ML14188A259

From kanterella
Jump to navigation Jump to search
Unit 1 Core Operating Limits Report (Colr), Revision 24, Unit 2 Core Operating Limits Report (Colr), Revision 20, Unit 3 Core Operating Limits Report (Colr), Revision 23
ML14188A259
Person / Time
Site: Palo Verde  Arizona Public Service icon.png
Issue date: 06/27/2014
From: Weber T
APS
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
102-06901-TNW/RKR
Download: ML14188A259 (85)


Text

Technical Specification 5.6.5.d

~aps Palo Verde Nuclear Generating Station 5801 S. Wintersburg Road 102-06901-TNW/RKR Tonopah, AZ 85354 June 27, 2014 ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Dear Sirs:

Subject:

Palo Verde Nuclear Generating Station (PVNGS) Units 1, 2, 3 Docket Nos. STN 50-528, 50-529 and 50-530 Unit 1 Core Operating Limits Report (COLR), Revision 24 Unit 2 Core Operating Limits Report (COLR), Revision 20 Unit 3 Core Operating Limits Report (COLR), Revision 23 Pursuant to PVNGS Technical Specifications, Section 5.6.5.d, enclosed are the Units 1, 2 and 3 Core Operating Limits Report (COLR), Revisions 24, 20 and 23, respectively, which were made effective June 25, 2014. The following changes were implemented in these COLR revisions:

  • Revision to Page 5 to change "Palo Verde Unit X Technical Specifications." to "Palo Verde Technical Specifications."
  • Revision to Figure 3.1.5-1 to change the wording "RATED THERMAL POWER >

95%" to "> 95% RATED THERMAL POWER".

No commitments are being made to the NRC by this letter. Should you need further information regarding this submittal, please contact Mr. Robert K. Roehler, Licensing Section Leader, at (623) 393-5241.

Sincerely, Thomas N. Weber Department Leader, Regulatory Affairs TNW/RKR/TM]/hsc

Enclosures:

PVNGS Unit 1 Core Operating Limits Report (COLR), Revision 24 PVNGS Unit 2 Core Operating Limits Report (COLR), Revision 20 PVNGS Unit 3 Core Operating Limits Report (COLR), Revision 23 cc: M. L. Dapas NRC Region IV Regional Administrator J. K. Rankin NRC NRR Project Manager (electronic and hard copy)

M. M. Watford NRC NRR Project Manager (electronic and hard copy)

M. A. Brown NRC Senior Resident Inspector for PVNGS (electronic only)

A member of the STARS (Strategic Teaming and Resource Sharing) Alliance Callaway

  • Comanche Peak
  • Diablo Canyon
  • Palo Verde - Wolf Creek

Enclosure PVNGS Unit 1 Core Operating Limits Report (COLR)

Revision 24

PALO VERDE NUCLEAR GENERATING STATION (PVNGS)

UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 I Effective June 25, 2014 I gI Digitally signed by Wenzel, Date iW enze, Rchard Richard R(Z99534)

RIZ99114)

Date DN: cn=Wenzel, Richard Richard Reason: Iam the author of this document R(Z99534) -07'00' Date: 2014.06.19 15:27:37 Independent Reviewer Foster,rDigitally signed by Foster, Glenn A(Z35831)

Date DN: cn=Foster, Glenn A(Z3583 )

Glenn Reason: Ihave reviewed this document A(Z35831)

A(Z35831 Date: 2014.06.19 15:50:56

-07 '00' Responsible Section Leader ADigitally ResonsbleSecionLeaerAshton, JeffreyC(Z03403) signed by Ashton, Date DN: cn=Ashton, Jeffrey Jeffrey JCZ03403o Reason: Iam approving this document CC(Z03 403) Date: 2014.06.19 16:05:00

-0700' Page I of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 1 Table of Contents Description Pagae Cover Page 1 Table of Contents 2 List of Figures 3 List of Tables 4 Affected Technical Specifications 5 Analytical Methods 6 CORE Operating Limits 3.1.1 Shutdown Margin (SDM) - Reactor Trip Breakers Open 9 3.1.2 Shutdown Margin (SDM) - Reactor Trip Breakers Closed 9 3.1.4 Moderator Temperature Coefficient (MTC) 9 3.1.5 Control Element Assembly (CEA) Alignment 9 3.1.7 Regulating CEA Insertion Limits 9 3.1.8 Part Strength CEA Insertion Limits 10 3.2.1 Linear Heat Rate (LHR) 10 3.2.3 Azimuthal Power Tilt (Tq) 10 3.2.4 Departure From Nucleate Boiling Ratio (DNBR) 10 3.2.5 Axial Shape Index (ASI) 11 3.3.12 Boron Dilution Alarm System (BDAS) 11 3.9.1 Boron Concentration 11 Page 2 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 I List of Figures Description Page Figure 3.1.1-1 Shutdown Margin Versus Cold Leg Temperature 12 Reactor Trip Breakers Open Figure 3.1.2-1 Shutdown Margin Versus Cold Leg Temperature 13 Reactor Trip Breakers Closed Figure 3.1.4-1 MTC Acceptable Operation, Modes I and 2 14 Figure 3.1.5-1 Core Power Limit After CEA Deviation 15 Figure 3.1.7-1 CEA Insertion Limits Versus Thermal Power 16 (COLSS in Service)

Figure 3.1.7-2 CEA Insertion Limits Versus Thermal Power 17 (COLSS Out of Service)

Figure 3.1.8-1 Part Strength CEA Insertion Limits Versus Thermal Power 18 Figure 3.2.3-1 Azimuthal Power Tilt Versus Thermal Power 19 (COLSS in Service)

Figure 3.2.4-1 COLSS DNBR Operating Limit Allowance for Both 20 CEACs Inoperable In Any Operable CPC Channel Figure 3.2.4-2 DNBR Margin Operating Limit Based on the Core 21 Protection Calculators (COLSS Out of Service, CEAC(s)

Operable)

Figure 3.2.4-3 DNBR Margin Operating Limit Based on the Core 22 Protection Calculators (COLSS Out of Service, Both CEACs Inoperable In Any Operable CPC Channel)

Page 3 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 I List of Tables Description Pag¢e Table 3.3.12-1 Required Monitoring Frequencies for Backup Boron 23 Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for Keff> 0.98 Table 3.3.12-2 Required Monitoring Frequencies for Backup Boron 24 Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for 0.98 > Keff> 0.97 Table 3.3.12-3 Required Monitoring Frequencies for Backup Boron 25 Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for 0.97 > Keff> 0.96 Table 3.3.12-4 Required Monitoring Frequencies for Backup Boron 26 Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for 0.96 > Keff> 0.95 Table 3.3.12-5 Required Monitoring Frequencies for Backup Boron 27 Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for Keff_< 0.95 Page 4 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 This Report has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Core Operating Limits have been developed using the NRC approved methodologies specified in Section 5.6.5 b of the Palo Verde Technical Specifications.

AFFECTED PVNGS TECHNICAL SPECIFICATIONS

3. I .1 Shutdown Margin (SDM) - Reactor Trip Breakers Open 3.1.2 Shutdown Margin (SDM) - Reactor Trip Breakers Closed 3.1.4 Moderator Temperature Coefficient (MTC) 3.1.5 Control Element Assembly (CEA) Alignment 3.1.7 Regulating CEA Insertion Limits 3.1.8 Part Strength CEA Insertion Limits 3.2.1 Linear Heat Rate (LHR) 3.2.3 Azimuthal Power Tilt (Tq) 3.2.4 Departure From Nucleate Boiling Ratio (DNBR) 3.2.5 Axial Shape Index (ASI) 3.3.12 Boron Dilution Alarm System (BDAS) 3.9.1 Boron Concentration Page 5 of 27

PVNGS UNIT I CORE OPERATING LIMITS REPORT Revision 24 I ANALYTICAL METHODS The COLR contains the complete identification for each of the Technical Specification referenced topical reports (i.e., report number, title, revision, date, and any supplements) and correspondence that provide the NRC-approved analytical methods used to determine the core operating limits, described in the following documents:

T. S Ref#a Title Report No. Rev Date Sup CE Method for Control Element Assem- CENPD- N.A. January N.A.

I bly Ejection Analysis 0190-A 1976 (I 3-NOOI -1301-01204-l )

The ROCS and DIT Computer Codes for CENPD- N.A. April 1983 N.A.

2 Nuclear Design 266-P-A (13-NOOI-1900-01412-0)

Safety Evaluation Report related to the NUREG- N.A. March 1983 1 Final Design of the Standard Nuclear 0852 Steam Supply Reference Systems September CESSAR System 80, Docket No. STN 50-470 December 1987 3 Modified Statistical Combination of CEN- 01-P-A May 1988 N.A.

4 Uncertainties 356(V)-P-A (13-NOO I-1 303-01747-2)

System 8 0 TM Inlet Flow Distribution Enclosure N.A. February I-P 4 (1 3-NOI-1301-01228-0) 1-P to LD- 1993 82-054 Calculative Methods for the CE Large CENPD- N.A. March 4-P-A Break LOCA Evaluation Model for the 132 2001 Rev. 1 Analysis of CE and W Designed NSSS (I 3-NOI-1900-01192-3)

Calculative Methods for the CE Small CENPD- N.A. April 2-P-A 6 Break LOCA Evaluation Model 137-P 1998 (I 3-NOOI - 1900-01185-3)

Letter: O.D. Parr (NRC) to F. M. Stern N.A. N.A. June 13, N.A.

(CE), (NRC Staff Review of the 1975 7 Combustion Engineering ECCS Evaluation Model). NRC approval for:

5.6.5.b.6.

Page 6 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 I T.

ReSS Title Report No. Rev Re fga Date Supi Letter: K. Kniel (NRC) to A. E. Scherer N.A. N.A. September N.A.

(CE), (Evaluation of Topical Reports 27, 1977 8 CENPD 133, Supplement 3-P and CENPD-137, Supplement I-P). NRC approval for 5.6.5.b.6.

Fuel Rod Maximum Allowable Pressure CEN-372- N.A. May N.A.

(13-NO01-0201-00026-l) P-A 1990 Letter: A. C. Thadani (NRC) to A.E. N.A. N.A. April 10, N.A.

1990 i0 Scherer (CE), ("Acceptance for Reference CE Topical Report CEN-372-P"). NRC approval for 5.6.5.b.9.

Arizona Public Service Company PWR NFM-005 1 August N.A.

Reactor Physics Methodology Using 2007 CASMO-4/SIMULATE-3 (NFM-005)

Technical Description Manual for the CE-NPD 2 March N.A.

12 CENTS CodeVolume I 282-P-A 2005 (CENTS-TD MANUAL-VOL 1) Vols. I Technical Description Manual for the CE-NPD 2 March N.A.

