OO 500 0.00 nnt-1 ( Int )

FW16: Tested at 50°F

!GOtJOO lo.0-1 3 *tit:

~.00

  • 00000

!JIO 2.00 r-..1 cn 1 FW27: Tested at 60°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-22 eooooo ~---------------------------------------

500000

"°'*"

  • OO<>OO 0.00 1--------.!-...:~LJ..c;JJN!.:JML:i./6-4.!J.1.61,...MA............,.......................,._........_._....._,,.............~~----~.._..--~-~..i 200 000 "O

'" 500 FW26: Tested at 72°F 800000 Load-1 31251>

o.oo '----------~-L--'-"'-..:JC""""""--""'.._.....,~.....~~~-..-.~-~~~-~----~-~"'"

000

'*" 2.00 Tme -t (lllS)

"' 5 00 800 FW20: Tested at 125°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-23 eooo.00. - - - - - - - - - - - -- - - - - - -- -------------------,

500000 FW23: Tested at 175°F 600000.---------- - - - - - - - - -- - - - -- - - -- - - - - - - ----,

5000.00 LOO

'" "' 500 ...

FW30: Tested at 200°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-24 Tinl-1 -04SIM 500

"' 200 3.00 rm..1 (n )

  • OO FW22: Tested at 220°F I000.00 4000.00

~

j 3000.00 200000 FB29: Tested at -200°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-25 8000.00 LoN- I I 9' I:

500000 e

j l000.00 FH23: Tested at-150°F FH22: Tested at-125°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-26 e:

j -*"

200000 100000

o. oo l----..uiJJUU.LI-A""1-.LL...L..LI>~>-u.....L..:JW>.>l>L-L>"'-"-.u..,LL>....1cn.....'-"'-"""'~..W...U..--'-"'-"">-L..'"-'-'.._..,.,._,,.,_,'-"-._._..........__,_.__,.._--""'>....O.o...J soo 000 \00 TllM-1 ( . .)

FH30: Tested at-100°F

. ...1 - - - -..1..DW.W.'-'-"'l<.YllJL..l..L..W...........LL..L-"'...,..........

000 I.DO 200 ... ...

l!l....i..._._...........-LJO>-""'............'-'-".....,,...._,,CLt.......,.........,,._..,,.._.L.J.....t;>..........'-..J!l_,_,....,,._,,,.__.,_,

100 FH27: Tested at -80°F WCAP-1 8107-NP May 2016 Revision 0

Westinghouse N on-Proprietary Class 3 B-27 60000tl U..0.1 3 CJI> n.-1 .C*! ..

e:

j - ..

2000.00 0.00 0.00

"' "' 3.00 TIIN* l (n )

... 500 FH18: Tested at -60°F SOOOOOLo.d-1 20881b sooo.co

""*°'

e:

~ lOCC.00 1090.00 o.oo '-----------U"""1..Llil.L:11.J..L.U1LC1...L!jl!..LL.ilL.<U"-L"-"'&L.1J..-....u.""""....,"""'.._....'-"'~...._............._-"'-'""-'-'-".._.,..__.._.

O.CC

"' 200 FH20: Tested at -50°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-28 aoao_ooll>ed- 1 3.'111 rm..1 ~.<<IN 500000

<00000 e:

j J000.00 200000 100000 0.00 000 1 00 200 3.00 800 Tn- 1 (mt )

FH25: Tested at -10°F S000.00 l!O<<l.00 000 1.0D 200 3.00 Tmt- 1 {as) o.oo l-------------__:_=~LI..J=n.J_Jd...lJ.~=u...:~~~==-,........,..._.6..oo..-..-._,.~.__.._......_-al soo 8.00 FH21: Tested at 30°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-29 500000 FH19: Tested at 72°F e:

j 300000

._., ._,-----------------~-------------"'-""oaQ 000 >.00 HO 100

  • OO 5.00 1.00 r --1(m >

FH16: Tested at 125°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-30

"' 200 3 .00 nn.- 1 (h )

'" 600 FH24: Tested at 150°F 600000 Lo.~1 noet1 5000.00 FH26: Tested at 17S°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-31

"' "' 3.00 1'ilM*1 (1111 )

  • OO 500 FH28: Tested at 200°F 5000.00 e

j "*"

200000 1000.00

'" ,. 100 r-.e-1(11'111 FH17: Tested at 210°F WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-1 APPENDIXC CHARPYV-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD C.1 METHODOLOGY Contained in Table C-1 are the upper-shelf energy (USE) values that are used as input for the generation of the Charpy V-notch plots using CVGRAPH, Version 6.02. The definition for USE is given in ASTM El85-82 [Ref. C-1], Section 4.18, and reads as follows:

"upper shelf energy level - the average energy value for all Charpy specimens (normally three) whose test temperature is above the upper end of the transition region. For specimens tested in sets of three at each test temperature, the set having the highest average may be regarded as defining the upper shelf energy."

Westinghouse reports the average of all Charpy data (~ 95% shear) as the USE, excluding any values that are deemed outliers using engineering judgment. Hence, the Capsule V USE values reported in Table C-1 were determined by applying this methodology to the Charpy data tabulated in Tables 5-1 through 5-4 of this report. USE values documented in Table C-1 for the unirradiated material, as well as Capsules U, X, and W, were also determined by applying the methodology described above to the Charpy impact data reported in WCAP-11188 [Ref. C-2], WCAP-12845 [Ref. C-3], WCAP-14228 [Ref. C-4] , and WCAP-15369 [Ref. C-5]. The USE values reported in Table C-1 were used in generation of the Charpy V-notch curves.

The lower-shelf energy values were fixed at 2.2 ft-lb for all cases. The lower-shelf lateral expansion values were fixed at 1.0 mil in order to be consistent with the previous capsule analysis [Ref. C-5].

Table C-1 Upper-Shelf Energy Values (ft-lb) Fixed in CVGRAPH Capsule Material Unirradiated u x w v (ft-lbs) (ft-lbs) (ft-lbs) (ft-lbs) (ft-lbs)

Lower Shell Forging

[50D I02/50C97]-1-1 168 176 167 166 166 (Tangential Orientation)

Lower Shell Forging

[50D102/50C97]-1-1 153 137 145 147 144 (Axial Orientation)

Surveillance Weld Metal 69 62 68 68 64 (Heat# 442011)

Heat-Affected Zone (HAZ) 155 200 125 157 154 Material CVGRAPH, Version 6.02 plots of all surveillance data are provided in this appendix, on the pages following the reference list.

WCAP- 18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-2 C.2 REFERENCES C-1 ASTM E185-82, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, E706(IF), ASTM, 1982.

C-2 Westinghouse Report WCAP-11188, Revision 0, Commonwealth Edison Company Braidwood Station Unit No. 2 Reactor Vessel Radiation Surveillance Program, December 1986.

C-3 Westinghouse Report WCAP-12845, Revision 0, Analysis of Capsule U from the Commonwealth Edison Company Braidwood Unit 2 Reactor Vessel Radiation Surveillance Program, March 1991.

C-4 Westinghouse Report WCAP-14228, Revision 0, Analysis of Capsule Xfrom the Commonwealth Edison Company Braidwood Unit 2 Reactor Vessel Radiation Surveillance Program, March 1995.

C-5 Westinghouse Report WCAP-15369, Revision 0, Analysis of Capsule W from Commonwealth Edison Company Braidwood Unit 2 Reactor Vessel Radiation Surveillance Program, March 2000.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-3 C.3 CVGRAPH VERSION 6.02 INDIVIDUAL PLOTS BRAIDWOOD UNIT 2 UNIRRADIATED (TANGENTIAL)

CVGraph 6.02: Hypclbolic Tangent Curyc Printed on I 0/16/2015 3:26 PM A =85.10 B = 82.90 C =66.90 TO =32.65D =0.00 Correlation Coefficient= 0.965 Equation is A+ B * [Tanh((f-TO)/(C+DnJJ Upper Shelf Energy= 168.00 (Fixed) Lower Sl1clf Energy = 2.20 (Fixed)

Temp@30 fi-lbs=-20.90° F Temp'.?[!35 fl-lbs=-14.10° F TcmW?;SO fi-Ibs= 2.50° F Plant: Br.tidwood 2 Material: SA508CLJ Heal: [50Dt02/50C97]-1-1 Orientation: Tangential Capsule: UNIRR 180 o:

..... a*M~

... ~o,;;.::.;.;.;

...-+o=...;;..;.;.~~~;.;.,;;*.;.;.;...;.;.., ;;~

./:

160 u 1-~ ..

J

/0 !'"'

140

~

¢:

{I.)

I 120 bJ) 100 s.. I- ... -. - .. ~

~

c a'J 80 z

~--*

'- . -~/*:-- .

u 60

.. -~. 0 ~~'- ...-:.--+--...;--+--....;.- ....*-+

.... - l - - - ' - - - - - ' - .__

40 ~-;---+----+---~*r+-~-~-1--.,----1------1~----+---.,..~--4--~-1

'.)b*i**-- ***'**

20

- :.lA'e ... '". - ....................

1--'---4--'---l--~#---+---"---1---'---!---'---l---'--l----'---l--'---1 ol:::::::::::i:::=:C=::t::::::J.~j_-1.~.l.-_L~.1....-...L---J1..-...L-i~.L......i..~1--L**___J

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraplt 6.02 10/16/2015 Page 112 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-4 Plant: Braidwood 2 Material: SA508CL3 Heat: (50D102/50C97]-1-1 Orientation: Tangential Capsule: UNIRR BRAIDWOOD UNIT 2 UNIRRADIATED (TANGENTIAL)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential

-60 8:0 12.0 -3.98

-60 12.0 12.0 0.02

-30 13.0 24.3 -11.28

-30 15.0 24.3 -9.28

-15 50.0 34.4 15.64

-15 50.0 34.4 ]5,64 0 32.0 47.6 -15.57 0 36.0 47.6 -11.57 0 67.0 47.6 19.43 15 30.0 63.7 -33.72 15 53.0 63.7 -10.72 15 51.0 63.7 -12.72 30 93:0. 81.8 ll.18 30 110.0 8L8 28.18 30 114.0 81.8 32.18 80 107.0 135.6 -28.61 80 124.o 135.6 -11.61 80 130.0 135.6 -5.61 120 146.o 156.7 -10.66 120 177.0 156.7 20.34 120 177.0 156.7 20.34 160 159.0 164.4 -5.40 160 166.0 164.4 1.60 160 169.0 164.4 4.60 240 158.0 167.7 -9.66 240 1720 167.7 4.34 320 159.0 168.0 -8.97 320 174:0 168.0 6.03 CVGraph 6.02 10/16/2015 Page 2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-5 BRAIDWOOD UNIT 2 UNIRRADIATED (TANGENTIAL)

CVGraph 6.02: HypeJbolic Tangent Cmve Printed on 10/16/2015 3:28 PM A= 44.09 B = -13.09C=48.50TO=10.74 D = 0.00 Correlation Coefficient = 0.957 Equation is A+ B * !Tanh((f-TO)/(C+D1))]

Upper ShclfL.E. = 87.18 Lower Shelf L.E. = 1.00 (Fixed)

Ternp_'@.35 mils= 0.40° F Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97J-1-1 Orientation: Tangential Capsule: UNIRR 1-.,. - -** ' " * * * -

90 r-~~-t-~'---t-~~~;--~~-+-~~":i--+-,o~:~-+----~*~-1-~..;.-..--1~-'---1

, n M v t:I

)**91~**:v . .1. ***'.****

rl.l 80 70 I- . -. ~' - - .... "" ..

. .,. . _*~/8 l--_;_.~+---'-~-l-~~-+~~r--1~-+-~+---'-~-+-~~-+-~-'"---l~-+-~I 1------r----1----1-:to1.1---+-~--1-------4---+---!-----I

- -. -............ - . .. ~ **'

    • ~ ,.,.. , . .... ."" ~-" ".

e

.._ -__ cf . -........ .

....=

=

rl.l ~ -~-

60 .. ***'***- , .. -* .*,... . . '. * /j 50 ~~~....__**-+-~**_,_~+*--_-_.. *~:*_--_*~.a~:....__,_~-r--**_*-~*--*---*~**_.._**~~-1-~***~--

.._**_*.~:*_**---~--**_

.. _-,r__***~*

=

=

.. _**---+*_

~

f;;i;l

.--* , ____ *~- ..-- .,.,.. ~-*-~ -~-.-

~

~~ ... -

20 __.. _......--+- .... ~*--+-,.*-*__,*!._/*_--_.---;-.... '----+-------+ .. _**- _

... ---<--~~*---*~ .. .... -___,,-

10 .,.@.__ ..

a 01:::=========I:....,;!::!i.......J..~L--..l--1....-L~.1.-....L~~l..-...i....-1..-J.---l

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGrnph 6.02 10/16/2015 Page 112 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-6 Plant: BraidWood 2 Materiiil: SA508CL3 Heat: (50D102/50C97]-1-1 Orientation: Tangential Capsule: UNIRR BRAIDWOOD UNIT 2 UNIRRADIA TED (TANGENTIAL)

Charpy V-Notch Data Temperature (0 F) InputL E. Computed},. E. DilTtrential f--*

-60 2.0 5.4 ~3.4:2

-60 7.0 5.4 1.58

-30 7.0 14:5 -7.53

-30 8.0 14.5 ~6.53

-15 37.0 23.1 13.85

-15 37.0 23.l 13.85 0 25.0 34.7 -9.70 0 27.0 34.7 -7.70 0 50.0 34.7 15.30 15 24.0 47.9 -2U6 15 42.0 47.9 -5.86 15 39.0 47.9 -8.86 30 68.() 60.4 7.65 30 71.0 60.4 10.65 30 77.0 60.4 16.65 80 74.0 82.5 -8.49 80 77.0 82.5 -5.49 80 83.0 82.5 0.51 120 81.0 86.2 -5.24 120 87.0 86.2 o.76 120 84:0 86.2 -2.24 160 86.0 87.0 -LOO 160 88.0 87.0 1.00 160 90.0 87.0 3.00 240 89.0 87.2 1.83 240 92.0 87.2 4.83 320 89.0 87.2 1.82 320 88.0 872 0.82 CVGraph 6.02 l0/1612015 Page2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-7 BRAIDWOOD UNIT 2 UNIRRADIATED (TANGENTIAL)

CVGraph 6,02: Hyperbolic Tangen! Curve Printed on 10/1.612015 3:29 PM A = 50.00 B = 50.00 C = 52.96 TO = 39.0.J D = 0.00 Corrclalion Coefficicnl = 0.963 Equation is A+ B * (Tanh((f-TO)/(C+D1))]

Upper Shelf%Shear = 100.00 (Fixed) Lower Shelf 'YoSbear = 0.00 (Fixed)

Tempcralurc at 50% Shear= 39 .I 0 Plaut: Braidwood 2 Material: SA508CL3 Heat [50D102/50C97)-1-1 Orientation: Tangential Capsule: UNIRR 100

  • T" - -' * . , ~
  • ' * * ".- *. "-**1- ***- ...,.....

90 80

  • -'('"

l

    • -* -* 0- - .*- -*-** *'-** *.*** --*

70

=

~

.c 60 00

~ so

=

~ ,.,. .. _

(,.) -*** - *' ~:

~ 40

~

.~ ' -

0 L...--1~...L.~~*L........~e&-~-'-~..L-~.L---l'~-L.~-1-.'--1~-L.'~...l..~~*~...r..~~*i..........1

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/16/2015 Page 112 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-8 Plant: Braidwood 2 Material: SA508CL3 Heat: [50Dl02/50C97]-1-1 Orientation: Tangential Capsule: UNIRR BRAIDWOOD UNIT 2 UNIRRADIA TED (TANGENTIAL)

Charpy V-Notch Data Temperature{° F) Input %Shear Computed %Shear Differential

-60 0.0 2.3 -2.32

-60 0.0 2.3 ~2.32

-30 5.0 6.9 -1.87

-30 5.0 6.9 -1.87

-15 10.0 11.5 -1.50

-15 10.0 11.5 -1.50 0 10.0 18.6 -8.63 0 5.0 18.6 -13.63 0 15.0 18.6 -3.63 15 15.0 28.7 -H74 15 20.0 28.7 -8.74 15 25.0 28.7 -3.74 30 35:0 4L5 -6.54 30 75.0 41.5 33.46 30 75.0 41.5 33.46 80 70.0 82.4 -12.44 80 70.0 82.4 -12.44 80 75.0 82.4 -7.44 120 85.0 95.5 -10.51 120 100.0 95.5 4.49 120 100.0 95.5 4.49 160 100.0 99.0 1.03 160 100.0 99.0 1.03 161) 100.0 99.0 1.03 240 100.0 99.9 0.05 240 100.0 99.9 0.05 320 100.0 100.0 0.00 320 100.0 100.0 0.00 CVGraph 6.02 10/16/2015 Page 2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-9 BRAIDWOOD UNIT 2 UNIRRADIATED (AXIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 10/16/2015 3:.JO PM A= 77.60B= 75.40 C=87.74 T0=41.75D =0.00 Correlation Coefficient= 0.978 Equation is A + B * (Tanh((f-TO)/(C+D1))]

Upper Shelf Energy = 153.00 (Fixed) Lower ShclfEncrgy = 2.20 (Fixed)

Temp@:30 ft-lbs=-23.40° F Temp;g!35 ft-lbs=-14.40° F Temp@.50 fl-lbs= 8.10° F Plant: Braidwood 2 Material: SA508CL3 Heat: [SOD102/50C97)-1-l Orientation: Axial Capsule: UNmR 160 0

..,. .. ~,, .. ',~*' ~ .

140

--t"-2

,Q 120

, ...*. ... *>"' ..* **O *~~**-' *"*~P*.o'-~~"O~"

I ct:: 100 OJI

~ 80 i-*****

f*

=

r-l

~

u 60 40

~

- ...... -.*. ....... .. "'* . "*"-- .. . . . . t/-~~/ >.....

  • . 4

. .c . .. , . . ,_ ..... ,. *- ... ,...... . *r~ .. . ., ... , .... :. '" ..

