JPN-87-041, Forwards post-review Data & Info Capabilities,Technical Evaluation,Examples of Sequence of Events & Time History Repts & Refs in Response to Generic Implications of Salem ATWS Events Per Generic Ltr 83-28,Item 1.2
| ML20236M069 | |
| Person / Time | |
|---|---|
| Site: | FitzPatrick |
| Issue date: | 08/04/1987 |
| From: | Brons J POWER AUTHORITY OF THE STATE OF NEW YORK (NEW YORK |
| To: | NRC OFFICE OF ADMINISTRATION & RESOURCES MANAGEMENT (ARM) |
| References | |
| GL-83-28, JPN-87-041, JPN-87-41, NUDOCS 8708100461 | |
| Download: ML20236M069 (19) | |
Text
-
m s-wo mmsm --
9M CS) 6740 6
- > NewYorkPower
~"cem 4# Authority d % C T ""
Auspst 4, 1987 MH-87-041 U.
S. Nuclear Regulatory Commission ATTN.: Document Control Desk Washington, D.
C.
20555
Subject:
James A.
Fi*zPatrick Nuclear Power Plant Docket No. 50-333 RESPONSE TO GENERIC IMPLICATIONS OF SALEM ATWS EVENT POST-TRIP REVIEW:
DATA AND INFORMATION CAPABILITIES (GENERIC LETTER 83-28 Item 1.2)
References:
- 1. NRC Generic letter 83-28, D.
G.
Eisenhut to all Licensees, dated July 8, 1983.
2.
NYPA letter, J.
P.
Bayne to D.
B. Vassallo, JPN-84-42, dated June 29, 1984.
3.
NRC letter, D.
B. Vassallo to J.
C.
- Brons, providing Draft Technical Evaluation Report for Salem ATWS, Item 1.2 (Generic Letter 83-28),
dated October 28, 1985.
l
Dear Sir:
In Generic Letter 83-28 (Reference 1), the NRC requested information, plans and schedules relating to the Salem ATWS event.
Specifically, Item 1.2 requested that licensees provide a description of the post-trip monitoring capabilities of their nuclear power plants.
Reference 2 provided the Authority's detailed response for the James A. FitzPatrick Nuclear Power Plant.
Attachment I, (pages one through eight) described the post-trip data and information capability of the FitzPatrick plant.
In Reference 3, the NRC provided a draft Technical Evaluation Report for this capability and found that three of the five areas evaluated were " incomplete."
Post-trip information is provided by chart recorders and
" sequence of events" and " time-history" functions of the plant process computer.
The plant process computer is being replaced.
These two functions will be transferred to a'new computer system.
The chart recorders will remain unchanged.
Attachment I to this letter provides a description of the post-trip capabilities of the replacement computer system.
This descripti7n supersedes the post-trip capability of the process computer as provided to the NRC in Reference 2 in response to Generic Letter 83-28, Item 1.2.
870804 05000333
(\\
PDg
Installation of the new Emergency and Plant Information Computer (EPIC) system was completed during the Reload 7/ Cycle 8 refueling outage.
EPIC features an enhanced data acquisition, retention and analysis capabilities.
These-features provide a greater ability to analyze transient events.
The exieting process computer and EPIC are currently running in parallel.
EPIC is undergoing an operational test program and phased introduction of its functions.
The existing process computer will be removed during the Reload 8/ Cycle 9 i
refueling. outage, currently scheduled to begin in August 1988.
The post-trip review function of EPIC as described in this I
letter will be operational prior to the startup of Cycle 9.
j Attachment I to this letter describes the post-trip data s
collection, storage, and analysis capabilities of EPIC.
Attachment II comoares this capability with the criteria established in tle NRC's Draft Technical Evaluation Report (Reference 3).
Attachments III and IV contain figures and references respectively.
Should you or your staff have any questions regarding this matter, please contact Mr. J. A. Gray, Jr. of my staff.
Very truly yours,
+~
'oan C.
Brons xecutive Vice President Nuclear Generation encl: Att. I - Data and Information Capabilities Att. II - Technical Evaluation Att. III - Examples of Reports Att. IV - References cc:
U.
S. Nuclear Regulatory Commission 631 Park Avenue King of Prussia, PA 19406 Office of the Resident Inspector U.
S. Nuclear Regulatory Commission P.
O.