12 CENTS Code Volume 2 282-P-A 2005 (CENTS-TD MANUAL-VOL 2) Vols. 2 Technical Description Manual for the CE-NPD 2 March N.A.

12 CENTS CodeVolume 3 282-P-A 2005 (CENTS-TD MANUAL-VOL 3) Vols. 3 Implementation of ZIRLOTM Cladding CENPD- 0 November N.A.

Material in CE Nuclear Power Fuel 404-P-A 2001 Assembly Designs (I 3-NO0 I - 1900-01329-0)

HERMITE, A Multi-Dimensional CENPD- N.A. July N.A.

188-A 1976 14 Space-Time Kinetics Code for PWR Transients (HERMITE-TOPICAL)

TORC Code, A Computer Code for CENPD- N.A. April N.A.

15 Determining the Thermal Margin of a 161-P-A 1986 Reactor Core (NOI-1301-01202)

Page 7 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 I T._S ReS Title Report No.

RefW Rev Date SuI CETOP-D Code Structures and Model- CEN- I-P September N.A.

160(S)-P 1981 16 ing Methods for San Onofre Nuclear Generating Station Units 2 and 3, (NOI-1301-01185)

"Safety Evaluation related to Palo Verde N.A. N.A. September N.A.

Nuclear Generating Station, Unit 2 29, 2003 (PVNGS-2) Issuance of Amendment on Replacement of Steam Generators and Uprated Power Operation, (September 29, 2003) 17 and November "Safety Evaluation related to Palo Verde 16, 2005 Nuclear Generating Station, Units 1, 2, and 3 - Issuance of Amendments Re:

Replacement of Steam Generators and Uprated Power Operations and Associated Administrative Changes, (November 16, 2005)."

CPC Methodology Changes for the CPC CEN-3 10- 0 April N.A.

18 Improvement Program, (NOI-1303- P-A 1986 02283)

CENPD- 0 June N.A.

19 Loss of Flow, C-E Methods for Loss of Flow Analysis, (NOOI -1301-01203) 183-A 1984 Methodology for Core Designs Contain- CENPD- 0 August N.A.

20 ing Erbium Burnable Absorbers 382-P-A 1993 (NO01-0201-00035)

Verification of the Acceptability of a I- CEN-386- 0 August N.A.

Pin Burnup Limit of 60 MWD/kgU for P-A 1992 21 Combustion Engineering 16 x 16 PWR Fuel (NOO 1-0201-00042)

a. Corresponds to the reference number specified in Technical Specification 5.6.5 Page 8 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 1 The cycle-specific operating limits for the specifications listed are presented below.

3.1.1 - Shutdown Margin (SDM) - Reactor Trip Breakers Open The Shutdown Margin shall be greater than or equal to that shown in Figure 3. 1.1 - I.

3.1.2 - Shutdown Margin (SDM) - Reactor Trip Breakers Closed The Shutdown Margin shall be greater than or equal to that shown in Figure 3.1.2-1.

3.1.4 - Moderator Temperature Coefficient (MTC)

The moderator temperature coefficient (MTC) shall be within the area of Acceptable Operation shown in Figure 3.1.4-1.

3.1.5 - Control Element Assembly (CEA) Alignment With one or more full-strength or part-strength CEAs misaligned from any other CEAs in its group by more than 6.6 inches, the minimum required MODES I and 2 core power reduction is specified in Figure 3.1.5-1. The required power reduction is based on the initial power before reducing power.

3.1.7 - Regulating CEA Insertion Limits With COLSS IN SERVICE, regulating CEA groups shall be limited to the withdrawal sequence and to the insertion limitst shown in Figure 3.1.7-12; with COLSS OUT OF SERVICE, regulating CEA groups shall be limited to the withdrawal sequence and to the insertion limits1 shown in Figure 3.1.7-2.2 Regulating Groups I and 2 CEAs shall be maintained > fully withdrawn1 ' 3 while in Modes I and 2 (except while performing SR 3.1.5.3). When > 20% power 1

Regulating Group 3 shall be maintained > fully withdrawn. ' 3 1 A reactor power cutback will cause either (Case 1) Regulating Group 5 or Regulating Group 4 and 5 to be dropped with no sequential insertion of additional Regulating Groups (Groups 1,2, 3, and 4) or (Case 2) Regulating Group 5 or Regulating Group 4 and 5 to be dropped with all or part of the remaining Regulating Groups (Groups 1, 2, 3. and 4) being sequentially inserted. In either case, the Transient Insertion Limit and withdrawal sequence specified in the CORE OPERATING LIMITS REPORT can be exceeded for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

2 The Separation between Regulating Groups 4 and 5 may be reduced from the 90 inch value specified in Figures 3.1.7-1 and 3.1.7-2 provided that each of the following conditions are satisfied:

a) Regulating Group 4 position is between 60 and 150 inches withdrawn.

Page 9 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 b) Regulating Group 5 position is maintained at least 10 inches lower than Regulating Group 4 position.

c) Both Regulating Group 4 and Regulating Group 5 positions are maintained above the Transient Insertion Limit specified in Figure 3.1.7-1 (COLSS In Service) or Figure 3.1.7-2 (COLSS Out of Service).

3 Fully withdrawn (FW) is defined as >147.75" (Pulse Counter indication) and

>145.25" (RSPT indication). No further CEA withdrawal above FW is required for CEAs' to meet the Transient Insertion Limit (TIL) requirements.

3.1.8 - Part Strength CEA Insertion Limits The part strength CEA groups shall be limited to the insertion limits shown in Figure 3.1.8- 1.

3.2.1 - Linear Heat Rate (LHR)

The linear heat rate limit of 13.1 kW/ft shall be maintained.

3.2.3 - Azimuthal Power Tilt (Tq)

The AZIMUTHAL POWER TILT (Tq) shall be less than or equal to 10% with COLSS IN SERVICE when power is greater than 20% and less than or equal to 50%. Additionally, the AZIMUTHAL POWER TILT (Tq) shall be less than or equal to 5% with COLSS IN SERVICE when power is greater than 50%. See Figure 3.2.3-1.

3.2.4 - Departure From Nucleate Boiling Ratio (DNBR)

COLSS IN SERVICE and Both CEACs INOPERABLE in Any OPERABLE CPC Channel - Maintain COLSS calculated core power less than or equal to COLSS calculated core power operation limit based on DNBR decreased by the allowance shown in Figure 3.2.4-1.

COLSS OUT OF SERVICE and CEAC(s) OPERABLE - Operate within the region of acceptable operation of Figure 3.2.4-2 using any operable CPC channel.

COLSS OUT OF SERVICE and Both CEACs INOPERABLE in Any OPERABLE CPC Channel - Operate within the region of acceptable operation of Figure 3.2.4-3 using any operable CPC channel with both CEACs INOPERABLE.

Page 10 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 3.2.5 - Axial Shape Index (ASI)

The core average AXIAL SHAPE INDEX (ASI) shall be maintained within the following limits:

COLSS OPERABLE

-0.18 _ ASI _ 0.17 for power > 50%

-0.28 < ASI < 0.17 for power >20% and < 50%

COLSS OUT OF SERVICE (CPC)

-0. 10 _<ASI _ 0.10 for power >20%

3.3.12 - Boron Dilution Alarm System (BDAS)

With one or both start-up channel high neutron flux alarms inoperable, the RCS boron concentration shall be determined at the applicable monitoring frequency specified in Tables 3.3.12-1 through 3.3.12-5.

3.9.1 - Boron Concentration The boron concentration of all filled portions of the Reactor Coolant System and the refueling canal shall be maintained at a uniform concentration _Ž3000 ppm.

Page IIof 27

PVNGS UNIT I CORE OPERATING LIMITS REPORT Revision 24 I FIGURE 3.1.1-1 SHUTDOWN MARGIN VERSUS COLD LEG TEMPERATURE REACTOR TRIP BREAKERS OPEN 7

6 5

S4 03 o

2.

1.

0 0 100 200 300 400 500 600 COLD LEG TEMPERATURE (°F)

Page 12 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 I FIGURE 3.1.2-1 SHUTDOWN MARGIN VERSUS COLD LEG TEMPERATURE REACTOR TRIP BREAKERS CLOSED 7

6 5

4 z

z 0 3 2

0 0 100 200 300 400 500 600 COLD LEG TEMPERATURE (-F)

Page 13 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 I FIGURE 3.1.4-1 MTC ACCEPTABLE OPERATION, MODES 1 AND 2 0.5 " .....

I.... I. .. . .I. . . .I. . . .I. .

.(o%,0.51) ........

0.0

........................I .... ý!00 /10.2

-0.5

-1.0 0z 01

-1.5 MTC AREA OF U-W ACCEPTABLE OPERATION

-2.0

-2.5

-3.0

-3.5

-4.0

)100%,-4.4 (

.(0%,-4.4)

-0,l to 2 , 30 I .I 4 50 I ....

-4.5 0 I10 20 30 40 50 60 70 80 90 100 CORE POWER LEVEL

(% OF RATED THERMAL POWER)

Maintain Operation within Boundary TECtt SPEC 31 14 Maximum Upper limit .......

Page 14 of 27

PVNGS UNIT I CORE OPERATING LIMITS REPORT Revision 24 I FIGURE 3.1.5-1 CORE POWER 11)

REDUCTION AFTER CEA DEVIATION*20 IIIllll*l Illllllll 15 15 z

0 10 10 z

5 5 0

0 10 20 30 40 50 60 TIME AFTER DEVIATION, MINUTES

  • WHEN CORE POWER IS REDUCED TO 35% OF RATED THERMAL POWER PER THIS LIMIT CURVE, FURTHER REDUCTION IS NOT REQUIRED.
  • NO POWER REDUCTION IS REQUIRED FOR A SINGLE CEA MISALIGNMENT IF THE FOLLOWING CONDITIONS ARE CONTINUOUSLY MET FROM THE TIME OF DEVIATION:

- > 95 % RATED THERMAL POWER

- COLSS IN SERVICE AND CEACS IN SERVICE

- AZIMUTHAL POWER TILT IS LESS THAN 3.0 %

- ALL CEAS REMAIN ABOVE 142.5" WITHDRAWN BY PULSE COUNTER AND ABOVE 140. 1" WITHDRAWN BY RSPT INDICATION Page 15 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 I FIGURE 3.1.7-1 CEA INSERTION LIMITS VERSUS THERMAL POWER (COLSS IN SERVICE) 1.0

---1-* *-~ ~~~~ . . . . . N..

NOTE:T i.......... .. ....

See Footnote in Section 3.1.7 for applicability following a Reactor Power Cutback.

0.9i To meet the Transient Insertion Limit (TIL) all

conditions below must be met:

CEA Groups 1 and 2 must be > fully 0.81 withdrawn* (see definition below) in MODE 1 and MODE 2.

AND CEA Group 3 must be > fully withdrawn* for 0.7 power levels > 20%.