20--~~~---;-~-r-~#--1-~--:---1~-;-~-i-~~-t-~,---;-~...,..----1~~--1

i /o
      • ~Va**** ***.[**-***

0 l::::::::l::::+/-=:~*~..l~:i..~.L~..i...~L......i~..l~...i..~.1.~.l.........JL.....i*~...1..~~*L......J

-300. -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGmph6.02 10/16/2015 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-10 Plant: Braidwood 2 Material: SA508CL3 Heat: [50Dl02/50C97]-1-l Orientation: Axial Capsule: UNIRR BRAIDWOOD UNIT 2 UNIRRADIATED (AXIAL)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential

-60 6.t1 15.7 ~9.70

-60 9.0 15.7 -6.70

-30 16.0 26.8 -10.79

-30 35.0 26.8 8.21

-30 37.0 26.8 10.21 0 25.0 44.2 -19.21 0 49.0 44:2 4.79 0 59.0 44:2 14.79 30 68.0 67.6 0.44 30 71.0 67.6 3.44 30 74.0 67.6 6.44 60 77.0 93.l -16.06 60 84.0 93.l -9.06 60 103.0 93.1 9.94 80 100.0 108.5 -8.54 80 110.0 108.5 1.46 80 133.0 108.5 24.46 120 116.0 131.3 -15.31 120 120.0 131.3 -11.31 120 122.0 131.3 -9.31 160 .154.0 143.5 10.54 160 154.0 143.5 10.54 160 160.0 143.5 16.54 240 146.0 151.4 ~5.37 240 148.0 151.4 "3.37 240 151.0 151.4 -0.37 320 153.0 152.7 0.26 320 153.0 152.7 0.26 320 156.0 152.7 3.26 CVGraph 6.02 10/1612015 Page2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-11 BRAIDWOOD UNIT 2 UNIRRADIATED (AXIAL)

CVGraph 6.02: Hypelbolic Tangent Curve .Printed on 10/16/2015 3:32 FM A= 46.02 B = 45.02 C = 75.07 TO= 22.14 D = 0.00 Correlation Coefficient= 0.980 Equation is A+ B * !Tanh((f-TO)/(C+D1))]

Upper ShclfL.E. = 91.04 Lower ShelfL.E. = 1.00 (Fixed)

Tcmp:?f.35 mils= 3.40° F Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/SOC97)-1-1 Orientation: Axial Capsule: UNIRR

--....e f l.l

....=

Q fl.l

=

~

~

~

~

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/16/2015 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-12 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: Axial Capsule: UNIRR BRAIDWOOD UNIT 2 UNIRRADIATED (AXIAL)

Charpy V-Notch Data Temperature (0 F) Input lhE. Computed L. E. Differential

-60 2.0 10.1 ~8.08

-60 5.0 10.1 -5.08

-30 13.0 19.0 -5.97

-30 26.0 19.0 7.03

-30 25.0 19.0 6.03 0 20.0 33.1 -13.12 0 37.0 33.1 3.88 0 43.0 33.1 9.88 30 51.0 50.7 0.28 30 54,0 50.7 3.28 30 52.0 50.7 1.28 60 59.0 67.0 -7.98 60 620 67.0 -4:98 60 70.0 67.0 3.02 80 67.0 75.2 -8.17 80 76.0 75.2 0.83 80 89.0 75.2 13.83 120 86.0 84.9 l.14 120 83.0 84.9 -1.86 120 80.0 84.9 -4.86 160 93.0 88.8 4.19 160 88.0 88.8 -0.81 160 89.0 88.8 0.19 240 87.0 90.8 -3.77 240 94.0 90.8 3.23

240 86.0 90.8 -4.77 320 92.0 91.0 0.99 320 92.0 91.0 0.99 320 95.0 91.0 3.99 CVGraph 6.02 10/16/2015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-13 BRAIDWOOD UNIT 2 UNIRRADIATED (AXIAL)

CVGraph 6.02.: HypeJbolic Tangent Curve Printed on 10/16/2015 3:34 PM A= 50.00 B = 50.00 C = 72.14 TO= 62.46 D = 0.00 Correlation Coefficient= 0.985 Equation is A+ B * {Tanh((T-TO)/(C+D1))]

Upper Shclf%Shcar= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 62.50 Plant: Braidwood 2 Material: SA508CL3 Heat: [50Dl02/50C97)-1-1 Orientation: Axial Capsule: UNIRR

~ .... *;* ' .. ~- - . ... -.

~

70 ..__ __'__- - - :-*-+---+--~i-El-1111 --i-a---t-

. ...; "'?-- .~ '" ...

-=

.c 00

~

60

+.I so

=

~ -*-:--<<**- ***** **! * " - ** ; - , * , * * ' * * ,. * * ) ~ * * <..

  • CJ  ;

~ 40 L

~

30 20 10 1--... _**_,__

.,.. _...*- - !*-..._. . . ;--;--* "'+E* ~:IFl!-1ll-._. ..__,_. ;. _* -!----'."_*-+-*~-!-.._*_.. '---...--I-.._

.....*_,__ .. **-+*.---+----I 01---'----"----==-~-~-**~**_**~-~1....--'---'---""---'---'---'---'--..i---'---'---'~* .....I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGr.iph6.02 10/16/2015 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-14 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: A.~al Capsule: UNIRR BRAIDWOOD UNIT 2 UNIRRADIATED (AXIAL)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Diff~rcntial

-60 0.0 3.2 -3.25

-60 5.0 3.2 1.75

-30 10.0 7.2 2.85

-30 5.0 7.2 -2.15

-30 10.0 7.2 2.85 0 10.0 15.0 -5.04 0 15.0 15.0 -0.04 0 20.0 15.0 4.96 30 25.0 28.9 -3.91 30 30.0 28.9 L09 30 30.0 28.9 l.09 60 35.0 48.3 -13.29 60 40.0 48.3 -8.29 60 55.0 48.3 6.71 80 65,0 61.9 3.08 80 70.0 61.9 8.08 80 80.0 61.9 18.08 120 70.0 83.1 -13.13 120 75.0 83.l -8.13 120 75.0 83.1 -8J3 160 100.0 93.7 6.27 160 100.0 93.7 6.27 160 100.0 93.7 6.27 240 100.0 99.3 0.72 240 100.0 99.3 0.72 240 100.0 99.3 0.72 320 100.0 99.9 0.08 320 100.0 99.9 0.08 320 100.0 99.9 0.08 CVGraph 6.02 10/16/2015 Page 2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-15 BRAIDWOOD UNIT 2 UNIRRADIATED (WELD)

CVGrapl16.02: Hypeibolic Tangent Curve. Printed on l0/16/2015 3:35 PM .

A = 35.60 B = 33.40 C = 97.39 TO= -2.77 D = 0.00 Correlation Coefficient= 0.977 Equation is A+ B * (Tanh((f-TO)/(C+D1))]

Upper ShelfEnergy = 69.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Ternp.:@30 ft-lbs=-19.20° F Temp@35 fl-lbs= -4.50° F Ternp@50 fl-lbs= 42.20° F Plant: Braidwood 2 Material: WELD Hcat:-142011 Orientation: N/A Capsule: UNIRR 0 .....--i.~.....~--~......~-;~--~--~......~'"---i.~-i.~.....~--~......~......................_ _. . .

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/16/2015 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-16 Plant: Braid\vood 2 Material: WEID Heat: 442011

.Orientation: NIA Capsule: UNIRR BRAIDWOOD UNIT 2 UNIRRADIATED (WELD)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential

-110 5.0 8-8 -3.85

-110 13.0 8.8 4.15

-60 14.0 18-0 -3.96

-60 20.0 18.0 2.04

-60 21.0 18.0 3.04

-30 27.0 26.5 0.50

-30 30.0 26.5 3.50

-30 34.0 26.5 7.50 0 27.0 36.5 ~9.55 0 38.0 36.5 1.45 0 40.0 36.5 3.45 30 36.0 46.4 -10.43 30 40.0 46.4 -6.43 30 48.0 46.4 1.57 80 59.0 58.7 0.32 80 59.0 58.7 0-32 80 64.0 58.7 5-32 120 62.0 64.0 -2.03 120 66.0 64.0 1.97 120 70.0 64.0 5.97 160 64.0 66.7 -2.72 160 72.0 66:7 5.28 160 77.0 66.7 10.28 240 67.0 68.5 -1.55 240 73.0 68-5 4.45 240 76:0 68.5 7.45 320 70.0 68.9 1.09 320 71.0 68-9 2.09 320 71.0 68.9 2.09 CVGraph 6.02 1011612015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-17 BRAIDWOOD UNIT 2 UNIRRADIATED (WELD)

CVGraph 6.02: HypeJbolic Tangent Curve Printed on 10/16/2015 3:35 PM A= 37.33B=36.33C=102.06TO=14.03 D = 0.00 Correlation Coefficient= 0.985 Equation is A+ B * (Tanh((f-TO)/(C+DT))]

Upper Shelf L.E. = 73.67 Lower ShelfL.E. = 1.00 (Fixed)

Temp'.(!J35 mils= 7.50° F Plant: Braidwood 2 Material: WELD Heat: 442011 Orientation: N/A Capsule: UNIRR 80 --------------------------------------------------------------

.. .._, . ;' . ' .. ' 0. ()" .

" () .I 70 t--~~-1---:-~+---:~~-~~*~-1---..~~~"-ti--u~~**~-H83-~-!-~-:--+~-:---1

-= 30 1--~~-+-~~~-1-~~-*j'l--~~-+~~~-i-~-'--~-l-~'----+~~~-+-~~--1

~ :za~~-**_._._"'*~*-*_*_***_**_*+*--~[~f--(r~*_*_*_**-*~***_**_'"_*_*_*-1---**_****_*+---:_. _.. r------+-***_--_ .. _...- t .

10 .--**-:---*.... ***-r-*.-:---"" *~**_,_i~'-t-

. . ".--::---t--:--~-r-*. ***;----**

.... -i--

.. -. ..~.,***

. ~;,;  :

~ > < '. * ' *,,.. - "' - > - " .. : .. * . ~ - ' K K "~~-" H, H H * , v* H

  • H * ~ H ' ** H , - ** * ~ * *< * ** ~ *

o l:::::E:::r::....~:__.:o~--~;__.J.__~~L........1........i.........L.......L.....-1.......1........l......i-*.....l---.i....*....J

-300 ..:200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGmph6.02 10116no15 Page 1/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-18 Plant: Braidwood 2 :Material: WEID Heat: 442011 Orientation: NIA Capsule: UNIRR BRAIDWOOD UNIT 2 UNIRRADIATED (WELD)

Charpy V-Notch Data Temperature (0 F) InputL .E. Computed J,. E. Differential

-110 2,0 6.9 -4.88

-110 9.0 6.9 2.12

-60 13.0 14.8 -1.80

-60 14.0 14.8 -0.80

-60 16.0 14.8 1.20

-30 22,0 22.6 "0.56

-30 25.0 22.6 2.44

-30 26.0 22.6 3.44 0 25.0 32.4 -7.37 0 38.0 32.4 5.63 0 40,0 32.4 7.63 30 35.0 43.0 -7.97 30 36.0 43.0 -6.97 30 46.0 43.0 3.03 80 57.0 58.0 -1.01 80 58.0 58:0 -0.01 80 61.0 58.0 2.99 120 61.0 65.6 -4.57 120 74.0 65.6 8.43 120 65.0 65.6 -0.57 160 68.0 69.7 ~1.73 160 69.0 69.7 -0.73 160 74.0 69.7 4.27 240 72.0 72.8 -0.81 240 72.0 72.8 -0.81 240 78.0 72.8 5.19 320 72.0 73.5 -1.49 320 70.0 73.5 -3.49 320 72.0 73.5 -1.49 CVGraph 6.02 1011612015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-19 BRAIDWOOD UNIT 2 UNIRRADIA TED (WELD)

CVGraph 6.02: Hypelbolic Tangent Curve Printed on 10/16/2015 3:36 PM A = 50.00 B = 50.00 C = 59.85 TO = 24,04 D = 0.00 Correlation Coefficient= 0.985 Equation is A + B *{Tanh((f-TO)/(C+DT))]

Upper Shelf%Shcar= J00.00 (Fixed) Lower Shelf 'JI.Shear= 0.00 (Fixed)

Temperature al 50% Shear= 24.10 Plant: Braidwood 2 Material: WELD Hcat:-142011 Orientation: N/A Capsule: UNIRR 70

~**" ...,'. ,. . - ~

=

~

.=

60 00

~ 50

,.=

~

(J

~ 40

~

30 - '.

' ""'";*~)

20~. . -.~.- ...-..+ ..-.. _--'-____,1--_~;~J--~-~m_~. ~;--11--~,-.-f-~""---+-~~+---'----1~~-1 10

~ - .. ~

1----~--1--~~-t---tci-~--l----;-~-+-~~~+-~*~--+--~-~-;-~~~-1-~~--11

~LJo-OL--....1-~"'---.-=F'---'"~..i...--i~-'-~1..-....1-~"---'-~..._--1.~...i...--11..--i...--i

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGmph6.02 1M6/2015 Page 112 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-20 Plant: Braidwood 2 :Material: '\'EID Heat: 442011 Orientation: NIA Capsule: UNIRR BRAIDWOOD UNIT 2 UNIRRADIA TED (WELD)

Charpy V-Notch Data Temperature{° F) Input %Shear Computed %Shear Differential

-110 0.0 1.1 ~l.12

-110 0.0 L1 -1.12

-60 10.0 5.7 4.31

-60 10.0 5.7 4.31

-60 5.0 5.7 -0.69

-30 5.0 14.1 -9.12

-30 20.0 14.l 5.88

-30 20.0 14.1 5.88 0 20.0 30.9 -10.94 0 35.0 30.9 4.06 0 40.0 30.9 9.06 30 30.0 55.0 -24.97 30 60.0 55.0 5.03 30 65.0 55.0 10.03 80 95.0 86.6 8.35 80 80.0 86.6 -6.65 80 95.0 86.6 8.35 120 95:0 96.1 -1.11 120 100.0 96.1 3.89 120 95.0 96.l -1.11 160 100.0 98.9 1.05 160 100.0 98.9 1.05 160 100.0 98.9 1.05 240 100.0 99.9 0.07 240 100.0 99.9 0.07 240 100.0 99.9 0.07 320 100.0 100.0 0.01 320 100.0 100.0 0.01 320 100.0 100.0 0.01 CVGraph 6.02 10/16/2015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-21 BRAIDWOOD UNIT 2 UNIRRADIATED (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hypelbolic Tangent Cun*e Printed on 10/16/2015 3:38 PM A = 78.60 B = 76.40 C = *108.82 TO= -58.99 D = 0.00 Correlation Coefficient= 0.953 Equation is A+ B * {Tarih((f-TO)/(C+D1))]

Upper Shelf Energy = 155.00 (Fb:ed) Lower Shelf Energy= 2.20 (Fixed)

Tcmp@JO ft-lbs=-140.70° F Tcmp@35 fl-lbs=-129.50° F Tcmp:'g,50 ft-lbs=-101.80° F Plant: Braidwood 2 Material: SA508CL3 Heat: [SOD102/50C97)-1-1 Orientation: N/A Capsule: UNIRR 11.l

.,Q 120

"'i

~

~

~

r..

~

100

/ O********

~

~

c 80 60

. . . . . . . . . h,, ' . ~ ... *' ., . ...;.-*

        • '. ,.,_,_, -~ ., ~ ....

u 40 20

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/16/2015 Page 1/3 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-22 Plant: Braidwood 2 Material: SA508CLJ Heat: [50Dl02/50C97]-1-1 Orientation: NIA Capsule: UNIRR BRAIDWOOD UNIT 2 UNIRRADIA TED (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature{° F) InputCVN Computed CVN Differential

-180 8;0 17.l -9.11

-180 9.0 17.1 ~8.11

-180 15.0 17.l -2.11

-160 20.0 22.8 -2.84

-160 21.0 22.8 -1.84

-160 30.0 22.8 7.16

-120 32.0 39.8 -7.75

-120 44.0 39.8 4.25

-120 57.0 39.8 17.25

-80 48.0 64.0 -16.03

-80 56.0 64.0 -8.03

-60 62.0 77.9 -15.89

-60 81.0 77.9 3.11

-60 111.0 77.9 33.11

-30 61.0 98.5 -37.48

-30 118.0 98.5 19.52

~30 141.0 98.5 42.52 0 90.0 116.4 -26.38 0 106.0 116.4 -10.38 0 121.0 116:4 4.62 40 127:0 133.7 c6.68 40 130.0 133.7 -3.68 80 133.0 144.0 -10.98 80 157.0 144.0 13.02 80 158;0 144.0 14.02 160 138.0 152.3 -14.32 160 148.0 152.3 -4.32 160 171.0 152.3 18.68 240 148.0 154.4 -6.38 CVGraph 6.02 10/16/2015 Page 213 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-23 Plant: Braidwood 2 Material: SA508CL3 Heat: (50D102/50C97)-1-1 Orientation: NIA Capsule: UMRR BRAIDWOOD UNIT 2 UNIRRADIATED (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature{° F) Input CVN Computed CVN Differential 240 165.0 154.4 10.62 240 173.0 154.4 18'62 CVGraph 6.02 J0/1612015 Page3/3 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-24 BRAIDWOOD UNIT 2 UNIRRADIA TED (HEAT-AFFECTED ZONE)

CVGrapb 6.02: HypeJbolic Tangent Cun*e Printed on 10/16/2015 3:39 PM A = 39.80 B = 38.80 C = 88.05 TO= -69.06 D = 0.00 Correlation Coefficient= 0.949 Equation is A+ B * (Tanh((f-TO)/(C+D1))]

Upper Shelf L.E. = 78.60 Lower ShelfL.E. =.LOO (Fixed)

Tcmp@35 mils=-80.00° F Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-1-1 Orientation: NIA Capsule: UNIRR 90 ..-.....,.~..,....~~ ........~~--.~~~...-~~--~~.......~~--.~.....,..~.,...........,..~"""I

~** ., **:* ...:. .0 .. ";"'"'

80t--~--r-~~--t--~~-t---O-e-t=;n:::~~-~-;;;:::~;;;:::;;;:::~;;;:::::::j::::::;:::;:::I

    • ),?~*o v.

70 1---;-~-t-~~--t~-rlrJ-+-*....-,~-t-~---.,--1--~~--t-~~-r~~~-i---,~-1

_rl.l ,.. .... ~.. ......

o.oto

.v i ~1--_,___-t-~-t-~:-~'~'~-t-~-t----,---t---,~r---c---t-~-

i *** * * * * * . . *****/:: .

~ :~..~- -~-,~~~~~~~~~~***~*~~-~---~-~-~~~~~~~~~-~-~*~~~--~;-~--~--~~~~~---~--~~~~~~~~~~~~

f . , .... o/~o

~ 30 t--__;~-+-~~~~,~__;~+-~~---+~-'--~+-~~-+~_;_~-1-~__;--1~-;..~-1

~

20

... .... . ao.

l----'-~-~~~-l-l~-i-~+---,--,-+--,--'-~+---+~-+---,-'---+~-'-~-+-~'---1

-************lo*************

10

=vf:,.. . .

