L-15-117, License Amendment Request to Revise Emergency Diesel Generator Minimum Voltage and Frequency Surveillance Requirements

From kanterella
(Redirected from L-15-117)
Jump to navigation Jump to search

License Amendment Request to Revise Emergency Diesel Generator Minimum Voltage and Frequency Surveillance Requirements
ML15091A143
Person / Time
Site: Davis Besse Cleveland Electric icon.png
Issue date: 04/01/2015
From: Lieb R
FirstEnergy Nuclear Operating Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
L-15-117
Download: ML15091A143 (142)


Text

{{#Wiki_filter:FENOC' 5501 North State Route 2 Oak Harbor, Ohio 43449 FirstEnergy Nuclear Operating Company Raymond A. Lieb 419-321-7676 Vice President, Nuclear Fax: 419-321-7582 April 1, 2015 L-15-117 10 CFR 50.90 ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

SUBJECT:

Davis-Besse Nuclear Power Station Docket No. 50-346, License No. NPF-3 License Amendment Request to Revise Emergency Diesel Generator Minimum Voltage and Frequency Surveillance Requirements Pursuant to 10 CFR 50.90, FirstEnergy Nuclear Operating Company (FENOC) hereby requests to amend the operating license for the Davis-Besse Nuclear Power Station. The proposed amendment would revise Technical Specification 3.8.1, "AC Sources-Operating" to change certain minimum voltage and frequency acceptance criteria for emergency diesel generator surveillance testing. The changes are necessary to address non-conservatism in the subject technical specification surveillance testing acceptance criteria. The non-conservative acceptance criteria in Technical Specification 3.8.1 are currently administratively controlled under the provisions of Nuclear Regulatory Commission Administrative Letter (AL) 98-10, "Dispositioning of Technical Specifications that are Insufficient to Assure Plant Safety," to assure that plant safety is maintained. This license amendment request is submitted in accordance with the guidance in AL 98-10 as a required license amendment request to resolve a non-conservative technical specification. As such, this is not a "voluntary request from a licensee to change its licensing basis" and should not be subject to "forward fit" considerations. The enclosure provides an evaluation of the proposed amendment. Attachments to the evaluation provide a copy of the existing technical specification pages and technical specification bases pages marked up to reflect the proposed amendment, re-typed technical specification pages with the proposed amendment incorporated, and information related to emergency diesel generator analyses. Approval of the proposed license amendment is requested by April of 2016, and the amendment would be implemented within 60 days of approval. There are no regulatory commitments contained in this submittal. If there are any questions or if additional information is required, please contact Mr. Thomas A. Lentz, Manager- Fleet Licensing, at 330-315-6810.

Davis-Besse Nuclear Power Station L-15-117 Page 2 I declare under penalty of perjury that the foregoing is true and correct. Executed on April _j!!_, 2015.

                       /l/

~

 *ncer ly,       ? ~

aym~

     ~~ti£? A. Lieb

Enclosure:

FE NOC Evaluation of the Proposed Amendment cc: NRC Region Ill Administrator NRC Project Manager NRC Resident Inspector Executive Director, Ohio Emergency Management Agency, State of Ohio (NRC Liaison) Utility Radiological Safety Board

FENOC Evaluation of the Proposed Amendment Davis-Besse Nuclear Power Station Page 2 of 12

1.

SUMMARY

DESCRIPTION This FirstEnergy Nuclear Operating Company (FENOC) evaluation supports a request to amend Operating License NPF-3 for the Davis-Besse Nuclear Power Station (hereafter referred to as Davis-Besse). The proposed amendment would revise Operating License NPF-3, Appendix A, Technical Specification 3.8.1, "AC Sources - Operating" by increasing the minimum voltage and frequency acceptance criteria for emergency diesel generator (EDG) testing specified in surveillance requirements 3.8.1.8.a and 3.8.1.14.a, and the minimum steady state voltage specified in surveillance requirements 3.8.1.2, 3.8.1.8.b, 3.8.1.11.c.3, 3.8.1.14.b, and 3.8.1.15.c.3. The minimum voltage and frequency specified for EDG start testing in surveillance requirements 3.8.1.8.a and 3.8.1.14.a would change from greater than or equal to () 4031 volts (V) to 4070 V, and from 58.8 Hertz (Hz) to 59.5 Hz, respectively. The minimum steady state voltage specified in surveillance requirements 3.8.1.2, 3.8.1.8.b, 3.8.1.11.c.3, 3.8.1.14.b, and 3.8.1.15.c.3 would change from 3744 V to 4088 V. An increased minimum voltage is needed in surveillance requirements 3.8.1.8.a and 3.8.1.14.a to confirm sufficient minimum voltage is achieved to satisfy the EDG output circuit breaker closure permissive. Based in part on there being no frequency requirement for the EDG output circuit breaker closure permissive, the increased minimum frequency value proposed for surveillance requirements 3.8.1.8.a and 3.8.1.14.a was chosen so that the value is consistent with the minimum steady state frequency requirement. The increased minimum steady state voltage proposed for surveillance requirements 3.8.1.2, 3.8.1.8.b, 3.8.1.11.c.3, 3.8.1.14.b, and 3.8.1.15.c.3 would provide assurance that during emergency diesel generator loading, the voltage response recommendations of Safety Guide 9, Selection of Diesel Generator Set Capacity for Standby Power Supplies, dated March 10, 1971 (Accession No. ML12305A251), can be satisfied.

2. DETAILED DESCRIPTION During a review of operating experience, FENOC identified a potentially non-conservative technical specification. A subsequent evaluation demonstrated that the minimum voltage limit in surveillance requirements 3.8.1.8.a and 3.8.1.14.a was insufficient to ensure automatic closure of the EDG output circuit breaker. It was also determined that the minimum steady state voltage specified in the EDG surveillance requirements should be increased. These findings are documented in FENOCs corrective action program. It was also determined that the minimum required frequency for EDG operability in surveillance requirements 3.8.1.8.a and 3.8.1.14.a should be increased to be consistent with the minimum steady state frequency requirement.

The EDG minimum voltage and frequency acceptance criterion achieved in less than or equal to () 10 seconds, as specified in surveillance requirements 3.8.1.8.a and 3.8.1.14.a, would be changed from 4031 V to 4070 V and from 58.8 Hz to 59.5 Hz, as shown underlined below. No change is proposed to the specified time interval of 10 seconds.

FENOC Evaluation of the Proposed Amendment Page 1 of 12

Subject:

License Amendment Request to Revise Emergency Diesel Generator Voltage and Frequency Surveillance Requirements in Technical Specification 3.8.1, AC Sources - Operating Table of Contents

1.

SUMMARY

DESCRIPTION

2. DETAILED DESCRIPTION
3. TECHNICAL EVALUATION 3.1 Minimum EDG Starting Voltage and Frequency 3.2 Steady State Voltage and Frequency 3.3 AC Power System Analysis 3.4 EDG Frequency and Voltage 3.5 Degraded Voltage and Loss of Voltage Relays
4. REGULATORY EVALUATION 4.1 Significant Hazards Consideration 4.2 Applicable Regulatory Requirements/Criteria 4.3 Conclusions
5. ENVIRONMENTAL CONSIDERATION Attachments A. Proposed Technical Specification Changes (Mark-up)

B. Proposed Technical Specification Changes (Retyped) C. Proposed Technical Specification Bases Changes (Mark-up) D. AC Power System Analysis, Section 3, Acceptance Criteria E. AC Power System Analysis, Attachment 3, Bus Voltage Acceptance Criteria and Summary Result Tables F. Reliance Electric Action Guide, Table A G. ISTB3, Pump and Valve Basis Document, Volume III, Stroke Time Basis H. Operability Limits for EDG Voltage and Frequency During Transient Loading

FENOC Evaluation of the Proposed Amendment Davis-Besse Nuclear Power Station Page 3 of 12 Surveillance Requirement 3.8.1.8.a - Verify each EDG starts from standby condition and achieves:

a. In 10 seconds, voltage 4070 V and frequency 59.5 Hz; and Surveillance Requirement 3.8.1.14.a - Verify each EDG starts and achieves:
a. In 10 seconds, voltage 4070 V and frequency 59.5 Hz; and The EDG minimum steady state voltage acceptance criterion, as specified in surveillance requirements 3.8.1.2, 3.8.1.8.b, 3.8.1.11.c.3, 3.8.1.14.b, and 3.8.1.15.c.3, would be changed from 3744 V to 4088 V, as shown underlined below. No change is proposed to the specified maximum steady state voltage or steady state frequency values.

Surveillance Requirement 3.8.1.2 - Verify each EDG starts from standby condition and achieves steady state voltage 4088 V and 4400 V, and frequency 59.5 Hz and 60.5 Hz. Surveillance Requirement 3.8.1.8.b - Verify each EDG starts from standby condition and achieves:

b. Steady state voltage 4088 V and 4400 V, and frequency 59.5 Hz and 60.5 Hz.

Surveillance Requirement 3.8.1.11.c.3 - Verify on actual or simulated loss of offsite power signal:

c. EDG auto-starts from standby condition and:
3. Maintains steady-state voltage 4088 V and 4400 V; Surveillance Requirement 3.8.1.14.b - Verify each EDG starts and achieves:
b. Steady state voltage 4088 V and 4400 V, and frequency 59.5 Hz and 60.5 Hz.

Surveillance Requirement 3.8.1.15.c.3 - Verify on actual or simulated loss of offsite power signal in conjunction with an actual or simulated SFAS actuation signal:

c. EDG auto-starts from standby condition and:
3. Achieves steady-state voltage 4088 V and 4400 V; The proposed technical specification changes are shown in Attachment A.

Attachment A shows deletions with a strike-through and insertions underlined, with a vertical line in the margin showing the area of change. Retyped technical specification pages are provided for information in Attachment B. Proposed Technical Specification Bases changes are shown in Attachment C, for information only. Updated Safety Analysis Report, Subsection 8.3.1.1.4.1, Emergency Diesel Generators, states that two redundant EDG units, one connected to essential 4160 V bus C1 and the other connected to essential 4160 V bus D1, are provided as onsite standby power sources to supply their respective essential buses upon loss of the normal and reserve power sources.

FENOC Evaluation of the Proposed Amendment Davis-Besse Nuclear Power Station Page 4 of 12 These EDGs are each rated at 2600 kilowatts (kW) continuous, 0.8 assumed power factor, and 900 revolutions per minute (nominal). The 2,000 hour rating of each EDG is 2838 kW. The 30 minute rating of each EDG is 3035 kW. The EDGs are designed to provide alternating current (AC) power at 4160 V on the emergency bus. The EDG is capable of attaining rated frequency and voltage approximately 10 seconds after the engine start signal is received. Each of the two emergency diesel generators has the capability to: Supply continuously the sum of the loads on the essential 4160 V bus needed to be powered at any one time. Start and accelerate to rated speed in the required sequence its dedicated engineered safety features loads. At no time during the loading sequence, will the frequency and voltage decrease to less than 95 percent of nominal (0.95 x 60 Hz = 57 Hz) and 75 percent of nominal (0.75 x 4160 V = 3120 V), respectively, except that during the first step in the required loading sequence there may be a voltage dip below 75 percent of nominal lasting for a few cycles due to the essential unit substation transformer excitation inrush.

3. TECHNICAL EVALUATION 3.1 Minimum EDG Starting Voltage and Frequency Accident analyses credit the loading of the EDG, following a postulated loss of offsite power coincident with a loss of coolant accident. The actual EDG start has historically been associated with the safety features actuation system activation. The EDG loading has been included in the delay time associated with each safety system component requiring EDG supplied power following a loss of offsite power. This delay time includes contributions from the EDG start, EDG loading, and component actuation. The delay times assumed in the safety analysis for the engineered safety features equipment include the 10 second EDG start delay and, if applicable, the appropriate load sequencing delay.

Surveillance requirement 3.8.1.8.a demonstrates that the EDG can start from standby conditions and achieve the required voltage and frequency within 10 seconds. Surveillance requirement 3.8.1.14.a demonstrates that the diesel engine can restart from a hot condition (such as subsequent to shutdown from normal surveillances), and achieve the required voltage and frequency within 10 seconds. The proposed change would modify the EDG minimum voltage and frequency acceptance criteria for surveillance requirements 3.8.1.8.a and 3.8.1.14.a. The existing minimum voltage acceptance criterion of 4031 V will be increased to a more restrictive minimum voltage of 4070 V. The minimum acceptable voltage of 4070 V was determined based on the bus voltage required by the EDG output circuit breaker voltage permissive relay circuitry. That is, the voltage required for the EDG output circuit breaker to close.

FENOC Evaluation of the Proposed Amendment Davis-Besse Nuclear Power Station Page 5 of 12 The existing minimum frequency acceptance criterion in surveillance requirements 3.8.1.8.a and 3.8.1.14.a of 58.8 Hz will be increased to a more restrictive minimum frequency of 59.5 Hz. The revised minimum frequency value to be specified in surveillance requirements 3.8.1.8.a and 3.8.1.14.a was chosen so that the value is consistent with the minimum steady state frequency requirement. The minimum steady state output frequency of 59.5 Hz is the minimum EDG frequency value evaluated for plant-specific accident analyses, and is demonstrated by the EDG transient analysis to satisfy Safety Guide 9 transient frequency criteria. In summary, the proposed higher EDG minimum starting voltage and frequency acceptance criteria demonstrate operability of the EDG by confirming adequate voltage and frequency is achieved in 10 seconds. The surveillance requirements demonstrate that the EDG starts and achieves the necessary voltage for the EDG output circuit breaker to close and a frequency consistent with the minimum steady state frequency requirement. 3.2 Steady State Voltage and Frequency Surveillance requirements 3.8.1.2 and 3.8.1.8 help to ensure the availability of the standby electrical power supply to mitigate design basis accidents and transients, and to maintain the unit in a safe shutdown condition. For the purposes of Surveillance requirements 3.8.1.2 and 3.8.1.8 testing, the EDGs are started from standby conditions. Surveillance requirement 3.8.1.11 demonstrates the as designed operation of the standby power sources during loss of the offsite source. Surveillance requirement 3.8.1.14 demonstrates that the diesel engine can restart from a hot condition, such as subsequent to shutdown from normal surveillances, and achieve the required voltage and frequency within 10 seconds. Surveillance requirement 3.8.1.15 demonstrates the EDG operation during a loss of offsite power actuation test signal in conjunction with a safety features actuation system actuation signal. For this test, the EDG loading logic includes both the load sequencer and the individual time delay relays for the makeup pumps. The existing EDG minimum steady state voltage acceptance criteria in surveillance requirements 3.8.1.2, 3.8.1.8.b, 3.8.1.11.c.3, 3.8.1.14.b, and 3.8.1.15.c.3 would be increased to a more restrictive minimum voltage of 4088 V. The more restrictive minimum steady state voltage provides assurance that during EDG loading, the voltage response recommendations of Safety Guide 9 can be satisfied. No changes are proposed to the maximum steady state voltage or minimum and maximum steady state frequency values specified in surveillance requirements 3.8.1.2, 3.8.1.8.b, 3.8.1.11.c.3, 3.8.1.14.b, and 3.8.1.15.c.3. In summary, the proposed higher EDG minimum steady state voltage and current minimum steady state frequency acceptance criteria demonstrate operability of the EDG by confirming adequate steady state voltage and frequency is achieved. The surveillance requirements demonstrate that during the loading transient, the EDG achieves the minimum steady state voltage and frequency necessary to provide

FENOC Evaluation of the Proposed Amendment Davis-Besse Nuclear Power Station Page 6 of 12 assurance that the voltage and frequency response recommendations of Safety Guide 9 can be satisfied. 3.3 AC Power System Analysis The AC Power System Analysis evaluates the Davis-Besse AC power system when powered from the offsite power system via the start-up transformer(s) or via the unit auxiliary transformer. The analysis provides safety-related motor terminal voltages during steady state loading and motor starting conditions. Available system loading and bus operating voltages are also calculated. The analysis includes various plant operating conditions and system configurations for both normal and accident conditions. This analysis and its associated inputs provide the basis for equipment operating characteristics. Section 3.0, Acceptance Criteria, of the AC Power System Analysis (Attachment D) summarizes the acceptable operating limits for plant equipment (except motor operated valves) that are energized via the AC power system. The analysis also determines the maximum steady state loading for the EDGs. , tables 1A, 1B, and 1C of the AC Power System Analysis, provide the minimum and maximum voltage requirements of equipment powered from each bus (bus voltage acceptance criteria). Minimum motor control center voltage results, minimum and maximum bus voltage results for certain load flow analyses, transient minimum bus voltage results for motor starting analyses, and maximum transformer voltage results are shown in Attachment 3 tables 2 through 10. Voltage analysis results and bus voltage acceptance criteria are presented in tables 3 through 9. Tables in of the analysis are provided here as Attachment E. The impact of voltage variation on motor operated valve performance is discussed below. 3.4 EDG Frequency and Voltage Regulatory Position C.4 of Safety Guide 9 indicates that at no time during the loading sequence should the frequency decrease to less than 95 percent of nominal [57 Hz]. This regulatory position also indicates that frequency should be restored to within 2 percent of nominal (98 percent of 60 Hz or 58.8 Hz) in less than 40 percent of each load sequence time interval. There is no frequency requirement associated with the EDG output circuit breaker closure permissive. As such, the revised Technical Specification surveillance requirements 3.8.1.8.a and 3.8.1.14.a minimum frequency acceptance criterion of 59.5 Hz was chosen to ensure Safety Guide 9 criteria will be met and to align the starting frequency requirement with the steady state frequency requirement. Surveillance requirements in 3.8.1.8.b and 3.8.1.14.b are used to demonstrate that the EDG can achieve the specified steady state voltage and frequency. A transient analysis computer model was used to analyze the voltage and frequency response of the Davis-Besse EDGs to the load sequence associated with the design basis loss of coolant accident with loss of offsite power. The transient frequency and voltage response is evaluated while the EDG frequency operates at its minimum and maximum steady state frequency setpoints (59.5 Hz and 60.5 Hz) and the EDG voltage setpoint is at its minimum allowable voltage (4088 V) to satisfy the Safety Guide 9 regulatory position regarding voltage and frequency response. The analysis showed that Davis-Besse EDGs are capable of starting their dedicated engineered safety features loads in the

FENOC Evaluation of the Proposed Amendment Davis-Besse Nuclear Power Station Page 7 of 12 required sequence while meeting the minimum voltage and frequency recommendations of Safety Guide 9 for the loading sequence and each load sequence time interval. Regulatory Position C.4 of Safety Guide 9 also indicates that voltage should be restored to within 10 percent of nominal in less than 40 percent of each load sequence time interval. Davis-Besse Technical Specification surveillance requirements currently require that the EDG achieve a minimum steady state voltage of at least 3744 V (within 10 percent of the nominal 4160 V). However, an EDG steady state voltage of 3744 V cannot be demonstrated to provide adequate voltage for starting safety-related equipment during EDG design basis event sequencing. The EDG transient response calculation shows that with a minimum voltage setpoint of 4088 V, the EDG voltage can recover to within the Safety Guide 9 design criteria of 10 percent of nominal within 40 percent of each load sequence time interval. The calculation also shows that a steady state voltage of 3744 V is sufficient to continuously operate essential equipment after a design basis event. The AC Power System Analysis, the EDG transient analysis, and their associated inputs demonstrate that the EDG loading is within the capabilities of the EDG when pumps are running at their maximum postulated loading conditions and the EDG is operating at its minimum and maximum steady state frequency and minimum voltage limits. The frequency and voltage variation within the limits of Safety Guide 9 criteria have been evaluated for their impact on EDG load performance (excluding motor operated valves, which are addressed separately as described below). The AC Power System Analysis determines the maximum EDG load per sequence step and accounts for loading scenarios where pumps may be operating at run-out conditions. The analysis addresses the impact of voltage variation while the postulated loads operate between 4200 V and 4250 V. The voltage variation is based on the EDG voltage regulator settings. The EDG loading analyses are performed with the voltage regulator at its maximum setting (4250 V). The analysis also addresses the impact of frequency variation on EDG loading while individual loads operate at 61.2 Hz. In the analysis, this frequency is the maximum expected recovery frequency during transient loading of the EDG. Under-frequency and under-voltage in the AC system due to variability in the EDG start and load conditions could lead to increased motor operated valve stroke times. The frequency and voltage variation within the limits of Safety Guide 9 criteria have been evaluated for their impact on motor operated valve performance. Based on Reliance Electric Action Guide, Table A, (Attachment F) the voltage variation has a minimal impact on motor speed, so a penalty was not applied. The Davis-Besse inservice test program document, provided in Attachment G, accounts for the impact of frequency variation on stroke time for the listed motor operated valves. The title of the document is ISTB3, Pump and Valve Basis Document, Volume III, Stroke Time Basis. An EDG transient loading analysis based on equipment operability limits was also performed. This analysis shows that the minimum EDG voltage setpoint (3850 V)

FENOC Evaluation of the Proposed Amendment Davis-Besse Nuclear Power Station Page 8 of 12 required to maintain adequate starting and steady state voltage is lower than the voltage values proposed for Technical Specification surveillance requirements. That is, 3850 V is lower than the EDG output breaker closure permissive voltage (4070 V) and lower than the minimum voltage setpoint (4088 V) required to satisfy Safety Guide 9 criteria. In determining the minimum EDG terminal voltage required to maintain adequate starting and steady state voltage, the EDG transient loading analysis considered a conservative system frequency of 61.2 Hz, as this would result in higher motor load and a lower EDG terminal voltage. The use of the 61.2 Hz system frequency bounds the steady state frequency value of 60.5 Hz. The allowable EDG steady state frequency required for individual components shall be maintained within 0.5 Hz of 60 Hz in accordance with the Davis-Besse Technical Specifications. The maximum steady state EDG output voltage of 4400 V specified in Davis-Besse Technical Specifications is equal to the maximum steady state operating voltage specified for 4000 V rated motors. This ensures that for a lightly loaded distribution system, the voltage at the terminals of 4000 V motors is no more than the maximum rated operating voltages. Evaluation of the maximum EDG steady state loading at the maximum voltage setpoint of 4400 V and the maximum frequency setpoint of 61.2 HZ shows that loading results are bound by the EDG steady state loading limits. Operating the EDG at the maximum steady state output voltage of 4400 V in conjunction with a large-load rejection transient results in transient voltages less than or equal to the EDG overvoltage alarm setpoint. The EDG overvoltage alarm setpoint (4550 V) is set to bound the maximum circuit breaker ratings and the maximum voltage ratings for the essential buses. The large-load rejection transient evaluation inputs and methodology are discussed in Attachment H, Operability Limits for EDG Voltage and Frequency During Transient Loading. Davis-Besse does not have a Technical Specification surveillance requirement for EDG full load reject testing, and the EDG is not routinely subjected to a full-load rejection transient. However, analysis shows that the transient results in voltages less than the EDG maximum test voltage (9320 V) and voltage recovers to the EDG setpoint of 4400 V within 60 seconds. 3.5 Degraded Voltage and Loss of Voltage Relays Relays with time delays are provided on each 4160 V essential bus for the purpose of detecting a sustained under-voltage condition (degraded voltage condition). The degraded voltage relay pickup setpoint and time delays are set to ensure the offsite source supplies sufficient voltage to safety-related equipment so that they perform their function in the event of a design basis event. The degraded voltage dropout, pickup, and time delay setpoints ensure the busses are not inappropriately disconnected from the offsite source. The degraded voltage relays automatically initiate disconnection of the offsite power source whenever the voltage setpoint and time delay have been exceeded. Relays with time delays are provided on each 4160 V essential bus for the purpose of detecting a loss of voltage condition. Disconnecting the offsite power source causes the loss of voltage relays to actuate. The loss of voltage relays automatically initiate

FENOC Evaluation of the Proposed Amendment Davis-Besse Nuclear Power Station Page 9 of 12 disconnection of the offsite power source, load shed the bus, and start the diesel generator whenever the voltage setpoint and time delay have been exceeded. The analytical limit for the degraded voltage relay dropout/trip setpoint is 3700 V. Post-accident loads are required to have adequate voltage for continuous operation while the essential (safeguards) 4160 V buses operate just above the degraded voltage relay analytical limit dropout setpoint. Once actuated, in the event of a loss of offsite power, the degraded voltage relays do not have to be manually reset to sequentially load the EDGs.

4. REGULATORY EVALUATION FirstEnergy Nuclear Operating Company proposes to amend Davis-Besse Nuclear Power Station Operating License NPF-3, Appendix A, Technical Specification 3.8.1, AC Sources - Operating." The proposed amendment would revised certain emergency diesel generator (EDG) surveillance test acceptance criteria by increasing the minimum voltage and frequency to be achieved in less than or equal to 10 seconds, and increasing the minimum steady state voltage to be achieved.

The proposed surveillance requirement changes would address non-conservative minimum voltage acceptance criteria for EDG starting and steady state operation, which were identified during a review of operating experience and subsequent evaluation. The revised surveillance requirements help to ensure the availability of the standby electrical power supply to mitigate design basis accidents and transients, and to maintain the unit in a safe shutdown condition. The change to the minimum voltage acceptance criterion for EDG starting confirms sufficient minimum voltage to satisfy the EDG output circuit breaker closure permissive. The minimum frequency acceptance criterion for EDG starting was chosen so that the value is consistent with the minimum steady state frequency requirement. The minimum steady state output frequency of 59.5 Hz is the minimum EDG frequency value evaluated for plant-specific accident analyses, and is demonstrated by the EDG transient analysis to satisfy Safety Guide 9 transient frequency criteria. The more restrictive minimum steady state output voltage acceptance criterion ensures that during EDG loading, the voltage response criteria of Safety Guide 9 are satisfied. 4.1 Significant Hazards Consideration FirstEnergy Nuclear Operating Company has evaluated whether or not a significant hazards consideration is involved with the proposed amendment by focusing on the three standards set forth in 10 CFR 50.92, Issuance of amendment, as discussed below.

1. Does the proposed amendment involve a significant increase in the probability or consequences of an accident previously evaluated?

Response: No.

FENOC Evaluation of the Proposed Amendment Davis-Besse Nuclear Power Station Page 10 of 12 The proposed amendment would provide more restrictive acceptance criteria for certain EDG technical specification surveillance tests. The proposed acceptance criteria changes would help to ensure the EDGs are capable of carrying the electrical loading assumed in the safety analyses that take credit for the operation of the EDGs, would not affect the capability of other structures, systems, and components to perform their design function, and would not increase the likelihood of a malfunction. Therefore, the proposed amendment does not involve a significant increase in the probability or consequences of an accident previously evaluated.

2. Does the proposed amendment create the possibility of a new or different kind of accident from any accident previously evaluated?

Response: No. The proposed changes would provide more restrictive acceptance criteria to be applied to existing technical specification surveillance tests that demonstrate the capability of the facility EDGs to perform their design function. The proposed acceptance criteria changes would not create any new failure mechanisms, malfunctions, or accident initiators not considered in the design and licensing bases. Therefore, the possibility of a new or different kind of accident from any previously evaluated has not been created.

3. Does the proposed amendment involve a significant reduction in a margin of safety?

Response: No. The proposed EDG surveillance requirement changes involve increased minimum voltage and frequency test acceptance criteria. The conduct of surveillance tests on safety related plant equipment is a means of assuring that the equipment is capable of maintaining the margin of safety established in the safety analyses for the facility. The proposed amendment does not affect EDG performance as described in the design basis analyses, including the capability for the EDG to attain and maintain required voltage and frequency for accepting and supporting plant safety loads should an EDG start signal be received. The proposed amendment does not introduce changes to limits established in the accident analysis. Therefore, the proposed amendment does not involve a significant reduction in a margin of safety. Based on the above, FirstEnergy Nuclear Operating Company concludes that the proposed amendment does not involve a significant hazards consideration under the

FENOC Evaluation of the Proposed Amendment Davis-Besse Nuclear Power Station Page 11 of 12 standards set forth in 10 CFR 50.92(c), and, accordingly, a finding of no significant hazards consideration is justified. 4.2 Applicable Regulatory Requirements/Criteria Changes described in the license amendment request comply with the following regulations and continue to meet the intent of the applicable General Design Criteria. 10 CFR Part 50.36, Technical specifications, requires in paragraph 50.36(c)(2)(ii)(C) Criterion 3 that a technical specification limiting condition for operation be established for a structure, system, or component that is part of the primary success path and which functions or actuates to mitigate a design basis accident or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier. The alternating current electrical power sources (AC Sources - Operating) limiting condition for operation (LCO 3.8.1) satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). 10 CFR Part 50.36, Technical specifications, requires in paragraph 50.36(c)(3) that technical specifications include surveillance requirements relating to test, calibration, or inspection to assure that the necessary quality of systems and components is maintained, that facility operation will be within safety limits, and that the limiting conditions for operation will be met. The technical specifications will continue to include surveillance requirements relating to emergency diesel generator testing to assure the components are maintained, facility operation will be within safety limits, and the limiting conditions for emergency diesel generator operation will be met. 10 CFR 50, Appendix A, General Design Criterion (GDC) 17, Electric power systems, ensures an onsite electric power system is provided to permit functioning of structures, systems, and components important to safety. As required by GDC 17, the design of the alternating current electrical power system provides independence and redundancy to ensure an available source of power to the engineered safety features systems. Safety Guide 9, Selection of Diesel Generator Set Capacity For Standby Power Supplies, describes an acceptable basis for the selection of diesel generator sets of sufficient capacity and margin to implement General Design Criterion 17. The system electrical design as described in Updated Safety Analysis Report Subsection 8.3.1.1.4.1, Emergency Diesel Generators, incorporates the provisions of this safety guide. GDC 18, Inspection and testing of electric power systems, ensures electric power systems important to safety are designed to permit appropriate periodic inspection and testing of important areas and features. The alternating current electrical systems are designed to permit testing and inspection of the operability and functional performance of the components of the system as well as the operability of the system as a whole. Essential and safety-related systems are provided with complete redundancy to permit testing of one system while the redundant system is performing the same function. This ensures no interruption of station operation.

FENOC Evaluation of the Proposed Amendment Davis-Besse Nuclear Power Station Page 12 of 12 The existing EDG transient analysis demonstrates that the EDGs are capable of starting their dedicated engineered safety features loads in the required sequence. The applicable technical specification surveillances will continue to verify the capability of the EDG to start and accelerate to the required speed and voltage within 10 seconds. Maintenance and monitoring of the EDG will be maintained in accordance with the Maintenance Rule (10 CFR 50.65, Requirements for monitoring the effectiveness of maintenance at nuclear power plants) and the Mitigating System Performance Index Process. 4.3 Conclusions Based on the considerations discussed above, (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2) such activities will be conducted in compliance with the Commissions regulations, and (3) the issuance of the amendment will not be inimical to the common defense and security or to the health and safety of the public.

5. ENVIRONMENTAL CONSIDERATION The proposed amendment would change a requirement with respect to installation or use of a facility component located within the restricted area, as defined in 10 CFR 20, or would change an inspection or surveillance requirement. However, the proposed amendment does not involve (i) a significant hazards consideration, (ii) a significant change in the types or significant increase in the amounts of any effluents that may be released offsite, or (iii) a significant increase in individual or cumulative occupational radiation exposure. Accordingly, the proposed amendment meets the eligibility criterion for categorical exclusion set forth in 10 CFR 51.22(c)(9). Therefore, pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment need be prepared in connection with the proposed amendment.

Attachment A Proposed Technical Specification Changes (Mark-up) The following is a list of the affected pages. 3.8.1-5 3.8.1-6 3.8.1-9 3.8.1-11 3.8.1-12

AC Sources - Operating 3.8.1 SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.8.1.1 Verify correct breaker alignment and indicated 7 days power availability for each offsite circuit. SR 3.8.1.2 ------------------------------NOTES-----------------------------

1. All EDG starts may be preceded by an engine prelube period and followed by a warmup period prior to loading.
2. A modified EDG start involving idling and/or gradual acceleration to synchronous speed may be used for this SR as recommended by the manufacturer. When modified start procedures are not used, the time, voltage, and frequency tolerances of SR 3.8.1.8 must be met.

Verify each EDG starts from standby conditions and 31 days achieves steady state voltage 3744 4088 V and 4400 V, and frequency 59.5 Hz and 60.5 Hz. SR 3.8.1.3 ------------------------------NOTES-----------------------------

1. EDG loadings may include gradual loading as recommended by the manufacturer.
2. Momentary transients outside the load range do not invalidate this test.
3. This Surveillance shall be conducted on only one EDG at a time.
4. This SR shall be preceded by and immediately follow, without shutdown, a successful performance of SR 3.8.1.2 or SR 3.8.1.8.

Verify each EDG is synchronized and loaded and 31 days operates for 60 minutes at a load 2340 kW and 2600 kW. SR 3.8.1.4 Verify each day tank contains 4000 gal of fuel oil. 31 days Davis-Besse 3.8.1-5 Amendment 279TBD

AC Sources - Operating 3.8.1 SURVEILLANCE REQUIREMENTS (continued) SURVEILLANCE FREQUENCY SR 3.8.1.5 Check for and remove accumulated water from each 31 days day tank. SR 3.8.1.6 Verify interval between each sequenced load block 31 days is within +/- 10% of design interval for each emergency load sequencer and each emergency time delay relay. SR 3.8.1.7 Verify the fuel oil transfer system operates to transfer 92 days fuel oil from fuel oil storage tank to the day tank. SR 3.8.1.8 -------------------------------NOTE------------------------------ All EDG starts may be preceded by an engine prelube period. Verify each EDG starts from standby condition and 184 days achieves:

a. In 10 seconds, voltage 4031 4070 V and frequency 58.8 59.5 Hz; and
b. Steady state voltage 3744 4088 V and 4400 V, and frequency 59.5 Hz and 60.5 Hz.

Davis-Besse 3.8.1-6 Amendment 279TBD

AC Sources - Operating 3.8.1 SURVEILLANCE REQUIREMENTS (continued) SURVEILLANCE FREQUENCY SR 3.8.1.11 ------------------------------NOTES-----------------------------

1. All EDG starts may be preceded by an engine prelube period.
2. This Surveillance shall not normally be performed in MODE 1, 2, 3, or 4. However, portions of the Surveillance may be performed to reestablish OPERABILITY provided an assessment determines the safety of the plant is maintained or enhanced. Credit may be taken for unplanned events that satisfy this SR.

Verify on an actual or simulated loss of offsite power 24 months signal:

a. De-energization of essential buses;
b. Load shedding from essential buses; and
c. EDG auto-starts from standby condition and:
1. Energizes permanently connected loads in 10 seconds;
2. Energizes auto-connected shutdown loads through individual time delay relays;
3. Maintains steady-state voltage 3744 4088 V and 4400 V;
4. Maintains steady-state frequency 59.5 Hz and 60.5 Hz; and
5. Supplies permanently connected and auto-connected shutdown loads for 5 minutes.

Davis-Besse 3.8.1-9 Amendment 279TBD

AC Sources - Operating 3.8.1 SURVEILLANCE REQUIREMENTS (continued) SURVEILLANCE FREQUENCY SR 3.8.1.14 ------------------------------NOTES-----------------------------

1. This Surveillance shall be performed within 5 minutes of shutting down the EDG after the EDG has operated 1 hour loaded 2340 kW and 2600 kW.

Momentary transients outside of load range do not invalidate this test.

2. All EDG starts may be preceded by an engine prelube period.

Verify each EDG starts and achieves: 24 months

a. In 10 seconds, voltage 4031 4070 V and frequency 58.8 59.5 Hz; and
b. Steady state voltage 3744 4088 V and 4400 V, and frequency 59.5 Hz and 60.5 Hz.

Davis-Besse 3.8.1-11 Amendment 279TBD

AC Sources - Operating 3.8.1 SURVEILLANCE REQUIREMENTS (continued) SURVEILLANCE FREQUENCY SR 3.8.1.15 ------------------------------NOTES-----------------------------

1. All EDG starts may be preceded by an engine prelube period.
2. This Surveillance shall not normally be performed in MODE 1, 2, 3, or 4. However, portions of the Surveillance may be performed to reestablish OPERABILITY provided an assessment determines the safety of the plant is maintained or enhanced. Credit may be taken for unplanned events that satisfy this SR.

Verify on an actual or simulated loss of offsite power 24 months signal in conjunction with an actual or simulated SFAS actuation signal:

a. De-energization of essential buses;
b. Load shedding from essential buses;
c. EDG auto-starts from standby condition and:
1. Energizes permanently connected loads in 10 seconds;
2. Energizes auto-connected emergency loads through load sequencer and individual time delay relays;
3. Achieves steady-state voltage 3744 4088 V and 4400 V;
4. Achieves steady-state frequency 59.5 Hz and 60.5 Hz; and
5. Supplies permanently connected and auto-connected emergency loads for 5 minutes.

Davis-Besse 3.8.1-12 Amendment 279TBD

Attachment B Proposed Technical Specification Changes (Retyped) The following is a list of the affected pages. 3.8.1-5 3.8.1-6 3.8.1-9 3.8.1-11 3.8.1-12

AC Sources - Operating Retyped page provided for information only. 3.8.1 SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.8.1.1 Verify correct breaker alignment and indicated power 7 days availability for each offsite circuit. SR 3.8.1.2 ------------------------------NOTES-----------------------------

1. All EDG starts may be preceded by an engine prelube period and followed by a warmup period prior to loading.
2. A modified EDG start involving idling and/or gradual acceleration to synchronous speed may be used for this SR as recommended by the manufacturer. When modified start procedures are not used, the time, voltage, and frequency tolerances of SR 3.8.1.8 must be met.

Verify each EDG starts from standby conditions and 31 days achieves steady state voltage 4088 V and 4400 V, and frequency 59.5 Hz and 60.5 Hz. SR 3.8.1.3 ------------------------------NOTES-----------------------------

1. EDG loadings may include gradual loading as recommended by the manufacturer.
2. Momentary transients outside the load range do not invalidate this test.
3. This Surveillance shall be conducted on only one EDG at a time.
4. This SR shall be preceded by and immediately follow, without shutdown, a successful performance of SR 3.8.1.2 or SR 3.8.1.8.

Verify each EDG is synchronized and loaded and 31 days operates for 60 minutes at a load 2340 kW and 2600 kW. SR 3.8.1.4 Verify each day tank contains 4000 gal of fuel oil. 31 days Davis-Besse 3.8.1-5 Amendment TBD

AC Sources - Operating Retyped page provided for information only. 3.8.1 SURVEILLANCE REQUIREMENTS (continued) SURVEILLANCE FREQUENCY SR 3.8.1.5 Check for and remove accumulated water from each 31 days day tank. SR 3.8.1.6 Verify interval between each sequenced load block 31 days is within +/- 10% of design interval for each emergency load sequencer and each emergency time delay relay. SR 3.8.1.7 Verify the fuel oil transfer system operates to 92 days transfer fuel oil from fuel oil storage tank to the day tank. SR 3.8.1.8 -------------------------------NOTE------------------------------ All EDG starts may be preceded by an engine prelube period. Verify each EDG starts from standby condition and 184 days achieves:

a. In 10 seconds, voltage 4070 V and frequency 59.5 Hz; and
b. Steady state voltage 4088 V and 4400 V, and frequency 59.5 Hz and 60.5 Hz.

Davis-Besse 3.8.1-6 Amendment TBD

AC Sources - Operating Retyped page provided for information only. 3.8.1 SURVEILLANCE REQUIREMENTS (continued) SURVEILLANCE FREQUENCY SR 3.8.1.11 ------------------------------NOTES-----------------------------

1. All EDG starts may be preceded by an engine prelube period.
2. This Surveillance shall not normally be performed in MODE 1, 2, 3, or 4. However, portions of the Surveillance may be performed to reestablish OPERABILITY provided an assessment determines the safety of the plant is maintained or enhanced. Credit may be taken for unplanned events that satisfy this SR.

Verify on an actual or simulated loss of offsite power 24 months signal:

a. De-energization of essential buses;
b. Load shedding from essential buses; and
c. EDG auto-starts from standby condition and:
1. Energizes permanently connected loads in 10 seconds;
2. Energizes auto-connected shutdown loads through individual time delay relays;
3. Maintains steady-state voltage 4088 V and 4400 V;
4. Maintains steady-state frequency 59.5 Hz and 60.5 Hz; and
5. Supplies permanently connected and auto-connected shutdown loads for 5 minutes.

Davis-Besse 3.8.1-9 Amendment TBD

AC Sources - Operating Retyped page provided for information only. 3.8.1 SURVEILLANCE REQUIREMENTS (continued) SURVEILLANCE FREQUENCY SR 3.8.1.14 ------------------------------NOTES-----------------------------

1. This Surveillance shall be performed within 5 minutes of shutting down the EDG after the EDG has operated 1 hour loaded 2340 kW and 2600 kW.

Momentary transients outside of load range do not invalidate this test.

2. All EDG starts may be preceded by an engine prelube period.

Verify each EDG starts and achieves: 24 months

a. In 10 seconds, voltage 4070 V and frequency 59.5 Hz; and
b. Steady state voltage 4088 V and 4400 V, and frequency 59.5 Hz and 60.5 Hz.

Davis-Besse 3.8.1-11 Amendment TBD

AC Sources - Operating Retyped page provided for information only. 3.8.1 SURVEILLANCE REQUIREMENTS (continued) SURVEILLANCE FREQUENCY SR 3.8.1.15 ------------------------------NOTES-----------------------------

1. All EDG starts may be preceded by an engine prelube period.
2. This Surveillance shall not normally be performed in MODE 1, 2, 3, or 4. However, portions of the Surveillance may be performed to reestablish OPERABILITY provided an assessment determines the safety of the plant is maintained or enhanced. Credit may be taken for unplanned events that satisfy this SR.

Verify on an actual or simulated loss of offsite power 24 months signal in conjunction with an actual or simulated SFAS actuation signal:

a. De-energization of essential buses;
b. Load shedding from essential buses;
c. EDG auto-starts from standby condition and:
1. Energizes permanently connected loads in 10 seconds;
2. Energizes auto-connected emergency loads through load sequencer and individual time delay relays;
3. Achieves steady-state voltage 4088 V and 4400 V;
4. Achieves steady-state frequency 59.5 Hz and 60.5 Hz; and
5. Supplies permanently connected and auto-connected emergency loads for 5 minutes.

Davis-Besse 3.8.1-12 Amendment TBD

Attachment C Proposed Technical Specification Bases Changes (Mark-up) The following is a list of the affected pages. B 3.8.1-4 B 3.8.1-12 B 3.8.1-13 B 3.8.1-14 B 3.8.1-19 B 3.8.1-23 B 3.8.2-3

AC Sources - Operating B 3.8.1 BASES LCO (continued) through a single 345 - 13.8 kV startup transformer and a single 13.8 - 4.16 kV tie transformer. Thus, if both essential buses are being powered in this manner, both offsite circuits are inoperable. In addition, while not covered by this Specification, requirements for the switchyard are provided in Technical Requirements Manual 8.8.1. In addition, in MODES 3 and 4, in lieu of one of the 345 - 13.8 kV startup transformers, one main transformer and one unit auxiliary transformer with the generator links removed (i.e., a backfeed alignment) may be used. Each EDG must be capable of starting, accelerating to ratedthe required speed and voltage as specified in the Technical Specifications, and connecting to its respective essential bus on detection of bus undervoltage. This will be accomplished within 10 seconds. Each EDG must also be capable of accepting required loads within the assumed times, and continue to operate until offsite power can be restored to the essential buses. These capabilities are required to be met from a variety of initial conditions, such as EDG in standby with the engine hot and EDG in standby with the engine at ambient conditions. Additional EDG capabilities must be demonstrated to meet required Surveillances, e.g., capability of the EDG to reject the single largest load. In addition, day tank fuel oil level and fuel oil transfer system requirements must be met for each EDG. Proper sequencing of loads (which include all required individual time delay relays), including tripping of non-essential loads, is a required function for EDG OPERABILITY. In addition, two load sequencers per train must be OPERABLE. The AC sources in one train must be separate and independent (to the extent possible) of the AC sources in the other train. For the EDGs, separation and independence are complete. For the offsite AC sources, separation and independence are to the extent practical. An offsite circuit may be connected to more than one essential bus, with fast-transfer capability to the other circuit OPERABLE, and not violate separation criteria. An offsite circuit that is not connected to an essential bus is required to have OPERABLE fast-transfer interlock mechanisms to one essential bus to support OPERABILITY of that circuit. The reserve source selector switches are used to ensure this capability is available. Therefore, if both reserve source selector switches are selected to the same offsite circuit (i.e., the same startup transformer), the non-selected offsite circuit is inoperable. Davis-Besse B 3.8.1-4 Revision TBD

AC Sources - Operating B 3.8.1 BASES ACTIONS G.1 (continued) With one or more trains with one load sequencer inoperable, the 1 hour Completion Time provides a period of time to remove the inoperable module from the SFAS cabinet. As noted, since each train is independent from the other train, separate Condition entry is allowed for inoperable load sequencers in each train. H.1 With one or more trains with two load sequencers inoperable, the EDG cannot be loaded in the proper sequence and therefore, cannot meet its safety function. Therefore, the EDG must be immediately declared inoperable. As noted, since each train is independent from the other train, separate Condition entry is allowed for inoperable load sequencers in each train. I.1 Condition I corresponds to a level of degradation in which all redundancy in the AC electrical power supplies has been lost. At this severely degraded level, any further losses in the AC electrical power system will cause a loss of function. Therefore, no additional time is justified for continued operation. The unit is required by LCO 3.0.3 to commence a controlled shutdown. SURVEILLANCE The AC sources are designed to permit inspection and testing of all REQUIREMENTS important areas and features, especially those that have a standby function, in accordance with UFSAR, Section 8 (Ref. 9). Periodic component tests are supplemented by extensive functional tests during refueling outages (under simulated accident conditions). The SRs for demonstrating the OPERABILITY of the EDGs are consistent with the recommendations of Regulatory Guide 1.9 (Ref. 3) and Regulatory Guide 1.137 (Ref. 10). Text to be inserted Where the SRs discussed herein specify voltage and frequency here is provided after tolerances, the following is applicable. The minimum steady state output page B 3.8.1-13. voltage of 3744 V is 90% of the nominal 4160 V output voltage, and is consistent with Safety Guide 9 (Ref. 11). The specified maximum steady state output voltage of 4400 V is equal to the maximum operating voltage specified for 4000 V motors. It ensures that for a lightly loaded distribution system, the voltage at the terminals of 4000 V motors is no more than the Davis-Besse B 3.8.1-12 Revision TBD

AC Sources - Operating B 3.8.1 BASES SURVEILLANCE REQUIREMENTS (continued) maximum rated operating voltages. The specified steady state minimum and maximum frequencies of the EDG are 59.5 Hz and 60.5 Hz, respectively. These values are based on plant-specific analysis values. SR 3.8.1.1 This SR ensures proper circuit continuity for the offsite AC electrical power supply to the onsite distribution network and availability of offsite AC electrical power. The breaker alignment verifies that each breaker is in its correct position to ensure that distribution buses and loads are connected to their preferred power source, and that appropriate independence of offsite circuits is maintained. The 7 day Frequency is adequate since breaker position is not likely to change without the operator being aware of it and because its status is displayed in the control room. SR 3.8.1.2 and SR 3.8.1.8 These SRs help to ensure the availability of the standby electrical power supply to mitigate DBAs and transients and to maintain the unit in a safe shutdown condition. To minimize the wear on moving parts that do not get lubricated when the engine is not running, these SRs are modified by a Note (Note 1 for SR 3.8.1.2 and the Note for SR 3.8.1.8) to indicate that all EDG starts for these Surveillances may be preceded by an engine prelube period and followed by a warmup period prior to loading. For the purposes of SR 3.8.1.2 and SR 3.8.1.8 testing, the EDGs are started from standby conditions. Standby conditions for an EDG means that the diesel engine coolant and oil are being continuously circulated and temperature is being maintained consistent with manufacturer recommendations. In order to reduce stress and wear on diesel engines, some manufacturers recommend a modified start in which the starting speed of EDGs is limited, warmup is limited to this lower speed, and the EDGs are gradually accelerated to synchronous speed prior to loading. This is the intent of Note 2, which is only applicable when such modified start procedures are recommended by the manufacturer. SR 3.8.1.8 requires that, at a 184 day Frequency, the EDG starts from standby conditions and achieves required voltage and frequency within 10 seconds. The 10 second start requirement supports the assumptions Davis-Besse B 3.8.1-13 Revision TBD

Text To Be Inserted Starting On Page B 3.8.1-12 Where the SRs discussed herein specify voltage and frequency tolerances, the following is applicable. The minimum starting output voltage of 4070 V is based on the minimum voltage value required to close the EDG output circuit breaker. The minimum steady state output voltage of 4088 V is the minimum EDG voltage setpoint value evaluated in the EDG transient analysis, which demonstrates Safety Guide 9 (Ref. 11) transient voltage criteria are satisfied. The maximum steady state output voltage of 4400 V is equal to the maximum operating voltage specified for 4000 V motors. It ensures that for a lightly loaded distribution system, the voltage at the terminals of 4000 V motors is no more than the maximum rated operating voltage. The minimum starting frequency value was chosen to be consistent with the minimum steady state frequency requirements. The minimum steady state output frequency of 59.5 Hz is the minimum EDG frequency value evaluated for plant-specific accident analyses, and is demonstrated by the EDG transient analysis to satisfy Safety Guide 9 (Ref. 11) transient frequency criteria. The maximum steady state output frequency of 60.5 Hz supports plant-specific analyses values.