Box 136 Lycoming, NY 13093 Mr. Harvey Abelson Project Directorate I-l Division of Reactor Projects - I/II U.
S.
Nuclear Regulatory Conmission 7920 Norfolk Avenue Bethesda, MD 20014 l
NEW YORK POWER AUTHORITY JAMES A.
FITZPATRICK NUCLEAR POWER PLANT Attachment I to JPN-87-041 POST-TRIP REVIEW:
DATA AND INFORMATION CAPABILITIES OF EPIC The Authority is replacing the FitzPatrick Plant Process Computer with a new machine.
The new process computer, consisting of four Digital Equipment Corporation DEC VAX 11-785 super-mini computers and the associated peripherals and software, has been named EPIC (Emergency and Plant Information Computer).
A more detailed description of EPIC is contained in Reference 4.
This attachment describes the enhanced capabilities of the EPIC system to acquire and analyze plant parameter data following plant trips.
This attachment superceeds the Authority's prior response to Generic Letter 83-28, Item 1.2.
1.2.1 Capability for Assessina Secuence of Events EPIC receives plant parameter data and stores them as internal data points.
Alarm values, scan class, and other attributes such as inclusion in post trip time history or sequence of events logs are assigned to each parameter data point.
1.2.1.1 The sequence of events (SOE) function is provided by EPIC.
As data points are sampled, SOE points are stored on disk as an archival file.
The SOE archival file may contain up to 200 events stored in a circular fashion; that is, only the latest 200 events are stored.
1.2.1.2 There is no restriction on the plant parameters which may be monitored in the SOE log.
However, the total number of different parameters is limited to 200.
The specific computer points representing selected parameters for SOE have not been entered into EPIC.
1.2.1.3 Each SOE file entry contains a time stamp.
Time stamps are to the nearest one msec.
The tolerance associated with this stamp is less than two msec.
That is, the actual sequence of events can be accurately determined to within two msec.
1.2.1.4 The SOE file can be printed for a report or stored on magnetic tape for further analysis.
A sample of a SOE report is included in Attachment III, Figure 1.
y v
1.2.1.5 The SOE archival file can be transferred to magnetic tape for long term retention.
When the SOE is printed as part of a post trip review, it is retained as part of the post trip review report in accordance with the Authority's records retention schedule (Reference 6).
1.2.1.6 The power sources for EPIC are the plant's Class 1E safety related electrical busses.
EPIC is non-safety related and is isolated from the 1E supply by two class 1E circuit breakers.
An uninterruptable power supply (UPS) supplies power to EPIC to maintain the system j
during short term interruptions.
A complete j
description of the EPIC power supply and 1E isolation is described in Reference 5.
1.2.2 Caoability for Assessina the Time History of Analoc Variables Equipment used to assess the time history of analog i
variables consists of the EPIC Transient Data l
Collection function and a number of strip chart recorders.
The strip chart recorders remain unchanged from the Authority's previous description (Reference 2) and are not discussed here.
1.2.2.1 Transient data sensor points are collected at a rate faster than the normal scanning rates.
EPIC continuously collects transient data points and stores them on disk in a ten minute circular file; that is, only the last ten minutes of data are stored.
1.2.2.2 The process points to be selected for transient data collection have not been finalized.
EPIC has the capacity to collect 100 analog and 200 digital points for the time history analysis.
The sampling rate will be faster than or equal to once per second for all transient data points.
The EPIC design sampling rate is once per 100 milliseconds.
1.2.2.3 In the event of an unplanned transient, data are collected in the transient data file for six additional minutes.
At the end of the six-minute interval, the file is protected (i.e. frozen such that no changes can be made).
Four minutes of pre-transient and six minutes of post-transient data (ten minutes total) can then be copied to magnetic tape.
1.2.2.4 EPIC collects data for a maximum of 300 points (100 analog plus 200 digital) at a scanning rate faster than or equal to once per second for ten minutes.
For a one second scan, EPIC creates up to 180,000 discrete entries in the transient data file.
At the design sampling rate of once per 100 milliseconds, up to 1.8 million entries could be generated.
To assist in the interpretation of this large quantity of data, EPIC contains a Transient Data Analysis (TDA) package.
The TDA package provides tools for analyzing and reducing the data in the 10 minute post trip time history file.
The analysis functions will include the following:
(1) Searching Functions - Analog or digital points within the transient data file can be located by either value or time.