1---;-~+--M-~-1----,;---+-~+--+~+--+~*+---1r---+-~+--+--..,+---..,--..,-I 0 ...___.~......~--~----~......~--~.....------~--~.....----......~---*__.~......~~

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/16/2015 Page 1/3 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-25 Plant: Braidwood 2 Material: SA508CL3 Heat: (50D102/50C97)-1-1 Orientation: N/A Capsule: UNIRR BRAIDWOOD UNIT 2 UNIRRADIATED (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed J,. E. Diffrrential

-180 2.0 6.8 -4.78

-180 3.0 6.8 -3.78

-180 6.0 6,8 -0.78

-160 10.0 9.7 0.27

-160 10.0 9.7 0.27

-160 12.0 9.7 2.27

-120 13.0 19.6 -6.56

-120 22.0 19.6 2.44

-120 33.0 19.6 13.44

-80 26.0 35.0 -9.01

~*

-80 31.0 35.0 -4.01

-60 32.0 43.8 -11.78

-60 42.0 43.8 -L78

-60 67.0 43:8 23.22

-30 70.0 56.0 14.03

-30 33.0 56.0 -22.97

-30 67.0 56.0 11.03 0 52.0 65.2 -13.22 0 60.0 65.2 -5.22 0 73.0 65:2 7.78 40 67.0 72.6 -5.59 40 .81.0 72.6 8.41 80 76.0 76.l -0.06 80 80.0 76:1 3.94 80 86.0 76.1 9.94 160 69.0 78.2 -9.18 160 72.0 78.2 -.6.18 160 81.0 78.2 2.82 240 80.0 78.5 1.47 CVGraph 6.02 10/1612015 Page2/3 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-26 Plant: Braidwood 2 Material: SA508CL3 Heat: (50Dl02/50C97]-1-1 Orientation: NIA Capsule: UNIRR BRAIDWOOD UNIT 2 UNIRRADIATED (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input LE. Computed J,. E. Differential 240 80.0 78.5 1.47 240 78.0 78.5 -0.53 CVGraph 6.02 10/16/2015 Page 3/3 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-27 BRAIDWOOD UNIT 2 UNIRRADIATED (HEAT-AFFECTED ZONE)

CVGraph 6.02: HypeJbolic Tangent Cuive Printed .on 10/16/2015 3 :39 PM A = 50.00 B = 50.00 C = 74.50 TO = -28. 75 D = 0.00 Correlation Coefficient= 0.982 Equation is A+ B " [Tanh((f-TO)/(C+DT))]

Upper Sbelf%Shcar = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= -28. 70 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/SOC97)-1-1 Orientation: N/A Capsule: UNIRR 100 1- ...

90 80

. ~ ' . _., ,

70

,~ ~

~ 60

~

.c:

00

.i 50

=

~

CJ

~ 40

~ ,...

30 10 l---'~-+~_,__~-30-tJ~--+---+-__,~-~~-~~-t--~*~~f----'----;.-~.~--_,_.~-----t1 O'--_._*~---=**~~--~O~*-----.__-'--L--~**--J1.-*~'*_**_*..1--~*:*"----~*~**_**...1....--L*-*-*~*-**~*-*-*~*:_**~

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGr.1ph 6.02 10/16/2015 Page 1/3 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-28 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: NIA Capsule: UNIRR BRAIDWOOD UNIT 2 UNIRRADIATED (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature{° F) Input %Shear Computed %Shear Differential

-180 ci.o 1.7 -1.69

-180 0.0 1.7 -1.69

-180 0.0 1.7 -1.69

-160 0.0 2.9 -2.86

-160 0.0 2.9 -2.86

-160 5.0 2.9 2.14

-120 10.0 7.9 2.05

-120 10.0 7.9 2.05

-120 10.0 7.9 2.05

-80 20.0 20.2 -0.17

-80 15.0 20.2 -5.17

-60 20.0 30.2 -10.J 8

-60 30.0 30.2 -0.18

-60 35.0 30.2 4.82

-30 65.0 49.2 15.84

-30 30.0 49.2 -19.16

-30 65.0 49.2 15.84 0 55.0 68.4 -13.39 0 70.0 68.4 1.61 0 80.0 68.4 11.61 40 70.0 86.4 -16.36 40 85.0 86.4 -1.36 80 100.0 94_9 5.12 80 100.0 94.9 5.12 80 100.0 94.9 5.12 160 100.0 99.4 0.63 160 100.0 99.4 0.63 160 100.0 99.4 0.63 240 100.0 99.9 0.07 CVGraph 6.02 1011612015 Page 2/3 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-29 Plant: Braidwood 2 Material: SA508CL3 Heat: [50Dl02/50C97]-1-l Orientation: N/A Capsule: UNIRR BRAIDWOOD UNIT 2 UNIRRADIATED (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Differential 240 100.0 99.9 0.07 240 100.0 99.9 O.o?

CVGraph 6.02 10/16/2015 Page 3/3 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-30 BRAIDWOOD UNIT 2 CAPSULE U (TANGENTIAL)

CVGmph 6.02: HyperboliC Tangent Curve Printed on I0/19/2015 8:21 AM A= 89.10 B = 86.90 C = 86.35 TO= 41.04 D = 0.00 Correlation Coefficient= 0.960 Equation is A+ B *[Tanh((f-TO)/(C+D1))]

Upper Shelf Energy = 176.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Temp@flO ft-lbs=-30.50° F Tem))1'1J.15 ft-lbs=~2l.90° F Temp@50 ft-lbs= -0.80° F Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97J-1-1 Orientation: Tangential Capsule: U 80 60

~ -*~'

40 20

.. c '* - ' * ;* ' - - ~ * * * * * *, ~

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGmph6.02 10/19/2015 Page 1/2' WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-31 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: Tangential Capsule: U BRAIDWOOD UNIT 2 CAPSULE U (TANGENTIAL)

Charpy V-Notch Data Temperature{° F) Input CVN Computed CVN Diffcrentia.1

-75 5,0 13.3 -8.27

-35 76.0 27.7 48.31

-25 19.0 33.l -14.15 0 33.0 50.7 -17.65 15 47.0 63.7 -16.66 20 74.0 68.3 5.66 40 89.0 88.1 0.94 75 138.0 121.6 16.38 100 140.0 140.7 "0:66 125 136.0 154.3 -18.25 150 175.0 163.l 11.90 200 1no 171.7 0.27 250 184.0 174.6 9.36 300 173.0 175:6 -2:57 CVGraph 6.02 1011912015 Page 2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-32 BRAIDWOOD UNIT 2 CAPSULE U (TANGENTIAL)

CVGraph 6.02: Hyperbolic Tangent Cur\'e Printed on 10/19/2015 8:22 AM A= 44.41 B = 43.41 C = 72.28 TO= 15.85 D = 0.00 Correlation Coefficient = 0. 945 Equation is A+ B * (Tanh((f-TO)/(C+DT))]

Upper ShclfL.E. = 87.82 Lower ShclfL.E. = LOO (Fixed)

Tcmp'.ll;.35 mils= 0.00° F Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-1-1 Orientation: Ta11gential Capsule: U

--e rl.I

....=

Q rl.I

=

=

Coe

~

r-l

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGrnph 6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-33 Plant: BraidWood 2 Material: SA508CL3 Heat: [50Dl02/50C97]-1-l Orientation: Tangential Capsule: U BRAIDWOOD UNIT 2 CAPSULE U (TANGENTIAL)

Charpy V-Notch Data Temperature(" F) Input L.E. Computed L. E. Differential

-75 4.0 7.5 ~3.50

-35 46.0 18.l 27.92

-25 14.0 22.2 -8.19 0 23.0 35.0 -12.04 15 35.0 43.9 ~8.90 20 52,0 46.9 5.10 40 58.0 58.4 -0.40 75 80.0 73.7 6.32 JOO 83.0 80~1 2.89 125 84.0 83.8 0.22 150 93.0 85.8 7.25 200 86.0 87:3 -1.29 250 81.0 87.7 -6.69 300 84.0 87.8 -D9 CVGraph 6.02 10/i9/2015 Page2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-34 BRAIDWOOD UNIT 2 CAPSULE U (TANGENTIAL)

CVGraph 6.<>2: Hyperbolic Tangen! Cuive Printed on 10/19/2015 8:23 AM A = 50.00 B = 50.00 C = 80.85 TO = 5. 70 D = 0.00 Correlation Coefficient= 0.897 Equation is A+ B * (Tanh((T-TO)/(C+DT))]

Upper Shelf %Shear= l 00.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 5.80 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-1-1 Orientation: Tangential Capsule: U lOOr--:---i~~--r"~~-r-----:,~-r--e--~--tP--8-~~.,..-~~,...-~---.

_,, ....... ***' *** ,1 * ' ~ ****

50

~ *'**<

40 30 20 10 0

-300 -200 -100- 0 100 200 300 400 500 600 Temperature {° F)

CVGrJph 6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-35 Plant: Braidwood 2 Material: SA508CL3 Heat: [50Dl02/50C97)-1-1 Orientation: Tangential Capsule:U BRAIDWOOD UNIT 2 CAPSULE U (TANGENTIAL)

Charpy V..Notch Data Tern peratur.e (0 F) Input %Shear Compull.'d %Shear Diffl'rential

-75 0.0 12.0 -11.96

-35 70.0 26.8 43.24

-25 15.0 31.9 -16.87 0 25.0 46.5 -21.48 15 45.0 55.7 -10.72 20 70.0 58.7 11.25 40 75.0 70.0 4.98 75 90.0 84:7 5.26 100 90.0 91.2 15 125 95.0 95.0 -0.03 150 100.0 97.3 2.74

.200 100.0 99.2 0.81 250 100.0 99.8 0.24 300 .100.0 99.9 0.07 CVGraph 6.02 J0/1912015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-36 BRAIDWOOD UNIT 2 CAPSULE U (AXIAL)

CVGraph 6.02: Hyperbolic Tangent Cuive Printed on 10/19/2015 8:24 AM A= 69.60 B= 67.40 C =84.34 TO= 33.29 D = 0.00 Correlation Coefficient= 0.977 Equation is A+ B * (Tanh((f-TO)/(C+D1))]

Upper Shelf Energy = 137.00 (Fi.xed) Lower Shelf Energy = 2.20 (Fixed)

Tcmp@.30 ft-lbs=-23.50° F Temp@35 ft-lbs=-14.50° F Temp(qi,50 ft-lbs= 8.10° F Plaut: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-l-1 Orientation: Axial Capsule: U

      • o ()

~ "' ~ .... --~

120

..-. ~ ~ . -.-:- ... **->' ,., ...

rl.l

,Q

~

I

~ 80

s..

Cl,)

100

      • ~r

=

r--:i

~

u 60 40

............... .Jo********

20

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGr.iph 6.02 I0/19/2015 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-37 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D10U50C97]-1-1 Orientation: A_tjaJ Capsule:U BRAIDWOOD UNIT 2 CAPSULE U (AXIAL)

Charpy V-Notch Data Temperature{° F) Input CVN Computed CVN Differential

-75 8.0 11.8 -3.80

-50 10.0 18.6 -8.63

-20 40.0 31.9 8.10 0 35.0 44.3 -9.30 20 82.0 59.1 22.93 25 63.0 63.0 0.00 40 71.0 75.0 -3.95 60 74.0 90.3 -16.26 80 100.0 103.5 -3.53 105 116.0 116.2 -0.19 105 128.0 116.2 11.81

.200

  • 125.0 134.5 -9.46 200 139.0 134.5 4.54 250 ]49.0 136.2 12.79 300 145.0 136.8 8.24 CVGraph 6.02 10/19/2015 Page 2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-38 BRAIDWOOD UNIT 2 CAPSULE U (AXIAL)

CVGraph 6.02: Hypelbolic Tangent Curve Printed on I0119/2015 8:26 AM A = .i2.JS B = 41.35 C '= 71.01 TO= 22.19 D = 0.00 Correlation Coefficient= 0.981 Equation is A+ B * (Tanh((f-TO)/(C+D'D)]

Uppcr Shelf L.E. = 83. 70 Lower ShclfL.E. = 1.00 (Fixed)

Tcrnp'.((!.35 mils= 9.50° F Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-1-l Orientation: Axial Capsule: U

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGmph6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-39 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: A.~al Capsule:U BRAIDWOOD UNIT 2 CAPSULE U (AXIAL)

Charpy V-Notch Data Temperature{° F) Input I.E. Computed LE. Differential

-75 4.0 6.0 -2.03

-50 6;0 10.6 -4.57

-20 24.0 20.3 3.69 0 24:0 29.8 -5.83 20 57.0 41.1 15.93 25 40.0 44.0 -3.98 40 50.0 52.5 -2.51 60 55.0 62.5 -7.50 80 68.0 70.1 -2.13 105 78.0 76.4 1.62 105 82.0 76.4 5.62 200 81.0 83.1 ~2.15 200 83.0 83.1 -OJS 250 86.0 83.6 2.44 300 82.0 83.7 -1.66 CVGraph 6.02 10/19/2015 Page 2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-40 BRAIDWOOD UNIT 2 CAPSULE U (AXIAL)

CVGraph 6Jl2: Hyperbolic Tangent Curve Printed on I0/19/2015 8:25 AM A= 50.00 B = 50.00C=69.47TO=17.06 D = 0.00 Correlation Coefficient= 0.983 Equation is A+ B * {Tanh((f-TO)/(C+Dn>J Upper Shelf%Shcar= 100.00 (Fixed) Lower Shelf o/.Shear = 0.00 (Fixed)

Temperature at 50% Shear= 17.1 O Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-l-1 Orientation: Axial Capsule: U 100 ..------:--.,.-.-.~.----r--~-r----:--~~t---:-::::::(lll-t~~ ... -...~

. .----- ... ~,-

.. -.. ~~----.r-~ ..-.. --,

L* ~ *. . *- *. * *. * - *(- -l 90 l----'---+--;..--f---'--t-----'--K-l-'---l---'---l---'--+--'---1-:--:---I 80 ~~--+--.,_~. z~)-1----.  :,-_j-. -'----1----U-;---!-* - ' . - - - I - - - - - ' -- -..,- _*

70 ... -.-..-.. ---+----!--

1- ...-..-;.-

....-...+...r--.i,r--l::*-r::'... l-.... -1

.. ---+------!-- .* r1---.~. - + - . .-. -.,- .. -. ..-1.

60 1-----1-----1----+-.f----l----!----+-----+----+----I

  • fi 50 40
- - -* l* ,

l---'---l---"'---!---+---l-#*----;..---1---'---!----'---+----'----l--"---+---'---I 11----.,---;----,---i--~~.--:---1---+----:---;--~-t---:----t----1

' ~ . ~ ~ ',, .. " <**'-"- ,. .. ;- .. -....

30 r-"'. -* .

l---:-~t---:--+---:--11D--'--+----+----+---:--+---:--+----I I-*** <*

... . "f 20 -.. . " ----t...-. .....- .- - r..-y-.-;- ; - ... - ,- ..- ...  ;----,--t--,.--i- .....

.- .....--r-l- . . . --;---. --ti 10 . . . . --'--+-----"--_-_+:£:-1;, ..~--~~-- ... f 0 '---..........i..-m::.....,,,,,,,,.::;;.......L.~**~..i..~~;~-'-~~*.....__.~-*~*~-'-~*;~.....~~*~-'-~..L..~~

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/1912015 Page 112 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-41 Plant: Braidwood 2 Material: SA508CL3 Heat: [50Dl02/50C97)-1-1 Orientation: A.xial Capsule: U BRAIDWOOD UNIT 2 CAPSULE U (AXIAL)

Charpy V-Notch Data Temperature{° F) Input %Shear Computed %Shear Differential

-75 5.0 6.6 -1.60

-50 10.0 12.7 ;2.67

-20 25.0 25.6 -0.60 0 30.0 38.0 -7.96 20 70.0 52.1 17.88 25 55.0 55.7 -0.69 40 65.0 65.9 -0.94 60 70.0 77.5 -7.49 80 80.0 86.0 -5.96 105 90.0 92.6 -2.63 105 100.0 92.6 7.37 200 100.0 99.5 0.51 200 100.0 99.5 0.51 250 100.0 99.9 0:12 300 100.0 100.0 0.03 CVGraph 6.02 10/19/2015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-42 BRAIDWOOD UNIT 2 CAPSULE U (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 10/19/2015 8:27 AM A = 32.10 B = 29.90 C = 102.06 . TO= -12.86 . D = 0.00 Correlation Coefficient = 0.977 Equation is A+ B * (Tanh((f-TO)/(C+DT))]

Upper Shelf Energy= 62.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Temp,,'(!!30 fi-lbs=-20.00°.F Temp@35 ft-lbs= -2.90° F Temp@50 ft-lbs= 57.70° F Plant: Braidwood 2 Material: WELD Hcat:442011 Orientation: N/A Capsule: U 70 --~~--~~-.-~~--.~~~..-~~.......~~--~~~.--~~--~~--

0 0 C) 60 1--~~-t---'-~-1-~~-+-~~-...t-~~*~--~t--~~f--~~-t-~~-t-~~-1

c~
                  • \***

~ 541 10

~--.~~-+--.-. .-.-..-... r.-...-.-.,-.--t--~-.-.~-.--~-,-. . -.-i-~~--1-~ ~t-----,-.--.~ ..-.,.- .. . .. ..-...- ..- , -

. .-..--1.

'-' 40 ~**~---r~-,---+-*----11-1-----1--~---+---~~+--'----1----;'----1~~---1

~ I

~ .. , ....  !'"J)' .

  • I* . * ~

~ :1---;----r---'--~-~~~~ . . .. . ~ ~

l - - - " - - + ..-. *. -.. .. - - - i - - - 1... ~ ~ ~-+~--1 I- . ' * '**.

                • o/ .,,,.. ,v{'""*'" '"" ***..>**' .- ~ ~ . *:-

__.::::.V_ () :

10 a---,-~-r-~~~H-'~,---i-~~~-t----.,.~-t-~-:-----t~-,-~-;-~.;---+~-,---11

~-**

0 ....~.i.-*~i.-.....i~....i.~....i.'~-i.~-.i.-*~i.---ii...-....i.~-"-'~"-~""-~"-....................._......~_.

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-43 Plant: Braidwood 2 Material: WEID Heat: 442011 Orientation: N/A Capsule:U BRAIDWOOD UNIT 2 CAPSULE U (WELD)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential

-110 18.0 10.0 8.04

-80 1.0 14.8 -7.85

-70 18.0 16.9 1.09

-45 25.0 23.0 2.02

-20 31.0 30.0 0.99 0 33.0 35.8 -2.85 20 44.0 41.4 2.59 35 43.0 45.2 -2.18 60 46.0 50.4 -4.43 90 59.0 55.0 4.03 120 63.0 51.9 5.12 150 59.0 59.6 -0.64 200 60:0 61.l -1.09 250 68.0 6U 6.34 300 63.0 61.9 1.13 CVGraph 6.02 10/19/2015 Page2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-44 BRAIDWOOD UNIT 2 CAPSULE U (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 10/19/2015 8:27 AM A= 30.57 B = 29.57 C = 112.55 TO= 7.63 D = 0.00 Correlation Coefficient= 0.973 Equation is A+ B *!Tanh((f-TO)/(C+DT))]

Upper ShelfL.E. = 60.15 Lower Shelf L.E. = 1.00 (Fi.xed)

Tcmp~t'j).15 mils= 24.70° F Plant: Braidwood 2 Material: WELD Heat:442011 Orientation: N/A Capsule: U 70 --------------------------------------------------------------

6

  • -*' - * * '~ * * "A,.;* '  :**-***.