AC Sources - Operating B 3.8.1 BASES SURVEILLANCE REQUIREMENTS SR 3.8.1.2 and SR 3.8.1.8 (continued) of the design basis LOCA analysis in the UFSAR, Section 15 (Ref. 5). The minimum voltage limit is based on the voltage required for EDG breaker closure and the minimum frequency limit is based on the recommendations in Safety Guide 9 (Ref. 11). The 10 second start requirement is not applicable to SR 3.8.1.2 (see Note 2) when a modified start procedure as described above is used. If a modified start is not used, the 10 second start requirement of SR 3.8.1.8 applies. Since SR 3.8.1.8 requires a 10 second start, it is more restrictive than SR 3.8.1.2, and it may be performed in lieu of SR 3.8.1.2. In addition to the SR requirements, the time for the EDG to reach steady state operation, unless the modified EDG start method is employed, is monitored to identify degradation of governor and voltage regulator performance. The 31 day Frequency for SR 3.8.1.2 is consistent with Regulatory Guide 1.9 (Ref. 3). The 184 day Frequency for SR 3.8.1.8 is a reduction in cold testing consistent with Generic Letter 84-15 (Ref. 7). These Frequencies provide adequate assurance of EDG OPERABILITY, while minimizing degradation resulting from testing. SR 3.8.1.3 Consistent with Regulatory Guide 1.9 (Ref. 3), this Surveillance verifies that the EDGs are capable of synchronizing with the offsite electrical system and accepting loads 90% to 100% of the continuous rating of the EDG. A run time of 60 minutes ensures the engine temperatures are stabilized, while minimizing the time that the EDG is connected to the offsite source. Although no power factor requirements are established by this SR, the EDG is normally operated at a lagging power factor between 0.8 and 0.95. The 0.8 value is the design rating of the machine, while the 0.95 is an administrative limitation. The load band is provided to avoid routine overloading of the EDG. Routine overloading may result in more frequent teardown inspections being required in order to maintain EDG reliability. The 31 day Frequency for this Surveillance is consistent with Regulatory Guide 1.9 (Ref. 3). Davis-Besse B 3.8.1-14 Revision TBD

AC Sources - Operating B 3.8.1 BASES SURVEILLANCE REQUIREMENTS SR 3.8.1.10 (continued) design basis conditions as possible. When synchronized with offsite power, testing should be performed within the power factor limit. This power factor is representative of the actual inductive loading an EDG would see under design basis accident conditions. The power factor limit is 0.84 for EDG 1 and 0.84 for EDG 2. Under certain conditions, however, Note 2 allows the Surveillance to be conducted outside the power factor limit. These conditions occur when grid voltage is high, and the additional field excitation needed to get the power factor to within the limit results in voltages on the essential buses that are too high. Under these conditions, the power factor should be maintained as close as practicable to the limit while still maintaining acceptable voltage limits on the essential buses. In other circumstances, the grid voltage may be such that the EDG excitation levels needed to obtain a power factor within limit may not cause unacceptable voltages on the essential buses, but the excitation levels are in excess of those recommended for the EDG. In such cases, the power factor shall be maintained as close as practicable to the power factor limit without exceeding the EDG excitation limits. SR 3.8.1.11 Consistent with Regulatory Guide 1.9 (Ref. 3), paragraph C.2.2.4, this Surveillance demonstrates the as designed operation operability of the standby power sources during loss of the offsite source. This test verifies all actions encountered from the loss of offsite power, including shedding of the non-essential loads and energization of the essential buses and respective loads from the EDG. It further demonstrates the capability of the EDG to automatically achieve the required voltage and frequency within the specified time. The EDG auto-start time of 10 seconds is derived from requirements of the accident analysis to respond to a design basis large break LOCA. The Surveillance should be continued for a minimum of 5 minutes in order to demonstrate that all starting transients have decayed and stability has been achieved. The requirement to verify the connection and power supply of permanent and auto-connected loads is intended to satisfactorily show the relationship of these loads to the EDG loading logic (i.e., the individual time delay relays for the component cooling water, service water, and makeup pumps). In certain circumstances, some of these loads can not actually be connected or loaded without undue hardship or potential for undesired operation. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the EDG Davis-Besse B 3.8.1-19 Revision TBD

AC Sources - Operating B 3.8.1 BASES SURVEILLANCE REQUIREMENTS SR 3.8.1.13 (continued) rating (part b), the power factor limit is 0.84 for EDG 1 and 0.84 for EDG 2. Under certain conditions, however, Note 3 allows the Surveillance to be conducted outside the power factor limit. These conditions occur when grid voltage is high, and the additional field excitation needed to get the power factor to within the limit results in voltages on the essential buses that are too high. Under these conditions, the power factor should be maintained as close as practicable to the limit while still maintaining acceptable voltage limits on the essential buses. In other circumstances, the grid voltage may be such that the EDG excitation levels needed to obtain a power factor within limit may not cause unacceptable voltages on the essential buses, but the excitation levels are in excess of those recommended for the EDG. In such cases, the power factor shall be maintained as close as practicable to the power factor limit without exceeding the EDG excitation limits. SR 3.8.1.14 This Surveillance demonstrates that the diesel engine can restart from a hot condition, such as subsequent to shutdown from normal Surveillances, and achieve the required voltage and frequency within 10 seconds. The 10 second time is derived from the requirements of the accident analysis to respond to a design basis large break LOCA. The minimum voltage limit is based on the voltage required for EDG breaker closure and the minimum frequency limit is based on the recommendations in Safety Guide 9 (Ref. 11). The 24 month Frequency is based on engineering judgment and is intended to be consistent with the expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the 24 month Frequency. Therefore, the Frequency is acceptable from a reliability standpoint. This SR is modified by two Notes. Note 1 ensures that the test is performed with the diesel sufficiently hot. The load band is provided to avoid routine overloading of the EDG. Routine overloads may result in more frequent teardown inspections, in accordance with vendor recommendations, in order to maintain EDG OPERABILITY. The requirement that the diesel has operated for at least 1 hour at approximately full load conditions prior to performance of this Surveillance is based on achieving hot, stabilized conditions. Momentary transients due to changing bus loads do not invalidate this test. Note 2 allows all EDG starts to be preceded by an engine prelube period to minimize wear and tear on the diesel during testing. Davis-Besse B 3.8.1-23 Revision TBD

AC Sources - Shutdown B 3.8.2 BASES LCO (continued) The EDG must be capable of starting, accelerating to ratedthe required speed and voltage as specified in the Technical Specifications, and connecting to its respective essential bus on detection of bus undervoltage (loss of voltage or degraded voltage). This sequence must be accomplished within 10 seconds. The EDG must be capable of accepting required shutdown loads (shutdown loads are started through individual time delay relays), and must continue to operate until offsite power can be restored to the essential buses. These capabilities are required to be met from a variety of initial conditions such as EDG in standby with the engine hot and EDG in standby at ambient conditions. Proper sequencing of loads, including tripping of non-essential loads, is a required function for EDG OPERABILITY. It is acceptable for trains to be cross tied during shutdown conditions, allowing a single offsite power circuit to supply all required trains. APPLICABILITY The AC sources required to be OPERABLE in MODES 5 and 6 and during movement of irradiated fuel assemblies provide assurance that:

a. Systems to provide adequate coolant inventory makeup are available for the irradiated fuel assemblies;
b. Systems needed to mitigate a fuel handling accident are available;
c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available; and
d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition.

The AC power requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.1. ACTIONS LCO 3.0.3 is not applicable while in MODE 5 or 6. However, since irradiated fuel assembly movement can occur in MODE 1, 2, 3, or 4, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 5 or 6, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, 3, or 4 would require the unit to be shutdown unnecessarily Davis-Besse B 3.8.2-3 Revision TBD

Attachment D AC Power System Analysis, Section 3, Acceptance Criteria (12 pages follow) The abbreviations and acronyms listed below are used in the AC Power System Analysis, Calculation No. C-EE-015.03-008 pages provided in Attachment D. A ampere kV kilo-volt Amps amperes kVA kilo-volt-ampere ANSI American National Standards kW kilo-watt Institute LOCA loss of coolant accident ARTS anticipatory reactor trip system LOOP loss of offsite power Att. Attachment MCC motor control center CR condition report MOV motor operated valve DIN document index [reference] SFRCS steam and feedwater rupture number control system dc direct current V volt DVR degraded voltage relay Vdc volts direct current EDG emergency diesel generator  % percent e.g. for example + plus ETAP Electrical Transient Analysis - minus Program +/- plus or minus FLA full load amperes +/- plus or minus hp horsepower = equals ID identification i.e. that is

Page 59 CALCULATION COMPUTATION NOP-CC-3002-01 Rev. 04 CALCULATION NO.: REVISION: C-EE-015.03-008 06 3.0 ACCEPTANCE CRITERIA Acceptance criteria for MOV terminal voltages are not within the scope of this calculation. 3.1 Bus Voltages Attachment 4E contains safe operating limit voltage ranges for 345kV switchyard, 13.8kV switchgear A and B, 4.16kV switchgear C1 and D1, and 480V switchgear E1 and F1. The safe operating limit voltage ranges are more limiting than the bus voltage acceptance criteria listed in this section. The voltage ranges shown in Attachment 4E provide the proper voltages necessary to satisfy technical specification surveillance requirements in accordance with procedures DB-SC-03023 (DIN 24), DB-SC-03041 (DIN 25), and DB-SC-03042 (DIN 26). Note: The voltages provided for 4.16kV switchgear C1 and D1 in procedure DB-SC-03023 are approximate voltages only; i.e., they are only used to determine proper offsite power lineup to C1 and D1 and therefore are not required to be within the proper voltage range listed in Attachment 4E. 3.1.1 Continuous Maximum Voltages Buses shall have continuous voltages less than the voltages shown in the following table: Bus Nominal Bus Maximum Reference Voltage Voltage 13.8 kV 15.0 kV Specification E-005Q (DIN 245) 4.16 kV 4.76 kV Specification E-005Q (DIN 245) 480 V 600 V VMAN E-007-142 (DIN 244) Table 1C of Attachment 3 provides the overall maximum bus voltages which includes maximum voltage requirements of equipment powered from each bus. 3.1.2 Minimum Voltages The minimum voltage requirement for buses is based on the minimum voltage requirement of equipment powered from that bus, which includes motors, contactors, relays, loads that support the dc system, hydramotors, radiation monitors, and SFRCS Logic Channels. The voltage requirements for the individual loads are discussed in more detail in their applicable sections below. Table 1A of Attachment 3 determines the overall minimum continuous bus voltage for select buses based on the minimum voltage requirement of the loads and control circuits powered from that bus. Table 1B of Attachment 3 determines the overall minimum bus voltage during motor starting transients. Further discussion of the minimum required voltage for MCCs YE2 and YF2 is provided below.

Page 60 CALCULATION COMPUTATION NOP-CC-3002-01 Rev. 04 CALCULATION NO.: REVISION: C-EE-015.03-008 06 3.1.2.1 Motor Control Centers YE2 and YF2 According to the minimum required voltages in Attachment 24, the minimum required steady state voltage for MCC YE2 and MCC YF2 is 209.0 V (87.08% of 240 V) and 208.3 V (86.78% of 240 V), based on relay pickup voltage requirements. The minimum required ride through voltage for MCCs YE2 and YF2 is 148.8 V (62% of 240 V) based on the voltage at SFRCS Logic Channels 3 and 4 to prevent relay drop-out and inadvertent actuation of ARTS. The bases for these steady state and transient voltage requirements are discussed in more detail below. SFRCS Logic Channels 3 and 4 Steady State Voltages SFRCS Logic Channels 3 and 4 are fed from MCC YE2 and MCC YF2, respectively. Calculation C-EE-017-01-008 (DIN 372) establishes a minimum voltage at MCCs YE2 and YF2 of 222.6 V (92.75% of 240 V) and 223.2 V (93.00% of 240 V), respectively. Calculation C-EE-017-01-008 performs a voltage drop analysis from the SFRCS cabinet to the corresponding MCC starting with the SFRCS system design specification minimum voltage of 108 V (90% of 120 V) per Specification E-030AQ (DIN 620). Based on the SFRCS cabinet voltage drop calculation, there is at most a 3% voltage drop from the 240 V MCC (either YE2 or YF2) to the corresponding SFRCS cabinet. CR 03-01242 (DIN 619) analyzes the minimum voltage requirements for the SFRCS cabinets fed from MCCs YE2 and YF2. The analysis determined that the relays in the cabinets have a pickup voltage of approximately 81% of rated voltage. Applying a 3% voltage drop from the SFRCS cabinet to the corresponding MCC, a relay pickup voltage of 81% would result in a minimum required voltage at MCCs YE2 and YF2 of approximately 84%. This is below the minimum required steady state voltage for MCCs YE2 and YF2 based on MOV contactor pickup and is therefore not the bounding steady state acceptance criterion. SFRCS Logic Channels 3 and 4 Transient Voltage Dips CR 03-01242 (DIN 619) also determined that 59% was a conservative upper bound for the maximum dropout voltage of the relays in the SFCRS cabinets that are fed from MCCs YE2 and YF2. The purpose for this analysis was to ensure that an inadvertent ARTS actuation (which occurs if relays in SFRCS channels 3 or 4 drop out) does not occur during degraded voltage conditions. Applying a 3% voltage drop from the SFCRS cabinet to the corresponding MCC, a dropout voltage of 59% results in a minimum required holding voltage at MCCs YE2 and YF2 of 62% of rated voltage. This value is above the required bus holding voltages of 58.52% and 58.51% for MCC YE2 and MCC YF2, respectively, per Attachment 24. Therefore, the minimum required ride-through voltage for both MCCs YE2 and YF2 during motor starting transients is 148.8 V (62% of 240 V). This will ensure SFRCS Logic Channels 3 and 4 remain energized, and prevent an inadvertent ARTS actuation.

Page 61 CALCULATION COMPUTATION NOP-CC-3002-01 Rev. 04 CALCULATION NO.: REVISION: C-EE-015.03-008 06 3.2 Transformers 3.2.1 Maximum Loading Transformer output kVA shall not exceed the maximum transformer kVA rating per ANSI Standard C57.12.00 (DIN 421). The rated transformer kVA is the continuous output that the transformer can deliver at rated secondary voltage and frequency without exceeding the temperature-rise limitations. Transformer operations at a load greater than rated kVA could result in reduction of equipment life. 3.2.2 Maximum Voltages The voltage on the transformer low voltage winding shall not exceed 105% of the nominal winding rated voltage at full load, nor 110% at no load (DIN 421). 3.3 Induction Motors 3.3.1 Continuous Running Voltages Motor terminal continuous running voltage shall be within 10% of the motor rated voltage per Davis Besse Design Criteria Manual Part III.D Section 4.5 (DIN 4). An exception to this is the running voltage for essential fan motors (see discussion in Section 3.3.1.1 below). 3.3.1.1 Essential Fan Motors 10 hp or Smaller The acceptance criteria established for the minimum terminal voltage of essential fan motors 10 hp or smaller is 90% of nominal 460 V (or 414 V) with the following exception: during design basis accident loading conditions with off-site voltage degraded below 98.3% of 345 kV, it is acceptable for essential fan motors 10 hp or smaller to be less than 90% of nominal provide: (1) the voltage remains above 87% of nominal 460 V (or 400.2 V), (2) the motor has a service factor of at least 1.15, (3) operation at reduced voltage would not cause the motors thermal overload (if installed) to trip, and (4) the motor continues to operate above rated speed at reduced voltage. This exception is based on the following justification:

1. Motor starting analyses demonstrate that there is sufficient voltage for these fans to start and run (within the acceptance criteria from their design specifications) following a design basis accident coincident with off-site power degraded to 98.3% of 345 kV. This capability is demonstrated by the accident block loading ST1 analysis case series. Per Attachment 4C, the 2003 summer voltage assessment shows that the probability of the off-site power voltage being lower than 98.3% of 345 kV is less than 1 day in 1000 years.

The assessment of the system for the summer 2005 conditions indicates an overall probability of experiencing off-site power voltage below 98.3% of 345 kV is 1 day in 900,000 years. Combined with the chance of occurrence of a design basis accident, the likelihood that the essential fan motors would be required to operate under these plant conditions is very small. Addationally, voltages for assments performed in 2010, 2011,

Page 62 CALCULATION COMPUTATION NOP-CC-3002-01 Rev. 04 CALCULATION NO.: REVISION: C-EE-015.03-008 06 2012 and 2013 all show higher minimum voltages than assments performed in 2001, 2003 and 2005, see section 1.11.1.1 for details. Therefore, loss of equipment life caused by long term operation of the essential fan motors outside of the voltage design specifications is not a concern.

2. The actual current draw for the essential fan motors is expected to be less than the modeled current draw. Seven essential fan motors that are 10 hp or smaller and whose terminal voltage was less than 90% of nominal in the degraded voltage analytical limit analysis (ST4 case series) have been tested in-situ. The WinVis motor test data was obtained via procedure DB-PF-05064 (DIN 29), and has been included as Attachment 9 Item No. 30. The following table summarizes the results of the most recent test data provided for each motor:

Full Load Measured Motor Measured Measured Margin to Margin to Amps Current at ID (From Att. 18) Current (A) Voltage (V) 460V (A) FLA (A) FLA (%) MC21-1 7.10 5.82 471.44 5.96 1.14 16% MC31-1 10.80 7.91 477.47 8.21 2.59 24% MC31-2 11.80 9.49 472.78 9.75 2.05 17% MC31-4 11.80 9.06 468.58 9.23 2.57 22% MC31-5 11.80 10.06 477.43 10.44 1.36 12% MS61-2 10.80 6.17 484.02 6.49 4.31 40% MC73-2 10.10 7.80 480.95 8.16 1.94 19% MC75-1 9.90 7.85 473.42 8.08 1.82 18% The measured current was converted to 460V in order to provide a direct comparison with the full load amps rating of the motor, which is specified at 460V. To convert the current eto a different voltage, the fans were modeled as constant power devices, which is standard industry practice for steady state induction motors. This gives the following conversion: I 460V I Measured (VMeasured / 460V ) Where: I460V = Measured current at 460V (Amps) IMeasured = Meaured current (Amps) VMeasured = Measured voltage corresponding to measured current (Volts) The results show that there is significant margin between the actual running current measured and the rated full load current modeled in ETAP for these seven motors. Each motor has greater than 10% margin between measured and modeled current.

Page 63 CALCULATION COMPUTATION NOP-CC-3002-01 Rev. 04 CALCULATION NO.: REVISION: C-EE-015.03-008 06

3. A service factor of 1.15 means the induction motor can be operated continuously at 115%

of its nameplate rating, which corresponds to 115% rated full load amps at nominal voltage. Since induction motors act like constant power devices during continuous operations, an induction motor operating at 100% rated load and 87% rated voltage would be operating at approximately 115% (=100%/87%) of its nameplate full load amps. Since a service factor of 1.15 is part of the acceptance criteria for these fan motors, operating the fan motor at 87% rated terminal voltage would not cause the motor to have a running current above design specification. Therefore, the additional thermal heating caused by the higher current draw at 87% rated voltage is determined to be acceptable.

4. For essential fan motors operating below 90% of rated 460V, an evaluation was performed to ensure the increase in current draw due to operating at reduced voltage would not cause the motors thermal overload to trip (see Section 5.8.2.1).
5. For essential fan motors operating below 90% of rated 460V, an evaluation was performed to ensure the motors operate above rated speed at reduced terminal voltage (see computation Section 4.4 and results Section 5.8.2.1).

3.3.2 Ride Through Voltages The minimum ride through terminal voltage for safety-related 4 kV and 460 V motors during starting transients is 65% of nominal per specifications 7749-E-37 (DIN 247) and EA-002 (DIN 430), respectively. This criterion ensures safety-related motors will not stall during momentary voltage dips. 3.3.3 Starting Voltages 3.3.3.1 Safety Related Motors The minimum starting terminal voltage for Safety Related motors shall be 70% of motor rated voltage per Davis Besse Design Criteria Manual Part III.D Section 4.5 (DIN 4). 3.3.3.2 Non-Safety Related Motors The minimum starting terminal voltage for Non-Safety Related motors shall be 80% of motor rated voltage per Davis Besse Design Criteria Manual Part III.D Section 4.5 (DIN 4).

Page 64 CALCULATION COMPUTATION NOP-CC-3002-01 Rev. 04 CALCULATION NO.: REVISION: C-EE-015.03-008 06 3.4 Non-Motor Loads 3.4.1 Battery Chargers 3.4.1.1 Continuous Running Voltages Battery Chargers DBC2PN, DBC1PN, DBC1N, DBC1P, DBC2N, and DBC2P shall have a steady state terminal voltage between -18% to +10% of rated 480 V (393.6 to 528 V) (DIN 431). 3.4.1.2 Ride Through Voltages There is no acceptance criterion for the ride-through voltage of the battery chargers during a motor starting transient. When a battery charger dips below its minimum required voltage, the corresponding station battery may be required to assume the burden of the dc system. The longest dip from a motor starting transient is at most 15.5 seconds (from starting a Reactor Coolant Pump). This means that the station battery would have to carry the dc system burden for at most 15.5 seconds at any one time during a motor starting transient. A 15.5 second load on a station battery is a negligible amount of Amp-hours discharged from the battery (much less than one Amp-hour removed). In addition, dc system calculation C-EE-002.01-010 (DIN 281) shows each battery can support design basis accident loading on the dc system for up to one hour and takes no credit for alternate ac power sources. 3.4.2 Constant Voltage Transformers 3.4.2.1 Continuous Running Voltages Constant Voltage (Ferroresonant Isolomiter) Transformers XY1, XY2, XY3, and XY4 shall have a steady state terminal voltage between -15% to +10% of rated 480 V (408 to 528 V) (DIN 232). The constant voltage transformers are operating at no load under all scenarios analyzed (see discussion in Attachment 5). Therefore, the minimum voltage requirement is based on continuous operation of the transformers within design specifications, and is not based on providing adequate voltage to downstream equipment. 3.4.2.2 Ride Through Voltages There is no acceptance criterion for the ride-through voltage of the constant voltage transformers since there are no downstream components that would be affected by a momentary dip in the output voltage of the transformers.

Page 65 CALCULATION COMPUTATION NOP-CC-3002-01 Rev. 04 CALCULATION NO.: REVISION: C-EE-015.03-008 06 3.4.3 Regulated Rectifiers 3.4.3.1 Continuous Running Voltages Regulated Rectifiers YRF1, YRF2, YFR3, and YRF4 shall have a steady state terminal voltage between 10% of rated voltage 480 V (432 to 528 V), except under the specific plant conditions discussed below. A terminal voltage of 10% of rated 480 V is the design specification and ensures the regulated rectifiers can supply 144 Vdc to the dc system per Specification 12501-E-854Q (DIN 432), which is above the normal dc system voltage. An output voltage of 140 Vdc bounds the nominal battery charger float voltage of 132 Vdc per Section 8.3.2.1.2 of the USAR (DIN 1) and a battery charger equalizing voltage of 142 Vdc per battery charger specification E-20Q (DIN 246). Exception to Steady State Voltage Requirement for Regulated Rectifiers Following a design basis accident with off-site power degraded below 98.3% of 345 kV, the regulated rectifiers shall have a minimum steady state terminal voltage of -15% of rated 480 V (or 408 V). At -15% of rated voltage, the regulated rectifiers will supply approximately 136.6 Vdc to the dc system (DIN 444). This is above the 132 Vdc nominal dc system supply voltage expected during operations with the battery on a float with the battery charger. However, during conditions with the battery charger in equalize mode, the dc system voltage may be above a regulated rectifier output of 136.6 Vdc. In this case, the dc system may be required to provide steady-state voltage to the essential inverters in lieu of the regulated rectifiers. This is acceptable for reasons discussed below:

1. Since the battery chargers would be available to supply power to the essential inverters, a drop in regulated rectifier dc output voltage below the dc system voltage would result in a transfer of load from the regulated rectifier to the corresponding battery charger.

Therefore, operation of the regulated rectifiers at a dc output voltage below dc system voltage is not a concern regarding the operability of the essential inverters. Instead, it is an undesirable condition based on continuous operation of the regulated rectifiers outside of design specification 12501-E-854Q (DIN 432).

2. Per Attachment 4C, the 2003 summer voltage assessment shows that the probability of the offsite power voltage being lower than 98.3% of 345 kV is less than 1 day in 1000 years. The assessment of the system for the summer 2005 conditions indicates an overall probability of experiencing off-site power voltage below 98.3% of 345 kV is 1 day in 900,000 years. Combining this probability with the likelihood of a design basis accident and a battery charger in equalize mode results in a much lower probability from three independent plant conditions that are extremely unlikely to occur simultaneously. In addition, if this combination of events were to occur, the specific set of plant conditions is likely to be of short duration while the plant restores ac system voltage (e.g., by operating the EDGs) or returns dc system voltages to normal (e.g., by placing the battery charger in float mode instead of equalize mode).

Page 66 CALCULATION COMPUTATION NOP-CC-3002-01 Rev. 04 CALCULATION NO.: REVISION: C-EE-015.03-008 06 3.4.3.2 Ride Through Voltages There is no acceptance criterion for the ride-through voltage of the regulated rectifiers during a motor starting transient. The dc output voltage from regulated rectifiers YRF1, YRF2, YFR3, and YRF4 is auctioneered with the dc voltage supplied via the station battery (or battery charger) to provide power to essential inverters YV1, YV2, YV3 and YV4, respectively. The longest dip from a motor starting transient is at most 15.5 seconds (from starting a Reactor Coolant Pump). This means that the station battery would have to carry the burden of inverters YV1, YV2, YV3, and YV4 for at most 15.5 seconds at any one time during a motor starting transient. A 15.5 second load on a station battery is a negligible amount of Amp-hours discharged from the battery (much less than one Amp-hour). Moreover, the dc system calculation C-EE-002.01-010 (DIN 281) shows the battery can support design basis accident loading on the dc system for up to one hour, and does not take credit for the regulated rectifiers. 3.4.4 Radiation Monitors Per PIN 30 to Revision 5 of this calculation (DIN 793), Revision 1 of C-EE-006.01-032 will establish the minimum steady state voltages at the following MCCs due to requirements of the radiation monitors: MCC Motor for VNEEDED at VADJUSTED, PU at MCC Electrotechnical Unit MCC [Volts] E16B DB-C3841 416.6 0.868 F16B DB-C3743 417.6 0.870 E16A DB-C5306 414.2 0.863 F16A DB-C5308 413.3 0.861 3.4.5 Hydramotors 3.4.5.1 Continuous Running Voltages The hydramotors which are modeled explicitly in ETAP have an acceptable operating voltage down to 85% of rated voltage during steady-state running conditions at the terminals of the hydramotors (DIN 373). For hydramotors fed from 240V MCCs YE2 and YF2 or 480V-120V transformers YE1 and YF1 (which are not modeled explicitly in ETAP), the hydramotor steady-state terminal voltage is considered acceptable if the MCC or transformer supply-side voltage do not fall below the minimum required voltage specified in the following table (per DIN 373):

Page 67 CALCULATION COMPUTATION NOP-CC-3002-01 Rev. 04 CALCULATION NO.: REVISION: C-EE-015.03-008 06 Minimum Percent MCC / Rated Required Rated Transformer Voltage Voltage Voltage YE2 240 V 201.6 V 84.0 % YF2 240 V 197.8 V 82.4 % YE1 480 V 394.0 V 82.1 % YF1 480 V 391.6 V 81.6 % 3.4.5.2 Starting Voltages The minimum starting terminal voltage for safety related hydramotors is 70% of rated voltage per Davis Besse Design Criteria Manual Part III.D Section 4.5 (DIN 4). 3.4.5.3 Ride Through Voltages Safety-related hydramotors 460 V and below motors shall not stall during momentary voltage dips provided that their terminal voltage is greater than 65% of rated voltage (DIN 430). 3.5 Motor/Load Contactors Attachment 24 provides a list of minimum required MCC voltages based on control circuit pickup and holding voltage requirements per correspondence letter DBE 07-00145 (DIN 626) and Table 5-1 of NSS-03-00060 (DIN 399). The acceptance criteria for control circuit pickup and holding voltage requirements are based on the specific type of analysis being performed (i.e., load flow or motor starting) and are defined in Sections 3.5.1 and 3.5.2 below. When evaluating contactor pickup and dropout voltage limits, the following loads were not considered limiting per CR No. 03-05010 (DIN 429): MP0411 on bus E11C MCC, Primary Water Transfer Pump - This pump has been spared and is therefore not modeled in ETAP. X39D1 on bus E11C MCC, Containment Lighting Transformer - This load serves no safety function. MC56-1 on bus E11B MCC, Containment Recirculation Fan 1 - The only safety function is Electrical Circuit Integrity (no short-circuits allowed), not an operational function. MC56-2 on bus F11A MCC, Containment Recirculation Fan 2 - This load serves no safety function.

Page 68 CALCULATION COMPUTATION NOP-CC-3002-01 Rev. 04 CALCULATION NO.: REVISION: C-EE-015.03-008 06 3.5.1 Control Circuit Pickup Voltage For steady-state load flow analyses, MCC bus voltages must remain above the bus required pickup voltage listed in Attachment 24. For motor starting analyses, the minimum MCC voltage before the accident load block starts (case series ST1, ST4, ST5) or before the reactor coolant pump/condensate pump motor starts (case series ST2 and ST3) must remain above the bus required pickup voltage listed in Attachment 24. Therefore, the bus required pickup voltage from Attachment 24 is used as the MCC voltage acceptance criteria in Table 1A of Attachment 3. 3.5.2 Control Circuit Holding Voltage For motor starting analyses, the MCC bus voltages must remain above the bus required hold voltage listed in Attachment 24 at all times during the motor starting event. This ensures MCC contactors that have picked up do not drop out during voltage transients. Therefore, the bus required hold voltage from Attachment 24 is used as the MCC voltage acceptance criteria in Table 1B of Attachment 3. 3.6 Degraded Voltage Relays C-EE-004.01-049 (DIN 308) establishes the Analytical Limits, Allowable Values and Set points for the upper and lower ranges of the Degraded Voltage Relays in support of LAR 03-0014 (DIN 469) and is used as input for this calculation. 3.6.1 Analytical Limit Pickup (Reset) The voltage at 4.16 kV Switchgear C1 and D1 must remain above the Analytical Limit for Degraded Voltage Relay Pickup (reset) setting of 3786 V (91.01% of 4.16 kV) during steady-state operating conditions (LF1 through LF6 and LF12 series load flow analyses). The Analytical Limit for Degraded Voltage Relay Pickup (reset), as provided in Calculation C-EE-004.01-049 (DIN 308), is used as acceptance criteria for the minimum allowable voltage at 4.16 kV Switchgear C1and D1 during steady state conditions, as opposed to the setpoint for relay dropout (3734 +/- 7 V) because, in the event of a motor start, use of the relay dropout setpoint may cause the bus voltage to drop below the dropout trip setpoint and never recover to above the Analytical Limit for Degraded Voltage Relay reset (reference DIN 470). Use of the Analytical Limit for Degraded Voltage Relay reset in this analysis will ensure that the bus voltage will recover above the Allowable Value for Degraded Voltage Relay Pickup (3771 V). In addition, for motor starting transients which reduce the voltage at 4.16 kV Switchgear C1 or D1 voltage below the DVR dropout (trip) setpoint, the bus voltage must recover to higher than the Analytical Limit for Degraded Voltage Relay reset within the DVR Dropout Time Delay setting Lower Analytical Limit of 6.4 seconds (DIN 308). This criterion ensures that premature transfer to the Diesel generators during SFAS load sequencing or any other short duration voltage transients (i.e. bus transfers etc.) does not occur. To meet this acceptance

Page 69 CALCULATION COMPUTATION NOP-CC-3002-01 Rev. 04 CALCULATION NO.: REVISION: C-EE-015.03-008 06 criterion, the 4.16 kV Switchgear C1 and D1 voltages must be at or above the Analytical Limit for Degraded Voltage Relay reset (3786 V) at modeling event T=1 for motor starting analysis cases ST1 and ST5. The T=1 time step represents the longest 4 kV motor acceleration time at reduced voltage (see discussion in Section 1.2.4.1), which is less than 6.4 seconds (as seen in Attachment 13). 3.6.2 Analytical Limit Dropout (Trip) The Analytical Limit for Degraded Voltage Relay Dropout (trip) is 3700V (88.942% of 4.16kV). When the voltage at 4.16 kV Switchgear C1 and D1 is set at the Analytical Limit for Degraded Voltage Relay Dropout value of 3700 V in ETAP Analysis cases ST4a4, ST4a5, and ST4b, motor terminal voltages shall be equal or greater than 90% of the motor nameplate ratings at modeling event T=5 (steady-state). 3.6.3 Degraded Voltage Relay Bypass During a reactor coolant pump or circulating water pump start, voltages at 4.16 kV essential Switchgear C1 or D1 may drop below the DVR trip setpoint. Reactor coolant pumps may take up to 15.5 seconds to start at 80% voltage (see Attachment 13), which is greater than the 6.4 second time delay of the degraded voltage relay reset. In order to block a low voltage trip of 4.16 kV essential Switchgear C1 or D1, a pushbutton bypass allows the degraded voltage relays to be bypassed for up to one minute during a Reactor Coolant Pump or Circulating Water Pump motor start (DIN 1, Section 8.3.1.1.3). In the Large Motor Starting Transient analysis series (ST2 and ST3), the effects of starting a 13.2 kV reactor coolant pump (which bounds the starting of a circulating water pump) and a 4 kV condensate pump are examined. Based on the discussion in the preceding paragraph, the operator is expected to bypass the DVR during a reactor coolant pump start. In addition, the condensate pumps can start within 3.5 seconds at 80% voltage (see Attachment 13), and would be finished accelerating prior to the expiration of the DVR time delay. Therefore, the DVR acceptance criteria for motor starting analysis series ST2 and ST3 is that bus voltages must recover to above the DVR reset of 3786 V at the end of each motor starting transient. 3.7 Emergency Diesel Generators See Section 1.11.2.1 for a complete list of the EDG load ratings. The effects of EDG cold start derating are evaluated in the EDG Transient Analysis calculation and therefore are not included in this calculation. 3.7.1 Design Basis Accident Loading The emergency diesel generator continuous loading shall not exceed 2730 kW following a loss of offsite power with or without a design basis accident. This requirement is based on DIN 435, which states the loading on the EDGs should not exceed the smaller of the 2000-hr

Page 70 CALCULATION COMPUTATION NOP-CC-3002-01 Rev. 04 CALCULATION NO.: REVISION: C-EE-015.03-008 06 rating (2838 kW) or 90% of the 30-minute rating (2731.5 kW) of the diesel-generator set. In addition, an endurance run is performed on the EDGs every 24 months per Technical Specification SR 3.8.1.13.a (DIN 2), during which the EDG is loaded to between 2730 kW and 2860 kW for the first 2 hours of the test. Ensuring the EDG loading does not exceed the minimum endurance test load value of 2730 kW guarantees the test load bounds the maximum expected load on the EDG following a loss of offsite power with or without a design basis accident. 3.7.2 Appendix R Loading Per Report MPR-2559 (DIN 434) for Appendix R fire scenarios, the EDG load could exceed the 2000-hour rating since there are required loads that are not auto-connected. However, the potential maintenance impact on the EDGs would need to be considered. Therefore, for the purposes of this calculation, the EDG loading in the Appendix R scenario should not exceed the EDG 2000-hour rating (2838 kW). 3.7.3 Automatic EDG Loading Per Addendum 02 to C-NSA-016.04-006 Revision 1 (DIN 784) load during automatic EDG sequencing shall not excced 2600kW during a LOOP or LOOP/LOCA scenarios.

Attachment E AC Power System Analysis, Attachment 3, Bus Voltage Acceptance Criteria and Summary Result Tables (35 pages follow) The abbreviations and acronyms listed below are used in the AC Power System Analysis, Calculation No. C-EE-015.03-008 pages provided in Attachment E. CVT constant voltage transformer DVR degraded voltage relay ETAP Electrical Transient Analysis Program kV kilo-volt Max maximum MCC motor control center Min minimum MOV motor operated valve Nom nominal SFRCS steam and feedwater rupture control system T time V volt % percent

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 1 BUS VOLTAGE ACCEPTANCE CRITERIA AND

SUMMARY

RESULT TABLES Table Page Table Description Number Number 1A Minimum Required Continuous Bus Voltages 2 1B Minimum Required Starting and Ride Through Bus Voltages 3 1C Maximum Allowable Continuous Bus Voltages 4 2 MCC Minimum Voltages (Input to MOV Voltage Drop Calculations) 5 3 LF1-LF4: Mode 1-4 Non-Accident Maximum Load 6 4 LF5: Modes 5 and 6 Non-Accident Light Load 11 5 ST1: Mode 1 Design Basis Accident Transient 16 6 ST2 & ST3: Large Motor Starting Transient 20 7 LF6 & LF12: Post-Accident Load at Degraded Offsite Power 23 8 ST4: Post Accident Load at DVR Trip Setpoint Analytical Limit 28 9 ST5: Mode 5 or 6 Design Basis Accident Transient 32 10 Maximum Transformer Voltages 35

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 2 Table 1A. Minimum Continuous Bus Voltage Acceptance Criteria (%V) Continuous Contactor Minimum Motor DVR Required Battery Regulated Radiation Required Nominal Running Reset Pickup Chargers CVT Rectifier Monitors Continuous Bus Voltage Analytical Voltage (Rated (Rated (Rated SFRCS Hydra (Rated Bus Bus Voltage (rated Volt*) Limit (480V) 480V) 480V) 480V**) Logic motors 480V) Voltage A 13800 86.090 86.090 B 13800 86.090 86.090 C1 4160 86.540 91.010 91.010 CD 4160 86.540 86.540 D1 4160 86.540 91.010 91.010 E1 480 86.250 86.250 E11A 480 86.250 87.100 87.100 E11B 480 86.250 87.100 87.100 E11C 480 86.250 87.100 87.100 E11D 480 86.250 86.770 82.000 86.770 E11E 480 86.250 87.100 85.000 87.100 E12A 480 86.250 87.100 82.000 90.000 85.000 90.000 E12B 480 86.250 87.100 87.100 E12C 480 86.250 87.100 87.100 E12D 480 86.250 78.520 86.250 E12E 480 86.250 87.100 87.100 E12F 480 86.250 78.150 86.250 E14 480 86.250 78.150 86.250 E15 480 86.250 78.150 86.250 E16A 480 86.250 85.000 89.8 89.800 E16B 480 86.250 78.150 90.3 90.300 EF12C 480 86.250 82.170 86.250 EF12D 480 86.250 86.250 F1 480 86.250 86.250 F11A 480 86.250 87.100 85.000 87.100 F11B 480 86.250 87.100 87.100 F11C 480 86.250 87.100 87.100 F11D 480 86.250 87.100 82.000 87.100 F11E 480 86.250 86.230 86.250 F12A 480 86.250 87.100 82.000 90.000 85.000 90.000 F12B 480 86.250 87.100 87.100 F12C 480 86.250 87.100 87.100 F12D 480 86.250 78.150 86.250 F13 480 86.250 86.250 F14 480 86.250 78.150 86.250 F15 480 86.250 78.150 86.250 F16A 480 86.250 78.150 85.000 89.7 89.700 F16B 480 86.250 90.5 90.500 EF15 480 86.250 86.250 XYE2 480 86.250 86.250 YE1 120 73.780 82.100 82.100 YE2 240 86.250 87.080 84.000 84.000 87.080 YF1 120 73.380 81.600 81.600 YF2 240 86.250 86.780 84.000 82.400 86.780

  • See Motor Ratings Below
1) 13.2kV rated motors are connected to 13.8kV Bus
2) 4.0kV rated motors are connected to 4.16kV Bus
3) 460V rated motors are connected to 480V Bus
4) 230V rated motors are connected to 240V Bus
    • Regulated Rectifiers continuous minimum voltage is 85% for scenario ST4

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 3 Table 1B. Minimum Starting/Ride Through Bus Voltage Acceptance Criteria (%V) Contactor Motor Required Minimum Nominal Starting Holding Hydramotors Hydramotors Required Bus Voltage Voltage SFRCS (Not Modeled (Modeled in Starting Bus Bus Voltage (rated Volt*) (480V) Logic in ETAP) ETAP) Voltage A 13800 76.530 76.530 B 13800 76.530 76.530 C1 4160 67.310 67.310 CD 4160 67.310 67.310 D1 4160 67.310 67.310 E1 480 67.090 67.090 E11A 480 67.090 60.200 67.090 E11B 480 67.090 59.070 67.090 E11C 480 67.090 60.350 67.090 E11D 480 67.090 58.880 67.090 E11E 480 67.090 58.660 67.090 67.090 E12A 480 67.090 60.740 67.090 67.090 E12B 480 67.090 60.310 67.090 E12C 480 67.090 58.500 67.090 E12D 480 67.090 57.150 67.090 E12E 480 67.090 58.610 67.090 E12F 480 67.090 59.040 67.090 E14 480 67.090 58.330 67.090 E15 480 67.090 58.330 67.090 E16A 480 67.090 67.090 E16B 480 67.090 58.850 67.090 EF12C 480 67.090 58.560 67.090 EF12D 480 67.090 67.090 F1 480 67.090 67.090 F11A 480 67.090 60.370 67.090 67.090 F11B 480 67.090 60.320 67.090 F11C 480 67.090 60.740 67.090 F11D 480 67.090 58.640 67.090 F11E 480 67.090 58.520 67.090 F12A 480 67.090 59.760 67.090 67.090 F12B 480 67.090 58.810 67.090 F12C 480 67.090 60.220 67.090 F12D 480 67.090 58.790 67.090 F13 480 67.090 67.090 F14 480 67.090 58.330 67.090 F15 480 67.090 59.020 67.090 F16A 480 67.090 59.150 67.090 F16B 480 67.090 67.090 EF15 480 67.090 67.090 XYE2 480 67.090 67.090 YE1 120 60.100 65.000 65.000 YE2 240 67.090 58.520 62.000 65.000 67.090 67.090 YF1 120 60.080 65.000 65.000 YF2 240 67.090 58.510 62.000 65.000 67.090 67.090

  • See Motor Ratings Below
1) 13.2kV rated motors are connected to 13.8kV Bus
2) 4.0kV rated motors are connected to 4.16kV Bus
3) 460V rated motors are connected to 480V Bus
4) 230V rated motors are connected to 240V Bus

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 4 Table 1C. Maximum Continuous Bus Voltage Acceptance Criteria (%V) Motor Battery Regulated Maximum Nominal Maximum Starting Chargers CVT Rectifier Continuous Bus Bus Voltage (Rated (Rated (Rated SFRCS Bus Bus Voltage Voltages (rated Volt*) 480V) 480V) 480V) Logic Voltage A 13800 108.690 105.210 105.210 B 13800 108.690 105.210 105.210 C1 4160 114.420 105.760 105.760 CD 4160 114.420 105.760 105.760 D1 4160 114.420 105.760 105.760 E1 480 125.000 105.410 105.410 E11A 480 125.000 105.410 105.410 E11B 480 125.000 105.410 105.410 E11C 480 125.000 105.410 105.410 E11D 480 125.000 105.410 110.000 105.410 E11E 480 125.000 105.410 105.410 E12A 480 125.000 105.410 110.000 110.000 105.410 E12B 480 125.000 105.410 105.410 E12C 480 125.000 105.410 105.410 E12D 480 125.000 105.410 105.410 E12E 480 125.000 105.410 105.410 E12F 480 125.000 105.410 105.410 E14 480 125.000 105.410 105.410 E15 480 125.000 105.410 105.410 E16A 480 125.000 105.410 110.000 105.410 E16B 480 125.000 105.410 105.410 EF12C 480 125.000 105.410 105.410 EF12D 480 125.000 105.410 105.410 F1 480 125.000 105.410 105.410 F11A 480 125.000 105.410 105.410 F11B 480 125.000 105.410 105.410 F11C 480 125.000 105.410 105.410 F11D 480 125.000 105.410 110.000 105.410 F11E 480 125.000 105.410 105.410 F12A 480 125.000 105.410 110.000 110.000 105.410 F12B 480 125.000 105.410 105.410 F12C 480 125.000 105.410 105.410 F12D 480 125.000 105.410 105.410 F13 480 125.000 105.410 105.410 F14 480 125.000 105.410 105.410 F15 480 125.000 105.410 105.410 F16A 480 125.000 105.410 110.000 105.410 F16B 480 125.000 105.410 105.410 EF15 480 125.000 105.410 105.410 XYE2 480 125.000 105.410 105.410 YE2 240 105.410 105.410 YF2 240 105.410 105.410

  • See Motor Ratings Below
1) 13.2kV rated motors are connected to 13.8kV Bus
2) 4.0kV rated motors are connected to 4.16kV Bus
3) 460V rated motors are connected to 480V Bus
4) 230V rated motors are connected to 240V Bus

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 5 Table 2. Minimum MCC Voltages (Input to MOV Voltage Drop Calculations) ST1k ST1k1 ST1k2 ST4a4 ST4a5 ST4b Nominal Minimum MCC Volts %Rating Volts %Rating Volts %Rating Volts %Rating Volts %Rating Volts %Rating Voltage MCC Voltage T=1 T=1 T=1 T=0 T=0 T=0 E11A 480 410.428 85.506% 411.381 85.704% 421.400 87.792% 413.960 86.242% 410.428 (2) E11B 480 409.986 85.414% 410.940 85.613% 420.852 87.678% 413.433 86.132% 409.986 E11C(1) 480 408.582 85.121% 409.532 85.319% 421.200 87.750% 413.916 86.233% 408.582 E11D 480 410.390 85.498% 411.381 85.704% 421.275 87.766% 412.433 85.924% 410.390 E11E 480 406.877 84.766% 407.823 84.963% 421.103 87.730% 413.895 86.228% 406.877 E12A 480 418.198 87.125% 419.139 87.321% 424.082 88.350% 416.869 86.848% 416.869 E12B 480 414.761 86.409% 415.695 86.603% 421.180 87.746% 416.049 86.677% 414.761 E12C 480 415.538 86.570% 416.482 86.767% 421.447 87.801% 414.638 86.383% 414.638 E12D 480 415.409 86.544% 416.354 86.740% 421.320 87.775% 414.510 86.356% 414.510 E12E 480 416.672 86.807% 417.610 87.002% 423.257 88.179% 414.945 86.447% 414.945 E12F 480 414.076 86.266% 415.012 86.461% 420.506 87.605% 415.949 86.656% 414.076 E14 480 416.695 86.811% 417.631 87.006% 422.529 88.027% 416.968 86.868% 416.695 E15 480 418.932 87.278% 419.873 87.474% 424.798 88.500% 417.518 86.983% 417.518 E16A 480 418.338 87.154% 419.278 87.350% 424.198 88.375% 416.833 86.840% 416.833 E16B 480 418.264 87.138% 419.204 87.334% 424.123 88.359% 416.118 86.691% 416.118 E22A 480 423.796 88.291% 424.131 88.361% 424.529 88.444% 406.190 84.623% 406.190 EF12C 480 415.344 86.530% 416.289 86.727% 421.256 87.762% 414.445 86.343% 414.445 EF12D 480 418.198 87.125% 419.139 87.321% 424.082 88.350% 416.869 86.848% 416.869 (2) F11A 480 417.203 86.917% 417.479 86.975% 427.368 89.035% 413.887 86.226% 413.887 F11B 480 416.678 86.808% 416.953 86.865% 426.842 88.925% 413.887 86.226% 413.887 F11C 480 416.658 86.804% 416.893 86.853% 426.809 88.919% 411.437 85.716% 411.437 (1) F11D 480 409.524 85.318% 409.795 85.374% 427.235 89.007% 413.621 86.171% 409.524 F11E 480 416.898 86.854% 417.174 86.911% 427.055 88.970% 412.363 85.909% 412.363 F11F 480 416.740 86.821% 417.015 86.878% 426.893 88.936% 412.206 85.876% 412.206 F12A 480 422.051 87.927% 422.347 87.989% 428.726 89.318% 416.702 86.813% 416.702 F12B 480 419.003 87.292% 419.297 87.354% 426.182 88.788% 415.950 86.656% 415.950 F12C 480 420.106 87.522% 420.402 87.584% 426.796 88.916% 415.217 86.504% 415.217 F12D 480 419.691 87.436% 419.988 87.498% 426.388 88.831% 414.797 86.416% 414.797 F14 480 420.360 87.575% 420.654 87.636% 426.917 88.941% 416.702 86.813% 416.702 F15 480 423.025 88.130% 423.321 88.192% 429.624 89.505% 417.353 86.949% 417.353 F16A 480 422.906 88.105% 423.202 88.167% 429.503 89.480% 417.189 86.914% 417.189 F16B 480 422.835 88.091% 423.131 88.152% 429.431 89.465% 417.119 86.900% 417.119 F21A 480 430.302 89.646% 430.641 89.717% 431.049 89.802% 414.078 86.266% 414.078 YE2 240 205.705 85.710% 206.186 85.911% 211.181 87.992% 211.517 88.132% 205.705 YF2 240 210.377 87.657% 210.517 87.715% 215.519 89.800% 211.865 88.277% 210.377 E11C for MV612 (1) 408.582 85.121% 409.532 85.319% 421.200 87.750% 405.001 84.375% 405.001 F11D for MV601 (1) 409.524 85.318% 409.795 85.374% 427.235 89.007% 401.966 83.743% 401.966 E11B for MVDH120 (2) 448.566 93.451% 448.566 93.451% 443.547 92.406% 419.952 87.490% 419.952 F11A for MVDH110 (2) 452.931 94.361% 452.931 94.361% 447.876 93.308% 420.581 87.621% 420.581 Note 1: MV601 and MV612 are running in study case ST4a5 and are not running in study case ST4a4. Therefore, the steady state voltages for MCC E11C and MCC F11D to be used for MV612 and MV601, respectively, include a comparison between the most limiting ST1 case and case ST4a5. For all other MOVs fed from MCC E11C and MCC F11D, the MCC voltage comparison is between the most limiting ST1 case and case ST4a4. Note 2: MVDH120 (fed from MCC E11B) and MVDH110 (fed from MCC F11A) are manually operated valves. Therefore, the steady-state voltages for MCC E11B and MCC F11A to be used for MVDH120 and MVDH110, respectively, correspond to model event T=4 in the above cases.

