JPN-88-030, Forwards Addl Info Re Plant Alternate Rod Insertion & Recirculation Pump Trip Designs,Per ATWS Rule W/21 Oversize Drawings
| ML20155G608 | |
| Person / Time | |
|---|---|
| Site: | FitzPatrick |
| Issue date: | 06/10/1988 |
| From: | Brons J POWER AUTHORITY OF THE STATE OF NEW YORK (NEW YORK |
| To: | NRC OFFICE OF ADMINISTRATION & RESOURCES MANAGEMENT (ARM) |
| Shared Package | |
| ML20155G612 | List:
|
| References | |
| JPN-88-030, JPN-88-30, NUDOCS 8806200032 | |
| Download: ML20155G608 (80) | |
Text
,
[
1?3 Main street j
Whsto Plains. New York ?OC01 g, ',
914 681.6240
- > NewYorkPower m e c.o,.m.
4# Authority
"""~ m " ~
Nuclear Generation June 10 1988 JPN-88-030 U.
S.
Nuclear Regulatory Commission Mail Station P1-137 Washington, D.C.
20555 ATTN:
Document Control Desk
Subject:
James A.
FitzPatrick Nuclear Power Plant Docket No. 50-333 Anticipated Transient Without Scram (ATWS) Rule
References:
1.
NRC letter, H.
I.
Abelson to J.
C.
- Brons, g-dated January 8, 1987.
2.
NYPA letter, J.
C.
Brons to NRC dated April 15, 1987, (JPN-87-020).
3.
NRC letter, H.
I. Abelson to J.
C.
- Brons, dated March 18, 1988.
4.
BWROG letter, R.F.
Janecek to J.
C.
Baha (NRC),
dated June 12, 1987, (BWROG-8727).
Dear Sir:
Reference 1 requested information concerning the FitzPatrick alternate rod insertion (ARI) and recirculation pump trip (RPT) designs.
The Authority provided ARI and RPT information in Reference 2.
In Reference 3, the NRC identified additional information needed to complete the Staff's review of the RPT and AR1 system.
This information is provided in Attachment I.
The FitzPatrick plant uses Rosemount 510 DU analog trip units for the ARI System.
These are the same type and model as the units used for the reactor protection system (RPS).
The ARI and RPS are completely separate systems and comply with the ATWS Rule concerning diversity.
The staff has raised questions concerning components of common type and manufacture used in these systems.
It is the Authority's position that the ARI System design meets the diversity requirement of the ATWS rule and is consistent with the Boiling Water Reactors Owners Group licensing topical report approved by the NRC staff.
The Authority plans installation of the ARI system in the Reload l
8/ Cycle 9 refueling outage (currently scheduled to begin August 27, 1988).
If the ARI System design is considered unacceptable, poss:
]r pmamm,,
G.- f'( W DCD
?
I 4
1 with regard to diversity, an extension of at least one additional cycle to complete this modification will be required.
Reply concerning this issue is requested by July 1, 1988.
The NRC requested that the Authority either demonstrate that the FitzPatrick RPT. design is as reliable as approved designs or upgrade the design.
Attachment II provides reliability assessments of the FitzPatrick and proposed designs.
This attachment shows that:
o The single trip coil and its trip nechanism contribute very little to RPT unavailability.
Therefore, installing redundant trip coils would not improve reliability significantly, o
Based upon JAF historical breaker failure data and breaker-failure data developed by EG&G from the licensee event report database, the existing JAF design is more reliable than the proposed designs utilizing two trip coils.
Based on these analyses, and pending resolution of the issue, no modifications to the FitzPatrick RPT system are planned.
The Authority has endorsed the Boiling Water Reactor Owners' Group (BWROG) position that the redundant trip coils in each recirculation system motor generator set field breaker are not required to comply with the ATWS Rule.
Reference 3 stated that the NRC has not received a submittal from the BWROG concerning the RPT issue.
The BWROG submitted the "GE Licensing Topical Reports NEDE-31096-P-A and NEDE-31096-A, Anticipated Transients without Scram Response to NRC ATWS Rule 10 CFR 50.62, dated February 1987" on June 12, 1987 (Reference 4).
Should you or your staff have any questions regarding this matter, please contact Mr.
J. A. Gray, Jr. of my staff.
Very truly yours, hS C.
Brons xecutive Vice President b uclear Generation l
i l
1 J
f G
1 cc:
Office of the Resident Inspector U.
S.
Nuclear Regulatory Commission P.
O.
Box 136 Lycoming, New York 13093 U.
S.
Nuclear Regulatory Commission Region I 475 Allendale Road King of Prussia, PA 19406 Mr. Harvey Abelson Project Directorate I-l Division of Reactor Projects - I/II U.S.
Nuclear Regulatory Commission Mail Stop 14 B2 Washington, DC 20555 l
l 1
l l
i
)
8 JPN-88-0 30 ATTACHMENT I l
i New York Power Authority James A.
FitzPatrick Nuclear Power Plant Docket No. 50-333
6 e
RESPONSE TO USNRC MARCH 18, 1988 REOUEST FOR ADDITIONAL INFORMATION CONCERNING ALTERNATE ROD INSERTION NRC Ouestion 1:
"Provide-electrical functional diagrams for the ARI and RPT systems from sensors to the final actuated devices.
Is-the ARI system separate from.the existing RPT system?
Is any portion common to both systems?"
NYPA Response 1:
The attached logic diagrams (ll825-LSK-28-6.lD, E&F) and the corresponding elementary diagrams (ll825-ESK-7FA through 7FF) depict the ARI system.
Elementary diagrams 11825-1,60-20, 11825-1.60-21, 11825-1.60-23, 11825-1.60-24, ll825-ESK-5C and ll825-ESK-5F depict the ATWS RPT system from sensors to final actuating devices.
Also attached are the following Analog Transmitter Trip System loop diagrams showing the originating sensor.
LP-023-2A Rev. 3A LP-023-2C Rev. 3A LP-023-2C Rev. 3B LP-023-2B Rev. 3A LP-023-2D Rev. 3A LP-023-2D Rev. 3B LP-023-3C Rev. 3A LP-023-3A Rev. 3A LP-023-3A Rev. 4A LP-023-3B Rev. 3B LP-023-3D Rev. 3B LP-023-3B Rev. 4A The ARI System and the existing RPT System use the same initiating signals for actuation.
These signals originate in the Analog Transmitter Trip System (ATTS) slave relays for reactor vessel low low water level (Level 2) trip and i
reactor vessel high pressure trip.
These signals energize i
output relays'in the Emergency Core Cooling System (ECCS)
Division I ATTS Cabinet 09-95 and output relays in ECCS Division II ATTS Cabinet 09-96.
The following equipment is common to both systems:
A.
Transmitters:
02-3LT-72A, B,
C&D 02-3PT-102A, B,
C&D
.g i
1 B. ATTS Trip Units:
02-3-272A, B,
C&D 02-3-273A, B,
C&D 02-3-202A, B,
C&D C.
ECCS Output Relays:
02-3A-K102A, B 02-3A-K105A, B 02-3A-K109A, B 02-3h-K110A, B NRC OuestioD_i:
"Provide the analysis results and test plans which verify that the ARI system design meets the requirements for timely completion.
Also identify the ARI resot capabilities including the time delay to ensure ARI function has completed its operation."
NYPA Response 2:
As required to meet plant licensing commitmencs, control rod insertion motion begins within 15 seconds after ARI system actuation, and all rods are inserted within 25 seconds after actuation.
Once initiated, the actuation signal is electrically "sealed-in" for 25 seconds to assure full control rod insertion regardless of other plant conditions.
After 25 seconds the plant operators may manually "reset" the ARI system if warranted by plant conditions.
The analysis results show that all sections of the pilot valve header depressurize below 16 psig (the pressure at which the hydraulic control unit inlet and outlet valves move into wide open position and control rod motion begins) in less than 1.5 seconds, and that the complete system depressurizes to 0 psig in approximately 4 seconds.
It also shows that the maximum time differential between the east and west banks' depressurization is approximately 0.2 seconds.
The air header depressurization test acceptance criterion is that the pilot air header's most remote point should l
depressurize below 16 psig in less than 15 seconds.
This will be verified by monitoring and recording the pilot air header pressure versus time in nine (9) selected locations as the ARI system is actuated and the pilot air header depressurizes through the newly installed ARI valves during the praoperational test.
l l
1 '
~. _ _ _
Upon depressurizing the air header below 16 psig, the control rods are fully inserted into the reactor vessel in less than 7 seconds.
This ensures that maximum total time for complete control rod insertion after actuation of the ARI System is 22 seconds.
This is less than the 25 seconds required to meet the plant licensing commitments.
NRC Ouestion 3:
"Describe the ARI systeni manual initiation capabilities and the means provided to protect the system from inadvertent operation."
NYPA Response 3:
The ARI system can be manually initiated by a manual control switch provided on panel 09-5 in the Control Room.
The potential for inadvertent operation is limited by the spring return design of the control switch and the human factored engineered arrangement of the ARI indication and control devices in Control Room Panel 09-5 which are in accordance with the requirements of NUREG-0700, Sections 6.4 and 6.5.
The control switch is located adjacent to the ARI System reset push button and indicating lights for the ARI valves.
This location of the control switch further reduces the potential for inadvertent operation of this system.
NRC Ouestion 4:
"Identify the ARI/RPT information readout and indications provided in the Control Room.
Will the ARI valve have a positive position indication?"
NYPA Response 4:
ARI valve position indicating lights are provided on the ARI logic panel in the relay room as well as on panel 09-5 in the Control Room.
An ARI test light is also located on panel 09-5 which lights up when the test switch on the ARI logic panel is placed in the test position.
These lights provide the Control Room operators with an indication of the status of the ARI
- system, t
As part of the ARI system addition, a scram valve pilot air headct pressure transmitter was added.
This transmitter provides scram header air pressure indication on panel 09-5 in the Control Room.
The indicator is adjacent to the ARI control switch ard valve status lights.
The ARI valves have position limit switches (used to operate the position indicating lights) l magnetically coupled to the valve stem.
This design provides l
positive indication of valve operation.
Reactor water recirculation M-G drive motor breaker position lights are i l
provided on panel 09-4 in the Control Room.
Also the following alarms are provided on panel 09-4 in the Control Room:
"Recirc A Hi pressure Lo Level Trip."
"Recirc B Hi pressure Lo Level Trip."
NRC Ouestion 5:
"Identify the interface between tle ARI system and the safety related systems.
Describe the Class lE isolators which are used for this interface."
NYpA Response 5:
Normally open contacts of the ATTS relays are wired to the coils of the new ARI isolation relays in the new ARI isolation panels.
These isolation relays provide electrical separation between the electrical class lE ATTS and the non-class lE ARI system.
These ETRD002, 125 VDC are relays manufactured by Agastat.
These relays will be type qualified to the requirements of Appendix B of Reference 1.
NRC Ouestion 6:
"Describe the system design which permits maintenance and the test of the system logic while the plant is in power operation."
NYpA Response 6:
The logic up to the ARI valve actuating relay is testable during plant operation.
The design permits maintenance, repairs and test of system logic and instrumentation up to, but not including, this relay.
Each individual level and pressure instrument is testable during plant operation without initiating the ARI system, since two pressure or level signals must be present to complete the signal path.
To test the ARI circuitry, the test switch on the ARI logic / test panel located in the relay room is placed in the test position.
This electrically isolates the ARI system actuating relay, enables the four ARI test lights on the panel so that all illuminate, and lights up the ARI test light on Control Room panel 09-5.
To test level channel A, the slave relay in ATTS cabinet 09-95 is energized, closing the level A input contacts.
If the circuitry is working correctly, the Channel A/C Level light will go out and the Channel B/D Level light will double in brightness.
The two pressure test lights will not change in brightness.
If the level Channel C slave relay is energized, the results should be exactly the same.