(2) Statistical Analysis - Statistical analysis can be performed on analog signals over a specified interval of time.
(3) Fast Fourier Analysis - Frequency domain analyses can be performed on one or a pair of analog signals over a specified interval of time.
(4) Curve Fitting - A "Best fit" polynomial (using least squares) can be generated for an analog signal over a specified interval of time.
(5) Post-trip Log - Analog values and digital states can be printed for any or all of the points in the transient file.
Samples of some of the output formats are shown in Attachment III, Figures 2 through 8.
1.2.2.5 EPIC can store two 10 minute transient data files.
The first is protected and can not be overwritten.
The second file will capture a subsequent event but is not protected and could be overwritten if a third event were to occur before the first two were copied to magnetic tape.
When copied to magnetic tape, EPIC has a virtually unlimited storage capability.
Printed TDA outputs used in the post trip analysis will become part of the post trip review report and are retained for the life of the plant (Reference 6).
1.2.2.6 The power source for EPIC is described section 1.2.1.6.
1.2.3 Other data and information used to assess the cause of unscheduled reactor shutdowns is described in Reference 2 and has not been affected by the installation of EPIC.
In addition to the post-trip capability, EPIC's routine Alarm Service package can provide information for use in the post trip evaluation.
Process computer points can be set to alarm on high, low, deviation, or rate-of-change of the monitored parameter.
No operator
action is required to record alarms.
Alarms are
' automatically stored on disk for three days.
A printed report of alarm activity (points going into or out of.
alarm)'~can be printed for the current day or for either of the two previous days.
1.2.4 Reference 2 described planned changes.
The EPIC system is the result of these changes.
Among'the functions contained within the EPIC system are the Safety Parameter Display. System (SPDS), displays to support emergency operating procedures, system mimics, Regulatory Guide 1.97 parameters, core and plant thermal monitoring, and post trip review capability.
t J
e NEW YORK POWER AUTHORITY JAMES A.
FITZPATRICK NUCLEAR POWER PLANT Attachment II to JPN-87-041 POST-TRIP REVIEW:
TECHNICAL EVALUATION OF EPIC WITH NRC CRITERIA This attachment compares the post-trip capabilities of the FitzPatrick Emergency and Plant Information Computer (EPIC) with the review criteria established in the Draft Technical Evaluation Report (TER) for Generic Letter 83-28, Item 1.2 (Reference 3).
Criterion 1 The parameters monitored by the seauence of events and the time history recorders TER "The sequence of events and time history recording equipment should monitor sufficient digital and analog parameters, respectively, to assure that the course of the reactor trip can be reconstructed....
The paranieters deemed necessary, as a minimum, to perform a post trip review... are presented in Tables 1.2-1 [PWR] and 1.2-2
[BWR]."
EPIC The points to be included in the SOE and time history recorders have not been finalized.
The lists will include, as a minimum, the process variables listed in Table 1.2-2 of the draft TER (Reference 3).
Two exceptions are taken to the Table.
FitzPatrick does l
not have unique " Safety Injection" signals.
Plant instrun 'tstion directly initiates ECCS actuation.
The I
plant piecess variables which initiate ECCS (reactor water f
level and drywell pressure) will be included in the time history file.
The " Containment Isolation" signals exist in the process computer only as calculated points (C-points).
C-points, not being computer inputs, are not included in the SOE or time history files.
Demands for Group 1 and Group 2 Isolation Required and Not Isolated signals will be included in the alarm service.
Criterion 2 The performance characteristics of the secuence of events recorders I
TER "Each sequence-of-events recorder should be capable of i
detecting and recording the sequence of events with a sufficient time discrimination capability to ensure that the time responses associated with each monitored safety-I related system can be ascertained....
The recommended guideline for the SOE time discrimination is approximately 100 msec.
o All equipment used to record sequence of events and time history information should be powered from a reliable and non-interruptible power source.
The power source used need not be safety related."
EPIC Each SOE point that is generated has a time stamp.
The time discrimination is discussed in Attachment I, Item 1.2.1.3.
The power source for EPIC is discussed in Attachment I, Item 1.2.1.6 and is described in Reference 5.
Criterion 3 The performance characteristics of the time history recorders TER "Each analog time history data recorder should have a sample interval small enough so that the incident can be accurately reconstructed following a reactor trip...
The recommended guideline for the sample interval is 10 sec.