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 6 Table 3. Scenarios LF1-LF4: Mode 1-4 Non-Accident Maximum Loading Minimum and Maximum Bus Voltages (Sheet 1 of 5) Acceptance Acceptance Minimum Case with Maximum Case with ID From NomkV Criteria for Criteria for

                                          %kV    Minimum                 %kV       Maximum Min %kV                        Max %kV A 13.8KV SWGR          13.8      86.090    94.149     LF2d     105.210    99.356         LF2c A MP2-1                13.8      86.090    94.107     LF2d     105.210    99.316         LF2c A MP2-3                13.8      86.090    94.114     LF2d     105.210    99.322         LF2c A MP36-1               13.8      86.090    94.106     LF2d     105.210    99.315         LF2c A MP36-4               13.8      86.090    94.128     LF2d     105.210    99.336         LF2c B 13.8KV SWGR          13.8      86.090    94.146     LF2d     105.210    99.441         LF2b B MP2-2                13.8      86.090    94.092     LF2d     105.210    99.390         LF2b B MP2-4                13.8      86.090    94.099     LF2d     105.210    99.397         LF2b B MP36-2               13.8      86.090    94.097     LF2d     105.210    99.395         LF2b B MP36-3               13.8      86.090    94.127     LF2d     105.210    99.423         LF2b BF81 MCC               0.48      86.250    94.602     LF2d     105.410    99.469         LF2a BF81 DBCSBOP           0.48      82.000    94.521     LF2d     110.000    99.384         LF2a C1 4160 SWGR           4.16      91.010    94.760     LF2d     105.760    99.341         LF3b C1 MP3-1               4.16      86.540    94.587     LF2d     105.760    99.176         LF3b C1 MP37-1A             4.16      86.540    94.674     LF2d     105.760    99.259         LF3b C1 MP42-1              4.16      86.540    94.760     LF2d     105.760    99.341         LF3b C1 MP43-1              4.16      86.540    94.760     LF2d     105.760    99.341         LF3b C1 MP58-1              4.16      86.540    94.760     LF2d     105.760    99.341         LF3b C2 4160 SWGR           4.16      86.540    94.765     LF2d     105.760    99.345         LF3b D1 4160 SWGR           4.16      91.010    95.335     LF2d     105.760 100.221           LF2a D1 MP3-2               4.16      86.540    95.128     LF2d     105.760 100.024           LF2a D1 MP37-2A             4.16      86.540    95.335     LF2d     105.760 100.221           LF2a D1 MP42-2              4.16      86.540    95.335     LF2d     105.760 100.221           LF2a D1 MP43-2              4.16      86.540    95.276     LF2d     105.760 100.165           LF2a D1 MP58-2              4.16      86.540    95.335     LF2d     105.760 100.221           LF2a D2 4160 SWGR           4.16      86.540    95.338     LF2d     105.760 100.224           LF2a D3 4160 SWGR           4.16      86.540    95.330     LF2d     105.760 100.217           LF2a E1 480V SWGR           0.48      86.250    94.786     LF2d     105.410 100.033           LF3b E1 MP56-1              0.48      86.250    94.786     LF2d     105.410 100.033           LF3b E11A MCC               0.48      87.100    94.644     LF2d     105.410    99.925         LF3b E11A MC62-1            0.48      86.250    94.644     LF2d     105.410    99.925         LF3b E11A MP89-1A           0.48      86.250    94.644     LF2d     105.410    99.925         LF3b E11A MP89-1B           0.48      86.250    94.644     LF2d     105.410    99.925         LF3b E11A MP89-3A           0.48      86.250    94.644     LF2d     105.410    99.925         LF3b E11A MP89-3B           0.48      86.250    94.644     LF2d     105.410    99.925         LF3b E11B MCC               0.48      87.100    94.617     LF2d     105.410    99.899         LF3b E11B MC56-1            0.48      86.250    94.105     LF2d     105.410    99.415         LF3b E11C MCC               0.48      87.100    94.636     LF2d     105.410    99.925         LF3b E11C MC75-1            0.48      86.250    92.599     LF2d     105.410    99.925         LF3b E11D MCC               0.48      86.770    94.637     LF2d     105.410    99.918         LF3b E11D DBC1PN            0.48      82.000    94.637     LF2d     110.000    99.918         LF3b E11D MP37-1B           0.48      86.250    94.306     LF2d     105.410    99.605         LF3b E11D MRE5327           0.48      86.250    94.637     LF2d     105.410    99.918         LF3b E11E MCC               0.48      87.100    94.636     LF2d     105.410    99.925         LF3b E11E MV49060           0.48      85.000    94.636     LF2d     105.410    99.925         LF3b E12A MCC               0.48      90.000    94.691     LF2d     105.410    99.955         LF3b

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 7 Table 3. Scenarios LF1-LF4: Mode 1-4 Non-Accident Maximum Loading Minimum and Maximum Bus Voltages (Sheet 2 of 5) Acceptance Acceptance Minimum Case with Maximum Case with ID From NomkV Criteria for Criteria for

                                         %kV    Minimum                 %kV       Maximum Min %kV                        Max %kV E12A DBC1N            0.48      82.000    94.623     LF2d     110.000    99.888         LF3b E12A DBC1P            0.48      82.000    94.631     LF2d     110.000    99.895         LF3b E12A MC21-1           0.48      86.250    94.691     LF2d     105.410    99.955         LF3b E12A MC30-1           0.48      86.250    94.691     LF2d     105.410    99.955         LF3b E12A MC71-1           0.48      86.250    94.497     LF2d     105.410    99.955         LF3b E12A MC73-1           0.48      86.250    94.008     LF2d     105.410    99.955         LF3b E12A MS3311           0.48      86.250    94.691     LF2d     105.410    99.955         LF3b E12A MS61-1           0.48      86.250    94.691     LF2d     105.410    99.955         LF3b E12A MV5597           0.48      85.000    94.691     LF2d     105.410    99.955         LF3b E12A YRF1             0.48      90.000    94.547     LF2d     110.000    99.803         LF3b E12A YRF3             0.48      90.000    94.463     LF2d     110.000    99.715         LF3b E12B MCC              0.48      87.100    94.537     LF2d     105.410    99.880         LF3b E12B MC25-1           0.48      86.250    93.484     LF2d     105.410    99.880         LF3b E12B MC25-2           0.48      86.250    93.750     LF2d     105.410    99.880         LF3b E12B MC78-1           0.48      86.250    94.076     LF2d     105.410    99.880         LF3b E12B MP147-1          0.48      86.250    94.244     LF2d     105.410    99.604         LF3b E12B MP147-3          0.48      86.250    94.453     LF2d     105.410    99.801         LF3b E12B YE1              0.48      82.100    94.537     LF2d     105.410    99.880         LF3b E12C MCC              0.48      87.100    94.266     LF2d     105.410    99.799         LF3b E12C MC99-1           0.48      86.250    93.254     LF2d     105.410    99.799         LF3b E12C MC99-2           0.48      86.250    93.670     LF2d     105.410    99.799         LF3b E12C MF15-1           0.48      86.250    94.037     LF2d     105.410    99.583         LF3b E12D MCC              0.48      86.250    94.241     LF2d     105.410    99.776         LF3b E12E MCC              0.48      87.100    94.691     LF2d     105.410    99.955         LF3b E12E MC31-4           0.48      86.250    94.691     LF2d     105.410    99.955         LF3b E12E MC31-5           0.48      86.250    94.691     LF2d     105.410    99.955         LF3b E12E MP197-1          0.48      86.250    94.691     LF2d     105.410    99.955         LF3b E12F MCC              0.48      86.250    94.426     LF2d     105.410    99.776         LF3b E12F MC25-5           0.48      86.250    94.426     LF2d     105.410    99.776         LF3b E12F MP195-1          0.48      86.250    94.426     LF2d     105.410    99.776         LF3b E14 MCC               0.48      86.250    94.529     LF2d     105.410    99.790         LF3b E14 MC1-1             0.48      86.250    93.420     LF2d     105.410    98.741         LF3b E14 MC1-1LS           0.48      86.250                        105.410 E15 MCC               0.48      86.250    94.786     LF2d     105.410 100.033           LF3b E16A MCC              0.48      89.800    94.655     LF2d     105.410    99.991         LF3b E16A MP274-1          0.48      86.250    94.352     LF2d     105.410    99.671         LF3b E16A XY1              0.48      85.000    94.606     LF2d     110.000    99.940         LF3b E16A XY3              0.48      85.000    94.586     LF2d     110.000    99.918         LF3b E16B MCC              0.48      90.300    94.638     LF2d     105.410    99.973         LF3b E16B MP273-1          0.48      86.250    94.471     LF2d     105.410    99.796         LF3b E2 480V SWGR          0.48                89.291     LF2d                94.432         LF2c E21A MCC              0.48                88.707     LF2d                93.831         LF2c E21B MCC              0.48                88.677     LF2d                93.799         LF2c E21C MCC              0.48                88.183     LF2d                93.289         LF2c E21D MCC              0.48                88.707     LF2d                93.831         LF2c E22A MCC              0.48                88.404     LF2d                93.524         LF2c

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 8 Table 3. Scenarios LF1-LF4: Mode 1-4 Non-Accident Maximum Loading Minimum and Maximum Bus Voltages (Sheet 3 of 5) Acceptance Acceptance Minimum Case with Maximum Case with ID From NomkV Criteria for Criteria for

                                         %kV    Minimum                 %kV       Maximum Min %kV                        Max %kV E22B MCC              0.48                88.391     LF2d                93.510         LF2c E23A MCC              0.48                88.767     LF2d                93.910         LF2c E23B MCC              0.48                88.275     LF2d                93.410         LF2c E3 480V SWGR          0.48                90.986     LF2d                96.191         LF2c E31A MCC              0.48                89.294     LF2d                94.508         LF2c E31B MCC              0.48                89.206     LF2d                94.424         LF2c E32A MCC              0.48                90.883     LF2d                96.087         LF2c E32B MCC              0.48                90.387     LF2d                95.594         LF2c E33A MCC              0.48                90.354     LF2d                95.578         LF2c E33B MCC              0.48                90.354     LF2d                95.578         LF2c E4 480V SWGR          0.48                91.290     LF2d                96.498         LF2c E41A MCC              0.48                90.948     LF2d                96.146         LF2c E41B MCC              0.48                90.658     LF2d                95.855         LF2c E42 MCC               0.48                92.335     LF2d                96.839         LF3b E43 MCC               0.48                91.290     LF2d                96.498         LF2c E6 480V SWGR          0.48                94.062     LF2d                99.264         LF2c E61 MCC               0.48                93.941     LF2d                99.136         LF2c E62 MCC               0.48                94.062     LF2d                99.264         LF2c E63 MCC               0.48                94.062     LF2d                99.264         LF2c EF12C MCC             0.48      86.250    94.229     LF2d     105.410    99.765         LF3b EF12C MF15-3          0.48      86.250    94.229     LF2d     105.410    99.765         LF3b EF12D MCC             0.48      86.250    94.691     LF2d     105.410    99.955         LF3b EF41 AE4              0.48                91.290     LF2d                96.498         LF2c EF41 BF4              0.48                92.974     LF2d                98.237         LF2b F1 480V SWGR          0.48      86.250    95.664     LF2d     105.410 100.931           LF3b F1 MP56-2             0.48      86.250    95.664     LF2d     105.410 100.931           LF3b F11A MCC              0.48      87.100    95.571     LF2d     105.410 100.859           LF3b F11A MC21-2           0.48      86.250    95.571     LF2d     105.410 100.859           LF3b F11A MC62-2           0.48      86.250    95.571     LF2d     105.410 100.859           LF3b F11A MC75-2           0.48      86.250    94.397     LF2d     105.410 100.859           LF3b F11A MRE5328          0.48      86.250    95.571     LF2d     105.410 100.859           LF3b F11A MS3321           0.48      86.250    95.571     LF2d     105.410 100.859           LF3b F11A MV4907           0.48      85.000    95.571     LF2d     105.410 100.859           LF3b F11B MCC              0.48      87.100    95.571     LF2d     105.410 100.859           LF3b F11C MCC              0.48      87.100    95.571     LF2d     105.410 100.859           LF3b F11C MP37-2B          0.48      86.250    95.571     LF2d     105.410 100.859           LF3b F11C MP37-2D          0.48      86.250    95.571     LF2d     105.410 100.859           LF3b F11D MCC              0.48      87.100    95.571     LF2d     105.410 100.859           LF3b F11D DBC2PN           0.48      82.000    95.571     LF2d     110.000 100.859           LF3b F11D MC31-3           0.48      86.250    95.571     LF2d     105.410 100.859           LF3b F11D MP89-2A          0.48      86.250    95.571     LF2d     105.410 100.859           LF3b F11D MP89-2B          0.48      86.250    95.571     LF2d     105.410 100.859           LF3b F11E MCC              0.48      86.250    95.502     LF2d     105.410 100.785           LF3b F11E MC31-1           0.48      86.250    95.502     LF2d     105.410 100.785           LF3b F11E MC31-2           0.48      86.250    95.502     LF2d     105.410 100.785           LF3b F11F MCC              0.48      86.250    95.465     LF2d     105.410 100.747           LF3b

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 9 Table 3. Scenarios LF1-LF4: Mode 1-4 Non-Accident Maximum Loading Minimum and Maximum Bus Voltages (Sheet 4 of 5) Acceptance Acceptance Minimum Case with Maximum Case with ID From NomkV Criteria for Criteria for

                                         %kV    Minimum                 %kV       Maximum Min %kV                        Max %kV F12A MCC              0.48      90.000    95.549     LF2d     105.410 100.841           LF3b F12A DBC2N            0.48      82.000    95.452     LF2d     110.000 100.744           LF3b F12A DBC2P            0.48      82.000    95.452     LF2d     110.000 100.744           LF3b F12A MC133            0.48      86.250    94.410     LF2d     105.410 100.841           LF3b F12A MC30-2           0.48      86.250    95.549     LF2d     105.410 100.841           LF3b F12A MC73-2           0.48      86.250    93.289     LF2d     105.410 100.841           LF3b F12A MP195-2          0.48      86.250    95.549     LF2d     105.410 100.841           LF3b F12A MP198-1          0.48      86.250    95.549     LF2d     105.410 100.841           LF3b F12A MS61-2           0.48      86.250    95.549     LF2d     105.410 100.841           LF3b F12A MV5598           0.48      85.000    95.549     LF2d     105.410 100.841           LF3b F12A YRF2             0.48      90.000    95.380     LF2d     110.000 100.663           LF3b F12A YRF4             0.48      90.000    95.307     LF2d     110.000 100.586           LF3b F12B MCC              0.48      87.100    95.417     LF2d     105.410 100.785           LF3b F12B MC25-3           0.48      86.250    94.785     LF2d     105.410 100.785           LF3b F12B MC25-4           0.48      86.250    94.490     LF2d     105.410 100.785           LF3b F12B MC78-2           0.48      86.250    95.129     LF2d     105.410 100.785           LF3b F12B MP147-2          0.48      86.250    95.113     LF2d     105.410 100.498           LF3b F12B MP147-4          0.48      86.250    95.322     LF2d     105.410 100.696           LF3b F12B YF1              0.48      81.600    95.380     LF2d     105.410 100.750           LF3b F12C MCC              0.48      87.100    95.268     LF2d     105.410 100.828           LF3b F12C MF15-2           0.48      87.100    95.061     LF2d     105.410 100.632           LF3b F12D MCC              0.48      86.250    95.189     LF2d     105.410 100.828           LF3b F12D MC99-3           0.48      86.250    94.497     LF2d     105.410 100.828           LF3b F12D MC99-4           0.48      86.250    94.356     LF2d     105.410 100.828           LF3b F13 MCC               0.48      86.250    94.874     LF2d     105.410    99.738         LF2a F14 MCC               0.48      86.250    95.362     LF2d     105.410 100.646           LF3b F14 MC1-2             0.48      86.250    94.192     LF2d     105.410    99.539         LF3b F14 MC1-2LS           0.48      86.250                        105.410 F15 MCC               0.48      86.250    95.664     LF2d     105.410 100.931           LF3b F16A MCC              0.48      89.700    95.637     LF2d     105.410 100.903           LF3b F16A MC25-6           0.48      86.250    95.637     LF2d     105.410 100.903           LF3b F16A MP274-3          0.48      86.250    95.393     LF2d     105.410 100.645           LF3b F16A XY2              0.48      85.000    95.624     LF2d     110.000 100.890           LF3b F16A XY4              0.48      85.000    95.606     LF2d     110.000 100.870           LF3b F16B MCC              0.48      90.500    95.621     LF2d     105.410 100.886           LF3b F16B MP273-4          0.48      86.250    95.085     LF2d     105.410 100.321           LF3b F2 480V SWGR          0.48                90.094     LF2d                95.401         LF2b F21A MCC              0.48                89.804     LF2d                95.102         LF2b F21B MCC              0.48                89.703     LF2d                94.995         LF2b F21C MCC              0.48                89.801     LF2d                95.099         LF2b F22 MCC               0.48                88.730     LF2d                94.108         LF2b F23A MCC              0.48                89.503     LF2d                94.824         LF2b F23B MCC              0.48                88.623     LF2d                93.965         LF2b F3 480V SWGR          0.48                90.920     LF2d                96.131         LF2b F31A MCC              0.48                90.370     LF2d                95.557         LF2b F31B MCC              0.48                89.286     LF2d                94.509         LF3b

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 10 Table 3. Scenarios LF1-LF4: Mode 1-4 Non-Accident Maximum Loading Minimum and Maximum Bus Voltages (Sheet 5 of 5) Acceptance Acceptance Minimum Case with Maximum Case with ID From NomkV Criteria for Criteria for

                                         %kV    Minimum                 %kV       Maximum Min %kV                        Max %kV F32A MCC              0.48                90.693     LF2d                95.910         LF2b F32B MCC              0.48                90.190     LF2d                95.435         LF2b F33A MCC              0.48                90.378     LF2d                95.571         LF2b F33B MCC              0.48                90.313     LF2d                95.507         LF2b F4 480V SWGR          0.48                92.974     LF2d                98.237         LF2b F41A MCC              0.48                92.604     LF2d                97.857         LF2b F41B MCC              0.48                92.585     LF2d                97.840         LF2b F4A LOAD CTR          0.48                93.759     LF2d                99.032         LF2b F6 480V SWGR          0.48                94.089     LF2d                99.381         LF2b F61 MCC               0.48                94.089     LF2d                99.381         LF2b F62 MCC               0.48                94.017     LF2d                99.305         LF2b F63 MCC               0.48                94.089     LF2d                99.381         LF2b F7 480V SWGR          0.48                95.001     LF2d                99.872         LF2a F71 MCC               0.48                94.966     LF2d                99.836         LF2a M22A MCC              0.48                90.920     LF2d                96.131         LF2b YE2 MCC               0.24      87.080    97.043     LF2d     105.410 102.461           LF3b YE2 MV5443C           0.24      85.000    97.043     LF2d     105.410 102.461           LF3b YF2 MCC               0.24      86.780    98.022     LF2d     105.410 103.445           LF3b YF2 MV5444C           0.24      85.000    98.022     LF2d     105.410 103.445           LF3b

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 11 Table 4. Scenario LF5: Mode 5 and 6 Non-Accident Light Loading Minimum and Maximum Bus Voltages (Sheet 1 of 5) Acceptance Acceptance Minimum Case with Maximum Case with ID From NomkV Criteria for Criteria for

                                         %kV    Minimum                 %kV       Maximum Min %kV                        Max %kV A 13.8KV SWGR         13.8      86.090   102.571   LF5c1      105.210   105.358         LF5c A MP2-1               13.8      86.090   102.571   LF5c1      105.210   105.358         LF5c A MP2-3               13.8      86.090   102.571   LF5c1      105.210   105.358         LF5c A MP36-1              13.8      86.090   102.571   LF5c1      105.210   105.358         LF5c A MP36-4              13.8      86.090   102.571   LF5c1      105.210   105.358         LF5c B 13.8KV SWGR         13.8      86.090   102.632   LF5c1      105.210   105.417         LF5c B MP2-2               13.8      86.090   102.632   LF5c1      105.210   105.417         LF5c B MP2-4               13.8      86.090   102.632   LF5c1      105.210   105.417         LF5c B MP36-2              13.8      86.090   102.632   LF5c1      105.210   105.417         LF5c B MP36-3              13.8      86.090   102.632   LF5c1      105.210   105.417         LF5c BF81 MCC              0.48      86.250   104.014   LF5c1      105.410   106.857         LF5c BF81 DBCSBOP          0.48      82.000   103.925   LF5c1      110.000   106.766         LF5c C1 4160 SWGR          4.16      91.010   104.421   LF5c1      105.760   107.283         LF5c C1 MP3-1              4.16      86.540   104.263   LF5c1      105.760   107.129         LF5c C1 MP37-1A            4.16      86.540   104.421   LF5c1      105.760   107.283         LF5c C1 MP42-1             4.16      86.540   104.368   LF5c1      105.760   107.231         LF5c C1 MP43-1             4.16      86.540   104.368   LF5c1      105.760   107.232         LF5c C1 MP58-1             4.16      86.540   104.421   LF5c1      105.760   107.283         LF5c C2 4160 SWGR          4.16      86.540   104.424   LF5c1      105.760   107.286         LF5c D1 4160 SWGR          4.16      91.010   104.673   LF5c1      105.760   107.531         LF5c D1 MP3-2              4.16      86.540   104.485   LF5c1      105.760   107.348         LF5c D1 MP37-2A            4.16      86.540   104.673   LF5c1      105.760   107.531         LF5c D1 MP42-2             4.16      86.540   104.673   LF5c1      105.760   107.531         LF5c D1 MP43-2             4.16      86.540   104.673   LF5c1      105.760   107.531         LF5c D1 MP58-2             4.16      86.540   104.673   LF5c1      105.760   107.531         LF5c D2 4160 SWGR          4.16      86.540   104.675   LF5c1      105.760   107.533         LF5c D3 4160 SWGR          4.16      86.540   104.668   LF5c1      105.760   107.526         LF5c E1 480V SWGR          0.48      86.250   103.607   LF5c1      105.410   109.165         LF5a E1 MP56-1             0.48      86.250   103.607   LF5c1      105.410   109.165         LF5a E11A MCC              0.48      87.100   103.354   LF5c1      105.410   108.898         LF5a E11A MC62-1           0.48      86.250   103.354   LF5c1      105.410   108.898         LF5a E11A MP89-1A          0.48      86.250   103.354   LF5c1      105.410   108.898         LF5a E11A MP89-1B          0.48      86.250   103.354   LF5c1      105.410   108.898         LF5a E11A MP89-3A          0.48      86.250   103.354   LF5c1      105.410   108.898         LF5a E11A MP89-3B          0.48      86.250   103.354   LF5c1      105.410   108.898         LF5a E11B MCC              0.48      87.100   103.354   LF5c1      105.410   108.898         LF5a E11B MC56-1           0.48      86.250   103.354   LF5c1      105.410   108.898         LF5a E11C MCC              0.48      87.100   103.279   LF5c1      105.410   108.820         LF5a E11C MC75-1           0.48      86.250   103.279   LF5c1      105.410   108.820         LF5a E11D MCC              0.48      86.770   103.354   LF5c1      105.410   108.898         LF5a E11D DBC1PN           0.48      82.000   103.354   LF5c1      110.000   108.898         LF5a E11D MP37-1B          0.48      86.250   103.354   LF5c1      105.410   108.898         LF5a E11D MRE5327          0.48      86.250   103.354   LF5c1      105.410   108.898         LF5a

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 12 Table 4. Scenario LF5: Mode 5 and 6 Non-Accident Light Loading Minimum and Maximum Bus Voltages (Sheet 2 of 5) Acceptance Acceptance Minimum Case with Maximum Case with ID From NomkV Criteria for Criteria for

                                         %kV    Minimum                 %kV       Maximum Min %kV                        Max %kV E11E MCC              0.48      87.100   103.279   LF5c1      105.410   108.820         LF5a E11E MV49060          0.48      85.000   103.279   LF5c1      105.410   108.820         LF5a E12A MCC              0.48      90.000   103.577   LF5c1      105.410   109.134         LF5a E12A DBC1N            0.48      82.000   103.565   LF5c1      110.000   109.122         LF5a E12A DBC1P            0.48      82.000   103.566   LF5c1      110.000   109.124         LF5a E12A MC21-1           0.48      86.250   103.577   LF5c1      105.410   109.134         LF5a E12A MC30-1           0.48      86.250   103.577   LF5c1      105.410   109.134         LF5a E12A MC71-1           0.48      86.250   103.577   LF5c1      105.410   109.134         LF5a E12A MC73-1           0.48      86.250   103.577   LF5c1      105.410   109.134         LF5a E12A MS3311           0.48      86.250   103.577   LF5c1      105.410   109.134         LF5a E12A MS61-1           0.48      86.250   103.577   LF5c1      105.410   109.134         LF5a E12A MV5597           0.48      85.000   103.577   LF5c1      105.410   109.134         LF5a E12A YRF1             0.48      90.000   103.420   LF5c1      110.000   108.969         LF5a E12A YRF3             0.48      90.000   103.328   LF5c1      110.000   108.872         LF5a E12B MCC              0.48      87.100   103.522   LF5c1      105.410   109.077         LF5a E12B MC25-1           0.48      86.250   103.522   LF5c1      105.410   109.077         LF5a E12B MC25-2           0.48      86.250   103.522   LF5c1      105.410   109.077         LF5a E12B MC78-1           0.48      86.250   103.522   LF5c1      105.410   109.077         LF5a E12B MP147-1          0.48      86.250   103.255   LF5c1      105.410   108.823         LF5a E12B MP147-3          0.48      86.250   103.446   LF5c1      105.410   109.004         LF5a E12B YE1              0.48      82.100   103.522   LF5c1      105.410   109.077         LF5a E12C MCC              0.48      87.100   103.427   LF5c1      105.410   108.992         LF5a E12C MC99-1           0.48      86.250   103.427   LF5c1      105.410   108.992         LF5a E12C MC99-2           0.48      86.250   103.427   LF5c1      105.410   108.992         LF5a E12C MF15-1           0.48      86.250   103.219   LF5c1      105.410   108.795         LF5a E12D MCC              0.48      86.250   103.405   LF5c1      105.410   108.971         LF5a E12E MCC              0.48      87.100   103.577   LF5c1      105.410   109.134         LF5a E12E MC31-4           0.48      86.250   103.577   LF5c1      105.410   109.134         LF5a E12E MC31-5           0.48      86.250   103.577   LF5c1      105.410   109.134         LF5a E12E MP197-1          0.48      86.250   103.577   LF5c1      105.410   109.134         LF5a E12F MCC              0.48      86.250   103.522   LF5c1      105.410   109.077         LF5a E12F MC25-5           0.48      86.250   103.522   LF5c1      105.410   109.077         LF5a E12F MP195-1          0.48      86.250   103.522   LF5c1      105.410   109.077         LF5a E14 MCC               0.48      86.250   103.607   LF5c1      105.410   109.165         LF5a E14 MC1-1             0.48      86.250   103.607   LF5c1      105.410   109.165         LF5a E14 MC1-1LS           0.48      86.250                        105.410 E15 MCC               0.48      86.250   103.607   LF5c1      105.410   109.165         LF5a E16A MCC              0.48      89.800   103.563   LF5c1      105.410   109.119         LF5a E16A MP274-1          0.48      86.250   103.232   LF5c1      105.410   108.770         LF5a E16A XY1              0.48      85.000   103.510   LF5c1      110.000   109.063         LF5a E16A XY3              0.48      85.000   103.488   LF5c1      110.000   109.040         LF5a E16B MCC              0.48      90.300   103.545   LF5c1      105.410   109.100         LF5a E16B MP273-1          0.48      86.250   103.362   LF5c1      105.410   108.907         LF5a

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 13 Table 4. Scenario LF5: Mode 5 and 6 Non-Accident Light Loading Minimum and Maximum Bus Voltages (Sheet 3 of 5) Acceptance Acceptance Minimum Case with Maximum Case with ID From NomkV Criteria for Criteria for

                                        %kV    Minimum                 %kV       Maximum Min %kV                        Max %kV E2 480V SWGR         0.48                98.505   LF5c1                101.254         LF5c E21A MCC             0.48                97.848   LF5c1                100.583         LF5c E21B MCC             0.48                97.815   LF5c1                100.549         LF5c E21C MCC             0.48                97.347   LF5c1                100.068         LF5c E21D MCC             0.48                97.825   LF5c1                100.559         LF5c E22A MCC             0.48                97.100   LF5c1                 99.818         LF5c E22B MCC             0.48                97.092   LF5c1                 99.809         LF5c E23A MCC             0.48                98.121   LF5c1                100.873         LF5c E23B MCC             0.48                97.782   LF5c1                100.529         LF5c E3 480V SWGR         0.48               101.205   LF5c1                103.959         LF5c E31A MCC             0.48               100.992   LF5c1                103.740         LF5c E31B MCC             0.48               100.992   LF5c1                103.740         LF5c E32A MCC             0.48               101.135   LF5c1                103.887         LF5c E32B MCC             0.48               101.135   LF5c1                103.887         LF5c E33A MCC             0.48               100.658   LF5c1                103.403         LF5c E33B MCC             0.48               100.619   LF5c1                103.362         LF5c E4 480V SWGR         0.48                99.825   LF5c1                102.607         LF5c E41A MCC             0.48                99.536   LF5c1                102.314         LF5c E41B MCC             0.48                99.289   LF5c1                102.064         LF5c E42 MCC              0.48               101.831   LF5c1                104.643         LF5c E43 MCC              0.48                99.825   LF5c1                102.607         LF5c E6 480V SWGR         0.48               102.571   LF5c1                105.358         LF5c E61 MCC              0.48               102.571   LF5c1                105.358         LF5c E62 MCC              0.48               102.571   LF5c1                105.358         LF5c E63 MCC              0.48               102.571   LF5c1                105.358         LF5c EF12C MCC            0.48      86.250   103.393   LF5c1      105.410   108.961         LF5a EF12C MF15-3         0.48      86.250   103.393   LF5c1      105.410   108.961         LF5a EF12D MCC            0.48      86.250   103.577   LF5c1      105.410   109.134         LF5a EF41 AE4             0.48                99.825   LF5c1                102.607         LF5c EF41 BF4             0.48               100.836   LF5c1                103.613         LF5c F1 480V SWGR         0.48      86.250   103.681   LF5c1      105.410   109.223         LF5a F1 MP56-2            0.48      86.250   103.681   LF5c1      105.410   109.223         LF5a F11A MCC             0.48      87.100   103.383   LF5c1      105.410   108.908         LF5a F11A MC21-2          0.48      86.250   103.383   LF5c1      105.410   108.908         LF5a F11A MC62-2          0.48      86.250   103.383   LF5c1      105.410   108.908         LF5a F11A MC75-2          0.48      86.250   103.383   LF5c1      105.410   108.908         LF5a F11A MRE5328         0.48      86.250   103.383   LF5c1      105.410   108.908         LF5a F11A MS3321          0.48      86.250   103.383   LF5c1      105.410   108.908         LF5a F11A MV4907          0.48      85.000   103.383   LF5c1      105.410   108.908         LF5a F11B MCC             0.48      87.100   103.383   LF5c1      105.410   108.908         LF5a F11C MCC             0.48      87.100   103.383   LF5c1      105.410   108.908         LF5a F11C MP37-2B         0.48      86.250   103.383   LF5c1      105.410   108.908         LF5a F11C MP37-2D         0.48      86.250   103.383   LF5c1      105.410   108.908         LF5a

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 14 Table 4. Scenario LF5: Mode 5 and 6 Non-Accident Light Loading Minimum and Maximum Bus Voltages (Sheet 4 of 5) Acceptance Acceptance Minimum Case with Maximum Case with ID From NomkV Criteria for Criteria for

                                         %kV    Minimum                 %kV       Maximum Min %kV                        Max %kV F11D MCC              0.48      87.100   103.383   LF5c1      105.410   108.908         LF5a F11D DBC2PN           0.48      82.000   103.383   LF5c1      110.000   108.908         LF5a F11D MC31-3           0.48      86.250   103.383   LF5c1      105.410   108.908         LF5a F11D MP89-2A          0.48      86.250   103.383   LF5c1      105.410   108.908         LF5a F11D MP89-2B          0.48      86.250   103.383   LF5c1      105.410   108.908         LF5a F11E MCC              0.48      86.250   103.307   LF5c1      105.410   108.829         LF5a F11E MC31-1           0.48      86.250   103.307   LF5c1      105.410   108.829         LF5a F11E MC31-2           0.48      86.250   103.307   LF5c1      105.410   108.829         LF5a F11F MCC              0.48      86.250   103.268   LF5c1      105.410   108.787         LF5a F12A MCC              0.48      90.000   103.651   LF5c1      105.410   109.192         LF5a F12A DBC2N            0.48      82.000   103.634   LF5c1      110.000   109.174         LF5a F12A DBC2P            0.48      82.000   103.634   LF5c1      110.000   109.174         LF5a F12A MC133            0.48      86.250   103.651   LF5c1      105.410   109.192         LF5a F12A MC30-2           0.48      86.250   103.651   LF5c1      105.410   109.192         LF5a F12A MC73-2           0.48      86.250   103.651   LF5c1      105.410   109.192         LF5a F12A MP195-2          0.48      86.250   103.651   LF5c1      105.410   109.192         LF5a F12A MP198-1          0.48      86.250   103.651   LF5c1      105.410   109.192         LF5a F12A MS61-2           0.48      86.250   103.651   LF5c1      105.410   109.192         LF5a F12A MV5598           0.48      85.000   103.651   LF5c1      105.410   109.192         LF5a F12A YRF2             0.48      90.000   103.468   LF5c1      110.000   108.999         LF5a F12A YRF4             0.48      90.000   103.389   LF5c1      110.000   108.916         LF5a F12B MCC              0.48      87.100   103.603   LF5c1      105.410   109.142         LF5a F12B MC25-3           0.48      86.250   103.603   LF5c1      105.410   109.142         LF5a F12B MC25-4           0.48      86.250   103.603   LF5c1      105.410   109.142         LF5a F12B MC78-2           0.48      86.250   103.603   LF5c1      105.410   109.142         LF5a F12B MP147-2          0.48      86.250   103.324   LF5c1      105.410   108.877         LF5a F12B MP147-4          0.48      86.250   103.516   LF5c1      105.410   109.060         LF5a F12B YF1              0.48      81.600   103.569   LF5c1      105.410   109.110         LF5a F12C MCC              0.48      87.100   103.638   LF5c1      105.410   109.180         LF5a F12C MF15-2           0.48      87.100   103.448   LF5c1      105.410   108.999         LF5a F12D MCC              0.48      86.250   103.638   LF5c1      105.410   109.180         LF5a F12D MC99-3           0.48      86.250   103.638   LF5c1      105.410   109.180         LF5a F12D MC99-4           0.48      86.250   103.638   LF5c1      105.410   109.180         LF5a F13 MCC               0.48      86.250   104.170   LF5c1      105.410   107.016         LF5c F14 MCC               0.48      86.250   103.681   LF5c1      105.410   109.223         LF5a F14 MC1-2             0.48      86.250   103.681   LF5c1      105.410   109.223         LF5a F14 MC1-2LS           0.48      86.250                        105.410 F15 MCC               0.48      86.250   103.681   LF5c1      105.410   109.223         LF5a F16A MCC              0.48      89.700   103.652   LF5c1      105.410   109.192         LF5a F16A MC25-6           0.48      86.250   103.652   LF5c1      105.410   109.192         LF5a F16A MP274-3          0.48      86.250   103.388   LF5c1      105.410   108.913         LF5a F16A XY2              0.48      85.000   103.639   LF5c1      110.000   109.178         LF5a F16A XY4              0.48      85.000   103.619   LF5c1      110.000   109.157         LF5a

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 15 Table 4. Scenario LF5: Mode 5 and 6 Non-Accident Light Loading Minimum and Maximum Bus Voltages (Sheet 5 of 5) Acceptance Acceptance Minimum Case with Maximum Case with ID From NomkV Criteria for Criteria for

                                         %kV    Minimum                 %kV       Maximum Min %kV                        Max %kV F16B MCC              0.48      90.500   103.635   LF5c1      105.410   109.174         LF5a F16B MP273-4          0.48      86.250   103.055   LF5c1      105.410   108.562         LF5a F2 480V SWGR          0.48                98.787   LF5c1                101.557         LF5c F21A MCC              0.48                98.121   LF5c1                100.878         LF5c F21B MCC              0.48                98.011   LF5c1                100.765         LF5c F21C MCC              0.48                98.109   LF5c1                100.866         LF5c F22 MCC               0.48                97.221   LF5c1                 99.996         LF5c F23A MCC              0.48                98.314   LF5c1                101.088         LF5c F23B MCC              0.48                97.764   LF5c1                100.544         LF5c F3 480V SWGR          0.48                99.579   LF5c1                102.294         LF5c F31A MCC              0.48                99.030   LF5c1                101.730         LF5c F31B MCC              0.48                98.170   LF5c1                100.846         LF5c F32A MCC              0.48                99.470   LF5c1                102.183         LF5c F32B MCC              0.48                99.383   LF5c1                102.094         LF5c F33A MCC              0.48                99.062   LF5c1                101.765         LF5c F33B MCC              0.48                99.062   LF5c1                101.765         LF5c F4 480V SWGR          0.48               100.836   LF5c1                103.613         LF5c F41A MCC              0.48               100.258   LF5c1                103.033         LF5c F41B MCC              0.48               100.203   LF5c1                102.976         LF5c F4A LOAD CTR          0.48               102.620   LF5c1                105.406         LF5c F6 480V SWGR          0.48               102.632   LF5c1                105.417         LF5c F61 MCC               0.48               102.632   LF5c1                105.417         LF5c F62 MCC               0.48               102.632   LF5c1                105.417         LF5c F63 MCC               0.48               102.632   LF5c1                105.417         LF5c F7 480V SWGR          0.48               104.310   LF5c1                107.159         LF5c F71 MCC               0.48               104.272   LF5c1                107.120         LF5c M22A MCC              0.48                99.579   LF5c1                102.294         LF5c YE2 MCC               0.24      87.080   106.004   LF5c1      105.410   111.690         LF5a YE2 MV5443C           0.24      85.000   106.004   LF5c1      105.410   111.690         LF5a YF2 MCC               0.24      86.780   106.034   LF5c1      105.410   111.701         LF5a YF2 MV5444C           0.24      85.000   106.034   LF5c1      105.410   111.701         LF5a

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 16 Table 5. Scenario ST1: Mode 1 Design Basis Accident Transient Minimum Bus Voltages (Sheet 1 of 4) Acceptance Acceptance T=-1 T=0 T=1 T=2 T=3 T=4 Nom Criteria for Criteria for Case Case Case Case Case Case IDFrom kV Min %kV Min %kV Min with min Min with min with min Min with min Min with min Min with min (Continuous) (Starting) %kV %kV %kV %kV Min %kV %kV %kV %kV %kV %kV %kV %kV A 13.8KV SWGR 13.8 86.090 76.530 93.802 ST1k 89.100 ST1k2 92.707 ST1k 93.014 ST1k 93.184 ST1k2 93.215 ST1k2 A MP2-1 13.8 86.090 76.530 93.760 ST1k 89.056 ST1k2 92.664 ST1k 92.971 ST1k 93.141 ST1k2 93.173 ST1k2 A MP2-3 13.8 86.090 76.530 93.767 ST1k 89.063 ST1k2 92.671 ST1k 92.978 ST1k 93.148 ST1k2 93.180 ST1k2 A MP36-1 13.8 86.090 76.530 93.759 ST1k 89.055 ST1k2 92.663 ST1k 92.970 ST1k 93.140 ST1k2 93.172 ST1k2 A MP36-4 13.8 86.090 76.530 93.782 ST1k 89.079 ST1k2 92.686 ST1k 92.993 ST1k 93.163 ST1k2 93.195 ST1k2 B 13.8KV SWGR 13.8 86.090 76.530 93.799 ST1k 89.098 ST1k2 92.704 ST1k 93.011 ST1k 93.181 ST1k2 93.213 ST1k2 B MP2-2 13.8 86.090 76.530 93.745 ST1k 89.041 ST1k2 92.649 ST1k 92.956 ST1k 93.127 ST1k2 93.158 ST1k2 B MP2-4 13.8 86.090 76.530 93.752 ST1k 89.048 ST1k2 92.657 ST1k 92.963 ST1k 93.134 ST1k2 93.165 ST1k2 B MP36-2 13.8 86.090 76.530 93.750 ST1k 89.046 ST1k2 92.654 ST1k 92.961 ST1k 93.132 ST1k2 93.163 ST1k2 B MP36-3 13.8 86.090 76.530 93.780 ST1k 89.078 ST1k2 92.685 ST1k 92.992 ST1k 93.162 ST1k2 93.193 ST1k2 BF81 MCC 0.48 86.250 76.670 94.305 ST1k 82.957 ST1g 92.182 ST1g 92.905 ST1k 93.229 ST1k2 93.285 ST1k2 BF81 DBCSBOP 0.48 82.000 94.224 ST1k 82.886 ST1g 92.103 ST1g 92.825 ST1k 93.150 ST1k2 93.205 ST1k2 C1 4160 SWGR 4.16 91.010 67.310 94.466 ST1k 83.534 ST1g 92.379 ST1k 92.939 ST1k 93.262 ST1k2 93.324 ST1k2 C1 MP3-1 4.16 86.540 67.310 94.292 ST1k 83.337 ST1g 92.201 ST1k 92.762 ST1k 93.085 ST1k2 93.148 ST1k2 C1 MP37-1A 4.16 86.540 76.930 94.379 ST1k 83.436 ST1g 92.291 ST1k 92.851 ST1k 93.175 ST1k2 93.237 ST1k2 C1 MP42-1 4.16 86.540 67.310 94.466 ST1k 83.297 ST1g 92.310 ST1k 92.870 ST1k 93.194 ST1k2 93.256 ST1k2 C1 MP43-1 4.16 86.540 67.310 94.466 ST1k 83.348 ST1g 92.320 ST1k 92.880 ST1k 93.203 ST1k2 93.265 ST1k2 C1 MP58-1 4.16 86.540 67.310 94.466 ST1k 83.117 ST1g 92.231 ST1k 92.792 ST1k 93.115 ST1k2 93.177 ST1k2 C2 4160 SWGR 4.16 86.540 76.930 94.470 ST1k 83.566 ST1g 92.391 ST1k 92.949 ST1k 93.271 ST1k2 93.333 ST1k2 D1 4160 SWGR 4.16 91.010 67.310 95.037 ST1k 83.659 ST1g 92.914 ST1g 93.628 ST1k 93.954 ST1k2 94.010 ST1k2 D1 MP3-2 4.16 86.540 67.310 94.829 ST1k 83.423 ST1g 92.702 ST1g 93.417 ST1k 93.745 ST1k2 93.801 ST1k2 D1 MP37-2A 4.16 86.540 76.930 95.104 ST1k1 86.937 ST1k1 93.144 ST1k1 93.699 ST1k1 94.121 ST1k1 94.250 ST1k1 D1 MP42-2 4.16 86.540 67.310 95.037 ST1k 83.503 ST1g 92.861 ST1g 93.575 ST1k 93.902 ST1k2 93.958 ST1k2 D1 MP43-2 4.16 86.540 67.310 94.978 ST1k 83.592 ST1g 92.854 ST1g 93.568 ST1k 93.895 ST1k2 93.951 ST1k2 D1 MP58-2 4.16 86.540 67.310 95.037 ST1k 83.415 ST1g 92.826 ST1g 93.540 ST1k 93.867 ST1k2 93.923 ST1k2 D2 4160 SWGR 4.16 86.540 76.930 95.040 ST1k 83.653 ST1g 92.909 ST1g 93.635 ST1k 93.960 ST1k2 94.016 ST1k2 D3 4160 SWGR 4.16 86.540 76.930 95.032 ST1k 83.646 ST1g 92.902 ST1g 93.627 ST1k 93.953 ST1k2 94.009 ST1k2 E1 480V SWGR 0.48 86.250 67.090 95.219 ST1k 76.304 ST1k2 87.278 ST1k 90.385 ST1k 92.262 ST1k2 92.648 ST1k2 E1 MP56-1 0.48 86.250 67.090 95.219 ST1k2 71.063 ST1k2 87.062 ST1k2 90.268 ST1k2 90.886 ST1k2 91.277 ST1k2 E11A MCC 0.48 87.100 67.090 95.027 ST1k 75.631 ST1k2 85.506 ST1k 88.571 ST1k 91.840 ST1k2 92.448 ST1k2 E11A MC62-1 0.48 86.250 67.090 95.027 ST1k 75.631 ST1k2 85.506 ST1k 88.571 ST1k 91.840 ST1k2 92.448 ST1k2 E11A MP89-1A 0.48 86.250 67.090 95.027 ST1k 75.631 ST1k2 85.506 ST1k 88.571 ST1k 91.840 ST1k2 92.448 ST1k2 E11A MP89-1B 0.48 86.250 67.090 95.027 ST1k 75.631 ST1k2 85.506 ST1k 88.571 ST1k 91.840 ST1k2 92.448 ST1k2 E11A MP89-3A 0.48 86.250 67.090 95.027 ST1k 75.631 ST1k2 85.506 ST1k 88.571 ST1k 91.840 ST1k2 92.448 ST1k2 E11A MP89-3B 0.48 86.250 67.090 95.027 ST1k 75.631 ST1k2 85.506 ST1k 88.571 ST1k 91.840 ST1k2 92.448 ST1k2 E11B MCC 0.48 87.100 67.090 94.986 ST1k 75.519 ST1k2 85.414 ST1k 88.480 ST1k 91.766 ST1k2 92.406 ST1k2 E11B MC56-1 0.48 86.250 67.090 94.140 ST1k 74.449 ST1k2 84.471 ST1k 87.571 ST1k 90.891 ST1k2 91.536 ST1k2 E11C MCC 0.48 87.100 67.090 95.019 ST1k 75.593 ST1k2 85.121 ST1k 88.175 ST1k 91.817 ST1k2 92.440 ST1k2 E11C MC75-1 0.48 86.250 67.090 92.991 ST1k 73.000 ST1k2 82.841 ST1k 85.979 ST1k 89.713 ST1k2 90.351 ST1k2 E11D MCC 0.48 86.770 67.090 95.020 ST1k 75.606 ST1k2 85.498 ST1k 88.564 ST1k 91.824 ST1k2 92.441 ST1k2 E11D DBC1PN 0.48 82.000 95.020 ST1k 75.606 ST1k2 85.498 ST1k 88.564 ST1k 91.824 ST1k2 92.441 ST1k2 E11D MP37-1B 0.48 86.250 67.090 94.690 ST1k 75.191 ST1k2 85.131 ST1k 88.210 ST1k 91.483 ST1k2 92.102 ST1k2 E11D MRE5327 0.48 86.250 67.090 95.020 ST1k 75.606 ST1k2 85.498 ST1k 88.564 ST1k 91.824 ST1k2 92.441 ST1k2 E11E MCC 0.48 87.100 67.090 95.019 ST1k 75.575 ST1k2 84.766 ST1k 87.823 ST1k 91.813 ST1k2 92.436 ST1k2 E11E MV49060 0.48 85.000 67.090 95.019 ST1k 66.884 ST1k2 75.018 ST1k 85.739 ST1k 89.828 ST1k2 90.465 ST1k2 E12A MCC 0.48 90.000 67.090 95.124 ST1k 76.158 ST1k2 87.125 ST1k 90.275 ST1k 92.155 ST1k2 92.544 ST1k2 E12A DBC1N 0.48 82.000 95.057 ST1k 76.088 ST1k2 87.057 ST1k 90.208 ST1k 92.087 ST1k2 92.476 ST1k2 E12A DBC1P 0.48 82.000 95.064 ST1k 76.095 ST1k2 87.064 ST1k 90.215 ST1k 92.095 ST1k2 92.483 ST1k2 E12A MC21-1 0.48 86.250 67.090 95.124 ST1k 76.158 ST1k2 87.125 ST1k 90.275 ST1k 92.155 ST1k2 92.544 ST1k2 E12A MC30-1 0.48 86.250 67.090 95.124 ST1k 75.477 ST1k2 86.346 ST1k 90.275 ST1k 91.933 ST1k2 92.322 ST1k2 E12A MC71-1 0.48 86.250 67.090 94.931 ST1k 75.916 ST1k2 86.914 ST1k 90.072 ST1k 91.956 ST1k2 92.345 ST1k2 E12A MC73-1 0.48 86.250 67.090 94.445 ST1k 75.305 ST1k2 86.382 ST1k 89.559 ST1k 91.453 ST1k2 91.845 ST1k2 E12A MS3311 0.48 86.250 67.090 95.124 ST1k 76.158 ST1k2 87.125 ST1k 90.275 ST1k 92.155 ST1k2 92.544 ST1k2 E12A MS61-1 0.48 86.250 67.090 95.124 ST1k 76.158 ST1k2 87.125 ST1k 90.275 ST1k 92.155 ST1k2 92.544 ST1k2 E12A MV5597 0.48 85.000 67.090 95.124 ST1k 67.576 ST1k2 77.307 ST1k 88.269 ST1k 90.223 ST1k2 90.620 ST1k2 E12A YRF1 0.48 90.000 94.980 ST1k 76.042 ST1k2 86.992 ST1k 90.138 ST1k 92.015 ST1k2 92.403 ST1k2 E12A YRF3 0.48 90.000 94.895 ST1k 75.975 ST1k2 86.915 ST1k 90.058 ST1k 91.934 ST1k2 92.321 ST1k2 E12B MCC 0.48 87.100 67.090 95.112 ST1k 75.478 ST1k2 86.409 ST1k 89.967 ST1k 91.976 ST1k2 92.362 ST1k2 E12B MC25-1 0.48 86.250 67.090 95.112 ST1k 71.861 ST1k2 82.268 ST1k 88.860 ST1k 90.893 ST1k2 91.284 ST1k2 E12B MC25-2 0.48 86.250 67.090 95.112 ST1k 72.760 ST1k2 83.297 ST1k 89.140 ST1k 91.167 ST1k2 91.556 ST1k2 E12B MC78-1 0.48 86.250 67.090 94.654 ST1k 74.898 ST1k2 85.904 ST1k 89.483 ST1k 91.503 ST1k2 91.890 ST1k2 E12B MP147-1 0.48 86.250 67.090 94.821 ST1k 75.111 ST1k2 86.088 ST1k 89.660 ST1k 91.675 ST1k2 92.063 ST1k2 E12B MP147-3 0.48 86.250 67.090 95.029 ST1k 75.373 ST1k2 86.317 ST1k 89.879 ST1k 91.890 ST1k2 92.276 ST1k2 E12B YE1 0.48 82.100 95.075 ST1k 75.432 ST1k2 86.368 ST1k 89.929 ST1k 91.938 ST1k2 92.324 ST1k2 E12C MCC 0.48 87.100 67.090 94.701 ST1k 75.546 ST1k2 86.570 ST1k 89.734 ST1k 91.679 ST1k2 92.108 ST1k2 E12C MC99-1 0.48 86.250 67.090 93.694 ST1k 74.273 ST1k2 85.465 ST1k 88.670 ST1k 90.638 ST1k2 91.072 ST1k2