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/19/2015 Page 112 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-45 Plant: Braidwood 2 lVfatcrial: WEID Heat: 442011 Orientation: NIA Capsule:U BRAIDWOOD UNIT 2 CAPSULE U (WELD)

Charpy V-Notch Data Temperature (0 F) InputL.E. Computed L. E. Differential

-110 no 7.5 4.49

-80 5.0 11.3 -6.29

-70 16.0 12.9 3.11

-45 19.0 17.7 1.33

-20 23:0 23.5 -0.45 0 28.0 28.6 -0.57 20 35.0 33.8 1.19 35 36.0 37.6 -1.62 60 38.0 43.4 ~5.42 90 54.0 49.0 4.97 120 60.0 53.l 6.93 150 54.0 55.8 -1.78 200 49.0 58.3 -9:27 250 63.0 59.4 3.64 300 61.0 59.8 .1.18 CVGraph 6.02 l0/i9/2015 Page 2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-46 BRAIDWOOD UNIT 2 CAPSULE U (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed pn I0/19/2015 8:28 AM A = 50.00 B = 50.00 C = 80.22 TO = 30.51 D = 0.00 Correlation Coefficient= 0.978 Equation is A+ B * (Tanh((f-TO)/(C+D1))]

Upper Shelf %Shear= I00.00 (Fixed) Lower Shelf 'Ye.Shear= 0.00 (Fixed)

Temperature al 50% Shear= 30:60 Plant: Braidwood 2 Material: WELD Heat: 442011 Orientation: N/A Capsule: U

=""

QJ 60

..c *****1**.

00

...... 50

=

QJ u . ., ..., ... ' ... "<

~

QJ 40

.. f ...

30 20

      • r1*

.. r. - - -oJI-+-******** - - - ! - . .- . , -. -

  • . ,~-----+----t-------1 10 . -1 /

0 L.......1--..... *--*=*=*~~.-~----~~---**_**-~;__.......__""---"-....1'--...L.--~;L-~--...L.--....L..--~'--...L.--~'"----'

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/19/2015 Page l/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-47 Plant: Braidwood 2 Material: WEID Heat: 442011 Orientation: NIA Capsule: U BRAIDWOOD UNIT 2 CAPSULE U (WELD)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Sheur DilTcrential

-110 10.0 2.9 7.08

-80 5.0 @ ~0.98

-70 15.0 7.5 7.46

-45 20.0 13.2 6.79

-20 25.0 22.1 2.89 0 30.0 31.8 -1.85 20 45.0 43.5 1.51 35 45.0 52.8 -7.79 60 50.0 67.6 -17.59 90 100.0 81.5 18.50 120 100.0 90.3 9.70 150 100.0 95.2 4.84 200 100.0 98.6 1.44 250 100;0 99.6 0.42 300 100.0 99.9 0.12 CVGraph 6.02 1011912015 Page2!2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-48 BRAIDWOOD UNIT 2 CAPSULE U (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent CmYe Printed Oil 10/19/2015 8:29 AM A= 101.10B=98.90C=175.45 TO =-17.10 D = 0.00 Correlation Coefficient= 0.855 EqnationisA + B * (Tanh((T-TO)/(C+D1))]

Upper Shelf Energy = 200.00 (Fi...,.ed) Lower Shelf Energy = 2.20 (Fixed)

Temp@30 ft-lbs=-175.90° F Temp@35 ft-lbs=-158.80°. F Temp:'.q!50 ft-lbs=-117.40° F Plant: Bi-.Udwood 2 Material: SA508CL3 Heat: [50D102/50C97)-1-1 Orientation: N/A Capsule: U 250 --------..-------.......--------------------------------------------------...------

6

()

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 Revision 0


~ -- - -- --

Westinghouse Non-Proprietary Class 3 C-49 Plant: Braidwood 2 Material: SA508CL3 Heat: (50D102/50C97]-1-l Orientation; NIA Capsule: U BRAIDWOOD UNIT 2 CAPSULE U (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Tempt'ralure C° F) Input CVN Computed CVN Differential

-170 7:0 31.7 -24.66

-150 19.0 37.8 -18.85

~125 82.0 46.9 35.06

-115 29.0 51.0 -22.01

-95 68.0 59.9 8.14

-75 76.0 69.6 6.40

-25 97.0 96.6 0.35 5 111.0 113.5 -2.49 30 174.0 127.0 46.97 60 155,0 142.0 13.04 100 56.0 158,8 -102.79 150 204.0 174.4 29.63-200 191.0 184.6 6:36 225 162.0 188.2 -26.22 250 243.0 191.0 51.99 CVGraph 6.02 1011912015 Page 2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-50 BRAIDWOOD UNIT 2 CAPSULE U (HEAT~AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 10/l9/2015 8:29 AM A = 35.82 B = 34.82 C = 89.24 TO = -99.59 D = 0.00 Correlation Coefficient= 0.853 Equation is A+ B * {Tanh((f-TO)/(C+D1))]

upper Shelf LE. = 70.64 Lower ShelfL.E. = 1.00 (Fixed)

Temp'@)S mils=-10.1.60° F Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-1-1 Orientation: N/A Capsule: U 70 rl.l

==e

..._,, 60

...=

0 50

... I~ ..

"<>[

rl.l

=

=

c. +*****

~

--=

f;;l;l 40

~ 30

' ~ ... ,. ' :- '., -. . .. - ~ ~ '* ., " -t ,.. . ~ ,.. '

l

.I

~ = >- .. ......,,., .

20 10

-* /o * * * * * * *

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraplt 6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-51 Plant: Braidwood 2 Material: SA508CL3 Heat: (50D102/50C97)-1-1 brientation: N/A Capsule:U BRAIDWOOD UNIT 2 CAPSULE U (HEAT-AFFECTED ZONE)

Charpy V--Notch Data Temperature C° F) Input Ih E. Computed L. E. Differential

-170 10.0 12.9 -2.91

-150 17.0 18.0 -1.01

-125 47.0 26.2 20.83

-115 15.0 29:9 -14.87

-95 38.0 37.6 0.39

-75 41.0 45.2 -4.18

-25 58.0 59.6 -1.62 5 59.0 64.5 ~5.54 30 85.0 67.0 17.98 60 80.0 68.7 11.25 JOO 43.0 69.9 -26.85 150 82.0 70.4 ll.62 200 83.0 70.6 12.44 225 55.0 70.6 -15.59 250 69.0 70.6 -1.61 CVGmph6.02 10/1912015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-52 BRAIDWOOD UNIT 2 CAPSULE U (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 10/19/2015 8:3.0 AM A= 50.00 B = 50.00 C = 81.16 TO= -104.08 D = 0.00 Correlation Coefficient= 0.879 Equation is A+ B * [Tanh((f-TO)/(C+DT)))

Upper Shelf%Shear= 100.00 (Fixed) Lower Shelf o/oShear = 0.00 (Fixed)

Temperature at 50% Shear= -104.00 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97J-1-1 Orientation: NIA Capsule: U 100

~'*" .. ~" ..~ ,.

.****:I~*

i I  ;

90 I-****

80 I-70 .......

i-.- I ( *n * ~ ..

60 I- "'

50 ~~~-r~-,-~~-~*+----1r---;-~-i-~-,,-~-t-~~-~~-.c-~-+-~~~+-~;---1

. - / ' -:-** ' .... ., ' ,, " --<* *<~ 0 ., -; > * ' ~

~ --,--+~-;.;---t--~--+~-~ -t---.~-+--'---+~..,__-+-~'---l-__,..--1 .. -.. .

_:---1-* - .,.~J-t- .,._.-i---*""'"~---1----1

,. ,. . . 7-;; ,., . . . . . , ,,.,,, , , . ,,. ., .

20 ---c=l**-.*.: ----!--" .....

10 t----'-.~-+1*-~.--+--+--l--~*--+-~-'--+--.,_~+-------+--'----1--"~-

-.. .),,/ *-o-l*-*-- * ,,..,.-.. . 1--

0 __..);' I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVG:mph 6.02 IOM/2015 Page 1/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-53 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: NIA Capsule:U BRAIDWOOD UNIT 2 CAPSULE U (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature{° F) Input %Shear Computed %Shear Differential

-170 5,b 16.5 -11.46

-150 15.0 24.4 ~9.39

-125 75.0 37.4 37.61

-115 20.0 43.3 -23.32

-95 60.0 55.6 4.43

-75 65.0 67.2 -2.19

-25 85.0 87.5 -2.53 5 95.0 93.6 l.37 30 100.0 96.5 3.54 60 95.0 98.3 -3.28 JOO 60.0 993 -39.35 150 100.0 99.8 0.19 200 100.0 99.9 0.06 225 100.0 100.0 0.03 250 100,0 100.0 0.02 CVGraph 6.02 JO!i9/2015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-54 BRAIDWOOD UNIT 2 CAPSULE X (TANGENTIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 10/l9/2015 8:31 AM A = 84.60 B = 82.40 C =94.61 TO =44.92 D = 0.00 Correlation Coefficient= 0.941 Equation is A+ B * (Tanh((f-TO)/(C+D1))]

Upper ShclfEncrgy = 167.00 (FL"\ed) Lower ShelfEncrgy = 2.20 (Fixed)

Tcmp@JO ft-lbs=-30.50° F Temp@!35 ft-lbs=-20.90° F Temp@50 ft-lbs= 2.60? F Plant: Braidwood 2 Material: SA508CL3 Heat: (50D102/50C97)-1-1 Orientation: Tangential Capsule:X 180 160 140 l

.c 120 l:'-l

-¢::

I

>. 100

~

i..

~

... - \ ~ .. ..

..  ;.]~

~ , . * ~ ., . ' -

~ *i -* * '

=

r-i 80 z """" ' - ~ * * .; * * ~' ~" r " . - " ",,.;,, ** " *. ~ ~ * *\_ '

u> 60

~ **-- - -: .. fo.;.

40 20  : I/:

  • l?V..09 ..

0 l:::::::ii:::::::t:::::i:...*_.J~....i.~..L~..i...~l...~*i.._...l~-'--*_.J~....L'~..L~~*1..-...l~-.L....*..J

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGmph6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-55 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: Tangential Capsule: X BRAIDWOOD UNIT 2 CAPSULE X (TANGENTIAL)

Charpy V-Notch Data Temperature{° F) InputCVN Computed CVN Differential

-50 9.0 21.7 -12.73

-25 13.0 32.8 -19.81

-10 40.0 41.5 -1.50 0 66.0 48.2 17.83 5 SRO 51.8 6.24 10 82,0 55.5 26.50 25 53.0 67.5 -14.50 40 100.0 80.3 19.68 75 66.0 110.0 -43:95 80 99.0 113.8 -14.83 105 152.0 130.9 21.13 125 145.0 141.4 3.61 150 166.0 150.9 15.12 200 166.0 161.0 4.98 250 169.0 164.9 4J3 CVGraph 6.02 10/19/2015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-56 BRAIDWOOD UNIT 2 CAPSULE X (TANGENTIAL)

CVGraph 6.02: Hypclbolic Tangent Curve Primed on I0/19/2015 Hl:35 AM A= 44.64 B = 43.64 C=84.41TO=20.61D=0.00 Correlalion Coefficient= 0.930 Equation is A+ B * (Tanh((f-TO)/(C+D1))]

UppcrShclfL.E. = 88.28 Lower ShelfL.E. = 1.00 (Fixed)

Temp'.?!.135 mils= 1.70° F Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-1-1 Orientation: Tangential Capsule:X 90 1--~~--1-~~~--l-~~~+--~~-~1µ~~~--l-~-~~+--~~---4~~~-+-~~--1

  • -r~-~ '.**'*I*

80 I/

,-.... 70

  • 1

~~,---+~-'""~-+-~~~+-~--Jr-;.~---..,-~-+-~...,-...,-+-~;----1~-,-...,--t-~-,--~

i 60 ,_'"._.. _*. :._-+-_*._* *~ _*_*..;....

"._ .. _*+-.*E~f-, -0" -'. f---'---+-...:.._-l---***_*_*.f---.""""'. ...."--t----'--1

-~ ..... :. . . . . ..... *-- o*-7'"**.

= 50 ----+------+'-------l-lf---+----+----+-----.,1----+----t

~ . ** * - * **Tf* *- ~ "---* ** .

] 40~--..-.--1-~-+-.---*~.-_4/'+0-.~.:-+-.-.;~.-.. -._,_-.~.--.~ ~.-_,__-1--"---t 4 . -.. ... ...-...

~ ........ ,.... ..:,

~ 30 1---;--~--_,__--1--;---..'r..>--;---i--~-r--~--r--;----1----+--c---1

.............. ;. - '.*"" ~ *'

20

_..... ......... ....... /****

--'---+--'-----+-___,---l--'---+----+----+---1-----t------1 10  : /: u

-*,**** ---~ *9****

ol::::::::c::::t::::i..~.l-.....i.~.L.......1.~.L......i.~..L.......1.~.L.....i.~...L--1*~..L---'~..J

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGr.iph 6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-57 Plant: Braidwood 2 Material: SA508CL3 Heat: (50Dl02/50C97]-1-1 Orientation: Tangential Capsule: X BRAIDWOOD UNIT 2 CAPSULE X (TANGENTIAL)

Charpy V-Notch Data Temperature (0 F) Input L.E. Computed J,. E. Differential

-50 4.0 14.8 -10.79

-25 9.0 23.l -14.12

-10 29.0 29.5 -0.48 0 48.0 34:2 13.81 5 42.0 36.7 5.34 IO 54.0 39.2 14.81 25 38.0 46.9 -8.91 40 60.0 54.5 5.50 75 47.0 69.4 -22.43 80 66.0 71.1 -5.12 105 89.0 77.9 11.12 125 86.0 81.5 4.50 150 86.0 84.4 1.60 200 86.0 87:1 -1.06 250 88.0 8.7.9 0.09 CVGraph 6.02 10119/2015 Page2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-58 BRAIDWOOD UNIT 2 CAPSULE X (TANGENTIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 10/19/2015 8:32 AM A = 50.00 B = 50.00 C = 68.94 TO = 78.41 D = 0.00 Correlalion Coefficient= 0.966 Equalion is A+ B * (Tanh((f-TO)/(C+D1))]

UpperShelf%Shcar= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 78.50 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-1-1 Orientation: Tangential Capsule:X 100.----:-,~~-r~-:-1""---:---:-r-t:l~t11"'::~--r-----:--r~-:---r-~---:,

90 ~~---'--+--~~-1----~-1---'-~~**_**_-~;/_**_**~-~---*_**~**--*-1--*-*~**_*-l-~-'--l-*-**_***_**_**-I-*

"T ** ~o j . ' '" . * .'., - '*" * , ~ * " . I ** ' - * ' ' * * - ' , . ,. -

80 ~.--,-~ ... **--t-- _

- - t - .- .. _--r-

      • -,--' __  !~!,-----+--~. -. -r----;---r--*-.****--;--*-;-- ! - _ - _  :* ..

70 ----:--

I

= 60

~

.c rJ1

+.I s: 50

,~

. . '*l

~

(,J

.. , ... ..: ~ ' ..

-c- - - ----- *!-L

~ 40

~  :

30 20 10 f*.***

~ ,.,,. *- ~ - . . ,_ -

'~

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 1Dn9/2015 Page 112 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-59 Plant: Braidwood 2 :tvratcrial: SA508CL3 Heat: (50D102/50C97]-1-1 Orientation: Tangential Capsule: X BRAIDWOOD UNIT 2 CAPSULE X (TANGENTIAL)

Charpy V-Notch Data Temperatur_c {° F) Input %Shear Computed %Shear Differential

-50 0.0 2.4 -2.35

-25 5.0 4.7 0.26

-10 5.0 7.1 -2.14 0 10.0 9.3 0.68 5 15.0 10.6 4.37 10 30.0 12.1 17.92 25 20.0 17.5 2.48 40 30.0 24.7 5.29 75 25.0 47.S -22.53 80 40.0 51.2 -1 us 105 85.0 68.4 16.62 125 80.0 79.4 0.56 150 100.0 88.9 1U4 200 100.0 97.1 2.85 250 100.0 99.3 0.68 CVGraph 6.02 10/19/2015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-60 BRAIDWOOD UNIT 2 CAPSULE X (AXIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 215/2016 8:26 AM A = 73.60 B = 71.40 C = 99.03 TO = 80.65 D = 0.00 Correlation Coefficient= 0.985 Equation is A+ B * [Tanh((f-TO)/(C+D1))]

Uppe_r Shelf Energy= 145.00 (Fb:ed) Lower Shelf Energy= 2.20 (Fixed)

Temp@130 ft-lbs= 10.40°.F Temp:?Jj35 ft-lbs= 20.80° F Temp@50 ft-lbs= 46.70° F Plant: Bi-.tidwood 2 Material: SA508CL3 Heat: [50D102/SOC97)-1-1 Orientation: Axial Capsnle:X 160 ------------..-----------------------------------..------.

.. 0 0

--rl.l

,.Q '.

  • W**:***"**oJ.

-¢::

I OJ)

J.,.

~

100 80

_ L _ , " **~

c: *~.

riilil u

~ 60 40

-200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGmph6.02 02105/2016 Page l/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-61 Plant: Braidwood 2 Material: SA508CL3 Heat: (50D102/50C97)-1-1 Orientation: Axial Capsule: X BRAIDWOOD UNIT 2 CAPSULE X (AXIAL)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Diffl'rential

-10 11.0 21.9 -10.93 0 20.0 25.6 -5,62 5 29.0 27.7 1.34 15 22.0 32.2 -10.16 25 54.0 37.2 16.77 30 5LO 40.0 11.04 50 49.0 52.2 -3.18 80 74.0 73.1 0.87 110 90.0 94.2 A.16 150 114.0 116.8 -2.76 200 131.0 133.2 -2.24 250 152.0 140.5 11.52 300 149.0 143.3 5.68 350 134.0 144.4 -10.38 CVGraph 6.02 0210512016 Page2f2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-62 BRAIDWOOD UNIT 2 CAPSULE X (AXIAL)

CVGraph 6.<l2: Hyperbolic Tangent Cul'Ve Printed on I0/19/2015 8:34 AM A= 44.61 B = 43.61 C = 90.03 TO= 57.52 D = 0.00 Correlation Coefficient= 0.989 Equation is A+ B * (Tanh((f-TO)/(C+DT))]

Upper ShclfL.E. =88.21 Lower Shelf L.E. = l.00 (Fi.xed)

Tcmp:?]J35 mils= 37 :40° F Plaut: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-1-1 Orientation: Axial Capsule:X 90 n ,,

1--***-

80

-=

~ ~

r lJ 70 a 60

..._,, J

...==

rlJ I-***

==

Coi 50

~

-....=

~

Q,)

40 30

~ . ,., :

~

= .........

20

~ ........;,, ....