To support the post trip analysis of the cause of the trip and the proper functioning of involved safety related equipment, each analog time history data recorder should be capable of updating and retaining information from approximately five minutes prior to the trip until at least ten minutes after the trip."
EPIC The sampling rate for digital and analog points included in the time history file will be faster than or equal to once per second.
The EPIC design sampling rate is once per 100 msec. (0.1 seconds)
EPIC maintains a 10 minute circular time history file at a resolution of 100 msec.
Four minutes of pre-trip and six minutes of post-trip data are archived for the post trip analysis.
These intervals are sufficient to determine the cause of a trip, and if safety-related systems have performed as required.
l Criterion 4 The data outnut format i
TER "The information gathered by the sequence-of-events and time history data collectors should be stored in a manner that will allow for retrieval and analysis.
The data may be retained in either hardcopy (computer printout, strip chart output, etc.) or in an accessible memory (magnetic disc or tape).
This information should be presented in a readable and meaningful format, taking into consideration good human factors practices (such as those outlined in NUREG-0700)."
i i
J
EPIC An EPIC SOE log output is shown in Attachment III, Figure 1.
The fields displayed include date, time, computer point identification, sensor identification, description, and state (e.g. scram, reset, trip, normal, etc.).
The time history data file is processed using the EPIC Transient Data Analysis (TDA) package as described in Attachment I, Item 1.2.2.4.
Samples of outputs are provided in Attachment III, Figures 2 through 8.
Criterion 5 The lona-term data retention, record keepino, capability TER "Information gathered during the post trip review is I
required input for future trip reviews...
It is therefore necessary that information gathered during all post trip reviews be maintained in an accessible manner for the life of the plant."
EPIC EPIC has a the capability to store the SOE and time history data on magnetic tape and then provide printouts.
Printouts are used for the post trip review and are maintained as part of the post-trip report for the life of the plant by Authority procedure (Reference 6).
NEW YORK POWER AUTHORITY JAMES A. FITZPATRICK NUCLEAR POWER PLANT i
Attachment III to JPN-87-041 l-POST-TRIP REVIEW:
EXAMPLES OF SEQUENCE OF EVENTS AND. TIME. HISTORY REPORTS.
i
L L
L E
MT A T r T
MT A T T T
MT A tT T
MT A TT T
MT A TT T
A EPME cOEP A EPME EOEP AEPMtEOEP AEP MEEOEP A E P MEEOE E
A RiI R S5T 5I T RSI RSST SI T RSI R5ST SI T RSI RSST SI TR SI R SS T G
T C tR OE E uERE CE R OEE UtRECEROEEUE R ECE R OEEUE HECE ROTE U A
S SRT NRR A RT$SRT NRRARTSSRTNRRA R1 SSR T NR RA R TSSRT NAR A P
1
/
1 00O001 11 1 1 00O001 11 1 100O001 11 I 100O001 00O001 0
1 1 1 1 A
P A
P A
P A
P A
P A
P A
P A
P A
P A
I I
I I
I I
I I
I H
R H
R H
R H
R H
R H
R H
R H
R H
R H
C T
C T
C T
C T
C T
C T
C T
C T
C T
C H
L H
L H
L H
L H
L H
L H
L H
L H
L H
C E
C E
C E
C E
C E
C E
C E
C E
C E
C T
AV T
A V T
A V T
AV T
AV T
AV T
4 V T
4 V T
4V T
I 1 EA1 1 EAI 1 EAI 1 EAI 1 EAI 1 EA I 1 EA1 1 EA!