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 17 Table 5. Scenario ST1: Mode 1 Design Basis Accident Transient Minimum Bus Voltages (Sheet 2 of 4) Acceptance Acceptance T=-1 T=0 T=1 T=2 T=3 T=4 Nom Criteria for Criteria for Case Case Case Case Case Case IDFrom kV Min %kV Min %kV Min with min Min with min with min Min with min Min with min Min with min (Continuous) (Starting) %kV %kV %kV %kV Min %kV %kV %kV %kV %kV %kV %kV %kV E12C MC99-2 0.48 86.250 67.090 94.108 ST1k 74.798 ST1k2 85.920 ST1k 89.108 ST1k 91.066 ST1k2 91.498 ST1k2 E12C MF15-1 0.48 86.250 67.090 94.473 ST1k 75.260 ST1k2 86.321 ST1k 89.494 ST1k 91.444 ST1k2 91.874 ST1k2 E12D MCC 0.48 86.250 67.090 94.677 ST1k 75.515 ST1k2 86.544 ST1k 89.709 ST1k 91.654 ST1k2 92.083 ST1k2 E12E MCC 0.48 87.100 67.090 95.124 ST1k 76.010 ST1k2 86.807 ST1k 90.097 ST1k 92.131 ST1k2 92.520 ST1k2 E12E MC31-4 0.48 86.250 67.090 95.124 ST1k 76.010 ST1k2 86.807 ST1k 90.097 ST1k 92.131 ST1k2 92.520 ST1k2 E12E MC31-5 0.48 86.250 67.090 95.124 ST1k 76.010 ST1k2 86.807 ST1k 90.097 ST1k 92.131 ST1k2 92.520 ST1k2 E12E MP197-1 0.48 86.250 67.090 95.124 ST1k 73.385 ST1k2 83.809 ST1k 89.700 ST1k 91.744 ST1k2 92.134 ST1k2 E12F MCC 0.48 86.250 67.090 95.093 ST1k 75.090 ST1k2 86.266 ST1k 89.830 ST1k 91.843 ST1k2 92.229 ST1k2 E12F MC25-5 0.48 86.250 67.090 95.093 ST1k 75.090 ST1k2 86.266 ST1k 89.830 ST1k 91.843 ST1k2 92.229 ST1k2 E12F MP195-1 0.48 86.250 67.090 94.539 ST1k 74.385 ST1k2 85.654 ST1k 89.243 ST1k 91.268 ST1k2 91.657 ST1k2 E14 MCC 0.48 86.250 67.090 95.219 ST1k 75.897 ST1k2 86.811 ST1k 90.275 ST1k 92.154 ST1k2 92.540 ST1k2 E14 MC1-1 0.48 86.250 67.090 95.219 ST1k 75.897 ST1k2 86.811 ST1k 90.275 ST1k 92.154 ST1k2 92.540 ST1k2 E14 MC1-1LS 0.48 86.250 67.090 95.219 ST1k 74.022 ST1k2 84.667 ST1k 89.762 ST1k 91.652 ST1k2 92.040 ST1k2 E15 MCC 0.48 86.250 67.090 95.219 ST1k 76.304 ST1k2 87.278 ST1k 90.385 ST1k 92.262 ST1k2 92.648 ST1k2 E16A MCC 0.48 89.800 67.090 95.088 ST1k 76.191 ST1k2 87.154 ST1k 90.258 ST1k 92.134 ST1k2 92.519 ST1k2 E16A MP274-1 0.48 86.250 67.090 94.784 ST1k 75.947 ST1k2 86.875 ST1k 89.970 ST1k 91.839 ST1k2 92.223 ST1k2 E16A XY1 0.48 85.000 95.039 ST1k 76.152 ST1k2 87.109 ST1k 90.212 ST1k 92.086 ST1k2 92.471 ST1k2 E16A XY3 0.48 85.000 95.019 ST1k 76.135 ST1k2 87.091 ST1k 90.193 ST1k 92.067 ST1k2 92.452 ST1k2 E16B MCC 0.48 90.300 67.090 95.071 ST1k 76.177 ST1k2 87.138 ST1k 90.242 ST1k 92.117 ST1k2 92.502 ST1k2 E16B MP273-1 0.48 86.250 67.090 94.903 ST1k 76.042 ST1k2 86.984 ST1k 90.082 ST1k 91.954 ST1k2 92.338 ST1k2 E2 480V SWGR 0.48 90.266 ST1k 85.592 ST1k2 89.178 ST1k 89.483 ST1k 89.651 ST1k2 89.683 ST1k2 E21A MCC 0.48 89.678 ST1k 85.019 ST1k2 88.594 ST1k 88.897 ST1k 89.066 ST1k2 89.097 ST1k2 E21B MCC 0.48 89.647 ST1k 84.990 ST1k2 88.564 ST1k 88.867 ST1k 89.035 ST1k2 89.067 ST1k2 E21C MCC 0.48 89.151 ST1k 84.507 ST1k2 88.070 ST1k 88.373 ST1k 88.540 ST1k2 88.572 ST1k2 E21D MCC 0.48 89.678 ST1k 85.019 ST1k2 88.594 ST1k 88.897 ST1k 89.066 ST1k2 89.097 ST1k2 E22A MCC 0.48 89.374 ST1k 84.718 ST1k2 88.291 ST1k 88.594 ST1k 88.763 ST1k2 88.794 ST1k2 E22B MCC 0.48 89.361 ST1k 84.705 ST1k2 88.278 ST1k 88.581 ST1k 88.750 ST1k2 88.781 ST1k2 E23A MCC 0.48 89.833 ST1k 85.160 ST1k2 88.746 ST1k 89.050 ST1k 89.219 ST1k2 89.251 ST1k2 E23B MCC 0.48 89.339 ST1k 84.673 ST1k2 88.253 ST1k 88.558 ST1k 88.726 ST1k2 88.758 ST1k2 E3 480V SWGR 0.48 90.639 ST1k 85.705 ST1k 89.025 ST1k 89.792 ST1k 90.015 ST1k 90.051 ST1k2 E31A MCC 0.48 88.946 ST1k 83.998 ST1k 87.328 ST1k 88.098 ST1k 88.321 ST1k 88.357 ST1k2 E31B MCC 0.48 88.857 ST1k 83.904 ST1k 87.238 ST1k 88.008 ST1k 88.232 ST1k 88.268 ST1k2 E32A MCC 0.48 90.536 ST1k 85.551 ST1k 88.868 ST1k 89.683 ST1k 89.906 ST1k 89.949 ST1k2 E32B MCC 0.48 90.040 ST1k 85.049 ST1k 88.370 ST1k 89.186 ST1k 89.409 ST1k 89.452 ST1k2 E33A MCC 0.48 90.005 ST1k 85.051 ST1k 88.385 ST1k 89.156 ST1k 89.380 ST1k 89.416 ST1k2 E33B MCC 0.48 90.005 ST1k 85.051 ST1k 88.385 ST1k 89.156 ST1k 89.380 ST1k 89.416 ST1k2 E4 480V SWGR 0.48 91.732 ST1k 87.002 ST1k2 90.631 ST1k 90.939 ST1k 91.110 ST1k2 91.142 ST1k2 E41A MCC 0.48 91.389 ST1k 86.668 ST1k2 90.290 ST1k 90.598 ST1k 90.768 ST1k2 90.800 ST1k2 E41B MCC 0.48 91.099 ST1k 86.377 ST1k2 90.000 ST1k 90.308 ST1k 90.478 ST1k2 90.510 ST1k2 E42 MCC 0.48 92.045 ST1k 81.314 ST1g 90.000 ST1k 90.549 ST1k 90.866 ST1k2 90.927 ST1k2 E43 MCC 0.48 91.732 ST1k 87.002 ST1k2 90.631 ST1k 90.939 ST1k 91.110 ST1k2 91.142 ST1k2 E6 480V SWGR 0.48 93.802 ST1k 89.100 ST1k2 92.707 ST1k 93.014 ST1k 93.184 ST1k2 93.215 ST1k2 E61 MCC 0.48 93.802 ST1k 89.100 ST1k2 92.707 ST1k 93.014 ST1k 93.184 ST1k2 93.215 ST1k2 E62 MCC 0.48 93.802 ST1k 89.100 ST1k2 92.707 ST1k 93.014 ST1k 93.184 ST1k2 93.215 ST1k2 E63 MCC 0.48 93.802 ST1k 89.100 ST1k2 92.707 ST1k 93.014 ST1k 93.184 ST1k2 93.215 ST1k2 EF12C MCC 0.48 86.250 67.090 94.664 ST1k 75.499 ST1k2 86.530 ST1k 89.696 ST1k 91.641 ST1k2 92.071 ST1k2 EF12C MF15-3 0.48 86.250 67.090 94.664 ST1k 75.499 ST1k2 86.530 ST1k 89.696 ST1k 91.641 ST1k2 92.071 ST1k2 EF12D MCC 0.48 86.250 67.090 95.124 ST1k 76.158 ST1k2 87.125 ST1k 90.275 ST1k 92.155 ST1k2 92.544 ST1k2 EF41 AE4 0.48 91.732 ST1k 87.002 ST1k2 90.631 ST1k 90.939 ST1k 91.110 ST1k2 91.142 ST1k2 EF41 BF4 0.48 92.629 ST1k 87.954 ST1k2 91.540 ST1k 91.845 ST1k 92.014 ST1k2 92.046 ST1k2 F1 480V SWGR 0.48 86.250 67.090 96.052 ST1k 77.838 ST1k2 87.978 ST1g 91.235 ST1k 93.184 ST1k2 93.505 ST1k2 F1 MP56-2 0.48 86.250 67.090 96.052 ST1k2 73.005 ST1k2 88.165 ST1k2 91.374 ST1k2 91.899 ST1k2 92.224 ST1k2 F11A MCC 0.48 87.100 67.090 95.913 ST1k 77.391 ST1k2 86.767 ST1g 89.994 ST1k 92.868 ST1k2 93.308 ST1k2 F11A MC21-2 0.48 86.250 67.090 95.913 ST1k 77.391 ST1k2 86.767 ST1g 89.994 ST1k 92.868 ST1k2 93.308 ST1k2 F11A MC62-2 0.48 86.250 67.090 95.913 ST1k 77.391 ST1k2 86.767 ST1g 89.994 ST1k 92.868 ST1k2 93.308 ST1k2 F11A MC75-2 0.48 86.250 67.090 94.743 ST1k 75.928 ST1k2 85.469 ST1g 88.744 ST1k 91.658 ST1k2 92.104 ST1k2 F11A MRE5328 0.48 86.250 67.090 95.913 ST1k 77.391 ST1k2 86.767 ST1g 89.994 ST1k 92.868 ST1k2 93.308 ST1k2 F11A MS3321 0.48 86.250 67.090 95.913 ST1k 77.391 ST1k2 86.767 ST1g 89.994 ST1k 92.868 ST1k2 93.308 ST1k2 F11A MV4907 0.48 85.000 67.090 95.913 ST1k 68.603 ST1k2 76.914 ST1g 87.999 ST1k 90.935 ST1k2 91.384 ST1k2 F11B MCC 0.48 87.100 67.090 95.913 ST1k 77.296 ST1k2 86.657 ST1g 89.880 ST1k 92.819 ST1k2 93.308 ST1k2 F11C MCC 0.48 87.100 67.090 95.913 ST1k 77.290 ST1k2 86.653 ST1g 89.876 ST1k 92.810 ST1k2 93.308 ST1k2 F11C MP37-2B 0.48 86.250 67.090 95.648 ST1k1 80.281 ST1k1 86.504 ST1k1 89.591 ST1k1 93.011 ST1k1 94.095 ST1k1 F11C MP37-2D 0.48 86.250 67.090 95.913 ST1k 77.290 ST1k2 86.653 ST1g 89.876 ST1k 92.810 ST1k2 93.308 ST1k2 F11D MCC 0.48 87.100 67.090 95.913 ST1k 76.227 ST1g 85.170 ST1g 88.337 ST1k 92.859 ST1k2 93.308 ST1k2 F11D DBC2PN 0.48 82.000 95.913 ST1k 76.227 ST1g 85.170 ST1g 88.337 ST1k 92.859 ST1k2 93.308 ST1k2 F11D MC31-3 0.48 86.250 67.090 95.913 ST1k 76.227 ST1g 85.170 ST1g 88.337 ST1k 92.859 ST1k2 93.308 ST1k2

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 18 Table 5. Scenario ST1: Mode 1 Design Basis Accident Transient Minimum Bus Voltages (Sheet 3 of 4) Acceptance Acceptance T=-1 T=0 T=1 T=2 T=3 T=4 Nom Criteria for Criteria for Case Case Case Case Case Case IDFrom kV Min %kV Min %kV Min with min Min with min with min Min with min Min with min Min with min (Continuous) (Starting) %kV %kV %kV %kV Min %kV %kV %kV %kV %kV %kV %kV %kV F11D MP89-2A 0.48 86.250 67.090 95.913 ST1k 76.227 ST1g 85.170 ST1g 88.337 ST1k 92.859 ST1k2 93.308 ST1k2 F11D MP89-2B 0.48 86.250 67.090 95.913 ST1k 76.227 ST1g 85.170 ST1g 88.337 ST1k 92.859 ST1k2 93.308 ST1k2 F11E MCC 0.48 86.250 67.090 95.843 ST1k 77.334 ST1k2 86.703 ST1g 89.928 ST1k 92.800 ST1k2 93.239 ST1k2 F11E MC31-1 0.48 86.250 67.090 95.843 ST1k 77.334 ST1k2 86.703 ST1g 89.928 ST1k 92.800 ST1k2 93.239 ST1k2 F11E MC31-2 0.48 86.250 67.090 95.843 ST1k 77.334 ST1k2 86.703 ST1g 89.928 ST1k 92.800 ST1k2 93.239 ST1k2 F11F MCC 0.48 86.250 67.090 95.807 ST1k 77.305 ST1k2 86.670 ST1g 89.894 ST1k 92.765 ST1k2 93.204 ST1k2 F12A MCC 0.48 90.000 67.090 95.936 ST1k 77.655 ST1k2 87.775 ST1g 91.090 ST1k 93.053 ST1k2 93.378 ST1k2 F12A DBC2N 0.48 82.000 95.839 ST1k 77.556 ST1k2 87.677 ST1g 90.993 ST1k 92.956 ST1k2 93.281 ST1k2 F12A DBC2P 0.48 82.000 95.839 ST1k 77.556 ST1k2 87.677 ST1g 90.993 ST1k 92.956 ST1k2 93.281 ST1k2 F12A MC133 0.48 86.250 67.090 94.802 ST1k 76.244 ST1k2 86.532 ST1g 89.894 ST1k 91.883 ST1k2 92.212 ST1k2 F12A MC30-2 0.48 86.250 67.090 95.936 ST1k 76.502 ST1k2 86.471 ST1g 91.090 ST1k 92.672 ST1k2 92.999 ST1k2 F12A MC73-2 0.48 86.250 67.090 93.686 ST1k 74.831 ST1k2 85.301 ST1g 88.712 ST1k 90.729 ST1k2 91.063 ST1k2 F12A MP195-2 0.48 86.250 67.090 95.418 ST1k 77.013 ST1k2 87.208 ST1g 90.544 ST1k 92.519 ST1k2 92.846 ST1k2 F12A MP198-1 0.48 86.250 67.090 95.936 ST1k 73.220 ST1k2 82.762 ST1g 90.427 ST1k 92.405 ST1k2 92.732 ST1k2 F12A MS61-2 0.48 86.250 67.090 95.936 ST1k 77.655 ST1k2 87.775 ST1g 91.090 ST1k 93.053 ST1k2 93.378 ST1k2 F12A MV5598 0.48 85.000 67.090 95.936 ST1k 71.005 ST1k2 80.258 ST1g 89.645 ST1k 91.647 ST1k2 91.977 ST1k2 F12A YRF2 0.48 90.000 95.766 ST1k 77.518 ST1k2 87.620 ST1g 90.928 ST1k 92.888 ST1k2 93.213 ST1k2 F12A YRF4 0.48 90.000 95.693 ST1k 77.459 ST1k2 87.553 ST1g 90.859 ST1k 92.818 ST1k2 93.142 ST1k2 F12B MCC 0.48 87.100 67.090 95.967 ST1k 76.995 ST1k2 87.141 ST1g 90.832 ST1k 92.919 ST1k2 93.241 ST1k2 F12B MC25-3 0.48 86.250 67.090 95.967 ST1k 74.744 ST1k2 84.593 ST1g 90.169 ST1k 92.271 ST1k2 92.595 ST1k2 F12B MC25-4 0.48 86.250 67.090 95.967 ST1k 74.166 ST1k2 83.939 ST1g 89.858 ST1k 91.967 ST1k2 92.292 ST1k2 F12B MC78-2 0.48 86.250 67.090 95.681 ST1k 76.637 ST1k2 86.826 ST1g 90.530 ST1k 92.624 ST1k2 92.946 ST1k2 F12B MP147-2 0.48 86.250 67.090 95.666 ST1k 76.618 ST1k2 86.808 ST1g 90.513 ST1k 92.607 ST1k2 92.930 ST1k2 F12B MP147-4 0.48 86.250 67.090 95.874 ST1k 76.878 ST1k2 87.038 ST1g 90.733 ST1k 92.823 ST1k2 93.144 ST1k2 F12B YF1 0.48 81.600 95.931 ST1k 76.950 ST1k2 87.101 ST1g 90.794 ST1k 92.882 ST1k2 93.203 ST1k2 F12C MCC 0.48 87.100 67.090 95.657 ST1k 77.220 ST1k2 87.369 ST1g 90.692 ST1k 92.722 ST1k2 93.091 ST1k2 F12C MF15-2 0.48 87.100 67.090 95.450 ST1k 76.964 ST1k2 87.143 ST1g 90.474 ST1k 92.509 ST1k2 92.879 ST1k2 F12D MCC 0.48 86.250 67.090 95.578 ST1k 77.122 ST1k2 87.283 ST1g 90.609 ST1k 92.641 ST1k2 93.010 ST1k2 F12D MC99-3 0.48 86.250 67.090 94.888 ST1k 76.263 ST1k2 86.526 ST1g 89.881 ST1k 91.929 ST1k2 92.301 ST1k2 F12D MC99-4 0.48 86.250 67.090 94.748 ST1k 76.087 ST1k2 86.372 ST1g 89.733 ST1k 91.784 ST1k2 92.157 ST1k2 F13 MCC 0.48 86.250 67.090 94.577 ST1k 83.241 ST1g 92.456 ST1g 93.178 ST1k 93.502 ST1k2 93.558 ST1k2 F14 MCC 0.48 86.250 67.090 96.052 ST1k 77.348 ST1k2 87.424 ST1g 91.106 ST1k 93.058 ST1k2 93.379 ST1k2 F14 MC1-2 0.48 86.250 67.090 96.052 ST1k 77.348 ST1k2 87.424 ST1g 91.106 ST1k 93.058 ST1k2 93.379 ST1k2 F14 MC1-2LS 0.48 86.250 67.090 96.052 ST1k 75.210 ST1k2 85.007 ST1g 90.536 ST1k 92.500 ST1k2 92.824 ST1k2 F15 MCC 0.48 86.250 67.090 96.052 ST1k 77.838 ST1k2 87.978 ST1g 91.235 ST1k 93.184 ST1k2 93.505 ST1k2 F16A MCC 0.48 89.700 67.090 96.025 ST1k 77.816 ST1k2 87.953 ST1g 91.209 ST1k 93.158 ST1k2 93.479 ST1k2 F16A MC25-6 0.48 86.250 67.090 96.025 ST1k 77.816 ST1k2 87.953 ST1g 91.209 ST1k 93.158 ST1k2 93.479 ST1k2 F16A MP274-3 0.48 86.250 67.090 95.780 ST1k 77.618 ST1k2 87.729 ST1g 90.977 ST1k 92.920 ST1k2 93.240 ST1k2 F16A XY2 0.48 85.000 96.012 ST1k 77.806 ST1k2 87.942 ST1g 91.197 ST1k 93.146 ST1k2 93.467 ST1k2 F16A XY4 0.48 85.000 95.994 ST1k 77.791 ST1k2 87.925 ST1g 91.180 ST1k 93.128 ST1k2 93.449 ST1k2 F16B MCC 0.48 90.500 67.090 96.009 ST1k 77.803 ST1k2 87.938 ST1g 91.194 ST1k 93.142 ST1k2 93.463 ST1k2 F16B MP273-4 0.48 86.250 67.090 95.471 ST1k 77.368 ST1k2 87.446 ST1g 90.684 ST1k 92.621 ST1k2 92.940 ST1k2 F2 480V SWGR 0.48 91.040 ST1k 86.294 ST1k2 89.936 ST1k 90.245 ST1k 90.417 ST1k2 90.449 ST1k2 F21A MCC 0.48 90.749 ST1k 86.011 ST1k2 89.646 ST1k 89.955 ST1k 90.127 ST1k2 90.158 ST1k2 F21B MCC 0.48 90.647 ST1k 85.914 ST1k2 89.546 ST1k 89.854 ST1k 90.025 ST1k2 90.057 ST1k2 F21C MCC 0.48 90.746 ST1k 86.008 ST1k2 89.644 ST1k 89.953 ST1k 90.124 ST1k2 90.156 ST1k2 F22 MCC 0.48 90.253 ST1k 85.470 ST1k2 89.140 ST1k 89.452 ST1k 89.625 ST1k2 89.657 ST1k2 F23A MCC 0.48 90.452 ST1k 85.692 ST1k2 89.344 ST1k 89.655 ST1k 89.827 ST1k2 89.859 ST1k2 F23B MCC 0.48 89.576 ST1k 84.794 ST1k2 88.464 ST1k 88.776 ST1k 88.948 ST1k2 88.981 ST1k2 F3 480V SWGR 0.48 90.578 ST1k 85.730 ST1k 88.994 ST1k 89.746 ST1k 89.965 ST1k 90.001 ST1k2 F31A MCC 0.48 90.030 ST1k 85.205 ST1k 88.454 ST1k 89.202 ST1k 89.420 ST1k 89.455 ST1k2 F31B MCC 0.48 88.949 ST1k 84.170 ST1k 87.388 ST1k 88.129 ST1k 88.345 ST1k 88.380 ST1k2 F32A MCC 0.48 90.351 ST1k 85.352 ST1k 88.614 ST1k 89.499 ST1k 89.718 ST1k 89.772 ST1k2 F32B MCC 0.48 89.846 ST1k 84.817 ST1k 88.100 ST1k 88.989 ST1k 89.210 ST1k 89.264 ST1k2 F33A MCC 0.48 90.038 ST1k 85.207 ST1k 88.459 ST1k 89.208 ST1k 89.427 ST1k 89.462 ST1k2 F33B MCC 0.48 89.972 ST1k 85.139 ST1k 88.393 ST1k 89.142 ST1k 89.361 ST1k 89.396 ST1k2 F4 480V SWGR 0.48 92.629 ST1k 87.954 ST1k2 91.540 ST1k 91.845 ST1k 92.014 ST1k2 92.046 ST1k2 F41A MCC 0.48 92.259 ST1k 87.593 ST1k2 91.173 ST1k 91.477 ST1k 91.646 ST1k2 91.677 ST1k2 F41B MCC 0.48 92.241 ST1k 87.573 ST1k2 91.154 ST1k 91.458 ST1k 91.627 ST1k2 91.659 ST1k2 F4A LOAD CTR 0.48 93.413 ST1k 88.731 ST1k2 92.322 ST1k 92.628 ST1k 92.797 ST1k2 92.829 ST1k2 F6 480V SWGR 0.48 93.799 ST1k 89.098 ST1k2 92.704 ST1k 93.011 ST1k 93.181 ST1k2 93.213 ST1k2 F61 MCC 0.48 93.799 ST1k 89.098 ST1k2 92.704 ST1k 93.011 ST1k 93.181 ST1k2 93.213 ST1k2 F62 MCC 0.48 93.799 ST1k 89.098 ST1k2 92.704 ST1k 93.011 ST1k 93.181 ST1k2 93.213 ST1k2 F63 MCC 0.48 93.799 ST1k 89.098 ST1k2 92.704 ST1k 93.011 ST1k 93.181 ST1k2 93.213 ST1k2 F7 480V SWGR 0.48 94.704 ST1k 83.352 ST1g 92.580 ST1g 93.303 ST1k 93.628 ST1k2 93.684 ST1k2 F71 MCC 0.48 94.669 ST1k 83.321 ST1g 92.545 ST1g 93.269 ST1k 93.593 ST1k2 93.649 ST1k2

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 19 Table 5. Scenario ST1: Mode 1 Design Basis Accident Transient Minimum Bus Voltages (Sheet 4 of 4) Acceptance Acceptance T=-1 T=0 T=1 T=2 T=3 T=4 Nom Criteria for Criteria for Case Case Case Case Case Case IDFrom kV Min %kV Min %kV Min with min Min with min with min Min with min Min with min Min with min (Continuous) (Starting) %kV %kV %kV %kV Min %kV %kV %kV %kV %kV %kV %kV %kV M22A MCC 0.48 90.578 ST1k 85.730 ST1k 88.994 ST1k 89.746 ST1k 89.965 ST1k 90.001 ST1k2 YE2 MCC 0.24 87.080 65.000 97.251 ST1k 75.734 ST1k2 85.710 ST1k 88.889 ST1k 93.105 ST1k2 94.581 ST1k2 YE2 MV5443C 0.24 85.000 67.090 97.251 ST1k 74.834 ST1k2 84.691 ST1k 88.701 ST1k 92.925 ST1k2 94.405 ST1k2 YF2 MCC 0.24 86.780 65.000 98.242 ST1k 78.016 ST1k2 87.505 ST1g 90.840 ST1k 94.456 ST1k2 95.552 ST1k2 YF2 MV5444C 0.24 85.000 67.090 98.242 ST1k 77.167 ST1k2 86.552 ST1g 90.672 ST1k 94.294 ST1k2 95.392 ST1k2

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 20 Table 6. Scenarios ST2 and ST3 Large Motor Starting Transient Minimum Bus VOltages (Sheet 1 of 3) Acceptance Acceptance T=0 T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 Nom Criteria for Criteria for Case Case Case Case Case Case Case Case Case IDFrom kV Min %kV Min %kV Min with min Min with min Min with min Min with min Min with min Min with min Min with min Min with min Min with min (Continuous) (Starting) %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV A 13.8KV SWGR 13.8 86.090 76.530 93.275 ST2h 94.359 ST2h 82.546 ST2h 93.500 ST2h 90.880 ST2h 94.364 ST2h 82.606 ST2h 93.511 ST2h 90.873 ST2h A MP2-1 13.8 86.090 76.530 93.233 ST2h 94.317 ST2h 82.498 ST2h 93.458 ST2h 90.837 ST2h 94.322 ST2h 82.558 ST2h 93.469 ST2h 90.830 ST2h A MP2-3 13.8 86.090 76.530 93.239 ST2h 94.324 ST2h 82.506 ST2h 93.465 ST2h 90.844 ST2h 94.329 ST2h 82.566 ST2h 93.476 ST2h 90.836 ST2h A MP36-1 13.8 86.090 76.530 93.232 ST2h 94.359 ST2h 82.320 ST2h 93.458 ST2h 90.836 ST2h 94.322 ST2h 82.558 ST2h 93.469 ST2h 90.829 ST2h A MP36-4 13.8 86.090 76.530 93.254 ST2h 94.339 ST2h 82.523 ST2h 93.480 ST2h 90.859 ST2h 94.344 ST2h 82.583 ST2h 93.491 ST2h 90.852 ST2h B 13.8KV SWGR 13.8 86.090 76.530 93.272 ST2h 94.350 ST2h 82.604 ST2h 93.498 ST2h 90.860 ST2h 94.368 ST2h 82.530 ST2h 93.507 ST2h 90.884 ST2h B MP2-2 13.8 86.090 76.530 93.217 ST2h 94.296 ST2h 82.543 ST2h 93.444 ST2h 90.805 ST2h 94.315 ST2h 82.468 ST2h 93.452 ST2h 90.828 ST2h B MP2-4 13.8 86.090 76.530 93.224 ST2h 94.303 ST2h 82.551 ST2h 93.451 ST2h 90.812 ST2h 94.321 ST2h 82.476 ST2h 93.459 ST2h 90.835 ST2h B MP36-2 13.8 86.090 76.530 93.222 ST2h 94.301 ST2h 82.548 ST2h 93.449 ST2h 90.809 ST2h 94.319 ST2h 82.474 ST2h 93.457 ST2h 90.833 ST2h B MP36-3 13.8 86.090 76.530 93.252 ST2h 94.331 ST2h 82.582 ST2h 93.479 ST2h 90.841 ST2h 94.368 ST2h 82.428 ST2h 93.487 ST2h 90.864 ST2h BF81 MCC 0.48 86.250 76.670 93.274 ST2h 93.709 ST2g 82.193 ST2h 93.850 ST2h 86.301 ST2h 93.659 ST2f 82.116 ST2h 93.517 ST2h 86.579 ST2f BF81 DBCSBOP 0.48 82.000 93.194 ST2h 93.629 ST2g 82.123 ST2h 93.770 ST2h 86.227 ST2h 93.579 ST2f 82.045 ST2h 93.437 ST2h 86.505 ST2f C1 4160 SWGR 4.16 91.010 67.310 93.483 ST2h 94.446 ST2g 82.241 ST2h 93.719 ST2h 87.237 ST2f 94.348 ST2f 82.305 ST2h 94.088 ST2h 86.479 ST2h C1 MP3-1 4.16 86.540 67.310 93.308 ST2h 94.272 ST2g 82.041 ST2h 93.543 ST2h 87.049 ST2f 94.173 ST2f 82.105 ST2h 93.913 ST2h 86.289 ST2h C1 MP37-1A 4.16 86.540 76.930 93.483 ST2h 94.446 ST2g 82.241 ST2h 93.719 ST2h 87.237 ST2f 94.348 ST2f 82.305 ST2h 94.088 ST2h 86.479 ST2h C1 MP42-1 4.16 86.540 67.310 93.415 ST2h 94.379 ST2g 82.164 ST2h 93.651 ST2h 87.164 ST2f 94.280 ST2f 82.227 ST2h 94.020 ST2h 86.405 ST2h C1 MP43-1 4.16 86.540 67.310 93.425 ST2h 94.389 ST2g 82.175 ST2h 93.661 ST2h 87.175 ST2f 94.290 ST2f 82.238 ST2h 94.030 ST2h 86.416 ST2h C1 MP58-1 4.16 86.540 67.310 93.337 ST2h 94.302 ST2g 82.075 ST2h 93.573 ST2h 87.081 ST2f 94.203 ST2f 82.139 ST2h 93.942 ST2h 86.321 ST2h C2 4160 SWGR 4.16 86.540 76.930 93.492 ST2h 94.434 ST2g 82.250 ST2h 93.727 ST2h 87.246 ST2f 94.356 ST2f 82.314 ST2h 94.096 ST2h 86.487 ST2h D1 4160 SWGR 4.16 91.010 67.310 93.999 ST2h 94.436 ST2g 82.880 ST2h 94.578 ST2h 87.001 ST2h 94.397 ST2f 82.802 ST2h 94.243 ST2h 87.292 ST2f D1 MP3-2 4.16 86.540 67.310 93.789 ST2h 94.228 ST2g 82.642 ST2h 94.369 ST2h 86.774 ST2h 94.188 ST2f 82.564 ST2h 94.034 ST2h 87.067 ST2f D1 MP37-2A 4.16 86.540 76.930 93.999 ST2h 94.436 ST2g 82.880 ST2h 94.578 ST2h 87.001 ST2h 94.397 ST2f 82.802 ST2h 94.243 ST2h 87.292 ST2f D1 MP42-2 4.16 86.540 67.310 93.946 ST2h 94.384 ST2g 82.820 ST2h 94.525 ST2h 86.944 ST2h 94.345 ST2f 82.742 ST2h 94.191 ST2h 87.236 ST2f D1 MP43-2 4.16 86.540 67.310 93.940 ST2h 94.377 ST2g 82.813 ST2h 94.519 ST2h 86.937 ST2h 94.338 ST2f 82.735 ST2h 94.184 ST2h 87.229 ST2f D1 MP58-2 4.16 86.540 67.310 93.911 ST2h 94.349 ST2g 82.781 ST2h 94.491 ST2h 86.906 ST2h 94.310 ST2f 82.703 ST2h 94.156 ST2h 87.198 ST2f D2 4160 SWGR 4.16 86.540 76.930 94.005 ST2h 94.442 ST2g 82.887 ST2h 94.584 ST2h 87.007 ST2h 94.391 ST2f 82.809 ST2h 94.249 ST2h 87.286 ST2f D3 4160 SWGR 4.16 86.540 76.930 93.998 ST2h 94.435 ST2g 82.880 ST2h 94.576 ST2h 87.000 ST2h 94.384 ST2f 82.802 ST2h 94.242 ST2h 87.279 ST2f E1 480V SWGR 0.48 86.250 67.090 92.572 ST2h 93.581 ST2g 80.737 ST2h 92.819 ST2h 86.011 ST2f 93.478 ST2f 80.804 ST2h 93.205 ST2h 85.212 ST2h E1 MP56-1 0.48 86.250 67.090 91.282 ST2h 92.305 ST2g 79.250 ST2h 91.532 ST2h 84.619 ST2f 92.200 ST2f 79.318 ST2h 91.924 ST2h 83.807 ST2h E11A MCC 0.48 87.100 67.090 92.308 ST2h 93.320 ST2g 80.433 ST2h 92.556 ST2h 85.727 ST2f 93.216 ST2f 80.500 ST2h 92.943 ST2h 84.925 ST2h E11A MC62-1 0.48 86.250 67.090 92.308 ST2h 93.320 ST2g 80.433 ST2h 92.556 ST2h 85.727 ST2f 93.216 ST2f 80.500 ST2h 92.943 ST2h 84.925 ST2h E11A MP89-1A 0.48 86.250 67.090 91.675 ST2h 92.693 ST2g 79.704 ST2h 91.924 ST2h 85.043 ST2f 92.589 ST2f 79.772 ST2h 92.314 ST2h 84.235 ST2h E11A MP89-1B 0.48 86.250 67.090 92.308 ST2h 93.320 ST2g 80.433 ST2h 92.556 ST2h 85.727 ST2f 93.216 ST2f 80.500 ST2h 92.943 ST2h 84.925 ST2h E11A MP89-3A 0.48 86.250 67.090 91.171 ST2h 92.195 ST2g 79.121 ST2h 91.421 ST2h 84.499 ST2f 92.090 ST2f 79.189 ST2h 91.813 ST2h 83.685 ST2h E11A MP89-3B 0.48 86.250 67.090 92.308 ST2h 93.320 ST2g 80.433 ST2h 92.556 ST2h 85.727 ST2f 93.216 ST2f 80.500 ST2h 92.943 ST2h 84.925 ST2h E11B MCC 0.48 87.100 67.090 92.266 ST2h 93.277 ST2g 80.384 ST2h 92.513 ST2h 85.680 ST2f 93.174 ST2f 80.451 ST2h 92.901 ST2h 84.878 ST2h E11B MC56-1 0.48 86.250 67.090 91.394 ST2h 92.416 ST2g 79.380 ST2h 91.644 ST2h 84.741 ST2f 92.311 ST2f 79.448 ST2h 92.035 ST2h 83.930 ST2h E11C MCC 0.48 87.100 67.090 92.300 ST2h 93.311 ST2g 80.423 ST2h 92.547 ST2h 85.717 ST2f 93.208 ST2f 80.490 ST2h 92.935 ST2h 84.916 ST2h E11C MC75-1 0.48 86.250 67.090 90.208 ST2h 91.244 ST2g 77.999 ST2h 90.461 ST2h 83.454 ST2f 91.138 ST2f 78.069 ST2h 90.858 ST2h 82.630 ST2h E11D MCC 0.48 86.770 67.090 92.280 ST2h 93.292 ST2g 80.401 ST2h 92.528 ST2h 85.697 ST2f 93.189 ST2f 80.468 ST2h 92.915 ST2h 84.895 ST2h E11D DBC1PN 0.48 82.000 92.280 ST2h 93.292 ST2g 80.401 ST2h 92.528 ST2h 85.697 ST2f 93.189 ST2f 80.468 ST2h 92.915 ST2h 84.895 ST2h E11D MP37-1B 0.48 86.250 67.090 92.280 ST2h 93.292 ST2g 80.401 ST2h 92.528 ST2h 85.697 ST2f 93.189 ST2f 80.468 ST2h 92.915 ST2h 84.895 ST2h E11D MRE5327 0.48 86.250 67.090 91.977 ST2h 92.992 ST2g 80.052 ST2h 92.225 ST2h 85.370 ST2f 92.888 ST2f 80.120 ST2h 92.614 ST2h 84.565 ST2h E11E MCC 0.48 87.100 67.090 92.296 ST2h 93.307 ST2g 80.418 ST2h 92.543 ST2h 85.713 ST2f 93.204 ST2f 80.486 ST2h 92.931 ST2h 84.911 ST2h E11E MV49060 0.48 85.000 67.090 90.322 ST2h 91.356 ST2g 78.133 ST2h 90.575 ST2h 83.578 ST2f 91.250 ST2f 78.202 ST2h 90.971 ST2h 82.755 ST2h E12A MCC 0.48 90.000 67.090 92.441 ST2h 93.450 ST2g 80.596 ST2h 92.688 ST2h 85.875 ST2f 93.347 ST2f 80.663 ST2h 93.074 ST2h 85.076 ST2h E12A DBC1N 0.48 82.000 92.373 ST2h 93.382 ST2g 80.527 ST2h 92.620 ST2h 85.807 ST2f 93.279 ST2f 80.594 ST2h 93.007 ST2h 85.008 ST2h E12A DBC1P 0.48 82.000 92.381 ST2h 93.390 ST2g 80.535 ST2h 92.627 ST2h 85.815 ST2f 93.287 ST2f 80.602 ST2h 93.014 ST2h 85.015 ST2h E12A MC21-1 0.48 86.250 67.090 90.835 ST2h 91.862 ST2g 78.742 ST2h 91.086 ST2h 84.141 ST2f 91.757 ST2f 78.810 ST2h 91.479 ST2h 83.324 ST2h E12A MC30-1 0.48 86.250 67.090 92.219 ST2h 93.231 ST2g 80.342 ST2h 92.467 ST2h 85.637 ST2f 93.127 ST2f 80.409 ST2h 92.854 ST2h 84.835 ST2h E12A MC71-1 0.48 86.250 67.090 92.242 ST2h 93.254 ST2g 80.368 ST2h 92.490 ST2h 85.662 ST2f 93.150 ST2f 80.436 ST2h 92.877 ST2h 84.860 ST2h E12A MC73-1 0.48 86.250 67.090 91.742 ST2h 92.758 ST2g 79.792 ST2h 91.990 ST2h 85.121 ST2f 92.654 ST2f 79.859 ST2h 92.380 ST2h 84.315 ST2h E12A MS3311 0.48 86.250 67.090 91.209 ST2h 92.232 ST2g 79.176 ST2h 91.459 ST2h 84.546 ST2f 92.127 ST2f 79.244 ST2h 91.851 ST2h 83.733 ST2h E12A MS61-1 0.48 86.250 67.090 90.011 ST2h 91.048 ST2g 77.777 ST2h 90.264 ST2h 83.245 ST2f 90.942 ST2f 77.847 ST2h 90.662 ST2h 82.418 ST2h E12A MV5597 0.48 85.000 67.090 90.515 ST2h 91.546 ST2g 78.369 ST2h 90.767 ST2h 83.794 ST2f 91.441 ST2f 78.438 ST2h 91.162 ST2h 82.973 ST2h E12A YRF1 0.48 90.000 92.301 ST2h 93.308 ST2g 80.474 ST2h 92.547 ST2h 85.745 ST2f 93.205 ST2f 80.541 ST2h 92.933 ST2h 84.947 ST2h E12A YRF3 0.48 90.000 92.219 ST2h 93.225 ST2g 80.403 ST2h 92.465 ST2h 85.669 ST2f 93.122 ST2f 80.469 ST2h 92.850 ST2h 84.871 ST2h E12B MCC 0.48 87.100 67.090 92.398 ST2h 93.408 ST2g 80.544 ST2h 92.645 ST2h 85.828 ST2f 93.305 ST2f 80.611 ST2h 93.032 ST2h 85.028 ST2h E12B MC25-1 0.48 86.250 67.090 91.321 ST2h 92.342 ST2g 79.303 ST2h 91.570 ST2h 84.665 ST2f 92.238 ST2f 79.371 ST2h 91.962 ST2h 83.854 ST2h E12B MC25-2 0.48 86.250 67.090 91.593 ST2h 92.611 ST2g 79.617 ST2h 91.842 ST2h 84.959 ST2f 92.507 ST2f 79.685 ST2h 92.232 ST2h 84.151 ST2h E12B MC78-1 0.48 86.250 67.090 91.927 ST2h 92.942 ST2g 80.002 ST2h 92.175 ST2h 85.320 ST2f 92.838 ST2f 80.069 ST2h 92.564 ST2h 84.514 ST2h E12B MP147-1 0.48 86.250 67.090 92.099 ST2h 93.112 ST2g 80.200 ST2h 92.347 ST2h 85.505 ST2f 93.008 ST2f 80.268 ST2h 92.735 ST2h 84.702 ST2h E12B MP147-3 0.48 86.250 67.090 92.313 ST2h 93.323 ST2g 80.446 ST2h 92.560 ST2h 85.736 ST2f 93.220 ST2f 80.513 ST2h 92.947 ST2h 84.934 ST2h E12B YE1 0.48 82.100 92.361 ST2h 93.371 ST2g 80.501 ST2h 92.608 ST2h 85.787 ST2f 93.267 ST2f 80.568 ST2h 92.994 ST2h 84.987 ST2h E12C MCC 0.48 87.100 67.090 92.005 ST2h 93.019 ST2g 80.094 ST2h 92.253 ST2h 85.405 ST2f 92.915 ST2f 80.162 ST2h 92.641 ST2h 84.601 ST2h E12C MC99-1 0.48 86.250 67.090 90.968 ST2h 91.993 ST2g 78.897 ST2h 91.218 ST2h 84.285 ST2f 91.888 ST2f 78.965 ST2h 91.611 ST2h 83.470 ST2h E12C MC99-2 0.48 86.250 67.090 91.394 ST2h 92.415 ST2g 79.391 ST2h 91.644 ST2h 84.746 ST2f 92.311 ST2f 79.459 ST2h 92.035 ST2h 83.936 ST2h E12C MF15-1 0.48 86.250 67.090 91.771 ST2h 92.787 ST2g 79.825 ST2h 92.019 ST2h 85.153 ST2f 92.683 ST2f 79.892 ST2h 92.409 ST2h 84.346 ST2h E12D MCC 0.48 86.250 67.090 91.980 ST2h 92.994 ST2g 80.065 ST2h 92.228 ST2h 85.378 ST2f 92.890 ST2f 80.133 ST2h 92.616 ST2h 84.574 ST2h E12E MCC 0.48 87.100 67.090 92.065 ST2h 93.079 ST2g 80.163 ST2h 92.313 ST2h 85.470 ST2f 92.975 ST2f 80.230 ST2h 92.701 ST2h 84.666 ST2h E12E MC31-4 0.48 86.250 67.090 90.390 ST2h 91.423 ST2g 78.225 ST2h 90.643 ST2h 83.659 ST2f 91.317 ST2f 78.294 ST2h 91.038 ST2h 82.837 ST2h E12E MC31-5 0.48 86.250 67.090 90.859 ST2h 91.886 ST2g 78.770 ST2h 91.110 ST2h 84.167 ST2f 91.781 ST2f 78.839 ST2h 91.503 ST2h 83.351 ST2h E12E MP197-1 0.48 86.250 67.090 91.677 ST2h 92.695 ST2g 79.716 ST2h 91.926 ST2h 85.052 ST2f 92.591 ST2f 79.784 ST2h 92.316 ST2h 84.244 ST2h E12F MCC 0.48 86.250 67.090 92.379 ST2h 93.389 ST2g 80.522 ST2h 92.626 ST2h 85.807 ST2f 93.286 ST2f 80.589 ST2h 93.013 ST2h 85.007 ST2h E12F MC25-5 0.48 86.250 67.090 92.379 ST2h 93.389 ST2g 80.522 ST2h 92.626 ST2h 85.807 ST2f 93.286 ST2f 80.589 ST2h 93.013 ST2h 85.007 ST2h E12F MP195-1 0.48 86.250 67.090 91.808 ST2h 92.824 ST2g 79.865 ST2h 92.056 ST2h 85.191 ST2f 92.720 ST2f 79.933 ST2h 92.445 ST2h 84.385 ST2h E14 MCC 0.48 86.250 67.090 92.465 ST2h 93.474 ST2g 80.613 ST2h 92.712 ST2h 85.896 ST2f 93.371 ST2f 80.680 ST2h 93.098 ST2h 85.095 ST2h E14 MC1-1 0.48 86.250 67.090 93.420 ST3c 94.554 ST3c 81.732 ST3c 93.650 ST3c 88.212 ST3b 94.559 ST3c 81.799 ST3c 94.028 ST3c 86.022 ST3c E14 MC1-1LS 0.48 86.250 67.090 91.965 ST2h 92.980 ST2g 80.038 ST2h 92.213 ST2h 85.356 ST2f 92.876 ST2f 80.106 ST2h 92.602 ST2h 84.551 ST2h E15 MCC 0.48 86.250 67.090 92.572 ST2h 93.581 ST2g 80.737 ST2h 92.819 ST2h 86.011 ST2f 93.478 ST2f 80.804 ST2h 93.205 ST2h 85.212 ST2h E16A MCC 0.48 89.800 67.090 92.443 ST2h 93.451 ST2g 80.619 ST2h 92.690 ST2h 85.889 ST2f 93.348 ST2f 80.686 ST2h 93.076 ST2h 85.091 ST2h E16A MP274-1 0.48 86.250 67.090 92.148 ST2h 93.152 ST2g 80.362 ST2h 92.394 ST2h 85.614 ST2f 93.050 ST2f 80.428 ST2h 92.778 ST2h 84.819 ST2h E16A XY1 0.48 85.000 92.396 ST2h 93.403 ST2g 80.578 ST2h 92.642 ST2h 85.845 ST2f 93.300 ST2f 80.645 ST2h 93.028 ST2h 85.047 ST2h E16A XY3 0.48 85.000 92.377 ST2h 93.383 ST2g 80.561 ST2h 92.623 ST2h 85.827 ST2f 93.280 ST2f 80.628 ST2h 93.008 ST2h 85.029 ST2h E16B MCC 0.48 90.300 67.090 92.427 ST2h 93.434 ST2g 80.605 ST2h 92.673 ST2h 85.874 ST2f 93.331 ST2f 80.672 ST2h 93.059 ST2h 85.076 ST2h E16B MP273-1 0.48 86.250 67.090 92.264 ST2h 93.269 ST2g 80.462 ST2h 92.509 ST2h 85.722 ST2f 93.166 ST2f 80.529 ST2h 92.894 ST2h 84.925 ST2h E2 480V SWGR 0.48 89.291 ST3c 90.317 ST3c 78.758 ST3c 89.499 ST3c 86.947 ST3c 90.322 ST3c 78.818 ST3c 89.510 ST3c 86.940 ST3c E21A MCC 0.48 88.707 ST3c 89.730 ST3c 78.204 ST3c 88.914 ST3c 86.370 ST3c 89.734 ST3c 78.264 ST3c 88.925 ST3c 86.363 ST3c E21B MCC 0.48 88.677 ST3c 89.699 ST3c 78.177 ST3c 88.884 ST3c 86.340 ST3c 89.704 ST3c 78.237 ST3c 88.895 ST3c 86.334 ST3c E21C MCC 0.48 88.183 ST3c 89.202 ST3c 77.714 ST3c 88.389 ST3c 85.854 ST3c 89.207 ST3c 77.773 ST3c 88.400 ST3c 85.847 ST3c E21D MCC 0.48 88.707 ST3c 89.730 ST3c 78.204 ST3c 88.914 ST3c 86.370 ST3c 89.734 ST3c 78.264 ST3c 88.925 ST3c 86.363 ST3c E22A MCC 0.48 88.404 ST3c 89.426 ST3c 77.906 ST3c 88.611 ST3c 86.068 ST3c 89.430 ST3c 77.966 ST3c 88.622 ST3c 86.062 ST3c E22B MCC 0.48 88.391 ST3c 89.413 ST3c 77.894 ST3c 88.598 ST3c 86.056 ST3c 89.417 ST3c 77.954 ST3c 88.609 ST3c 86.049 ST3c