0 CEA Group 3 must be withdrawn > 60" for Z power > 0% and < 20%.

0.6

- .. .AND

-- ,CEA Group 4 must be > fully withdrawn* for power levels > 70.87%.

CEA Group 4 must be withdrawn > the 0.5 . group 4 TIL (TIL4) as indicated on the graph or by the equation:

z TIL4 = (172.5" x Fractional Power) + 25.5" LL.

0 (for power > 20% and < 70.87%).

z 0.4 -> oAND U< CEA Group 5 must be withdrawn > the 0

U group 5 TIL (TIL5) as indicated on the graph or

, ~by the equation:

0.3 = (172.5" x Fractional Power) - 64.5"

- .TIL5 (for powers > 37.39% and < 100%).

Oz 0 0.2

=

0. 1 I I I I I I I I I I I I I I I 0.0 GROUP5 GROUP 3 GROUP I I I I 1 j I I I i i i I I t I I 150* 120 90 60 30 0 150* 120 90 60 30 0 150* 120 90 60 30 0 GROUP 4 GROUP 2 15C0EAI0 9+0 6PIO 3SI 0*WIT I(IN CEA POSITION (INCHES WITHDRAWN)

I HDRJ0A

  • Fully Withdrawn (FW) is defined as > 147.75" (Pulse Counter) and > 145.25" (RSPT).

No further CEA withdrawal above FW is required for CEAs' to meet the TIL requirements.

Page 16 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 I FIGURE 3.1.7-2 CEA INSERTION LIMITS VERSUS THERMAL POWER (COLSS OUT OF SERVICE) 1.0 1 11 1 1 i 1 NOTE:

See Footnote in Section 3.1.7 for applicability

following a Reactor Power Cutback.

0.9 1- To meet the Transient Insertion Limit (TIL) all conditions below must be met:

CEA Groups 1 and 2 must be > fully 0.8 l- withdrawn* (see definition below) in MODE 1 and MODE 2.

AND

  • CEA Group 3 must be > fully withdrawn* for 0.7 [- power levels > 20%.

I- CEA Group 3 must be withdrawn > 60" for 0

power > 0% and < 20%.

AND 0.6 z CEA Group 4 must be > fully withdrawn* for LL~ Hn power levels > 54.97%.

H z CEA Group 4 must be withdrawn > the 0 0.5 I group 4 TIL (TIL4) as indicated on the graph or zl Z H by the equation:

L~. TIL4 = (250.9" x Fractional Power) + 9.82" 0 (for power > 20% and < 54.97%).

0 0.4 AND 0 CEA Group 5 must be withdrawn > the z

Q z group 5 TIL (TIL5) as indicated on the graph or by the equations:

LI~ 0.3 TIL5 = (250.9" x Fractional Power) - 80.18" (for power > 31.96% and < 75.00%).

TIL5 = 108" (for power level > 75.00%).

Looooo,.,.>.*

0.1 1 I.

I I I I I I I I I I I I I I I 0.0 I

GROUP5 I I I i I GROUP3 I I i I I I GROUP I II I I 150" 120 90 60 30 0 150" 120 90 60 30 0 150* 120 90 60 30 0 GROUP4 GROUP 2 15F0' It 9O 6)3t)1 1-1 10 <J0 6+0 t CEA POSITION (INCHES WITHDRAWN)

  • Fully Withdrawn (FW) is defined as > 147.75" (Pulse Counter) and > 145.25" (RSPT).

No further CEA withdrawal above FW is required for CEAs' to meet the TIL requirements.

Page 17 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 I FIGURE 3.1.8-1 PART STRENGTH CEA INSERTION LIMITS VERSUS THERMAL POWER 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 TRANSIENT INSERTION LIMIT (75.0 INCHES) 80.0 90.0 OPERATION OPRA UNACCEPTABLE RESTRICTED 100.0 110.0 LONG TERM STEADY STATE INSERTION:LIMITS: (112.5 INCHES) 120.0 130.0 OPERATION ACCEPTABLE 140.0 150.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 FRACTION OF RATED THERMAL POWER Page 18 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 I FIGURE 3.2.3-1 AZIMUTHAL POWER TILT VERSUS THERMAL POWER (COLSS IN SERVICE) 20.0 1 -wv... , .- I I.I .I . I . .

I .

I I I . . . . .

15.0 1- REGION OF UNACCEPTABLE OPERATION H 10.0 N

5.0 REGION OF ACCEPTABLE OPERATION 0.0 L-

i. . . .i . .. .i . .. . i. .. . i. .. . i .. . .i 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 CORE POWER LEVEL

(% OF RATED THERMAL POWER)

Page 19 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 I FIGURE 3.2.4-1 COLSS DNBR OPERATING LIMIT ALLOWANCE FOR BOTH CEACs INOPERABLE IN ANY OPERABLE CPC CHANNEL 25 20 z

0 15 10 z

CA CA) 5 0

50 60 70 80 90 100 CORE POWER LEVEL

(% OF RATED THERMAL POWER)

Page 20 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 1 FIGURE 3.2.4-2 DNBR MARGIN OPERATING LIMIT BASED ON THE CORE PROTECTION CALCULATORS (COLSS OUT OF SERVICE, CEAC(s) OPERABLE) 2.5 ACCEPTABLE OPERATION ANY POWER LEVEL AT LEAST 1 CEAC OPERABLE IN EACH OPERABLE CPC CHANNEL 2.4 (0..062.38) (0.1,2.38),

2.3

(-0.1,2.28) z 2.2 ACCEPTABLE OPERATION POWER AT OR ABOVE 90%

z AT LEAST 1 CEAC OPERABLE IN 2.1 EACH OPERABLE CPC CHANNEL j (0.05,2.00) 2.0 (0.1,2.00):

(-0.1,1.93) UNACCEPTABLE 1.9 OPERATION I ......... .......... I ...... I ........ I .......

1.8

_0.220 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 CORE AVERAGE ASI Page 21 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 1 FIGURE 3.2.4-3 DNBR MARGIN OPERATING LIMIT BASED ON THE CORE PROTECTION CALCULATORS (COLSS OUT OF SERVICE, BOTH CEACs INOPERABLE IN ANY OPERABLE CPC CHANNEL) 3.6 ~

  • ll l ll l l T . . . . . . . .

ll~l . . ll . $1 .. 1 11 E~ll l ll l ll $

ACCEPTABLE OPERATION ANY POWER LEVEL BOTH CEACs INOPERABLE 3.5 F IN ANY OPERABLE CPC CHANNEL (00,41)(0.1,3.41).:

3.4 F z

3.3

ýD

(-0.1:,3.27) 3.2 -

UNACCEPTABLE OPERATION 3.1 1

... .. i . . . . . . . . I. . . . .I . . . .. I. . . .. I ........ I .... ..L.L .

11n I

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 CORE AVERAGE ASI Page 22 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 I Table 3.3.12-1 REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR Keff> 0.98 OPERATIONAL Number of Operating Charging Pumps MODE0 1 2 3 3 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA ONA 4 not on SCS 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA ONA 5 not on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA ONA 4 & 5 on SCS ONA ONA ONA ONA Notes: SCS = Shutdown Cooling System ONA = Operation Not Allowed Page 23 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 1 Table 3.3.12-2 REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR 0.98 > Keff > 0.97 OPERATIONAL Number of Operating Charging Pumps MODE 0 1 2 3 3 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> I hour 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA 4 not on SCS 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA 5 not on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA 4 & 5 on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA ONA Notes: SCS = Shutdown Cooling System ONA = Operation Not Allowed Page 24 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 I Table 3.3.12-3 REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR 0.97 _ŽKeff> 0.96 OPERATIONAL Number of Operating Charging Pumps MODE 0 1 2 3 3 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 2.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> ONA 4 not on SCS 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 2.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> I hour 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 5 not on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 2.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> I hour 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 4 & 5 on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> ONA ONA Notes: SCS = Shutdown Cooling System ONA = Operation Not Allowed Page 25 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 I Table 3.3.12-4 REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR 0.96 Ž Keff> 0.95 OPERATIONAL Number of Operating Charging Pumps MODE 0 1 2 3 3 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> I hour 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 4 not on SCS 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 3.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 0.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> 5 not on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 3.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 0.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> 4 & 5 on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA Notes: SCS = Shutdown Cooling System ONA = Operation Not Allowed Page 26 of 27

PVNGS UNIT 1 CORE OPERATING LIMITS REPORT Revision 24 I Table 3.3.12-5 REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR Keff< 0.95 OPERATIONAL Number of Operating Charging Pumps MODE 0 1 2 3 3 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> 4 not on SCS 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 4.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> 5 not on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 4.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> 4 & 5 on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 0.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> ONA 6 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA ONA Notes: SCS = Shutdown Cooling System ONA = Operation Not Allowed Page 27 of 27

Enclosure PVNGS Unit 2 Core Operating Limits Report (COLR)

Revision 20

PALO VERDE NUCLEAR GENERATING STATION (PVNGS)

UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I Effective June 25, 2014 I Responsible Engineer WDigitally signed by Wenzl, DNe R Richard iZ99534)

Date DNRCr Wenzel, Richard Richard Reason: I am the author of this document R(Z99534)-7 Date: 2014.06.19 15:29:19 0

Independent Reviewer sDigitally Foster, signed by Foster, Glenn A(Z35831)

Date DN: cn=Foster, Glenn G le n nZ8Reason:

A(Z35831) document I have reviewed this A(Z35831) Date: 2014.06.1 15:55:57

-07'00' Responsible Section Leader ADigitally signed by Ashton, Ashton, Jeffrey C(Z03403)

Date DN: cn=Ashton, Jeffrey Jeffrey Reason: I am approving this document C(Z03403) Date: 2014.06.1g 16:17:08

-07'00' Page 1 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 1 Table of Contents Description Page Cover Page I Table of Contents 2 List of Figures 3 List of Tables 4 Affected Technical Specifications 5 Analytical Methods 6 CORE Operating Limits 3.1.1 Shutdown Margin (SDM) - Reactor Trip Breakers Open 9 3.1.2 Shutdown Margin (SDM) - Reactor Trip Breakers Closed 9 3.1.4 Moderator Temperature Coefficient (MTC) 9 3.1.5 Control Element Assembly (CEA) Alignment 9 3.1.7 Regulating CEA Insertion Limits 9 3.1.8 Part Strength CEA Insertion Limits 10 3.2.1 Linear Heat Rate (LHR) 10 3.2.3 Azimuthal Power Tilt (Tq) 10 3.2.4 Departure From Nucleate Boiling Ratio (DNBR) 10 3.2.5 Axial Shape Index (ASI) 11 3.3.12 Boron Dilution Alarm System (BDAS) 11 3.9.1 Boron Concentration 11 Page 2 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I List of Figures Description Page Figure 3.1. 1-1 Shutdown Margin Versus Cold Leg Temperature 12 Reactor Trip Breakers Open Figure 3.1.2-1 Shutdown Margin Versus Cold Leg Temperature 13 Reactor Trip Breakers Closed Figure 3.1.4-1 MTC Acceptable Operation, Modes I and 2 14 Figure 3.1.5-1 Core Power Limit After CEA Deviation 15 Figure 3.1.7-1 CEA Insertion Limits Versus Thermal Power 16 (COLSS in Service)