Likewise, if a level Channel B or D slave relay is energized, the Channel B/D Level light should go out and the Channel A/C level light double in brightness.
The pressure circuitry is tested in the same way.
l l l
i 6
NRC Ouestion 7:
"Describe.the power source arrangement for the ARI and RPT systems, and the capability to function during the loss-of-offsite-power event."
NYPA Response 7:
ARI system controls, instrumentation and solenoid valves are powered from DC power, independent of RPS power.
This power source allows the ARI system to perform its function during loss of offsite power.
RPT breakers are powered from the plant 125 VDC system.
The 125 VDC controls Power System is designed in accordance with criteria for class iE electric systems.
It supplies power to all DC loads for normal operating conditions and for safe shutdown of the plant following abnormal operating transients and postulated accidents, including loss of offsite power.
References 1.
NRC letter, H.
I. Abelson to J.
C.
Brons, dated January 8, 1987.
l l
4 f
JPN-68-030 ATTACHMENT II New York Power Authority James A. FitzPatrick Nuclear Power Plant Docket No. 50-333
i 1
D'
'4 4
JAMES A FITZPATRICK NUCLEAR' POWER PLANT RELIABILITY ASSESSMENT OF THE EXISTING & PkOPOSED ATWS RECIRCULATION PUMP TRIP DESIGNS l
l
l 1.
SUMMARY
This report evaluates of the existing Anticipated Transient Without Scram (ATWS) Recirculation Pump Trip (RPT) single trip coil design and the proposed redundant trip coil design at the James A.
Fitzpatrick Nuclear Power Plant (JAF).
This evaluation was prompted by Carolina Power & Light Company (CP&L) submitting their Probabilistic Risk Assessment (PRA) analysis to the NRC to demonstrate that their RPT single trip coil design at the Brunswick Steam Electric Plant (BSEP)
Units 1 and 2 complies with the requirements of 10CFR50.62.
Furthermore, the BSEP analysis demonstrates that the NRC-endorsed redundant trip coils used in the Monticello RPT design do not appreciably improve reliability.
This evaluation entailed:
1)
Reviewing the history file of maintenance work reque : data for any evidence of failure in the existing JAF RPT single trip coil design.
2)
Performing fault tree analyses, using a)
WASH-1400/IEEE-500 component failure data, and b) specific breaker failure data from the LER data search conducted by EG&G, to determine the causes and probability of a loss of function of the existing and proposed JAF ATWS RPT designs.
3)
Comparing the existing JAF RPT fault tree analysis results with results of the proposed JAF RPT and t.'.e l
Monticello redundant trip coils; assessing the l
adequacy of the existing JAF ATWS RPT design; and demonstrating that the redundant trip coil design does not appreciably improve reliability.
The conclusions reached in this evaluation are:
l 1)
There were no failures for the recirculation l
l pump 4.16 kV motor generator feeder breakers and motor generator field breakers in the equipment history file over the last 14 years.
l However, one failure had occurred on the main generator field breaker, which is GE Model No.
l AKF-2-25.
This main generator field breaker is I
the same model as the recirculation pump motor l
generator field breaker.
I l
i
a 4 M"
-2)
Because of built-in redundancies overall RPT system unavailability is not sensitive to the trip signal initiation logic.
3)
The single trip coil and its trip mechanism failures contribute twelve percent of RPT unavailability.
Therefore, addressing this single trip coil failure 7
cause by installing redundancy is not advisable, as
/
it will not improve the reliability of the existing JAF ATHS RPT design significantly.
4)
The dominant single failures are: those associated with the motor generator field breakers for both the proposed JAF RPT and Monticello RPT designs, and the 4.16 kV motor generator feeder breakers for the existing JAF RPT design.
However, the BSEP, Pilgrim, JAF plant data, and the LER data base search conducted by EG&G, indicate that the 4.16 kV motor generator feeder breakers have lower failure frequencies than the low voltage motor generator field breakers.
Thus, the resulting unavailability of the RPT is dominated by the circuit breaker failure data selected for the analysis.
5)
Using breaker-specific failure data, the existing JAF ATWS RPT system is clearly more reliable than both r.he proposed JAF RPT and the Monticello system as endorsed by the NRC.
This comparison indicates that modification of the existing JAF ATWS RPT system is unnecessary.
i l
l l
t
2)
Because of built-in redundancies overall RPT system unavailability is not sensitive to the trip signal initiation logic.
3)
The single trip coil and its trip mechanism failures contribute twelve percent of RPT unavailability.
Therefore, addressing this single trip coil failure cause by installing redundancy is not advisable, as it will not improve the reliability of the existing JAF ATWS RPT design significantly.
4)
The dominant single failures are: those associated with the motor generator field breakers for both the proposed JAF RPT and Monticello RPT designs, and the 4.16 kV motor generator feeder breakers for the existing JAF RPT design.
However, the BSEP, Pilgrim, JAF plant data, and the LER data base search conducted by EG&G, indicate that the 4.16 kV motor generator feeder breakers have lower failure frequencies than the low voltage motor generator field breakers.
Thus, the resulting unavailability of the RPT is dominated by the circuit breaker failure data selected for the analysis.
5)
Using breaker-specific failure data, the existing JAF ATWS RPT system is clearly more reliable than both the proposed JAF RPT and the Monticello system as endorsed by the NRC.
This comparison indicates that modification of the existing JAF ATWS RPT system is unnecessa*y.
,, - - + -
l L
~3-2.
INTRODUCTION This report describes the system configurations, analyses, assumptions, methodology and results of a reliability evaluation of the existing ATWS RPT single trip coil and proposed redundant trip coil designs at JAF.
This evaluation assesses the adequacy of the existing RPT single trip coil design, compares the existing design to the proposed design and the NRC-endorsed Monticello RPT redundant trip coil design from a reliability perspective, and examines whether a redundant trip coil design appreciably improves reliability.
A list of documents used in the evaluation is presented in Appendix A.
3.
SYSTEM CONFIGURATIONS During normal operation, the recirculation pumps are used to vary reactor power over a portion of the power range by varying pump flow.
During transient conditions which cause a sharp increase in reactor pressure or drop in reactor water level, the recirculation pumps are tripped in order to reduce flow through the core rapidly and, consequently, to reduce reactor power level.
3.1 JAF EXISTING CONFIGURATION JAF ATWS RPT is accomplished by energizing the single trip coil of the 4.16 kV motor generator feeder breaker, thus opening the breaker for each recirculation pump M-G set drive motor.
Each recirculation system M-G set is tripped independently of the other M-G set.
The trip logic is arranged in a "one-out-of-two" logic scheme.
The trip signal is initiated by either one of two level sensors (sensing reactor vessel low water level) or either one of two pressure sensors (sensing high reactor vessel pressure).
Each level and pressure sensor is connected to an analog trip module which provides a trip signal output when either a predetermined low water level or high pressure is reached.
A simplified schematic of the JAF RPT trip logic is presented in Figure 1.
4_
3.2 JAF PROPOSED CONFIGURATION The proposed JAF ATWS RPT modification is installation of two redundant trip coils in each motor generator field breaker (GE Model No. AKF-2-25) of the recirculation pump motor-generator (M-G) sets.
The trip logic scheme will be arranged in a "one-out-of-two-taken-twice" logic.
Under this logic, each motor generator field breaker trip is initiated by either one-out-of-two-taken-twice low reactor level sensors or one-out-of-two-taken
-twice high reactor pressure sensors.
Each trip logic train will trip both recirculation pumps upon signals from two pressure sensors or two level sensors.
A simplified schematic of the proposed modification of the JAF RPT trip logic is presented in Figure 2.
3.3 MONTICELLO DESIGN Monticello ATWS RPT is accomplished by energizing the redundant trip coils of the 480 V motor generator field breaker (GE Model No. AKF-2-25) thus opening the 480 V motor generator field breakers for each recirculation pump.
The trip logic scheme is arranged in a "two-out-of-two" logic.
Each 480 V motor generator field breaker trip is initiated by two level sensors (sensing reactor vessel low water level) or two pressure sensors (sensing high reactor l
vessel pressure).
The level and pressure sensors are again connected to analog trip modules.
A simplified schematic of the Monticello RPT trip logic is presented in Figure 3.
4.
ANALYSES & RESULTS 4.1 JAF MAINTENANCE WORK REQUEST DATA The entire maintenance work request data files of the recirculation pump motor generator feeder breakers and motor j
generator field breakers were reviewed.
This review revealed I
no failures for the recirculation pump 4.16 kV motor generator feeder breakers and motor generator field breakers over the last 14 years.
However, one failure had occurred on the main generator field breaker, which is GE Model No.
I AKF-2-25.
This breaker failure, a failure to trip which l
occurred on March 3, 1984, was attributed to cracking of the l
eccentric bushing.
NRC Inspection Report No. 50-333/86-18 i
(dated 1/12/87) also supports this finding.
L
4.2 JAF RPT FAULT TREE ANALYSES Fault trees were constructed for the existing and the proposed JAF ALfS RPT design configurations.
These fault trees account for the trip coil (s), breakers, fuses, breaker and test switches, and trip signal initiation logic paths (i.e., relays, trip units, level and pressure transmitters).
The trees have as their top event: "Recirculation Pump Trip Unsuccessful."
Failure of either pump to trip constitutes failure of the RPT.
The tree then cascades down through various hardware failure modes until the basic failure events are reached.
The existing and proposed JAF ATWS RPT design configuration fault trees are presented in Appendix B and Appendix C, respectively.
The following assumptions were made in modeling these design configurations:
1)
The fault tree models only the trip circuit which sets upon receipt of ATWS signals.
2)
Operation of the RPT circuitry is automatic.
No l
credit is taken for operator action as a means of achieving successful operation.
3)
Failure to supply 125 VDC control power for feeder breakers lA and 1B of the M-G set, generator field r
breakers, Alternate Rod Insertion (ARI) cabinets and the Analog Transient Trip System (ATTS) are beyond the scope of the analysis.
This means that the probability for the unavailabilities of these power sources is assumed to be zero.
4)
Cable failure is not considered to be a significant contributor to RPT unavailability.
Thus, it is not included in the model.
5)
Human errors in calibrating the trip units, level and pressure transmitters are not included in the model.
l 6)
Human error resulting in the breaker test switches being left in the wrong position after test is not included in the model.
I Each of the above assumptions tends to eliminate failure events extraneous to the present point of interest.
We have, therefore, focused attention more strongly and directly on the effect of installing redundant trip coils.
l s,
Both failure modes of the trip coil, "Trip coil does not energize" and "Trip coil fails open," were incorporated into the fault tree.model for analysis.
However, the trip coil in
.the motor generator feeder breakers and motor generator field
' breakers has an indicator light connected-in series with it.
The indicator light continuously monitors the breaker and trip coil status.
Therefore, an open circuit within the-trip coil would be effectively indicated in the control room, and corrective action could be taken by the operator during the shift.
Various sources of the breaker failure data presented in EG&G-REQ-7766 (Ref.17) were examined.
Most of these data sources indicate a history of generic problems with the GE Model-No. AKF-2-25 recirculation pump motor generator field breaker.
Higher failure frequencies of the motor generator field breaker were recorded in the Brunswick and Pilgrim plant data bases and in the LER data base as well.
The Brunswick and Pilgrim plant data base covered three plants over a period of ten years.
The LER data base was derived from EG&G's search of 34 plants over a period of seven and a L
half years, constituting over 240 plant-years of data.
This data base clearly represents a statistically significant foundation for providing the best available operating experience of the circuit breaker failure data.
Two fault tree analyses were performed for both the existing and proposed designs by using the generic WASH-1400/IEEE-500 component failure data.
By replacing the generic breaker failure data with the specific breaker failure data derived from the LER data search conducted by EG&G, two more fault tree analyses were performed for both designs.
These component failure data are presented in Tables 1 & 2.