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 21 Table 6. Scenarios ST2 and ST3 Large Motor Starting Transient Minimum Bus VOltages (Sheet 2 of 3) Acceptance Acceptance T=0 T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 Nom Criteria for Criteria for Case Case Case Case Case Case Case Case Case IDFrom kV Min %kV Min %kV Min with min Min with min Min with min Min with min Min with min Min with min Min with min Min with min Min with min (Continuous) (Starting) %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV E23A MCC 0.48 88.767 ST3c 89.794 ST3c 78.221 ST3c 88.975 ST3c 86.421 ST3c 89.798 ST3c 78.281 ST3c 88.986 ST3c 86.414 ST3c E23B MCC 0.48 88.275 ST3c 89.300 ST3c 77.741 ST3c 88.483 ST3c 85.932 ST3c 89.305 ST3c 77.801 ST3c 88.493 ST3c 85.925 ST3c E3 480V SWGR 0.48 90.111 ST2h 91.196 ST2h 79.342 ST2h 90.337 ST2h 87.713 ST2h 91.201 ST2h 79.402 ST2h 90.348 ST2h 87.705 ST2h E31A MCC 0.48 88.417 ST2h 89.505 ST2h 77.605 ST2h 88.643 ST2h 86.012 ST2h 89.510 ST2h 77.666 ST2h 88.654 ST2h 86.005 ST2h E31B MCC 0.48 88.328 ST2h 89.417 ST2h 77.503 ST2h 88.554 ST2h 85.920 ST2h 89.422 ST2h 77.564 ST2h 88.565 ST2h 85.913 ST2h E32A MCC 0.48 90.009 ST2h 91.094 ST2h 79.241 ST2h 90.234 ST2h 87.611 ST2h 91.099 ST2h 79.302 ST2h 90.245 ST2h 87.604 ST2h E32B MCC 0.48 89.512 ST2h 90.598 ST2h 78.729 ST2h 89.738 ST2h 87.111 ST2h 90.603 ST2h 78.790 ST2h 89.748 ST2h 87.104 ST2h E33A MCC 0.48 89.476 ST2h 90.565 ST2h 78.655 ST2h 89.702 ST2h 87.067 ST2h 90.570 ST2h 78.716 ST2h 89.713 ST2h 87.060 ST2h E33B MCC 0.48 89.476 ST2h 90.565 ST2h 78.655 ST2h 89.702 ST2h 87.067 ST2h 90.570 ST2h 78.716 ST2h 89.713 ST2h 87.060 ST2h E4 480V SWGR 0.48 91.202 ST2h 92.292 ST2h 80.393 ST2h 91.428 ST2h 88.793 ST2h 92.297 ST2h 80.454 ST2h 91.439 ST2h 88.786 ST2h E41A MCC 0.48 90.860 ST2h 91.948 ST2h 80.070 ST2h 91.086 ST2h 88.456 ST2h 91.953 ST2h 80.131 ST2h 91.097 ST2h 88.449 ST2h E41B MCC 0.48 90.570 ST2h 91.658 ST2h 79.778 ST2h 90.796 ST2h 88.166 ST2h 91.663 ST2h 79.838 ST2h 90.807 ST2h 88.158 ST2h E42 MCC 0.48 91.083 ST2h 92.010 ST2g 80.018 ST2h 91.314 ST2h 84.937 ST2f 91.933 ST2f 80.081 ST2h 91.677 ST2h 84.191 ST2h E43 MCC 0.48 91.202 ST2h 92.292 ST2h 80.393 ST2h 91.428 ST2h 88.793 ST2h 92.297 ST2h 80.454 ST2h 91.439 ST2h 88.786 ST2h E6 480V SWGR 0.48 93.275 ST2h 94.359 ST2h 82.546 ST2h 93.500 ST2h 90.880 ST2h 94.364 ST2h 82.606 ST2h 93.511 ST2h 90.873 ST2h E61 MCC 0.48 93.275 ST2h 94.359 ST2h 82.546 ST2h 93.500 ST2h 90.880 ST2h 94.364 ST2h 82.606 ST2h 93.511 ST2h 90.873 ST2h E62 MCC 0.48 93.275 ST2h 94.359 ST2h 82.546 ST2h 93.500 ST2h 90.880 ST2h 94.364 ST2h 82.606 ST2h 93.511 ST2h 90.873 ST2h E63 MCC 0.48 93.275 ST2h 94.359 ST2h 82.546 ST2h 93.500 ST2h 90.880 ST2h 94.364 ST2h 82.606 ST2h 93.511 ST2h 90.873 ST2h EF12C MCC 0.48 86.250 67.090 91.967 ST2h 92.982 ST2g 80.051 ST2h 92.215 ST2h 85.364 ST2f 92.878 ST2f 80.118 ST2h 92.604 ST2h 84.560 ST2h EF12C MF15-3 0.48 86.250 67.090 91.967 ST2h 92.982 ST2g 80.051 ST2h 92.215 ST2h 85.364 ST2f 92.878 ST2f 80.118 ST2h 92.604 ST2h 84.560 ST2h EF12D MCC 0.48 86.250 67.090 92.441 ST2h 93.450 ST2g 80.596 ST2h 92.688 ST2h 85.875 ST2f 93.347 ST2f 80.663 ST2h 93.074 ST2h 85.076 ST2h EF41 AE4 0.48 91.202 ST2h 92.292 ST2h 80.393 ST2h 91.428 ST2h 88.793 ST2h 92.297 ST2h 80.454 ST2h 91.439 ST2h 88.786 ST2h EF41 BF4 0.48 92.104 ST2h 93.176 ST2h 81.494 ST2h 92.330 ST2h 89.707 ST2h 93.195 ST2h 81.420 ST2h 92.338 ST2h 89.730 ST2h F1 480V SWGR 0.48 86.250 67.090 93.259 ST2h 93.717 ST2g 81.569 ST2h 93.865 ST2h 85.915 ST2h 93.676 ST2f 81.487 ST2h 93.515 ST2h 86.222 ST2f F1 MP56-2 0.48 86.250 67.090 92.051 ST2h 92.514 ST2g 80.181 ST2h 92.664 ST2h 84.600 ST2h 92.473 ST2f 80.097 ST2h 92.310 ST2h 84.911 ST2f F11A MCC 0.48 87.100 67.090 92.928 ST2h 93.387 ST2g 81.208 ST2h 93.536 ST2h 85.566 ST2h 93.346 ST2f 81.125 ST2h 93.185 ST2h 85.874 ST2f F11A MC21-2 0.48 86.250 67.090 92.256 ST2h 92.718 ST2g 80.436 ST2h 92.868 ST2h 84.835 ST2h 92.677 ST2f 80.353 ST2h 92.514 ST2h 85.145 ST2f F11A MC62-2 0.48 86.250 67.090 92.928 ST2h 93.387 ST2g 81.208 ST2h 93.536 ST2h 85.566 ST2h 93.346 ST2f 81.125 ST2h 93.185 ST2h 85.874 ST2f F11A MC75-2 0.48 86.250 67.090 91.719 ST2h 92.184 ST2g 79.817 ST2h 92.335 ST2h 84.249 ST2h 92.143 ST2f 79.733 ST2h 91.979 ST2h 84.562 ST2f F11A MRE5328 0.48 86.250 67.090 92.686 ST2h 93.146 ST2g 80.930 ST2h 93.295 ST2h 85.303 ST2h 93.105 ST2f 80.847 ST2h 92.943 ST2h 85.611 ST2f F11A MS3321 0.48 86.250 67.090 92.185 ST2h 92.648 ST2g 80.355 ST2h 92.798 ST2h 84.758 ST2h 92.607 ST2f 80.271 ST2h 92.444 ST2h 85.068 ST2f F11A MV4907 0.48 85.000 67.090 90.997 ST2h 91.465 ST2g 78.979 ST2h 91.617 ST2h 83.458 ST2h 91.424 ST2f 78.893 ST2h 91.258 ST2h 83.774 ST2f F11B MCC 0.48 87.100 67.090 92.928 ST2h 93.387 ST2g 81.208 ST2h 93.536 ST2h 85.566 ST2h 93.346 ST2f 81.125 ST2h 93.185 ST2h 85.874 ST2f F11C MCC 0.48 87.100 67.090 92.910 ST2h 93.369 ST2g 81.186 ST2h 93.517 ST2h 85.546 ST2h 93.328 ST2f 81.104 ST2h 93.166 ST2h 85.853 ST2f F11C MP37-2B 0.48 86.250 67.090 92.910 ST2h 93.369 ST2g 81.186 ST2h 93.517 ST2h 85.546 ST2h 93.328 ST2f 81.104 ST2h 93.166 ST2h 85.853 ST2f F11C MP37-2D 0.48 86.250 67.090 92.470 ST2h 92.931 ST2g 80.683 ST2h 93.080 ST2h 85.068 ST2h 92.890 ST2f 80.599 ST2h 92.728 ST2h 85.377 ST2f F11D MCC 0.48 87.100 67.090 92.877 ST2h 93.336 ST2g 81.149 ST2h 93.485 ST2h 85.510 ST2h 93.295 ST2f 81.066 ST2h 93.134 ST2h 85.818 ST2f F11D DBC2PN 0.48 82.000 92.877 ST2h 93.336 ST2g 81.149 ST2h 93.485 ST2h 85.510 ST2h 93.295 ST2f 81.066 ST2h 93.134 ST2h 85.818 ST2f F11D MC31-3 0.48 86.250 67.090 92.535 ST2h 92.996 ST2g 80.757 ST2h 93.145 ST2h 85.139 ST2h 92.955 ST2f 80.674 ST2h 92.793 ST2h 85.448 ST2f F11D MP89-2A 0.48 86.250 67.090 92.119 ST2h 92.582 ST2g 80.279 ST2h 92.732 ST2h 84.686 ST2h 92.541 ST2f 80.195 ST2h 92.378 ST2h 84.997 ST2f F11D MP89-2B 0.48 86.250 67.090 92.877 ST2h 93.336 ST2g 81.149 ST2h 93.485 ST2h 85.510 ST2h 93.295 ST2f 81.066 ST2h 93.134 ST2h 85.818 ST2f F11E MCC 0.48 86.250 67.090 92.626 ST2h 93.085 ST2g 80.877 ST2h 93.234 ST2h 85.247 ST2h 93.044 ST2f 80.794 ST2h 92.882 ST2h 85.555 ST2f F11E MC31-1 0.48 86.250 67.090 90.582 ST2h 91.053 ST2g 78.517 ST2h 91.205 ST2h 83.016 ST2h 91.011 ST2f 78.431 ST2h 90.845 ST2h 83.333 ST2f F11E MC31-2 0.48 86.250 67.090 89.665 ST2h 90.141 ST2g 77.443 ST2h 90.294 ST2h 82.007 ST2h 90.098 ST2f 77.356 ST2h 89.931 ST2h 82.328 ST2f F11F MCC 0.48 86.250 67.090 92.590 ST2h 93.050 ST2g 80.846 ST2h 93.199 ST2h 85.215 ST2h 93.009 ST2f 80.763 ST2h 92.847 ST2h 85.523 ST2f F12A MCC 0.48 90.000 67.090 93.126 ST2h 93.584 ST2g 81.430 ST2h 93.732 ST2h 85.779 ST2h 93.544 ST2f 81.348 ST2h 93.382 ST2h 86.086 ST2f F12A DBC2N 0.48 82.000 93.029 ST2h 93.488 ST2g 81.332 ST2h 93.636 ST2h 85.681 ST2h 93.447 ST2f 81.249 ST2h 93.285 ST2h 85.988 ST2f F12A DBC2P 0.48 82.000 93.029 ST2h 93.488 ST2g 81.332 ST2h 93.636 ST2h 85.681 ST2h 93.447 ST2f 81.249 ST2h 93.285 ST2h 85.988 ST2f F12A MC133 0.48 86.250 67.090 91.957 ST2h 92.421 ST2g 80.087 ST2h 92.571 ST2h 84.506 ST2h 92.380 ST2f 80.003 ST2h 92.216 ST2h 84.817 ST2f F12A MC30-2 0.48 86.250 67.090 92.746 ST2h 93.206 ST2g 80.995 ST2h 93.354 ST2h 85.365 ST2h 93.165 ST2f 80.911 ST2h 93.003 ST2h 85.674 ST2f F12A MC73-2 0.48 86.250 67.090 90.804 ST2h 91.274 ST2g 78.748 ST2h 91.426 ST2h 83.243 ST2h 91.232 ST2f 78.663 ST2h 91.067 ST2h 83.560 ST2f F12A MP195-2 0.48 86.250 67.090 92.593 ST2h 93.053 ST2g 80.819 ST2h 93.202 ST2h 85.198 ST2h 93.012 ST2f 80.735 ST2h 92.850 ST2h 85.507 ST2f F12A MP198-1 0.48 86.250 67.090 92.479 ST2h 92.940 ST2g 80.687 ST2h 93.089 ST2h 85.074 ST2h 92.899 ST2f 80.604 ST2h 92.736 ST2h 85.383 ST2f F12A MS61-2 0.48 86.250 67.090 91.080 ST2h 91.549 ST2g 79.069 ST2h 91.701 ST2h 83.546 ST2h 91.507 ST2f 78.984 ST2h 91.342 ST2h 83.861 ST2f F12A MV5598 0.48 85.000 67.090 91.721 ST2h 92.187 ST2g 79.814 ST2h 92.337 ST2h 84.248 ST2h 92.145 ST2f 79.730 ST2h 91.981 ST2h 84.561 ST2f F12A YRF2 0.48 90.000 92.961 ST2h 93.419 ST2g 81.286 ST2h 93.566 ST2h 85.627 ST2h 93.378 ST2f 81.204 ST2h 93.217 ST2h 85.933 ST2f F12A YRF4 0.48 90.000 92.891 ST2h 93.348 ST2g 81.224 ST2h 93.495 ST2h 85.562 ST2h 93.307 ST2f 81.142 ST2h 93.146 ST2h 85.868 ST2f F12B MCC 0.48 87.100 67.090 93.105 ST2h 93.564 ST2g 81.396 ST2h 93.712 ST2h 85.750 ST2h 93.523 ST2f 81.314 ST2h 93.361 ST2h 86.057 ST2f F12B MC25-3 0.48 86.250 67.090 92.458 ST2h 92.920 ST2g 80.654 ST2h 93.069 ST2h 85.046 ST2h 92.879 ST2f 80.571 ST2h 92.716 ST2h 85.356 ST2f F12B MC25-4 0.48 86.250 67.090 92.155 ST2h 92.618 ST2g 80.305 ST2h 92.768 ST2h 84.716 ST2h 92.577 ST2f 80.222 ST2h 92.414 ST2h 85.027 ST2f F12B MC78-2 0.48 86.250 67.090 92.810 ST2h 93.270 ST2g 81.058 ST2h 93.419 ST2h 85.429 ST2h 93.229 ST2f 80.975 ST2h 93.067 ST2h 85.737 ST2f F12B MP147-2 0.48 86.250 67.090 92.794 ST2h 93.254 ST2g 81.040 ST2h 93.403 ST2h 85.412 ST2h 93.213 ST2f 80.957 ST2h 93.051 ST2h 85.720 ST2f F12B MP147-4 0.48 86.250 67.090 93.009 ST2h 93.468 ST2g 81.286 ST2h 93.616 ST2h 85.645 ST2h 93.427 ST2f 81.203 ST2h 93.265 ST2h 85.952 ST2f F12B YF1 0.48 81.600 93.068 ST2h 93.526 ST2g 81.354 ST2h 93.675 ST2h 85.709 ST2h 93.485 ST2f 81.271 ST2h 93.324 ST2h 86.016 ST2f F12C MCC 0.48 87.100 67.090 92.838 ST2h 93.298 ST2g 81.100 ST2h 93.446 ST2h 85.465 ST2h 93.257 ST2f 81.017 ST2h 93.095 ST2h 85.773 ST2f F12C MF15-2 0.48 87.100 67.090 92.626 ST2h 93.086 ST2g 80.856 ST2h 93.235 ST2h 85.234 ST2h 93.045 ST2f 80.773 ST2h 92.883 ST2h 85.543 ST2f F12D MCC 0.48 86.250 67.090 92.757 ST2h 93.217 ST2g 81.006 ST2h 93.366 ST2h 85.377 ST2h 93.176 ST2f 80.923 ST2h 93.014 ST2h 85.685 ST2f F12D MC99-3 0.48 86.250 67.090 92.046 ST2h 92.510 ST2g 80.190 ST2h 92.659 ST2h 84.603 ST2h 92.468 ST2f 80.106 ST2h 92.305 ST2h 84.914 ST2f F12D MC99-4 0.48 86.250 67.090 91.902 ST2h 92.366 ST2g 80.023 ST2h 92.516 ST2h 84.445 ST2h 92.324 ST2f 79.939 ST2h 92.161 ST2h 84.757 ST2f F13 MCC 0.48 86.250 67.090 92.557 ST2h 92.997 ST2g 81.349 ST2h 93.140 ST2h 85.508 ST2h 92.946 ST2f 81.270 ST2h 92.803 ST2h 85.789 ST2f F14 MCC 0.48 86.250 67.090 93.133 ST2h 93.591 ST2g 81.424 ST2h 93.740 ST2h 85.777 ST2h 93.550 ST2f 81.342 ST2h 93.389 ST2h 86.085 ST2f F14 MC1-2 0.48 86.250 67.090 94.192 ST3c 95.315 ST3c 82.629 ST3c 94.773 ST3c 86.792 ST3c 95.334 ST3c 82.544 ST3c 94.431 ST3c 88.417 ST3b F14 MC1-2LS 0.48 86.250 67.090 92.576 ST2h 93.037 ST2g 80.786 ST2h 93.186 ST2h 85.172 ST2h 92.996 ST2f 80.702 ST2h 92.833 ST2h 85.481 ST2f F15 MCC 0.48 86.250 67.090 93.259 ST2h 93.717 ST2g 81.569 ST2h 93.865 ST2h 85.915 ST2h 93.676 ST2f 81.487 ST2h 93.515 ST2h 86.222 ST2f F16A MCC 0.48 89.700 67.090 93.233 ST2h 93.691 ST2g 81.546 ST2h 93.838 ST2h 85.891 ST2h 93.650 ST2f 81.464 ST2h 93.488 ST2h 86.197 ST2f F16A MC25-6 0.48 86.250 67.090 93.233 ST2h 93.691 ST2g 81.546 ST2h 93.838 ST2h 85.891 ST2h 93.650 ST2f 81.464 ST2h 93.488 ST2h 86.197 ST2f F16A MP274-3 0.48 86.250 67.090 92.995 ST2h 93.452 ST2g 81.338 ST2h 93.599 ST2h 85.671 ST2h 93.411 ST2f 81.256 ST2h 93.250 ST2h 85.977 ST2f F16A XY2 0.48 85.000 93.221 ST2h 93.678 ST2g 81.536 ST2h 93.826 ST2h 85.879 ST2h 93.637 ST2f 81.453 ST2h 93.476 ST2h 86.186 ST2f F16A XY4 0.48 85.000 93.203 ST2h 93.660 ST2g 81.520 ST2h 93.808 ST2h 85.863 ST2h 93.620 ST2f 81.438 ST2h 93.458 ST2h 86.170 ST2f F16B MCC 0.48 90.500 67.090 93.217 ST2h 93.675 ST2g 81.533 ST2h 93.823 ST2h 85.876 ST2h 93.634 ST2f 81.450 ST2h 93.473 ST2h 86.183 ST2f F16B MP273-4 0.48 86.250 67.090 92.695 ST2h 93.150 ST2g 81.076 ST2h 93.297 ST2h 85.395 ST2h 93.110 ST2f 80.994 ST2h 92.949 ST2h 85.700 ST2f F2 480V SWGR 0.48 90.094 ST3c 91.130 ST3c 79.452 ST3c 90.306 ST3c 87.695 ST3c 91.147 ST3c 79.374 ST3c 90.315 ST3c 87.720 ST3c F21A MCC 0.48 89.804 ST3c 90.838 ST3c 79.179 ST3c 90.016 ST3c 87.410 ST3c 90.856 ST3c 79.102 ST3c 90.024 ST3c 87.434 ST3c F21B MCC 0.48 89.703 ST3c 90.736 ST3c 79.091 ST3c 89.915 ST3c 87.312 ST3c 90.754 ST3c 79.013 ST3c 89.923 ST3c 87.336 ST3c F21C MCC 0.48 89.801 ST3c 90.835 ST3c 79.177 ST3c 90.013 ST3c 87.407 ST3c 90.853 ST3c 79.099 ST3c 90.022 ST3c 87.432 ST3c F22 MCC 0.48 88.730 ST3c 89.780 ST3c 77.916 ST3c 88.945 ST3c 86.297 ST3c 89.798 ST3c 77.837 ST3c 88.954 ST3c 86.322 ST3c F23A MCC 0.48 89.503 ST3c 90.541 ST3c 78.824 ST3c 89.716 ST3c 87.097 ST3c 90.559 ST3c 78.746 ST3c 89.724 ST3c 87.122 ST3c F23B MCC 0.48 88.623 ST3c 89.666 ST3c 77.887 ST3c 88.837 ST3c 86.207 ST3c 89.684 ST3c 77.809 ST3c 88.845 ST3c 86.231 ST3c F3 480V SWGR 0.48 90.059 ST2h 91.120 ST2h 79.537 ST2h 90.282 ST2h 87.683 ST2h 91.139 ST2h 79.463 ST2h 90.290 ST2h 87.706 ST2h F31A MCC 0.48 89.513 ST2h 90.570 ST2h 79.041 ST2h 89.735 ST2h 87.149 ST2h 90.588 ST2h 78.967 ST2h 89.743 ST2h 87.172 ST2h F31B MCC 0.48 88.437 ST2h 89.484 ST2h 78.061 ST2h 88.657 ST2h 86.095 ST2h 89.502 ST2h 77.989 ST2h 88.665 ST2h 86.118 ST2h F32A MCC 0.48 89.830 ST2h 90.894 ST2h 79.293 ST2h 90.054 ST2h 87.452 ST2h 90.912 ST2h 79.219 ST2h 90.062 ST2h 87.475 ST2h F32B MCC 0.48 89.323 ST2h 90.392 ST2h 78.717 ST2h 89.547 ST2h 86.930 ST2h 90.410 ST2h 78.643 ST2h 89.556 ST2h 86.953 ST2h

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 22 Table 6. Scenarios ST2 and ST3 Large Motor Starting Transient Minimum Bus VOltages (Sheet 3 of 3) Acceptance Acceptance T=0 T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 Nom Criteria for Criteria for Case Case Case Case Case Case Case Case Case IDFrom kV Min %kV Min %kV Min with min Min with min Min with min Min with min Min with min Min with min Min with min Min with min Min with min (Continuous) (Starting) %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV F33A MCC 0.48 89.520 ST2h 90.578 ST2h 79.034 ST2h 89.742 ST2h 87.153 ST2h 90.596 ST2h 78.960 ST2h 89.750 ST2h 87.176 ST2h F33B MCC 0.48 89.454 ST2h 90.512 ST2h 78.963 ST2h 89.677 ST2h 87.086 ST2h 90.530 ST2h 78.890 ST2h 89.685 ST2h 87.109 ST2h F4 480V SWGR 0.48 92.104 ST2h 93.176 ST2h 81.494 ST2h 92.330 ST2h 89.707 ST2h 93.195 ST2h 81.420 ST2h 92.338 ST2h 89.730 ST2h F41A MCC 0.48 91.736 ST2h 92.806 ST2h 81.143 ST2h 91.961 ST2h 89.342 ST2h 92.824 ST2h 81.068 ST2h 91.969 ST2h 89.366 ST2h F41B MCC 0.48 91.717 ST2h 92.787 ST2h 81.122 ST2h 91.942 ST2h 89.323 ST2h 92.806 ST2h 81.047 ST2h 91.950 ST2h 89.346 ST2h F4A LOAD CTR 0.48 92.888 ST2h 93.961 ST2h 82.264 ST2h 93.113 ST2h 90.486 ST2h 93.980 ST2h 82.189 ST2h 93.122 ST2h 90.509 ST2h F6 480V SWGR 0.48 93.272 ST2h 94.350 ST2h 82.604 ST2h 93.498 ST2h 90.860 ST2h 94.368 ST2h 82.530 ST2h 93.507 ST2h 90.884 ST2h F61 MCC 0.48 93.272 ST2h 94.350 ST2h 82.604 ST2h 93.498 ST2h 90.860 ST2h 94.368 ST2h 82.530 ST2h 93.507 ST2h 90.884 ST2h F62 MCC 0.48 93.272 ST2h 94.350 ST2h 82.604 ST2h 93.498 ST2h 90.860 ST2h 94.368 ST2h 82.530 ST2h 93.507 ST2h 90.884 ST2h F63 MCC 0.48 93.272 ST2h 94.350 ST2h 82.604 ST2h 93.498 ST2h 90.860 ST2h 94.368 ST2h 82.530 ST2h 93.507 ST2h 90.884 ST2h F7 480V SWGR 0.48 92.897 ST2h 93.337 ST2g 81.704 ST2h 93.479 ST2h 85.856 ST2h 93.286 ST2f 81.625 ST2h 93.142 ST2h 86.137 ST2f F71 MCC 0.48 92.863 ST2h 93.302 ST2g 81.673 ST2h 93.444 ST2h 85.824 ST2h 93.251 ST2f 81.594 ST2h 93.108 ST2h 86.105 ST2f M22A MCC 0.48 90.059 ST2h 91.120 ST2h 79.537 ST2h 90.282 ST2h 87.683 ST2h 91.139 ST2h 79.463 ST2h 90.290 ST2h 87.706 ST2h YE2 MCC 0.24 87.080 65.000 94.437 ST2h 95.477 ST2g 82.222 ST2h 94.691 ST2h 87.668 ST2f 95.371 ST2f 82.291 ST2h 95.090 ST2h 86.844 ST2h YE2 MV5443C 0.24 85.000 67.090 94.260 ST2h 95.302 ST2g 82.019 ST2h 94.515 ST2h 87.478 ST2f 95.196 ST2f 82.088 ST2h 94.914 ST2h 86.651 ST2h YF2 MCC 0.24 86.780 65.000 95.162 ST2h 95.634 ST2g 83.120 ST2h 95.786 ST2h 87.598 ST2h 95.592 ST2f 83.035 ST2h 95.426 ST2h 87.915 ST2f YF2 MV5444C 0.24 85.000 67.090 95.002 ST2h 95.474 ST2g 82.936 ST2h 95.627 ST2h 87.424 ST2h 95.432 ST2f 82.851 ST2h 95.266 ST2h 87.741 ST2f

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 23 Table 7. Scenarios LF6 and LF12: Post-Accident Loading with Degraded Offsite Power Minimum and Maximum Bus Voltages (Sheet 1 of 5) Acceptance Acceptance Minimum Case with Maximum Case with ID From NomkV Criteria for Criteria for

                                          %kV    Minimum                 %kV       Maximum Min %kV                        Max %kV A 13.8KV SWGR          13.8      86.090    93.184     LF6g     105.210    97.635          LF6j A MP2-1                13.8      86.090    93.142     LF6g     105.210    97.594          LF6j A MP2-3                13.8      86.090    93.149     LF6g     105.210    97.601          LF6j A MP36-1               13.8      86.090    93.141     LF6g     105.210    97.593          LF6j A MP36-4               13.8      86.090    93.164     LF6g     105.210    97.615          LF6j B 13.8KV SWGR          13.8      86.090    93.182     LF6g     105.210    97.690          LF6i B MP2-2                13.8      86.090    93.127     LF6g     105.210    97.638          LF6i B MP2-4                13.8      86.090    93.134     LF6g     105.210    97.645          LF6i B MP36-2               13.8      86.090    93.132     LF6g     105.210    97.642          LF6i B MP36-3               13.8      86.090    93.162     LF6g     105.210    97.671          LF6i BF81 MCC               0.48      86.250    93.191     LF6g     105.410    97.047         LF6a BF81 DBCSBOP           0.48      82.000    93.112     LF6g     110.000    96.964         LF6a C1 4160 SWGR           4.16      91.010    93.228     LF6g     105.760    96.956       LF12a C1 MP3-1               4.16      86.540    93.052     LF6g     105.760    96.786       LF12a C1 MP37-1A             4.16      86.540    93.141     LF6g     105.760    96.956       LF12a C1 MP42-1              4.16      86.540    93.160     LF6g     105.760    96.890       LF12a C1 MP43-1              4.16      86.540    93.170     LF6g     105.760    96.899       LF12a C1 MP58-1              4.16      86.540    93.082     LF6g     105.760    96.815       LF12a C2 4160 SWGR           4.16      86.540    93.238     LF6g     105.760    96.963       LF12a D1 4160 SWGR           4.16      91.010    93.916     LF6g     105.760    97.786         LF6a D1 MP3-2               4.16      86.540    93.706     LF6g     105.760    97.585         LF6a D1 MP37-2A             4.16      86.540    93.916     LF6g     105.760    97.786         LF6a D1 MP42-2              4.16      86.540    93.863     LF6g     105.760    97.736         LF6a D1 MP43-2              4.16      86.540    93.857     LF6g     105.760    97.729         LF6a D1 MP58-2              4.16      86.540    93.828     LF6g     105.760    97.702         LF6a D2 4160 SWGR           4.16      86.540    93.922     LF6g     105.760    97.793         LF6a D3 4160 SWGR           4.16      86.540    93.915     LF6g     105.760    97.785         LF6a E1 480V SWGR           0.48      86.250    91.867     LF6g     105.410    96.206       LF12a E1 MP56-1              0.48      86.250    90.566     LF6g     105.410    94.966       LF12a E11A MCC               0.48      87.100    91.242     LF6g     105.410    95.953       LF12a E11A MC62-1            0.48      86.250    91.242     LF6g     105.410    95.953       LF12a E11A MP89-1A           0.48      86.250    91.242     LF6g     105.410    95.343       LF12a E11A MP89-1B           0.48      86.250    91.242     LF6g     105.410    95.953       LF12a E11A MP89-3A           0.48      86.250    91.242     LF6g     105.410    94.859       LF12a E11A MP89-3B           0.48      86.250    91.242     LF6g     105.410    95.953       LF12a E11B MCC               0.48      87.100    91.168     LF6g     105.410    95.911       LF12a E11B MC56-1            0.48      86.250    90.286     LF6g     105.410    95.074       LF12a E11C MCC               0.48      87.100    91.159     LF6g     105.410    95.944       LF12a E11C MC75-1            0.48      86.250    89.039     LF6g     105.410    93.937       LF12a E11D MCC               0.48      86.770    91.226     LF6g     105.410    95.926       LF12a E11D DBC1PN            0.48      82.000    91.226     LF6g     110.000    95.926       LF12a E11D MP37-1B           0.48      86.250    90.882     LF6g     105.410    95.926       LF12a E11D MRE5327           0.48      86.250    91.226     LF6g     105.410    95.634       LF12a E11E MCC               0.48      87.100    91.069     LF6g     105.410    95.940       LF12a E11E MV49060           0.48      85.000    89.067     LF6g     105.410    94.045       LF12a E12A MCC               0.48      90.000    91.758     LF6g     105.410    96.077       LF12a

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 24 Table 7. Scenarios LF6 and LF12: Post-Accident Loading with Degraded Offsite Power Minimum and Maximum Bus Voltages (Sheet 2 of 5) Acceptance Acceptance Minimum Case with Maximum Case with ID From NomkV Criteria for Criteria for

                                          %kV    Minimum                 %kV       Maximum Min %kV                        Max %kV E12A DBC1N             0.48      82.000    91.690     LF6g     110.000    96.009       LF12a E12A DBC1P             0.48      82.000    91.697     LF6g     110.000    96.017       LF12a E12A MC21-1            0.48      86.250    91.758     LF6g     105.410    95.366         LF6a E12A MC30-1            0.48      86.250    91.535     LF6g     105.410    95.864       LF12a E12A MC71-1            0.48      86.250    91.558     LF6g     105.410    95.886       LF12a E12A MC73-1            0.48      86.250    91.053     LF6g     105.410    95.405       LF12a E12A MS3311            0.48      86.250    91.758     LF6g     105.410    95.366         LF6a E12A MS61-1            0.48      86.250    91.758     LF6g     105.410    95.366         LF6a E12A MV5597            0.48      85.000    89.817     LF6g     105.410    94.228       LF12a E12A YRF1              0.48      90.000    91.618     LF6g     110.000    95.931       LF12a E12A YRF3              0.48      90.000    91.537     LF6g     110.000    95.846       LF12a E12B MCC               0.48      87.100    91.553     LF6g     105.410    96.037       LF12a E12B MC25-1            0.48      86.250    90.465     LF6g     105.410    95.001       LF12a E12B MC25-2            0.48      86.250    90.740     LF6g     105.410    95.262       LF12a E12B MC78-1            0.48      86.250    91.077     LF6g     105.410    95.583       LF12a E12B MP147-1           0.48      86.250    91.251     LF6g     105.410    95.749       LF12a E12B MP147-3           0.48      86.250    91.466     LF6g     105.410    95.954       LF12a E12B YE1               0.48      82.100    91.515     LF6g     105.410    96.000       LF12a E12C MCC               0.48      87.100    91.280     LF6g     105.410    95.658       LF12a E12C MC99-1            0.48      86.250    90.234     LF6g     105.410    94.661       LF12a E12C MC99-2            0.48      86.250    90.664     LF6g     105.410    95.071       LF12a E12C MF15-1            0.48      86.250    91.044     LF6g     105.410    95.433       LF12a E12D MCC               0.48      86.250    91.255     LF6g     105.410    95.634       LF12a E12E MCC               0.48      87.100    91.667     LF6g     105.410    95.716       LF12a E12E MC31-4            0.48      86.250    91.667     LF6g     105.410    95.274         LF6a E12E MC31-5            0.48      86.250    91.667     LF6g     105.410    95.274         LF6a E12E MP197-1           0.48      86.250    91.277     LF6g     105.410    95.343       LF12a E12F MCC               0.48      86.250    91.418     LF6g     105.410    96.018       LF12a E12F MC25-5            0.48      86.250    91.418     LF6g     105.410    96.018       LF12a E12F MP195-1           0.48      86.250    90.841     LF6g     105.410    95.469       LF12a E14 MCC                0.48      86.250    91.759     LF6g     105.410    96.103       LF12a E14 MC1-1              0.48      86.250                        105.410 E14 MC1-1LS            0.48      86.250    91.254     LF6g     105.410    95.622       LF12a E15 MCC                0.48      86.250    91.867     LF6g     105.410    96.206       LF12a E16A MCC               0.48      89.800    91.739     LF6g     105.410    96.074       LF12a E16A MP274-1           0.48      86.250    91.446     LF6g     105.410    95.767       LF12a E16A XY1               0.48      85.000    91.692     LF6g     110.000    96.025       LF12a E16A XY3               0.48      85.000    91.672     LF6g     110.000    96.004       LF12a E16B MCC               0.48      90.300    91.722     LF6g     105.410    96.057       LF12a E16B MP273-1           0.48      86.250    91.560     LF6g     105.410    95.887       LF12a E2 480V SWGR           0.48                89.652     LF6g                94.069          LF6j E21A MCC               0.48                89.066     LF6g                93.470          LF6j E21B MCC               0.48                89.036     LF6g                93.438          LF6j E21C MCC               0.48                88.541     LF6g                92.929          LF6j E21D MCC               0.48                89.066     LF6g                93.470          LF6j E22A MCC               0.48                88.763     LF6g                93.163          LF6j

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 25 Table 7. Scenarios LF6 and LF12: Post-Accident Loading with Degraded Offsite Power Minimum and Maximum Bus Voltages (Sheet 3 of 5) Acceptance Acceptance Minimum Case with Maximum Case with ID From NomkV Criteria for Criteria for

                                          %kV    Minimum                 %kV       Maximum Min %kV                        Max %kV E22B MCC               0.48                88.750     LF6g                93.150          LF6j E23A MCC               0.48                89.220     LF6g                93.635          LF6j E23B MCC               0.48                88.727     LF6g                93.136          LF6j E3 480V SWGR           0.48                89.963     LF6g                94.417          LF6j E31A MCC               0.48                88.269     LF6g                92.732          LF6j E31B MCC               0.48                88.180     LF6g                92.647          LF6j E32A MCC               0.48                89.854     LF6g                94.307          LF6j E32B MCC               0.48                89.357     LF6g                93.814          LF6j E33A MCC               0.48                89.327     LF6g                93.798          LF6j E33B MCC               0.48                89.327     LF6g                93.798          LF6j E4 480V SWGR           0.48                91.111     LF6g                95.582          LF6j E41A MCC               0.48                90.769     LF6g                95.232          LF6j E41B MCC               0.48                90.479     LF6g                94.941          LF6j E42 MCC                0.48                90.833     LF6g                94.497       LF12a E43 MCC                0.48                91.111     LF6g                95.582          LF6j E6 480V SWGR           0.48                93.184     LF6g                97.635          LF6j E61 MCC                0.48                93.184     LF6g                97.635          LF6j E62 MCC                0.48                93.184     LF6g                97.635          LF6j E63 MCC                0.48                93.184     LF6g                97.635          LF6j EF12C MCC              0.48      86.250    91.242     LF6g     105.410    95.622       LF12a EF12C MF15-3           0.48      86.250    91.242     LF6g     105.410    95.622       LF12a EF12D MCC              0.48      86.250    91.758     LF6g     105.410    96.077       LF12a EF41 AE4               0.48                91.111     LF6g                95.582          LF6j EF41 BF4               0.48                92.015     LF6g                96.496          LF6i F1 480V SWGR           0.48      86.250    92.725     LF6g     105.410    97.213       LF12a F1 MP56-2              0.48      86.250    91.509     LF6g     105.410    96.055       LF12a F11A MCC               0.48      87.100    92.253     LF6g     105.410    96.891       LF12a F11A MC21-2            0.48      86.250    92.253     LF6g     105.410    96.251         LF6a F11A MC62-2            0.48      86.250    92.253     LF6g     105.410    96.891       LF12a F11A MC75-2            0.48      86.250    91.035     LF6g     105.410    95.732       LF12a F11A MRE5328           0.48      86.250    92.253     LF6g     105.410    96.658       LF12a F11A MS3321            0.48      86.250    92.253     LF6g     105.410    96.251         LF6a F11A MV4907            0.48      85.000    90.307     LF6g     105.410    95.042       LF12a F11B MCC               0.48      87.100    92.192     LF6g     105.410    96.891       LF12a F11C MCC               0.48      87.100    92.188     LF6g     105.410    96.873       LF12a F11C MP37-2B           0.48      86.250    91.859     LF6g     105.410    96.873       LF12a F11C MP37-2D           0.48      86.250    92.188     LF6g     105.410    96.451       LF12a F11D MCC               0.48      87.100    91.972     LF6g     105.410    96.841       LF12a F11D DBC2PN            0.48      82.000    91.972     LF6g     110.000    96.841       LF12a F11D MC31-3            0.48      86.250    91.972     LF6g     105.410    96.514       LF12a F11D MP89-2A           0.48      86.250    91.972     LF6g     105.410    96.115       LF12a F11D MP89-2B           0.48      86.250    91.972     LF6g     105.410    96.841       LF12a F11E MCC               0.48      86.250    92.186     LF6g     105.410    96.595       LF12a F11E MC31-1            0.48      86.250    92.186     LF6g     105.410    96.180         LF6a F11E MC31-2            0.48      86.250    92.186     LF6g     105.410    96.180         LF6a F11F MCC               0.48      86.250    92.151     LF6g     105.410    96.558       LF12a

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 26 Table 7. Scenarios LF6 and LF12: Post-Accident Loading with Degraded Offsite Power Minimum and Maximum Bus Voltages (Sheet 4 of 5) Acceptance Acceptance Minimum Case with Maximum Case with ID From NomkV Criteria for Criteria for

                                          %kV    Minimum                 %kV       Maximum Min %kV                        Max %kV F12A MCC               0.48      90.000    92.590     LF6g     105.410    97.082       LF12a F12A DBC2N             0.48      82.000    92.493     LF6g     110.000    96.985       LF12a F12A DBC2P             0.48      82.000    92.493     LF6g     110.000    96.985       LF12a F12A MC133             0.48      86.250    91.414     LF6g     105.410    95.961       LF12a F12A MC30-2            0.48      86.250    92.207     LF6g     105.410    96.717       LF12a F12A MC73-2            0.48      86.250    90.254     LF6g     105.410    94.860       LF12a F12A MP195-2           0.48      86.250    92.053     LF6g     105.410    96.570       LF12a F12A MP198-1           0.48      86.250    91.938     LF6g     105.410    96.461       LF12a F12A MS61-2            0.48      86.250    92.590     LF6g     105.410    96.597         LF6a F12A MV5598            0.48      85.000    91.177     LF6g     105.410    95.736       LF12a F12A YRF2              0.48      90.000    92.426     LF6g     110.000    96.910       LF12a F12A YRF4              0.48      90.000    92.356     LF6g     110.000    96.836       LF12a F12B MCC               0.48      87.100    92.429     LF6g     105.410    97.064       LF12a F12B MC25-3            0.48      86.250    91.777     LF6g     105.410    96.444       LF12a F12B MC25-4            0.48      86.250    91.472     LF6g     105.410    96.154       LF12a F12B MC78-2            0.48      86.250    92.132     LF6g     105.410    96.781       LF12a F12B MP147-2           0.48      86.250    92.115     LF6g     105.410    96.766       LF12a F12B MP147-4           0.48      86.250    92.332     LF6g     105.410    96.972       LF12a F12B YF1               0.48      81.600    92.391     LF6g     105.410    97.028       LF12a F12C MCC               0.48      87.100    92.258     LF6g     105.410    96.806       LF12a F12C MF15-2            0.48      87.100    92.044     LF6g     105.410    96.602       LF12a F12D MCC               0.48      86.250    92.176     LF6g     105.410    96.728       LF12a F12D MC99-3            0.48      86.250    91.461     LF6g     105.410    96.047       LF12a F12D MC99-4            0.48      86.250    91.315     LF6g     105.410    95.909       LF12a F13 MCC                0.48      86.250    93.465     LF6g     105.410    97.318         LF6a F14 MCC                0.48      86.250    92.598     LF6g     105.410    97.092       LF12a F14 MC1-2              0.48      86.250                        105.410 F14 MC1-2LS            0.48      86.250    92.038     LF6g     105.410    96.558       LF12a F15 MCC                0.48      86.250    92.725     LF6g     105.410    97.213       LF12a F16A MCC               0.48      89.700    92.699     LF6g     105.410    97.186       LF12a F16A MC25-6            0.48      86.250    92.699     LF6g     105.410    97.186       LF12a F16A MP274-3           0.48      86.250    92.462     LF6g     105.410    96.938       LF12a F16A XY2               0.48      85.000    92.687     LF6g     110.000    97.173       LF12a F16A XY4               0.48      85.000    92.669     LF6g     110.000    97.154       LF12a F16B MCC               0.48      90.500    92.683     LF6g     105.410    97.169       LF12a F16B MP273-4           0.48      86.250    92.164     LF6g     105.410    96.625       LF12a F2 480V SWGR           0.48                90.417     LF6g                94.960          LF6i F21A MCC               0.48                90.127     LF6g                94.662          LF6i F21B MCC               0.48                90.026     LF6g                94.555          LF6i F21C MCC               0.48                90.125     LF6g                94.659          LF6i F22 MCC                0.48                89.625     LF6g                94.200          LF6i F23A MCC               0.48                89.827     LF6g                94.382          LF6i F23B MCC               0.48                88.949     LF6g                93.521          LF6i F3 480V SWGR           0.48                89.914     LF6g                94.355          LF6i F31A MCC               0.48                89.369     LF6g                93.789          LF6i F31B MCC               0.48                88.294     LF6g                92.672          LF6i

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 27 Table 7. Scenarios LF6 and LF12: Post-Accident Loading with Degraded Offsite Power Minimum and Maximum Bus Voltages (Sheet 5 of 5) Acceptance Acceptance Minimum Case with Maximum Case with ID From NomkV Criteria for Criteria for

                                          %kV    Minimum                 %kV       Maximum Min %kV                        Max %kV F32A MCC               0.48                89.667     LF6g                94.114          LF6i F32B MCC               0.48                89.158     LF6g                93.630          LF6i F33A MCC               0.48                89.376     LF6g                93.801          LF6i F33B MCC               0.48                89.310     LF6g                93.736          LF6i F4 480V SWGR           0.48                92.015     LF6g                96.496          LF6i F41A MCC               0.48                91.646     LF6g                96.120          LF6i F41B MCC               0.48                91.628     LF6g                96.102          LF6i F4A LOAD CTR           0.48                92.798     LF6g                97.288          LF6i F6 480V SWGR           0.48                93.182     LF6g                97.690          LF6i F61 MCC                0.48                93.182     LF6g                97.690          LF6i F62 MCC                0.48                93.182     LF6g                97.690          LF6i F63 MCC                0.48                93.182     LF6g                97.690          LF6i F7 480V SWGR           0.48                93.590     LF6g                97.448         LF6a F71 MCC                0.48                93.555     LF6g                97.412         LF6a M22A MCC               0.48                89.914     LF6g                94.355          LF6i YE2 MCC                0.24      87.080    92.495     LF6g     105.410    98.184       LF12a YE2 MV5443C            0.24      85.000    92.314     LF6g     105.410    98.014       LF12a YF2 MCC                0.24      86.780    93.829     LF6g     105.410    99.232       LF12a YF2 MV5444C            0.24      85.000    93.666     LF6g     105.410    99.078       LF12a

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Table 8. Scenario ST4 Post-Accident Loading at DVR Page 28 Trip Setpoint Analytical Limit Minimum Bus Voltages (Sheet 1 of 4) Acceptance Acceptance T=-1 T=0 T=3 T=4 Criteria for Criteria for Case Case Case Case IDFrom Min %kV Min %kV Min with min Min with min Min with min Min with min (Continuous (Starting) %kV %kV %kV %kV %kV %kV %kV %kV A 13.8KV SWGR 86.090 76.530 89.286 ST4b 89.149 ST4b 89.260 ST4b 89.285 ST4b A MP2-1 86.090 76.530 89.242 ST4b 89.105 ST4b 89.216 ST4b 89.241 ST4b A MP2-3 86.090 76.530 89.249 ST4b 89.112 ST4b 89.223 ST4b 89.248 ST4b A MP36-1 86.090 76.530 89.241 ST4b 89.104 ST4b 89.215 ST4b 89.240 ST4b A MP36-4 86.090 76.530 89.265 ST4b 89.127 ST4b 89.238 ST4b 89.263 ST4b B 13.8KV SWGR 86.090 76.530 89.625 ST4b 89.487 ST4b 89.598 ST4b 89.624 ST4b B MP2-2 86.090 76.530 89.569 ST4b 89.431 ST4b 89.542 ST4b 89.568 ST4b B MP2-4 86.090 76.530 89.576 ST4b 89.438 ST4b 89.549 ST4b 89.575 ST4b B MP36-2 86.090 76.530 89.574 ST4b 89.436 ST4b 89.547 ST4b 89.573 ST4b B MP36-3 86.090 76.530 89.605 ST4b 89.467 ST4b 89.578 ST4b 89.604 ST4b BF81 MCC 86.250 76.670 89.493 ST4b 89.112 ST4b 89.419 ST4b 89.492 ST4b BF81 DBCSBOP 82.000 89.417 ST4b 89.036 ST4b 89.343 ST4b 89.416 ST4b C1 4160 SWGR 67.310 88.950 ST4a4 88.933 ST4b 88.950 ST4a4 88.950 ST4a4 C1 MP3-1 86.540 67.310 88.765 ST4a4 88.748 ST4b 88.765 ST4a4 88.765 ST4a4 C1 MP37-1A 86.540 76.930 88.950 ST4a4 88.933 ST4b 88.950 ST4a4 88.950 ST4a4 C1 MP42-1 86.540 67.310 88.879 ST4a4 88.861 ST4b 88.879 ST4a4 88.879 ST4a4 C1 MP43-1 86.540 67.310 88.889 ST4a4 88.872 ST4b 88.889 ST4a4 88.889 ST4a4 C1 MP58-1 86.540 67.310 88.797 ST4a4 88.779 ST4b 88.797 ST4a4 88.797 ST4a4 C2 4160 SWGR 86.540 76.930 89.321 ST4b 88.943 ST4b 89.250 ST4b 89.320 ST4b D1 4160 SWGR 67.310 88.950 ST4a4 88.950 ST4a4 88.950 ST4a4 88.950 ST4a4 D1 MP3-2 86.540 67.310 88.728 ST4a4 88.728 ST4a4 88.728 ST4a4 88.728 ST4a4 D1 MP37-2A 86.540 76.930 88.950 ST4a4 88.950 ST4a4 88.950 ST4a4 88.950 ST4a4 D1 MP42-2 86.540 67.310 88.894 ST4a4 88.894 ST4a4 88.894 ST4a4 88.894 ST4a4 D1 MP43-2 86.540 67.310 88.887 ST4a4 88.887 ST4a4 88.887 ST4a4 88.887 ST4a4 D1 MP58-2 86.540 67.310 88.857 ST4a4 88.857 ST4a4 88.857 ST4a4 88.857 ST4a4 D2 4160 SWGR 86.540 76.930 90.211 ST4b 89.828 ST4b 90.137 ST4b 90.210 ST4b D3 4160 SWGR 86.540 76.930 90.204 ST4b 89.821 ST4b 90.130 ST4b 90.202 ST4b E1 480V SWGR 86.250 67.090 87.814 ST4a4 85.252 ST4b 87.503 ST4a5 87.814 ST4a4 E1 MP56-1 86.250 67.090 86.451 ST4a4 83.847 ST4b 86.136 ST4a5 86.451 ST4a4 E11A MCC 87.100 67.090 87.535 ST4a4 83.459 ST4b 87.048 ST4a5 87.535 ST4a4 E11A MC62-1 86.250 67.090 87.535 ST4a4 83.459 ST4b 87.049 ST4a5 87.535 ST4a4 E11A MP89-1A 86.250 67.090 86.866 ST4a4 82.757 ST4b 86.376 ST4a5 86.866 ST4a4 E11A MP89-1B 86.250 67.090 87.535 ST4a4 83.459 ST4b 87.048 ST4a5 87.535 ST4a4 E11A MP89-3A 86.250 67.090 86.333 ST4a4 82.196 ST4b 85.840 ST4a5 86.333 ST4a4 E11A MP89-3B 86.250 67.090 87.535 ST4a4 83.459 ST4b 87.048 ST4a5 87.535 ST4a4 E11B MCC 87.100 67.090 87.490 ST4a4 83.349 ST4b 87.003 ST4a5 87.490 ST4a4 E11B MC56-1 86.250 67.090 86.570 ST4a4 82.383 ST4b 86.078 ST4a5 86.570 ST4a4 E11C MCC 87.100 67.090 87.526 ST4a4 83.138 ST4b 86.988 ST4a5 87.526 ST4a4 E11C MC75-1 86.250 67.090 85.313 ST4a4 80.800 ST4b 84.760 ST4a5 85.313 ST4a4 E11D MCC 86.770 67.090 87.506 ST4a4 83.149 ST4b 87.012 ST4b 87.506 ST4a4 E11D DBC1PN 82.000 87.506 ST4a4 83.149 ST4b 87.012 ST4b 87.506 ST4a4 E11D MP37-1B 86.250 67.090 87.506 ST4a4 83.149 ST4b 87.012 ST4b 87.506 ST4a4 E11D MRE5327 86.250 67.090 87.186 ST4a4 82.812 ST4b 86.690 ST4b 87.186 ST4a4 E11E MCC 87.100 67.090 87.522 ST4a4 83.134 ST4b 86.984 ST4a5 87.522 ST4a4 E11E MV49060 85.000 67.090 85.434 ST4a4 80.928 ST4b 84.882 ST4a5 85.434 ST4a4 E12A MCC 87.100 67.090 87.679 ST4a4 85.116 ST4b 87.369 ST4a5 87.679 ST4a4 E12A DBC1N 82.000 87.611 ST4a4 85.048 ST4b 87.301 ST4a5 87.611 ST4a4 E12A DBC1P 82.000 87.619 ST4a4 85.055 ST4b 87.308 ST4a5 87.619 ST4a4 E12A MC21-1 86.250 67.090 85.982 ST4a4 83.365 ST4b 85.665 ST4a5 85.982 ST4a4 E12A MC30-1 86.250 67.090 87.446 ST4a4 84.875 ST4b 87.134 ST4a5 87.446 ST4a4 E12A MC71-1 86.250 67.090 87.470 ST4a4 84.900 ST4b 87.158 ST4a5 87.470 ST4a4

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Table 8. Scenario ST4 Post-Accident Loading at DVR Page 29 Trip Setpoint Analytical Limit Minimum Bus Voltages (Sheet 2 of 4) Acceptance Acceptance T=-1 T=0 T=3 T=4 Criteria for Criteria for Case Case Case Case IDFrom Min %kV Min %kV Min with min Min with min Min with min Min with min (Continuous (Starting) %kV %kV %kV %kV %kV %kV %kV %kV E12A MC73-1 86.250 67.090 86.941 ST4a4 84.355 ST4b 86.628 ST4a5 86.941 ST4a4 E12A MS3311 86.250 67.090 86.378 ST4a4 83.774 ST4b 86.063 ST4a5 86.378 ST4a4 E12A MS61-1 86.250 67.090 85.107 ST4a4 82.460 ST4b 84.786 ST4a5 85.107 ST4a4 E12A MV5597 85.000 67.090 85.643 ST4a4 83.014 ST4b 85.325 ST4a5 85.643 ST4a4 E12A YRF1 85.000 87.546 ST4a4 84.987 ST4b 87.236 ST4a5 87.546 ST4a4 E12A YRF3 85.000 87.469 ST4a4 84.911 ST4b 87.159 ST4a5 87.469 ST4a4 E12B MCC 87.100 67.090 87.633 ST4a4 84.946 ST4b 87.322 ST4a5 87.633 ST4a4 E12B MC25-1 86.250 67.090 86.495 ST4a4 83.771 ST4b 86.180 ST4a5 86.495 ST4a4 E12B MC25-2 86.250 67.090 86.783 ST4a4 84.068 ST4b 86.469 ST4a5 86.783 ST4a4 E12B MC78-1 86.250 67.090 87.135 ST4a4 84.432 ST4b 86.823 ST4a5 87.135 ST4a4 E12B MP147-1 86.250 67.090 87.317 ST4a4 84.620 ST4b 87.005 ST4a5 87.317 ST4a4 E12B MP147-3 86.250 67.090 87.543 ST4a4 84.853 ST4b 87.231 ST4a5 87.543 ST4a4 E12B YE1 82.100 87.593 ST4a4 84.905 ST4b 87.282 ST4a5 87.593 ST4a4 E12C MCC 87.100 67.090 87.219 ST4a4 84.641 ST4b 86.907 ST4a5 87.219 ST4a4 E12C MC99-1 86.250 67.090 86.123 ST4a4 83.511 ST4b 85.806 ST4a5 86.123 ST4a4 E12C MC99-2 86.250 67.090 86.574 ST4a4 83.976 ST4b 86.259 ST4a5 86.574 ST4a4 E12C MF15-1 86.250 67.090 86.972 ST4a4 84.387 ST4b 86.658 ST4a5 86.972 ST4a4 E12D MCC 86.250 67.090 87.193 ST4a4 84.614 ST4b 86.880 ST4a5 87.193 ST4a4 E12E MCC 87.100 67.090 87.282 ST4a4 84.707 ST4b 86.970 ST4a5 87.282 ST4a4 E12E MC31-4 86.250 67.090 85.511 ST4a4 82.879 ST4b 85.192 ST4a5 85.511 ST4a4 E12E MC31-5 86.250 67.090 86.008 ST4a4 83.392 ST4b 85.691 ST4a5 86.008 ST4a4 E12E MP197-1 86.250 67.090 86.873 ST4a4 84.284 ST4b 86.559 ST4a5 86.873 ST4a4 E12F MCC 86.250 67.090 87.613 ST4a4 84.925 ST4b 87.302 ST4a5 87.613 ST4a4 E12F MC25-5 86.250 67.090 87.613 ST4a4 84.925 ST4b 87.302 ST4a5 87.613 ST4a4 E12F MP195-1 86.250 67.090 87.010 ST4a4 84.303 ST4b 86.697 ST4a5 87.010 ST4a4 E14 MCC 86.250 67.090 87.700 ST4a4 85.136 ST4b 87.390 ST4a5 87.700 ST4a4 E14 MC1-1 86.250 67.090 E14 MC1-1LS 86.250 67.090 87.173 ST4a4 84.591 ST4b 86.860 ST4a5 87.173 ST4a4 E15 MCC 86.250 67.090 87.814 ST4a4 85.252 ST4b 87.503 ST4a5 87.814 ST4a4 E16A MCC 89.800 67.090 87.689 ST4a4 85.112 ST4b 87.379 ST4a5 87.689 ST4a4 E16A MP274-1 86.250 67.090 87.409 ST4a4 84.840 ST4b 87.100 ST4a5 87.409 ST4a4 E16A XY1 85.000 87.645 ST4a4 85.068 ST4b 87.335 ST4a5 87.645 ST4a4 E16A XY3 85.000 87.626 ST4a4 85.050 ST4b 87.316 ST4a5 87.626 ST4a4 E16B MCC 90.300 67.090 87.674 ST4a4 84.966 ST4b 87.364 ST4a5 87.674 ST4a4 E16B MP273-1 86.250 67.090 87.519 ST4a4 84.815 ST4b 87.209 ST4a5 87.519 ST4a4 E2 480V SWGR 85.777 ST4b 85.573 ST4b 85.725 ST4b 85.750 ST4b E21A MCC 85.203 ST4b 84.999 ST4b 85.151 ST4b 85.176 ST4b E21B MCC 85.174 ST4b 84.970 ST4b 85.122 ST4b 85.147 ST4b E21C MCC 84.690 ST4b 84.488 ST4b 84.639 ST4b 84.663 ST4b E21D MCC 85.203 ST4b 84.999 ST4b 85.151 ST4b 85.176 ST4b E22A MCC 84.902 ST4b 84.623 ST4b 84.831 ST4b 84.856 ST4b E22B MCC 84.889 ST4b 84.611 ST4b 84.818 ST4b 84.843 ST4b E23A MCC 85.345 ST4b 85.141 ST4b 85.293 ST4b 85.318 ST4b E23B MCC 84.857 ST4b 84.654 ST4b 84.805 ST4b 84.830 ST4b E3 480V SWGR 86.114 ST4b 85.977 ST4b 86.088 ST4b 86.113 ST4b E31A MCC 84.409 ST4b 84.271 ST4b 84.382 ST4b 84.408 ST4b E31B MCC 84.315 ST4b 84.177 ST4b 84.289 ST4b 84.314 ST4b E32A MCC 86.013 ST4b 85.876 ST4b 85.987 ST4b 86.012 ST4b E32B MCC 85.512 ST4b 85.374 ST4b 85.485 ST4b 85.510 ST4b E33A MCC 85.462 ST4b 85.324 ST4b 85.436 ST4b 85.461 ST4b E33B MCC 85.462 ST4b 85.324 ST4b 85.436 ST4b 85.461 ST4b