Figure 3.1.7-2 CEA Insertion Limits Versus Thermal Power 17 (COLSS Out of Service)

Figure 3.1.8-1 Part Strength CEA Insertion Limits Versus Thermal Power 18 Figure 3.2.3-1 Azimuthal Power Tilt Versus Thermal Power 19 (COLSS in Service)

Figure 3.2.4-1 COLSS DNBR Operating Limit Allowance for Both 20 CEACs Inoperable In Any Operable CPC Channel Figure 3.2.4-2 DNBR Margin Operating Limit Based on the Core 21 Protection Calculators (COLSS Out of Service, CEAC(s)

Operable)

Figure 3.2.4-3 DNBR Margin Operating Limit Based on the Core 22 Protection Calculators (COLSS Out of Service, Both CEACs Inoperable In Any Operable CPC Channel)

Page 3 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I List of Tables Description Page Table 3.3.12-I Required Monitoring Frequencies for Backup Boron 23 Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for KetT> 0.98 Table 3.3.12-2 Required Monitoring Frequencies for Backup Boron 24 Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for 0.98 > Keff> 0.97 Table 3.3.12-3 Required Monitoring Frequencies for Backup Boron 25 Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for 0.97 > Keff> 0.96 Table 3.3.12-4 Required Monitoring Frequencies for Backup Boron 26 Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for 0.96 > Keff> 0.95 Table 3.3.12-5 Required Monitoring Frequencies for Backup Boron 27 Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for Keff < 0.95 Page 4 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 This Report has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Core Operating Limits have been developed using the NRC approved methodologies specified in Section 5.6.5 b of the Palo Verde Technical Specifications.

AFFECTED PVNGS TECHNICAL SPECIFICATIONS 3.1 .1 Shutdown Margin (SDM) - Reactor Trip Breakers Open 3.1.2 Shutdown Margin (SDM) - Reactor Trip Breakers Closed 3.1.4 Moderator Temperature Coefficient (MTC) 3.1.5 Control Element Assembly (CEA) Alignment 3.1.7 Regulating CEA Insertion Limits 3.1.8 Part Strength CEA Insertion Limits 3.2.1 Linear Heat Rate (LHR) 3.2.3 Azimuthal Power Tilt (Tq) 3.2.4 Departure From Nucleate Boiling Ratio (DNBR) 3.2.5 Axial Shape Index (ASI) 3.3.12 Boron Dilution Alarm System (BDAS) 3.9.1 Boron Concentration Page 5 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 1 ANALYTICAL METHODS The COLR contains the complete identification for each of the Technical Specification referenced topical reports (i.e., report number, title, revision, date, and any supplements) and correspondence that provide the NRC-approved analytical methods used to determine the core operating limits, described in the following documents:

T.S ReS Title Report No. Rev Date _UW Re f#a CE Method for Control Element Assem- CENPD- N.A. January N.A.

I bly Ejection Analysis 0 1 90-A 1976 (13-NOI-1301-01204-1)

The ROCS and DIT Computer Codes for CENPD- N.A. April 1983 N.A.

2 Nuclear Design 266-P-A (13-N001 - 1900-01412-0)

Safety Evaluation Report related to the NUREG- N.A. March 1983 1 Final Design of the Standard Nuclear 0852 Steam Supply Reference Systems September CESSAR System 80, Docket No. STN 983 2 50-470 December 1987 3 Modified Statistical Combination of CEN- 01-P-A May 1988 N.A.

4 Uncertainties 356(V)-P-A (13-N001- 303-01747-2)

System 8 0 TM Inlet Flow Distribution Enclosure N.A. February I-P 4 (13-N001-1301-01228-0) 1-P to LD- 1993 82-054 Calculative Methods for the CE Large CENPD- N.A. March 4-P-A Break LOCA Evaluation Model for the 132 2001 Rev. I Analysis of CE and W Designed NSSS (13-N001 - 1900-01192-3)

Calculative Methods for the CE Small CENPD- N.A. April 2-P-A 6 Break LOCA Evaluation Model 137-P 1998 (13-NOOI - 1900-01185-3)

Letter: O.D. Parr (NRC) to F. M. Stern N.A. N.A. June 13, N.A.

(CE), (NRC Staff Review of the 1975 7 Combustion Engineering ECCS Evaluation Model). NRC approval for:

5.6.5.b.6.

Page 6 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I T.

ReSS Title Report No. Rev Date Re fW Supi Letter: K. Kniel (NRC) to A. E. Scherer N.A. N.A. September N.A.

(CE), (Evaluation of Topical Reports 27, 1977 8 CENPD 133, Supplement 3-P and CENPD- 137, Supplement I -P). NRC approval for 5.6.5.b.6.

Fuel Rod Maximum Allowable Pressure CEN-372- N.A. May N.A.

(I 3-NOOI-0201-00026-1) P-A 1990 Letter: A. C. Thadani (NRC) to A. E. N.A. N.A. April 10, N.A.

1990 10 Scherer (CE), ("Acceptance for Reference CE Topical Report CEN-372-P"). NRC approval for 5.6.5.b.9.

Arizona Public Service Company PWR NFM-005 I August N.A.

Reactor Physics Methodology Using 2007 CASMO-4/SIMULATE-3 (NFM-005)

Technical Description Manual for the CE-NPD 2 March N.A.

12 CENTS CodeVolume I 282-P-A 2005 (CENTS-TD MANUAL-VOL 1) Vols. I Technical Description Manual for the CE-NPD 2 March N.A.

12 CENTS Code Volume 2 282-P-A 2005 (CENTS-TD MANUAL-VOL 2) Vols. 2 Technical Description Manual for the CE-NPD 2 March N.A.

12 CENTS CodeVolume 3 282-P-A 2005 (CENTS-TD MANUAL-VOL 3) Vols. 3 Implementation of ZIRLOTM Cladding CENPD- 0 November N.A.

Material in CE Nuclear Power Fuel 404-P-A 2001 Assembly Designs (13-NOI-1900-01329-0)

HERMITE, A Multi-Dimensional CENPD- N.A. July N.A.

Space-Time Kinetics Code for PWR 188-A 1976 14 Transients (HERMITE-TOPICAL)

TORC Code, A Computer Code for CENPD- N.A. April N.A.

15 Determining the Thermal Margin of a 161-P-A 1986 Reactor Core (NOOI - 1301-01202)

Page 7 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I T.S Ref#a Title Report No. Rev Date Supi CETOP-D Code Structures and Model- CEN- 1-P September N.A.

ing Methods for San Onofre Nuclear 160(S)-P 1981 16 Generating Station Units 2 and 3, (NO0 I-1301-01185)

"Safety Evaluation related to Palo Verde N.A. N.A. September N.A.

Nuclear Generating Station, Unit 2 29, 2003 (PVNGS-2) Issuance of Amendment on Replacement of Steam Generators and Uprated Power Operation, (September 29, 2003) 17 and November "Safety Evaluation related to Palo Verde 16, 2005 Nuclear Generating Station, Units 1, 2, and 3 - Issuance of Amendments Re:

Replacement of Steam Generators and Uprated Power Operations and Associated Administrative Changes, (November 16, 2005)."

CPC Methodology Changes for the CPC CEN-3 10- 0 April N.A.

18 Improvement Program, (NOOI - 1303- P-A 1986 02283)

Loss of Flow, C-E Methods for Loss of CENPD- 0 June N.A.

19 Flow Analysis, (NOOI -1301-01203) 183-A 1984 Methodology for Core Designs Contain- CENPD- 0 August N.A.

20 ing Erbium Burnable Absorbers 382-P-A 1993 (NOO1-0201-00035)

Verification of the Acceptability of a I- CEN-386- 0 August N.A.

Pin Burnup Limit of 60 MWD/kgU for P-A 1992 21 Combustion Engineering 16 x 16 PWR Fuel (NOO 1-0201-00042)

a. Corresponds to the reference number specified in Technical Specification 5.6.5 Page 8 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 The cycle-specific operating limits for the specifications listed are presented below.

3. 1.1 - Shutdown Margin (SDM) - Reactor Trip Breakers Open The Shutdown Margin shall be greater than or equal to that shown in Figure 3. 1. 1-1.

3.1.2 - Shutdown Margin (SDM) - Reactor Trip Breakers Closed The Shutdown Margin shall be greater than or equal to that shown in Figure 3.1.2-1.

3.1.4 - Moderator Temperature Coefficient (MTC)

The moderator temperature coefficient (MTC) shall be within tile area of Acceptable Operation shown in Figure 3.1.4-I.

3.1.5 - Control Element Assembly (CEA) Alignment With one or more full-strength or part-strength CEAs misaligned from any other CEAs in its group by more than 6.6 inches, the minimum required MODES I and 2 core power reduction is specified in Figure 3.1.5-1. The required power reduction is based on the initial power before reducing power.

3.1.7 - Regulating CEA Insertion Limits With COLSS IN SERVICE, regulating CEA groups shall be limited to the withdrawal sequence and to the insertion limitsi shown in Figure 3.1.7-12; with COLSS OUT OF SERVICE, regulating CEA groups shall be limited to the withdrawal sequence and to the insertion limits1 shown in Figure 3.1.7-2.2 Regulating Groups I and 2 CEAs shall be maintained > fully withdrawn 1' 3 while in Modes I and 2 (except while performing SR 3.1.5.3). When > 20% power 1

Regulating Group 3 shall be maintained > fully withdrawn. ,' 3 1A reactor power cutback will cause either (Case 1) Regulating Group 5 or Regulating Group 4 and 5 to be dropped with no sequential insertion of additional Regulating Groups (Groups 1, 2, 3, and 4) or (Case 2) Regulating Group 5 or Regulating Group 4 and 5 to be dropped with all or part of the remaining Regulating Groups (Groups 1, 2, 3, and 4) being sequentially inserted. In either case, the Transient Insertion Limit and withdrawal sequence specified in the CORE OPERATING LIMITS REPORT can be exceeded for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

2 The Separation between Regulating Groups 4 and 5 may be reduced from the 90 inch value specified in Figures 3.1.7-1 and 3.1.7-2 provided that each of the following conditions are satisfied:

a) Regulating Group 4 position is between 60 and 150 inches withdrawn.