10

        • +-~/-0 *'**********

0 l:::::::c=:!:::::::::t:=-L--*~*_JL_...i..,._J__...i...._J,__..i__J,__..i__l__~*--l....-1..--1

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/19/2015 Page 112 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-63 Plant: Braidwood 2 Material: SA508CLJ Heat: [50D102/50C97)-1-1 Orientation: A.~al Capsule: X BRAIDWOOD UNIT 2 CAPSULE X (AXIAL)

Charpy V-Notch Data Tempera.lure{° F) Input L. E. Computed LE. DUTcrential

-10 8.0 16.9 -8.91 0 16.0 20.0 -4.01 5 24.0 21.7 2.29 15 22.0 25.4 -3.42 25 40.0 29.5 10.49 30 36.0 31.7 4.32 50 40.0 41.0 -0.97 80 54.0 55.3 -1.27 110 66.0 67.5 ~l.49 150 76.0 78.3 -2.30 200 85.0 84.7 0.32 250 88.0 87.0 0.98 300 90.0 87.8 2.19 350 87.0 88.I -1.08 CVGraph 6.02 10/1912015 Page2f2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-64 BRAIDWOOD UNIT 2 CAPSULE X (AXIAL)

CVGniph 6Jl2: Hyperbolic Tangent Curve Printed on IO/J 9/2015 8:35 AM A = 50.00 B = 50.00 C = 82.38 TO= 112.34 D = 0.00 Correlation Coefficient= 0.994 Equation is A+ B * (Tanh((f-TO)/(C+Dl))]

Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf 'YoShcar = 0.00 (Fixed)

Temperature al 50% Shear= 112.40 Plant: Braidwood 2 Material: SA508CL3 Heat [50D102/50C97)-1-1 Orientation: Axial Capsule:X

-=

.=

00

~

60 50

= '-*--'.*"

~ ....

CJ

~*

. :-- -*- .... ****'.** ..... * * <. ~,, * ',- > A ' *' * * ' ' * ' ; "* * *

~ 40

~

30 20 10 -  :

'.~a1 --~--*--

7.

--',----1-----;----;-'*_..-'- .* ---+------ .. .,--

.. ' --1 0 L~-***--1~....1.~..._.-lll::*:*~~--~1-** ......~*-**-*~!~...&..~~*~....1.~-;~***_*.....1.~...J.~~~~*~-1..*----~-:~*---....J**

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/19/2015 Page 112 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-65 P.lant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: A.tjal Capsule:X BRAIDWOOD UNIT 2 CAPSULE X (AXIAL)

Charpy V-Notch Data Temperature(" F) Input %Shear Computed %Shear Differential

-10 5;(1 4.9 0.12 0 10.0 6.1 3.86 5 10.0 6.9 3.12 15 10.0 8:6 1.40 25 15,0 10.7 4.29 30 15.0 11.9 3.07 50 20.0 18.0 1.96 80 25.0 31.3 -6.32 110 40.0 48.6 -8.58 150 .80.0 71.4 8.61 200 90,0 89.4 0.64 250 100.0 96.6 3.42 300 100.0 99~0 1.04 350 .100.0 99.7 0.31 CVGraph 6.02 10/19/2015 Page 2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-66 BRAIDWOOD UNIT 2 CAPSULE X (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 10/19/2015 8:36 AM A= 35.10 B = 32.90C=58.67TO=16.03 D = 0.00 Correlation Coefficient= 0.960 Equation is A+ B * (Tanh((f-TO)/(C+DT))]

Upper Shelf Energy = &.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed)

Temp@JO ft-lbs= 6. 90° F Temp@35 ft-lbs= 15.90° F Temp@SO fl-lbs= 44.70° F Plant: Braidwood 2 Material: WELD Hcat:442011 Orientation: N/A Capsule:X 80

. ,., ... *- **- . () "' ..

70 .... ....

60

Oi

. I~

20 _--+-**** _-t----v*. . . i - - - - - - r - ..... -- ....-- - * -....*-*****--;--***

_ __- ...... ---;-- , .---t--

l__ ._~*. .-.o-!-_-__-... . .:. ,.--!-,_-_-___-_--+--._ . . ___- - - + - - - I to ---.-.-,---!---____- __ -.....:*.. -__ ..-*.._+-.-

__ /P~** ,,,>.--, .* ~ ,.,,.,~-- ~, * ._._

0 ---------~.....~--~-;~.....~-*--......~--~--~-*~--~--~--~--~----*--_.

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGr.1ph 6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-67 Plant: Braidwood 2 Material: \'EID Heat:442011 Orientation: NIA Capsule: X BRAIDWOOD UNIT2 CAPSULE X (WELD)

Charpy V-Notch Data Temperature{° F) lnput.CVN Computed CVN Differential

-50 10.0 8.5 1.53

-25 23.0 15.2 7.77 cl5 8.0 19.2 -lJ.16 0 30.0 26.3 3.67 5 21.0 29.0 -7.99 15 45,0 34.5 10.48 30 37.0 42.8 -5.79 50 55.0 52.3 2.73 75 66.0 60.2 5.77 JOO 57.0 64.4 -7.44 125 62.0 66.4 -4.44 150 65.0 673 ~2.32 200 10:0 67.9 2.12 250 75.0 68.0 7.02 301) 70.0 68.0 2.00 CVGraph 6.02 l0/19/2015 Page 2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-68 BRAIDWOOD UNIT 2 CAPSULE X (WELD)

CVGraph 6.02: Hyperbolic Tangent Cu..Ve Printed on 10/19/2015 8:36 AM A = 33.05 B = 32.05 C =83.91 TO = 24.46 D = 0.00 Correlation Coefficient= 0.967 Equation is A+ B * [Tanh((f-TO)/(C+D1))]

Upper ShelfL.E. = 65.09 Lower ShclfL.E. = LOO (Fixed)

Temp@35 mils;= 29.60° F Plaut: Braidwood 2 Material: WELD Hcat:442011 Orientation: N/A Capsule:X 70 0 (~

60 50 0 40 ----;- - - * *-*- ~*-*;~--+-*_,_--+---"-----!--*-

0

~ " .. - -~ *-~

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGr.iph6.02 10/19/2015 Page 112 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-69 Plant: Braidwood 2 Material: \'EID Heat:442011 Orientation: NIA Capsule: X BRAIDWOOD UNIT 2 CAPSULE X (WELD)

Charpy v. .Notch Data Temperature (0 F) InputL.E. Computed},. E. Differential

-50 8.0 10.3 -2.29

-25 19.0 16.1 2.92

-15 10.0 19.0 -9.00 0 30.0 24.0 6.04 5 19.0 25.7 -6.74 15 38.0 29.4 8.55 30 31.0 35.2 -4.16 50 49.0 42.5 6.49 75 52.0 50.3 1.69 100 51.0 56.0 -5.00 125 54.0 59.7 -5.74 150 61.0 62.0 cJ.03 200 64.0 64.l -0.13 250 69.0 64.8 4.21 300 67,0 65,0 2.00 CVGraph 6.02 10/19/2015 Page2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-70 BRAIDWOOD UNIT 2 CAPSULE X (WELD)

CVGraph 6Jl2: Hypelbolic Tangent Curve Printed on 10/19/2015 8:37 AM A= 50.00 B = 50.00 C = 45. 72 TO= 31.64 D = 0.00 Correlation Coefficient= 0.971 Equation is A+ B * (Tanh((T-TO)/(C+Dl))]

UpperShclf%Shcar= 100.00 (Fixed) Lower Shelf o/oShear = 0.00 (Fixed)

Tempcrallrre at 50% Shear= 31. 70 Plant: Braidwood 2 Material: WELD Hcat:442011 Orientation: NIA Capsnle:X 100.--~....,-~~.,.-~--r-~~:---r~~*;~~~-~,-Eir-~...,...~~~~--.

.. ,, TJ 0 T. .................. .

90 l----'-~--'---1--'-~.--'-_ i-H-4 '.l'l---'--}--

T * *. . . .. -- --'-_

  • ...- ... +--

.. --+----'--+-_--;... .... _ _._....

801----'---l~-:----t~-'---!-~S~-t-~+--t-~,__-!--~;---t---;~-1-~--1

. '*' -<*' T' 70 --~~-1-~~-+~~~+---1~-i-~~-+~~~-1-~~-+-~~~,--~~1 J

-...=

..c 00

~

60

~ ~

50

=

~

CJ  ;.. ... ..; ****** -: .. --.****- .* ..... -~- , . - ... - - .

' ~ ' ~.

~ 40

~

30 20 r- ,._

. ***,*j:>*** .,

10 0

!-*:.. . . . .y.; I  ;  ;

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGmph6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-71 Plant: Braidwood 2 Material: \'EID Heat:442011 Orientation: N/A Capsule: X BRAIDWOOD UNIT 2 CAPSULE X (WELD)

Charpy V-Notch Data Tem~ralure (0 F) Input %Shear Computed %Shear Differential

-50 5.0 2.7 2.27

-25 10.0 7.7 2.26

-15 10.0 11.5 -1.50 0 20.0 20.0 -0.03 5 15.0 23.8 -8.77 15 55,0 32.6 22.44 30 25.0 48.2 -23.21 50 80.0 69.l 10.93 75 90.0 87.0 3.05 100 90.0 95.2 -5.21 125 95.0 98.3 -3.34 150 100.0 99.4 0.56 200 100:0 99.9 0.06 250 JOO.O 100.0 0.01 300 100.0 100.0 0.00 CVGraph 6.02 10/19/2015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-72 BRAIDWOOD UNIT 2 CAPSULE X (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent Cmve Printed on 10/19/2015 !US AM A = 63.60 B =61.40 C = 71.72 TO =-106.96 D == 0.00 Correlation Coefficient = 0.816 Equation is A+ B * (Tanh((f-TO)/(C+D1))]

Upper Shelf Energy = 125.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Temp@30 ft-lbs=-151.00° F Temp@35 fl-lbs=-143.10° F Temp:0so ft-Ibs=-123.10° F Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-1-1 Orientation: N/A Capsule:X 180 --~~....-~~ .......~~.......~~--~~_,..~~--~~--.~~~..-~---

.o**

1--~~t--~-+J~~~-'H--:~+-~~-t--~~t--~~+---~+--'-~+-~--1 60

. lv-40 - ...--;-

... --l~..-~ . . .-._*r----+--r----o--t-~~--+-. **___,********--

.. -f-----.,-.'. *.

20----~/.._.,_:-+--,---+~-+--;---t----'----r--i--+--+--!--~

L.-7 ******* . ***'-*** . . "*----** ***-*.

0 I I  ; I I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-73 Plant: Braidwood 2 l\1aterial: SA508CL3 Heat: (50Dl02/50C97)-1-1 Orientation: NIA Capsule: X BRAIDWOOD UNIT 2 CAPSULE X (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) lnpiltCVN Computed CVN Differential

-150 33.0 30.6 2.38

-130 56.0 44.5 IL48

-120 44.0 52.6 -8.55

-100 88.0 69.5 18.46

-100 65.0 69.5 -4.54

-75 59.0 89.3 -30.28

-60 60.0 98.9 -38.90

-50 135.0 104.2 30.83

-40 142.0 108.6 33.44 0 117.0 119.1 -2.08 50 144.0 123.5 20.52 100 126.0 124.6 1.38 150 104.0 124.9 -20:91 200 .103.0 125.0 -21.98 250 169.0 125.0 44~01 CVGraph 6.02 JO/i9/2015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-74 BRAIDWOOD UNIT 2 CAPSULE X (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent CuIVe Printed on 10/19/2015 8:39 AM A= 36.93 B = 35.93 C = 88.77 TO =-101.65 D = O.OD Correlation Coefficient= 0.828 Equation is A+ B * (Tanh((f-TO)/(C+D'I))]

Upper ShclfL.E. = 72.87 Lower ShclfL.E. = LOO (Fixed)

Temp@35 mils=-106..10° F Plant: Braidwood 2 Material: SA508CL3 Heat [SOD102/SOC97)-l-1 Orientation: N/A Capsule:X 90 ..-~~ .......--..~.......~~--~~......~~--..~~--......-~~..-~~....-~--..-.

Q...

I  ;

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGrnph 6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-75 Plant: Braiffil*ood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: NIA Capsule: X BRAIDWOOD UNIT 2 CAPSULE X (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed I~ E. Differential

-150 22.0 19.1 2.91

-130 30.0 25.8 4.17

-120 25.0 29.6 -4.61

-100 56.0 37.6 18.40

-100 30.0 37.6 -7.60

-75 23;0 47.4 -24.41

-60 38.0 52.7 -14.66

-50 73.0 55.8 17.24

-40 74.0 58.5 15.47 0 63.0 66.3 -3.26 50 78.0 70.6 7.42 100 67.0 72.l -5.11 150 63.0 72.6 -9.62 200 65.0 72.8 -7.79 250 86.0 72.8 13.16 CVGraph 6.02 10/19/2015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-76 BRAIDWOOD UNIT 2 CAPSULE X (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hypeibolic Tangent Curve Printed on 10/19/2015 8:39 AM A= 50.00 B = 50.00 C = 123.30 TO= -31.66 D = 0.00 Correlation Coefficient= 0.946 Equation is A+ B * (Tanh((T-TO)/(C+D'D)]

Upper Shelf%Shcar= 100.00 (Fixed) Lower Shelf o/.Shcar = 0.00 (Fixed)

Temperature at 50% Shear= -31.60 Plant: Braidwood 2 Material: SA508CL3 Heat: [50Dl02/50C97)-1-l Orientation: N/A Capsule:X 100

~-* ., -* *r* ***-

90 80 70

-=

.c 00

~

60

..i 50

=

~

u ***--~

~ 40

~

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/1912015 Page 112 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-77 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-1-1 Orientation: NIA Capsule: X BRAIDWOOD UNIT 2 CAPSULE X (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input %Shear Compukd %Shear Diffl'rential

-150 5.0 12.8 -7.79

-130 10.0 16.9 -6.87

-120 10.0 19.3 -9.26

-100 40.0 24:8 15.18

-100 30.0 24.8 5.18

-75 20.0 33.l -13.12

-60 25.0 38.7 -13.71

-50 55.0 42.6 12.38

-40 65.0 46.6 18.38 0 60.0 62.6 -2.56 50 80,0 79.0 1.01 100 70.0 89.4 -19.43 150 100:0 95:0 4.99 200 100.0 97.7 2.28 250 100.0 99.0 1.03 CVGraph 6.02 10/19/2015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-78 BRAIDWOOD UNIT 2 CAPSULE W (TANGENTIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 10/19/2015 8:40 AM A= 84.10 B = 81.90 C = 80.83 TO= 47.78 D = 0.00 Correlation Coefficient= 0.973 Equation is A+ B * (Tanh((f-TO)/(C+D1))]

Upper Shelf Energy= 166.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed)

Temp@!30 ft-lbs=-16.30° F Temp@35 ft-lbs= -8.10° F Temp@50 ft-lbs= 12.00° r Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/SOC97)-1-1 Orientation: Tangential Capsule: W 180

,_ """"\"

0 .. - .

~

160 140 6

--1:1.l

..c 120 i

- I

¢::

>. 100

~

i..

~

~

I- *

~

~

= 80 z r-***-.-*

u> 60 r- .... ~ -: ' .

40

>-** - -~.

20

- ~ 0

  • o+ ~
  • L o* 0

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGrdph 6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-79 Plant: BraidWood 2 Material: SA508CL3 Heat: [50Dl02/50C97)-1-1 Orientation: Tangential Capsule:*W BRAIDWOOD UNIT 2 CAPSULE W (TANGENTIAL)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential

-50 6.(1 15.6 ~9.58

-25 12.0 25.4 -13.42

-10 12.0 33.8 -21.84

-5 26.0 37.1 -11.11 0 70.0 40.6 29.37 0 60:0 40.6 19.37 10 48.0 48.4 -0.38 25 67.0 61.6 5.39 50 81.0 86.3 -5.35 72 105.0 107.9 -2.93 1 ](I 133.0 137.1 -4.07 150 163.0 153.9 9.09 200 145:0 162.3 -17.30 250 174.0 164.9 9.09 300 162.0 165.7 -3.68 CVGraph 6.02 10/1912015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-80 BRAIDWOOD UNIT 2 CAPSULE W (TANGENTIAL)

CVGraph 6.02: Hyperbolic Tangent Cuive Printed on 10/19/2015 8:41 AM A= 42.03 B = 41.03 C = 66.47 TO= 32.82 D = 0.00 Correlation Coefficient= 0.968 Equation is A+ B * (Tanh((f-TO)/(C+D1))]

Upper Shelf LE. = 83.06 Lower ShclfL.E. = 1.00 (Fi...,cd)

Temp(t'li35 mils= 21.40° F Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: Tangential Capsulc:W

.;.200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGrnph 6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-81 PJant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-1-1 Orientation: Tangential Capsule:W BRAIDWOOD UNIT 2 CAPSULE W (TANGENTIAL)

Charpy V-Notch Data Temperature{° F) Input L.E. Computed L E. Differential

-50 0.0 7.3 -7.27

-25 5.0 13.3 -8.26

-10 7.0 18.7 -11.74

-5 14.0 20.9 -6.92 0 41.0 23.3 17.73 0 35,0 23.3 11.73 10 29.0 28.5 0.53 25 40.0 37:2 2.77 50 47.0 52.4 -5.41 72 61.0 63.8 -2.76 llO 73.0 75.7 -2.73 150 87.0 80.7 6.28 200 83:o 82.5 0.47 250 85.0 82.9 2.06 300 79.0 83.0 -4.03 CVGraph 6.02 10119/2015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-82 BRAIDWOOD UNIT 2 CAPSULE W (TANGENTIAL)

CVGraph 6.<l2: Hypetbolic Tangent Curve Printed on 10/19/2015 8:41 AM A = 50.00 B = 50.00 C =85.28 TO = 64.56 D = 0.00 Correlation Coefficient= 0.982 Equation is A+ B * (Tanh((f-TO)/(C+D1))]

UpperShelfo/oShcar= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Sl1ear = 64.60 Plant: Braidwood 2 Material: SA508CL3 Heat: (50D102/50C97)-1-1 Orientation: Tangential Capsulc:W 100 -

90

~-*- ...:;.,, ' -

80 70 '-*

-=

.c 00

~

60

+.I 50

=

~ ~ **'" .. ~ '** ****** ~' > - , * -

CJ

~ 40

~ .....

