CNRO-2003-00038, Rev. 0 to M-EP-2003-004, Fracture Mechanics Analysis for the Assessment of the Potential for Primary Water Stress Corrosion Crack Growth Un-Inspected Regions of the Control Element Drive Mechanism At..., Appendix D, Attachment 5 Thro

From kanterella
(Redirected from CNRO-2003-00038)
Jump to navigation Jump to search

Rev. 0 to M-EP-2003-004, Fracture Mechanics Analysis for the Assessment of the Potential for Primary Water Stress Corrosion Crack Growth Un-Inspected Regions of the Control Element Drive Mechanism At..., Appendix D, Attachment 5 Through Enc
ML032790408
Person / Time
Site: Waterford Entergy icon.png
Issue date: 09/15/2003
From:
Entergy Operations
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
CNRO-2003-00038 M-EP-2003-004, Rev. 0
Download: ML032790408 (28)


Text

Entergy Operations Inc.

Appendix D; Attachment 5 Engineering Report Central Engineering Programs Page 1 of 17 M-EP-2003-004-00 Comparison for Through-wall Cracks Developed by Central Engineering Programs, Entergy Operations Inc Developed by: J. S. Brihmadesam Verified by: B. C. Gray

References:

1) ASME PVP paper PVP-350, Page 143; 1997 {Fracture Mechanics Model)
2) Crack Growth of Alloy 600 Base Metal in PWR Environments; EPRI MRP Report MRP 55 Rev. 1, 2002 Purpose :- This worksheet is used to compare the results from the conventional model, edge crack model and the current model. The SIF comparison is made between the conventional model and the current model. The crack growth and SIF comparisons are made between the edge crack and current model. The SIF equations for the conventional model are included in the current model's recursive loop structure. The edge crack is modeled separately in a recursive loop immediately following the loop for the current model. Graphical results show the comparisons at the end.

The salient differences between the three models considered are:

1) Current model is based on X, which is limited to 20. The closed form solutions are based on a thick wall cylinder.

The applied stresses are based on a moving average. Therefore an increase in the stress field as the crack advances is considered in the analyses

2) The conventional model is based on a Center Cracked Panel with a SICF of 1.0. The applied stresses are at the initial flaw location and remain constant over the entire crack growth regime.
3) The edge crack model uses the plate height (b) equal to the nozzle length from the bottom of the nozzle to below the weld. The initial flaw length (a) is equal to the blind zone (1.544 inches). When this is done the ratioa/b (crack-length/plate-height) is larger than the validity limit of 0.6. Therefore, the estimated SIF is considered non-representative.

Waterford Steam Electric Component: Reactor Vessel CEDM -"8.8"degree Nozzle, "0" Degree Azimuth 1.3 inch above Nozzle Bottom Calculation

Reference:

MRP 75 th Percentile and Flaw Pressurized Note: Used the Metric form of the equation from EPRI MRP 55-Rev. 1.

Through Wall The correction is applied in the determination of the crack extension to obtain the value in inch/hr.

Axial Flaw

Entergy Operations Inc.

Central Engineering Programs Appendix D; Attachment 5 Page 2 of 17 Engineering Report M-EP-2003.004-00 The first Input is to locate the Reference Line (eg. top of the Blind Zone).

The through-wall flaw "Upper Tip" is located at the Reference Line.

Enter the elevation of the Reference Line (eg. Blind Zone) above the nozzle bottom in inches.

BZ:= 1.3 Location of Blind Zone above nozzle bottom (inch)

The Second Input is the Upper Limit for the evaluation, which is the bottom of the fillet weld leg.

This is shown on the Excel spread sheet as weld bottom. Enter this dimension (measured from nozzle bottom) below.