4.3 BESULTS a)
WASH-1400/IEEE-500 Comoonent Failure Data Using generic data, the unavailability computed for the existing JAF ATWS RPT design is 2.83 E-3, as compared to 2.62 E-3 for the proposed JAF design and 2.5 E-3 for the Monticello design.
These analyses indicate that the proposed JAF RPT redundant trip coil design is about 8 percent more reliable than the existing single trip coil design while the Monticello redundant trip coils are 13 l
percent more reliable than the single trip coil.
This result is misleading, since a single generic breaker failure rate is arbitrarily assigned to the 4.16 kV motor generator feeder breakers and motor generator field breakers.
The proposed JAF and Monticello designs then appear to be inherently more reliable than the single trip coil design.
b)
Specific Breaker Failure Data from LER Data Search Conducted by EG&G The unavailability computed for the existing JAF ATWS RPT design is 2.3 E-3, as compared to 7.3 E-3 for the proposed design and 7.2 E-3 for the Monticello design.
The existing JAF design is more reliable when analyzed using the LER data.
The dominant single failures are: those associated with the motor generator field breakers for both the proposed JAF and Monticello designs, and the 4.16 kV motor generator feeder breakers for the existing JAF design.
The different failure rates developed by EG&G's search of the LER data base and used by EG&G for the Brunwick evaluation were assigned to the 4.16 kV motor generator feeder breakers and motor generator field breakers, respectively.
Accordingly, the existing JAF design, given these further consideration, is inherently more reliable.
5.
CONCLUSIONS The conclusions reached in this evaluation are:
1)
There were no failures for the recirculation pump 4.16 kV motor generator feeder breakers and GE AKF-2-25 motor generator field breakers in the equipment history file over the last 14 years.
However, one failure had occurred on the main l
generator field breaker, which is GE Model No.
AKF-2-25.
2)
Because of built-in redundancies overall RPT system unavailability is not sensitive to the trip signal initiation logic.
3)
The single trip coil and its trip mechanism failures contribute twelve percent of RPT unavailability.
Therefore, addressing this single trip coil failure cause by installing redundancy is not advisable, as it will not significantly improve the reliability of the existing JAF ATWS RPT design.
4)
The dominant single failures are: those associated with the motor generator field breakers for both the proposed JAF RPT and Monticello RPT designs, and the 4.16 kV motor generator feeder breakers for the existing JAF RPT design.
However, tl.e BSEP, Pilgrim, JAF plant data, and the LER data base search conducted by EG&G, indicate that the 4.16 kV motor generator feeder breakers have lower failure frequencies than the low voltage motor generator field breakers.
Thus, the resulting unavailability of the RPT is dominated by the circuit breaker failure data selected for the analysis.
5)
Using breaker-specific failure data, the existing JAF ATWS RPT system is clearly more reliable than both the proposed JAF RPT and the Monticello system as endorsed by the NRC.
Thia comparison indicates that modification of the existing JAF ATWS RPT system is unnecessary.
l l
l l
r TABLE 1 COMPONENT FAILURE DATA OF THE RPT SYSTEM (WASH-1400/IEEE-500 DATA SOURCE)
COMPONENT FAILURE MODE FAILURE RATE Circuit Breaker Fails to open on demand 1.25x10-3/Dumand Circuit Breaker
- Fails to remain closed 3.80x10-8/ Hour (low voltage)
Relay Coil Does not energize 1.25x10-4/ Demand Relay Coil Fails open 2.66x10~7/ Hour Relay Contact Does not close 3.75x10-7/ Hour Level Transmitter Does not operate 2.66x10-6/ Hour Pressure Transmitter Does not operate 2.66x10-6/ Hour Trip Units Does not function 2.66x10-6/ Hour Fuse Fails open 1.25x10"6/ Hour Fuse
- Fails open 3.0x10-8/ Hour (5 Amp DC fuse)
Switch Contact Failure of NC by 7.98x10-8/ Hour opening, given no switch operation
- IEEE-500 Data Source.
I l
z -
-a e,
, ~,,n.
TABLE 2 BREAKER FAILURE DATA FROM THE LER DATA SEARCH CONDUCTED BY EG&G FAILURE FAILURE PROBABILITY COMPONENT MODE JAF(EXISTING) JAF(PROPOSED) & MONTICELLO Motor Fails to open 9.8x10-4 Generator on demand Feeder Breaker A Motor Fails to open 9.8x10~4 Generator on demand Feeder Breaker B 3.6x10-3 Motor Fails to open G ene'.*ator on demand Field Breaker A 3.6x10-3 Motor Fails to open Generator on demand
+
Field Breaker B l
l 1
l l
l l
l l
l
6 i
'4.
~
I I
I l
LOW LEVE L Hi PR ESS LOW LEVEL HiPRESS 2 3 72A 24102A 2 3-728 2 3 1028 I
I I
LOW LEV E L HI PRESS LOW LEVEL Hi PR ESS 2 3-72C 2 3102C 23720 2 31020 LOGIC 1/2 RECIRC RECIRC MG M.G SETB SET A f
REACTOR PM P
VESSEL IP PM J
\\
Figure -1 FitzPatrick Current RPT Design i
.?
s l
I I
LOW LEVE L LOW LEV EL LOW LEVEL LOW LEVE L 2 3 72A 2 3 72C 23728 2-3 720 Hi PRESS HIPRESS HiPRESS Hi PRESS 2 3102A 2 3-102C 2 3 1028 2 3-1020 1
1 1
1 I
I T
RECIRC RECmc M-G M-G SETB SET A LOGtC 'I2 Twice FIELD BKR FIELD 81RR TRie COfLS TRIP COILS RE AC. *OR PM P
VESSFL P
PM Figure 2 Proposed JAP 16%S RPT Des'gn l
~'
~
,).
s;
?{'
~
_3 d
so-LOW LEVEL HiPRESS
- LOW LEVEL Hi PRESS 2 3-(2A 2 3101 A 2-3 728 2 3102C LOW LEVEL HiPRESS LOW LEVEL Hi PRESS 2 3 72C 2-3102B 2-3 720 2 3 1020 I
I I
I I
I l
REC 1RC RECIRC MG MG SET A SETB I
LOGIC 2<2 I
FIELD BKR FIELD BKR TRIP COILS TRIP COILS l
At' ACTOR PM P
VESSEL P
PM l
i i
l.
f F1,Ulu 5 Monticello Design l
7 5
APPENDIX A LIST OF DOCUMENTS FOR RELIABILITY ASSESSMENT OF THE EXISTING &
PROPOSED JAF ATWS RPT DESIGNS 1)
Drawing 11825-1.62-144 Elementary Diagram Variable Speed Recirculation Pump and M-G Set - Sheet 2.
2)
Drawing 11825-1.62-148C Elementary Diagram Variable Speed Recirculation Pump and M-G Set - Sheet 1.
3)
Drawing Il825-1.62-132D Elementary Diagram Variable Speed Recirculation Pump and M-G Set - Sheet 3.
4)
Drawing 11825-1.60-20 Elementary Diagram Analog Trip System.
5)
Drawing 11825-1.60-21 Elementary Diagram Analog Trip System.
6)
Drawing 11825-1.60-23 Elementary Diagram Analog Trip System.
7)
Drawing 11825-1.60-24 Elementary Diagram Analog Trip System.
8)
Drawing 11825-ESK-7FA Elementary Diagram ARI System, Rev A.
9)
Drawing 11825-ESK-7FB Elementary Diagram ARI System, Rev A.
- 10) F-ST-27 JAF Recirculation Pump Trip Logic System Functional /
Auto Actuation Test.
- 11) GE NEDC-31017-1, Rev 1 JAF Nuclear Power Plant ATWS Assassment.
- 12) JAF Nuclear Power Plant ATWS RPT Modification No. F1-83-054 conceptual Design Package, March 18, 1988.
i l
- 13) WASH-1400 Reactor Safety Study, USNRC, October, 1975.
l
- 14) IEEE Std. 500, 1977 Guide to the Collection and Presentation of Electrical, Electronic and Sensing Component Reliability Data for Nuclear Power Generating Stations.
l
- 15) IE Information Notice 87-12 Potential Problems with Metal Clad Circuit Breakors, General Electric Type AKF-2-25.
1 l
l
- 16) CP & L letter from S.R.Zimmerman to USNRC, dated November 13, 1987, Serial NLS-87-244 ATWS-RPT System.
- 17) EG&G-REQ-7766 Review of the Recirculation Pump Trip Design for the Brunswick Steam Electric Plants, Attachments 1 & 2.
- 18) NUREG/CR-4126 Data Summaries of LERs of Protective Relays and Circuit Breakers at US Commercial Nuclear Power Plants January 1, 1976 to December 31, 1983 (Draft).
- 19) NRC Inspection Report 50-333/86-18, JAFNPP, January 12, 1987.
J
(--
.-9
.'g',
9
' e '.
(
r r
J J'
f APPENDIX B FAULT TREES DEPICTING THE FAILURE OF THE EXISTING JAF ATWS RPT DESIGN (SINGLE TRIP COIL DESIGN) 4,
(
I
..__.-- ~- -,.--.___._ _._ _.-_.
__.--._,,.mm.,,..
c_-.,__..-,...~
,--.,7 v--
E 8
L 8
G
/
1 N )L E 3 I
T /
(
I C
T RE E
F S
1 U
A N
J G e N g I
e W a t
AR P m
D 0
P 1
IR p
TO a
T R
E P
ESE l
LG 8
M AR 5
I FE G
ERBL N l
E O
S C S
SP P
L LI R
R A
A T F
F N
l bP R O I
B E F 7
PR T
1 sT P
ML 5
A R
E G
O G
R N LP T R
l B E I
P BO C
S E
PO L
P RN F
EE 9
I KP P
AO k f E
B RO C
BT 80 O
l PM L P
l UF R
PS S
ME l
C T
K C P
TA U
$ f S
O AL N I
CU R
2 I P P
C I
e ER R
RT TO ga T
P R
E ESZ l
KLG
$(
E 2
AAR I
EF E f
I BL N E
)
AQ S
SP P
L L R P
A A T F
F AP R N l
A E O 1
I T
K R
P l MT P
A U R
E O
G R N I
F T B E I
P R
I AO C
S E
PO L
R RT A
F l
P RN F
EE A
KP P
I AO E
E RO c
BT se A
l P
R
FP A BREAKER TRIP COIL FAILS TO t
i ENERGIZE I
\\
.i Page 1 1
i i
i 125VDC DIST BUS OF RP A BREAKER FP A BREAKER TTUP 2AK50A & 2AK50C FP A BEAKER TRIP 4.16 KV BS 10100 CONTROL CIRCUIT COIL DOES NOT TTUP PATH FAULTS COIL FAILS OPEN UNAV FAILURE ENERGtZE O
NG2A l NCIFFAFB l l f DC10@D l lNc3RPATW l O
0 I
I RP A BREAKER FUSE 1 RP A BKR AUX SW 52 (POS) FAILS OPEN CNT 2 Fall TO FHM CLD i
0 RP A BREAKER FUSE 2 RP A BKR AUX SW 52 (NEG) FAILS OPEN CNT 4 Fall TO F#M CLD l NF UR'PA2W l l NSWA5240 l 0
0 FP A BKR SW 52H CNT FAILS TO RhM CLOSE I NSW A52HO l TITLE Q
JAF RPT (SINGLE TRIP COIL)
DRAWNG NUteER DATE Page 2 5/31/88
1
.450A A 2A*50C T15P PATH FAULTS b
P.