1 E AI W
7 L w
7L W
7L W
7L W
7L W
7L W
7L w
7L w
7L W
S D-
- HsD- - H5D - - HSD- - HSD-
- HSD - - HSD - - HSD- - HsD - - HS0 E2IC E2IC E2I C E2I C E2I C E2IC E2IC E2IC E2I C E
MT V H MT vH MT vH MT vH MT vH MT vH MT vH MT vH MT vH MT N
A A R NA AR NA AR NA A R NA AR NAAR NA A R NA AR NA AR NA A T
O RI A ORI AORI 4ORI AORI 4 ORI A ORI AORI 4ORI A ORI O
I CTT 1 ICTT1 I CTT 1 ICTT1 I CTT1 ICTT1 I CT T1 I CT T1 I CTT1 I CT T L
T SI E TSI E TSI E TSI E TSI E TSI E TSI E TSI E T SI E TSIE P
NDPS NDPS NDPS NDPS NDPS NDP5 NDP5 NOPS NDP5 N
S LI EOLI EOLI E OLI EOLI EOLI E OLI EOLI EOLI E 0LI T
R A
CSPA CSPA CSPA CSP A CSPA CSP A CSP A CSPA CSPA N
C UI I UI I UI I UII UII UII UII UII UII UI E
S NC NSPNCNSPNC NSPNCNSPNCN5P NCN5PNCNSP NCNSP NCNSPNC V
E A P 0OI A P OOI A P OOI A POOI A PO0I APO0I A P OOI A POOI A P 0OI A P E
D M H5MTMH5MTMHS MT MHS MT MHSMT MHSMT MHSMTMNSMT MH5MT MN F
O 8
8 8
8 8
8 8
6 8
E 0
0 0
0 0
0 0
0 0
C N
0 A
A A5A A2 5A AA 5A 4A52 4A54 A A5A 4A5 4 AA5A AA5A E
1 3
1 703 1 703 1?03 1 703 1 7 03 1 703 1 703 1 703 1703 d
5 71 25 71 25 71 25 71 25 71 25 7125 71 25 7 1 25 71 25 R
- o1 4 - o1 4 1 4 1 4 - e1 4 1 4 - e1 4 - e1 4 -
c'1 4 -
e f
0 A KE - - A K E - - A nE -
- A aE - - A K E - - A KE - - 4 K E - - A K E - - A EE - - A K i
5 5 - M5M5 - M5M5 - M5M5 - M5M5 - MS M5 - M5 M5 - M5M5 - M5H5 - MSH5 -
N
- A vLN - A V LN - A vLN - A V LN - AVLN - A VLN - A W LN - A V LN - 4 vL 4 - A E
5 321 75321 7 53 et 75321?5321 75321 75321 7 5321 75321 75321 020300203CC2O3C02C30020300203002050G2C3002C30C2C3C0 5
0 551 02551 02551 02551 02551 02551 025*
1 02551 0255 1 025 51 025 1
1 32991 32991 62991 82991 62591 32991 e29 9 1 62991 8259 1 32 1
2222122221 22228 22221 2222 8 22221 22221 22221 22241 22221 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 111 1 11 11 1 1 1 1 1 1 1 1 1 1 11 1 G391 7C202e9201 78291 859 oe4 o19G? 61 8072 e. 03 3 e57 54 3 $2702U c24 ee381 3 2 3 51 3 739 1 *5270i7 692 43 5 1 3 oo2503 / 3 253 952 0525 395253952 539525395253 9525305
- e. 3 i.539525 E
2 6 8592 4cv9249 59243 e9? 4 8892498924 6892 - d9 924 = c9 24 M
33333 4 4 4 45555 3 1 1 1 1 1 2 424233333 5 - s
- 6 355 55 I
T 7 77 777 777777777 436 43 6 6 : a5 54bJ6 oo66 s3 oo3 s3 e1 o6 94 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t 1 1 1 1 11 1 1 1 1 1 1 1 f 1 1 1 l 1 l 1 1 3d
- : : : : : : : : : : : : : : : : : : : : : : : : : t : : : : : : : : : : : : : : : : : : :
3 333 3333 3333333 333 3 3333 33 333 333335 33 333 1 33333 31 33 3 1 :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 25
/ :
1 7 1
eeoct6 oeo6eoc6c6 soo6 ce5e6osooooo6 oeocoooeoc uoc6 eoe6 odt oaocLt6 sdt J5 LJt c cJ08 d s3 oecL o5d s sd c;f J e : o ocba oJu E
//t / t / t / t 1 / / / i I 1 / / t t t t / t l s/t t / / f / / l / / # t / # t t t / / /
d e T
c o6 ceooso6 c66 cccocooeeeeoooSeoo oeceeooe6 oscoeoecaec T M A
4I b
1 / / / / / / / i / t s/1 / / / t 1 / t / t / / / 1 1 1 1 1 t / # 1 1 t 1 1 / t 1 / / / t 1 0T 00003000u0o000000o00o0u00000000G0JG0u000o0000o00000 1 1 1 1 1 1 1 1 l 1 l 1 1 1 1 1 1 l 1 1 t 1 t 1 1 1 1 1 1 1 1 I 1 I1 1 l 1 1 1 l 1 1 1 1 l 1 q u 2C$
%pd F
2 a
UWlp m $M Mj j
7.