ULStrs.Dist:= 1.786 Upper axial Extent for Stress Distribution to be used in the analysis (Axial distance above nozzle bottom)

Entergy Operations Inc Central Engineering Programs Appendix D; Attachment 5 Page3of17 Engineering Report M-EP-2003-004-00 Input Data :

L :=.794 OD:= 4.05 ID:= 2.728 Pint:= 2.235 Years := 4 Ihim:= 1500 T := 604 v := 0.307 aOc:= 2.6710 12 Qg:= 31.0 Tref:= 617 Initial Flaw Length TW axial Tube OD Tube ID Design Operating Pressure (internal)

Number of Operating Years Iteration limit for Crack Growth loop Estimate of Operating Temperature Poissons ratio @ 600 F Constant in MRP PWSCC Model for 1-600 Wrought @ 617 deg. F Thermal activation Energy for Crack Growth {MRP)

Reference Temperature for normalizing Data deg. F

- Qg

(

1I LI.103-10-3 T+459.67 Tref+459.67)_

Co:= e

.C Timopr:= Years-365.24 OD 2

ID2 t := Ro - Ri Rm = Ri + 2 2

CFinhr:= 1.417-105 Cbk=Timfopr Cbl 'im Prntblk:= l-l L

2 LI:= BZ

Entergy Operations Inc.

Central Engineering Programs Appendix D; Attachment 5 Page 4 of 17 Engineering Report M-EP-2003-004-00 Stress Distribution in the tube. The outside surface is the reference surface for all analysis in accordance with the reference.

Stress Input Data Import the Required data from applicable Excel spread Sheet. The column designations are as follows:

Column "0" = Axial distance from Minimum to Maximum recorded on the data sheet (inches)

Column "1" = ID Stress data at each Elevation (ksi)

Column "5" = OD Stress data at each Elevation (ksi)

DataAIl :=

1$02 l

t ti

° rS

- l l

-2 3

4 5

0 0

-27.4

-24.36

-22.21

-20.41

-18.98 1

0.48 0.63

-1.49

-3.6

-4.44

-5.27

2 0.87 17.66 16.42 14.61 12.41 9.38 3

1.18 29.8 26.05 22.72 18.95 14.2

!4 1.43 33.62 27.79 24.8 24.32 26.99

.5 1.63 32.36 28.47 27.59 34.28 45.1

>6 7 1.79 27.39 28.92 31.39 43.88 63.72 r7 1.92 21.5 25.56 33.55 48.09 66.36 8

2.05 16.94 23.79 34.06 49.47 67.67

.9 2.18 14.83 22.26 34.78 49.05 63.38 AllAxl:= DataAIl AIIID := DataAlII AIIOD:= DataAll 5 n

Cr 100 75 50 25 0.

-25 ID Distribution

... OD distribution 1

1.5 2

2.5 Axial Distance above Bottom [inch]

3

Entergy Operations Inc.

Central Engineering Programs Appendix D; Attachment 5 Page 5 of 17 Engineering Report M-EP-2003-004-00 Observing the stress distribution select the region in the table above labeled DataA,, that represents the region of interest. This needs to be done especially for distributions that have a large compressive stress at the nozzle bottom and high tensile stresses at the J-weld location. Copy the selection in the above table, click on the "Data" statement below and delete it from the edit menu. Type "Data and the Mathcad "equal" sign (Shift-Colon) then insert the same to the right of the Mathcad Equals sign below (paste symbol).

0

-27.404 0.483 0.633 0.87 17.665

-24.356

-1.486 16.422 26.049 27.792 28.469

-22.209 -20.407 -18.978)

-3.599

-4.44

-5.268 14.61 12.415 9.376 22.723 18.95 14.201 24.8 24.321 26.989 27.591 34.284 45.104 Data:= I 1.18 29.798 1.428 33.623 1.627 32.364 y1.786 27.394 28.918 31.388 43.882 63.718 )

(I)

Axli Data ID:= Data (5)

OD:=Data RID:= regress(AxlID,3)

ROD:= regress(Axl,OD,3)

FLCntr:= BZ - I Flaw Center above Nozzle Bottom ULStrs.Dist - BZ Instrs.avg :=

20 ULStrs.Dist - BZ IncrEdg :=-

20 RIDAll:=regress(AIIAxI,A1111D,3)

RODAII:= regress(AIIAxl,AIIOD,3)

No User Input required beyond this Point

Entergy Operations Inc.