I 2A*544 TFWP PATH 2A450C T5WP PATH FAULTS FAULTS I
I I
I SW 2AS12A CNT S4 RY 2A450A CMT T1 SW 2A412A CNT 7-e RY 2A450C CNT T1-PARS TO REMAIN M1 FAILS TO CLO6E FAILS TO NMAIN M1 FABLS TO CLOSE CLO e CtoeE I M12AC I en3 l M9MS12CO I 10 0
0 I
I I
E RV 'A*5eA COIL FLY 2A450A CET T1-RY 2A450C CNT T1-FLY 2A450C COL FAG TO ENERGtZE M1 DOE 8 NOT CLOSE M1 DOES NOT CLOSE FARS TO EMERGI23 O
O S611 g64 l NCSK50AN l l
Nl P'
mit JAF RPT (SINGLE TRIP COIL)
DRAWWC NUSEER DATE Page 3 5/31/88
O RLY 2AKSOA COL FAILS TO ENERG2E b
Page 3 I
125VDC KY Rhd DIST RLY 2A6 CCIL RP A LOW RK WATER CAS 71DCA2 UNAV DOES teOT ENERGCE Lvl 4 NI PpE sao UNAV IE71r[CA2Dl I[
']
b Y
I I
KY K1004 CNT T14E1 KY K102A CNT T141 FAILS TO CLOSE FAK3 TO CLOSE ILY K10DA CNT T141 ILY K109A COL MY K102A CNT T14s1 EY K102A COL DOES NOT CLO6E FAKS TO ENERGEE DOES NOT CLOSE FAILS TO ENERGEE l OCsistAN l l GCsiO2AN l Ge Pays 5 Page 6 ms JAF RPT (SINGLE TRIP COIL)
DF1AWIPtG NUhEER DATE Page 4 5/31/88
E 8
L 8
G
/
1 N)
L s3 I
I v /
(
T E
F 5
.U A
N J
a e M g a
r
. a m
R P T
D
-CV N
D A AO 1 N 2I 0T 7U l
2C I
B5 D
3 N W
- U AO C H A
2F 2
1 0
C T
I I
C I T 2
SL 0
NO U
D N 1
P 7
UN T
E G
CD O l
PS l
V T uE FTO m
5 5 T
tl 2A D
t i 1
OK CFE AN i
9E e
0 d
O 1K T I
Y S L E S
AE IF A
E 2 T F
O 0 A DE l
3 1
Z
- R l
L I
- E W
I G W
R O 2
CE e
0 TT 1
I A E h
k N
MO R
9 C
XN P
0 T G
T G
1K O l
E S
N S E l
Y.
O IF D t
P F
s
- !l lI i,
I EL 88 G
/
1 N)L E 3 I
I TA /
SO D 5
(
T Ee F
6 tU A
M J
G e I
g N
e W a t
AR P m
D 3 T N
C AO
-2N 2I 7T TU I
2C l
I F
N W
3N W
Oi
- U A
UT A
0 2
F 2
3 N
7 h
i P S d
TT B
MO U
FE t
TO T
UN I
D G
G E
PS I
l V A RE CV E
A3 Z
L7 TO 0 AM S2 D
1 ILl 7 t l
G O R B5 D
C E A4 S b AN C9 A
I 2E e
C SL 0
d t
D K T l
D N O
1 1
P 7
F YS C O L
D I
T R R S
AE V
A E
2 T 5 5 F
O 7A 2 A DE I
2E W
1 L t 3R Z
l I G w
P 0
A O,
\\
OR A
RO 2
2 T
CE o
MT h
N i
A E n
XO E
2 c
TN L
0T G
G 1
LS K O l
E E I
N Y
V O L
E D R
L
e e
EL 88 G
/
1 N )L E 3 I
I T
/
(
T Ee F
7 tU A
N J
G e N g I
e W a A
m R P D
0 EZ e
ILI g
O G a
CR P
E AN l
5E 6
I 01 O 0
KT l
YS t
LR s
F A
e E F
1TBO TL I
NC C
4 O
5 AT 0
50S l
1MRA t
YF I4 TN l
K 1
N TN A
N S
I CT O
O M
A N 5
C 01 S G
KE R
O l
Y D E G L
T a F
AS W E KR l
O 1nl V
J P V I N
'2 I
A i
i I
o W N U L
L A V e
E PL Z
po tI R
t G a
g O R P
C E AN l
5 0E I
1 1
O 0
1 K T l
YS L L 1
RI E
EZ LZ 4
A
.E F
E t
M 1
TSO E
w TL I
E CN c
6E l
0E o
NC O
n O.
N 5
C n
O T
d C
A T o
O J
0 A
A T l
2N E
I 1 S 2
1 L Y 2 YS l
KI A 1
D L
1 6 F
TO l
L N
T C A
N
\\
o I
CT t
O i
A N s
0 C
11 S O
KE l
O T
YD SV d U l
N I A D N Y - h0 eR2A u MD mC C
1 C7 E
D B I
V5A 2C 1
f.
e
~
E L
88 G
/
1 N )L E 3 I
I T /
(
T E
m F
8 nU A
N J
G e N g I
E W a t
AR P m
D
-0V N
0A CO N
2I 1
0T 7U
]
2, C l
3 N W
B5 D
A9 5
- U C0 Oi 2
C9 A
F 2
C N
T T SL
'0 r
MO D N t
1 t
UN T
P 7
f G
C PS D O l
R E T
I 1
V TO E
5 S L2 2
J A
D I G 1
OCR E
AN l
S 0E I
1 O
G 1
K T I
YS L L S
C t
E I I E
2 A
T F
O 0 A DE 1
l
- R l
Z 3
G
- E W
ILl W
2P c
A E t O I
T T 1 0
\\
7 OR A
CE 0
R O
?0 5
N MO R
1 0
C XN P
1 T G
T G
1K O S
l S E N
l E O Y
R L
D R
P
E 8
L 8
G
/
1 N )L E 3 I
I T /
(
T Ee F
9 tU A
N J
G e N g I
r W a A
m R P T
D T
4 C N
N CO 2
2I U
7T TF 2C l
I 3N W
INT W
U C
OI INO t 0 UO C
2 F
?
3 N
7 7
P N
T T h
I RS t
TE T
UN i
O G
G ED l
RE l
CV PS V
I E
AC TO D A Z
L3 1 N LI S7 D
OG 2
7U i
I C R B5 0
E A9 5
AN I
C9 A
6 b
5E
'6 e N 0
sL 1
[
O 1
1M T l
D P 7
E C
Y S D O l
LL S
C E V T RI E
2T 5 S A
F O
7-A l
12 A DE l
3R Z
L G W
2E W
E P
I O,
C0
\\
7 OR A
RO 2
I CE S
T N
i MT
[7 o
A E t
XO E
5 c
TN L
0 T G
G 1K O l
E E l
LS N
Y VO L
E D L
R
e RP B BREAKER IMP COR. FAES TO EERGiZE Page 1 I
I I
12SVDC DIST BUS OF RP B BREAKER RP B BREAKER TRP 2A4508 & 2AK500 RP B BREAKER TRP 4.16KV BS 10200 UNAV CONTROt. CIRCUIT COIL FAILS TO TRP PATH FAULTS COIL FAILS OPEN FAILURE ENERGIZE I EDChooPD I l NC5hBTW l l G19 l l NCIRPBFB l G46 O
A~"
O 0
RP B BREAKER FUSE 1 RP B BKR AUX SW 52 (POS) FAILS OPEN CNT 4 FML TO R944 CtD l NF URPB1W l lNSWh5MOl 0
0 FP B BFEAKER FUSE 2 RP B BKR AUX SW 52 (NEG) FAR.S OPEN CNT 2 FML TO R988 Cto I NFURPB2W l
[ NSWh5220 l 0
0 RP B BER SW 52H FAES TO CLOSE l NSWB52HO l TTTLE Q
JAF RPT (SINGLE TRIP COIL)
DRAWING NUhmER DATE Page 10 5/31/88 M'
"T
e 4
2A4608 & 2MSDD TRIP PATH FAtJLTS
~ 10 I
I 2A4508 TRIP PATH 2AJGOD TRP PATH FAULTS FAULTS I
I I
I St9 2A4128 CNT 3-4 SLY 2A4008 CNT T1-SW 2A4128 CNT 74 RLY 2A*50D CNT T1-FAILS TO REMAM M1 FAR.S TO CLOSE FAILS TO REMAN M1 FALS TO CLOSE CLOSE CLOSE I
lW N 12t>>l l meenwSt 200l l
O O
I I
s I
R_Y 2MG08 COL RLY 2AA,08 CNT T1-EY 2MGOD COIL NY 2A-ISOD CNT T1-FAILS TO ENERGIZE M1 DOES NOT CLOSE FALS TO ENERGEE M1 DOES NOT CLOSE l NCSMSGIN l G30 l NC4M600h l Page 12 Page 15 mtt JAF RPT (SINGLE TRIP COIL)
DRAWING NUnWER DATE Page 11 5/31/88
E 8
L 8
G
/
1 N )L E 3 I
T /
(
T I
2 E
E F
R 1 U
A N
J G e N g I
s W a AR P nu D
E IZ LI G O
KT lN R
C E I
B9 D
GE h
I 0 O O
1 YS KI L
ts A
e-E F
1T SO TL I
NC C
?
O h
I 8T G
20S I
1 L KIA 1
Y. F 84E R
1 S T O I
L N
TNC B
CT 1 O 20 O
E B N S
E0 C
S Q
1KE R
O l
Y D E G t
T 8 f
L6 fuE XR I
4&
lnl V
l I
RP A 5
h f E le i
G NP U 1
5 LV E
L P
Lt Z
F I G O
8N lN R
C E e
9E h
I 81 O G
KT I
YS L
1 R E E
8 A
E t I t Z 4
F L
LZ I
E OG O G 1
CR C R l
T SO E
v TL e
E e
g NC I
8f l
6T A T l
sO.
f 0 B E
e C
9 e
5E 5
O 2
m 8T G
- O A O 0
2 2Is C
I 0S e
1 L Y S L
Y. S I
K A 1
E A
4 TN F
L F
D R
1 I
T N
N C 0
O 1 O A
0 CT 0
I 8
s N
0 c
0 F
1 S o
AE I
O T
Y D SV L
eA R
D N I
f U t
D f 2 2O 8
B Y -
C I KD D
C 1
1 7
C7 E
D 8 5 A I
V 2C 1
t 4
i l
l E
8 L
8 G
/
1 N )L E 3 I
I T /
(
T E 3 I
M F
IA1 A
N J
G e I
g N
E W a A
m R P T
D T
N SV BO I A 2I D N l
2C l
0 T U
MO 85 D
3NU 5 2 2 O 2
B O
F Y r L F.
N CI NO T
T FD 1
T 1
7 L N G
C7 E
- wS DV B l
l E
5 A F
E 2C TO Z
D tt 1
t G OC R E
I BN 9E 01 O u
K T I
YS EE S
A E
BE F
2T F
O 0A l
DE l
3E W
R 1
Z t I W
G 2P B
t 0
\\
2 OR B0i O
2 CE e
R 0
o T T 1
N g
8 E n
MO R
a 9
C XN P
P 0T G
T G
1K O l
EE I
S N
Y RO L
PD I
llll l
R.Y K102B COIL FAILS TO ENEFGt2E Page 12 i
i R.Y M102B COL DOES SLAVE TRIP UNIT 2 NOT ENERGtZE 273B DOES NOT FUNCT
[ GCaikx29W I l GTud739W I O
O i
LEVEL 1m 2-3-72B TRP UNIT 2-3-272B DOES NOT OPERATE DOES NOT FUNCTION
[ 6tEi72BW I I GTU7728W l 0
0 125VDC RLY fH4 DIST CAB 71DCE2 UNAV l E710'CR2D l Tm1 JAF RPT (SINGLE l
TRIP COIL)
DRAW =o NU ER DATE Page 14 5/31/88
ll a
E 8
L 8
G
/
1 N )L E 3 I
I T /
A SO D 5
(
T ES 5
?
h 1
UN e
GN g I
c W a A
n R P u
D 7
1 EZ e
Lt g
I G a
C R P
C E 8N I
I 6E 3',
0 O G
1MT I
Y S.