.'.4:
C O
.g-
- n J
)
1 ee 3
4e 3.
i e
5 se d.
W' e
e*
4 e we e=
U Oee N
4 N..
M ee Os 2 3 m
- bo N
D **
- =
C C 4 se O
ee a
eI we 3 +*
w w
eC 4
3*
.O O=
e O s.=
me o em
- w O O O O O w *= w *= w += c O O O O e= * *= e= * ** *= e= e- *= w - e e= e= w O *= e= c=== w e =
- C e.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r3 0 0 g gw 3.
e + + ++++++++++ ++++++++++++++++ +++++++
N me O r3 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
.+e+se sea u+s u+s e+u e
e e
C4 3
OC00000000 O O O O O O O On Om en.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. N 4 m O o e* N mi m n 06 in O e en r> e o + r e O e 0000000000,3009
- = 0 O O O O O m M. O J1 N N 06 e
an.
O O m om fb om e M Nin mP.On4laOh
- WC m 06 O in m 4 O e-e= <J O O
. es 9.
C.
eN@
W m 4 an e= N m M N O V += N 06 m e= la Om *= m W W =, N,= S1 O W N *= O a) Q e= N m te O N 11 AN O m so 4 N N e= nu N o.o m e c ')
4 06 e.
.B
- 4. Ch. e* m. en. N 06
- =
- = ** * *= *=. en. em N N c= c= ** N. N. N N N. N N. ** r= v= e= *= o. On e= em,=, e= e= em 3 o.=
c= n av g
a o
e e
.. e e. e
. e e.. e e e e
e e e e........ e 00
. c= c= cm.=.c 43 seg 3 a i C. 0 0 0 000 00. 00 0 0 0 0000000000000000000000000000000000
. e.
o.
i e~
30 C
se U
+*=4 5,
O.
a., M.., c. e. s.. o. O.
e ~..M.,. e.. ~. o. O. e ~. m.,
A.,o o O - ~ m n o N =. O - N m.,..o N
.o.C e e.
e o
~~~~,=~~~~~eo...e o o + +,..
ao
.e O
g n.
.i O O O O O O O O O.= O
-2
.e c= c= w c= v= e *= w c=
e
+*
==4 0 Figure 2 Analog Values Sample Report
l)ji 3
1 o
n e
g ap hc i
h w
r4 o0 f +
E l0 a0 v0 r0 e0 t1 n.
i0 h
c a
ed e
nd 0
ae 3
e sc 1
ex 0
ce n
4 e) 1 r9 r7 u0 e
c1 m
c(
i o
t f
oA o
9 d
r0 e1 T
d -
C aT 0
uF n0 1
1 1
e nd t 1 s.
e f e.
t f t oc.
a on n.
7 4463825546294757657 485757 eo5 4? 4 o462. 4. 345 - 3j - L.
d i
ra.
) o er d p b r e
m u.
uf uc no nc i
o.
t s ne ou l
cl ar.
(
a v e.
v rc 34 h678912345 o78901 2345 o739 Ji23. > 07 : 0 1,C 45$7 : 4 Ll -
t aa 55I5555 c6666t 6 o$777777T771 od9 a5
>3
$ : 39F Y49d + ~ e J se t u ah nn I $ 1 l t a
l
<F CyD 3
Q 2
(
>h H O@ p0Ch D
st (OC3Q WgtW
%GDOv f ll l
e i
f 60 0
0 I
1 1
0 7
1 0
22 6
S 2Eh A
g 7
g g
bh' k-
\\
20 i
5 3
2 0
2 3
5 1
4 7
8 7
4 1
2 1
0 e
0 1
2 N
I I
M$g e$Em gNUmW$a 5T et1g" o6 n
S
0 1
0 0
092 4
4
-MH 2
70 0
/
0 3
/
9 U*
2 30 0
t i
f 3
5
\\
0 92 0
0 9
4 2
4 D4 N
i4 H
lE-7 RH 0
TH7 4S 3 E 9 a0 t
[
- 0. U T 2 T
0 r
Y it5 N
9 I
u2 N
l E
/
(
t.l0 A1 5
a
- 0 0
t 92 a
O d
7 3
9 6
2 9
3 4
0 6
9 1
2 I
1 1
0 0
co*
M M
tem v
O D
(
'N
~ '
- f t
f 4.