Page 9 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 b) Regulating Group 5 position is maintained at least I 0 inches lower than Regulating Group 4 position.

c) Both Regulating Group 4 and Regulating Group 5 positions are maintained above the Transient Insertion Limit specified in Figure 3.1.7-I (COLSS In Service) or Figure 3.1.7-2 (COLSS Out of Service).

3 Fully withdrawn (FW) is defined as >147.75" (Pulse Counter indication) and

>145.25" (RSPT indication). No further CEA withdrawal above FW is required for CEAs' to meet the Transient Insertion Limit (TIL) requirements.

3.1.8 - Part Strength CEA Insertion Limits The part strength CEA groups shall be limited to the insertion limits shown in Figure 3.1.8-1.

3.2.1 - Linear Heat Rate (LHR)

The linear heat rate limit of 13.1 kW/ft shall be maintained.

3.2.3 - Azimuthal Power Tilt (Tq)

The AZIMUTHAL POWER TILT (Tq) shall be less than or equal to 10% with COLSS IN SERVICE when power is greater than 20% and less than or equal to 50%. Additionally, the AZIMUTHAL POWER TILT (Tq) shall be less than or equal to 5% with COLSS IN SERVICE when power is greater than 50%. See Figure 3.2.3-1.

3.2.4 - Departure From Nucleate Boiling Ratio (DNBR)

COLSS IN SERVICE and Both CEACs INOPERABLE in Any OPERABLE CPC Channel - Maintain COLSS calculated core power less than or equal to COLSS calculated core power operation limit based on DNBR decreased by the allowance shown in Figure 3.2.4-1.

COLSS OUT OF SERVICE and CEAC(s) OPERABLE - Operate within the region of acceptable operation of Figure 3.2.4-2 using any operable CPC channel.

COLSS OUT OF SERVICE and Both CEACs INOPERABLE in Any OPERABLE CPC Channel - Operate within the region of acceptable operation of Figure 3.2.4-3 using any operable CPC channel with both CEACs INOPERABLE.

Page 10 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 3.2.5 - Axial Shape Index (ASI)

The core average AXIAL SHAPE INDEX (ASI) shall be maintained within the following limits:

COLSS OPERABLE

-0.18 _<ASI < 0.17 for power > 50%

-0.28 < ASI < 0.17 for power >20% and < 50%

COLSS OUT OF SERVICE (CPC)

-0.10 _*ASI _<0.10 for power >20%

3.3.12 - Boron Dilution Alarm System (BDAS)

With one or both start-up channel high neutron flux alarms inoperable, the RCS boron concentration shall be determined at the applicable monitoring frequency specified in Tables 3.3.12-1 through 3.3.12-5.

3.9.1 - Boron Concentration The boron concentration of all filled portions of the Reactor Coolant System and the refueling canal shall be maintained at a uniform concentration _>3000 ppm.

Page I I of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I FIGURE 3.1.1-1 SHUTDOWN MARGIN VERSUS COLD LEG TEMPERATURE REACTOR TRIP BREAKERS OPEN 7

6 5

4 z

z 0 3

<1 2

0 0 100 200 300 400 500 600 COLD LEG TEMPERATURE (-F)

Page 12 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Rev ision 20 I FIGURE 3.1.2-1 SHUTDOWN MARGIN VERSUS COLD LEG TEMPERATURE REACTOR TRIP BREAKERS CLOSED 7 . . . ... .. .... . .. ... ....

(500,6.5)ý 6

REGION OF ACCEPTABLE 5 OPERATION 4

Z (350,4.0) z 0 3 REGION OF UNACCEPTABLE 2

OPERATION 0

0 100 200 300 400 500 600 COLD LEG TEMPERATURE (°F)

Page 13 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I FIGURE 3.1.4-1 MTC ACCEPTABLE OPERATION, MODES 1 AND 2 0.5 I .... .........................

U(0%,0.5.

) .......

0)...............

... ............ (100%.0) 0.0 ..........................

(50%,,0*0)

i(100%,-0.2j

-0.5 .........

-1.0 01 U

z W -1.5 MTC AREA OF ACCEPTABLE 0

U OPERATION

-2.0 W

-2.5 0

0-

-3.0 0

-3.5

-4.0 (0%,-4.4) ( 00%.-4.4

-4.5 0 10 20 30 40 50 60 70 80 90 100 CORE POWER LEVEL

(% OF RATED THERMAL POWER)

Maintain Operation within Boundary TECH SPEC 3.1 4 Maximum Upper ILimit .......

Page 14 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 FIGURE 3.1.5-1 CORE POWER REDUCTION AFTER CEA DEVIATION*

20 .20

/6100% to

  • >80% RTP 15 - -- -- - . .. ... .... ... ......... ... . .... . .... ... ... ... ... 15 z

0 12 12. *80% to

>70% RTP 0 ' 10 - . . . . . . . . . . . . . .................

....... 10 9

88 70%to 0

6,,6 >45% RTP 5 ........................

5

... . . . .................... 5

  • ý45% RTP 00 0 10 20 30 40 50 60 TIME AFTER DEVIATION, MINUTES

" WHEN CORE POWER IS REDUCED TO 35% OF RATED THERMAL POWER PER THIS LIMIT CURVE, FURTHER REDUCTION IS NOT REQUIRED.

" NO POWER REDUCTION IS REQUIRED FOR A SINGLE CEA MISALIGNMENT IF THE FOLLOWING CONDITIONS ARE CONTINUOUSLY MET FROM THE TIME OF DEVIATION:

- > 95 % RATED THERMAL POWER

- COLSS IN SERVICE AND CEACS IN SERVICE

- AZIMUTHAL POWER TILT IS LESS THAN 3.0 %

- ALL CEAS REMAIN ABOVE 142.5" WITHDRAWN BY PULSE COUNTER AND ABOVE 140. 1" WITHDRAWN BY RSPT INDICATION Page 15 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I FIGURE 3.1.7-1 CEA INSERTION LIMITS VERSUS THERMAL POWER (COLSS IN SERVICE) 1.0 ~NOTE:

See Footnote in Section 3.1.7 for applicability following a Reactor Power Cutback.

0.9 To meet the Transient Insertion Limit (TIL) all conditions below must be met:

CEA Groups 1 and 2 must be > fully 0.8 withdrawn* (see definition below) in MODE 1 and MODE 2.

AND CEA Group 3 must be > fully withdrawn* fior 0.7 power levels > 20%.

0 CEA Group 3 must be withdrawn > 60" for

  • z power > 0% and < 20%.

0.6 AND

-z CEA Group 4 must be > fully withdrawn* foor power levels > 70.87%.

CEA Group 4 must be withdrawn > the LLQ 0.5 I group 4 TIL (TIL4) as indicated on the graph or by the equation:

LU z TIL4 = (172.5" x Fractional Power) + 25.5" 0 (for power > 20% and < 70.87%).

z 0.4 AND z IE CEA Group 5 must be withdrawn > the group 5 TIL (TIL5) as indicated on the graph or 0.z by the equation:

0.3 TIL5 = (172.5" x Fractional Power) - 64.5" (for powers > 37.39% and < 100%).

0.2

0. I I I I I I i ,

0.0 I I1 I I________________

. . . I - ................

GROUP I I GROUP5 I I I I I GROUP3 I I I I I I i I I t 150* 120 90 60 30 0 150* 120 90 60 30 0 150* 120 90 60 30 0 GROUP4 GROUP2 15E0" It POITO 10 (INCH 1S RjT 6H0 3N)

CEA POSITION (INCHES WITHDRAWN)

  • Fully Withdrawn (FW) is defined as > 147.75" (Pulse Counter) and > 145.25" (RSPT).

No further CEA withdrawal above FW is required for CEAs' to meet the TIL requirements.

Page 16 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I FIGURE 3.1.7-2 CEA INSERTION LIMITS VERSUS THERMAL POWER (COLSS OUT OF SERVICE) 1.0 I ......... NOTE:

See Footnote in Section 3.1.7 for applicability following a Reactor Power Cutback.

0.9 'To meet the Transient Insertion Limit (TIL) all

-conditions below must be met:

CEA Groups 1 and 2 must be > fully 0.8 ........... withdrawn* (see definition below) in MODE 1 and MODE 2.

AND SF- . CEA Group 3 must be > fully withdrawn* for 0.7 power levels > 20%.

CEA Group 3 must be withdrawn > 60" for Z power > 0% and < 20%.

t: 'AND 0.6 CEA Group 4 must be > fully withdrawn* for z power levels > 54.97%.

- CEA Group 4 must be withdrawn > the 0.5 Z group 4 TIL (TIL4) as indicated on the graph or V) ,by the equation:

z TIL4 = (250.9" x Fractional Power) + 9.82"

< (for power > 20% and < 54.97%).

z 0.4 ) *-AND 0 Group 5 must be withdrawn > the

  • < *Q =CEA U group 5 TIL (TIL5) as indicated on the graph or by the equations:

0.3 2 W. F-- TIL5 = (250.9" x Fractional Power) - 80.18" x,, (for power > 31.96% and < 75.00%).

CZ Z: TIL5 = 108" (for power level > 75.00%).

0.?

0.1 I I I 0.0 GROUP 5 GROUP 3 GROUP I I I I I I I I I I I I I I I I I I I 150* 120 90 60 30 0 150* 120 90 60 30 0 150* 120 90 60 30 0 GROUP 4 GROUP 2 I (,09t0 1510O* 6+010 3t I151*0"1[0 10 610 3t

  • CEA POSITION (INCHES WITHDRAWN)
  • Fully Withdrawn (FW) is defined as > 147.75" (Pulse Counter) and > 145.25" (RSPT).

No further CEA withdrawal above FW is required for CEAs' to meet the TIL requirements.

Page 17 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I FIGURE 3.1.8-1 PART STRENGTH CEA INSERTION LIMITS VERSUS THERMAL POWER 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 TRANSIENT INSERTION LIMIT (75.OI:NCHES) 80.0 90.0 OPERATION OPERATION UNACCEPTABLE F-

-RESTRICTED 100.0 110.0 LONG TERM STEADY STATE INSERTION LIMITS: (112.5 INCHES) 120.0 130.0 OPERATION ACCEPTABLE 140.0

. .i . ., . . . .. . . i . . I. . . . .

150.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 FRACTION OF RATED THERMAL POWER Page 18 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I FIGURE 3.2.3-1 AZIMUTHAL POWER TILT VERSUS THERMAL POWER (COLSS IN SERVICE) 20.0 15.0 k REGION OF UNACCEPTABLE OPERATION

©~

,.) 10.0 -

5.0 F REGION OF ACCEPTABLE OPERATION 0.0 L--

20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 I00.0 CORE POWER LEVEL

(% OF RATED THERMAL POWER)

Page 19 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I FIGURE 3.2.4-1 COLSS DNBR OPERATING LIMIT ALLOWANCE FOR BOTH CEACs INOPERABLE IN ANY OPERABLE CPC CHANNEL 25 20 z

0 15 z

10 c-0 u-5 0

50 60 70 80 90 100 CORE POWER LEVEL

(% OF RATED THERMAL POWER)

Page 20 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I FIGURE 3.2.4-2 DNBR MARGIN OPERATING LIMIT BASED ON THE CORE PROTECTION CALCULATORS (COLSS OUT OF SERVICE, CEAC(s) OPERABLE) 2.5 r-T--1--rrl 1 $11TT 1111 T. . . . . . . . . . .