Central Engineering Programs Appendix D; Attachment 5 Page 6 of 17 Engineering Report M-EP-2003-004-00 Calculation to develop Stress Profiles for Analysis Hoop Stress Profile in the axial direction of the tube for ID and OD locations N := 20 Number of locations for stress profiles Loc 0 := FLCntr-L i:= I..N+3 Incr. :=

I if i <4 1InCStrs.avg otherwise Loc.:= Loc.

+ Incr.

I i -I I

SID. := RID3 + RID *Loc. + RID.(Loc.'1

+ RID.(Loc.')

Incredg :=

if i < 4 2

IncrEdg otherwise Locli:=

0 if i=I lLOC1 -I + Incredg. otherwise SOD := ROD + ROD Loc + ROD' (Loc 2+ROD 4Loc.)

3 4'

1 5

lj 6 \\I J SIDAIll := RIDA113 + RIDAII4-Locl. + RIDAI15- (LocI )2 + RIDAII *(Loc I.) 3 SODAIi := RODAII + RODAII 4-LocI 1 + RODAI15- (LocI;)2 + RODAI16- (Loc I;)3 i

i

Entergy Operations Inc.

Central Engineering Programs Appendix D; Attachment 5 Page 7 of 17 Engineering Report M-EP-2003-004-0o Development of Elevation-Averaged stresses at 20 elevations along the tube for use in Fracture Mechanics Model j:= I.. N l SID. + SIDj+l + SIDj+2 l SOD. + SOD J+ + SODJ+2 J

3 3

Sid, (j + I) + SID.+2 Sod._- (j + 1) + SODj+2 jil J

otherwise j

otherwise j +2 j +2 SIDAII + SIDAII

+ SIDAII Sid.ali.

3+

+

if jl=

Sid.all.

(j + 1) + SIDAII2 J-l J+2 otherwise j+2 Sod.all. :=

SODAII + SODAIjI + SODAIj+2 3

i

= I Sod.all jI (j + 1) + SODAIIj+2 j othervise j+2 Sod. + Sid-i 2

2

+ P Sod. - Sid.

6

=

Gb-'i 2

Sod.all. + Sid.all.

Grm.all. :=

J + PInt i

2

Entergy Operations Inc.

Central Engineering Programs Appendix D; Attachment 5 Page 8 of 17 Engineering Report M-EP-2003-004-00 Stress Distributions for use in Fracture Mechanics Analysis Membrane Stress Bending Stress OD Stress ID Stress Membrane stress (Edge Crack)

T

-,5

.7 8.

10, 12 13 14 15 1O.~0 15.27 18.819 21.119 22.794 24.115 25.215 26.169 27.022 27.802 28.53 29.217 29.874 30.507 31.122 31.723 Gb =

,0-2

3-4' 15, 6 "

7, 8

9

!1 0

.11 12 13 1~5 t~aSo 5-1 0.

-4.731

-4.823

-4.766

-4.625

-4.426

-4.184

-3.905

-3.594

-3.254

-2.885

-2.489

-2.066

-1.617

-1.142

-0.64 Sod =

[0 IT 50.3

.c.~

i8 12 143 0

8.303 11.761 14.117 15.934 17.454 18.796 20.029 21.193 22.314 23.41 24.493 25.572 26.655 27.745 28.848 Sid =

0 17.766 21.408 23.65 25.184 26.306 27.164 27.839 28.381 28.821 29.18 29.471 29.705 29.889 30.029 30.128 Grm.alI =

0 5.53 12.037 16.08 18.889 20.99 22.646 24.005 25.153 26.146 27.022 27.807 l28.518 29.169 29.77 30.329 PropLength := ULstrs.Dist - (FLCntr + i)

ProPLegth = 0.486

Enteryy Operations Inc.