-. k' 2 **
x N
N N
h
~
4 N-i$
N N
i 5I h
5h A
- n..
N a
- N r
.r 5n' Q:
p e
5 A
y y
8 i
d e
i n
.v Figuyg g Curve pit Samp1* Plot 2
1 4
e l'.
M w
O 4
us Me N
N OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO g
e a 6
+ ++++*++++++++++++++++++++++++++++++++++
D ON b i W W ua me us sad uf W tu W 4M W IM au W IM W IM IM W W us W W W ua 6W tu W us su W W tu W W us ou W W L
O e a 4 e & w O N e en e an e= c N s N O en M M W eO d N N en O,m e =,o N e e. O M p. M O en so en O 4 40 en N O > O, en au M v= *= M N en o en N O o '
e 4
3 8 en sa M em o e= in o= 40 m
- me0eOM,NNas@w.,Oen*=O=0 mao,=
e*
W 8
O e= m Ohen N O On O N an On =
e en N 4 M C e m om e=., e en N O e
.C.e e=
- I N N N M d en en N a0 t> 0 N 4 en N 06 Nn e O e= N M in e N en 06 O N M, & o= d,e O M e O M N e= d en N h. e= en O en O 4
- e. in 4
0 e in e N, eo 0,6 en N 80 06 w N M en O en en in en en en en en en e e e =0 50 =0 e e P. N N N P.,Pa m o e. s.
4 e p.r> 0 N M ON
'e=
0 d4d=
e, e e P. N ce se e en so w) r> cp p e
o e e e e e e o e o e e o e e e o e e e e o e e e o e e e e e e e e e e e e e e e C
eO O 0 00 0 0 0 0 0 0 00 00000 0 00 00 000 00 00 000 0 0000 rt00 uO C
- b C
20 f
.e w
I L
- =
m tw 3 s
- =
0 O
9O e
+
0OOOOOOOOOOOOOOOOOOOOf3OO9OOOOOOOOOOOOOOO or C tu OOOOO3OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO es em e e
+ + + + + + + + + +++ + ++++++++++e
+ +
+++++6
+
+++6
+++
se O b 6 iu na W u us tas W us ue +u su W us us ua eu ma W W u W us W us su u u# su W ene W W W.u us tu ua a W.u e
34 si e O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r3 0 0 4
m i C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :3 O r")
v=
N r>
I C0000
- N M 99 =, 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, 0 0 0 e=
M e 4 en e P= Oh O O o= N *, N art en
- Om v= #9 0 80 *= 4 O On Nin O N e f> += N M =, o N M m ** N M *n 'O O w m3 N e Q d m O Jh N e M ses I
o S 4 d, 'n e S. 8,0 06 e M fik O N M n 4 en en en en en en en en en <3 o O e 0 e e e m. P. N N h. p. A to.no 'e,n O #== 't O N 89
'e")
e 0 4de.
i
) en 23 ss S S S I
dL g i e a e e e e e e e e e e e e e e e e e e e e e e e o e e o e e e e e a e e o e e O
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO">000 N
O L=
O
,.O.,
- s...
e*
O.O,
..e e
e
- e. o=
0 O sv e,
a e
- i..
- e 50 e $
"3 O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 *3 0 0 0 0 r3 0 0 0 0 0 0 0 0 0 * >
9
- 3 e OC000 O *= N M, 0 0 0 0 0 0 0,. N M., 0 0 O 0 0 0 0 N. M 4 in O N0 0 73 0 0 0 0 0 0 0 0 0 0, 0 0 c r7 m, 000
- e O 4
in eNao.e O en c eO rk o. v r3 t> Q e NM-en O N r3 e e
e e o e e e e e e e e e e o e e e e e e
e e e e. e e e o e o e e f)
Q 3 c ** e=, e,= v,= e,ma,=e,=e,ne=,,, N, N, N, N, N, N, N, N, N, M, e6, M, M, *i M en M, M, M,, *, 4,,e, d,,4,,.,,,,
,e,e o
w e
.,4
- s.. <,,,.
n.
e es e.
O 9
,e O
G b.
e se C.
ed.e et *)
e.
e c.
O
-~M
, en O N.,b O. ~ M.= c.,.n O ~ 0, O e= ~., <.n n e. ei m O,,.~n.a.,, n.a 0,m..,3,, 0, 0 o e.