UI~l . ll . r ] . lll . $1. 11. 11.. 1V ACCEPTABLE OPERATION ANY POWER LEVEL AT LEAST 1 CEAC OPERABLE IN EACH OPERABLE CPC CHANNEL 2.4 (0.:06,2.38) (0.1,2.38):

2.3

(-6.1,2.28) 2.2 ACCEPTABLE OPERATION z POWER AT OR ABOVE 90%

AT LEAST 1 CEAC OPERABLE IN z 2.1 EACH OPERABLE CPC CHANNEL I I

  • i (0.05,2.00)

(005,200).

.(0.1,2.00)  :

2.0

(-0.1,1.93) UNACCEPTABLE 1.9 OPERATION, 1.8 .. .. .. . . . . . . .. . . . . . . . .. . . . I. . . . . . . . . . . . . . . . .. . . .. .. . . . . . . . . . . . .. I.. .

-0.220 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 CORE AVERAGE ASI Page 21 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I FIGURE 3.2.4-3 DNBR MARGIN OPERATING LIMIT BASED ON THE CORE PROTECTION CALCULATORS (COLSS OUT OF SERVICE, BOTH CEACs INOPERABLE IN ANY OPERABLE CPC CHANNEL) 3.6 r-rrr,-,-I-,-T~~~~

. . . . . r rrrI

. . ~ ur,,TTr, irT--

ACCEPTABLE OPERATION ANY POWER LEVEL BOTH CEACs INOPERABLE 3.5 IN ANY OPERABLE CPC CHANNEL (0.1,3.41):

3.4 u 3.3

(-0.1,3.27) a.

3.2 UNACCEPTABLE OPERATION 3.1 S . . . . . . I . . . .. . . . . . . . . . . . . . . .. . . . I I 3.0

-0.2 0 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 CORE AVERAGE ASI Page 22 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 1 Table 3.3.12-1 REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR Keff> 0.98 OPERATIONAL Number of Operating Charging Pumps MODE 0 1 2 3 3 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA ONA 4 not on SCS 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA ONA 5 not on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA ONA 4 & 5 on SCS ONA ONA ONA ONA Notes: SCS = Shutdown Cooling System ONA = Operation Not Allowed Page 23 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I Table 3.3.12-2 REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR 0.98Ž> Keff> 0.97 OPERATIONAL Number of Operating Charging Pumps MODE 0 1 2 3 3 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> I hour 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA 4 not on SCS 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA 5 not on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA 4 & 5 on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA ONA Notes: SCS = Shutdown Cooling System ONA = Operation Not Allowed Page 24 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I Table 3.3.12-3 REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR 0.97 Ž Keff> 0.96 OPERATIONAL Number of Operating Charging Pumps MODE 0 I 2 3 3 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 2.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> I hour ONA 4 not on SCS 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 2.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 5 not on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 2.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 4 & 5 on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> I hour ONA ONA Notes: SCS = Shutdown Cooling System ONA = Operation Not Allowed Page 25 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 I Table 3.3.12-4 REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR 0.96 _>Keff> 0.95 OPERATIONAL Number of Operating Charging Pumps MODE 0 1 2 3 3 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 4 not on SCS 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 3.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 0.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> 5 not on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 3.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 0.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> 4 & 5 on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA Notes: SCS = Shutdown Cooling System ONA = Operation Not Allowed Page 26 of 27

PVNGS UNIT 2 CORE OPERATING LIMITS REPORT Revision 20 Table 3.3.12-5 REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR Keff_< 0.95 OPERATIONAL Number of Operating Charging Pumps MODE 0 1 2 3 3 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> 4 not on SCS 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 4.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> I hour 5 not on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 4.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> I hour 4 & 5 on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 0.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> ONA 6 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA ONA Notes: SCS = Shutdown Cooling System ONA = Operation Not Allowed Page 27 of 27

Enclosure PVNGS Unit 3 Core Operating Limits Report (COLR)

Revision 23

PALO VERDE NUCLEAR GENERATING STATION (PVNGS)

UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 I Effective June 25, 2014 I Responsible Engineer WWe z l Digitally signed by Wenzel, Richard R(Z99534)

Date Richard (z99534)

DN: cn=Wenzel, Richard Richard Reason: I am the author of this document R(Z99534)-000 Date: 2014.06.19 15:31:00 Digitally signed by Foster, Date Foster, Glenn A(Z35831)

DN: cn=Foster, Glenn Gl~enn Glen A(Z3583,)

Reason: I have reviewed this document A(Z35831) Date: 2014.06.19 16:00:58

-f7f00' Responsible Section Leader Ashton, JDigitally signed by Ashton, Date Jelffrey czo03 DN: cn=Ashton, Jeffrey C(Z03403)

Reason: I am approving this document C(Z03403) Date: 2014.06.19 16:26:59 QZ03403)-07'00' Page I of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 1 Table of Contents Description Page Cover Page I Table of Contents 2 List of Figures 3 List of Tables 4 Affected Technical Specifications 5 Analytical Methods 6 CORE Operating Limits 3.1.1 Shutdown Margin (SDM) - Reactor Trip Breakers Open 9 3.1.2 Shutdown Margin (SDM) - Reactor Trip Breakers Closed 9 3.1.4 Moderator Temperature Coefficient (MTC) 9 3.1.5 Control Element Assembly (CEA) Alignment 9 3.1.7 Regulating CEA Insertion Limits 9 3.1.8 Part Strength CEA Insertion Limits 10 3.2.1 Linear Heat Rate (LHR) 10 3.2.3 Azimuthal Power Tilt (Tq) 10 3.2.4 Departure From Nucleate Boiling Ratio (DNBR) 10 3.2.5 Axial Shape Index (ASI) 11 3.3.12 Boron Dilution Alarm System (BDAS) 11 3.9.1 Boron Concentration I1 Page 2 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 I List of Figu res Description Page Figure 3.1.1-1 Shutdown Margin Versus Cold Leg Temperature 12 Reactor Trip Breakers Open Figure 3.1.2-1 Shutdown Margin Versus Cold Leg Temperature 13 Reactor Trip Breakers Closed Figure 3.1.4-1 MTC Acceptable Operation, Modes I and 2 14 Figure 3.1.5-1 Core Power Limit After CEA Deviation 15 Figure 3.1.7-1 CEA Insertion Limits Versus Thermal Power 16 (COLSS in Service)

Figure 3.1.7-2 CEA Insertion Limits Versus Thermal Power 17 (COLSS Out of Service)

Figure 3.1.8-1 Part Strength CEA Insertion Limits Versus Thermal Power 18 Figure 3.2.3-1 Azimuthal Power Tilt Versus Thermal Power 19 (COLSS in Service)

Figure 3.2.4-1 COLSS DNBR Operating Limit Allowance for Both 20 CEACs Inoperable In Any Operable CPC Channel Figure 3.2.4-2 DNBR Margin Operating Limit Based on the Core 21 Protection Calculators (COLSS Out of Service, CEAC(s)

Operable)

Figure 3.2.4-3 DNBR Margin Operating Limit Based on the Core 22 Protection Calculators (COLSS Out of Service, Both CEACs Inoperable In Any Operable CPC Channel)

Page 3 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 I List of Tables Description Page Table 3.3.12-1 Required Monitoring Frequencies for Backup Boron 23 Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for Keff> 0.98 Table 3.3.12-2 Required Monitoring Frequencies for Backup Boron 24 Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for 0.98 > Keff> 0.97 Table 3.3.12-3 Required Monitoring Frequencies for Backup Boron 25 Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for 0.97 > Keff> 0.96 Table 3.3.12-4 Required Monitoring Frequencies for Backup Boron 26 Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for 0.96 > Keff> 0.95 Table 3.3.12-5 Required Monitoring Frequencies for Backup Boron 27 Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for Keff< 0.95 Page 4 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 This Report has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Core Operating Limits have been developed using the NRC approved methodologies specified in Section 5.6.5 b of the Palo Verde Technical Specifications.

AFFECTED PVNGS TECHNICAL SPECIFICATIONS 3.1.1 Shutdown Margin (SDM) - Reactor Trip Breakers Open 3.1.2 Shutdown Margin (SDM) - Reactor Trip Breakers Closed 3.1.4 Moderator Temperature Coefficient (MTC) 3.1.5 Control Element Assembly (CEA) Alignment 3.1.7 Regulating CEA Insertion Limits 3.1.8 Part Strength CEA Insertion Limits 3.2.1 Linear Heat Rate (LHR) 3.2.3 Azimuthal Power Tilt (Tq) 3.2.4 Departure From Nucleate Boiling Ratio (DNBR) 3.2.5 Axial Shape Index (ASI) 3.3.12 Boron Dilution Alarm System (BDAS) 3.9.1 Boron Concentration Page 5 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 I ANALYTICAL METHODS The COLR contains the complete identification for each of the Technical Specification referenced topical reports (i.e., report number, title, revision, date, and any supplements) and correspondence that provide the NRC-approved analytical methods used to determine the core operating limits, described in the following documents:

T.

ReSS Title Report No. Rev Re fga Date Supl CE Method for Control Element Assem- CENPD- N.A. January N.A.

I bly Ejection Analysis 0190-A 1976 (13-NOI-1301-01204-1)

The ROCS and DIT Computer Codes for CENPD- N.A. April 1983 N.A.

2 Nuclear Design 266-P-A (13-NOO - 1900-01412-0)

Safety Evaluation Report related to the NUREG- N.A. March 1983 1 Final Design of the Standard Nuclear 0852 Steam Supply Reference Systems September CESSAR System 80, Docket No. STN 50-470 December 1987 3 Modified Statistical Combination of CEN- 01-P-A May 1988 N.A.

4 Uncertainties 356(V)-P-A (13-N001 -1303-01747-2)

System 8 0 TM Inlet Flow Distribution Enclosure N.A. February I-P 4 (13-NOOI - 1301-01228-0) 1-P to LD- 1993 82-054 Calculative Methods for the CE Large CENPD- N.A. March 4-P-A Break LOCA Evaluation Model for the 132 2001 Rev. 1 Analysis of CE and W Designed NSSS (13-NOOI - 1900-01192-3)

Calculative Methods for the CE Small CENPD- N.A. April 2-P-A 6 Break LOCA Evaluation Model 137-P 1998 (13-N001-1900-01185-3)

Letter: O.D. Parr (NRC) to F. M. Stern N.A. N.A. June 13, N.A.