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Table 8. Scenario ST4 Post-Accident Loading at DVR Page 30 Trip Setpoint Analytical Limit Minimum Bus Voltages (Sheet 3 of 4) Acceptance Acceptance T=-1 T=0 T=3 T=4 Criteria for Criteria for Case Case Case Case IDFrom Min %kV Min %kV Min with min Min with min Min with min Min with min (Continuous (Starting) %kV %kV %kV %kV %kV %kV %kV %kV E4 480V SWGR 87.189 ST4b 87.051 ST4b 87.162 ST4b 87.187 ST4b E41A MCC 86.854 ST4b 86.716 ST4b 86.828 ST4b 86.853 ST4b E41B MCC 86.564 ST4b 86.426 ST4b 86.537 ST4b 86.563 ST4b E42 MCC 86.980 ST4b 86.608 ST4b 86.910 ST4b 86.979 ST4b E43 MCC 87.189 ST4b 87.051 ST4b 87.162 ST4b 87.187 ST4b E6 480V SWGR 89.286 ST4b 89.149 ST4b 89.260 ST4b 89.285 ST4b E61 MCC 89.286 ST4b 89.149 ST4b 89.260 ST4b 89.285 ST4b E62 MCC 89.286 ST4b 89.149 ST4b 89.260 ST4b 89.285 ST4b E63 MCC 89.286 ST4b 89.149 ST4b 89.260 ST4b 89.285 ST4b EF12C MCC 86.250 67.090 87.179 ST4a4 84.600 ST4b 86.867 ST4a5 87.179 ST4a4 EF12C MF15-3 86.250 67.090 87.179 ST4a4 84.600 ST4b 86.867 ST4a5 87.179 ST4a4 EF12D MCC 86.250 67.090 87.679 ST4a4 85.116 ST4b 87.369 ST4a5 87.679 ST4a4 EF41 AE4 87.189 ST4b 87.051 ST4b 87.162 ST4b 87.187 ST4b EF41 BF4 88.479 ST4b 88.342 ST4b 88.452 ST4b 88.478 ST4b F1 480V SWGR 86.250 67.090 87.964 ST4a4 86.270 ST4b 87.660 ST4a5 87.964 ST4a4 F1 MP56-2 86.250 67.090 86.681 ST4a4 84.960 ST4b 86.372 ST4a5 86.681 ST4a4 F11A MCC 87.100 67.090 87.621 ST4a4 84.890 ST4b 87.202 ST4a5 87.621 ST4a4 F11A MC21-2 86.250 67.090 86.907 ST4a4 84.152 ST4b 86.485 ST4a5 86.907 ST4a4 F11A MC62-2 86.250 67.090 87.621 ST4a4 84.890 ST4b 87.202 ST4a5 87.621 ST4a4 F11A MC75-2 86.250 67.090 86.336 ST4a4 83.562 ST4b 85.911 ST4a5 86.336 ST4a4 F11A MRE5328 86.250 67.090 87.364 ST4a4 84.624 ST4b 86.944 ST4a5 87.364 ST4a4 F11A MS3321 86.250 67.090 86.832 ST4a4 84.075 ST4b 86.409 ST4a5 86.832 ST4a4 F11A MV4907 85.000 67.090 85.565 ST4a4 82.764 ST4b 85.136 ST4a5 85.565 ST4a4 F11B MCC 87.100 67.090 87.621 ST4a4 84.890 ST4b 87.202 ST4a5 87.621 ST4a4 F11C MCC 87.100 67.090 87.601 ST4a4 84.387 ST4b 87.182 ST4a5 87.601 ST4a4 F11C MP37-2B 86.250 67.090 87.601 ST4a4 84.387 ST4b 87.182 ST4a5 87.601 ST4a4 F11C MP37-2D 86.250 67.090 87.135 ST4a4 83.902 ST4b 86.714 ST4a5 87.135 ST4a4 F11D MCC 87.100 67.090 87.567 ST4a4 83.296 ST4b 86.889 ST4a5 87.567 ST4a4 F11D DBC2PN 82.000 87.567 ST4a4 83.296 ST4b 86.889 ST4a5 87.567 ST4a4 F11D MC31-3 86.250 67.090 87.204 ST4a4 82.915 ST4b 86.524 ST4a5 87.204 ST4a4 F11D MP89-2A 86.250 67.090 86.762 ST4a4 82.449 ST4b 86.078 ST4a5 86.762 ST4a4 F11D MP89-2B 86.250 67.090 87.567 ST4a4 83.296 ST4b 86.889 ST4a5 87.567 ST4a4 F11E MCC 86.250 67.090 87.307 ST4a4 84.569 ST4b 86.887 ST4a5 87.307 ST4a4 F11E MC31-1 86.250 67.090 85.132 ST4a4 82.319 ST4b 84.701 ST4a5 85.132 ST4a4 F11E MC31-2 86.250 67.090 84.150 ST4a4 81.300 ST4b 83.714 ST4a5 84.150 ST4a4 F11F MCC 86.250 67.090 87.274 ST4a4 84.537 ST4b 86.854 ST4a5 87.274 ST4a4 F12A MCC 87.100 67.090 87.829 ST4a4 86.134 ST4b 87.525 ST4a5 87.829 ST4a4 F12A DBC2N 82.000 87.732 ST4a4 86.036 ST4b 87.427 ST4a5 87.732 ST4a4 F12A DBC2P 82.000 87.732 ST4a4 86.036 ST4b 87.427 ST4a5 87.732 ST4a4 F12A MC133 86.250 67.090 86.587 ST4a4 84.866 ST4b 86.278 ST4a5 86.587 ST4a4 F12A MC30-2 86.250 67.090 87.426 ST4a4 85.722 ST4b 87.119 ST4a5 87.426 ST4a4 F12A MC73-2 86.250 67.090 85.357 ST4a4 83.609 ST4b 85.043 ST4a5 85.357 ST4a4 F12A MP195-2 86.250 67.090 87.263 ST4a4 85.556 ST4b 86.956 ST4a5 87.263 ST4a4 F12A MP198-1 86.250 67.090 87.141 ST4a4 85.432 ST4b 86.834 ST4a5 87.141 ST4a4 F12A MS61-2 86.250 67.090 85.652 ST4a4 83.910 ST4b 85.339 ST4a5 85.652 ST4a4 F12A MV5598 85.000 67.090 86.336 ST4a4 84.610 ST4b 86.026 ST4a5 86.336 ST4a4 F12A YRF2 85.000 87.674 ST4a4 85.981 ST4b 87.370 ST4a5 87.674 ST4a4 F12A YRF4 85.000 87.607 ST4a4 85.916 ST4b 87.303 ST4a5 87.607 ST4a4 F12B MCC 87.100 67.090 87.803 ST4a4 85.977 ST4b 87.497 ST4a5 87.803 ST4a4 F12B MC25-3 86.250 67.090 87.116 ST4a4 85.275 ST4b 86.808 ST4a5 87.116 ST4a4 F12B MC25-4 86.250 67.090 86.793 ST4a4 84.946 ST4b 86.485 ST4a5 86.793 ST4a4

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Table 8. Scenario ST4 Post-Accident Loading at DVR Page 31 Trip Setpoint Analytical Limit Minimum Bus Voltages (Sheet 4 of 4) Acceptance Acceptance T=-1 T=0 T=3 T=4 Criteria for Criteria for Case Case Case Case IDFrom Min %kV Min %kV Min with min Min with min Min with min Min with min (Continuous (Starting) %kV %kV %kV %kV %kV %kV %kV %kV F12B MC78-2 86.250 67.090 87.489 ST4a4 85.657 ST4b 87.183 ST4a5 87.489 ST4a4 F12B MP147-2 86.250 67.090 87.472 ST4a4 85.640 ST4b 87.166 ST4a5 87.472 ST4a4 F12B MP147-4 86.250 67.090 87.700 ST4a4 85.872 ST4b 87.395 ST4a5 87.700 ST4a4 F12B YF1 81.600 87.763 ST4a4 85.936 ST4b 87.458 ST4a5 87.763 ST4a4 F12C MCC 87.100 67.090 87.523 ST4a4 85.822 ST4b 87.218 ST4a5 87.523 ST4a4 F12C MF15-2 87.100 67.090 87.298 ST4a4 85.591 ST4b 86.991 ST4a5 87.298 ST4a4 F12D MCC 86.250 67.090 87.437 ST4a4 85.733 ST4b 87.131 ST4a5 87.437 ST4a4 F12D MC99-3 86.250 67.090 86.682 ST4a4 84.963 ST4b 86.373 ST4a5 86.682 ST4a4 F12D MC99-4 86.250 67.090 86.528 ST4a4 84.806 ST4b 86.219 ST4a5 86.528 ST4a4 F13 MCC 86.250 67.090 88.737 ST4b 88.351 ST4b 88.662 ST4b 88.735 ST4b F14 MCC 86.250 67.090 87.830 ST4a4 86.133 ST4b 87.525 ST4a5 87.830 ST4a4 F14 MC1-2 86.250 67.090 F14 MC1-2LS 86.250 67.090 87.239 ST4a4 85.530 ST4b 86.932 ST4a5 87.239 ST4a4 F15 MCC 86.250 67.090 87.964 ST4a4 86.270 ST4b 87.660 ST4a5 87.964 ST4a4 F16A MCC 89.700 67.090 87.940 ST4a4 86.235 ST4b 87.635 ST4a5 87.940 ST4a4 F16A MC25-6 86.250 67.090 87.940 ST4a4 86.235 ST4b 87.635 ST4a5 87.940 ST4a4 F16A MP274-3 86.250 67.090 87.715 ST4a4 86.015 ST4b 87.412 ST4a5 87.715 ST4a4 F16A XY2 85.000 87.928 ST4a4 86.224 ST4b 87.624 ST4a5 87.928 ST4a4 F16A XY4 85.000 87.911 ST4a4 86.208 ST4b 87.607 ST4a5 87.911 ST4a4 F16B MCC 90.500 67.090 87.925 ST4a4 86.221 ST4b 87.620 ST4a5 87.925 ST4a4 F16B MP273-4 86.250 67.090 87.433 ST4a4 85.738 ST4b 87.130 ST4a5 87.433 ST4a4 F2 480V SWGR 86.827 ST4b 86.614 ST4b 86.775 ST4b 86.801 ST4b F21A MCC 86.543 ST4b 86.266 ST4b 86.475 ST4b 86.501 ST4b F21B MCC 86.445 ST4b 86.169 ST4b 86.378 ST4b 86.404 ST4b F21C MCC 86.540 ST4b 86.264 ST4b 86.472 ST4b 86.498 ST4b F22 MCC 86.007 ST4b 85.793 ST4b 85.955 ST4b 85.981 ST4b F23A MCC 86.226 ST4b 86.013 ST4b 86.174 ST4b 86.201 ST4b F23B MCC 85.331 ST4b 85.117 ST4b 85.279 ST4b 85.306 ST4b F3 480V SWGR 86.465 ST4b 86.330 ST4b 86.439 ST4b 86.464 ST4b F31A MCC 85.937 ST4b 85.802 ST4b 85.911 ST4b 85.936 ST4b F31B MCC 84.894 ST4b 84.760 ST4b 84.868 ST4b 84.893 ST4b F32A MCC 86.233 ST4b 86.097 ST4b 86.206 ST4b 86.232 ST4b F32B MCC 85.703 ST4b 85.567 ST4b 85.677 ST4b 85.702 ST4b F33A MCC 85.939 ST4b 85.804 ST4b 85.913 ST4b 85.938 ST4b F33B MCC 85.872 ST4b 85.737 ST4b 85.846 ST4b 85.871 ST4b F4 480V SWGR 88.479 ST4b 88.342 ST4b 88.452 ST4b 88.478 ST4b F41A MCC 88.116 ST4b 87.979 ST4b 88.090 ST4b 88.115 ST4b F41B MCC 88.097 ST4b 87.960 ST4b 88.070 ST4b 88.096 ST4b F4A LOAD CTR 89.256 ST4b 89.119 ST4b 89.229 ST4b 89.255 ST4b F6 480V SWGR 89.625 ST4b 89.487 ST4b 89.598 ST4b 89.624 ST4b F61 MCC 89.625 ST4b 89.487 ST4b 89.598 ST4b 89.624 ST4b F62 MCC 89.625 ST4b 89.487 ST4b 89.598 ST4b 89.624 ST4b F63 MCC 89.625 ST4b 89.487 ST4b 89.598 ST4b 89.624 ST4b F7 480V SWGR 89.080 ST4b 88.696 ST4b 89.006 ST4b 89.079 ST4b F71 MCC 89.047 ST4b 88.663 ST4b 88.973 ST4b 89.046 ST4b M22A MCC 86.465 ST4b 86.330 ST4b 86.439 ST4b 86.464 ST4b YE2 MCC 87.080 65.000 89.528 ST4a4 85.271 ST4b 89.028 ST4a5 89.528 ST4a4 YE2 MV5443C 85.000 67.090 89.342 ST4a4 85.076 ST4b 88.840 ST4a5 89.342 ST4a4 YF2 MCC 86.780 65.000 89.710 ST4a4 86.903 ST4b 89.280 ST4a5 89.710 ST4a4 YF2 MV5444C 85.000 67.090 89.540 ST4a4 86.728 ST4b 89.108 ST4a5 89.540 ST4a4

Calc. No. C-EE-015.03-008 Revision 6 Table 9. Scenario ST5: Mode 5 and 6 Design Basis Attachment 3 Accident Transient Minimum Bus Voltage (Sheet 1 of 3) Page 32 Acceptance Acceptance T=-1 T=0 T=1 T=2 T=3 T=4 Nom Criteria for Criteria for Case Case Case Case Case Case IDFrom kV Min %kV Min %kV Min with min with min Min with min Min with min Min with min Min with min (Continuous) (Starting) %kV %kV Min %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV A 13.8KV SWGR 13.80 86.090 76.530 94.409 ST5b 92.674 ST5b 93.793 ST5b 94.056 ST5b 94.258 ST5b 94.323 ST5b A MP2-1 13.80 86.090 76.530 94.367 ST5b 92.632 ST5b 93.751 ST5b 94.014 ST5b 94.216 ST5b 94.281 ST5b A MP2-3 13.80 86.090 76.530 94.374 ST5b 92.638 ST5b 93.758 ST5b 94.020 ST5b 94.223 ST5b 94.287 ST5b A MP36-1 13.80 86.090 76.530 A MP36-4 13.80 86.090 76.530 96.863 ST5a 95.043 ST5a 96.200 ST5a 96.489 ST5a 96.709 ST5a 96.779 ST5a B 13.8KV SWGR 13.80 86.090 76.530 94.416 ST5b 92.685 ST5e 93.803 ST5b 94.065 ST5b 94.266 ST5b 94.330 ST5b B MP2-2 13.80 86.090 76.530 94.362 ST5b 92.631 ST5e 93.749 ST5b 94.011 ST5b 94.212 ST5b 94.276 ST5b B MP2-4 13.80 86.090 76.530 94.369 ST5b 92.638 ST5e 93.756 ST5b 94.018 ST5b 94.219 ST5b 94.283 ST5b B MP36-2 13.80 86.090 76.530 B MP36-3 13.80 86.090 76.530 96.870 ST5a 95.051 ST5c 96.212 ST5a 96.499 ST5a 96.718 ST5a 96.787 ST5a BF81 MCC 0.48 86.250 76.670 93.659 ST5b 88.550 ST5b 91.887 ST5b 92.586 ST5b 93.170 ST5b 93.355 ST5b BF81 DBCSBOP 0.48 82.000 93.579 ST5b 88.474 ST5b 91.808 ST5b 92.507 ST5b 93.091 ST5b 93.275 ST5b C1 4160 SWGR 4.16 91.010 67.310 94.378 ST5b 89.218 ST5b 92.585 ST5b 93.292 ST5b 93.883 ST5b 94.069 ST5b C1 MP3-1 4.16 86.540 67.310 94.204 ST5b 89.034 ST5b 92.408 ST5b 93.116 ST5b 93.708 ST5b 93.895 ST5b C1 MP37-1A 4.16 86.540 76.930 94.292 ST5b 89.127 ST5b 92.498 ST5b 93.205 ST5b 93.796 ST5b 93.983 ST5b C1 MP42-1 4.16 86.540 67.310 94.320 ST5b 89.156 ST5b 92.526 ST5b 93.233 ST5b 93.824 ST5b 94.011 ST5b C1 MP43-1 4.16 86.540 67.310 94.378 ST5b 89.020 ST5b 92.527 ST5b 93.233 ST5b 93.825 ST5b 94.011 ST5b C1 MP58-1 4.16 86.540 67.310 94.378 ST5b 89.218 ST5b 92.585 ST5b 93.292 ST5b 93.883 ST5b 94.069 ST5b C2 4160 SWGR 4.16 86.540 76.930 94.383 ST5b 89.234 ST5b 92.595 ST5b 93.300 ST5b 93.890 ST5b 94.076 ST5b D1 4160 SWGR 4.16 91.010 67.310 94.399 ST5b 89.271 ST5b 92.620 ST5b 93.322 ST5b 93.909 ST5b 94.094 ST5b D1 MP3-2 4.16 86.540 67.310 94.191 ST5b 89.051 ST5b 92.407 ST5b 93.111 ST5b 93.699 ST5b 93.884 ST5b D1 MP37-2A 4.16 86.540 76.930 94.399 ST5b 89.271 ST5b 92.620 ST5b 93.322 ST5b 93.909 ST5b 94.094 ST5b D1 MP42-2 4.16 86.540 67.310 94.399 ST5b 89.105 ST5b 92.574 ST5b 93.276 ST5b 93.863 ST5b 94.048 ST5b D1 MP43-2 4.16 86.540 67.310 94.340 ST5b 89.209 ST5b 92.560 ST5b 93.262 ST5b 93.849 ST5b 94.034 ST5b D1 MP58-2 4.16 86.540 67.310 94.399 ST5b 89.271 ST5b 92.620 ST5b 93.322 ST5b 93.909 ST5b 94.094 ST5b D2 4160 SWGR 4.16 86.540 76.930 94.392 ST5b 89.264 ST5b 92.613 ST5b 93.315 ST5b 93.901 ST5b 94.087 ST5b D3 4160 SWGR 4.16 86.540 76.930 94.385 ST5b 89.257 ST5b 92.605 ST5b 93.307 ST5b 93.894 ST5b 94.079 ST5b E1 480V SWGR 0.48 86.250 67.090 91.966 ST5b 81.695 ST5b 85.072 ST5b 88.139 ST5b 90.843 ST5b 91.715 ST5b E1 MP56-1 0.48 86.250 67.090 91.966 ST5b 81.695 ST5b 85.072 ST5b 88.139 ST5b 90.843 ST5b 91.715 ST5b E11A MCC 0.48 87.100 67.090 91.735 ST5b 79.884 ST5b 83.207 ST5b 86.231 ST5b 90.187 ST5b 91.482 ST5b E11A MC62-1 0.48 86.250 67.090 91.735 ST5b 79.884 ST5b 83.207 ST5b 86.231 ST5b 90.187 ST5b 91.482 ST5b E11A MP89-1A 0.48 86.250 67.090 91.735 ST5b 79.884 ST5b 83.207 ST5b 86.231 ST5b 90.187 ST5b 91.482 ST5b E11A MP89-1B 0.48 86.250 67.090 91.735 ST5b 79.884 ST5b 83.207 ST5b 86.231 ST5b 90.187 ST5b 91.482 ST5b E11A MP89-3A 0.48 86.250 67.090 91.735 ST5b 79.884 ST5b 83.207 ST5b 86.231 ST5b 90.187 ST5b 91.482 ST5b E11A MP89-3B 0.48 86.250 67.090 91.735 ST5b 79.884 ST5b 83.207 ST5b 86.231 ST5b 90.187 ST5b 91.482 ST5b E11B MCC 0.48 87.100 67.090 91.705 ST5b 79.786 ST5b 83.108 ST5b 86.131 ST5b 90.127 ST5b 91.452 ST5b E11B MC56-1 0.48 86.250 67.090 91.177 ST5b 79.178 ST5b 82.524 ST5b 85.569 ST5b 89.589 ST5b 90.922 ST5b E11C MCC 0.48 87.100 67.090 91.727 ST5b 79.523 ST5b 82.832 ST5b 85.844 ST5b 90.105 ST5b 91.473 ST5b E11C MC75-1 0.48 86.250 67.090 89.622 ST5b 77.070 ST5b 80.484 ST5b 83.584 ST5b 87.959 ST5b 89.362 ST5b E11D MCC 0.48 86.770 67.090 91.623 ST5b 79.737 ST5b 83.065 ST5b 86.093 ST5b 90.065 ST5b 91.370 ST5b E11D DBC1PN 0.48 82.000 91.623 ST5b 79.737 ST5b 83.065 ST5b 86.093 ST5b 90.065 ST5b 91.370 ST5b E11D MP37-1B 0.48 86.250 67.090 91.281 ST5b 79.344 ST5b 82.687 ST5b 85.729 ST5b 89.717 ST5b 91.027 ST5b E11D MRE5327 0.48 86.250 67.090 91.623 ST5b 79.737 ST5b 83.065 ST5b 86.093 ST5b 90.065 ST5b 91.370 ST5b E11E MCC 0.48 87.100 67.090 91.727 ST5b 79.191 ST5b 82.486 ST5b 85.501 ST5b 90.016 ST5b 91.469 ST5b E11E MV49060 0.48 85.000 67.090 91.727 ST5b 70.084 ST5b 73.000 ST5b 83.357 ST5b 87.990 ST5b 89.477 ST5b E12A MCC 0.48 90.000 67.090 91.870 ST5b 81.544 ST5b 84.919 ST5b 88.021 ST5b 90.733 ST5b 91.611 ST5b E12A DBC1N 0.48 82.000 91.803 ST5b 81.475 ST5b 84.851 ST5b 87.953 ST5b 90.665 ST5b 91.543 ST5b E12A DBC1P 0.48 82.000 91.810 ST5b 81.483 ST5b 84.858 ST5b 87.960 ST5b 90.673 ST5b 91.551 ST5b E12A MC21-1 0.48 86.250 67.090 91.870 ST5b 81.544 ST5b 84.919 ST5b 88.021 ST5b 90.733 ST5b 91.611 ST5b E12A MC30-1 0.48 86.250 67.090 91.870 ST5b 80.815 ST5b 84.160 ST5b 87.788 ST5b 90.507 ST5b 91.387 ST5b E12A MC71-1 0.48 86.250 67.090 91.671 ST5b 81.319 ST5b 84.703 ST5b 87.812 ST5b 90.531 ST5b 91.411 ST5b E12A MC73-1 0.48 86.250 67.090 91.167 ST5b 80.749 ST5b 84.157 ST5b 87.286 ST5b 90.020 ST5b 90.905 ST5b E12A MS3311 0.48 86.250 67.090 91.870 ST5b 81.544 ST5b 84.919 ST5b 88.021 ST5b 90.733 ST5b 91.611 ST5b E12A MS61-1 0.48 86.250 67.090 91.870 ST5b 81.544 ST5b 84.919 ST5b 88.021 ST5b 90.733 ST5b 91.611 ST5b E12A MV5597 0.48 85.000 67.090 91.870 ST5b 72.355 ST5b 75.350 ST5b 85.963 ST5b 88.769 ST5b 89.667 ST5b E12A YRF1 0.48 90.000 91.731 ST5b 81.420 ST5b 84.790 ST5b 87.887 ST5b 90.595 ST5b 91.472 ST5b E12A YRF3 0.48 90.000 91.650 ST5b 81.348 ST5b 84.715 ST5b 87.809 ST5b 90.515 ST5b 91.391 ST5b E12B MCC 0.48 87.100 67.090 91.846 ST5b 80.703 ST5b 84.219 ST5b 87.721 ST5b 90.527 ST5b 91.429 ST5b E12B MC25-1 0.48 86.250 67.090 91.846 ST5b 76.836 ST5b 80.184 ST5b 86.584 ST5b 89.427 ST5b 90.339 ST5b E12B MC25-2 0.48 86.250 67.090 91.846 ST5b 77.796 ST5b 81.186 ST5b 86.871 ST5b 89.705 ST5b 90.614 ST5b E12B MC78-1 0.48 86.250 67.090 91.372 ST5b 80.162 ST5b 83.701 ST5b 87.224 ST5b 90.046 ST5b 90.952 ST5b E12B MP147-1 0.48 86.250 67.090 91.545 ST5b 80.360 ST5b 83.890 ST5b 87.405 ST5b 90.222 ST5b 91.126 ST5b E12B MP147-3 0.48 86.250 67.090 91.760 ST5b 80.605 ST5b 84.125 ST5b 87.630 ST5b 90.440 ST5b 91.342 ST5b E12B YE1 0.48 82.100 91.808 ST5b 80.660 ST5b 84.178 ST5b 87.681 ST5b 90.489 ST5b 91.390 ST5b E12C MCC 0.48 87.100 67.090 91.432 ST5b 80.963 ST5b 84.355 ST5b 87.470 ST5b 90.251 ST5b 91.171 ST5b E12C MC99-1 0.48 86.250 67.090 90.388 ST5b 79.778 ST5b 83.220 ST5b 86.377 ST5b 89.192 ST5b 90.124 ST5b E12C MC99-2 0.48 86.250 67.090 90.817 ST5b 80.267 ST5b 83.687 ST5b 86.827 ST5b 89.628 ST5b 90.555 ST5b E12C MF15-1 0.48 86.250 67.090 91.196 ST5b 80.696 ST5b 84.099 ST5b 87.224 ST5b 90.012 ST5b 90.935 ST5b E12D MCC 0.48 86.250 67.090 91.407 ST5b 80.934 ST5b 84.327 ST5b 87.444 ST5b 90.225 ST5b 91.146 ST5b E12E MCC 0.48 87.100 67.090 91.870 ST5b 81.247 ST5b 84.609 ST5b 87.845 ST5b 90.643 ST5b 91.587 ST5b E12E MC31-4 0.48 86.250 67.090 91.870 ST5b 81.247 ST5b 84.609 ST5b 87.845 ST5b 90.643 ST5b 91.587 ST5b E12E MC31-5 0.48 86.250 67.090 91.870 ST5b 81.247 ST5b 84.609 ST5b 87.845 ST5b 90.643 ST5b 91.587 ST5b E12E MP197-1 0.48 86.250 67.090 91.870 ST5b 78.441 ST5b 81.688 ST5b 87.438 ST5b 90.249 ST5b 91.197 ST5b E12F MCC 0.48 86.250 67.090 91.827 ST5b 80.291 ST5b 84.072 ST5b 87.580 ST5b 90.391 ST5b 91.294 ST5b E12F MC25-5 0.48 86.250 67.090 91.827 ST5b 80.291 ST5b 84.072 ST5b 87.580 ST5b 90.391 ST5b 91.294 ST5b

Calc. No. C-EE-015.03-008 Revision 6 Table 9. Scenario ST5: Mode 5 and 6 Design Basis Attachment 3 Accident Transient Minimum Bus Voltage (Sheet 2 of 3) Page 33 Acceptance Acceptance T=-1 T=0 T=1 T=2 T=3 T=4 Nom Criteria for Criteria for Case Case Case Case Case Case IDFrom kV Min %kV Min %kV Min with min with min Min with min Min with min Min with min Min with min (Continuous) (Starting) %kV %kV Min %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV E12F MP195-1 0.48 86.250 67.090 91.252 ST5b 79.633 ST5b 83.444 ST5b 86.977 ST5b 89.807 ST5b 90.716 ST5b E14 MCC 0.48 86.250 67.090 91.701 ST5b 81.259 ST5b 84.617 ST5b 88.026 ST5b 90.733 ST5b 91.607 ST5b E14 MC1-1 0.48 86.250 67.090 90.558 ST5b 81.259 ST5b 84.617 ST5b 88.026 ST5b 90.733 ST5b 91.607 ST5b E14 MC1-1LS 0.48 86.250 67.090 91.701 ST5b 79.252 ST5b 82.527 ST5b 87.500 ST5b 90.223 ST5b 91.102 ST5b E15 MCC 0.48 86.250 67.090 91.966 ST5b 81.695 ST5b 85.072 ST5b 88.139 ST5b 90.843 ST5b 91.715 ST5b E16A MCC 0.48 89.800 67.090 91.838 ST5b 81.577 ST5b 84.950 ST5b 88.014 ST5b 90.715 ST5b 91.587 ST5b E16A MP274-1 0.48 86.250 67.090 91.544 ST5b 81.316 ST5b 84.678 ST5b 87.733 ST5b 90.425 ST5b 91.295 ST5b E16A XY1 0.48 85.000 91.791 ST5b 81.535 ST5b 84.906 ST5b 87.969 ST5b 90.669 ST5b 91.540 ST5b E16A XY3 0.48 85.000 91.771 ST5b 81.518 ST5b 84.888 ST5b 87.950 ST5b 90.650 ST5b 91.521 ST5b E16B MCC 0.48 90.300 67.090 91.822 ST5b 81.562 ST5b 84.935 ST5b 87.998 ST5b 90.699 ST5b 91.571 ST5b E16B MP273-1 0.48 86.250 67.090 91.659 ST5b 81.418 ST5b 84.784 ST5b 87.843 ST5b 90.539 ST5b 91.409 ST5b E2 480V SWGR 0.48 90.244 ST5b 88.924 ST5b 90.032 ST5b 90.293 ST5b 90.493 ST5b 90.557 ST5b E21A MCC 0.48 89.657 ST5b 88.340 ST5b 89.446 ST5b 89.705 ST5b 89.905 ST5b 89.969 ST5b E21B MCC 0.48 89.626 ST5b 88.310 ST5b 89.415 ST5b 89.674 ST5b 89.875 ST5b 89.938 ST5b E21C MCC 0.48 89.129 ST5b 87.817 ST5b 88.919 ST5b 89.177 ST5b 89.377 ST5b 89.440 ST5b E21D MCC 0.48 89.657 ST5b 88.340 ST5b 89.446 ST5b 89.705 ST5b 89.905 ST5b 89.969 ST5b E22A MCC 0.48 89.100 ST5b 87.788 ST5b 88.890 ST5b 89.148 ST5b 89.347 ST5b 89.411 ST5b E22B MCC 0.48 89.087 ST5b 87.775 ST5b 88.877 ST5b 89.135 ST5b 89.334 ST5b 89.398 ST5b E23A MCC 0.48 89.721 ST5b 88.492 ST5b 89.600 ST5b 89.860 ST5b 90.061 ST5b 90.125 ST5b E23B MCC 0.48 89.227 ST5b 88.000 ST5b 89.107 ST5b 89.366 ST5b 89.567 ST5b 89.630 ST5b E3 480V SWGR 0.48 90.562 ST5b 88.325 ST5b 89.431 ST5b 90.153 ST5b 90.355 ST5b 90.419 ST5b E31A MCC 0.48 88.706 ST5b 86.467 ST5b 87.574 ST5b 88.297 ST5b 88.499 ST5b 88.563 ST5b E31B MCC 0.48 88.617 ST5b 86.376 ST5b 87.484 ST5b 88.208 ST5b 88.410 ST5b 88.474 ST5b E32A MCC 0.48 90.401 ST5b 88.111 ST5b 89.216 ST5b 89.986 ST5b 90.187 ST5b 90.251 ST5b E32B MCC 0.48 89.818 ST5b 87.529 ST5b 88.633 ST5b 89.404 ST5b 89.605 ST5b 89.669 ST5b E33A MCC 0.48 89.928 ST5b 87.682 ST5b 88.793 ST5b 89.518 ST5b 89.721 ST5b 89.785 ST5b E33B MCC 0.48 89.928 ST5b 87.682 ST5b 88.793 ST5b 89.518 ST5b 89.721 ST5b 89.785 ST5b E4 480V SWGR 0.48 91.523 ST5b 89.786 ST5b 90.906 ST5b 91.169 ST5b 91.372 ST5b 91.437 ST5b E41A MCC 0.48 91.176 ST5b 89.441 ST5b 90.560 ST5b 90.823 ST5b 91.025 ST5b 91.089 ST5b E41B MCC 0.48 90.886 ST5b 89.151 ST5b 90.270 ST5b 90.532 ST5b 90.735 ST5b 90.799 ST5b E42 MCC 0.48 90.986 ST5b 85.974 ST5b 89.246 ST5b 89.932 ST5b 90.506 ST5b 90.687 ST5b E43 MCC 0.48 91.523 ST5b 89.786 ST5b 90.906 ST5b 91.169 ST5b 91.372 ST5b 91.437 ST5b E6 480V SWGR 0.48 93.613 ST5b 91.984 ST5b 93.094 ST5b 93.355 ST5b 93.556 ST5b 93.620 ST5b E61 MCC 0.48 93.308 ST5b 91.802 ST5b 92.910 ST5b 93.170 ST5b 93.371 ST5b 93.435 ST5b E62 MCC 0.48 93.613 ST5b 91.984 ST5b 93.094 ST5b 93.355 ST5b 93.556 ST5b 93.620 ST5b E63 MCC 0.48 93.613 ST5b 91.984 ST5b 93.094 ST5b 93.355 ST5b 93.556 ST5b 93.620 ST5b EF12C MCC 0.48 86.250 67.090 91.394 ST5b 80.920 ST5b 84.313 ST5b 87.431 ST5b 90.212 ST5b 91.133 ST5b EF12C MF15-3 0.48 86.250 67.090 91.394 ST5b 80.920 ST5b 84.313 ST5b 87.431 ST5b 90.212 ST5b 91.133 ST5b EF12D MCC 0.48 86.250 67.090 91.870 ST5b 81.544 ST5b 84.919 ST5b 88.021 ST5b 90.733 ST5b 91.611 ST5b EF41 AE4 0.48 91.523 ST5b 89.786 ST5b 90.906 ST5b 91.169 ST5b 91.372 ST5b 91.437 ST5b EF41 BF4 0.48 92.617 ST5b 90.888 ST5e 92.005 ST5b 92.266 ST5b 92.468 ST5b 92.531 ST5b F1 480V SWGR 0.48 86.250 67.090 92.171 ST5b 81.900 ST5b 85.321 ST5b 88.357 ST5b 91.071 ST5b 91.930 ST5b F1 MP56-2 0.48 86.250 67.090 92.171 ST5b 81.900 ST5b 85.321 ST5b 88.357 ST5b 91.071 ST5b 91.930 ST5b F11A MCC 0.48 87.100 67.090 91.968 ST5b 80.686 ST5b 84.070 ST5b 87.077 ST5b 90.600 ST5b 91.725 ST5b F11A MC21-2 0.48 86.250 67.090 91.968 ST5b 80.686 ST5b 84.070 ST5b 87.077 ST5b 90.600 ST5b 91.725 ST5b F11A MC62-2 0.48 86.250 67.090 91.968 ST5b 80.686 ST5b 84.070 ST5b 87.077 ST5b 90.600 ST5b 91.725 ST5b F11A MC75-2 0.48 86.250 67.090 90.745 ST5b 79.286 ST5b 82.728 ST5b 85.783 ST5b 89.359 ST5b 90.499 ST5b F11A MRE5328 0.48 86.250 67.090 91.968 ST5b 80.686 ST5b 84.070 ST5b 87.076 ST5b 90.600 ST5b 91.725 ST5b F11A MS3321 0.48 86.250 67.090 91.968 ST5b 80.686 ST5b 84.070 ST5b 87.076 ST5b 90.600 ST5b 91.725 ST5b F11A MV4907 0.48 85.000 67.090 91.968 ST5b 71.524 ST5b 74.523 ST5b 85.010 ST5b 88.616 ST5b 89.766 ST5b F11B MCC 0.48 87.100 67.090 91.968 ST5b 80.529 ST5b 83.906 ST5b 86.907 ST5b 90.539 ST5b 91.725 ST5b F11C MCC 0.48 87.100 67.090 91.968 ST5b 80.581 ST5b 83.960 ST5b 86.963 ST5b 90.543 ST5b 91.725 ST5b F11C MP37-2B 0.48 86.250 67.090 91.968 ST5b 80.581 ST5b 83.960 ST5b 86.963 ST5b 90.543 ST5b 91.725 ST5b F11C MP37-2D 0.48 86.250 67.090 91.968 ST5b 80.581 ST5b 83.960 ST5b 86.963 ST5b 90.543 ST5b 91.725 ST5b F11D MCC 0.48 87.100 67.090 91.849 ST5b 79.065 ST5b 82.392 ST5b 85.348 ST5b 90.202 ST5b 91.606 ST5b F11D DBC2PN 0.48 82.000 91.849 ST5b 79.065 ST5b 82.392 ST5b 85.348 ST5b 90.202 ST5b 91.606 ST5b F11D MC31-3 0.48 86.250 67.090 91.849 ST5b 79.065 ST5b 82.392 ST5b 85.348 ST5b 90.202 ST5b 91.606 ST5b F11D MP89-2A 0.48 86.250 67.090 91.849 ST5b 79.065 ST5b 82.392 ST5b 85.348 ST5b 90.202 ST5b 91.606 ST5b F11D MP89-2B 0.48 86.250 67.090 91.849 ST5b 79.065 ST5b 82.392 ST5b 85.348 ST5b 90.202 ST5b 91.606 ST5b F11E MCC 0.48 86.250 67.090 91.900 ST5b 80.627 ST5b 84.008 ST5b 87.013 ST5b 90.534 ST5b 91.658 ST5b F11E MC31-1 0.48 86.250 67.090 91.900 ST5b 80.627 ST5b 84.008 ST5b 87.013 ST5b 90.534 ST5b 91.658 ST5b F11E MC31-2 0.48 86.250 67.090 91.900 ST5b 80.627 ST5b 84.008 ST5b 87.013 ST5b 90.534 ST5b 91.658 ST5b F11F MCC 0.48 86.250 67.090 91.865 ST5b 80.597 ST5b 83.976 ST5b 86.980 ST5b 90.499 ST5b 91.623 ST5b F12A MCC 0.48 90.000 67.090 92.055 ST5b 81.701 ST5b 85.120 ST5b 88.202 ST5b 90.935 ST5b 91.802 ST5b F12A DBC2N 0.48 82.000 91.958 ST5b 81.602 ST5b 85.022 ST5b 88.104 ST5b 90.838 ST5b 91.705 ST5b F12A DBC2P 0.48 82.000 91.958 ST5b 81.602 ST5b 85.022 ST5b 88.104 ST5b 90.838 ST5b 91.705 ST5b F12A MC133 0.48 86.250 67.090 90.871 ST5b 80.362 ST5b 83.837 ST5b 86.965 ST5b 89.737 ST5b 90.615 ST5b F12A MC30-2 0.48 86.250 67.090 92.055 ST5b 80.487 ST5b 83.855 ST5b 87.800 ST5b 90.546 ST5b 91.416 ST5b F12A MC73-2 0.48 86.250 67.090 89.704 ST5b 79.028 ST5b 82.563 ST5b 85.741 ST5b 88.553 ST5b 89.444 ST5b F12A MP195-2 0.48 86.250 67.090 91.515 ST5b 81.091 ST5b 84.535 ST5b 87.638 ST5b 90.389 ST5b 91.261 ST5b F12A MP198-1 0.48 86.250 67.090 92.055 ST5b 77.034 ST5b 80.258 ST5b 87.517 ST5b 90.272 ST5b 91.145 ST5b F12A MS61-2 0.48 86.250 67.090 92.055 ST5b 81.701 ST5b 85.120 ST5b 88.202 ST5b 90.935 ST5b 91.802 ST5b F12A MV5598 0.48 85.000 67.090 92.055 ST5b 74.704 ST5b 77.830 ST5b 86.708 ST5b 89.495 ST5b 90.376 ST5b F12A YRF2 0.48 90.000 91.892 ST5b 81.556 ST5b 84.969 ST5b 88.046 ST5b 90.774 ST5b 91.639 ST5b F12A YRF4 0.48 90.000 91.822 ST5b 81.494 ST5b 84.905 ST5b 87.979 ST5b 90.705 ST5b 91.570 ST5b

Calc. No. C-EE-015.03-008 Revision 6 Table 9. Scenario ST5: Mode 5 and 6 Design Basis Attachment 3 Accident Transient Minimum Bus Voltage (Sheet 3 of 3) Page 34 Acceptance Acceptance T=-1 T=0 T=1 T=2 T=3 T=4 Nom Criteria for Criteria for Case Case Case Case Case Case IDFrom kV Min %kV Min %kV Min with min with min Min with min Min with min Min with min Min with min (Continuous) (Starting) %kV %kV Min %kV %kV %kV %kV %kV %kV %kV %kV %kV %kV F12B MCC 0.48 87.100 67.090 92.074 ST5b 80.898 ST5b 84.504 ST5b 87.954 ST5b 90.772 ST5b 91.663 ST5b F12B MC25-3 0.48 86.250 67.090 92.074 ST5b 78.532 ST5b 82.032 ST5b 87.268 ST5b 90.109 ST5b 91.006 ST5b F12B MC25-4 0.48 86.250 67.090 92.074 ST5b 77.925 ST5b 81.398 ST5b 86.947 ST5b 89.797 ST5b 90.697 ST5b F12B MC78-2 0.48 86.250 67.090 91.776 ST5b 80.558 ST5b 84.178 ST5b 87.641 ST5b 90.470 ST5b 91.363 ST5b F12B MP147-2 0.48 86.250 67.090 91.759 ST5b 80.539 ST5b 84.160 ST5b 87.625 ST5b 90.453 ST5b 91.347 ST5b F12B MP147-4 0.48 86.250 67.090 91.976 ST5b 80.787 ST5b 84.397 ST5b 87.852 ST5b 90.674 ST5b 91.565 ST5b F12B YF1 0.48 81.600 92.036 ST5b 80.855 ST5b 84.462 ST5b 87.914 ST5b 90.734 ST5b 91.625 ST5b F12C MCC 0.48 87.100 67.090 91.763 ST5b 81.279 ST5b 84.707 ST5b 87.797 ST5b 90.599 ST5b 91.510 ST5b F12C MF15-2 0.48 87.100 67.090 91.548 ST5b 81.035 ST5b 84.474 ST5b 87.573 ST5b 90.381 ST5b 91.294 ST5b F12D MCC 0.48 86.250 67.090 91.681 ST5b 81.185 ST5b 84.618 ST5b 87.711 ST5b 90.515 ST5b 91.427 ST5b F12D MC99-3 0.48 86.250 67.090 90.962 ST5b 80.371 ST5b 83.837 ST5b 86.959 ST5b 89.786 ST5b 90.706 ST5b F12D MC99-4 0.48 86.250 67.090 90.815 ST5b 80.204 ST5b 83.678 ST5b 86.805 ST5b 89.638 ST5b 90.559 ST5b F13 MCC 0.48 86.250 67.090 93.563 ST5b 88.436 ST5b 91.785 ST5b 92.486 ST5b 93.073 ST5b 93.258 ST5b F14 MCC 0.48 86.250 67.090 91.858 ST5b 81.384 ST5b 84.783 ST5b 88.224 ST5b 90.941 ST5b 91.802 ST5b F14 MC1-2 0.48 86.250 67.090 90.642 ST5b 81.384 ST5b 84.783 ST5b 88.224 ST5b 90.941 ST5b 91.802 ST5b F14 MC1-2LS 0.48 86.250 67.090 91.858 ST5b 79.134 ST5b 82.440 ST5b 87.635 ST5b 90.371 ST5b 91.236 ST5b F15 MCC 0.48 86.250 67.090 92.171 ST5b 81.900 ST5b 85.321 ST5b 88.357 ST5b 91.071 ST5b 91.930 ST5b F16A MCC 0.48 89.700 67.090 92.145 ST5b 81.877 ST5b 85.297 ST5b 88.333 ST5b 91.045 ST5b 91.904 ST5b F16A MC25-6 0.48 86.250 67.090 92.145 ST5b 81.877 ST5b 85.297 ST5b 88.333 ST5b 91.045 ST5b 91.904 ST5b F16A MP274-3 0.48 86.250 67.090 91.910 ST5b 81.668 ST5b 85.079 ST5b 88.107 ST5b 90.813 ST5b 91.669 ST5b F16A XY2 0.48 85.000 92.133 ST5b 81.866 ST5b 85.286 ST5b 88.321 ST5b 91.033 ST5b 91.892 ST5b F16A XY4 0.48 85.000 92.116 ST5b 81.851 ST5b 85.270 ST5b 88.304 ST5b 91.016 ST5b 91.874 ST5b F16B MCC 0.48 90.500 67.090 92.130 ST5b 81.863 ST5b 85.283 ST5b 88.318 ST5b 91.030 ST5b 91.888 ST5b F16B MP273-4 0.48 86.250 67.090 91.614 ST5b 81.405 ST5b 84.805 ST5b 87.823 ST5b 90.520 ST5b 91.374 ST5b F2 480V SWGR 0.48 91.065 ST5b 89.704 ST5e 90.829 ST5b 91.092 ST5b 91.294 ST5b 91.358 ST5b F21A MCC 0.48 90.590 ST5b 89.234 ST5e 90.355 ST5b 90.617 ST5b 90.819 ST5b 90.883 ST5b F21B MCC 0.48 90.489 ST5b 89.134 ST5e 90.254 ST5b 90.515 ST5b 90.717 ST5b 90.781 ST5b F21C MCC 0.48 90.588 ST5b 89.232 ST5e 90.353 ST5b 90.614 ST5b 90.816 ST5b 90.880 ST5b F22 MCC 0.48 89.715 ST5b 88.906 ST5e 90.039 ST5b 90.304 ST5b 90.508 ST5b 90.573 ST5b F23A MCC 0.48 90.476 ST5b 89.111 ST5e 90.240 ST5b 90.503 ST5b 90.706 ST5b 90.771 ST5b F23B MCC 0.48 89.601 ST5b 88.230 ST5e 89.363 ST5b 89.628 ST5b 89.832 ST5b 89.896 ST5b F3 480V SWGR 0.48 90.907 ST5b 88.704 ST5e 89.796 ST5b 90.507 ST5b 90.705 ST5b 90.768 ST5b F31A MCC 0.48 90.266 ST5b 88.075 ST5e 89.161 ST5b 89.868 ST5b 90.065 ST5b 90.127 ST5b F31B MCC 0.48 89.183 ST5b 87.013 ST5e 88.089 ST5b 88.789 ST5b 88.983 ST5b 89.045 ST5b F32A MCC 0.48 90.680 ST5b 88.325 ST5e 89.416 ST5b 90.261 ST5b 90.459 ST5b 90.522 ST5b F32B MCC 0.48 90.177 ST5b 87.808 ST5e 88.906 ST5b 89.756 ST5b 89.955 ST5b 90.018 ST5b F33A MCC 0.48 90.321 ST5b 88.127 ST5e 89.215 ST5b 89.922 ST5b 90.119 ST5b 90.182 ST5b F33B MCC 0.48 90.255 ST5b 88.060 ST5e 89.149 ST5b 89.857 ST5b 90.054 ST5b 90.116 ST5b F4 480V SWGR 0.48 92.617 ST5b 90.888 ST5e 92.005 ST5b 92.266 ST5b 92.468 ST5b 92.531 ST5b F41A MCC 0.48 92.038 ST5b 90.310 ST5e 91.427 ST5b 91.688 ST5b 91.889 ST5b 91.953 ST5b F41B MCC 0.48 92.020 ST5b 90.291 ST5e 91.408 ST5b 91.669 ST5b 91.870 ST5b 91.934 ST5b F4A LOAD CTR 0.48 94.023 ST5b 92.300 ST5e 93.413 ST5b 93.673 ST5b 93.874 ST5b 93.937 ST5b F6 480V SWGR 0.48 93.576 ST5b 91.921 ST5e 93.030 ST5b 93.289 ST5b 93.489 ST5b 93.552 ST5b F61 MCC 0.48 93.372 ST5b 91.721 ST5e 92.827 ST5b 93.086 ST5b 93.285 ST5b 93.348 ST5b F62 MCC 0.48 93.503 ST5b 91.921 ST5e 93.030 ST5b 93.289 ST5b 93.489 ST5b 93.552 ST5b F63 MCC 0.48 93.576 ST5b 91.921 ST5e 93.030 ST5b 93.289 ST5b 93.489 ST5b 93.552 ST5b F7 480V SWGR 0.48 93.768 ST5b 88.639 ST5b 91.988 ST5b 92.690 ST5b 93.277 ST5b 93.462 ST5b F71 MCC 0.48 93.733 ST5b 88.606 ST5b 91.954 ST5b 92.656 ST5b 93.243 ST5b 93.428 ST5b M22A MCC 0.48 90.907 ST5b 88.704 ST5e 89.796 ST5b 90.507 ST5b 90.705 ST5b 90.768 ST5b YE2 MCC 0.24 87.080 65.000 93.880 ST5b 80.037 ST5b 83.386 ST5b 86.518 ST5b 91.434 ST5b 93.601 ST5b YE2 MV5443C 0.24 85.000 67.090 93.880 ST5b 79.085 ST5b 82.394 ST5b 86.325 ST5b 91.251 ST5b 93.422 ST5b YF2 MCC 0.24 86.780 65.000 94.190 ST5b 81.352 ST5b 84.775 ST5b 87.885 ST5b 92.142 ST5b 93.926 ST5b YF2 MV5444C 0.24 85.000 67.090 94.190 ST5b 80.466 ST5b 83.853 ST5b 87.711 ST5b 91.976 ST5b 93.763 ST5b

Calc. No. C-EE-015.03-008 Revision 6 Attachment 3 Page 35 Table 10. Maximum Transformer Voltages Secondary LF5a LF5b LF5c LF5c1 Transformer NomkV Winding Bus %kV %kV %kV %kV MAIN TRANSFORMER 1 MAIN GEN BUS 25.00 0.000 0.000 98.068 98.070 AUX 11 X 13.80 0.000 0.000 105.367 102.580 AUX TRANSFORMER 11 AUX 11 Y 13.80 0.000 0.000 105.420 102.635 START-UP 01 STARTUP 01 13.80 105.347 102.701 103.300 103.300 START-UP 02 STARTUP 02 13.80 105.406 102.762 103.300 103.300 AC XAC LV 4.16 107.290 104.576 107.309 104.448 BD XBD LV 4.16 107.526 104.816 107.550 104.692 CE1-1/CE1-2 E1 480V SWGR 0.48 109.165 103.735 106.454 103.607 DF1-1/DF1-2 F1 480V SWGR 0.48 109.223 103.805 106.517 103.681 AE2/BE2 E2 480V SWGR 0.48 101.239 98.628 101.254 98.505 AE3/BE3 E3 480V SWGR 0.48 103.944 101.329 103.959 101.205 AE4 AE4 LV 0.48 102.591 99.950 102.607 99.825 AE6 E6 480V SWGR 0.48 105.342 102.696 105.358 102.571 BF2/AF2 BF2 LV 0.48 101.538 98.908 101.557 98.787 BF3/AF3 F3 480V SWGR 0.48 102.274 99.697 102.294 99.579 BF4 BF4 LV 0.48 103.593 100.957 103.613 100.836 BF6 F6 480V SWGR 0.48 105.397 102.753 105.417 102.632 XBF4A F4A LOAD CTR 0.48 105.386 102.741 105.406 102.620 CE5 XCE5 LV 0.48 105.536 102.865 105.555 102.739 DF5 XDF5 LV 0.48 105.770 103.104 105.794 102.982 DF6 XDF6 LV 0.48 107.363 104.657 107.387 104.533 DF7 F7 480V SWGR 0.48 107.135 104.433 107.159 104.310 DF8 XDF8 LV 0.48 106.892 104.194 106.916 104.071 X3050 X3050 LV 0.48 105.238 102.574 105.256 102.449 X3051 X3051 LV 0.48 106.475 103.781 106.494 103.654 XBY1 XBY1-LV 0.48 105.912 103.224 105.931 103.097 XYE2A XYE2A-LV 0.24 111.690 106.134 108.916 106.004 XYF2A XYF2A-LV 0.24 111.701 106.160 108.934 106.034 XYE2 YE2 MCC 0.24 111.690 106.134 108.916 106.004 XYF2 YF2 MCC 0.24 111.701 106.160 108.934 106.034

Attachment F Reliance Electric Action Guide, Table A (1 page follows) The abbreviations and acronyms listed below are used in Reliance Electric Action Guide, Table A. AMPS amperes P. L. AMPS peak load amperes HP horsepower EFF. efficiency P. F. power factor

%       percent
°C      degrees centigrade

TABLE A- GENERAL EFFECT OF VOLTAGE AND FREQUENCY VARIATION ON INDUCTION-MOTOR CHARACTERISTICS STARTING a MAX SYNCH RO. EFFICIENCY POWIR PACTOR MAX MAONITIC FULL-LO.Alf ITARTING TEMPRlll, NOlll-NO FULL*LOAD OVIRLOAD VARIATION RUNNING NOUS "SLIP* CURR INT CURRENT PULL*LOAD LOAD IN TORQUE SPEED IPHO Full U.ad 3/4 LOICI 1/Z LOld l'lill L_, ,,. "'* 1/2,1.oed CAPACITY l'ARTICULAR Voltaoo variation: 120" I I lncr .... 44" No Chtnoo o..,.,.311% Iner- 1.5"

                                                                                                                        &30.CrHM 11*7&HPI
                                                                                                                        ~.3"1ncr-(100.200 HI')

Decruu 112*2 polnu Oocruu 7*20poln* Deer-S.111polnll 111-30polnu

                                                                                                                                                                                                                           .o-..

1&-40polnll 1ncr... 1~

                                                                                                                                                                                                                                                          *--2°"          lnau*

l-8GC. lncr1111441' Nollmtbl* 1ncr.... 11°" voluoo i

                                              !   lncrn,.21"         No Cl\onoo       Otcr11,. 17"       lncru* '"

Slight o-.... Pr*ctlc:ally no ch1n91 Doer*- 1-2polnll o-.... 9*10polnu o_.** I poln11 o-- Mpolnll Iner-2-41' ~:; lnc:r1. .

1-4oc.

1ncr-211' 1-- 111-.u., Function* al j 1 (Synchronou1 (Vo1t191)2 Conatnt vo1._ 1Vol11gtl' I 1Volt*ool2 opoed lllp) Attachment 9 volt*gt OICtUM o....... PrOC"tlc:ally lncn** lncr1111 Iner** 0- lnoH* o- Deer.. 9°" voluoo

                                           ..:    OtcrH* 19"         No Cn1ng*        lncTn,.23" 1-112"         2polnu            no chi""'              1*2 polnb        I polnU            2..3 palna            4-11 polnU      1~11*          10.12"          g.7oc.       1ft            ~lly j                                       Proctlully                        Sllght            Slight                                                                           Sllght          o.......       o--                          a-.

Fr1q. v1rl11lon: 105"1req. I Oocru* I°" lnCfHM 6" nod>lngt lncrH*5~ InerHM lncr11M Sllght. tner11* Slllt>t lncr1a* '"" lncre1111 lncru* Sllghtly a:.n DICr-lllehtly * ._.tly ci..- 11.__tly Function ol 1 1 frequ.ncy I (Freq111ncyJ2 Frequ1ncy (Synchronou1 frequency

                                              !                                                           -d*llp) 95" frequency      j   lncro1M 11"       D1cru11 5" Prtcdetlly nochl,,,.