-e e.----e=~N~N~~
s vy~.
n m.4
.n.
.c C e O
.i
-- a
=.
Figure 7 Curve Fit Sample Report page 1/2 l
l
g-
- e
'O.
e' 4
O e
su M
e.
e se se e.
e.
N N
e
,e, n
es aN w
w a
fh N*
C C
C C
e, M.
a=**
e e
e O
- v4 w
.e N
- O N U
u
.u
.u w
O '
==
e.
e.
we ese 4
s a
e.
eu S.
- = =
w.
e et w
e e
o e
q m 9. en O
o o
a w
e=
0N U
U U
V es e=
4 0 eO e
a e
o s
>= es e 4
4 e
g
. 4)
- L C
- Z C
Z g
en rt av O I
N we N
O
- t en e-A L
' O O
o o
tJ e
e
. +
3 e
O 11 9 s 38 au W
tu e
O
+
c M
p%
i N
e rt - eO
-o o
.en es
+ - (>
N
=
.c r tu N
-M e.
e ** m n
tw N
m
. sg
.e r3 N
o M
y at 4 -
- e e
e f.
f
- J O
'3 Q
v.
LN*
'n e
O a*
s a
a e
e es el U
te U
.e C-C C
C se s
4 e
a we L =
we
,e w
.a eO L
L' L
L e,
ft 4 m
4 ab e
s.,
6 se e D
D e*
O 49
.a n
.C C
.C.
C e.
a
,e
.enN
.e
.e
,e
.e C
J B
II W
D e =* n
=
ma e e t
89 N
c=
e* **.')
=e e e= n C
4 h
== r") As.9 de N O e= M e= v1 m en o 3 aw ee O O O C 43 OOQQ COQ Qo L oe e + e I e
+ + e I
+ + 4
+ +
7 O L.
L.
set ans als ou eu L
esa eu ses ete L
og ees ese L
tu au
.u iA M O O O e
O.n d an e
a0 @ y.
e p=.,.6 en g 4
U s%s O et ON O
O M rn O g
no Q wg g
- e.. en L
.o en.9 m) N L
Qg 9q L
, 4m L
Nq Ci en **
re en o= N N e O
an "b O4 O
N4 4 0
- M eie C 0 en N OM
- N4M 4 *16 O
- = N e
~ 815
- =
di M MdM 9*
- O *= e= -
9-4Me
@N 4 ma me n
e o a *
- O e e * *
't e *
- O D.e as O #1 ("I *4 O
.OOOO OOO O C1 4, e.
,e
-4 e
e
.e e
a
-e e
m.e t
- *i-
'4 4
as g.
.e so w
we
%w9 E
E 5
E se O - O tt # n N e O
N 5 el N O
N N u O
N N
.L O u C
C C
C s
h mamme h
m a nni n h
=
h ma y
a w
- ) o= N M 4 et O ** N 9
.ns O *= N a=0 C s=
34f e
wwwww 0
wwww O.
www O
ww
.-- a..... a....
... a..
Figure 8 Curve Fit Sample Report page 2/2
NEW YORK POWER AUTHORITY JAMES A.
FITZPATRICK NUCLEAR POWER PLANT Attachment IV to JPN 041 POST-TRIP REVIEW:
REFERENCES 1.
NRC Generic letter 83-28, D. G. Eisenhut to all Licensees,
" Required Actions Based on Generic Implications of Salem ATWS Event," dated July 8, 1983.
2.
NYPA letter, J.
P.
Bayne to D.
B. Vassallo, JPN-84-42, providing the Authority's final responce to Generic Letter 83-28, dated June 29, 1984.
3.
NRC letter, D.
B. Vassallo to J.
C.
Brons, providing the Draft Technical Evaluation Report for Salem ATWS, Item 1.2 (Generic Letter 83-28), dated October 28, 1985.
4.
NYPA letter, C. A. McNeill, to D.
B. Vassallo, JPN-84-78,
" Safety Parameter Display System (SPDS) Implementation Plan," dated November 30, 1984.
5.
NYPA letter, J.
C.
Brons to D.
B. Vassallo, JPN-85-80, "Responce to Request for Additional Information Regarding SPDS/ EPIC," dated November 1, 1985.
6.
Records Management Section - Records Retention Manual i
I
..,..