L 1
R E W
A F
- E 1T SO TL I
NC C
T O
3 I
8T 5
5 I
9SL 1K A 1
YF 8
L 48 R
TN I
1 Tt N
Ne e
l C7 o
0 i
I 80 s
63 c
91 S o
RE I
O R
YD EG L
T I I
AS W E l
WHeJ anl XF W i
RP A
- 3 I
1 I
t t
O &
l L
L s
B i
V E
L F
I Z e
P LE p
O G a
C R I
P E
e 8l 0E u
1 11 O G
K T I
YS LL 1
E s
A F
E LZ I
t 4
F I
L2 E
T S K
C R O
C F
E w
TL D E I
DN o
NC OI N
.G C
2 0
c.
G
.o E
O 3
0 8T E
T 4
4 O A 0 e
0 A T 8
m 1 S I
2 29 1
L KI YA YS I
VF A
1 LE LE 8
D E
1 S TO I
L u
TN C e
\\
c CTO u
i 80 N sc 1
S o
1KE I
O T
Y D SV L
I A d U I
F D N e
9 R2 2s 4
. 0 Y
L C
.0 I
FD 1
1 7
C7 t
D S V5 A 2C 1
ljl l
,I
t E
8 L
8 G
/
1 N )L e3 I
I T /
(
T E 6 F
. 1 U
A N
J a e wg t
wa A
m R P T
D T
N SV DO I A 2
D N l
2C l
GT AU t
0 3 N W
f 2 2 D
- U D0 2 F 2
8 8
Y C
[0 T
RD 1 Ci LC
[C I T NO U
UN 1
7 T
C7 E
G B
PS D
A l
RE l
V 5
E 2C TO 2
D L
1 f M OK CFE 0M 0E 1 O 1KT Y S.
LE S
D E F
A E
2 F
O 0 T A
D E l
3 1-R l
Z
- E W
E L G W
2P D
I O
20
\\s OR B
B E l Oi R
i CE
' 0 0
N i
T T 1
1 MO R
0 C
XN P
1 T G
T G
1K O l
S E l
S N
Y EO L
HD F
F
j l
~
E 8
L 8
G
/
1 N )L t 3 I
I r
/
(
T E. 7 F
1 A
J
- a. eg
= a E
t AR P m
D
- T 3C N
- N DO 2
2I U
TF I
7T i
2C MT 3 N m
- U aO UO 0O1 I T i
2 3
F N
r 7
P T
i RS d
NO o
i T E T
UN v
O G
a ED PS I
i V
RE T
L3 I A LI S7 D
D N l
G 2
I U
O R M
D C
8N i
F 2 2
E B
s Y 4 C
5E
'G L C "D
3 0 O F D t
1K T i
C7 E
1 7
YS D B l
L V
R E S
D 5 A
%E A
E T
2C F
O 4M 1
DE i
2E i
Z a
L I M
I G P
0 B E 8 OI MO 3
OR O
A i
CEN T
s 1
u 5
C TN 0 T G
a 1
LS K O I
EE i
N Y
V O L
E D R
L ll lll lll ll 1
llll
- d* -
t 6
b APPENDIX C FAULT TREES DEPICTING THE FAILURE OF THE PROPOSED JAF ATWS RPT DESIGN (REDUNDANT TRIP COIL DESIGN) l i
1 I.
i h
c 1
I f-
-O s
Z Oz-
)
N
@5 8*
CC O 0.
0-1e cc LL 1b g4
{s 2
be 191.i<
I tit l
a gI
- l)a.i B l@
i
$a 5
al
((
rp
,e
.1 t-
{y.i@
l
.i te
,n.<
i 3
(
3 b
. js.i f,i i@
1 s
e
\\
W e
B i
b.,
\\
- t i
l
IP A GF 9004 TF5P CCILS FAILS TO
~
A P.S. 1 fW* A GF BIGt T1WP fr A & SIGt TW ODE. TC-9 FALS TO COL TC4 FAES TO ENGR ENGR P.S. 12 I
E I
E E
12EVDC 085T P8J8EL 8tP A & 0865 FUSE M A GF peGt TIWP l FLY 35FTA CNT T1-RP A GF BIGt TWIP SP A GP 8804 FUGE
- A* UsenvArN (POS) FAAS OPDs cost TC-1 DCES asOT I W1 FAAS TO CLGiE COIL TC-1 FAILS OPERE (NEG) FAES OPDs l
"~
,, ~,
,a,
,,c...
,-,c-,
6 O
O O
O I
RLY 3fFT CNT T1-FELAY A COIL M1 DOES #sOf CLoeE FAAS TO BAERGIZE I secon'tuwe 1 Page 3 JAF RPT (REDUNDANT TRIP COILS)
DRAWING NU,mER DATE 3
Page 2 5/31/88
W t
TELAY 3FFT-A COIL FAR.S TO ENErGt2E G13 Page 20 I
125VDC t#5 RLY ",RPT-A LO!L LOW LEVEL $80NAL FM UNAVAILABLE DOES NOT EfCHGIZE A41 A OR 18 UNAVAL lEDcdPsseol MAW]
G15 O
O I
I LOW LEVEL SIGNAL FM LOW LEVEL SIGNAL FM AN1A twvAR.ADLE A%1E UNAVAILAftE lG5Al l G[5B l CIWJ#ELS A&C LOW CHANNELS B & D LOW teva Sm teva So.AL UNAVAILABL UNAVAILA G16 l G17 l Pape 4 Page 8 l
]
JAF RPT (REDUNDANT TRIP COlLS) onAw G sumEn oats Page 3 5/31/88
i CHANDELS A&C LOW l
LEVEL SICM UNAVAIUGL l
l
%8 l
I I
RLY 3RA CNT T1-M1 FLY 3RB CONTACTS T1-FAILS TO CLOSE M1 FALS TO Ct.CSE i
4 I
I I
I RLY 3RA CONTACTS T1-RELAY COIL 3RA RLY 3RB CONTACTS T1-RELAY COIL Sful M1 DOES NOT CLOSE FALS TO EDERGIZE H1 DOES NOT CLOSE FAILS TO E8ERGIZE i
i NcskArN i i ucSherN i O
o 8Gi.
~'
I I
RLY K102A CONTACTS EY COL 3RA DOES T4-Me FAIUt TO CLOSE seOT ENERGtZE I G33 l 1 teC43RArW l A~'
O I
I BKRS 7 & FUSE 125VDC DOS CAB 71DCr FAILURES A5 UltAVALABLE G22A IE71DCASDj TITLE JAF RPT (REDUNDANT 4
TRIP COILS)
DRAMNG NUMBER DATE Page 4 5/31/88
O T
NA 8
D 8
N)
/
1 U S E 3 L
T /
DI AD 5 E. O FC
(
R E
.'t
@ 5 n
F UN F
G e A
s g
e E
wa L J A
T R P IT D
N C
AO D
2I 1E 7T l
7L l
2C B
3N W
B A 0
AL 5 D U
A0 t A A
2 CIA F
2 S V
[C T
[7 C
I I T
[
NO U
1 DN 7
UN T
U E
G C
PS D5 l
- T RE l
VA 3
E TO 5
- C L
2 N I Z D
2 OI I F W
G T U l
1 C R N
AE 2N l
UT AQ r
3 4
P>
7 0E b
I S
. 2 I
KO l
TO T
1 G
RE U
Y T D
G AS E
l V A E
LL S
A E A3 S S EI R A E
2 T L7 T
CO F
O 7
4R l
S2 A
T C Z
t I 2E W
N O t G W
OR A
T. O 2
C
'G I
CE 2
33 0
7 S
N MT h
1 XO E
2I 2
C TN L
0A l
l 0T G
G 1 F 1
LS K
K O l
EE l
N 4
a L -
M Y
V O YM E
E L
D R 4 4S R
t T
TO l
L N
T C A
\\
4 N
2 CT 0
e O
g I
A 1
a 2 N SC P
0 S G
1KE l
O Y D LR
9 I
BKRS 7 & FUSE FAILURES
^
Page 4 Page 7 Page 14 Page 16 I
I FUSE FD2 FAILS OPEN BKR 7 (NEG) FAILS TO REMAIN CLOSE l NTOF' 2RW l l NC80R7NO [
D O
O l
I FUSE FD1 FAILS OPEN BKR 7 (POS) FAILS TO REMAM CLOSE I NFut oisw 1 l NCEER7PO l 0
0 mtE JAF RPT (REDUNDANT TRIP COILS)
DRAWING NUSEIER DATE Page 6 5/31/88
O RELAY r. OIL 3RB FARS TO t'4EFaGIZE Page 4 i
i i
i RLY K105A CONTACTS BKRS 7 & FUSE RLY COtt 3RB DOES 125VDC DES CAB 71DC-14444 FAlt.S TO CLOSE FALtRES NOT EFERGIZE A5 UNAVARABLE cas i l G52A 1 l NCORBFW l l E710CA50 l A~'
O O
RLY K105A CNT T4-M4 l
RELAY K105A COL DOES NOT CLOSE FAILS TO ENE.4GtZE l GCSIO6AN l G36 I
I RLY K105A COL DOES TFBP LNT 24272C NOT EPERGIZE DOES NOT FNJ l GCaiosAw l l GTuiz2cw l
^
0 0
LEVEL TXMTR 2-3-72C 125VDC DES CAB 71DC-DOE 3 NOT OPERATE A5 UN4VALABLE l GLE272CW l I E71DCASD l 0
0 SLAVE TRIP LNT 2-3 TITLE JAF RPT (REDUNDANT l GTU273CW l 0
"^ - " - "
"^"
Page 7 5/31/88
CHANNELS B & D LOW LEVEL SIGNAL UNAVAILA G17 II I
I RLY 3BA CONTACTS T1-RELAY 3BB CONTACTS M1 FAILS TO CLOSE T1-M1 FAES TO CLOSE Gh5 G27 i
i e
i RLY 3BA CONTACTS T1-RELAY COL 3BA RLY 3BB CONTACTS T1 RELAY 388 FAILS TO M1 DOES NOT CLOSE FAILS TO ENERGIZE M1 DOES NOT CLOSE ENERGIZE G"6 I NCS380FN l
^
I NCS3RAF N l 2
0 0
A~"
I I
RLY K102b CONTACTS RELAY COIL 38A DOES T4-M6 FARS TO CLOSE NOT ENERGIZE I
l G37 l l NCt3BAFW l A~'
O I
I BRKS 4 & FUSE 125VDC RLY RM DIST FAlt.URES CAB 710C-82 UNAV l G2sA I I E71DC820 l TITLE
[ ~ '*
JAF RPT (REDUNDANT TRIP COILS)
DRAWING NURSER DATE Page 8 5/31/88
RLY K102B CONTACTS T4-844 FAILS TO CLOSE G' 7 3
I I
RLY K102B CNT T4-M4 RELAY K1028 COIL DOES NOT CLOSE FAILS TO ENERGIZE
^
l GCS1o:?RN l G38 0
I i
RLY K1028 COIL DOES TRP UMT 2-3 272B NOT ENERGIZE DOES NOT FUNCTION l GCt102BW l l GTU2729W l 0
0 I
I LEVEL TXMTR 2-3-728 125VDC RLY RM OtST DOES NOT OPERATE CAS 710C42 UNAV l GLE772HW l (E710C82Dl O
CD SLAVE TRIP UMT 2 2738 DOES NOT FUNCT l GTU273Rw l TITLE Q
JAF RPT (REDUNDANT TRIP COILS)
DRAWING NUhEER DATE Page 9 5/31/88
e T
N A
8 D
8 N)
/
1 U S E 3 L
T /
(
P I
TRR E
PT E 0 R
B 1
UN F
G. e A
W g t
W a J
A n
R P u
A l
AO l
J Ft O
FL O
S)C P
G)C N
0 0I 4
4 N
N OI R
I EI A
P A h
NA B
M 0
(M B
(
C 4 E C
4E R
N R
N R
R l
KO l
KO E
BT OT L
R J
&W 4'
A S7 K
R N
N B
E E
P P
O l
O
]
S W
S W
0t I
B L
0 1 1 1 AI B
1 79 L
\\
8
/
A Y
1 e
0 F
N ge e
I F
'F P a rp a ag g
O 2
U 1
PPP D
F D
F F
N F
N E
l E
l S
S U
U F
F
.I
O T
N A
8 D
8 N)
/
1 U S 3
L
/
DI 5
EO RC
(
P T
PT A
D 1
ML D
R 1
R2 2
8 8
Y -
" e I
1 A
"g 1
7 C7 E
D I
E
~a V
L J B
^"P 5A T
2C IT 1
SEODE I
Z 8I W
G 83 R F
E
. B I
LN
. 83 OE r
LN CTO YA N O
L T
ER SLE AZ FI I
G s
8R bG 8E 3
Y E I
P A
o N
T L
t SV DO I A E
E e
2 R
S g
7T l
D N l
U a
2C U
FS 1N W
W D
i E
I P
F2 2
L D
D OI 8
8 A
2F 2
1
&R
. 2 I
T Y -
DC e
7 U
T L
G NO d
C LC R0 1
4 1
7 A
T SF I
LN G
C7 E
K PS D
3" B
I R
R E l
V I
5 A B
E TO 2C
-2 Z
LI D
1 O G T
K T IQ I
g_O CR N'
D E
U I
BF 5E N
P*
0 I
R*
1O T'
,c E
Y S V
L L
S DE A
RIA E
2T L
O 2
l 3R l
S
F O
7 8WS A
DE E
L tlt M,
2P W
54 G
0T C i
OR bO 0
YCT
.G I
P F.