(CE), (NRC Staff Review of the 1975 7 Combustion Engineering ECCS Evaluation Model). NRC approval for:

5.6.5.b.6.

Page 6 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 1 T.S ReS Title Report No. Rev Re f#a Date Supp Letter: K. Kniel (NRC) to A. E. Scherer N.A. N.A. September N.A.

(CE), (Evaluation of Topical Reports 27, 1977 8 CENPD 133, Supplement 3-P and CENPD-137, Supplement I-P). NRC approval for 5.6.5.b.6.

Fuel Rod Maximum Allowable Pressure CEN-372- N.A. May N.A.

(I 3-NOO 1-0201-00026-1) P-A 1990 Letter: A. C. Thadani (NRC) to A. E. N.A. N.A. April 10, N.A.

1990 10 Scherer (CE), ("Acceptance for Reference CE Topical Report CEN-372-P"). NRC approval for 5.6.5.b.9.

Arizona Public Service Company PWR NFM-005 I August N.A.

Reactor Physics Methodology Using 2007 CASMO-4/SIMULATE-3 (NFM-005)

Technical Description Manual for the CE-NPD 2 March N.A.

12 CENTS CodeVolume I 282-P-A 2005 (CENTS-TD MANUAL-VOL 1) Vols. I Technical Description Manual for the CE-NPD 2 March N.A.

12 CENTS Code Volume 2 282-P-A 2005 (CENTS-TD MANUAL-VOL 2) Vols. 2 Technical Description Manual for the CE-NPD 2 March N.A.

12 CENTS CodeVolume 3 282-P-A 2005 (CENTS-TD MANUAL-VOL 3) Vols. 3 Implementation of ZIRLOTM Cladding CENPD- 0 November N.A.

Material in CE Nuclear Power Fuel 404-P-A 2001 Assembly Designs (I 3-N001 - 1900-01329-0)

HERMITE, A Multi-Dimensional CENPD- N.A. July N.A.

188-A 1976 14 Space-Time Kinetics Code for PWR Transients (HERMITE-TOPICAL)

TORC Code, A Computer Code for CENPD- N.A. April N.A.

15 Determining the Thermal Margin of a 161-P-A 1986 Reactor Core (NOO 1- 301-01202)

Page 7 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 1 T.

ReSS Title Report No. Rev Date Re f4a SuppI CETOP-D Code Structures and Model- CEN- I-P September N.A.

160(S)-P 1981 16 ing Methods for San Onofre Nuclear Generating Station Units 2 and 3, (NOI-1301-01185)

"Safety Evaluation related to Palo Verde N.A. N.A. September N.A.

Nuclear Generating Station, Unit 2 29, 2003 (PVNGS-2) Issuance of Amendment on Replacement of Steam Generators and Uprated Power Operation, (September 29, 2003) 17 and November "Safety Evaluation related to Palo Verde 16, 2005 Nuclear Generating Station, Units 1, 2, and 3 - Issuance of Amendments Re:

Replacement of Steam Generators and Uprated Power Operations and Associated Administrative Changes, (November 16, 2005)."

CPC Methodology Changes for the CPC CEN-3 10- 0 April N.A.

18 Improvement Program, (NOO1-1303- P-A 1986 02283)

CENPD- 0 June N.A.

19 Loss of Flow, C-E Methods for Loss of Flow Analysis, (NOOI - 1301-01203) 183-A 1984 Methodology for Core Designs Contain- CENPD- 0 August N.A.

20 ing Erbium Burnable Absorbers 382-P-A 1993 (NOO1-0201-00035)

Verification of the Acceptability of a I- CEN-386- 0 August N.A.

Pin Burnup Limit of 60 MWD/kgU for P-A 1992 21 Combustion Engineering 16 x 16 PWR Fuel (NO0 1-0201-000421)

a. Corresponds to the reference number specified in Technical Specification 5.6.5 Page 8 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 The cycle-specific operating limits for the specifications listed are presented below.

3. 1.1 - Shutdown Margin (SDM) - Reactor Trip Breakers Open The Shutdown Margin shall be greater than or equal to that shown in Figure 3.1.1-1.

3.1.2 - Shutdown Margin (SDM) - Reactor Trip Breakers Closed The Shutdown Margin shall be greater than or equal to that shown in Figure 3.1.2-1.

3.1.4 - Moderator Temperature Coefficient (MTC)

The moderator temperature coefficient (MTC) shall be within the area of Acceptable Operation shown in Figure 3.1.4-1.

3.1.5 - Control Element Assembly (CEA) Alignment With one or more full-strength or part-strength CEAs misaligned from any other CEAs in its group by more than 6.6 inches, the minimum required MODES I and 2 core power reduction is specified in Figure 3.1.5-1. The required power reduction is based on the initial power before reducing power.

3.1.7 - Regulating CEA Insertion Limits With COLSS IN SERVICE, regulating CEA groups shall be limited to the withdrawal sequence and to the insertion limitsi shown in Figure 3.1.7-12; with COLSS OUT OF SERVICE, regulating CEA groups shall be limited to the 1

withdrawal sequence and to the insertion limits shown in Figure 3.1.7-2.2 Regulating Groups I and 2 CEAs shall be maintained > fully withdrawn]' 3 while in Modes I and 2 (except while performing SR 3.1.5.3). When > 20% power 1

Regulating Group 3 shall be maintained > fully withdrawn. ' 3 1A reactor power cutback will cause either (Case I) Regulating Group 5 or Regulating Group 4 and 5 to be dropped with no sequential insertion of additional Regulating Groups (Groups 1, 2, 3, and 4) or (Case 2) Regulating Group 5 or Regulating Group 4 and 5 to be dropped with all or part of the remaining Regulating Groups (Groups 1, 2, 3, and 4) being sequentially inserted. In either case, the Transient Insertion Limit and withdrawal sequence specified in the CORE OPERATING LIMITS REPORT can be exceeded for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

2 The Separation between Regulating Groups 4 and 5 may be reduced from the 90 inch value specified in Figures 3.1.7-1 and 3.1.7-2 provided that each of the following conditions are satisfied:

a) Regulating Group 4 position is between 60 and 150 inches withdrawn.

Page 9 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 b) Regulating Group 5 position is maintained at least 10 inches lower than Regulating Group 4 position.

c) Both Regulating Group 4 and Regulating Group 5 positions are maintained above the Transient Insertion Limit specified in Figure 3.1.7-I (COLSS In Service) or Figure 3.1.7-2 (COLSS Out of Service).

3 Fully withdrawn (FW) is defined as >147.75" (Pulse Counter indication) and

>_145.25" (RSPT indication). No further CEA withdrawal above FW is required for CEAs' to meet the Transient Insertion Limit (TIL) requirements.

3.1.8 - Part Strength CEA Insertion Limits The part strength CEA groups shall be limited to the insertion limits shown in Figure 3.1.8-1.

3.2.1 - Linear Heat Rate (LHR)

The linear heat rate limit of 13.1 kW/ft shall be maintained.

3.2.3 - Azimuthal Power Tilt (Tq)

The AZIMUTHAL POWER TILT (Tq) shall be less than or equal to 10% with COLSS IN SERVICE when power is greater than 20% and less than or equal to 50%. Additionally, the AZIMUTHAL POWER TILT (Tq) shall be less than or equal to 5% with COLSS IN SERVICE when power is greater than 50%. See Figure 3.2.3-1.

3.2.4 - Departure From Nucleate Boiling Ratio (DNBR)

COLSS IN SERVICE and Both CEACs INOPERABLE in Any OPERABLE CPC Channel - Maintain COLSS calculated core power less than or equal to COLSS calculated core power operation limit based on DNBR decreased by the allowance shown in Figure 3.2.4-1.

COLSS OUT OF SERVICE and CEAC(s) OPERABLE - Operate within the region of acceptable operation of Figure 3.2.4-2 using any operable CPC channel.

COLSS OUT OF SERVICE and Both CEACs INOPERABLE in Any OPERABLE CPC Channel - Operate within the region of acceptable operation of Figure 3.2.4-3 using any operable CPC channel with both CEACs INOPERABLE.

Page 10 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 3.2.5 - Axial Shape Index (ASI)

The core average AXIAL SHAPE INDEX (ASI) shall be maintained within the following limits:

COLSS OPERABLE

-0.18 _<ASI _ 0.17 for power > 50%

-0.28 < ASI < 0.17 for power >20% and < 50%

COLSS OUT OF SERVICE (CPC)

-0.10 _<ASI _<0.10 for power >20%

3.3.12 - Boron Dilution Alarm System (BDAS)

With one or both start-up channel high neutron flux alarms inoperable, the RCS boron concentration shall be determined at the applicable monitoring frequency specified in Tables 3.3.12-I through 3.3.12-5.

3.9.1 - Boron Concentration The boron concentration of all filled portions of the Reactor Coolant System and the refueling canal shall be maintained at a uniform concentration _Ž3000 ppm.

Page IIof 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 I FIGURE 3.1.1-1 SHUTDOWN MARGIN VERSUS COLD LEG TEMPERATURE REACTOR TRIP BREAKERS OPEN 7

6 5

z 0 3 2

0 0 100 200 300 400 500 600 COLD LEG TEMPERATURE (°F)

Page 12 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Rev'ision 23 I FIGURE 3.1.2-1 SHUTDOWN MARGIN VERSUS COLD LEG TEMPERATURE REACTOR TRIP BREAKERS CLOSED 7 ......... ......... . . ....... ... . . .. ......... .........

(500,6.5) 6 REGION OF ACCEPTABLE 5 OPERATION 4

Z (350,4.0) z 0 3 REGION OF UNACCEPTABLE 2

OPERATION 0

0 100 200 300 400 500 600 COLD LEG TEMPERATURE (T)

Page 13 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 I FIGURE 3.1.4-1 MTC ACCEPTABLE OPERATION, MODES 1 AND 2 0.5 Jig. "_ .- " . .. . I . . . I . . . . . . .... . . . . I ... . I . . . .o 0.0 (10 o,0052

-0.5 7

o

-1.0

-1.5 z

ACCEPTABLE U<

,.5 . OPERATION

-2.0 0 jo ,-:.4

-2.5 0 -3.0

-3.5

-4.0

)(100%,-4.4'

-..I . . . . II . I I-. I . . I . . . I . . . . I . .

-4.5 0 10 20 30 40 50 60 70 80 90 100 CORE POWER LEVEL

(% OF RATED THERMAL POWER)

Maintain Operation within Boundary TECH SPEC 3.1.4 Maximum Upper Limit .......