OtetHM I" Sllght D1cr1... Sllghl DtcrttM Sllghl Dec,..** lllghl o...... lllght 0-.11 o-.- Sllghl Inert... Sll9hll1' ....._. lno.... Sllehlll' Sllehtly lncrlOM Sllthtly Unbtl""" 2" Unbtlonce I Slight o...... Sllthl Decru* Sllthl Dtcru11 Sllgflt Oeere11* Sllthl o........ Slight Deer-

                                                                                                                        ~o   ..,....

8"'DtctUM QICIHM 7"0-- EFFECT OP VOLTAOI V.MIATIOM 1-112" lncrHM 3"1ncr-lllahl o-llltht 0-... n1,..,_ llOTE: Thia llblt &ho'Nt oen1r1l 11f1ct1, which will v1ry com-hat lo* llJOClllC r1tln1111.

                                                                                                                                                          ~
                                                                                                                                                          ~

ll rt. 0 rt. rrt. 0 0

I tl u
                                                                                                                                                          ~

i5

                                                                                                                                                          ~

Calc. No. C-EE-015.03-008

                                                                                                                                                          *r     *10
                                                                                                                                                                            *U   *IO'   *I       I    .,         * .,   *IS.

PeRCE'IT VOLT)l.GI VARIATION Revision 6

Attachment G ISTB3, Pump and Valve Basis Document, Volume III, Stroke Time Basis (33 pages follow) The abbreviations and acronyms listed below are used in the ISTB3, Pump and Valve Basis Document, Volume III, Stroke Time Basis provided in Attachment G. ASME American Society of SOV solenoid operated valve Mechanical Engineers AOV air operated valve SRO senior reactor operator (C) close IST inservice test CIV containment isolation valve SFAS safety features actuation system ECP engineering change package SFRCS steam and feedwater rupture control system ECR engineering change request SR surveillance requirement EDG emergency diesel generator TRM Technical Requirements Manual MOD modification USAR Updated Safety Analysis Report MOV motor operated valve WO work order MWO maintenance work order  % percent (O) open less than or equal to OM operations and maintenance > greater than PCN procedure change notice = equals PORV power operated relief valve - minus

ISTB3 Pump and Valve Basis Document Volume III Stroke Time Basis Revision 48 tlf IA. kl W l( Date s/1'1/zo1'f

                         ~r:

Date

            ~ -{.A;./...../,....,_

Approved by: sdrk

            ;;;>S~eringPrograms                   Date j

1of33

ISTB3 Stroke Time Basis Revision 48 Section A TABLE OF CONTENTS Section A, General Information,, Stroke Time Basis Information................................................................ 3 Section A, Owner-Specified Stroke Time Information and Notes................................................................ 4 Section B, Reference Value Information....................................................................................................... 6 Section B, Stroke Time Limiting Values....................................................................................................... 17 Section C, Stroke Time Limits and Acceptance Criteria............................................................................... 22 Revision 23 incorporated by PCN T-0352. Revision 24 incorporated by PCN T-0356. Revision 25 incorporated by PCN T-0357. Revision 26 incorporated by PCN T-0358. Revision 27 incorporated by PCN T-0360. Revision 28 incorporated by PCN T-0363. Revision 29 incorporated by PCN T-0366. Revision 30 incorporated by PCN T-0376. Revision 31 incorporated by PCN T-0377. Revision 32 incorporated by PCN T-0378. Revision 33 incorporated by PCN T-0379. Revision 34 incorporated by PCN T-0381. Revision 35 incorporated by PCN T-0383. Revision 36 incorporated by PCN T-0392. Revision 37 incorporated by PCN T-0395. Revision 38 incorporated by PCN T-0396. Revision 39 incorporated by PCN T-0397. Revision 40 incorporated by PCN T-0404. Revision 41 incorporated by PCN T-0405. Revision 42 incorporated by PCNs T-0408 & T-0409. Revision 43 incorporated by PCN T-0410. Revision 44 incorporated by PCN T-0411. Revision 45 incorporated by PCN T-0416. Revision 46 incorporated by PCN T-0423. Revision 47 incorporated by PCN T-0429. Revision 48 incorporated by PCN T-0433. 2

ISTB3 Stroke Time Basis Revision 48 Section A GENERAL INFORMATION This document is divided into three sections. Section A is the narrative portion of this manual. Section B contains reference value information, as well as limiting values. Section C contains the information that is needed to support surveillance testing. Controlled copies of this manual may be obtained from FileNet. Hardcopies of this document are maintained with the Work Support Center SRO, the Control Room, and the Simulator Control Room. Section C contains a field titled the 'Expected Stroke Time Range'. Under normal circumstances, it is expected that the measured stroke time be within this range. If a value is obtained that is outside of this range, the valve is immediately retested or declared inoperable, as directed by the associated surveillance test. This range appears only for the safety direction of travel for valves included in the IST Program. This document contains some stroke time information for SFAS actuated ventilation dampers, but is not intended to be a complete list. The absence of a valve from this document indicates that there is no 'Maximum Allowable Stroke Time' or 'Expected Stroke Time Range'. The absence of a value for a valve listed in this document indicates that no such value exists. The Reference Value Information section includes some valves that are not in the IST Program and have no stroke time requirements. Some valves and dampers listed in this document are not IST Program components. All acceptance criteria and stroke time limits are contained in Section C, Stroke Time Limits and Acceptance Criteria. Some valves may have more than one set of reference values. The Reference Value Information section will indicate those valves, and the Stroke Time Limits and Acceptance Criteria will provide the appropriate values and situations under which each reference value is to be used. If a valve has a 'Maximum Allowable Stroke Time' limited by other than SFAS, SFRCS, Containment Isolation, or Owner-specified degradation (IST) limits, an explanation will be provided in Section A of this document. Stroke times will be plotted and trended in the IST computerized tracking program. The unit of measurement for all stroke time values in this document is seconds. STROKE TIME BASIS INFORMATION The Code of Record for the Fourth Ten Year Interval IST Program is the ASME Code for Operation and Maintenance at Nuclear Power Plants, ASME OM Code-2004 with Addenda through 2006. Stroke time testing is mandated by the Code in the safety direction of valve travel only. Stroke time testing may also be performed in the non-safety direction for information and trending purposes only. The Owner must specify 'Maximum Allowable Stroke Time' values for each IST Program power operated valve in the safety direction of valve travel. Calculated acceptance criteria may be rounded off in the conservative direction only. Stroke times shall be measured to at least the nearest second. 3

ISTB3 Stroke Time Basis Revision 48 Section A Reference values have been established and owner-specified degradation (IST) limits created based upon these values. Limiting stroke time values that must be met to fulfill requirements of the Technical Specifications, SFAS, SFRCS, Containment Isolation, or any other design basis stroke time requirement are included in this document. The 'Maximum Allowable Stroke Time' is defined as the most limiting value among the design basis requirements and the owner-specified degradation limits. If a stroke time value exceeds the 'Maximum Allowable Stroke Time', then the valve is immediately declared inoperable per TS 5.5.7 and a Condition Report (CR) is written. The 'Expected Stroke Time Range' and 'Maximum Allowable Stroke Time' apply only in the safety direction of valve travel. If the initial stroke time value is outside of the 'Expected Stroke Time Range', and the 'Maximum Allowable Stroke Time' was not exceeded, then the valve is either declared inoperable, or immediately retested and the following apply:

  • If the retest stroke time value is again outside of the 'Expected Stroke Time Range' but does not exceed the 'Maximum Allowable Stroke Time', then the valve remains operable pending an evaluation that must be performed within 96 hours. The CR should state that an evaluation must be performed within 96 hours, or the valve will be declared inoperable per TS 5.5.7.
  • If the retest stroke time value is within the 'Expected Stroke Time Range', then the valve remains operable. A CR is initiated to prompt an evaluation of the condition whenever a value is obtained that is outside of the 'Expected Stroke Time Range'. All test data gathered should be included in the CR.

OWNER SPECIFIED STROKE TIME INFORMATION AND NOTES

1. For motor operated valves, the Owner-specified degradation limit is defined as 1.5 times the reference value.
2. For air-operated valves with a reference value :SlO seconds, the Owner-specified degradation limit is defined as 3 times the reference value or 10 seconds (whichever is greater). This does not apply to valves that are classified as Rapid Acting Valves. (See Note 10)
3. For solenoid valves with a reference value :SlO seconds, the Owner-specified degradation limit is defined as 3 times the reference value. This does not apply to valves that are classified as Rapid Acting Valves.

(See Note 10)

4. For air-operated valves and solenoid valves with a reference value> 10 seconds, the Owner-specified degradation limit is 2 times the reference value.
5. For MS5889A, a maximum value of 42 seconds to open, and for MS5889B a maximum value of 46 seconds to open was assigned. These values are based upon a comparison of valve stroke time to Auxiliary Feed Pump response time, to ensure the Auxiliary Feed Pump response time requirement of 40 seconds is met. Additionally, these valves have a minimum open stroke time of 25 seconds to prevent overspeed trip of the Auxiliary Feed Pump Turbine.
6. For SW1356, SW1357, and SW1358, these valves must travel to at least the 80% open position within 10 seconds per Calculation C-ME-011.06-008. The stroke time matrix conservatively uses a 10 second 4

ISTB3 Stroke Time Basis Revision 48 Section A time limit for these valves to fully open. These valves have an additional set of reference values. Refer to CR 04-07816.

7. DH7A/DH7B must close within 75 seconds, and DH9A/DH9B must open within 75 seconds as required by SR 3.5.2.8.
8. Since TRM 8 .3 .11 imposes a 40-second response time requirement on the Auxiliary Feed Pumps, associated auxiliary feedwater system valves have a 40-second limit to achieve their safety positions.

Note that MS5889A, MS5889B, SW1382 and SW1383 are exceptions that have specific limits assigned.

9. SW1382 and SW1383 each have a maximum value of 13 seconds due to the Auxiliary Feed Pumps suction piping design change under ECP 08-0571.
10. Certain valves are classified as Rapid Acting Valves. These valves are assigned a 'Maximum Allowable Stroke Time' of 2 seconds and are exempt from the 'Expected Stroke Time Range' requirement of the Code of Record.
11. For SFRCS actuated valves, the maximum allowable SFRCS time is listed in the SFRCS column of Section B. SFRCS actuated component response times are given in TRM Table 8.3.11-1 and include SFRCS sensing time and logic. The SFRCS times listed in this document are calculated by subtracting 1 second from the values listed in the TRM.
12. For Containment Isolation Valves, the maximum allowable containment isolation times are obtained from USAR Table 6.2-23, and are shown in the CIV column of Section B.
13. For IST Program SFAS actuated valves, the maximum allowable SFAS time is listed in the SFAS column of Section B. SFAS actuated component response times are given in Technical Requirements Manual (TRM) Table 8.3.5-1. The TRM values include all of the pieces of the total response time, including SFAS sensing and logic, as well as EDG and sequencer delays. The SFAS times listed in this document is calculated by subtracting all of the pieces affecting total response time from the TRM values, except for the actual valve actuation time. The following equation illustrates this:

SFAS Time= [TRM Table 8.3.5-1 Time] - [SFAS Sensing & Logic Time] - [EDG Time] - [SFAS Sequencer Time] - [EDG Underfrequency Correction Time] [SFAS Sensing & Logic Time] - This is conservatively assumed at 5 seconds, except in cases where limited margin exists. When limited margin exists, the most recent worst case SFAS sensing and logic response times, obtained via DB-SC-03109, DB-SC-03114, or DB-SC-03121 are utilized for the equation in lieu of 5 seconds. [EDG Time] - When EDG time is applicable to the component, the value is assumed conservatively at 10 seconds, except in cases where limited margin exists. In these cases, actual EDG time is used. [SF AS Sequencer Time] - When SFAS sequencer times are applicable to the component, the value is assumed at nominal sequencer delay time with a tolerance of 1 second. [EDG Underfreguency Correction Time] - When EDG time is applicable to the component, this value is determined by the method documented in CA-2012-03071-2 to account for effect of limiting EDG underfrequency on valve stroke times when compared with test times at nominal test frequency. 5

ISTB3 Stroke Time Basis Revision 48 Section B REFERENCE VALUE INFORMATION Reference Reference Reference Value Value Test Reference Open Closed Procedure Test Date Reference Comments Reference values established following AF599 36.489 36.561 DB-PF-09302 10/29/2011 maintenance under Order 200432025. Reference values established following AF608 36.606 36.757 DB-PF-09302 10/22/2011 maintenance under Order 200432026. Reference values established following AF3869 33.92 34.27 DB-PF-03272 11/16/1995 maintenance under MWO 2-93-0035-18. Reference values established following AF3870 19.375 19.918 DB-PF-03272 5/29/2012 valve replacement under Order 200501242. Reference values established following AF3871 33.54 33.8 DB-PF-03272 10/30/1995 maintenance under MWO 2-93-0035-19. Reference values established following AF3872 26.68 27.22 DB-PF-03163 6/28/2000 maintenance under WO 99-004622-000. Reference values established based upon AF6451 3.59 11.3 DB-SP-03161 5/9/1991 5/9/91 test data. Information only. Reference values established based upon AF6452 4.47 10.17 DB-SP-03152 5/16/1991 5/16/91 test data. Information only. Reference values established following CC1328 22.2 22.08 DB-PF-03071 11/1/2000 maintenance under WO 00-000603-000 and review of 1111/00 test data. Reference values established following CC1338 22.25 22.51 DB-PF-03272 4/5/2001 maintenance under WO 00-003421-000. Reference values established following CC1407A 8.23 8.36 DB-PF-03100 5/9/1998 maintenance under MWO 3-98-0232-01. Reference values established following CC1407B 9.86 9.97 DB-PF-03272 4/19/2000 maintenance under WO 99-003859-000. Reference values established following CC1411A 9.87 9.88 DB-PF-03272 5/3/1996 maintenance under MWO 3-96-0222-01. Reference values established following CC141 IB 9.31 9.4 DB-PF-03272 5/7/1996 maintenance under MWO 3-96-0229-01. Reference values established based CC1460 3.46 4.33 DB-PF-03071 12/26/2005 following maintenance under Order 200008518. Reference value established following valve CC1467 30.36 13.98 DB-PF-03071 3/20/2014 replacement under Order 200597387. Reference values established following CC1469 32.52 12.29 DB-PF-03070 2/26/2014 valve replacement under Order 200595028. Reference values established following CC1495 14.28 24.42 DB-PF-03071 4/21/2014 valve replacement under Order 200499387. Reference values established following CC1567A 9.63 9.01 DB-PF-03100 4/19/1993 review oftest data obtained on 4/19/93 under DB-PF-03100. Reference values established following CC1567B 9.07 9.22 DB-PF-03100 5/9/1998 maintenance under MWO 3-98-0231-01. Reference values established following CC2645 60.33 60.56 DB-PF-03272 3/23/2000 maintenance under WO 00-000045-000. 6

ISTB3 Stroke Time Basis Revision 48 Section B REFERENCE VALUE INFORMATION Reference Reference Reference Value Value Test Reference Open Closed Procedure Test Date Reference Comments Reference values established following CC2649 61.42 61.23 DB-PF-03070 2/14/1996 maintenance under MWO 3-95-0288-01. Reference values established following CC4100 12.41 12.57 DB-PF-03272 11/2/1994 maintenance under MWO 1-93-0695-07. Reference values established following CC4200 12.26 12.31 DB-PF-03272 10/29/1994 maintenance under MWO 1-93-0695-08. Reference values established following CC4300 12.79 13.05 DB-PF-03272 11/2/1994 maintenance under MWO 1-93-0695-09. Reference values established following CC4400 13.6 13.74 DB-PF-03272 10/29/1994 maintenance under MWO 1-93-0695-10. Reference values established following CC5095 102.77 102.86 DB-PF-03272 5/13/1996 maintenance under MWO 7-94-0326-01. Reference values established following CC5096 101.79 101.2 DB-PF-03070 3/10/2000 maintenance under WO 99-006410-002. Reference values established following CC5097 57.06 57.53 DB-PF-03272 5/13/1996 maintenance under MWO 1-95-0487-16. Reference values established following CC5098 59.4 59.36 DB-PF-03272 11/19/1998 maintenance under MWO 2-97-0076-05. Reference values established following CFlA 51.84 52.44 DB-PF-03272 5/8/2000 maintenance under WO 99-000403-000. Reference values established following CFlB 52.2 52.7 DB-PF-03272 5/8/2000 maintenance under WO 99-003753-000. Reference values established following maintenance under MWO 3-98-0321-01 CF2A 5.8 5.79 DB-PF-03811 5/25/1998 and review of test data obtained on 5/25/98 under DB-PF-03811. Reference values established following maintenance under MWO 3-98-0322-01 CF2B 6 5.6 DB-PF-03811 5/25/1998 and review of test data obtained on 5/25/98 under DB-PF-03811. Reference values established following CF5A 5.34 5.44 DB-PF-03272 4/24/1996 maintenance under MWO 3-96-0323-01. Reference values established following CF5B 5.62 5.72 DB-PF-03272 5/4/1998 maintenance under MWO 3-98-0324-01. Reference values established following CF1541 4.14 3.56 DB-PF-05061 3/29/2006 maintenance under Orders 200117189 and 200099359. Reference values established following CF1542 6.46 6.35 DB-PF-05061 3/30/2006 maintenance under Orders 200079095 and 200120863. Reference values established following CF1544 4.18 3.96 DB-PF-03272 3/29/2006 maintenance under Orders 200099360 and 200117187. Reference value established following CF1545 3.49 3.24 DB-PF-03272 3/21/2002 maintenance under WO 00-002974-000. 7

ISTB3 Stroke Time Basis Revision 48 SectionB REFERENCE VALUE INFORMATION Reference Reference Reference* Value Value Test Reference Open Closed Procedure Test Date Reference Comments Reference values following implementation CS1530 18.793 19.02 DB-PF-09302 8/21/2013 ofECP 03-0359 under Order 200389245. Reference values established following CS1531 20.741 20.838 DB-PF-03272 1/20/2014 modification under Order 200588933. Ref values established following CV5005 33.19 6.73 DB-MI-05023 11/14/2003 maintenance under Order 200001129 & 200006595. Reference values established following CV5006 17.59 9.64 DB-PF-03272 5/11/1998 maintenance under MWO 3-98-5316-01. Reference values established following CV5007 16.03 8.84 DB-PF-03270 6/18/2002 maintenance under WO 02-003376-000. Ref values established following CV5008 7.9 8.69 DB-MI-05023 11/16/2003 maintenance under Order 200001061 & 200006085. Reference values established following CV5010A 9.93 10.03 DB-PF-03811 10/18/1998 maintenance under MWO 1-98-1161-00. Reference values established following CV5010B 10.5 10.53 DB-PF-03811 31212000 maintenance under WO 99-002295-000. Reference values established following CV5010C 9.87 9.88 DB-PF-03811 512512000 maintenance under WO 99-003685-000. Reference values established following CV5010D 10.24 10.3 DB-PF-03811 3/10/2000 maintenance under WO 99-002291-000. Reference values established following CV5010E 10.15 10.33 DB-PF-09302 3/10/2010 maintenance under order 200000681. Reference values established following CV5011A 11.6 11.6 DB-SP-03272 4/14/1990 maintenance under MWO 3-90-0750-01. Reference values established following CV5011B 10.84 10.81 DB-PF-03811 512512000 maintenance under WO 99-003684-000. Reference values established following CV5011C 10.14 10.17 DB-PF-03811 31212000 maintenance under WO 99-005269-000. Reference values established following CV5011D 9.94 10.15 DB-PF-03811 6/1/2000 maintenance under WO 99-003683-000. Reference values established following CV5011E 10.21 10.5 DB-PF-09307 61712004 maintenance under Order 200004259. Reference values established following CV5037 48.54 48.5 DB-PF-03272 1/19/2000 maintenance under WO 99-004618-000. Reference values established following CV5038 54.05 53.96 DB-PF-03272 3/21/2000 maintenance under WO 99-004837-000. Reference values established following CV5065 56.12 56.19 DB-PF-03272 1/16/1995 maintenance under MWO 3-95-0753-01. Reference values established following maintenance under WO 99-003696-000 and CV5070 10.01 10.11 DB-PF-03811 512512000 review of test data obtained on 5/25/00 under DB-PF-03811. Reference values established following CV5071 9.62 9.63 DB-PF-03811 512512000 maintenance under WO 99-003695-000. 8

ISTB3 Stroke Time Basis Revision 48 Section B REFERENCE VALUE INFORMATION Reference Reference Reference Value Value Test Reference Open Closed Procedure Test Date Reference Comments Reference values established following CV5072 9.61 9.72 DB-PF-03811 512512000 maintenance under WO 99-003694-000. Reference values established following CV5073 9.9 10 DB-PF-03811 512512000 maintenance under WO 99-003693-000. Reference values established following CV5074 9.77 9.87 DB-PF-03811 512512000 maintenance under WO 99-003692-000. Reference values established following CV5075 9.57 9.59 DB-PF-03272 4/11/2000 maintenance under WO 99-003691-000. Reference values established following CV5076 10.27 10.37 DB-PF-03812 3/26/1993 maintenance under MWO 3-93-0782-01. Reference values established following CV5077 10.43 10.43 DB-PF-03811 5/25/2000 maintenance under WO 99-003689-000. Reference values established following maintenance under MWO 3-96-0780-03 CV5078 10.07 10.09 DB-PF-03811 6/29/1996 and review oftest data obtained on 6/29/96 under DB-PF-03811. Reference values established following CV5079 10.43 10.42 DB-PF-03811 512512000 maintenance under WO 99-003687-000. Reference values established following CV5090 56.31 56.26 DB-PF-03272 512612000 maintenanc eunder WO 99-004838-000. Reference values established following DHlA 9.18 9.17 DB-PF-03272 3/28/2011 maintenance under WO 200450011. Reference values established following DHlB 9.007 8.061 DB-PF-03272 817/2010 maintenance under WO 200426129. Reference values established following DH7A 66 66.3 DB-SP-03211 1017/1991 maintenance under MWO 1-91-0974-01. Reference values established following maintenance under WO 99-003027-000 and DH7B 65.94 65.81 DB-PF-03205 3/30/2000 review of test data obtained on 3/30/00 under DB-PF-03205. Reference values established following DH9A 63.37 63.61 DB-PF-03272 4/30/1998 maintenance under MWO 3-98-0292-01. Reference values established following DH9B 65.52 64.47 DB-SP-03208 10114/1994 maintenance under MWO 1-93-0695-26. Reference values established following DHll 55.83 56.74 DB-SP-03130 5/13/1996 maintenance under MWO 1-95-0487-02. Reference values established following DH12 59.56 59.78 DB-SP-03130 5/13/1996 maintenance under MWO 2-93-0035-29. Reference values established following DH13A 6.39 7.23 DB-MI-05023 4/2/2006 maintenance under Order 200104259. Reference values established following DH13B 7.88 11.08 DB-PF-03205 1/13/2008 maintenance under Order 200067203. Reference values established following DH14A 5.73 6.59 DB-PF-03206 1/16/2008 maintenance under Order 200067204. Reference values established following DH14B 5.13 6.55 DB-MI-05023 1/13/2008 maintenance under Order 200067205. 9

ISTB3 Stroke Time Basis Revision48 Section B REFERENCE VALUE INFORMATION Reference Reference Reference Value Value Test Reference Open Closed Procedure Test Date Reference Comments Reference values established following DH63 28.15 28.12 DB-PF-03272 10/24/2000 maintenance under WO 00-001510-000. Reference values established following DH64 12.74 12.86 DB-PF-03272 9/8/2005 maintenance under Order 200104259. Reference values established following maintenance under MWO 3-98-0296-01 DH830 41.9 41.46 DB-PF-03206 7/9/1998 and review oftest data obtained on 7/9/98 under DB-PF-03206. Reference values established following maintenance under WO 99-001209-000 and DH831 38.71 37.63 DB-PF-03205 6/22/2000 review of test data obtained on 6/22/00 under DB-PF-03205. Reference values established following DH1517 15.5 16.22 DB-PF-03205 6/26/2000 maintenance under WO 99-004337-002. Reference values established following DH1518 14.21 14.14 DB-PF-03206 6/6/2000 maintenance under WO 99-004337-006. Reference values established following DH2733 111.91 112.34 DB-PF-09302 1112/2008 maintenance under Order 200091807. Reference values established following maintenance under WO 98-002735-000 and DH2734 112.48 112.06 DB-PF-03206 6/6/2000 review oftest data obtained on 616100 under DB-PF-03206. Reference values established following maintenance under MWO 3-98-0301-01 DH2735 16.47 16.39 DB-PF-03812 5/1111998 and review of test data obtained on 5117/98 under DB-PF-03812. Reference values established following DH2736 39.75 39.8 DB-PF-03272 4/26/2000 maintenance under WO 99-004337-013. Reference values established following DR2012A 8.04 8.24 DB-PF-03811 61112000 maintenance under WO 99-003635-000. Reference values established following DR2012B 8.74 8.35 DB-PF-03811 12/17/1999 maintenance under WO 99-002021-000. Reference values established following DW2643 4.81 5.9 DB-PF-05061 6/4/2004 maintenance under Order 200011311. Open value changed due to Order 200002323. Previous close value retained DW6831A 7.62 1.42 DB-PF-03272 617/2003 from DB-PF-03811on10/18/98 following WO 99-005780-000. Open value changed due to WO 02-001457-000. Previous close value retained from DW6831B 9.42 1.56 DB-PF-03272 6/6/2003 DB-PF-03811 on 2/10/94 following MWO 7-93-0477-01. Reference values established following FW601 13.2 14.1 DB-PF-03272 5/6/1999 maintenance under WO 99-002535-000. Reference values established following FW612 12.09 13.11 DB-PF-03272 51612000 maintenance under WO 99-003729-000. 10

ISTB3 Stroke Time Basis Revision48 SectionB REFERENCE VALUE INFORMATION Reference Reference Reference Value Value Test Reference

         ~        Closed      Procedure      Test Date           Reference Comments Reference values established following HA5439    56.21                                         maintenance under WO 00-001511-000 and 56.24     DB-PF-03811      2/2/2001 based upon review of test data obtained on 2/2/01 under DB-PF-03811.

Reference values established following HA5440 55.15 maintenance under WO 98-001409-000 and 55.03 DB-PF-03811 4/3/1999 based upon review of test data obtained on 413199 under DB-PF-03811. Reference values established following HA5441 54.89 maintenance under WO 00-003582-000 and 55.05 DB-PF-03811 2/9/2001 based upon review of test data obtained on 2/9/01 under DB-PF-03811. Reference values established following maintenance under WO 00-001512-000 and HA5442 58.4 58.36 DB-PF-03811 2/9/2001 based upon review of test data obtained on 2/9/01 under DB-PF-03811. Reference values established following HP2A 8.53 8.7 DB-PF-03272 5/1/1998 maintenance under MWO 3-97-0271-01). Reference values established following maintenance under WO 99-003744-000 and HP2B 9.06 9.12 DB-PF-03206 61612000 based upon review of test data obtained on 616100 under DB-PF-03206. Reference values established following maintenance under MWO 3-98-0272-01 HP2C 8.87 8.97 DB-PF-03205 5/28/1998 and based upon review of test data obtained on 5/28/98 under DB-PF-03205. Reference values established following maintenance under WO 99-004365-000 and HP2D 8.82 8.34 DB-PF-03205 3/30/2000 based upon review of test data obtained on 3/30/00 under DB-PF-03205. Reference values established following HP31 28.94 27.59 DB-SP-03219 917/1995 maintenance under MWO 7-95-0237-01. Reference values established following HP32 28.55 28.45 DB-SP-03218 5/1/1995 maintenance under MWO 3-95-2070-01. Reference values established following IA201 l 2.58 2.42 DB-PF-03811 7/16/2003 maintenance under Order 200002505. Reference values established per DB-PF-ICSl lA 8 4.94 99-000913-001 51912000 03440 on 519100 following valve/actuator replacement under MOD 92-0008. Reference values established following ICSl lB 8.75 5.72 DB-PF-03440 4/19/2006 maintenance under Order 200116976. Refer to CR 06-01971. Reference values established following MSlOO 4.3 DB-SP-03445 5/18/1998 maintenance under MWO 2-97-0008-01 & 2-98-0013-01. Reference values established following MSl00-1 4.58 19.18 DB-PF-03811 7/20/2006 maintenance under Order 200117177. 11

ISTB3 Stroke Time Basis Revision 48 Section B REFERENCE VALUE INFORMATION Reference Reference Reference Value Value Test Reference Open Closed Procedure Test Date Reference Comments Reference values established during 5/12/00 MSlOl 4.4 DB-SP-03444 511212000 test using a stopwatch. Reference values established following MSlOl-1 4.24 19.95 DB-PF-03811 2/23/2008 maintenance under Order 200237626. Reference values established following MS106 17.956 18.03 DB-PF-09302 11/8/2011 maintenance under WO 200432019. Reference values established following MS106A 29.286 29.469 DB-PF-09302 11/9/2011 maintenance under WO 200432020. Reference values established following MS107 28.183 28.377 DB-PF-09302 1117/2011 maintenance under WO 200432021. Reference values established following MS107A 26.76 26.912 DB-PF-09302 11/8/2011 maintenance under WO 200432022. Reference values established following MS375 4.66 7.6 DB-PF-03811 2/23/2002 maintenance under WO 01-000413-000. Reference values established following MS394 6 7.48 DB-PF-03811 2/23/2002 maintenance under WO 01-000425-000. Reference values established following MS603 61.24 61.55 DB-PF-03272 4/27/2000 maintenance under WO 99-003962-000. Reference values established following MS611 60.19 60.52 DB-PF-03272 4/20/1998 maintenance under MWO 3-98-0256-01. Reference values established following MS5889A 34.23 6.54 DB-SP-03151 61111995 maintenance under MWO 7-94-0473-02. Reference values established following MS5889B 36.56 5.46 DB-SP-03166 612512010 maintenance under Order 200421064. Reference values established following MUIA 9.26 9.59 DB-PF-03272 511011999 maintenance under WO 99-000269-005. Reference values established following MUIB 9.21 9.3 DB-PF-03272 51911996 maintenance under MWO 2-93-0035-22 & 1-95-0487-05. Reference values established following MU2A 9.76 9.86 DB-PF-03272 5/13/1996 maintenance under MWO 2-93-0035-20 & 3-96-0184-01. Reference values established following MU2B 9.63 9.79 DB-PF-03272 10/25/1994 maintenance under MWO 1-92-1078-50. Reference values established following MU3 4.12 4.88 DB-PF-03386 8116/2003 actuator replacement under ECR 03-0111-00 Reference values established following MU38 1.16 0.7 DB-PF-03386 2/27/2014 actuator replacement under Order 200595089. Reference values established following MU59A 15.81 15.96 DB-PF-03272 4/30/2000 maintenance under WO 99-003848-000. Reference values established following MU59B 15.18 15.25 DB-PF-03272 4/30/2000 maintenance under WO 99-003849-000. Reference values established following MU59C 14.13 14.24 DB-PF-03272 4/27/2000 maintenance under WO 99-003850-000. 12

ISTB3 Stroke Time Basis Revision 48 Section B REFERENCE VALUE INFORMATION Reference Reference Reference Value Value Test Reference Open Closed Procedure Test Date Reference Comments Reference values established following MU59D 15.77 15.9 DB-PF-03272 4/27/2000 maintenance under WO 99-003851-000. Reference values established following MU66A 2.84 1.67 DB-PF-03386 3/1/2014 actuator replacement under Order 200595464. Reference values established following MU66B 4.15 2.95 DB-PF-05061 3/16/2003 maintenance under WO 03-003956-000 and because of new test methodology. Reference values established following MU66C 3.46 2.67 DB-PF-05061 3/17/2003 maintenance under WO 03-003957-000 and because of new test methodologv. Reference values established following MU66D 4.01 2.94 DB-PF-05061 3/17/2003 maintenance under WO 02-002306-000 and because of new test methodology. Reference values established following MU3971 15.97 16.09 DB-PF-03272 5/20/1996 maintenance under MWO 1-96-0356-00. Reference values established following MU6405 15.54 15.56 DB-PF-03272 5/28/1996 maintenance under MWO 1-96-0357-01 Reference values established following MU6420 14.03 14.11 DB-PF-03272 4/30/1998 maintenance under MWO 3-96-4640-02. Reference values estabiished following MU6419 27.43 27.98 DB-PF-03272 4/17/2002 maintenance under Work Orders 01-005662-000 and 01-002465-000. Reference values established following maintenance under WO 99-003347-000 and MU6421 14.05 13.65 DB-PF-03811 512512000 based upon review of test data obtained on 5125100 under DB-PF-03811. Reference values established following MU6422 13.17 13.25 DB-PF-03272 10/18/1994 maintenance under MWO 1-93-0659-22. Reference values established following NN236 3.87 2.49 DB-PF-03272 41512006 maintenance under Order 200117034. Reference values established following RC2 6.85 6.48 DB-PF-03272 5/10/1999 maintenance under WO 98-000373-005. Reference values established following RC2A 0.48 0.38 DB-SP-03366 11118/2011 maintenance under Order 200353901. Reference values established following RClO 11.29 11.37 DB-PF-03272 11/7/1994 maintenance under MWO 2-90-0046-02. Reference values established following RCll 17.27 17.4 DB-PF-03272 5/18/1996 maintenance under MW02-96-0001-01. Reference values established following RC200 10.95 10.87 DB-PF-03272 10/18/1994 maintenance under MWO 1-93-0659-24. Reference values established following maintenance under MWO 3-94-4488-01 RC229A 10 2.74 DB-PF-03811 11124/1994 and based upon review of test data obtained on 11124/94 under DB-PF-03811. 13

ISTB3 Stroke Time Basis Revision 48 SectionB REFERENCE VALUE INFORMATION Reference Reference Reference Value Value Test Reference Open Closed Procedure Test Date Reference Comments Reference values established following RC229B 7.21 1.56 DB-PF-03811 7/16/2003 maintenance under Order 200003596. Reference values established following RC232 8.86 4.83 DB-SP-03272 4/6/1993 maintenance under MWO 3-93-4486-01. Reference values established following RC239A 12.94 13.03 DB-PF-03272 4/10/2000 maintenance under WO 99-003809-000. Reference values established following RC240A 12.08 12 DB-PF-03272 4/20/1998 maintenance under MWO 3-96-0042-01. Reference values established following RC240B 12.01 11.93 DB-PF-03811 12/9/1992 maintenance under MWO 1-92-1078-27. Reference values established following RC1719A 4.45 2.87 DB-PF-03811 6/29/1996 maintenance under MWO 3-96-3916-01. Reference values established following RC1719B 6.41 4.15 DB-PF-03272 41512006 maintenance under Order 200117186. Reference values established following RC1773A 3.12 1.67 DB-PF-03272 3/2112002 maintenance under WO 00-003763-000 and WO 01-009132-000. Reference values established following RC1773B 3.3 2 DB-PF-03272 3/13/2002 maintenance under WO 01-009679-000. Reference values established following RC4608A 0.94 0.61 DB-SP-03366 1112/1994 maintenance under MWO 2-86-0175-14. Reference values established following RC4608B 0.54 0.33 DB-SP-03366 1112/1994 maintenance under MWO 2-86-0175-14. Reference values established following RC4610A 0.47 0.35 DB-SP-03366 4/13/1993 maintenance under MWO 2-86-0175-11. Reference values established following RC4610B 0.24 0.24 DB-SP-03366 4/13/1993 maintenance under MWO 2-86-0175-11. Reference values established following SA2010 2.98 4.44 DB-PF-03272 4/12/2006 maintenance under Order 200200915. Reference values established following SP6A 5.96 DB-MI-03232 5/6/1999 maintenance under WO 98-000830-000. Reference values established following SP6B 6 DB-MI-03232 51212000 maintenance under WO 99-004053-000. Reference values established following SP7A 3.96 DB-MI-03233 51612000 maintenance under WO 99-003442-000. Reference values established following SP7B 3 DB-MI-03233 51412000 maintenance under WO 99-003706-000. Reference values established following SS235A 2.47 2.87 DB-PF-03272 3/29/2003 maintenance under WO 03-001810-000. Reference values established following SS235B 1.18 0.63 DB-PF-03272 3/3112006 maintenance under Order 200006644. Reference values established following SS598 2.12 4.24 DB-PF-03811 7/16/2003 implementation ofECR 03-0096. Refer to CR 03-00890. Reference values established following SS607 2.96 2.97 DB-PF-03272 3/3111999 maintenance under WO 98-001512-000. 14

ISTB3 Stroke Time Basis Revision 48 Section B REFERENCE VALUE INFORMATION Reference Reference Reference Value Value Test Reference Qrum Closed Procedure Test Date Reference Comments Reference values following implementation SW1356 5.29 6.99 DB-PF-03020 8/23/2013 ofECR 04-0272 under Order 200099230. (Refer to Order 200574209) Reference values following implementation SW1357 3.87 8.107 DB-PF-03027 9/12/2013 of ECR 04-0272 under Order 200099231. (Refer to Order 200576869) Reference values following implementation SW1358 4 6.26 DB-PF-03020 1111/2013 ofECR 04-0272 under Order 200099232. (Refer to Order 200582224) Reference values established following SW1366 20.1 20.1 DB-PF-03272 11/14/1996 maintenance under MW03-97-0934-0l Reference values established following SW1367 19.24 19.26 DB-PF-03272 6/24/1992 maintenance under MWO 2-88-0109-04. Reference values established following SW1368 19.43 19.41 DB-PF-03027 5/18/1992 maintenance under MWO 2-88-0109-03. Reference values established following SW1379 29.84 29.96 DB-PF-09302 41212006 maintenance under Order 200007803. Reference values established following SW1380 27.89 28.05 DB-PF-09302 41212006 maintenance under Order 200007801. Reference values established following SW1381 30.09 30.2 DB-PF-09302 4/14/2006 maintenance under Order 200007816. Reference values established following SW1382 10.38 10.45 DB-PF-09302 3/8/2010 maintenance under order 200354089 and ECP 08-0571. Reference values established following SW1383 10.22 10.26 DB-PF-09302 3/8/2010 maintenance under order 200354090 and ECP 08-0571. Reference values established following SW1395 30.68 31.08 DB-PF-03027 5/8/2000 maintenance under WO 98-000615-000. Reference values established following SW1399 30.71 30.88 DB-PF-03020 51412000 maintenance under WO 98-000656-000. Reference values established following SW1424 4.78 26.23 DB-PF-05061 9/6/2003 implementation ofECR 03-0299 and Order 200036280. Reference values established following SW1429 5.12 23.6 DB-MI-05023 91512003 implementation ofECR 03-0299 and Order 200036281. Reference values established following SW1434 4.79 25.49 DB-PF-05061 9/10/2003 implementation ofECR 03-0299. Reference values established following maintenance under MWO 3-98-0948-01 SW2927 18.98 18.46 DB-PF-03020 12/2/1998 and based upon review of test data obtained on 12/2/98 under DB-PF-03020. Reference values established following maintenance under WO 99-005611-000 and SW2928 18.27 17.26 DB-PF-03027 51412000 based upon review of test data obtained on 514100 under DB-PF-03027. 15

ISTB3 Stroke Time Basis Revision 48 Section B REFERENCE VALUE INFORMATION Reference Reference Reference Value Value Test Reference Open Closed Procedure Test Date Reference Comments Reference values established following SW2929 59.35 59.55 DB-PF-03272 3/31/2006 maintenance under Order 200162373. Reference values established following SW2930 50.44 50.68 DB-PF-03272 3/30/2006 maintenance under Order 200163414. Reference values established following SW293l 56.33 56.58 DB-PF-03272 3/3112006 maintenance under Order 200163415. Reference values established following SW2932 51.41 51.49 DB-PF-03027 10/2111999 maintenance under WO 99-004180-000. Reference values established following SW5067 10.86 9.8 DB-PF-03020 112612000 maintenance under WO 99-001844-000. Reference values established following maintenance under WO 99-004754-000 and SW5068 19.34 18.78 DB-PF-03027 51412000 based upon review of test data obtained on 514100 under DB-PF-03027. 16

ISTB3 Stroke Time Basis Revision 48 Section B STROKE TIME LIMITING VALUES MAX VALVE REFERENCE TRM SFAS CIV SFRCS FIXED IST ALLOWABLE (0) (C) (0) (C) (0) (C) (C) (C) (0) (C) (0) (C) (0) (C) AF599 36.489 36.561 54.73 54.84 54.73 54.84 AF608 36.606 36.757 54.9 55.13 54.9 55.13 AF3869 33.92 34.27 40 40 50.88 51.4 40 40 AF3870 19.375 19.918 40 40 29.06 29.87 29.06 29.87 AF3871 33.54 33.8 40 40 50.31 50.7 40 40 AF3872 26.68 27.22 40 40 40.02 40.83 40 40 CC1328 22.2 22.08 35 24.5 33.12 24.5 CC1338 22.25 22.51 35 24.53 33.76 24.53 CCI407A 8.23 8.36 30 19.65 15 12.54 12.54 CC1407B 9.86 9.97 30 19.8 15 14.95 14.95 CC141 IA 9.87 9.88 30 19.65 15 14.82 14.82 CC1411B 9.31 9.4 30 19.8 15 14.1 14.1 CC1460 3.46 4.33 90 85 12.99 12.99 CC1467 30.36 13.98 60.72 60.72 CCI469 32.52 12.29 65.04 65.04 CCI495 14.28 24.42 90 85 48.84 48.84 CC1567A 9.63 9.01 35 19.36 15 13.51 13.51 CC1567B 9.07 9.22 35 19.36 15 13.83 13.83 CC2645 60.33 60.56 90.84 90.84 CC2649 61.42 61.23 91.84 91.84 CC4IOO 12.41 12.57 18.85 18.85 CC4200 12.26 12.31 18.46 18.46 CC4300 12.79 13.05 19.57 19.57 CC4400 13.6 13.74 20.61 20.61 CC5095 102.77 I02.86 154.29 154.29 CC5096 101.79 101.2 151.8 151.8 CC5097 57.06 57.53 86.29 86.29 CC5098 59.4 59.36 89.04 89.04 CF1541 4.14 3.56 15 IO IO I0.68 IO CF1542 6.46 6.35 15 IO 10 19.05 10 CF1544 4.18 3.96 15 IO IO 11.88 IO CF1545 3.49 3.24 15 10 IO IO IO CSI530 18.793 19.02 80 63.9 28.18 28.53 28.18 28.53 CS1531 20.741 20.838 80 63.9 31.11 31.25 31.11 31.25 CV5004 75 70 70 CV5005 33.19 6.73 20.19 20.19 CV5006 17.59 9.64 28.92 28.92 CV5007 16.03 8.84 26.52 26.52 CV5008 7.9 8.69 26.07 26.07 CV5009 75 70 70 CV50IOA 9.93 I0.03 30 14.52 15 14.89 15.04 14.89 14.52 17

ISTB3 Stroke Time Basis Revision 48 Section B STROKE TIME LIMITING VALVES MAX VALVE REFERENCE TRM SFAS CIV SFRCS FIXED IST ALLOWABLE (0) (C) (0) (C) (0) (C) (C) (C) (0) (C) (0) (C) (0) (C) CV5010B 10.5 10.53 30 14.52 15 15.75 15.79 15.75 14.52 CV5010C 9.87 9.88 30 14.52 15 14.8 14.82 14.8 14.52 CV5010D 10.24 10.3 30 14.52 15 15.36 15.45 15.36 14.52 CV5010E 10.15 10.33 30 14.52 15 15.22 15.49 15.22 14.52 CV5011A 11.6 11.6 30 14.52 15 17.4 17.4 17.4 14.52 CV5011B 10.84 10.81 30 14.52 15 16.26 16.21 16.26 14.52 CV5011C 10.14 10.17 30 14.52 15 15.21 15.25 15.21 14.52 CV5011D 9.94 10.15 30 14.52 15 14.91 15.22 14.91 14.52 CV5011E 10.21 10.5 30 14.52 15 15.31 15.75 15.31 14.52 CV5016 75 70 70 CV5021 75 70 70 CV5024 75 60 60 CV5025 75 60 60 CV5037 48.54 48.5 75 58.9 60 72.81 72.75 72.81 58.9 CV5038 54.05 53.96 75 58.9 60 81.07 80.94 81.07 58.9 CV5065 56.12 56.19 75 58.9 60 84.18 84.28 84.18 58.9 CV5070 10.01 10.11 30 14.52 15 15.16 14.52 CV5071 9.62 9.63 30 14.52 15 14.44 14.44 CV5072 9.61 9.72 30 14.52 15 14.58 14.52 CV5073 9.9 10 30 14.52 15 15 14.52 CV5074 9.77 9.87 30 14.52 15 14.8 14.52 CV5075 9.57 9.59 30 14.52 15 14.38 14.38 CV5076 10.27 10.37 30 14.52 15 15.55 14.52 CV5077 10.43 10.43 30 14.52 15 15.64 14.52 CV5078 10.07 10.09 30 14.52 15 15.13 14.52 CV5079 10.43 10.42 30 14.52 15 15.63 14.52 CV5090 56.31 56.26 75 58.9 60 84.46 84.39 84.46 58.9 DHlA 9.18 9.17 13.77 13.75 13.77 13.75 DHlB 9.007 8.061 13.51 12.09 13.51 12.09 DH7A 66 66.3 75 99 99.45 99 75 DH7B 65.94 65.81 75 98.91 98.71 98.91 75 DH9A 63.37 63.61 71 75 95.05 95.41 75 71 DH9B 65.52 64.47 71 75 98.28 96.7 75 71 DHll 55.83 56.74 83.74 85.11 83.74 85.11 DH12 59.56 59.78 89.34 89.67 89.34 89.67 DH13A 6.39 7.23 21.69 21.69 DH13B 7.88 11.08 22.16 22.16 DH14A 5.73 6.59 17.19 17.19 DH14B 5.13 6.55 15.39 15.39 DH63 28.15 28.12 42.22 42.18 42.22 42.18 DH64 12.74 12.86 19.11 19.29 19.11 19.29 18

ISTB3 Stroke Time Basis Revision 48 Section B STROKE TIME LIMITING VALVES MAX VALVE REFERENCE TRM SFAS CIV SFRCS FIXED IST ALLOWABLE (0) (C) (0) (C) (0) (C) (C) (C) (0) (C) (0) (C) (0) (C) DH830 41.9 41.46 62.19 62.19 DH831 38.71 37.63 56.44 56.44 DH1517 15.5 16.22 23.25 24.33 23.25 24.33 DH1518 14.21 14.14 21.31 21.21 21.31 21.21 DH2733 111.91 112.34 167.86 168.51 167.86 168.51 DH2734 112.48 112.06 168.72 168.09 168.72 168.09 DH2735 16.47 16.39 24.7 24.58 24.7 24.58 DH2736 39.75 39.8 59.62 59.7 59.62 59.7 DR2012A 8.04 8.24 30 19.25 15 12.36 12.36 DR2012B 8.74 8.35 30 19.38 15 12.52 12.52 DW2643 4.81 5.9 17.7 17.7 DW6831A 7.62 1.42 15 10 10 10 10 DW6831B 9.42 1.56 15 10 10 10 10 FW601 13.2 14.1 16 15 21.15 15 FW612 12.09 13.11 16 15 19.66 15 HA5439 56.21 56.24 75 60 60 HA5440 55.15 55.03 75 60 60 HA5441 54.89 55.05 75 60 60 HA5442 58.4 58.36 75 60 60 HA5715A 75 70 70 HA5715B 75 70 70 HA5716A 75 70 70 HA5716B 75 70 70 HP2A 8.53 8.7 30 13.5 12.79 13.05 12.79 13.05 HP2B 9.06 9.12 30 13.45 13.59 13.68 13.45 13.68 I HP2C 8.87 8.97 30 13.5 13.3 13.45 13.3 13.45 HP2D 8.82 8.34 30 13.5 13.23 12.51 13.23 12.51 HP31 28.94 27.59 41.38 41.38 HP32 28.55 28.45 42.67 42.67 IA2011 2.58 2.42 15 10 10 10 10 ICSl lA 8 4.94 24 14.82 24 14.82 ICSl lB 8.75 5.72 26.25 17.16 26.25 17.16 MSlOO 0 4.3 6 5 12.9 5 MSl00-1 4.58 19.18 38.36 38.36 MSlOl 0 4.4 6 5 13.2 5 MSlOl-1 4.24 19.95 39.9 39.9 MS106 17.956 18.03 40 40 26.93 27.04 26.93 27.04 MS106A 29.286 29.469 40 40 43.92 44.2 40 40 MS107 28.183 28.377 40 40 42.27 42.56 40 40 MS107A 26.76 26.912 40 40 40.14 40.36 40 40 MS375 4.66 7.6 22.8 22.8 19

ISTB3 Stroke Time Basis Revision 48 SectionB STROKE TIME LIMITING VALUES MAX VALVE REFERENCE TRM SFAS CIV SFRCS FIXED IST ALLOWABLE (0) (C) (0) (C) (0) (C) (C) (C) (0) (C) (0) (C) (0) (C) MS394 6 7.48 22.44 22.44 MS603 61.24 61.55 92.32 92.32 MS611 60.19 60.52 90.78 90.78 MS5889A 34.23 6.54 42 68.46 42 MS5889B 36.56 5.46 46 73.12 46 MUlA 9.26 9.59 14.38 14.38 MUlB 9.21 9.3 13.95 13.95 MU2A 9.76 9.86 30 14.52 15 14.79 14.52 MU2B 9.63 9.79 14.68 14.68 MU3 4.12 4.88 30 25 10 14.64 10 MU38 1.16 0.7 45 40 12 2 2 MU59A 15.81 15.96 45 29.15 30 23.94 23.94 MU59B 15.18 15.25 45 29.15 30 22.87 22.87 MU59C 14.13 14.24 45 29.15 30 21.36 21.36 MU59D 15.77 15.9 45 29.15 30 23.85 23.85 MU66A 2.84 1.67 17 12 12 10 10 MU66B 4.15 2.95 17 12 12 10 10 MU66C 3.46 2.67 17 12 12 10 10 MU66D 4.01 2.94 17 12 12 10 10 MU3971 15.97 16.09 24.13 24.13 MU6405 15.54 15.56 23.34 23.34 MU6421 14.05 13.65 20.47 20.47 MU6422 13.17 13.25 19.87 19.87 NN236 3.87 2.49 15 10 10 10 10 RC2A 0.48 0.38 2 2 2 2 RClO 11.29 11.37 17.05 17.05 RCll 17.27 17.4 25.9 26.1 25.9 26.1 RC200 10.95 10.87 16.42 16.3 16.42 16.3 RC229A 10 2.74 15 10 10 10 10 RC229B 7.21 1.56 15 10 10 10 10 RC232 8.86 4.83 15 10 10 14.49 10 RC239A 12.94 13.03 19.41 19.54 19.41 19.54 RC240A 12.08 12 45 29.15 30 18.12 18 18.12 18 RC240B 12.01 11.93 45 29.15 30 17.89 17.89 RC1719A 4.45 2.87 15 10 10 10 10 RC1719B 6.41 4.15 15 10 10 12.45 10 RC1773A 3.12 1.67 15 10 10 10 10 RC1773B 3.3 2 15 10 10 10 10 RC4608A 0.94 0.61 2 2 2 2 RC4608B 0.54 0.33 2 2 2 2 RC4610A 0.47 0.35 2 2 2 2 20