2 1
KS e
CL 6
T TO 3
N MT 0
1 XO f
AA S 5
C TN L
LT L I
0 E NI 1 T G
G R O A K O I
EE I
LS F
4 N
C M
Y VO E
L ED 4S R
L TO I
T L N
N C sO s
i CT
' o O
i 85 N s
c 0 S c
1KE I
O YD L
R
,1
s
=
d T
e NA 8
D 8
N)
/
1 U S E 3 E
L T /
SN l
EO DI A
u O
W D 5 F
R Ne KS A
RC i
BR F
A F
(
FF U
G)
CN P
A G l
I E
P (N TR R
F E
PT e2 R
n 1 UN F
G e A
I g
N t
W a N
mJ I E A
P R P P
R O D
l T
R S O
K K 2
2 4 O B A C
F i
F A
G-C C
N AT l
Pt LE t
Ro I E
~
OG C
CGR 8E I N l
3O lA 4
FE 5
F 0
T YAS SE LR TS EA CO FF AL TC NOO CT l
R A l9 O
e 4S O
L TI F
P3 1
- E W
PO Y -
1 S MT L1 TO F T TS T L I
L N C N
Ra CT i 0 A
K R
O w
F 8
r B
G T
2N
- N e
s FGCE FS T
F E c
3O N
A L D
l PO T
Y E
L F C PO 1
R M RN T
l S
RE W
p i
F2 I o i
2 KOG 2
BDR C
T N
A G,E C
e
. P C
T N
A PI l
L O
F C
ES N U E F P l
O W
R P
e e
( S A
e BLA FF O
G)
F N
A S I
O PP R(
LEE l
)
be L
TI S A I V i
DA C
N D
C U D
E V"
[
$A 2
1
4 RELAY 3RPT-B COIL FAILS TO ENERGHE
\\
e.g. 12 e.g. 21 I
I 125VDC UPS RLY 3RPT-B Colt PRESSURE SIGNAL FM UNAVAILABLE DOES NOT ENERGIZE ARl-1 A OR 10 UN AVAL l EDCdPSMD l l NCNTBW7 G18 O
O 1
I PRESSURE SIGNAL FM PRESSURE SGNAL FM ARI-1A UNAVAILABLE ARS-18 UNAVAILABLE l G18A l l G18B l CHANNELS A8C HIGH CHANNELS B&D HIGH PRESSURE SIGNAL PRESSURE SIGNAL UNAVAL UNAVAL I
I G19 I M
Pagp 14 Page 17 mte JAF RPT (REDUNDANT TRIP COILS)
DRAWING NUheER DATE Page 13 5/31/88
TNA 8
D 8
N)
/
1 U S E 3 L
T DI A /
D 5 EO RC
(
P I
TR R
E PT 4
B4
~
R t
1 U
E DtZ N
~
F G e RG 3R A
N g E
liN l
E W a A
l^
I D
OE 0
L J A
T R P 3
i C O G
T Y T LS EL ITE RIA S
F S O T
L C C ATO l
8 N T I
O
' 9 1G C S.
l 2
D A RF 3
1T E 1
S YM SO LR TL l
CC N
A F
TT o
NO DR i
ON 3
C S
S C
DE M
R O l
S 3D C
H E
D GL Y1 O
1 E I A LM DE 7L i
HN R
Z B
l G
Ct
&S L R G W
BA D
CI A
R f
AL S
C CI A
E V I
3 E
A A
SR A i
tE 3
S V b
R l
I A 1
[
LUN OE 3
DN 7
C ESU C T N
C l
U E
NS NE Y O D5 AR A N l
VA E
L 5
HP Z
E 2
C CI RG R
1 3RE L
A3 i
C G (
1 I
N l2 OE 9
2 eg O
a Y T l
P ALS S E 5
EL 1
1TE RIA T
S S
F CO e
S O AL g
E a
S T
L TC P
U O
E l
P C
S A C N
O T l
F T O M
l C
U 7L G
N
& R A2 U
h T
S i
O
'g AL G
I i
CS 9I 0A l
S A l
L F
CI 1 F R
A K
K RF 4
3 1
B E
YM T S L -
1 YM SO R
TL l
R 4 L
T CC N
AT T f o NO CR i
ON 3
C S
S C
C E N
RO l
3D Y1 LM R
.i
T e
NA 8
D 8
N)
/
1 U S E 3 L
T /
(
P I
3 R
M 1
UN F
G e N g A
I a
W sJ AR P t
m D
H C
AC D
2I 1 E 0T 2C l
7L l
B 3N W
B A D
AL 5 D
- U A0i I A t
A 2
CIA F
2 S V b
0 I
T C
I T NO 1
DN l
7 UN U
E i
G C
PS R E l
D5 l
I VA I E TO 5
L Z
D 2
OI 1
G C R AE l4 9N 2
0E 4
i KO l(
1 G
T YA S L
S E L
S A E EI T S R A E
2 CO F
O 0 T A
1 A
DE L
R l
T C Z
l 3
G
- E W
N lt I W
2P O O I
OR A
A T
1 0 C
'G I
AE t 0i T
1 CE 9
R O 2
AL MO
' 0 0
T 4
N S
1 R
G C
X N P
0I 0 A 1
S E I
1 F I
0 T G
T G
K E
K O l
E S
4 SS N
YM TO Y
R O R4 AC l
R P D L
L -
CL T
TNT N
OO AO A,,
i C N 1
h0 AS S
9E C
0O 6
1K D l
4 YLM R4T
,j~
T
~
N A
8 D
8 N )S
/
1 U
E 3 L
T DI A /
D 5 EO RC
(
-C P
D I
1 E 7L l
TR R
B E
B A.
0 PT e6 A
5 9 R
R A
C A C
h 1 U
I S V DN 1 (
I A L
N F
S e 7
U E
N D5 A
I g
C l
E W a VA 5
L J A
2 T
R P I
1 T
l Dt W
G R
OE l O 3 R F
E D
l tN R
t 3
C CT N
O Y
l A N E
L DZ E
I RG R
3R I E l
L N OE 0
3 C O G
YT I
ALS EL N
T 2I 1
E 0T 7L l
l S
2C B
U S 3 N W
B A 0
\\
E lA I
T
?
F
- U C
OI I A t
A
& R A
2 CIA F
2 V
[C 2
O U
h I T S
l 7L G
NO U
1 DN 7
S A T
R F l
UN U
E G
C K
PS D5 B
R E l
VA l
L E TO 5
I Z D
2 OtG 1
C R AE SQ l
0N 1 E I
1 KO Y T 1
A S.
L I
E R S
C E L
A R A E
2 F
O 0 T A
F DE
- R l
1 A 4 Z
l 3
L I
- E W
04 E l
OR A
4S I G W
2P CQ 1
A E I OI R O 2
1 4O Y S C G
1 CE O
K 3
0 T
T T 1
L 4
N N
MO R
LC O l
0 C
AT XN P
1 T G
T G
E A T 1
O S
E K
SS N
S E l
R T l
E O N
O TO Y
R CL L
D C
AC i
R P
TNT n
OO A0 I
C N o
AS i
is 0E C
O G
1 1K D I
4 Y4 L4 R4T l
CHANNELS B&D HIGH PRESSURE SIGNAL UNAVAL Page ~3 ll 1
I RLY 3BC CONTACTS T1-RLY 300 CONTACTS T1-M1 FAILS TO CLOSE M1 FAILS TO CLOSE i
[
G50A t
G200 1
I I
I RLY 38C CONTACT T1-RELAY CCIL 3BC FLY 38D CONTACT T1-RELAY COIL 30D M1 DOES NOT CLOSE FAILS TO ENERGlZE M1 DOES NOT CLOSE FAILS TO ENERGIZE
^
l NCS3BCf N l G31 l NCS3RDFN l l G32 l 0
O A~"
i i
RELAY K109B RELAY COtt 3BC DOES CONTACTS T4-M4 Fall NOT ENERGIZE TO CLOSE I
l G4s I l NciaBcFw I A~"
O i
i BRKS 4 & FUSE 125VDC RLY RM DIST FAILURES CAB 71DC-B2 UNAV 1 G26A 1 l E71DC82D1 TITLE d *
JAF RPT (REDUNDANT TRIP COILS)
DRAWING NUWER DATE Page 17 5/31/88
4 o
T NA 8
D 8
N)
/
1 U S E 3 L
T
/
DI o5 A
EO RC
(
P I
TR Re P T e8 R
m1 tN F
G e N g A
i a W
sJ A
m R P T
o N
T BO SV 2I I A 2C l
D 0T N
3N W
M U 1
0 R2 2
U 0
0 0,
2 B
8 F
2 Y -
C o
T C
I INO T
h LC D
RD 1
t 1
7 UN T
G C7 E
PS
(
D RE V B l
5 A E
TO 2C Lt Z D
OIG 1
C R 8E lQ 9N 6
0E 4
KO
'G i
1 T
l Y
Ad L
l Er S
A R A E
BE l
2T F
O 0A l
F DE l
R 1
84 Z
L I 3E W
9WE I
OR 8
0 S
I G W
2P R
5 CE 9
R
^
1 0 YS C d
I 8E t 0, O
2 1 4O K T N
0 0
L TT 1
MO R
A. C O i
0 XN P
l T 9
C EA T 1 T G
T G
RT E
K O 3
N SS N
I EE l
TO Y
RO O
CL L
C l
T NT N
[7 OO 00 CN 0
i BS
' 0 1S 9E C
0O G
1K D I
4 Y4 L4 IF4 T
RELAY COtt 380 FAILS TO ENERGtZE
\\
Pags 17 I
I I
I l
RELAY K1100 BRKS 4 & FUSE RELAY COtl 3BD DOES 125VDC RLY RM DIST CONTACTS T4-M4 FAIL FAILURES NOT ENERGIZE CAB 710C-82 UNAV TO CLOSE l GisA 1 I NCt3BDFW l l E71DC82D I A
O C0 I
I RLY K110B CONTACTS RELAY K110B COIL T4-M4 DOES NOT CLOSE FAILS TO ENRRGtZE I ocs110AN I G48 O
1 I
RLY K1108 COIL L,OES TRIP UNIT 2-3-202D NOT ENERGt2E DOES NOT FUNCTION I Gce11oeW I I GTu202tw I O
O I
I PRES TXMTR 2-3-102D 125VDC FILY RM DIST DOES NOT OPERATE CAB 71DC-82 UNAV l GPR1020W l l E71DC8201 TITLE Q
JAF RPT (REDUNDANT TRIP COILS)
DRAWHG NUWER DATE Page 19 5/31/88
+
s 9
RP S & Epra TAP COGLS FAtt.S TO ENERGtZE Page 1 I
I I
FIP S GF TFDP COL RP B GF BKR TRP TC-1 FARS TO CLOSE Colt TC-2 FAILS TO ENRG b
Page 21 I
I I
I E
I 125VDC DIST PANEL RP B GF BKFt FUSE RP S GF BKR TRIP RLY 3FFT4 CONTACTS RP B GF BKR TFuP RP S GF BKR FUSE T UNAVARABLE (POS) FALS OPEN COIL TC-1 DOES NOT T2-M2 FAILS TO CLOSE COE, TC-1 FAILS OPEN (NEG) FARS OPEN ENRG l 6 tnt to I I N*twswwl l :x;erciw l Git i NCIS C10 l l NFURPBNWl 0
0 0
0 W
I M2 DOES NOT CLOSE FILY 3RPTA CNT T1 RELAY 3RPTA COIL FAas TO ENERG12E I
l NCSATW2N ]
O3 Pa0* 3 2
mte JAF RPT (REDUNDANT TRIP COILS)
DRAWING NUESER DATE Page 20 5/31/88
9 TNA 8
D 8
N)
/
1 U S E 3 E
L T /
S N DI A
U E D 5 F P l
EO O
R i
BJL
- o KS RC A
(
FF C
G)
F P
N SG l
I E
PN I
TR R
F(
E PT E1 R
M 2 LN F
G e A
N g W a N
u D
O T
S O
R L 2o KI B A C
F i
F B
2 G-C C
N BT l
PL LE I
I
~
RO OlZ C
CG tF 8E T N l
Y lA PE 4
R kO 3OT As LL E
TL NC C
O l9 2
8T i
T G
P S L
RI l
3 A F
Y
- E PO L 2 2G T
RM TO l
R L
TS TN C N
R LA CT 2o G
O M
K F B
R 5
T
- N 9
F4N T
S GC E PS C
T F E N
B 3O I
L D
PO T
YL 2 F C PO R M I
uN F
T l
S RE Wo
\\
02 KOG 2C p
i BDRN q
F4E S
/
e G C C
P T
N B
L l
E S N U E F P l
O R
e KS i
BRA FF U
Q)
F B S N
O l
PP R(
LEE l
R C U I e L
TI k
S A I
V i DAN K
D E
v" 1
B 5"
2 1
4 II
sy
,~s j
s.