Page 14 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 I FIGURE 3.1.5-1 CORE POWER REDUCTION AFTER CEA DEVIATION*

20 ...... ............. !!!!!!!!! mm....wmm 20 15 15 z

0 07 12 10 10 9

m<

8..----- ...

5 5 0

I..............I 0 10 20 30 40 50 60 TIME AFTER DEVIATION, MINUTES

  • WHEN CORE POWER IS REDUCED TO 35% OF RATED THERMAL POWER PER THIS LIMIT CURVE, FURTHER REDUCTION IS NOT REQUIRED.
  • NO POWER REDUCTION IS REQUIRED FOR A SINGLE CEA MISALIGNMENT IF THE FOLLOWING CONDITIONS ARE CONTINUOUSLY MET FROM THE TIME OF DEVIATION:

- > 95 % RATED THERMAL POWER

- COLSS IN SERVICE AND CEACS IN SERVICE

- AZIMUTHAL POWER TILT IS LESS THAN 3.0 %

- ALL CEAS REMAIN ABOVE 142.5" WITHDRAWN BY PULSE COUNTER AND ABOVE 140. 1" WITHDRAWN BY RSPT INDICATION Page 15 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 FIGURE 3.1.7-1 CEA INSERTION LIMITS VERSUS THERMAL POWER (COLSS IN SERVICE) 1.0 NOTE:

See Footnote in Section 3.1.7 for applicability following a Reactor Power Cutback.

0.9 To meet the Transient Insertion Limit (TIL) all

conditions below must be met:

CEA Groups 1 and 2 must be > fully 0.8 withdrawn* (see definition below) in MODE 1 and MODE 2.

AND CEA Group 3 must be > fully withdrawn* for 0.7 power levels > 20%.

CEA Group 3 must be withdrawn > 60" for

, Z power > 0% and < 20%.

0.6 AND CEA Group 4 must be > fully withdrawn* for z  : z :power levels > 70.87%.

-; CEA Group 4 must be withdrawn > the 0.5 Z group 4 TIL (TIL4) as indicated on the graph or Sby the= equation:

LtJ j- z TIL4 (172.5" x Fractional Power) + 25.5" (for power > 20% and < 70.87%).

z 0.4 > >-: AND L< w CEA Group 5 must be withdrawn > the 0 U **, o w group 5 TIL (TIL5) as indicated on the graph or by the equation:

0.3 TIL5 = (172.5" x Fractional Power) - 64.5" L"- "(for powers > 37.39% and < 100%).

"0 U:=

0.2 Oz.

0.1 0.0 GROUP I GROUP5 I GROUP I 31I I I I I I 150* 120 90 60 30 0 150* 120 90 60 30 0 150* 120 90 60 30 0 GROUP4 GROUP2 15 [,* I t0 9 0 6+0 310 1 10 I0 jo 6+0 10 CEA POSITION (INCHES WITHDRAWN)

  • Fully Withdrawn (FW) is defined as > 147.75" (Pulse Counter) and > 145.25" (RSPT).

No further CEA withdrawal above FW is required for CEAs' to meet the TIL requirements.

Page 16 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 I FIGURE 3.1.7-2 CEA INSERTION LIMITS VERSUS THERMAL POWER (COLSS OUT OF SERVICE) 1.0 NOTE:

See Footnote in Section 3.1.7 for applicability following a Reactor Power Cutback.

0.9 F To meet the Transient Insertion Limit (TIL) all conditions below must be met:

CEA Groups 1 and 2 must be > fully 0.8 I- withdrawn* (see definition below) in MODE 1 and MODE 2.

AND CEA Group 3 must be > fully withdrawn* for 0.7 P power levels > 20%.

CEA Group 3 must be withdrawn > 60" for C

power > 0% and < 20%.

.9 AND 0.6 "

CEA Group 4 must be > fully withdrawn* for Lu 4 z power levels > 54.97%.

F- CEA Group 4 must be withdrawn > the group 4 TIL (TIL4) as indicated on the graph or Lu 0.5 -

by the equation:

H TIL4 = (250.9" x Fractional Power) + 9.82" (for power > 20% and < 54.97%).

C z 0.4 AND 0 4 04 CEA Group 5 must be withdrawn > the (9 group 5 TIL (TIL5) as indicated on the graph or SLU by the equations:

LI- 0.3 TIL5 = (250.9" x Fractional Power) - 80.18" (for power > 31.96% and < 75.00%).

TIL5 = 108" (for power level > 75.00%).

0.2 9

0. 1 i i i i i  ; .

0.0 GROUP5 GROUP3 GROUP I I I j I i I I I I I I I I i i I 150* 120 90 60 30 0 150* 120 90 60 30 0 150* 120 90 60 30 0 GROUP 4 GROUP 2 CEA POSITION (INCHES WITHDRAWN)

  • Fully Withdrawn (FW) is defined as > 147.75" (Pulse Counter) and > 145.25" (RSPT).

No further CEA withdrawal above FW is required for CEAs' to meet the TIL requirements.

Page 17 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 I FIGURE 3.1.8-1 PART STRENGTH CEA INSERTION LIMITS VERSUS THERMAL POWER 0.0 .-.-.. .r . r.r 10.0 20.0 30.0 40.0 50.0 60.0 70.0 TRANSIENT INSERTION LIMIr (75.0:NCHES 80.0 LU LU C

90.0 OPERATION OPERATION UNACCEPTABLE LU

= ,RESTRICTED I-100.0 LU LU 110.0 LONG TERM STEADY STATE INSERTION :LIMITS:, (112.5 INCHES) 120.0 130.0 OPERATION ACCEPTABLE 140.0 1 '~tl n I JV.V 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 FRACTION OF RATED THERMAL POWER Page 18 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 I FIGURE 3.2.3-1 AZIMUTHAL POWER TILT VERSUS THERMAL POWER (COLSS IN SERVICE) 20.0 I~ I 15.0 I- REGION OF UNACCEPTABLE OPERATION 10.0 F--

5.0 REGION OF ACCEPTABLE OPERATION

.i . . . . i . . . . . . . . i . . . . . . . . . .

0.0 LL 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 CORE POWER LEVEL

(% OF RATED THERMAL POWER)

Page 19 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 I FIGURE 3.2.4-1 COLSS DNBR OPERATING LIMIT ALLOWANCE FOR BOTH CEACs INOPERABLE IN ANY OPERABLE CPC CHANNEL 25 20 z

15 z

10 0

u-5 0

50 60 70 80 90 100 CORE POWER LEVEL

(% OF RATED THERMAL POWER)

Page 20 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 FIGURE 3.2.4-2 DNBR MARGIN OPERATING LIMIT BASED ON THE CORE PROTECTION CALCULATORS (COLSS OUT OF SERVICE, CEAC(s) OPERABLE) 2.5 rrrrrT,-T, 1-,-,,-,--l-r r.................................Tll I,,-,-rl-r lrrrrl-r-r-r ACCEPTABLE OPERATION ANY POWER LEVEL AT LEAST 1 CEAC OPERABLE IN EACH OPERABLE CPC CHANNEL 2.4 (0.106,2.38) (0.1,2.38):

2.3

(-0.1,2.28) 4 4 4 4 2.2 ACCEPTABLE OPERATION z POWER 4

4 AT OR ABOVE 90%

AT LEAST 1 CEAC OPRBEI 4

4 EAHOEALOPCECANNLE 2.1 C")

ACCEPABLEOPERTIONE

(- 3 .1 1.

..... . . .. ... . R....OP RA B IO NV......... .... . ..... . ..

4 4

..... . AC OPERAB 4 TIPO JH NEN.....4 .. ......

2.0 AT CEC LAST1OERABE I

... . . i . . . . . . . . . . . . . . . . . . . . 4 . . . . . . . .

1.9 1.8

-0.2.0 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 CORE AVERAGE ASI Page 21 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 I FIGURE 3.2.4-3 DNBR MARGIN OPERATING LIMIT BASED ON THE CORE PROTECTION CALCULATORS (COLSS OUT OF SERVICE, BOTH CEACs INOPERABLE IN ANY OPERABLE CPC CHANNEL) 3.6 ,-I-ri-,r,-r, , rrTl-I-rI-l-, if.............T r-rrri-,-,-y-r r I-,-r,-,-,-l-,-y ACCEPTABLE OPERATION ANY POWER LEVEL BOTH CEACs INOPERABLE 3.5 1 IN ANY OPERABLE CPC CHANNEL (0.1,3.41):

3.4 z

3.3 I z

(-0.1,3.27) 3.2 UNACCEPTABLE OPERATION 3.1

.~AlJI . . .. .I........ . . . . .I........I J......... ___I_........ L. I. L.. L...

3.0

-0.2.0 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 CORE AVERAGE ASI Page 22 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 1 Table 3.3.12-1 REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR Keff> 0.98 OPERATIONAL Number of Operating Charging Pumps MODE 0 1 2 3 3 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA ONA 4 not on SCS 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA ONA 5 not on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA ONA 4 & 5 on SCS ONA ONA ONA ONA Notes: SCS = Shutdown Cooling System ONA = Operation Not Allowed Page 23 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 I Table 3.3.12-2 REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR 0.98 Ž Keff> 0.97 OPERATIONAL Number of Operating Charging Pumps MODE 0 1 2 3 3 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> I hour 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA 4 not on SCS 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA 5 not on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA 4 & 5 on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA ONA Notes: SCS = Shutdown Cooling System ONA = Operation Not Allowed Page 24 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 1 Table 3.3.12-3 REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR 0.97 Ž Keff> 0.96 OPERATIONAL Number of Operating Charging Pumps MODE 0 1 2 3 3 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 2.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> I hour ONA 4 not on SCS 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 2.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> I hour 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 5 not on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 2.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> I hour 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 4 & 5 on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> ONA ONA Notes: SCS = Shutdown Cooling System ONA = Operation Not Allowed Page 25 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 1 Table 3.3.12-4 REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR 0.96 Ž Keff> 0.95 OPERATIONAL Number of Operating Charging Pumps MODE 0 1 2 3 3 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> I hour 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 4 not on SCS 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 3.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 0.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> 5 not on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 3.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 0.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> 4 & 5 on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA Notes: SCS = Shutdown Cooling System ONA = Operation Not Allowed Page 26 of 27

PVNGS UNIT 3 CORE OPERATING LIMITS REPORT Revision 23 1 Table 3.3.12-5 REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR Keff< 0.95 OPERATIONAL Number of Operating Charging Pumps MODE 0 1 2 3 3 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> 4 not on SCS 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 4.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> I hour 5 not on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 4.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> I hour 4 & 5 on SCS 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 0.75 hours8.680556e-4 days <br />0.0208 hours <br />1.240079e-4 weeks <br />2.85375e-5 months <br /> ONA 6 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ONA ONA Notes: SCS = Shutdown Cooling System ONA = Operation Not Allowed Page 27 of 27