ISTB3 Stroke Time Basis Revision 48 Section B STROKE TIME LIMITING VALVES MAX VALVE REFERENCE TRM SFAS CIV SFRCS FIXED IST ALLOWABLE (0) (C) (0) (C) (0) (C) (C) (C) (0) (C) (0) (C) (0) (C) RC4610B 0.24 0.24 2 2 2 2 SA2010 2.98 4.44 15 10 10 13.32 10 SP6A 5.96 8 7 7 SP6B 6 8 7 7 SP7A 3.96 13 12 12 SP7B 3 13 12 12 SS235A 2.47 2.87 35 30 30 10 10 SS235B 1.18 0.63 35 30 30 2 2 SS598 2.12 4.24 15 10 10 12.72 10 SS607 2.96 2.97 15 10 10 10 10 SW1356 5.29 6.99 10 15.87 20.97 10 20.97 SW1357 3.87 8.107 10 11.61 24.32 10 24.32 SW1358 4 6.26 10 12 18.78 10 18.78 SW1366 20.1 20.l 30.15 30.15 30.15 30.15 SW1367 19.24 19.26 28.86 28.89 28.86 28.89 SW1368 19.43 19.41 29.14 29.11 29.14 29.11 SW1379 29.84 29.96 44.76 44.94 44.76 44.94 SW1380 27.89 28.05 41.83 42.07 41.83 42.07 SW1381 30.09 30.2 45.13 45.3 45.13 45.3 SW1382 10.38 10.45 13 15.57 13 SW1383 10.22 10.26 13 15.33 13 SW1395 30.68 31.08 45 34.15 46.62 34.15 SW1399 30.71 30.88 45 34 46.32 34 SW1424 4.78 26.23 14.34 14.34 SW1429 5.12 23.6 15.36 15.36 SW1434 4.79 25.49 14.37 14.37 SW2927 18.98 18.46 28.47 28.47 SW2928 18.27 17.26 27.4 27.4 SW2929 59.35 59.55 89.02 89.32 89.02 89.32 SW2930 50.44 50.68 75.66 76.02 75.66 76.02 SW2931 56.33 56.58 84.87 84.87 SW2932 51.41 51.49 77.23 77.23 SW5067 10.86 9.8 16.29 16.29 SW5068 19.34 18.78 29.01 29.01 21

ISTB3 Stroke Time Basis Revision 48 Section C STROKE TIME LIMITS AND ACCEPTANCE CRITERIA Maximum Expected Stroke Allowable Valve ~ Reference Times Time Range Stroke Time Comments AF599 MOV Open 36.489 31.02 - 41.96 54.73 Closed 36.561 31.08 - 42.04 54.84 Open 36.606 31.12 - 42.09 54.9 AF608 MOV Closed 36.757 31.25 - 42.27 55.13 Open 33.92 28.84 - 39 40 AF3869 MOV Closed 34.27 29.13 - 39.41 40 AF3870 MOV Open 19.375 16.47 - 22.28 29.06 Closed 19.918 16.94 - 22.9 29.87 Open 33.54 28.51 - 38.57 40 AF3871 MOV Closed 33.8 28.73 - 38.87 40 AF3872 MOV Open 26.68 22.68 - 30.68 40 Closed 27.22 23.14 - 31.3 40 Open 22.2 CC1328 MOV Closed 22.08 18.77 - 24.5 24.5 Open 22.25 CC1338 MOV Closed 22.51 19.14 - 24.53 24.53 Open 8.23 CC1407A MOV Closed 8.36 6.27 - 10.45 12.54 Open 9.86 CC1407B MOV Closed 9.97 7.48 - 12.46 14.95 Open 9.87 CC1411A MOV Closed 9.88 7.41 12.35 14.82 Open 9.31 CC1411B MOV Closed 9.4 7.05 - 11.75 14.1 Open 3.46 CC1460 AOV Closed 4.33 2.17 - 6.49 12.99 Fail Eosition closed. CC1467 AOV Open 30.36 22.77 - 37.95 60.72 Fail position open. Closed 13.98 AOV Open 32.52 24.39 - 40.65 65.04 Fail position open. CC1469 Closed 12.29 Open 14.28 CC1495 AOV Closed 24.42 18.32 - 30.52 48.84 Fail Eosition closed. Open 9.63 CC1567A MOV Closed 9.01 6.76 - 11.26 13.51 22

ISTB3 Stroke Time Basis Revision 48 Section C STROKE TIME LIMITS AND ACCEPTANCE CRITERIA Maximum Expected Stroke Allowable Valve ~ Reference Times Time Range Stroke Time Comments Open 9.07 CC1567B MOV Closed 9.22 6.92 - 11.52 13.83 Open 60.33 CC2645 MOV Closed 60.56 51.48 - 69.64 90.84 Open 61.42 CC2649 MOV Closed 61.23 52.05 - 70.41 91.84 Open 12.41 CC4100 MOV Closed 12.57 10.69 - 14.45 18.85 Open 12.26 CC4200 MOV Closed 12.31 10.47 - 14.15 18.46 Open 12.79 CC4300 MOV Closed 13.05 11.1 15 19.57 Open 13.6 CC4400 MOV Closed 13.74 11.68 - 15.8 20.61 Open 102.77 CC5095 MOV Closed 102.86 87.44 - 118.28 154.29 Open 101.79 CC5096 MOV Closed 101.2 86.02 - 116.38 151.8 Open 57.06 CC5097 MOV Closed 57.53 48.91 - 66.15 86.29 Open 59.4 CC5098 MOV Closed 59.36 50.46 - 68.26 89.04 Open 4.14 CF1541 AOV Closed 3.56 1.78 - 5.34 10 Fail Eosition closed. Open 6.46 CF1542 AOV Closed 6.35 3.18 - 9.52 10 Fail Eosition closed. Open 4.18 CF1544 AOV Closed 3.96 1.98 - 5.94 10 Fail Eosition closed. Open 3.49 CF1545 AOV Closed 3.24 1.62 - 4.86 10 Fail Eosition closed. CS1530 MOV Open 18.793 15.98 - 21.61 28.18 Closed 19.02 16.17 - 21.87 28.53 MOV Open 20.741 17.63 - 23.85 31.11 CS1531 Closed 20.838 17.72 - 23.96 31.25 23

ISTB3 Stroke Time Basis Revision 48 Section C* STROKE TIME LIMITS AND ACCEPTANCE CRITERIA Maximum Expected Stroke Allowable Valve ~ Reference Times Time Range Stroke Time Comments Open CV5004 AOV Closed 70 Fail 2osition closed. Open 33.19 CV5005 AOV Closed 6.73 3.37 - 10.09 20.19 Fail position closed. Open 17.59 CV5006 AOV Closed 9.64 4.82 - 14.46 28.92 Fail 2osition closed. Open 16.03 CV5007 AOV Closed 8.84 4.42 - 13.26 26.52 Fail 2osition closed. Open 7.9 CV5008 AOV Closed 8.69 4.35 - 13.03 26.07 Fail position closed. Open CV5009 AOV Closed 70 Fail 2osition closed. Open 9.93 7.45 - 12.41 14.89 CV5010A MOV Closed 10.03 8.53 - 11.53 14.52 Open 10.5 8.93 - 12.07 15.75 CV5010B MOV Closed 10.53 8.96 - 12.1 . 14.52 Open 9.87 7.41 12.33 14.8 CV5010C MOV Closed 9.88 7.41 12.35 14.52 Open 10.24 8.71 11.77 15.36 CV5010D MOV Closed 10.3 8.76 - 11.84 14.52 CV5010E MOV Open 10.15 8.63 - 11.67 15.22 Closed 10.33 8.79 - 11.87 14.52 Open 11.6 9.86 - 13.34 17.4 CV5011A MOV Closed 11.6 9.86 - 13.34 14.52 Open 10.84 9.22 - 12.46 16.26 CV5011B MOV Closed 10.81 9.19 - 12.43 14.52 Open 10.14 8.62 - 11.66 15.21 CV5011C MOV Closed 10.17 8.65 - 11.69 14.52 Open 9.94 7.46 - 12.42 14.91 CV5011D MOV Closed 10.15 8.63 - 11.67 14.52 MOV Open 10.21 8.68 - 11.74 15.31 CV5011E Closed 10.5 8.93 - 12.07 14.52 Open CV5016 AOV Closed 70 24

ISTB3 Stroke Time Basis Revision 48 Section C STROKE TIME LIMITS AND ACCEPTANCE CRITERIA Maximum Expected Stroke Allowable Valve ~ Reference Times Time Range Stroke Time Comments Open CV5021 AOV Closed 70 Open CV5024 MOV Closed 60 Open CV5025 MOV Closed 60 Open 48.54 41.26 - 55.82 72.81 CV5037 MOV Closed 48.5 41.23 - 55.77 58.9 CV5038 MOV Open 54.05 45.95 - 62.15 81.07 Closed 53.96 45.87 - 58.9 58.9 Open 56.12 47.71 - 64.53 84.18 CV5065 MOV Closed 56.19 47.77 - 58.9 58.9 Open 10.01 CV5070 MOV Closed 10.11 8.6 - 11.62 14.52 Open 9.62 CV5071 MOV Closed 9.63 7.23 - 12.03 14.44 Open 9.61 CV5072 MOV Closed 9.72 7.29 - 12.15 14.52 Open 9.9 CV5073 MOV Closed 10 7.5 - 12.5 14.52 Open 9.77 CV5074 MOV Closed 9.87 7.41 12.33 14.52 Open 9.57 CV5075 MOV Closed 9.59 7.2 - 11.98 14.38 Open 10.27 CV5076 MOV Closed 10.37 8.82 - 11.92 14.52 Open 10.43 CV5077 MOV Closed 10.43 8.87 - 11.99 14.52 Open 10.07 CV5078 MOV Closed 10.09 8.58 - 11.6 14.52 Open 10.43 CV5079 MOV Closed 10.42 8.86 - 11.98 14.52 MOV Open 56.31 47.87 - 64.75 84.46 CV5090 Closed 56.26 47.83 - 58.9 58.9 25

ISTB3 Stroke Time Basis Revision 48 Section C STROKE TIME LIMITS AND ACCEPTANCE CRITERIA Maximum Expected Stroke Allowable Valve ~ Reference Times Time Range Stroke Time Comments Open 9.18 6.89 - 11.47 13.77 DHlA MOV Closed 9.17 6.88 - 11.46 13.75 DHlB MOV Open 9.007 6.76 - 11.25 13.51 Closed 8.061 6.05 - 10.07 12.09 Open 66 56.1 - 75.9 99 DH7A MOV Closed 66.3 56.36 - 75 75 DH7B MOV Open 65.94 56.05 - 75.83 98.91 Closed 65.81 55.94 - 75 75 DH9A MOV Open 63.37 53.87 - 72.87 75 Closed 63.61 54.07 - 71 71 DH9B MOV Open 65.52 55.7 - 75 75 Closed 64.47 54.8 - 71 71 Open 55.83 47.46 - 64.2 83.74 DHll MOV Closed 56.74 48.23 - 65.25 85.11 DH12 MOV Open 59.56 50.63 - 68.49 89.34 Closed 59.78 50.82 - 68.74 89.67 Open 6.39 DH13A AOV Closed 7.23 3.62 - 10.84 21.69 Fail Eosition closed. Open 7.88 DH13B AOV Closed 11.08 8.31 13.85 22.16 Fail Eosition closed. DH14A AOV Open 5.73 2.87 - 8.59 17.19 Fail position open. Closed 6.59 Open 5.13 2.57 - 7.69 15.39 Fail position open. DH14B AOV Closed 6.55 Open 28.15 23.93 - 32.37 42.22 DH63 MOV Closed 28.12 23.91 - 32.33 42.18 Open 12.74 10.83 - 14.65 19.11 DH64 MOV Closed 12.86 10.94 - 14.78 19.29 Open 41.9 DH830 MOV Closed 41.46 35.25 - 47.67 62.19 Open 38.71 DH831 MOV Closed 37.63 31.99 - 43.27 56.44 DH1517 MOV Open 15.5 13.18 - 17.82 23.25 Closed 16.22 13.79 - 18.65 24.33 26

ISTB3 Stroke Time Basis Revision 48 Section C STROKE TIME LIMITS AND ACCEPTANCE CRITERIA Maximum Expected Stroke Allowable Valve ~ Reference Times Time Range Stroke Time Comments DH1518 MOV Open 14.21 12.08 - 16.34 21.31 Closed 14.14 12.02 - 16.26 21.21 DH2733 MOV Open 111.91 95.13 - 128.69 167.86 Closed 112.34 95.49 - 129.19 168.51 Open 112.48 95.61 129.35 168.72 DH2734 MOV Closed 112.06 95.26 - 128.86 168.09 Open 16.47 14 - 18.94 24.7 DH2735 MOV Closed 16.39 13.94 - 18.84 24.58 DH2736 MOV Open 39.75 33.79 - 45.71 59.62 Closed 39.8 33.83 - 45.77 59.7 Open 8.04 DR2012A MOV Closed 8.24 6.18 - 10.3 12.36 Open 8.74 DR2012B MOV Closed 8.35 6.27 - 10.43 12.52 Open 4.81 DW2643 AOV Closed 5.9 2.95 - 8.85 17.7 Fail Eosition closed. Open 7.62 DW6831A AOV Closed 1.42 0.71 - 2.13 10 Fail Eosition closed. Open 9.42 DW6831B AOV Closed 1.56 0.78 - 2.34 10 Fail Eosition closed. Open 13.2 FW601 MOV Closed 14.1 11.99 - 15 15 Open 12.09 FW612 MOV Closed 13.11 11.15 - 15 15 Open 56.21 HA5439 MOV Closed 56.24 60 Open 55.15 HA5440 MOV Closed 55.03 60 Open 54.89 HA5441 MOV Closed 55.05 60 Open 58.4 HA5442 MOV Closed 58.36 60 Open HA5715A AOV Closed 70 Fail position closed. 27

ISTB3 Stroke Time Basis Revision 48 Section C STROKE TIME LIMITS AND ACCEPTANCE CRITERIA Maximum Expected Stroke Allowable Valve Im: Reference Times Time Range Stroke Time Comments Open HA5715B AOV Closed 70 Fail Eosition closed. Open HA5716A AOV Closed 70 Fail Eosition closed. Open HA5716B AOV Closed 70 Fail Eosition closed. HP2A MOV Open 8.53 6.4 - 10.66 12.79 Closed 8.7 6.53 10.87 13.05 Open 9.06 6.8 11.32 13.45 HP2B MOV Closed 9.12 6.84 11.4 13.68 HP2C MOV Open 8.87 6.66 - 11.08 13.3 Closed 8.97 6.73 11.21 13.45 Open 8.82 6.62 11.02 13.23 HP2D MOV Closed 8.34 6.26 - 10.42 12.51 Open_ 28.94 HP31 MOV Closed 27.59 23.46 - 31.72 41.38 Open 28.55 HP32 MOV Closed 28.45 24.19 - 32.71 42.67 Open 2.58 IA2011 AOV Closed 2.42 1.21 - 3.63 10 Fail Eosition closed. Open 8 4 - 12 24 ICSllA AOV Closed 4.94 2.47 - 7.41 14.82 Fail Eosition closed. Open 8.75 4.38 13.12 26.25 ICSllB AOV Closed 5.72 2.86 - 8.58 17.16 Fail Eosition closed. Open 0 Values valid in Mode 4 MSlOO AOV Closed 4.3 2.15 5 5 onli'.. Fail Eosition closed. Open 4.58 MSl00-1 AOV Closed 19.18 14.39 - 23.97 38.36 Fail Eosition closed. Open 0 Values valid in Mode 4 MS101 AOV Closed 4.4 2.2 5 5 onli'.. Fail Eosition closed. Open 4.24 MSlOl-1 AOV Closed 19.95 14.97 - 24.93 39.9 Fail Eosition closed. MOV Open 17.956 15.27 - 20.64 26.93 MS106 Closed 18.03 15.33 - 20.73 27.04 28

ISTB3 Stroke Time Basis Revision 48 Section C STROKE TIME LIMITS AND ACCEPTANCE CRITERIA Maximum Expected Stroke Allowable Valve IYfil: Reference Times Time Range Stroke Time Comments Open 29.286 24.9 - 33.67 40 MS106A MOV Closed 29.469 25.05 - 33.88 40 Open 28.183 23.96 - 32.41 40 MS107 MOV Closed 28.377 24.13 - 32.63 40 Open 26.76 22.75 - 30.77 40 MS107A MOV Closed 26.912 22.88 - 30.94 40 Open 4.66 MS375 AOV

              *Closed         7.6   3.8  -    11.4      22.8    Fail Eosition closed.

Open 6 MS394 AOV Closed 7.48 3.74 - 11.22 22.44 Fail position closed. Open 61.24 MS603 MOV Closed 61.55 52.32 - 70.78 92.32 Open 60.19 MS611 MOV Closed 60.52 51.45 - 69.59 90.78 Open 34.23 25.68 - 42 42 Fail position open. MS5889A AOV Closed 6.54 Open 36.56 27.42 - 45.7 46 Fail position open. MS5889B AOV Closed 5.46 Open 9.26 MUlA MOV Closed 9.59 7.2 - 11.98 14.38 Open 9.21 MUlB MOV Closed 9.3 6.98 - 11.62 13.95 Open 9.76 MU2A MOV Closed 9.86 7.4 - 12.32 14.52 Open 9.63 MU2B MOV Closed 9.79 7.35 - 12.23 14.68 Open 4.12 MU3 AOV Closed 4.88 2.44 - 7.32 10 Fail position closed. Open 1.16 MU38 AOV Closed 0.7 2 Fail Eosition closed. Open 15.81 MU59A MOV Closed 15.96 13.57 - 18.35 23.94 Open 15.18 MU59B MOV Closed 15.25 12.97 - 17.53 22.87 29

ISTB3 Stroke Time Basis Revision 48 Section C STROKE TIME LIMITS AND ACCEPTANCE CRITERIA Maximum Expected Stroke Allowable Valve ~ Reference Times Time Range Stroke Time Comments Open 14.13 MU59C MOV Closed 14.24 12.11 16.37 21.36 Open 15.77 MU59D MOV Closed 15.9 13.52 - 18.28 23.85 Open 2.84 MU66A AOV Closed 1.67 0.84 - 2.5 10 Fail Eosition closed. Open 4.15 MU66B AOV Closed 2.95 1.48 - 4.42 10 Fail Eosition closed. Open 3.46 MU66C AOV Closed 2.67 1.34 - 4 10 Fail position closed. Open 4.01 MU66D AOV Closed 2.94 1.47 - 4.41 10 Fail Eosition closed. Open 15.97 MU3971 MOV Closed 16.09 13.68 - 18.5 24.13 Open 15.54 MU6405 MOV Closed 15.56 13.23 - 17.89 23.34 Open 14.05 MU6421 MOV Closed 13.65 11.61 15.69 20.47 Open 13.17 MU6422 MOV Closed 13.25 11.27 - 15.23 19.87 Open 3.87 NN236 AOV Closed 2.49 1.25 - 3.73 10 Fail position closed. Open 0.48 2 RC2A PORV Closed 0.38 2 Fail eosition closed. Open 11.29 RClO MOV Closed 11.37 9.67 - 13.07 17.05 RCll MOV Open 17.27 14.68 - 19.86 25.9 Closed 17.4 14.79 - 20.01 26.1 Open 10.95 9.31 12.59 16.42 RC200 MOV Closed 10.87 9.24 - 12.5 16.3 Open 10 RC229A AOV Closed 2.74 1.37 - 4.11 10 Fail eosition closed. Open 7.21 RC229B AOV Closed 1.56 0.78 - 2.34 10 Fail position closed. 30

ISTB3 Stroke Time Basis Revision 48 Section C STROKE TIME LIMITS AND ACCEPTANCE CRITERIA Maximum Expected Stroke Allowable Valve ~ Reference Times TimeRange Stroke Time Comments Open 8.86 RC232 AOV Closed 4.83 2.42 - 7.24 10 Fail Eosition closed. Open 12.94 11 14.88 19.41 RC239A MOV Closed 13.03 11.08 14.98 19.54 Open 12.08 18.12 RC240A MOV Closed 12 10.2 13.8 18 Open 12.01 RC240B MOV Closed 11.93 10.15 13.71 17.89 Open 4.45 RC1719A AOV Closed 2.87 1.44 - 4.3 10 Fail position closed. Open 6.41 RC1719B AOV Closed 4.15 2.08 - 6.22 10 Fail Eosition closed. Open 3.12 RC1773A AOV Closed 1.67 0.84 - 2.5 10 Fail Eosition closed. Open 3.3 RC1773B AOV Closed 2 - 3 10 Fail position closed. Open 0.94 2 RC4608A sov Closed 0.61 2 Fail Eosition closed. Open 0.54 2 RC4608B sov Closed 0.33 2 Fail Eosition closed. Open 0.47 2 RC4610A sov Closed 0.35 2 Fail position closed. Open 0.24 2 RC4610B sov Closed 0.24 2 Fail Eosition closed. Open 2.98 SA2010 AOV Closed 4.44 2.22 6.66 10 Fail Eosition closed. Open 0 SP6A AOV Closed 5.96 7 Fail position closed. Open 0 SP6B AOV Closed 6 7 Fail Eosition closed. Open 0 SP7A AOV Closed 3.96 12 Fail Eosition closed. Open 0 SP7B AOV Closed 3 12 Fail position closed. 31

ISTB3 Stroke Time Basis Revision 48 Section C STROKE TIME LIMITS AND ACCEPTANCE CRITERIA Maximum Expected Stroke Allowable Valve ~ Reference Times Time Range Stroke Time Comments Open 2.47 SS235A AOV Closed 2.87 1.44 - 4.3 10 Fail Eosition closed. Open 1.18 SS235B AOV Closed 0.63 2 Fail Eosition closed. Open 2.12 SS598 AOV Closed 4.24 2.12 - 6.36 10 Fail Eosition closed. Open 2.96 SS607 AOV Closed 2.97 1.49 - 4.45 10 Fail Eosition closed. Open 5.29 2.65 7.93 10 SW1356 AOV Fail position open. Closed 6.99 3.5 10.48 20.97 Open 3.87 1.94 5.8 10 SW1357 AOV Fail position open. Closed 8.107 4.06 12.16 24.32 Open 4 2 6 10 SW1358 AOV Fail position open. Closed 6.26 3.13 9.39 18.78 SW1366 MOV Open 20.1 17.09 - 23.11 30.15 Closed 20.1 17.09 - 23.11 30.15 SW1367 MOV Open 19.24 16.36 - 22.12 28.86 Closed 19.26 16.38 - 22.14 28.89 SW1368 MOV Open 19.43 16.52 - 22.34 29.14 Closed 19.41 16.5 - 22.32 29.11 SW1379 MOV Open 29.84 25.37 - 34.31 44.76 Closed 29.96 25.47 - 34.45 44.94 SW1380 MOV Open 27.89 23.71 - 32.07 41.83 Closed 28.05 23.85 - 32.25 42.07 Open 30.09 25.58 - 34.6 45.13 SW1381 MOV Closed 30.2 25.67 - 34.73 45.3 MOV Open 10.38 8.83 - 11.93 13 SW1382 Closed 10.45 Open 10.22 8.69 - 11.75 13 SW1383 MOV Closed 10.26 Open 30.68 SW1395 MOV Closed 31.08 26.42 - 34.15 34.15 32

ISTB3 Stroke Time Basis Revision 48 Section C STROKE TIME LIMITS AND ACCEPTANCE CRITERIA Maximum Expected Stroke Allowable Valve ~ Reference Times TimeRange Stroke Time Comments Open 30.71 SW1399 MOV Closed 30.88 26.25 - 34 34 Open 4.78 2.39 - 7.17 14.34 Fail position open. SW1424 AOV Closed 26.23 SW1429 AOV Open 5.12 2.56 - 7.68 15.36 Fail position open. Closed 23.6 Open 4.79 2.4 - 7.18 14.37 Fail position open. SW1434 AOV Closed 25.49 SW2927 MOV Open 18.98 16.14 - 21.82 28.47 Closed 18.46 Open 18.27 15.53 - 21.01 27.4 SW2928 MOV Closed 17.26 Open 59.35 50.45 - 68.25 89.02 SW2929 MOV Closed 59.55 50.62 - 68.48 89.32 Open 50.44 42.88 - 58 75.66 SW2930 MOV Closed 50.68 43.08 - 58.28 76.02 Open 56.33 SW2931 MOV Closed 56.58 48.1 - 65.06 84.87 Open 51.41 SW2932 MOV Closed 51.49 43.77 - 59.21 77.23 Open 10.86 9.24 - 12.48 16.29 SW5067 MOV Closed 9.8 Open 19.34 16.44 - 22.24 29.01 SW5068 MOV Closed 18.78 33

Attachment H Operability Limits for EDG Voltage and Frequency During Transient Loading (21 pages follow) Abbreviations and acronyms used in the evaluation provided in Attachment H are identified in the attachment or presented below. AC alternating current rpm revolutions per minute ANSI American National Standards s seconds Institute ASME American Society of Sec. second Mechanical Engineers DG diesel generator Seq. sequence FENOC FirstEnergy Nuclear Operating Sh. sheet Company HPI high pressure injection T time Hz hertz USAR Updated Safety Analysis Report IEEE Institute of Electrical and V volt Electronics Engineers Int. interval Vrms Voltage root-mean-square Min. Volt. minimum voltage e.g. for example kV kilo-volt i.e. that is kVA kilo-volt-ampere = equals kVAR kilo-volt-ampere reactive  % percent kW kilo-watt + plus LOCA loss of coolant accident +/- plus or minus LOOP loss of offsite power V voltage change QA Quality Assurance

MPR Associates, Inc. mMPR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client: Davis-Besse (FENOC) Page 1 of20 (Attachment A - 1 Page) Project: Task No. Davis-Besse EDG LAR Engineering Support 0200-1302-0151

Title:

Calculation No. Operability Limits for EDG Voltage and Frequency During Transient Loading CALC-0200-0151-0001 Preparer I Date Checker I Date Reviewer & Approver I Date Rev. No. M. Malik R. Srinivasan R. Carritte November 27, 2013 November 27, 2013 November 27, 2013 0 dtt;i/l/_ M. Malik

                                           ~

R. Srinivasan P~~ R. Carritte June 26, 2014 June 26, 2014 June 26, 2014 1 QUALITY ASSURANCE DOCUMENT This document has been prepared, checked, and reviewed/approved in accordance with the QA requirements of 10CFR50 Appendix Band/or ASME NQA-1, as specified in the MPR Nuclear Quality Assurance Program. MPR QA Form QA-3.1-2, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Prepared By Checked By Page: 2 CALC-0200-0151-0001 Revision Affected Pages Description 0 All Initial Issue 1 Pages 8 and 9 Corrected typographical errors on pages 8 and 9. Note: The revision number found on each individual page of the calculation carries the revision level of the calculation in effect at the time that page was last revised. MPR QA Form QA-3.1-2, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 3 CALC-0200-0151-0001 Revision: 0 Table of Contents 1.0 Introduction ........................................................................................................... 4 1.1 Purpose .........................................................................................................................4 1.2 Background ...................................................................................................................4 1.3 Approach.......................................................................................................................5 2.0 Inputs ..................................................................................................................... 6 3.0 Acceptance Criteria .............................................................................................. 7 3.1 Minimum Voltage .........................................................................................................8 3.2 Maximum Voltage ........................................................................................................9 3.3 Minimum Frequency ..................................................................................................10 3.4 Maximum Frequency ..................................................................................................10 4.0 Summary of Results ........................................................................................... 10 5.0 Assumptions and Limitations ........................................................................... 11 6.0 Analysis Cases and Methodology ..................................................................... 12 6.1 Minimum Voltage Case, Case 3A-V ..........................................................................12 6.2 Minimum Frequency Case, Case 3A-F ......................................................................12 6.3 Maximum Voltage and Frequency Case, Case 2A-LL and 2A-FL ............................12 7.0 Results................................................................................................................. 13 7.1 Minimum Voltage Case, Case 3A-V ..........................................................................13 7.2 Minimum Frequency Case, Case 3A-F ......................................................................15 7.3 Maximum Voltage and Frequency .............................................................................16 7.3.1 Large Load Reject, Case 2A-LL .......................................................................17 7.3.2 Full Load Reject, Case 2A-FL ..........................................................................18 8.0 References .......................................................................................................... 20 A Timestamps for Simulation Files..................................................................... A-1 MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 4 CALC-0200-0151-0001 Revision: 0

1.0 INTRODUCTION

1.1 Purpose The Davis-Besse plant Technical Specifications include periodic Surveillance Requirements (SRs) for the Emergency Diesel Generators (EDGs). Surveillance Requirements SR 3.8.1.2, SR 3.8.1.8 a., SR 3.8.1.8 b., SR 3.8.1.11, SR 3.8.1.14 a., SR 3.8.1.14 b., and SR 3.8.1.15 define performance limits for the EDG voltage and frequency. This calculation documents an EDG transient loading analysis that is based on equipment Operability limits. These limits are not directly tied to the Technical Specification limits or the more stringent design basis limits. The scope of this calculation does not include evaluating individual component response times with respect to Safety Features Actuation System response time requirements. Steady-state EDG loading is documented in Davis-Besse calculation C-EE-015.03-008, AC Power System Analysis (Reference 1). 1.2 Background In May 2012, FirstEnergy Nuclear Operating Company (FENOC) submitted a License Amendment Request (LAR) to the NRC for the Davis-Besse Nuclear Power Station. The purpose of the proposed LAR was to address a non-conservative plant Technical Specification related to the emergency diesel generator (EDG) output breaker closure voltage permissive. Specifically, the LAR proposed to revise plant Technical Specifications 3.8.1 by changing the minimum voltage acceptance criterion for EDG surveillance testing in Surveillance Requirements 3.8.1.8 and 3.8.1.14 from greater than or equal to 4031 V to greater than or equal to 4070 V. The NRC staff notified FENOC via email on June 21, 2012 that additional information would be necessary to assess the acceptability of FENOCs LAR. Some of the requested information went beyond the scope of the FENOC LAR and was related to topics addressed in the Westinghouse WCAP-17308-NP, Revision 0, Treatment of Diesel Generator (DG) Technical Specification Frequency and Voltage Tolerances. Consequently, FENOC withdrew the LAR on July 16, 2012. MPR previously developed a design basis analysis to address the transient frequency and voltage response of the EDGs to design basis LOOP/LOCA, LOOP Only, and Appendix R load sequencing. The analysis is documented in Davis-Besse calculation C-EE-024.01-011 (Reference 2). The purpose of the calculation was to document an analysis of the voltage and frequency response of the Davis-Besse Emergency Diesel Generators (EDGs) during design basis load transients. The load transients addressed by the evaluation include: MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 5 CALC-0200-0151-0001 Revision: 0 design basis LOOP/LOCA load sequencing, design basis LOOP Only load sequencing, individual motor starting transients required for Appendix R fire scenarios, and design basis LOOP/LOCA load sequencing using a voltage setpoint of 4088 V and frequency setpoints of 59.5 and 60.5 Hz. As indicated in the limitations section of C-EE-024.01-011, the analysis results are based on a minimum voltage setpoint of 4200 V, which is the lowest voltage setpoint allowed by the EDG operating procedure. Reference 2 also performs an analysis at voltage setpoint of 4088 V to provide the minimum voltage setpoint required to meet the Safety Guide 9 requirements. To provide the additional information requested by the NRC and support a revised LAR, additional analyses are required. Specifically, the following conditions are not analyzed in the calculation C-EE-024.01-011: LOOP/LOCA load sequence below 4088 V and 61.2 Hz frequency. Specifically, Technical Specification requirement stating minimum steady state voltage of 3744 V needs to be validated. Load reject at 4400 V and 58.8 Hz frequency. The maximum voltage during the transient shall be less than the overvoltage relay setpoint. 1.3 Approach This calculation uses the MATLAB/Simulink model developed in Reference 2. This calculation does not revise the overall model, input parameters, or validation results. The model was used to perform the LOOP/LOCA studies to determine the voltage and frequency limits required to ensure equipment operability The EDG transient analysis model was developed in Reference 2 using the MATLAB and Simulink computer programs. MATLAB is a computer program that provides an integrated computing environment that combines numeric computation, advanced graphics and visualization, and a high-level programming language. Simulink is a software program developed using the MATLAB programming language that works within the MATLAB program environment. Simulink provides an interactive, graphical environment for modeling, simulating, and proto-typing dynamic systems. The following approach was used in Reference 2 to develop the model and perform the analyses and is provided here for reference only: MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 6 CALC-0200-0151-0001 Revision: 0 Develop the Model Form. MPR developed a library of MATLAB/Simulink component models for modeling EDG response to large motor loads. The library was used to develop a system model that adequately represents the equipment installed at Davis-Besse. The model components consist of the diesel engine, governor, generator, excitation system (including voltage regulator) and the essential bus loads. The major motor loads (i.e. the 4kV motor loads) were modeled in detail and the smaller 480V loads were modeled as a combination of lumped static (i.e., constant impedance) and constant KVA loads. Develop the Model Input Parameters. Each component model requires a number of input parameters. The input parameters were determined based on equipment design information, including available factory acceptance test data. There were some parameters that are field adjustable (e.g. governor gain and reset) and some that have significant uncertainty (e.g. the inertia for most of the motor loads). Some of these input parameters were adjusted, or tuned, based on EDG response data collected by Davis-Besse during surveillance testing of the EDGs. Verification of Model Results. The computer model and associated software used for this analysis is classified under the MPR Quality Assurance (QA) Manual as working-level software. As such, the requirements for use of this software consist of (a) verification that the program inputs are correct, (b) verification that the program is applicable for the task, (c) verification that the program correctly performs the operations that affects the results, and (d) documentation of the analysis, verification, and results. Verification that the program inputs are correct was performed during the check and review process of the associated calculations. Verification that the program is applicable for the task was performed as part of the review of the associated calculations. Verification that the EDG system model (i.e. generator, diesel engine, fuel rack, governor and load models) correctly performs the operations that affect the results was performed by comparing model results to a known test case. The known test case was measured data from EDG surveillance tests. The model was used to predict the frequency and voltage response to the surveillance test load steps for EDG1-1 and EDG1-2 and the model results were compared to the actual measured test results. Documentation of the verification results are discussed in Reference 2. 2.0 INPUTS The EDG MATLAB/Simulink model was developed in Reference 2 and is directly used here. The inputs for the MATLAB/Simulink model were verified in Reference 2. No new design inputs were required for this calculation. MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 7 CALC-0200-0151-0001 Revision: 0 3.0 ACCEPTANCE CRITERIA The acceptance criteria for this calculation are listed in Table 1 below. Sections 3.1 through 3.4 provide detailed discussion of these acceptance criteria. Table 1. Summary of Acceptance Criteria Value Description Section No. (Note 1) Starting 67.31 % Minimum Allowable Essential 4160 V Section 3.1 Bus Voltage Steady State 86.54 % Starting 68.69 % Worst Case Minimum Allowable Section 3.1 Essential 480 V MCC Voltage Steady State 90.60 % Maximum Steady State 4160 V Bus Voltage 105.76% Section 3.2 Maximum Steady State 480 V Bus and MCC Voltage 105.41% Section 3.2 EDG Maximum Voltage During Transients 109.4% Section 3.2 (For Largest Load Reject Case) EDG Maximum Voltage During Transients 224.0% Section 3.2 (For Full Load Reject Case) Steady State 58.8 Hz Transient 57 Hz EDG Minimum Allowable Frequency Section 3.3 (Based on Safety Guide 9) Transient 40 % of Load Recovery Time Seq. Time Int. (sec.) EDG Maximum Allowable Frequency 66.75 Hz Section 3.4 (Based on Overspeed Trip Setpoint) Note 1: The percent voltage values are based on bus rating of 4160 V and 480 V. MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 8 CALC-0200-0151-0001 Revision: 1 3.1 Minimum Voltage The minimum bus voltage acceptance criteria is based on the following:

1. Minimum 4160 V essential bus voltage for motor starting and steady state condition.
2. Minimum 480 V essential MCC voltage for motor starting and steady state condition.

This also includes minimum voltage required to pickup motor starters. The minimum 4160 V and 480 V bus voltages during motor starting and steady state conditions are established in the Davis-Besse AC systems analysis calculation C-EE-015.03-008 (Reference 1). Attachment 3 of C-EE-015.03-008 provides these voltages. The minimum steady state and motor starting bus voltages are based on motor rated steady state and starting voltage, 480 V motor starter contactor holding and dropout voltages, and minimum voltages for other 480 V components such as regulated rectifier, radiation monitor, hydra motors, etc. For the 4160 V essential buses, the minimum steady state and transient voltages are based on minimum continuous motor running and motor starting voltages. For the 480 V buses and MCCs, the minimum steady state voltage is based on several factors and will depend on the MCC/bus:

a. 480 V bus and MCC minimum continuous motor running voltage
b. Motor starter contactor pickup voltage
c. Battery charger minimum steady state voltage
d. Minimum steady state voltage requirement for constant voltage transformers (CVTs)
e. Minimum steady state voltage requirement for regulated rectifier
f. Minimum steady state voltage requirement for hydra motors Based on Attachment 3 of Reference 1, the most limiting 480 V MCC minimum bus voltage requirement is 90% (of 480 V) based on the regulated rectifier voltage requirement on MCCs E12A and F12A. For motor starting conditions, the minimum 480 V bus and MCC voltages are based on minimum motor starting voltage and motor starter contactor holding voltage. The minimum voltage for 480 V buses and MCCs during motor starting conditions is 68.69% (of 480 V) (See Table 2).

The EDG MATLAB/Simulink transient calculation (Reference 2) models the Davis-Besse essential 480 V MCCs as a single lumped load. Therefore, the voltage drop for each MCC is not known from the simulation results. Further, the Simulink model also assumes no voltage drop from the 480 V buses to the 480 V MCCs. A voltage drop from the 480 V buses to the MCCs was determined in Section 5.0 (Assumption and Limitations) and was added to the 480 V MCC acceptance criteria. MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 9 CALC-0200-0151-0001 Revision: 1 Table 2 below summarizes the minimum bus voltage acceptance criteria for this calculation: Table 2. Minimum Bus Voltage Acceptance Criteria Bus Level Motor Starting Steady State (% Voltage) (% Voltage) 4160 V Essential Buses 67.31 86.54 480 V Essential Buses and MCCs 68.69 90.60 (Note 1) Notes:

1. The MCC bus voltage acceptance criteria assumes additional voltage drop as documented in Section 5.0.

The voltage acceptance criteria listed in Table 2 are less than the minimum required bus voltage to provide EDG output breaker closure permissive (3990 V +/- 2%). These criteria bound the EDG breaker closure permissive voltage. The EDG output breaker will receive a permissive to close for bus voltage of 3990 V +/-2% (Reference 7). Technical Specification Surveillance Requirement require a minimum bus voltage of 4070 V to close the breaker. This voltage is based on 3990 V + 2% (95.91% + 2%) tolerance from Reference 7. 3.2 Maximum Voltage The maximum established steady state 4160 V bus voltage is 105.76% and the maximum steady state 480 V bus and MCC voltage is 105.41% (Reference 1, Attachment 3). The steady state voltage for the essential buses shall be less than the limits specified above. The overvoltage relay setpoint for the EDG output breaker is 4550 V (Reference 4). The overvoltage relay provides alarm in the control room during EDG output overvoltage conditions. Therefore, transient voltage during load rejection shall be less than the EDG output breaker overvoltage alarm setting. Furthermore, per ANSI C37.06 and IEEE C37.20.2 (References 11 and 12, respectively), the maximum rated voltage for 4.16 kV circuit breakers and metal clad switchgears, respectively, is 4.76 kV. Therefore, the maximum voltage acceptance criteria of 4550 V bounds the breaker and bus maximum voltage ratings. For a full load rejection, the EDG is considered disconnected from the 4160 V essential bus. Therefore, for full load rejection, the maximum allowable EDG voltage rating is considered. Per EDG test report M-180-93-3 (Reference 13), the Davis-Besse EDG was tested at 9320 V for 1 minute. The testing voltage was established per the requirements of ANSI C50.10 (Reference 14) which requires the test voltage to be 1000 V plus twice the rated voltage of the machine. Therefore, the transient voltage during a full load reject shall be less than 9320 V and recover to the voltage setpoint in less than 1 minute. MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 10 CALC-0200-0151-0001 Revision: 0 3.3 Minimum Frequency This calculation does not explicitly evaluate the response time of individual components. Consequently, for minimum allowable frequency, the acceptance criteria established by Safety Guide 9 are used. Safety Guide 9 requirement states that the frequency shall not fall below 57 Hz (95% of nominal) and should be restored above 58.8 Hz (within 2% of nominal) in less than 40 percent of each load sequence time interval. 3.4 Maximum Frequency For maximum allowable frequency, the acceptance criteria established by Safety Guide 9 for maximum allowable frequency during load transient is used. The Safety Guide 9 requirement for the maximum allowable frequency is stated below: During recovery from transients caused by step load increases or resulting from disconnection of the largest single load, the speed of the diesel generator set should not exceed 75 percent of the difference between nominal speed and the overspeed trip setpoint or 115 percent of nominal, whichever is lower. The Davis-Besse EDG output breaker overfrequency trip is set at 115% of nominal (60 Hz) (=69 Hz). Therefore, the EDG frequency shall not exceed 75% of the difference between the nominal frequency (60 Hz) and the overspeed setpoint (69 Hz). This frequency is 66.75 Hz. 4.0

SUMMARY

OF RESULTS The EDG transient analysis results from Section 7.0 are summarized below:

1. Minimum Voltage: The minimum EDG terminal voltage required to maintain adequate motor starting and steady state voltage is 3850 V.
2. Maximum Voltage: The maximum EDG steady state voltage required to maintain adequate bus voltage during load loss transients is 4400 V. Operating the EDG at a maximum steady state voltage of 4400 V in conjunction with a largest load rejection transient results in transient voltages less than 4550 V (109.4% of 4160 V), i.e., EDG overvoltage alarm setpoint.

Furthermore, during full load rejection, the EDG terminal voltage does not exceed the EDG maximum test voltage of 9320 V and recovers to the EDG setpoint of 4400 V within 60 seconds.

3. Minimum Frequency: The minimum EDG frequency setpoint required to meet the Safety Guide 9 requirements is 59.17 Hz (887.5 rpm). At this frequency, the EDG frequency recovers to 98% of nominal (58.8 Hz) within 40% of the each load sequence time interval. The frequency does not drop below 95% of nominal. The most limiting MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 11 CALC-0200-0151-0001 Revision: 0 time interval is between the first and the second load step which is 2.5 seconds. Safety Guide 9 recovery time for this load step is 1 second.

4. Maximum Frequency: The maximum EDG frequency setpoint of 61.2 Hz satisfies the requirements of maximum allowable EDG frequency transient during large load and full load rejections.
5. EDG Loading: The maximum EDG steady state loading at the maximum voltage setpoint of 4400 V and frequency setpoint of 61.2 Hz is 2413 kW and 1610 kVAR, which is less than the EDG steady state loading limit of 2600 kW and 1950 kVAR.

5.0 ASSUMPTIONS AND LIMITATIONS This calculation is not a design basis calculation. The purpose of this calculation is to provide bounding EDG terminal voltage and frequency to support an Operability evaluation. For further assumptions and limitations, see EDG Transient Response Evaluation calculation C-EE-024.01-011 (Reference 2). Assumptions associated with MCC voltage acceptance criteria are discussed below. MCC Minimum Voltage Acceptance Criteria The EDG MATLAB/Simulink transient calculation (Reference 2) models the Davis-Besse essential 480 V MCCs as a single lumped load. Therefore, the voltage drop for each MCC is not known from the simulation results. Further, the Simulink model also assumes no voltage drop from the 480 V buses to the 480 V MCCs. The AC Systems Analysis calculation, C-EE.015-008 (Reference 1), provides the worst case voltage drop from the 480 V E1/F1 buses to the respective essential MCCs. Table 3 below provides the worst case voltage drop from the 480 V buses to the MCCs Table 3. Minimum Bus Voltage Acceptance Criteria (Reference 1, Attachment 23A and 23B) Condition 480 V Bus Min. Volt. Case MCC Min. Volt. Case V Steady E1 94.85% LF4h E12D 94.30% LF4h 0.55% State F1 95.39% LF4h F12D 94.91% LF4h 0.48% Motor E1 75.06% ST1k2 E12F 74.00% ST1k2 1.06% Starting F1 76.94% ST1k2 F11D 75.35% ST1j 1.59% MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 12 CALC-0200-0151-0001 Revision: 0 Table 3 shows that the worst case voltage drop to the MCCs during motor starting and steady state conditions are 0.55% and 1.59%, respectively. Therefore, 0.6% and 1.6% have been added to the acceptance criteria for the MCC minimum steady state and starting voltages, respectively. This is a conservative assumption because it assumes the same voltage drop at all MCCs. This assumption does not require verification. 6.0 ANALYSIS CASES AND METHODOLOGY Case 2 of C-EE-024.01-011 simulates a design basis LOOP/LOCA with 480V MCCs and Component Cooling Water Pump (CCWP) starting at breaker closure and MUP starting at 2.5 seconds after breaker closure. Case 2 assumes a cold generator field. Loading sequence of Case 3 of Reference 2 is similar to Case 2 but assumes a hot generator field. For both cases the voltage and frequency setpoints were 4160 V and 900 rpm, respectively. The voltage and frequency setpoints for these cases were modified to perform the analysis provided in this calculation. The description of the cases and the underlying methodology is provided in the following sections. 6.1 Minimum Voltage Case, Case 3A-V The minimum voltage case was performed using loading conditions of Case 3 from Reference 2. The voltage setpoint of 3744 V was used and the value was raised until acceptance criterion 3.1 was met. A system frequency of 61.2 Hz (918 EDG rpm) was used. The motor load increases with increase in frequency. Therefore, using a higher frequency setpoint is more conservative for determining minimum EDG terminal voltage is conservative. 6.2 Minimum Frequency Case, Case 3A-F The minimum frequency case was performed using the loading conditions and resultant voltage setpoint (3850 V) from Section 6.1 above. An initial frequency setpoint of 58.8 Hz was used (882 rpm). The frequency was increased until the requirements of acceptance criterion 3.3 was met. 6.3 Maximum Voltage and Frequency Case, Case 2A-LL and 2A-FL The maximum voltage and frequency cases were performed using the loading conditions of Case 2 from Reference 2. The voltage and frequency setpoints of 4400 V and 61.2 Hz (918 rpm) were used, respectively. MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 13 CALC-0200-0151-0001 Revision: 0 Two loading cases, Case 2A-LL and 2A-FL, were evaluated. Case 2A-LL was performed to simulate the tripping of the largest load (High Pressure Injection pump motor). Case 2A-FL was performed to simulate full load reject. The voltage plots in Section 7.0 provide the voltage transient after the load rejection. The voltage transients during load addition are not shown. 7.0 RESULTS Sections 7.1 to 7.3 document the predicted EDG voltage and frequency, and MCC bus voltage for the motor starting and load reject cases detailed in Section 6.0. Sections 7.1 to 7.3 include plots of EDG voltage, EDG frequency, and MCC voltage during the transient. Preceding the plots is a summary that compares the minimum and maximum voltage and frequency acceptance criteria established in Section 3.0. 7.1 Minimum Voltage Case, Case 3A-V The minimum voltage setpoint to meet acceptance criterion 3.1 is 3850 V. Figure 1 and Figure 2 provide the EDG terminal frequency and voltage, and MCC voltage during the transient, respectively. As shown in the figures, the MCC voltage is the most limiting. At a 3850 V setpoint both EDG terminal voltage and the MCC voltage meet acceptance criterion 3.1. MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 14 CALC-0200-0151-0001 Revision: 0 Figure 1. Minimum Voltage Analysis Case 3A-V - EDG Terminal Voltage and Frequency Voltage Setpoint = 3850 V Frequency Setpoint = 61.2 Hz (918 rpm) MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 15 CALC-0200-0151-0001 Revision: 0 550 500 450 480V MCC Voltage (V) 400 350 300 250 Hot Rotor Field 90.60% Nominal (480 V) 68.69% Nominal (480 V) 200 0 5 10 15 20 25 30 35 40 Time (s) Figure 2. Minimum Voltage Analysis Case 3A-V - MCC Voltage 7.2 Minimum Frequency Case, Case 3A-F The voltage setpoint was fixed at the 3850 V setpoint established in Section 7.1. The minimum frequency was varied to meet the acceptance criterion 3.3. The frequency response in Figure 3 provides the maximum time by which the frequency should recover above 98% of nominal. The acceptance requirement is shown by vertical bars on the figure. The minimum frequency required to meet the acceptance criterion 3.3 is 59.17 Hz (887.5 rpm). MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 16 CALC-0200-0151-0001 Revision: 0 Figure 3. Minimum Frequency Analysis Case 3A-F - EDG Terminal Voltage and Frequency

Response

Voltage Setpoint = 3850 V Frequency Setpoint = 59.17 Hz (887.5 rpm) 7.3 Maximum Voltage and Frequency The maximum voltage and frequency cases were simulated for both large load and full load reject. The cases are discussed in the subsections below. For both cases, prior to the trip of the largest load or the full load, the EDG steady loading will be the same. The EDG steady state loading will be maximum at maximum voltage and frequency. This is because at maximum voltage, resistive loads draw maximum current and at maximum frequency motor loads draw MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 17 CALC-0200-0151-0001 Revision: 0 maximum current. The EDG steady state load during this condition is 2413 kW and 1610 kVAR as shown in Figure 4 below. Figure 4. Maximum Voltage and Frequency Analysis - EDG Output Real and Reactive Power Voltage Setpoint = 4400 V Frequency Setpoint = 61.2 Hz (918 rpm) 7.3.1 Large Load Reject, Case 2A-LL For the large load reject case, the largest essential load (the HPI pump motor) was tripped at T=30s in the simulation time step. The EDG terminal voltage and frequency response are provided in Figure 5. The voltage and frequency response meet the requirements of acceptance criteria 3.2 and 3.4. MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 18 CALC-0200-0151-0001 Revision: 0 Figure 5. Large Load Reject Analysis Case 2A-LL - EDG Terminal Voltage and Frequency Voltage Setpoint = 4400 V Frequency Setpoint = 61.2 Hz (918 rpm) 7.3.2 Full Load Reject, Case 2A-FL For the full load reject case, all loads were tripped at T=30s in the simulation time step. The EDG terminal voltage and frequency response are provided in Figure 6. The maximum voltage due to the full load reject transient is 4807 V. The voltage recovers to a steady state voltage of 4450 V within 5 seconds. The voltage response meets the requirements of maximum voltage acceptance criterion 3.2 for full load rejection. The frequency response meets the requirements of acceptance criterion 3.4. MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 19 CALC-0200-0151-0001 Revision: 0 Figure 6. Full Load Reject Analysis Case 2A-FL - EDG Terminal Voltage and Frequency Voltage Setpoint = 4400 V Frequency Setpoint = 61.2 Hz (918 rpm) MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 20 CALC-0200-0151-0001 Revision: 0

8.0 REFERENCES

1. Davis-Besse Calculation C-EE-015.03-008, AC Power System Analysis, Revision 5.
2. Davis-Besse Calculation C-EE-024.01-011, Evaluation of Davis-Besse EDG Transient Response During Design Basis LOOP/LOCA, LOOP Only and Appendix R Loading, Revision 2.
3. Davis-Besse Drawing M-180Q-14, Schematic Diagram of Engine Control, Revision 13.
4. Davis-Besse Relay Setting Manual Volume 1 Tab 02 Sheet 024A, Emergency DG 1 Control and Relay Board, Revision 7.
5. Davis-Besse Drawing E-64B Sh. 1A, Emergency Diesel Generators, Diesel Generator 1-1 Breaker AC101 Control, Revision 13.
6. Davis-Besse Drawing M-180-31 Sh. 2, EDG Excitation System Interconnection Diagram, Revision 23.
7. Davis-Besse Drawing M-180-31 Sh. 3, EDG Excitation System Interconnection Diagram, Revision 23.
8. Davis-Besse USAR, Revision 26.
9. Davis-Besse Technical Specifications, Amendment 279.
10. Davis-Besse Systems Procedure DB-OP-06316, Diesel Generator Operating Procedure, Revision 48.
11. ANSI C37.06-2000, AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis - Preferred Ratings and Related Required Capabilities.
12. IEEE Standard C37.20.2-1999, IEEE Standard for Metal Clad Switchgear.
13. Davis-Besse EDG Serial Number 172217211 Data Sheet (M-180-93-3).
14. ANSI C50.10-1977, General Requirements for Synchronous Machines.

MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: A-1 CALC-0200-0151-0001 Revision: 0 A Timestamps for Simulation Files Table A-1. Timestamps for MATLAB/Simulink Files Filename Timestamp (EDT) File Size (KB) case_3A_F.m 8/27/2013 11:22 4 case_3A_V.m 8/27/2013 11:22 4 case_2A_FL.m 8/27/2013 11:24 4 case_2A_LL.m 8/27/2013 11:24 4 db_edg_rev6.mdl 11/1/2013 16:56 680 design_data_rev6.m 7/5/2011 17:41 16 MPR QA Form: QA-3.1-3, Rev. 0}}