h'
- NOTES:
l
'-O-TERMINAL ON PANEL 09-ARI-I A
' TERMINAL ON PANEL 09-ARI-IB O-TERMINAL ON PANEL 09-95
-E-TERMINAL ON PANEL 09-96 O-TERMINAL ON PANEL 09-ARI-2
-G-TERMINAL IN TERM 80X JB-AR101
-<I-TERMINAL IN VALVE JUNC 80X 4 TERMINAL ON MN CONT BD 09-5
-D TERMINAL ON 09-DAS-15 l
r P02 w
A s
TBI-10' 3RA-3BA-ii RR-88 A Hi M2 'T2 T2' ' M2 3'
Id 3RB-TB2-3 TB2-l, 3BB-
l-CS-AR I j lT2 T2l l M2 TB2-2 4
2C O
J
- C05 C06-RR-91 V RR-90 V E $,
w "o
C08-h h
TBI-4 0 O
- d aW o
=
21 m e e o
b b
h j TBI-30 o
e 43-SS-ARI
~43-SS-ARI
- 43-SS-ARI f,
y C
g 2C A
3C.
l l(-
p V
b 4C 12C LEVEL LEVEL
- 43-SS-ARI
-6 A/C B/D 4
If 5
h
- 43-SS-ARI RD 4
y K
g SC 3A-38-y T81-2 09-ARI-09-ARI N
L N01 RELAY 3A-R A
[
D
[
P02
- C09
- P02
- CIO
- P02 ClI
- P02 20 E
4 8
10 2E~
20 2
4 Il825-ESK-7FC l l 825-ESK-7FC ll825-ESK-7FC SPARE Il825-ESK-7f D
Y miya,e u'
i mum
sf y
Z80:[ 146,5]NYPAELEM.DGN b
NEW YORK POWER AUTH0RIIY Do^ * *""a 5 H- "o
' 7'v
?
M00 FI-85-053 JAMES A FITZPATRICK STATION UNIT I ryrwhi7er l l 825-ESK-7FB 0
g$ mfg.,
Jattar c1LBERT ASSOCIATES, INC ELECTRICAL a
2 _ __
tucinua,s,gojognims-ELEMENTARY DIAGRAM sc w m 4 A p [ero m oft / /Nyg7
+
than 191 wr-ARI SYSTEM w.o. usssa m
um cs eos en om nev wm cn ros 4ee om 3BC-3RC-A ii i
M2T2 T2' g M2 R3
- I-PB-ARIR
_62-3BD-TB2-3 TB2-4,s 3RD-M M2 ' ' T2 "
" T2'
{
- C07
&C h
38-FBI-5 TBI-60 8
9 10 z
13-SS-ARI
- 43-SS-ARI
- 43-SS-ARI
- 43-SS-ARI
[
80 g
9C g
IOC sg TC' V
V
,fl (3-SS-ARI
- 43-SS-ARI PRESS.
PRESS.
APERTURE G 7
B/D A/C CATO)
O 6
RD G
- 43-SS-ARI
)
62-TDPU 6C Aleo Available On 09-ARI-25 SEC.
Aperture Card RELAY 62-JLAY 3B-A A
f l
3
- C08 MI M2 M3 M4 Cl2
- P02
-Cl3
- C08 b:
X Z
8 10 22 Il RI T2 R2 T3 R3 T4 R4
- C06
- P02
'C ll825-ESK-7FC THIS SPARE SPARE THIS DWG, SPARE DWo.
Ff0 6 2 hod d 3 9.-O I
~
~
w
rg3'~/,;l~?.7 :.
J~
.. e 4,l 1 25.-
- M W
. t' '
NOTESt l."-O-TERMINAL' 0N PANEL 09-ARI-I A
- 2. K GE VARISTOR SERIES MA.
fq ' ';'
O TERMINAL ON PANEL 09-95.
4-TERMINAL ON PANEL 09-ARI lB~
~*
di 9-TERMINAL ON PANEL 09-96 0W"x WTERMINAL ON PANEL 09-ARI-2 i
^
9 *,
' 4 TERMINAL IN TERM B0X JB-'ARI01 ',
- 1
-4 TERMINAL. IN VALVE JUNC. B0X-t, t 2 4 TERMINAL ON MN CONT BD 09-5 W?
4F TERMINAL ON 09-DAS-15 v
N i lw ENERGIZE TO OPEN VALV A
/ k r P02 i
A 19' 3'
9'
.~
- 3A-~
.::3A-
- 3A-o 20 4
10 2
'8 22 a
- 3A-
- 3A-
- 3AJ m
21
~-
lt l
T
.' TBI-90 2
TBI-70 TBI 80 m
d T
- C09
- C10
- Cl 1 m
- o <
M "i
~
TBI-In T81-3 0 TB1-5 0
.o =
. 8g e o r i
s TBI-2 a
.TB I-2 n
.TB I-2 n
- s L" e 03SOV 03S0V.
03S0V
-20i d S
-201 4(TH
-202 d(TH g
~
s TBI-lU TBI-IV TBI-lU 8
TBI-4, TBI-6, F
~
e TB I-2,, -
i-a t
~
TBI-23
,I O
i N01 e' -
TOP 1 TOP-TOP-TOP t
I-PB-ARIR ',
l - CS-i FRONT 'a a '
GE CR2940WA202B FRONT 'a ar io, or io or M0MENTARY CONTACTS
.BACK so os so os so% <
('
BACK i
\\
i
/ SPRlb
'~
CONTACTS USAGE REF. DRAWING 1 O-N--O 2 RESET I1825-ESK-7FB
' ~ACT M ID-l BLANK. NORM
~
30-l -O4 SPARE NONE m.
9
.:^.
,]t
_g-g.
...Y ' f a
a q:'
s J W Z80:[ l 46,5]NYPAELEM. OGN l
NEW ' YORK POWER AUTHORITY
"^E
'"K W]@ NUMMR S H. W.
REY L'
M0 FI-85-053 TWO 7 JAMES A FITl ATRICK STATION UNIT I iagir,g I l 825-ESK-7FC 6
GILBERT AS50dlATES. INC ELECTRICAL g g__g_JNTERF POS EC L_
tscisttR,s,xgogos,su.usTs p
ELEMENTARY DIAGRAM scut' i.x
$8# u*?fi"is rdMTu '0"umg g g,_ _ g t _2 g.g q.
f%s ARI SYSTEM au
,ES '
l l'
7'
^
'::38-
- 38-2 8
4 10 T81-250 2
~ 3g_ 13C 7
3 9
- 43-SS-ARI di w
TBI-100 T81-110 13 a
TBI-240 m
- Cl2
-Cl3 TBi-7 0 TBI-9 0
_ wol g
TB I-2 n -
TBI-2 n z
0350V 03S0V RR-102 A C
(TH 3-204 O(TH 3-205 4(TH E
Cy)ARISYS
/ IN TEST TBI-lU TBI-IV v
TBI-8, IB I-10, RR-89 V i
y l
1 l
TL ARI u
t2940VS2028 CONTACTS E, $ g USAGE REF. DRAWING
/tPEllTURE i
POSITION m z
(,"g }g) lG RETURN T0 I OH F-0 2 X,
SPARE NONE 10N 3OH l--O 4 X
MANUAL ACl i 1825-ESK-7FB 333 3.gg, Aperture cw fBoconooosa-e
+,
u
-g
.py:;
I NOTEst I
.-O-TERMINAL ON PANEL 09-ARI-I A
, TERMINAL ON PANEL 09-ARI-IB O TERMINAL ON PANEL 09-95
-E TERMINAL ON PANEL 09-96
' O TERMINAL ON PANEL 09-ARI-2
-G TERMINAL IN TERM B0X JB-AR101 4 TERMINAL IN VALVE JUNC B0X 4-TERMINAL ON MN CONT BD 09-5
-El-TERM INAL ON 09-DAS-15 VALVE TBg22 r P02 TB[- 1 I I a
TB2-8 /s TB2-6 /i h'
33-33-7
( 03S0V-201)
_ _( 03$0V-201 )
M CLOSE WHEN
--CLOSE WHEN m
g y
VALVE CLOSED VALVE OPEN 2
TB2-9 U TB2-T U '
- ce M 2 S 8 :
g y g,
TBI-12 O-TB2-1 O g g g
$ e
- G01
- ROI m
TBI-12 O TBI-13 0 c.,
y RR-92 RR-93 D
L N01 us s
u V
L N01 TBI-30 T81-31 TBI-32 TBIRl5-14 E TBIRl5-13 EITBIRIS-IS yTBlf
%-4 Lt...
. rs:93 '
hr Z80s [ 146,5]NYPAELEW, DGN n;
'
- NEW. YORK POWER AUTHORITY
"* ' '2 1" oa" "S "uusta sw. wo.
acy t
MOD F I-85-053
.4Tf l'
JAMES -.A FITZPATRICK STATION UNIT I 47iaTg I l 825-ESK-7FD 0
s
}.