30

... .. . ~

20 10

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-83 Plant: Braidwood 2 Material: SA508CL3 Heat: (50D102/50C97]-1-1 Orientation: Tangential Capsule:W BRAIDWOOD UNIT 2 CAPSULE W (TANGENTIAL)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Differential

-50 2.0 6.4 -4.38

-25 5.0 10.9 -5.91

-10 10.0 14.8 -4.82

-5 10.0 16.4 -6.37 0 35,0 18.0 16.96 0 25.0 18.0 6.96 10 20.0 21.8 -1.76 25 30.0 28.3 1.66 50 40.0 41.5 -1.55 n 50.0 54.4 -4.35 JIO 70.0 74.4 -4.38 150 100.0 88.J 1 J.88 200 90.0 96.0 -5.99 250 .100,0 98.7 1.28 300 100.0 99.6 0.40 CVGraph 6.02 10/19/2015 Page 212 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-84 BRAIDWOOD UNIT 2 CAPSULE W (AXIAL)

CVGraph 6.02: Hyperbolic Tangent Cnn'.e Printed on 10/19/2015 8:46 AM A = 74.60 B = 72.40 C = 93.68 TO = 76.93 D = 0.00 Correlation Coefficient= 0.976 Equation is A+ B * !Tanh((f-TO)/(C+DT))]

Upper ShelfEnergy = 147.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Temp@:JO ft-lbs= 9. 70° F Tcmp@35 ft-lbs= 19 .50° F Temp@~'iO ft-lbs= 43.80° F Plant: Braidwood 2 Material: SA508CL3 Heat [50D102/50C97)-1-1 Orientation: Axial Capsulc:W 160 4)

~ -***

140 120

,-... ~ -:: '

rl.I

-r::

,.Q

- ~

I 100

,_. . -*,* .,,.,.,_ ' .. ' ~

. '" l)I . .' * ~ q ~ **,. - - ' * '

i..

~

c:

ri!iil 80

"**"hl" Y* . . . . . . . ..

u

~ 60 40

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGmph6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-85 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: A.xial Capsule:W BRAIDWOOD UNIT 2 CAPSULE W (AXIAL)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential

-50 9.0 11.2 -2.23

-25 22.0 17.0 5.05 0 22.0 25.7 -3.67 15 21.0 32.7 -11.67 25 52.0 38.1 13.88 25 25.0 38.1 -13.12 40 45.0 47:4 -2.45 50 79.0 54.3 24.66 55 48.0 58.0 c9_95 100 89.0 92.l -3.07 125 117.0 108.8 8.20 150 107.0 121.9 -14.85 200 144.0 137.2 6.76 250 140.0 143.5 -3.49 300 156:0 145.8 10.23 CVGraph 6.02 l0/19/2015 Page 2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-86 BRAIDWOOD UNIT 2 CAPSULE W (AXIAL)

CVGraph 6.02: Hyperbolic Tangent CmYe Printed on 10/19/2015 8:46 AM A=39.11B=38.11C=73.78 T0=59.24D =0.00 Correlation Coefficient= 0.963 Equation is A+ B * (Tanh((f-TO)/(C+D1))]

Upper Shelf L.E. = 77.22 Lower ShclfL.E. =LOO (Fixed)

Tcmp:@35 mils= 51.30° F Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-1-1 Orientation: Axial Capsule: W 90

-~ ....

80 t--*** .. . ~*1 .

8 60 70

. . . ' 1*

- ~~ - ... ,

'y ...*. '

Q

.....= 50 t- . ' ,.. - ~ .

0

=

=

c.

~

t-**- .. ,,. y ****

--=

40

~

t-~-~~*~~**-***- - ~* ,, '

~

~ 30

~= ......

20 I- . - .. - -~ ..

10

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVG:raph6.02 10/19/2015 Page 112 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-87 Plant: Braidwood 2 Material: SA508CL3 Heat: (50D102/50C97]-1-1 Orientation: A.tjal Capsule:W BRAIDWOOD UNIT 2 CAPSULE W (AXIAL)

Charpy V-Notch Data Temperature{° F) InputL.E. Computed L E. Differential

-50 0.0 4.8 -4.75

-25 11.0 8.0 2.95 0 15.0 13.7 1.26 15 12.0 18.7 -6.65 25 33.0 22.6 10.41 25 15.0 22.6 -7.59 40 30.0 29.4 0.61 50 49.0 34.4 14.64 55 24.0 36.9 -12.92 100 56,0 58.3 -2.26 125 73.0 66.2 6.75 150 62.0 71.2 -9.23 200 83.0 75.6 7.42 250 75.0 76.8 -1.79 300 76.0 77.1 -1.11 CVGrnph 6.02 J0/19/2015 Page 2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-88 BRAIDWOOD UNIT 2 CAPSULE W (AXIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on I0/19/2015 8:47 AM A= 50.00 B = 50.00 C = 85.85TO=101.20 D = 0.00 Correlation Coefficient = 0. 989 Equation is A+ B * (Tanh((T-TO)/(C+D1))]

Upper Shelf'YoShcar = 100.00 (Fixed) LowerShelfo/oShcar= 0.00 (Fixed)

Temperature at 50% Shear= IO 1.30 Plant: Br.tidwood 2 Material: SA508CL3 Heat: [SOD102/SOC97)-1-1 Orientation: Axial Capsule: W 100..---:-~~~-,~~-r--:~-r-~~~"17~:1=----r~~-,.-~~,

-~**

90

      • /--

t--~~-t-~~-+~~~+-~~-1-~~-k~~~-r-~~-+-~~---t~~--1

. **--*,-**-*** ****.**J*

80 ---__ - - - ' - - - i l - - ' - - - - - i - - ' - - - - , - - -____l ---~ z-7#--:

- *-+--~ .. _ ~--_.---_.

- -!-----':_ ... - i - - - - - , - - - 1 70 1----,~-r~-,-~t--~~-1-~--,~1-E>1EJ.---1-~~---'1---~-~1----.,..~-+-~~--1 0 0 60 __ -- . *_** ...._.....+ - - - ! - - - + - - * - : *+-7--'-* *,_ .T--1---+--;- -***_* . ... - - , *_ ... ,.---1 50 I- '. ...,. ' ". " - .... ...,~ ". ' ., . ' ' . ' ' ".,,.

1-~~-l-~-'----+~-'-~+-*-'-~-~~-'----+~-'--~+-~~--1-~_,__--11---;-~~

    • l ;.

40

~ .,,~ .. ~ -** *! 'i . *+ * "* ~ * ** ,' * ~ * * ' I *' '" ~ * '


1-----l---'---l--~-u~-~+-__..---l--~-l---'----11------1

.1-1~~ - * ;* .,

30 -- ____ -_;__ - - - - - - - ! - - - - + - '---ai/_-#-:. - + - - -..--_____ -___ ..- .- r - - - - - i - - - - 1 20 l----+---'---1-----'--l--/tE:J--t---'---f---'---l---;---l---t------I 10 ___,. . --~- ---i----;--;--c----tJll:- f.,.~r_-----i-------_-,----+--~--._._--.--~----_--------------~ ..

01--.....1.........1--~-=t:*=~~--~(*~~1*,_._*~--:--*---1-*-****~'.-**-*~-------~**--ll-....J....--L-*-**~*-*----~**_- .........__.

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGmph6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-89 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: A.xial Capsule:W BRAIDWOOD UNIT 2 CAPSULE W (AXIAL)

Charpy V-Notch Data Temperature{° F) Input %Shear Compukd %Shear Differential

-50 2.0 2.9 -0.87

-25 5.0 5.0 -0.02 0 5.0 8.6 -3.65 15 10.0 11.8 -1.83 25 25.0 14.5 10.51 25 15.0 14.5 0.51 40 25.0 19.4 5.63 50 25.0 23.3 1.73 55 20.0 25.4 ~5.42 100 40.0 49.3 -9.30 I--

125 70.0 63.5 6.49 150 70.0 75.7 -5.71 200 100.CI 90.9 9.10 250 100.0 97.0 3.03 300 100.0 99.0 0.96 CVGraph 6.02 10/i9/2015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-90 BRAIDWOOD UNIT 2 CAPSULE W (WELD)

CVGraph6.02: Hyperbolic Tangent Curve Printed on 10/19/2015 8:48 AM A= 35.10.B = 32.90C=104.38 TO= 20.74 D = 0.00 Correlation Coefficient= 0.986 Equation is A+ B * (Tanh((f-TO)/(C+D1))]

Upper Shelf Energy= 68.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Tcmp@30 ft-lbs= 4.50° F Tcmp@,35 ft-lbs= 20.50° F Tcmp@150 ft-lbs= 71.80° F Plant: Braidwood 2 Material: WELD Heat:442011 Orientation: NIA Capsule: W 80 70 1---*

60 l'l.l --*-* .., ~:- .

==

ct:

~

I J..i

~

50 40

~,, ___

~= i.- ... *1* **.* ..,. *-** :* * .

~

u 30

.... -... *~~ . ..

20 to .

~-:----r----_---.,--~----t-7'1~----:-o_--*------t----r------.,---------i---,--+--.-:

' , .. ,,_--_---+--------1--~-1


~----r---* 4-0 -----**_______;___.___..._________ . ______;________.- _______________________.___.

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGrnph 6.02 10/19/2015 Page 112' WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-91 Plant: Braidwood 2 Material: WEID Heat: 442011 Orientation: NIA Capsule: W BRAIDWOOD UNIT 2 CAPSULE W (WELD)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential

-150 4.0 4.6 -0.61

-75 22.0 11.3 10.74

-50 12.0 15.7 -3.69

-25 23.0 21.5 1.46 0 29.0 28.6 0.35 10 29.0 31.7 -2.73 20 34.0 34.9 -0.87 25 33.0 36.4 -3.44 50 44.0 44.1 -0.09 n 51.0 50.1 0.93 115 61.0 58.7 2.28 150 63.0 62.9 0.10 200 72.0 65.9 6.05 250 73.0 67.2 5.80 300 70.0 67.7 2.31 CVGraph 6.02 10119/2015 Page 2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-92 BRAIDWOOD UNIT 2 CAPSULE W (WELD)

CVGniph 6Jl2: Hyperbolic Tangenl"Cmve Print.eel on 10/19/2015 8:48 AM A= 28.31B=27.Jl C = 109.31 TO =38.29 D = 0.00 Correlation Coefficient= 0.983 Equation is A+ B * {Tauh((f-TO)/(C+D1))]

Upper ShclfL.E. = 55.61 Lower ShelfL.E. = 1.00 (Fixed)

Temp:@35 mils= 65. 70° F Plaut: Braidwood 2 Material: WELD Heat: 442011 Orientation: NIA Capsulc:W 60 -----------------------------------------------------------

50

'". .... ., ~ ' _.,

---=40 rl}

8

  • -=== 30 Q

r ll a-

-...=

~

I.

~ 20

=

...;;i 10 0 ...........__......--18-____________...._......__....___...........__......____________..._...............

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-93 Plant: Braidwood 2 :Material: WEID Heat: 442011 Orientation: NIA Capsule:W BRAIDWOOD UNIT 2 CAPSULE W (WELD)

Charpy V-Notch Data Tempei-ature {° F) lnputL.E. Computed L. E. Diffj,rcntial

-150 0.0 2.7 -2.69

-75 12.0 7.1 4.90

-50 5.0 10.1 -5.06

-25 16.0 14.l 1.95 0 20.0 19.1 0.89 JO 22.0 21.4 .0.61 20 27.0 23.8 3.22 25 25.0 25.0 0.00 50 24.0 31.2 -7.22 72 36.0 36.5 -0.47 115 49.0 44.8 4.16 150 51.0 49:3 l.65 200 50.0 52.9 -2.92 250 56.0 54.5 l.50 300 54.0 55;2 -1.16 CVGraph 6.02 10/19/2015 Page 2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-94 BRAIDWOOD UNIT 2 CAPSULE W (WELD)

CVGraph 6.02: Hyperbolic Tangenteurve Printed on 10/19/2015 8:49 AM A = 50.00 B = 50.00 C = 68.86 TO = 30.80 D = 0.00 Correlation Coefficient= 0.997 Equation is A+ B * (Tanh((T-TO)/(C+DT))]

Upper Shelfo/oSbcar= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature al 50% Shear= 30.90 Plaul: Braidwood 2 Material: WELD Hcat:442011 Orientation: N/A Capsulc:W 100 r---:---..,-.~~...,...~--:---r~-:--~r----:-~lilli--8'--~~r--:-~-:-~~..,..~~--.

90

~ .,. ",; ... **~ ..

,***o/F**--:.

l-----'-~-!-~-'----t~-'-~+---'~--t1-~-'----t~-'-~+---'-~-t----'---if---'----t

) .' ..,** . -*..,' ~' ~ ' ~ . . ". i so~~-.~_.:.-.-.. +_-__-...~---.--+-__.,___-_+-_-_~l,R-.4__ ~-+--1-~,__-+---_.~~--.-+-___-_-__~ ...-.. *.+-...-.+__-_-*

70 I-~----. .- ..-._-...----+------+-...-..~ __ : .. 1--,..-..-+..-.. -*-*-*-r-----.-__+-...-......-.. -.. --<--~--+-----.-,_-_-~

601--~--+~~-+~~-+---,---+-~~-1--~--i,--~-+~~-1-~~~

J

... - j r - .- - . ..-*-* .,-* . . ,

~---~-+-~..-... -+--.~_.,,-,,_~_~

to- - ""~ *. -': ,. '

__ ~,_~i ~ ~ f-- ..-.* -.-_,_~

.. f--*+-~-,--,,~------***-~--1 10 ~*

-100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/19/2015 Page 112 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-95 Plant: Braidwood 2 :Material: WELD Heat: 442011 Orientation: NIA Capsule:~'

BRAIDWOOD UNIT 2 CAPSULE W (WELD)

Charpy V-Notch Data Temperature (0 F) Differential

.___. Input %Shear -

Computed %Shear

-150 2,0 0.5 1.48

-75 5.0 4.4 0.58

-50 10.0 8.7 1.27

-25 20.0 16.5 3.49 0 30.0 29.0 0.98 JO 30.0 35.3 . -5.34 20 40.0 42.2 -2.22 25 50.0 45.8 4.20 50 60.0 63.6 -3.59 72 80.0 76.8 3-20

] 15 95.0 92.0 2.97 150 95.0 97.0 "l.96 200 100.0 99.3 0.73 250 100.0 99.8 0.)7 300 100.0 100.0 0.04 CVGraph 6.02 l0/19/2015 Page 2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-96 BRAIDWOOD UNIT 2 CAPSULE W (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hype!bolic Tangent Curve Printed on 10/19/2015 8:50 AM A= 79.60 B = 77.40 C = 139.22 TO= -31.27 D =0.00 Correlation Coefficient= 0. 951 Equation is A+ B * {Tanh((f-TO)/(C+D1)))

Upper Shelf Energy = 157 .00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Temp@GO ft-lbs=-137.00° F Temp@35 ft*lbs=-122.70° F Temp@50 fl-lbs=-87.30° F Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/SOC97)-1-1 Orientation: N/A Capsule: W 180 r- ,, ... .:1, 160 r- ~ '" -

140

~,,.*,.,

120 100

~

80

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGrnph 6.02 10/19/2015 Pnge 112 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-97 Plant: Braim\*ood 2 Material: SA508CL3 Heat: [50D102150C97]-1-1 Orientation: NIA Capsule: W BRAIDWOOD UNIT 2 CAPSULE W (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature{° F) Input CVN Computed CVN Differential

-200 7.0 14.8 -7.79

-150 22.0 26:0 -4~00

-125 27.0 34.2 -7.16

-120 53.0 36.0 16.98

-110 32.0 40.0 -7.97

-100 43.0 44.2 -1.22

-75 77.0 56.1 20.94

-50 51.0 69:2 -1R25

-25 96.0 83.1 12:92 0 104.0 96.7 7.30 25 72.0 109.3 -37.28 50 141.0 120.3 20.74 100 134.0 136.6 -2.61 150 147.0 146.3 0.66 225 166:0 153.2 12.80 CVGraph 6.02 10/19/2015 Page2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-98 BRAIDWOOD UNIT 2 CAPSULE W (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 10/19/2015 8:50 AM A= 41.36B=40.36C=116.97 TO= -31.31D=0.00 Correlation Coefficient= 0.951 Equation is A+ B * (Tanh((f-TO)/(C+Dl))]

Uppcr Shelf L.E. = 81.71 Lower Shelf LE.= LOO (Fi.xcd)

Temp@35 mils=-49.80° F Plant: Braidwood 2 Material: SA508CL3 Heat: (50D102/50C97)-1-1 Orientation: N/A Capsule: W 90 ---...----.----..----...----..----....---..----....---....

~-* ..

80

~ "'_, . *'* '

--.s..

~

._ 60 70 I ..

...= 50 0

~

~* ,,,. ,..

0

=

=

c..

~ 40

    • .*****o:f: ******

--=

r.l

      • lu*

~

~

=

~ 30 20

.... -~./?. ******** ...... .

10

. /o-

~

  • 0 ......

....i---~*~,...._ .....__.i....__..__......___.___.i....__.___....__.....__......__.__._....__.....__.....___....___.

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/19/2015 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-99 Plant: Braidwood 2 ]V1aterial: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: NIA Capsule: W BRAIDWOOD UNIT 2 CAPSULE W (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature{° F) InputlbE. Computed LE. Diflhential

~.

f---* -

-200 LO 53 -4.27

-150 8.0 10.4 ~238

~125 10:0 14.5 -4.54

-120 21.0 15.5 5.47

-110 15.0 17.7 ~2.68

-100 20.0 20.1 -0.05

-75 42.0 26.9 15.05

-50 28.0 35.0 -6.96

-25 46.0 43.5 2.47 0 52.0 51.9 0.09 25 39,0 59.4 -20.41 50 76.0 65.6 10.38 100 85.0 74:0 11.02 150 80.0 78:2 L77 225 73.0 80.7 -7.71 CVGmph6.02 J0/19/2015 Page2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-100 BRAIDWOOD UNIT 2 CAPSULEW (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on I0/19/2015 8:50 AM A =50.00B='50.00C=108.37 TO= -20.64 D = 0.00 Correlation Coefficient= 0.987 Equation is A+ B * (Tanli((T-TO)/(C+DT))]

UpperShelf%Shcar= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= -20.60 Plant: Braidwood 2 Material: SA508CL3 Heat: [50Dl02/50C97)-1-l Orientation: N/A Capsulc:W lOO.---:---i~~-r~-:---r---:~-r--1:1~L:1:1:=1~i--~--r~~-r-~~-,

_..,. 7~ . .
. . . . .