. PDS '
(.% INTERF GILBERT ASSOCIATES,'INC j-ELECTRICAL g0g_ _g2_, _
tucintingggsu.7 mis ELEMENTARY DII, GRAM
^
sit j
gr
_og4,gg./J ARI SYSTEM j.
nov w ot cs,os is-=
nity ety wio s c-ros ire oi1r p
(
bHOWNCLOSED E.A
$B2-4' l
1 m
L A
TB2-8zi TB2-6zi
(
33-33-1 m
_j( 0350V-202)
_ _( 03S0V-202)
/-CLOSE WHEN
--CLOSE WHEN a
VALVE CLOSED VALVE OPEN TB2-9 V TI TB2-7U a
APEllTUllE g
TB2-2 O Calm TB2-3 0
- G02
- R02 5
TBI-14 O Also AvaHable OnTBI-15 0 8
RR-94 Aperture Card RR-95 jl 4
5 o
v v
V TBI-33 TBI-34 n
I 15-16 yTBIRl5-18 TBIRl5-17 TBIRl5-19 yTBIRl5-20 y
I i
hb0bb$~ Db 1
a
g,.g.43 4..h.
-,,w'
-l l
'7 3
NOTESt
- l. O TERMINAL' ON PANEL 09-ARI-1 A
)~
+ TERMINAL ON PANEL 09-ARI-IB' O TERMINAL,0N PANEL 09-95
+ TERMINAL ON PANEL 09-96..-
O TERMINAL'0N PANEL 09-ARI-2.
+ TERMINAL IN TERM B0X JB-ARIGl.
.-4 TERMINAL-IN VALVE JUNC B0X
<~
!: TERMINAL ON MN CONT B0 ~09-5 9 TERMINAL ON 09-DAS-15 h
~
. VALVE 5 s
b r P02 A
TB2-8/s TB2-6 /1 e
33-33-
_,,( 03S0V-203 )
_ _( 03S0V-203)
~
7-CLOSE WHEN
--CLOSE WHEN v>W =
VALVE CLOSED VALVE OPEN w
5 R'
TB2-9 V TB2-7 V c-
=g S
8 2 4
g 4 TB2-5 O TB2-6 0 fg~ h
-G03
- R03 m
TBI-16 0
.TBl.-17 O RR-96 RR-97 z
ir s
L N01 4
=
tr
?,
u L N01
'?
TBl"35 TBI-36 7
y yTBIRl5-22 TBIRl5-21 TBIRl5-23 yTBIRif c
L N01
- 4. }
s f
,V i_b y :,.
' 7 't,;
- f. ?.? ? *
,7.
Z80 [l46,5]NYPAELEM.DGN. J
_y ~
" i NEW YORK POWER AUTHORITY T
oa^"8"o * "BEa 5 "- ""
acv MOD F1-85-053 to JAMES A flTZPATRICK STATION UNIT I Tagi,3 '
(NQ INTERF GlWERT ASWlATES IE
- i I l 825-ESK-7FE 0
]
~ N ELECTRICAL go ELEMENTARY bl AGRAM
~
g cucistcggamas q
L scia m g uh_ _ggf_u g' n p i
ARI SYSTEM Iry' Elf /*s us J's"1DN"em Mb,d ce f
i l'
- H0WN CLOSED
__A TB2-9 l
e A
TB2-8 n TB2-6 n 33-33-( 03S0V-204)
_ _( 03S0V-204) i CLOSE WHEN
--CLOSE WHEN 3
VALVE CLOSED VALVE OPEN TB2-9 U TB2-7 V ty,y y
=
TB2-7 O TB2-8 0 APEItTURS :
-G04
- R04 CAllD E
TBI-IG O TBI-19 O 8
RR-98 RR-99 Aho Avaffabic On E Aperture Carrl h
i l
T81-37 TBI-38
>-24 yTBIRl5-26 9 TBIRl5-25 E TBIRl5-27 yTBIRl5-28 y
4 220%o0030-o +
)
\\
m
m- -
g
~
h NOTES:
- l. -O-TERMINAL ON PANEL 09-ARI-I A ici TERMINAL ON PANEL 09-ARI-IB e;
O TERMINAL ON PANEL 09-95 S
- TERMINAL ON PANEL 09-96
' O TERMINAL ON PANEL 09-ARI-2
~
4 TERMINAL IN TERM BOX JB-AR101
~ 4 TERMINAL IN VALVE JUNC B0X v
4-TERMINAL ON MN CONT BD 09-5 "T
-D TERMINAL ON 09-DAS-15 n
SI VALVE SHOWN CLOSED 5
A 3L f
s 3
I r P02 j,
A TB2-8 n TB2-6 n w
33-33-E
( 03SOV-205)
_ _( 03S0V S
/_CLOSE WHEN
--CLOSE v,y g w
VALVE CLOSED VALVE 3 e N
TB2-9 V TB2-TU o
8 E 8 9
_ g g y TB2-100 TB2-Ile g 5 g
-005
[ R05 TBI-20 0 TBI-210 m
RR-100 RR-101 5
R) (
G G
s
' N01 E
- 4 a
=
L N01 c
O TBI-39 g TB!-40 yTBIRl5-30 bTBIRl5-29 9 TBIRl5-31 I
37 L N01 o
af$,
c-.
, fq r, Z80* [ l 46,5]NYPAELEM. DGN NEW YORK POWER AUTHORITY MM CH RAWIM WMBER SR REV MOD F1-85-053 W
JAMES A FITZPATRICK STATION UNIT l' WWdW l l 825-ESK-7FF -
0 PM F.% INTERf CILBERT ASSOCIATES, lNC ELECTRICAL gog g' emixtt g g utTAurs j
ELEMENTARY DI AGRAM sc u r =
x i
ARI SYSTEM "jv' M" gJ m8@"wmc;42 / j.ag.g P Ios 2 ^ d m
'd res
)
j GE TYPE SBW SWITCH 0
l MAINTAINED CONTACTS
,i l
PISTOL GRIP HANDLE STANDARD EXCUTCHEON PLATE' f
i I
l CONTACTS s
a HANDLE h[ g g REFERENCE USAGE
>205)
END g W g DRAWING' l
bHEN ODD EVEN O
OPEN 1
X LVL A/C LT l l 825-ESK-7F8 (j
I IC 2C M N 2 2
X LVL LTS I l 825-ESK-7FB i
l 3
X LVL B/D LT l l 825-ESK-7FB 3 0-1 f-03C 4CO-J }--O 4 4
X LVL LTS Il825-ESK-7FB 5
X LVL LTS I 1825-ESK-7FB 5 O-l }--O SC 6CO-l }-O 6 l
6 X
PRESS LTS I l825-ESK-7FB 7
X PRESS LTS I 1825-ESK-7F8 j
I 7 O-l N 7C 8CO-l l-O 8 8
X PRESS S/D LT l l825-ESK-7FB 9
X PRESS LTS I 1825-ESK-7FB i
9 O--I M 9C 100'>--I }-O 10 10 X
PRESS A/C LT l l 825-ESK-7FB II X
RELAY ACT I 1825-ESK-7FB
]
110-{ }-011C 120>-{ }-O 12 12 X
RELAY.ACT
! 1825-ESK-7FB 1
,' f]
13 X
TEST IND LT ll825-ESK-7FC 130-{ }-013C 14CD-l }-014 14 X
SPARE THIS DWG I
.F l
0 TBI-26
,pT81Rl5-32 T[
,4 APERTURE
- 43-SS-ARI Y
I p'ggI) 14C 1
O TBI-27
[
l Alao Available 0o l
Aperture Cerd
@$0% O0630-o5 s
m
_m, oLJ %[
y,3 p
l 14y{N$
4 p'.
- p i'
' NOTES:
O.s
- 1. O TERMINAL-0N PANEL 09-ARI-I A
' 'J
+- TERMINAL ON PANEL 09-ARI-IB k., "
O TERMINAL ON PANEL 09-95 4
-E TERMINAL ON PANEL 09-96 O TERMINAL ON PANEL 09-ARI-2 F
A 4-TERMINAL IN TERM B0X JB-AR101
-<}- TERMINAL IN VALVE JUNC BOX
.)
Al-TERMINAL ON MN CONT BD 09-5
/
V
-E TEtlMINAL ON 09-DAS-15 l
7
.__.__..__._____.__.._..._.._._..q
'd l
^rP i F01,2 TBI-I r P03 '
.i
--l l l
r I
A SA l
AA73IR' AA7611 m
I O
M4' M4 M4 M4 1
j
- Kl02B
- KIO5B
- Kl098
- Kil0Bj 9
S T4 T4 T4 T4 w
j AA7411 AA751B AA7?ll AA7811 l-tX 1 3; e
4 o
m Q 'o
! ~--
- Cl 4
- CIS
- C16
- Cl7 7 bo $
b TBI-2 0 TB I-3 0 TBI-4 0 TBI-5 0 o
i s m i
o d G
G AG G
I BA BB BD I
e a:
m hBRKR 4 09-ARI-I 09-ARI-I 09-ARI-I 09-ARI-I ;
I V ^rN 1 lF02,2 li t
l
,(
jDIVISION11 j
SA b
l1 g
?
w E
RELAYS 3BA-THRU 380-w R
RELAYS 3RA-THRU 3RD-Li SEE CHART FOR WIREMARKS AND ORAWING RELAY WIREMARK l WlREM ARI g
- ,)
f 1
3BA-C06 C05-
-l 38B-C06 C05 MI M2 M31 M4 3BC-C06 C07
~
3BD-C06 C07 N
N:
~/
N 3RA-P02 C05
~~
Tl RI T2 R2 T3 R3 T4 R4 3RB-P02 C05
-2 3RC-P02 C07 m.L*'
I SPARE SEE CHART SPARE SPARE 3RD-P02 C07 L.. '
~
Z80:[ 146,5]NYPAELEM. DCF,
\\
~
' 'r ~
_V w ^ot ' O onzim suusta t a.. F NEW YORK POWER A THORITY 0 F I-85-0 3 7
s i 1825-ESK-7F A O
JAMES A F PATRICK S ATION UNIT I aswp s
a_]
$$[ns,%co^y@r,M3 M
l C
ELECTRICAL
_7 o<7 N '7'"
_j,Jdd7 ~ ~ /3T READl40 PA.
-~
R E M " ^"
^ "^"
^'
{b
~~ @~ ~1bNbtf
, AR15YSTEM JEV WADE CH E5 Ai DATEl'REV MADE CH. PD5 APP DATE t
-l l
I F03,2 1,I F05,2 TB2-1 rP02 il I.
li A
v 10A 10A L._._._.__._._._.___._._._._.I BRKR 7
- 1,l I,2 r P01 l
FDI TBI-I
^ rP 1 i
A SA I
AA73[]
AA76[]
co I
b l
$i N
M4' M4 M4' M4 4
E Z K102A
- Kl05A
- Kl09A
- Kil0Aj T
R s
T4 f4 T4 T4 C8 AA74[]
AA75[]
AA77[]
AA78[]
l
}
D to j l5
- COI
- CO2
- C03
- C04 g
a.
l y
TBI-2 0 T81-3 0 TBI-4 0 TBI-5 0 S
i r,
G G
$2 l
BRKR 7 o
j u ^ rN 1,l f 02,2 09-ARI-l 09-ARI-1 09-ARI-1 09-ARI-l l
(>
I, i
i 1
5A p._._._._._________._._.___._.I F04 F06 2 TB2-2 r Nol y
I,l b,2 1,l l,i v-i i
' OlVISION I 10A 10A
_.1 T1
'ApERTUBE 1
C 2 0 "lF YFERENCE LsARD i.a,g.SK-7FE s
W~Ih Aic,o Availabic Ou
-~_.
Aperture Card
!i
'C
'i I, 3; l 1825-E5". -
l1825-ESK-7FB ll825-ESK-7FB A
g w
a
--s
~ --
a
. 4 aa z
m-OVERSIZE DOCUMENT PAGE PULLED SEE APERTURE CARDS m
_.ER., _
,z.
_ m _ _.. _, _.
APERTURE CARD /HARD COPY AVAILABLE FROM RECORD SERVICES BRANCH FTS 492-8989 l
.-