90 -- .... -.._... -.. __ *r - ' ~---1--1."i:-;J--/-ta-**----------+--_:___.. -+

- i . --......-... ...--__ . _-__! -..- -_ .....-- I 80 --~. ~ ..... --t--,o-----+~-i--_-,-],__. - t - - ; - - - + - - - ; - "- _~--1----;---1-. '. ...- -..*

70 --~.-~-t--~~--i~~~-1--#--~~+-~~-+~~~-1-~~~--~~-+~~~~

60 1 1 - - - - - - - - f -.. - -_,

I -_ . . . /_~------+-** _--<<**..*

"*_,_** - + - . .- ! - -.._.. .,.. -l---+- .. -

-1 ir,~-~--

50 1-~.~-+~~~-+-~*-i--l-f----;.~-~~-,-~+----'~-+~-+-~+-~-i--~l----'-~-t

}---* *i*

-*- ~ -" . " .. -, ' " . - , .. '

40--~-+-~~-4---0~),Hi..~.-!---'-~+--._,-__ -.. _4.-.-'-~~-'--..- ... ~.--'~-1---.-.--1 30 - .. --t-- ..-__r . !-+. .*

. --~-- - + - - - + - - - - + - - + ... - --......- .- - - .. -. ... -

1 20 f---'-~-/---'--Bj~-'--*l--_;_-+--_;_-+---'--+---'--+---+-_:..---1 10

~ j_

t----'~-+~~'tl:~---:----+~.......,.~-t-~~*~+-~*~--<~~~......~~~-+-~~~*

~  : . . A=- . ---

01==:~;_....-,::......:~>_,J*~-'--J.---L~1--..L...-L---l~J-...L...--1.~1---L--l.._,J__J

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGr.iph6.02 10/19/2015 Page 112 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-101 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: N/A Capsule:W BRAIDWOOD UNIT 2 CAPSULE W (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Tempera.lure (0 F) Input %Shear Computed %Shear Differential

-200 i.o 3.5 -1.52

-150 5.0 8.4 -3.41

-125 10.0 12.7 -2.72

-120 20.0 13:8 6.22

-llO 10.0 16.l -6.12

-100 20.0 18.8 1.22

-75 35.0 26.8 8.17

-50 40.0 36:8 3.22

-25 45.0 48.0 ~2:99 0 55.0 59.4 -4.41 25 60.0 69.9 -9.90 50 90.0 78.6 11.35 100 90:0 90.3 -0.26 150 100.0 95.9 4:ll 225 100.0 98.9 1.06 CVGraph 6.02 10/19/2015 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-102 BRAIDWOOD UNIT 2 CAPSULEV (TANGENTIAL)

CVGmph 6.02: Hyperbolic Tangent Curve Printed on 1/13/2016 I :20 PM A= 84.10 B = 81.90 C= 79.20 TO= 70.33 D =0.00 Correlation Coefficient= 0.974 Equation is A+ B * (Tanh((f-TO)/(C+DT))]

Upper ShelfEnergy = 166.00 (FL'ied) Lower Shelf Energy = 2.20 (Fixed)

Tcmp@30 ft-lbs= 7.50° F Tcmp@35 ft-lbs= 15.50° F Temp@!50 ft-lbs= 35.30° F Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-1-1 Orientation: Tangential Capsule:V 180 -----------------------------------------------------------

    • t**

100 __._,**_*-+-----4-~-+---JJH-.--1-~+---'---+-----1-----1 80 *****1***'


~~---<-~~~~-~~--<~-~---+-~~~-t-~~--+~~~-t-~~~+-~~-*

' .., .* ,. " ~ .

. . *' .,.......;.... *f** ~ - "}

~~****~**~~~~~~~~~~~~-~--~*~~* ...Cf._!

~-~:--~~~~~~~~~~~~~~~~~~~~~~~~~~~~=

20 I----'--,--+-..-.

___. -. ..-.+--/c--+:-+c'hlf~""'._..-:---+-___,_-___,__ 1-...-.. _-'-...-.... -1.. r---+---+---+-.,.--JI-...-._ +._ .-1 ol::::::i:::=:l=::::t:=::c.....1...._J~..i....-1~..i..........L~.i.....-'-~.___..L......J*1.-..L......i__J

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 01/13/2016 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-103 Plant: Braidwood 2 Material: SA508CL3 Heat: (50D102/50C97]-1-1 Orientation: Tangential Capsule: V BRAIDWOOD UNIT 2 CAPSULE V (TANGENTIAL)

Charpy V-Notch Data Tempera.lure{° F) Input CVN Computed CVN Differential

-10 12.5 21.2 -8.74 0 32.0 25.9 6.08 10 8.0 3L5 -23.51 15 18.5 34.7 -16.18 15 54.0 34.7 19.32 20 19.5 38.1 -18.59 25 55.0 41.8 13.25 30 51.0 45.7 5.34 50 77.0 63.5 13.47 72 94,0 85.8 8.17 125 122.0 1;n.1 -11.09 175 140.0 155.1 -15.12 200 162.0 160.0 1.97 210 165.0 161.3 3.68 220 170.0 162.3 7.66 CVGraph 6.02 01113/2016 Page 2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-104 BRAIDWOOD UNIT 2 CAPSULE V (TANGENTIAL)

CVGmph 6.02: Hyperbolic Tangent Cur\'e Printed on 1/13/2016 I :20 PM A= 43.31B=42.31C=50.82 TO= 39.45 D = 0.00 Correlation Coefficient= 0.969 Equation is A+ B * (Tanh((f-TO)/(C+D1))]

Upper ShclfL.E. = 85.62 Lower ShelfL.E. = 1.00 (Fixed)

Tcmp@35 mils= 29.40° F Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-1-l Orientation: Tangential Capsulc:V 90 80

~--*

, ___ , , i_ . .

    • 7 co *r

~-*-" ... .' ~,. ', ... ;- .. - , - .. -*"***-:'"

70

~ w--~..~**-_**_**~*~~~-*-*_*;__f_*.,.__~_,__-**_***_--*..__~---*-_-_,_~---

  • ~ . . "*: ...... .,..cf**---*--

= 50 e'IS


1'-----!------1--r--i-----t-----+-------11-----t---~-t

~ j;

40J----c----r--,----;--:---NIUl'IPll',~:--i-:----;-~--t--;---i--~*--r---:--1 e'IS ... .. . . ......
i...

~ 30 l----i~-+~-'-~-1-~~~-1-;ji--~;~-1-~-;----if----'~-l-~-"-~+-~-,--~+---'~-I

~ ~-- . <~/--.- - - .. - - .*

~ . - ,. " -. -* ..

10--~__,.~~-r-~~-~~~_,__~__,_~~-1-~~-+-~~-t-~--o

...... :..... .- .... .. ra. ;. -._, 0 101--~-+-~-1-~-)--~~-~-+-~--t-~~~~-1-~-1 o t:-=--========:t:*-:J:..... __J.:P_.._-...;;i..:-_*-_**J.._.1... ..._..J*L..*_**---..L*-....L.-..i-*1..--l--.&... *-L--'*-...J

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGr.ipl1 6.02 01/13/2016 Page 112 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-105 Plant: Braidwood 2 Material: SA508CL3 Heat: [50Dl02/50C97]-1-1 Orientation: Tangentiul Capsule:V BRAIDWOOD UNIT 2 CAPSULE V (TANGENTIAL)

Charpy V-Notch Data Temperature(~ F) InputL.E. Computed LE. Dillcrential

-10 9.0 11.6 -2.58 0 25.5 15.8 9.71 10 7.0 21.2 -14.21 15 16.0 24.4 -8.40 15 39.0 24.4 14.60 20 18.0 27.9 -9.87 25 39.0 31.6 7.40 30 39.0 35.5 3.46 50 53.0 52.0 1.02 72 65.0 67.2 "2.23 125 81.0 82.8 -1.80 175 88.0 85.2 2.78 200 84.0 85.5 ~1.47 210 83.0 85.5 -2.52 220 89J) 85.6 3.44 CVGraph 6.02 01/1312016 Page 2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-106 BRAIDWOOD UNIT 2 CAPSULEV (TANGENTIAL)

CVGrnph <*.02: Hypclbolic Tangent Curve Printed on l/ 13/2016 1:21 PM A= 50.00 B = 50.00 C = 77.41 TO= 75.99 D = 0.00 Correlation Coefficient= 0.994 Equation is A+ B

  • fTanh((f-TO)/(C+D1))]

UpperShclf%Sbear= 100.00 (Fixed) Lower Shelf o/cShcar = 0.00 (Fixed)

Temperature al 50% Shear= 76.00 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-l-1 Orientation: Tangential Capsule: V 100 I- 0-90 I-"' ~ ""' -*-*

80 I-*** **'*

70 -*-.--

cu

~

.c 00 60 I-*"""'

~

~ 50

=

~

Col --*

~ 40

~

30

.-~*7*

0 L..-J.~....r..--.i...::=c:;;.-J.~....r..~..1........;L-.--1.*~...L..~.&---l~--L~...L..~.l---l~--L~.J

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGmph6.02 01/1312016 Page 1/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-107 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: Tangential Capsule:V BRAIDWOOD UNIT 2 CAPSULE V (TANGENTIAL)

Charpy V-Notch Data Temperature{° F) Input %Shear Computed %Shear Differential

-W 5.0 9.8 -4.78 0 10.0 12.3 -2.31 10 15.0 15.4 -0.38 15 15.0 17.1 -2.14 15 20.0 17.1 2.86 20 15,0 19.1 -4.05 25 30.0 21.1 8.88 30 20.0 23.4 -3.36 50 40.0 33.8 6.18 7.2 45.0 47.4 -2.43 125 75.0 ..

- 78.0 -3.01 175 90.0 92:8 -2."81 200 100.0 96.J 3.90 2Io .100.0 97.0 3.04 220 100.0 97.6 2.36 CVGraph 6.02 0111312016 Page 2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-108 BRAIDWOOD UNIT 2 CAPSULE V (AXIAL)

CVGmph 6.02: Hyperbolic Tangent Cur\'e Printed on 1/13/2016 I :22 l'M A = 73.10 B = 70.90 C = 84. 78 TO = 99.62 D = 0.00 Correlation Coefficient= 0.969 Equation is A+ B * (Tanh((f-TO)/(C+D1))]

Upper Shelf Energy = 144.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed)

Temp@!30 ft-lbs= 39. 90° F Temp@35 fi-lbs= 48.80° F Temp@50 ft-lbs= 71.00° F Plant: Br.i.idwood 2 Material: SA508CL3 Heat: (50Dl02/50C97)-1-1 Orientation: A."ial Capsule:V 120 1:1.l

.c "T 100

¢::

~ 80

i..

~

=

r-l

1

~ 60 u

40 I-*-** ...

JL

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGmph6.02 01/13/2016 Page 1/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-109 Plant: Braidwood 2 Material: SA508CL3 Heat: (50D102/50C97]-1-1 Orientation: Axial Capsule: V BRAIDWOOD UNIT 2 CAPSULE V (AXIAL)

Charpy V-Notch Data Temperature{° F) Input CVN Computed CVN Differential

-10 18:0 12.l 5.87 10 12.0 17.5 -5.48 15 30.0 19.2 10.84 25 32:0 23.0 S.99 30 9.0 25.2 -16.19 35 42.0 27.6 14.44 45 14.5 32.8 -18.35 50 57.0 35:8 21:23 60 36.0 42.2 -6.19 72 42.0 50:8 -8.79 125 96.0 93.7 2.29 175 107.0 123.5 -16.51 200 144.0 131.9 12.14 210 .139.0 134:2 4.77 220 150.0 136.2 13.83 CVGraph 6.02 01113/2016 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-110 BRAIDWOOD UNIT 2 CAPSULE V (AXIAL)

CVGmph 6.02: Hyperbolic Tangent Curve Primed on 1/13/2016 I :23 PM A = .a6.58 B = 45.58 C = 90A3 TO = 89.48 D = 0.00 Correlation Coefficient = 0. 970 Equation is A+ B * !Tanh((f-'f0)/(C+D1))]

Upper ShclfL.E. = 92.16 Lower ShclfL.E. = LOO (Fixed)

Temp'.@35 mils= 66.00° F Plaut: Braidwood 2 Material: SA508CL3 Heat: [50D102/SOC97]-1-1 Orientation: Axial Capsule:V 100 I-"* ***.'*

90

~-"* .,~' ..... , ........

--e 80 I- "T" * ** *"*";'" *** --***r'"******-*** .*, ... .........

~ ' .. . -";.....

Cll 70

~ ... ,,. _',

...=c=

Cll 60 t-,** * *,~ r . .: . . r. ,. -..

=

~

50

~ ~ ." . _, .; - / .. - *i . . -- --*

-.....=

r.l 40

~

-=

Q,)

30 I-**-

~~-.

20

-200 -100 '0 100 200 300 400 500 600 Temperature {° F)

CVGmph6.02 01/13/2016 Page 1/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-111 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: Axial Capsule:V BRAIDWOOD UNIT 2 CAPSULE V (AXIAL)

Charpy V-Notch Data Temperature (0 F) InputL.E. Computed L. E. Diffl'rcntial

-10 12.0 10.1 1.91 10 10.0 14.4 -4.41 15 23.0 15.7 7.2.8 25 24.0 18.7 5.34 30 KO 20.3 -12.29 35 32.0 22.0 9.98 45 14.0 25.8 -11.81 50 39.0 27.9 ll.14 60 29.0 32.2 ~3.23 72 33.0 37.9 -4.88 125 68.0 63.6 4.38 175 77.0 80.2 -3.21 200 87.0 84.9 2.12 210 92.0 86.2 5.77 220 81.0 87.3 -6.35 CVGraph 6.02 01/1312016 Page2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-112 BRAIDWOOD UNIT 2 CAPSULE V (AXIAL)

CVGraph 6.02: Hypemolic Tangent Cmve Printed on 1/13/2016 I :23 PM A = 50.00 B =50.00 C =83.06 TO = 100.33 D = 0.00 Correlation Coefficient = 0. 990 Equation is A+ B * [Tanh((T-TO)/(C+Dl))]

Upper Shelf %Shear= I 00.00 (Fixed) Lower Shelf 'Y.Sbcar = 0.00 (Fixed)

Temperature at.5tl% Shear= 100.40 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/SOC97)-1-1 Orientation: Axial Capsnle:V 90

........... v lOOr--:----r~~-r---:~.,...--:---,~~-ee-'."""":::==i-""'--.,--~--r~~--.

1-~--r-~~-1--~--J------1---~f--*._.-+----r--~~+----1

.. ***,**d* ......

.i.f******-.

1--~~-+~--;--+---'~-l----0--~.~---/~-;H.~~--+*~+----1---'-~+.-...-... ~.--f~-'---I

. -- . ! - -- - - + - - - + - - " ' "-. l.-

- .......... .. ,~--:,.~."

-.- 1 ....... l--f---*****-+----1 60 t----t----t----t-----t-.H---t---+-----+-----lC-------1

... , .. [--;*

50 -----+---'----+---+--+---1---..,.----1----'---+---i--!--~--l---"---I 40 .;. . l ..... ; . ) ... --1 * *--*; --***

30 - . - . - I - -..-;--'"' ...-... --Jlf--;. - + - - .... ._ .. _ ......**.--+-----I 20 -----1----+--..;..._-+-1-__,1--_--l---+--+--~-l---'---l'-----I

  • ~ *- I .-

10 o~~-~**'"--L_----~"-==*~_.:;,A~-;*_-~-~---i-----~---***..1....-.J..-~~-~--l.---L---i...*_--~.*--~--

-;---+---f----1

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 01/13/2016 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-113 Plant: Braidwood 2 Material: SA508CL3 Heat: [50Dl02/50C97]-1-1

  • Orientation: Axial Capsule: V BRAIDWOOD UNIT 2 CAPSULE V (AXIAL)

Charpy V-Notch Data Temperature C° F) Input %Shear Computed %Shear Differential

-10 5.0 6.6 -1.56 10 10.0 10.2 -0.20 15 15.0 11.4 3.64 25 15.0 14.0 0.99 30 15.0 15.5 -0.53 35 25.0 17.2 7.82 45 15.0 20.9 -5.88 50 30.0 22.9 7.07 60 25.0 27.5 -2.46 72 30.0 33.6 -3.57 125 60.0 64.4 -4.43 175 80.0 85.8 -5.79 200 100.0 91.7 8.32 210 .100.0 93.3 6.66 220 100.0 94.7 5.31 CVGraph 6.02 01/13/2016 Page2/2.

WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-114 BRAIDWOOD UNIT 2 CAPSULE V (WELD)

CVGrnph 6.02: Hyperbolic Tangent Cun*e Printed on 1/13/2016 I :24 PM A= 33.10 B = 30.90 C = 85.64 TO= 34.99 D = 0.00 Corrclalion Coefficient= 0.975 Equation is A + B * (Tanh((f-TO)/(C+D1))]

Upper ShelfEnergy = 64.00 (Fixed) LowerSbclfEncrgy = 2.20 (Fixed)

Temp@30 ft-lbs= 26A0° F Temp@35 ft-lbs= 40.30° F Temp:'.g~50 ft-lbs= 87.60° F Planl: Braidwood 2 Material: WELD Heat:442011 Orientation: N/A Capsule:V i

~ 50 t---:--+--,--+---:--!----;--1BIJ+--'--~--;---t----:----t--;---t---;-----t 40 ~--*-~*---+------1----.;;-1-:

. _**...j.*__.._.;,_**_-+- .._.._-*,...--_._ ... 4.. _... _..._...._,._.... _.... -!

.. - - " -...._.. _... - l - - - - - 1

~ ~~---i-:. ._. ~+*~+---'-~+-~~~p-~;-*_~----_~

30 .... .... .... -_. _. - ~

.... _... ... -_...._....-+-___ .... _... _. ---------1-~'---I

~ ~ o,./:

G ,. ---*:*  : *c ro: .,_,_ *--1-* -

20

' * * *

  • i** ' ., ., , , , , , .,., , ., , ,

l----'---l--~--j--"-----~--+--~--1----"----i-*---4-~-+----I 10 1-,.- ... --+--.

.... ..---' -b--* ..-0~""'... .'-.. . +-......-

. -1"l/il-- .-... -......-+--

... - 1 1 - -..-;- .....-... -. -l----'---+-~-1--;--1 1---:-..-+--~- ,* ,'

0 .....................~......~--~--~.._~..........~......~--~--~.._~----~--*~--~-*----

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGmph6.02 Ol/13/2016 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-115 Plant: Braidwood 2 lv1aterial: WELD *Heat 442011 Orientation: NIA Capsule: V BRAIDWOOD UNIT 2 CAPSULE V (WELD)

Charpy V-Notch Data Tcmpt'rnlurc C° F) Input CVN Computed CVN Diffcrcnti-.11

-50 4.0 9.7 ~5.67

-30 11.0 13.3 ~2.31

-10 24.0 18.2 5.79 0 27.0 21.1 5.87 10 25,0 24.3 0.67 25 31.0 29.5 1.49 30 25.0 31.3 -6.30 40 31.0 34.9 -3.91 50 36.0 38.5 c2.46 60 44.0 41.9 2.12 72 50.0 45.7 4.32 125 55.0 57.3 -2.27 175 59.0 61.7 -2.74 200 70.0 62:7 7.28 220 62.0 63.2 -1.19 CVGraph 6.02 01/1312016 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-116 BRAIDWOOD UNIT 2 CAPSULE V (WELD)

CVGraph 6.02: Hypeibolic Tangent Curve Printed on l/ 13/2016 1:25 PM A= 28.78 B = 27.78 C =88.25 TO= 32.07 D = 0.00 Correlation Coefficient = 0. 977 Equation is A+ B * (Tanh((f-TO)/(C+DT)))

Upper ShclfL.E. = 56.57 Lower ShelfL.E. = 1.00 (Fixed)

Tcmp@35 mils;= 52.20° F Plaut: Braidwood 2 Material: WELD Hcat:442011 Orientation: N/A Capsule:V

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph6.02 01/13/2016 Page 1/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-117 Plant: Braidwood 2 lv.laterial: WELD Heat: 442011 Orientation: NIA Capsule:V BRAIDWOOD UNIT 2 CAPSULE V (WELD)

Charpy V-Notch Data Temperature (0 F) Input L.E. Computed Ih*E. Differential

-50 3.0 8.5 -5.49

-30 9.5 11.9 -2.43

-10 21.0 16.5 4.54 0 25.0 19.1 5.89 10 24.0 22.0 2.02 25 26.0 26.6 -0.56 30 22.0 28.1 -6.13 40 29.0 31.3 -2.27 50 33.0 34.4 -l.35 60 40.0 37.3 2.70 72 43.0 40.6 2.44 125 48.0 50.5 -2.54 175 54.0 54;5 -0.47 200 59.0 55.4 3.64 220 54.0 55.8 -1.79 CVGraph 6.02 01/13/2016 Page2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-118 BRAIDWOOD UNIT 2 CAPSULE V (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 1/13/2016 I :25 PM A = 50.00 B = 50.00 C = 91.11 TO = 44.40 D = 0.00 Correlation Coefficient = O. 997 Equation is A+ B * (Tanh((T-TO)/(C+D1))]

Upper Sbelf%Sbcar= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 44.50 Plant: Bi-.tidwood 2 Material: WELD Hcat:442011 Orientation: N/A Capsule:V 90 I-***-***>**

80 I 70

-=

.c 00

~

60

~,** ,

<. *h-f* * ..

.i 50

= .,-*-- **JL.. ---.* . -.,..

~

(J ~****-

~ 40

~

30 20 10 -*'

0 L-....,,L........ **=*-=*~+/-..__,.~*------L~-----"~',*_***--L.....--1--.....L---L---L.--..&..--.l...--~;---L---~*--L........1; I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 01/13/2016 Page 1/2 WCAP-18107-NP May2016 Revision 0 L_

Westinghouse Non-Proprietary Class 3 C-119 Plant: BraidWood 2 Material: WEID Heat: 442011 Orientation: NIA Capsule:V BRAIDWOOD UNIT 2 CAPSULE V (WELD)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Differential

-50 10.0 11.2 -1.18

-30 15.0 I6.3 -1.34

-10 25.0 23.2 1.75 0 30.0 27.4 2.61 JO 35.0 32.0 3.03 25 35.0 39.5 -4.51 30 40.0 42.2 -2.16 40 50.0 47.6 2.41 50 55.0 53.1 1.93 60 55.0 58.5 -3.48 72 65.0 64.7 0.30 125 85.0 85.4 -0.44 175 95:0 94.6 0.38 200 100.0 96.8 3.18 220 IOO.O 97.9 2.07 CVGraph 6.02 0111312016 Page 212 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-120 BRAIDWOOD UNIT 2 CAPSULE V (IiEA T-AFFECTED ZONE)

CVGmph 6.02: Hyperbolic Tangent Curve Printed on I/ 13/20.16 I :29 PM A= 78.10B=75.90C=124.86 TO= -19.89 D = 0.00 Correlation Coefficient= 0.926 Equation is A+ B * (Tanh((f-TO)/(C+D1))]

Upper Shelf Energy= 154.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Temp@JO ft-lbs=-113.20° F Tcmp@~15 ft-lbs=~J00.30° F Tcmp@50 ft-lbs=-68.40° F Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97J-1-1 Orientation: N/A Capsulc:V 180

~ . .; -. . ., \

160

..... ... *y-*

140 fl.I

.c :n

'>I * . . . . . . . . * * . . . . . . . . . .

it:

~

I b.()

i.

cu 120 100

~

I ..... .,. - .. .. . - .... -- .. - -

=

"' ~"

fi;l;l 80

j

~

u 60 I

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGmph6.02 01/1312016 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-121 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: NIA Capsule: V BRAIDWOOD UNIT 2 CAPSULE V (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature{° F) Input CVN Computed CVN Diflcrential

-200 4.5 10.2 -5.73

-150 41.0 19.0 22.00

-125 16.5 26.0 -9.47

-100 31.0 35.1 -4.14

-80 34,0 44.1 -10.14

-60 48.0 54.5 c6.52

-50 93.0 60.1 32.86

-10 62.0 84:1 -22.10 30 107:0 106:9 0.09 72 122.0 125.7 c3.66 125 180.0 140.4 39.57 150 144.0 144.6 -0.63 175 122.0 147.6 -25.59 200 115.0 149.6 -34.65 210 178.0 150.3 27.73 CVGraph 6.02 01/13/2016 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-122 BRAIDWOOD UNIT 2 CAPSULE V (HEAT-AFFECTED ZONE)

CVGmph 6.02: Hypeibolic Tangent Cur\'e Printed on 1/13/2016 1:29 PM A= 39,80B=38.80C=116.58 TO= -35.42 D = 0.00 Correlation Coefficient= 0.966 Equation is A+ B * (Tanh((f-TO)/(C+DT))]

Upper ShclfL.E. = 78.60 Lower ShelfL.E. =.LOO (Fixed)

Temp~i35 mils=-49:90° F Plaut: Braidwood 2 Material: SA508CL3 Heat (50D102/50C97)-1-1 Orientation: N/A Capsule: V 90 --------------------------------------------------------------

so 1--~~-+-~~~1--~~-1-~~-~a~":---_.__~~~1--~~-+-~~-+~~~*

~

Vc~ . ,..

.*. , -4.: ' ..* .. ** ' * *f.., .

~ ~"' ~"

.;200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 01/13/2016 Page 1/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-123 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97]-1-1 Orientation: NIA Capsule: V BRAIDWOOD UNIT 2 CAPSULE V (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature{° F) Input L.E. Computed L. E. Differential

~--~~~~~~

-200 2.5 5.4 -2.85

-150 20.0 10.5 9.47

-125 10.0 14.7 -4.74

-100 19.0 20.3 -1.27

-80 21.0 25.6 -4.65

-60 29.0 31.7 -2.74

-50 51.0 35.0 16.03

-10 34.0 48:1 -14.13 30 64.0 59.5 4.45 72 68.0 68:0 0.01 125 80.0 73.9 6.05 150 81.0 75.5 5.49 175 70.0 76.6 -6.56 200 73.0 77.3 -4.26 210 78.0 77.5 0.53 CVGraph 6.02 01/13/2016 Page2/2 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-124 BRAIDWOOD UNIT 2 CAPSULE V (BEAT-AFFECTED ZONE)

CV Graph 6.02: Hypelbolic Tangent Curve Printed on 1/13/2016 I :30 PM A= 50.00 B = 50.00 C = 111.00 TO= 1.19 D = 0.00 Correlation Coefficient= 0.989 Equation is A+ B * (Tanh((T-TO)/(C+D1))]

UpperShelf%Sbcar= 100.00 (Fixed) Lower Shelf 'Ye.Shear= 0.00 (Fixed)

Temperature al 50% Shear= 1.20 Plant: Braidwood 2 Material: SA508CL3 Heat: [50D102/50C97)-1-1 Orientation: N/A Capsulc:V 100.--:--,-~-:--r~~r--:--r~-~-~~===-,--~-r~~~-:---,

........,. -;r:~*

90 ------+-~-+--~-t---~/_,_~:+=*-+---;~~-~--t-~-+----1

"') --- - - ... ,.. .,.

80 I-----'-_;, -----!-~i--"----1---v_#-t--,.--',--~---- _,-_. - t..-' -..;'"

70 -*-- ___ -..-__ ..... ____

--________ *_--+-,,- ___ ... -f;*~- .., << " --

60 J-----+-----1----1-1~---+---+------l----l-----+-------I

-~-" {;

50

-__ _ ,,_ _ _ _ *- *1*1,-* \* -


*---+----+---"--f-----'---+----'--+------l---'----+---=---+---'-----1
  • . * " - ~- ' ,, I ~ '" , .......,; ... **-**

40 - -...-,-,_o"- - ; - - - ; - - >> ' - ; - -- , ,.,r~V-!-*__,__-i------,--t--~--...- _, _.,..__,..-r-----:---i-----:---t 30~*-:*~---~----l~:.----t--~+---~1---i---I 20 --~~-+-~'---+--ff-~-+~~~1----.:.-~-i---~~-!-~~-?-~-'----lf---'-----I

-- c~~;

10 ---- .... j

...... c0 0 -====~~.L..~.&--*--l~...J.~...L.~~*~-L.~~*......-L~-~*-~.J..~~;~...L.~~~.L-~L---1

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGr.tph6.02 01/I3i2016 Page 112 WCAP-18107-NP May2016 RevisionO

Westinghouse Non-Proprietary Class 3 C-125 Plant: Braioo*ood 2 Material: SA508CL3 Heat: (50Dl02/50C97]-1-1 Orientation: N/A Capsule:V BRAIDWOOD UNIT 2 CAPSULE V (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input %Shear Compulcd %Shear DilT~rential

-200 5.0 2.6 2.40

-150 .10.0 6.2 3.84 cJ25 5.0 9.3 -4.33

-100 15.0 13.9 1.09

-80 15.0 18.8 -3.80

-60 20:0 24.9 -4.93

-50 40.0 28.4 11.55

-10 45.0 45.0 0.02 30 60.0 62.7 -2.69 72 70.0 78.2 -8.17 125 100.0 90.3 9.70 150 100.0 93.6 6.41 175 90.0 95.8 -5.82 200 100.0 97.3 2:71 210 100.0 97.7 2.27 CVGraph 6.02 01/13/2016 Page2/2 WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 D-1 APPENDIXD BRAIDWOOD UNIT 2 UPPER-SHELF ENERGY EVALUATION D.1 EVALUATION Per U.S. Regulatory Guide 1.99, Revision 2 [Ref. D-1], the Charpy upper-shelf energy (USE) is assumed to decrease as a function of fluence and copper content as indicated in Figure 2 of the Guide (Figure D-1 of this appendix) when surveillance data is not used. Linear interpolation is permitted. In addition, if surveillance data is to be used, the decrease in USE may be obtained by plotting the reduced plant surveillance data on Figure 2 of the Guide (Figure D-1 of this appendix) and fitting the data with a line drawn parallel to the existing lines as the upper bound of all the data. This line should be used in preference to the existing graph.

The end-of-license extension (57 effective full-power years [EFPY]) USE of the vessel materials can be predicted using the corresponding quarter-thickness (1/4T) fluence projection, the copper content of the beltline materials and/or the results of the capsules tested to date using Figure 2 in Regulatory Guide 1.99, Revision 2 [Re£ D-1].

The Braidwood Unit 2 reactor vessel beltline region thickness is 8.5 inches per Reference D-3.

Calculation of the 1/4T vessel fluence values at 57 EFPY for the beltline and extended beltline materials is shown in Table D-1. The following pages present the Braidwood Unit 2 USE evaluation. Figure D-1, as indicated above, is used in making predictions in accordance with Regulatory Guide 1.99, Revision 2

[Ref. D-1]. Table D-2 provides the predicted USE values for 57 EFPY (end-of-license extension).

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 D-2 TableD-1 Braidwood Unit 2 Pressure Vessel 1/4T Fast Neutron Fluence Calculation 57 EFPY Fluence(x 1019 n/cm2, Material E> 1.0MeV)

Surface 1/4Tca>

Beltline Materials Nozzle Shell Forging 1.00 0.600 Intermediate Shell Forging 2.92 1.75 Lower Shell Forging 2.89 1.74 Nozzle to Intermediate Shell Forging 1.00 0.600 Circumferential (Circ.) Weld Seam Intermediate to Lower Shell Forging Circ.

2.80 1.68 Weld Seam Extended Beltline Materials Inlet Nozzle Forgings 0.0110 Note (b)

Outlet Nozzle Forgings 0.00833 Note (b)

Inlet Nozzle to Nozzle Shell Forging Circ.

0.0110 Note (b)

Weld Seams Outlet Nozzle to Nozzle Shell Forging Circ.

0.00833 Note (b)

Weld Seams Notes:

(a) 1/4T fluence values were calculated from the surface fluence, the reactor vessel beltline thickness (8.5 incl_les) and equation f = fsurr

(b) Consistent with the time-limited aging analysis (TLAA) evaluation as documented in Reference D-3, the maximum fluence values for the extended beltline materials at 57 EFPY were less than the minimum fluence value displayed on Figure 2 of Regulatory Guide 1.99, Revision 2. The minimum fluence value (2 x 1017 n/cm2) displayed on Figure 2 of Regulatory Guide 1.99, Revision 2 was conservatively used to determine the projected USE decrease; see Table D-2.

WCAP-18107-NP May2016 Revision 0

Westinghouse Non-Proprietary Class 3 D-3 Limiting Forging Percent USE Decrease 10% from Capsule U (axial-ori entation)

!Limiting Weld Percent USE Decrease 10% from Capsule U I

I 100.0 /

>--  % Copper

>-- /

Base Metal Weld

- /

- 0.35 0.30 I I 0.30 0.25 Upper Limit I v

/

l 0.25 0.20

- 0.20 0.15 0.15 0.10

\

~ - -- --- -- _.. _.. lo-

... - ~-

- i___.-

~ i.--

i--

0.10 I 0.05

[~;

lo-

~

io---

Line w

=---- ~

- .__ ~


v

~

v ------

CJ)

.E

-c__:: - . - - - - -- ~

i.-- i--

v v

-- - --- -- ~ .... ........

~

~

~ I'-- .....

..- ~ Forging

---~

c. ~ /

~

0 c'- --- - .......

-- - ~ , ,/ ._. -~ Line

~

~

(I) 1 0.0

~

Cl ~

  • Surveillan ce Materia l:

ns

~

c(I) '-

~

~

Lower Shell Forg ing u *Surveillance Material:

a.

Q)

Weld Heat # 4420 11 Nozzle Shell Forging and Nozzle to .... .............

.... I I I III I I I

~ Intermediate Shell Forging Circ . Weld

=

57 EFPY 1/ 4T Fluence 0.600 x 1019 n/cm2

~

Intermediate Shell Forg ing 57 EFPY

=

1/4T Fluence 1.75x 1019 n/cm 2

!'-......._ - - Lower Shell Forging 57 EFPY 1'---k =

Outlet Nozzles and Outlet Nozzle to Nozzle Shell Forging Circ . Welds 1/4T Fluence 1.74x 1019 n/cm2 1.0 I

4 57 EFPY 1/4T Fluence < 0.020 x 1019 n/cm2

-- 11 -- --

1.00E+17 Inlet Nozzles and Inlet Nozzle to 1.00E+18 1.00E+19 I I 1.00E+20 Nozzle Shell Forging Circ . Welds Neutron Fluence, n/cm2 (E > 1 Me V) Intermediate to Lower Shell Forging Circ . Weld

=

57 EFPY 1/4T Fluence 1.68 x 1019 n/cm2 57 EFPY 1/4T Fluence < 0.020 x 1019 n/cm2 Figure D-1 Regulatory Guide 1.99, Revision 2 Predicted Decrease in Upper-Shelf Energy as a Function of Copper and Fluence WCAP- 18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 D-4 Table D-2 Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 57 EFPY 1/4T EOLE Fluence Projected Projected Weight 19 2 Unirradiated Material (x 10 n/cm , USE Decrease EOLE

%Cu USE (ft-lb)

E > 1.0 MeV) (%) USE (ft-lb)

Position t.2<a>

Be/tline Materials Nozzle Shell Forging 0.04 0.600 115 17.0 95 Intermediate Shell Forging 0.03 1.75 119 22.0 93 Lower Shell Forging 0.06 1.74 144 22.0 112 Nozzle to Intermediate Shell Forging Circ.

Weld Seam WF-645 (Heat# H4498) 0.04 0.600 90 17.0 75 Intermediate to Lower Shell Forging Circ.

Weld Seam WF-562 (Heat# 442011) 0.03 1.68 80 22.0 62 Extended Beltline Materials Inlet Nozzle 01-001 0.07 Note (c) 136 7.5 126 Inlet Nozzle 01-002 0.07 Note (c) 136 7.5 126 Inlet Nozzle 02-001 0.09 Note (c) 120 7.5 111 Inlet Nozzle 02-002 0.09 Note (c) 116 7.5 107 Outlet Nozzle 01-002 0.09 Note (c) 117 7.5 108 Outlet Nozzle 01-003 0.09 Note (c) 115 7.5 106 Outlet Nozzle 02-001 0.07 Note (c) 129 7.5 119 Outlet Nozzle 02-002 0.09 Note (c) 156 7.5 144 Inlet Nozzle to Nozzle Shell Forging Circ.

Weld Seams WF-654 <Heat# 41404) 0.18 Note (c) 73 14.0 63 Outlet Nozzle to Nozzle Shell Forging Circ.

Weld SeatnS WF-654 <Heat# 41404) 0.18 Note (c) 73 14.0 63 Position 2.2Cb>

Lower Shell Forging 0.06 1.74 144 14.5 123 Intermediate to Lower Shell Forging Circ.

Weld Seam WF-562 (Heat# 442011) 0.03 1.68 80 14.0 69 Notes:

(a) Calculated using the Cu wt. % values and l /4T fluence value for each material and Regulatory Guide 1.99, Revision 2, Position 1.2. In calculating Position 1.2 percent USE decreases, the base metal and weld Cu weight percentages were conservatively rounded up to the nearest line in Regulatory Guide 1.99, Revision 2, Figure 2.

(b) Calculated using surveillance capsule measured percent decrease in USE from Table 5-10 and Regulatory Guide 1.99, Revision 2, Position 2.2; see Figure D-1.

(c) The minimum fluence value (2 x 10 17 n/cm2) displayed on Figure 2 of Regulatory Guide 1.99, Revision 2 was conservatively used to determine the projected USE decrease.

WCAP-18107-NP May 2016 Revision 0

Westinghouse Non-Proprietary Class 3 D-5 USE Conclusion" As shown in Table D-2, all of the Braidwood Unit 2 reactor vessel beltline and extended beltline materials are projected to remain above the USE screening criterion of 50 ft-lbs (per 10 CFR 50, Appendix G [Ref.

D-2]) at 57 EFPY.

D.2 REFERENCES D-1 U.S. Nuclear Regulatory Commission Regulatory Guide 1.99, Revision 2, Radiation Embrittlement ofReactor Vessel Materials, May 1988.

D-2 Code of Federal Regulations, 10 CFR 50, Appendix G, Fracture Toughness Requirements, Federal Register, Volume 60, No. 243, December 19, 1995.

D-3 Westinghouse Report WCAP-17607-NP, Revision 0, Braidwood Station Units 1 and 2 Reactor Vessel Integrity Evaluation to Support License Renewal Time-Limited Aging Analysis, December 2012.

WCAP-18107-NP May2016 Revision 0