Central Engineering Programs Appendix D; Attachment 5 Page 9 of 17 Engineering Report M-EP-2003-004-00 Calculations: Recursive calculations to estimate flaw growth Recursive loop for Entergy Model and Industry Model TWCPNNVScc:

4-0 10e' NCB 0 Cbk-rvhile i

' tlim lI U4.appld;-

aml (Tm, amm 3

aim4 am 5 am6 aym7 aym8 am9 aym am am aym aml aym am aym 1M7 am aml asm if I

  • I0 if 0 < Ii 10 + IncStrs.avg if 10 + InCStrs.avg < I <1 + 2 lncStrs.avg if I0 + 2-1ncStrs*avg < I; 10 +3lnCStrs.avg jf I0 +3lncStrs.avg < Ii 10 + 4fInCStrs.avg if 10 + 4flncStrs.avg < Ii
  • 10 + SIfnCStrs.avg if I0+ 5-lncStrs avg < I;+I0+6 IncStrs.avg if I0 6-lncStrs.avg < Ii
  • 10 + 7flncStrs.avg if I0+ 7-lncStrs avg < I;+I0+8 IncStrs avg if I0+ 8 IncStrs.avg < Ii I 0o + 9 6]nCStrs.avg if I + 9. IncStrs.avg < I;
  • 10 + 7 flncStrs.avg if 10 + 10lncstrs.avg < ; 10 + I IIncstrs.avg if I0+

I l lncStrs avg < I;+I0+ 12 IncStrs avg if I0 +12lncstrs.avg < I; 10 I

+3 IfnCStrs.avg if 10 + 13 fncstrs.avg < Ii

  • 10 +

I14lncStrs.avg if 10 + 14lncstrs.avg < I 10 + 15 InCStrs.avg if 10+

15blncStrs.avg < Ii

  • 10 + 16InCStrs.avg if I0+

16Ilncstrs.avg < Ii I 10 + 17 IncStrs.avg if I0+ 17flncStrs.avg < Ii< I0+18+

l 4 flCStrs.avg if 10 + 17hIfcstrsavg < I; S 10 + 1 ]nCstrs.avg other vise L

.i 1IL...

I__

_ALlI

Entergy Operations Inc.

Appendix D; Attachment 5 Engineering Report Central Engineering Programs Page 10 of 17 M-EP-2003-004-O0

_b.appid <--

cb if I-I_

Gbif 10< I1< I0+ -IncStrs.avg Ob f

3f

+ InCStrs.avg < I1 < I + 21lncStrs.avg b 4 if 10 + 2-incStrs.avg < 1; <10 +3fnCstrs.avg Gb5

+

iI 3ncstrs.avg < I i< 10 + 4 lnCstrs.avg ab6if 10 + 4IInCStrs.avg < I i< 10 + 5IInCStrs.avg b7 if10 + 5 ncStrs.avg < 1; <10 +65 nCStrs.avg G

f IO + 6 1nCStrs.avg < I <I0 + 7 ncStrs.avg yb9 i f1 +7 7 IncStrs.avg < 1; i<I0 +86 nCStrs.avg Gb7 if 10 + 8IInCstrs.avg < 1 < I0 + 9 lncStrs.avg Gb8 if 10 + 9 6 Intstrs.avg < I < I +

+/-

0 lncStrs.avg (yb]2 if10 + 10 lncStrs.avg < I;I 0

II, IncStrs.avg ab]3 if 10 + I lncStrs.avg < I

< I

+ 82{ncStrs.avg cyb]4 if 10 + 12inCStrs.avg < I < 10 + 9 3f1nCStrs.avg cab,5 if 10 + 13inCStrs.avg < I1 < 10 + 14 inCStrs.avg cyb16 if 10 + 14 lncstrs.avg < I f 10 + 15 InCStrs.avg ab 17 if 10 + 15 Ilncstrs.avg < I S 10 + 16InCStrs.avg Gb17 if 10 + 17 Incstrs~avg < 1; < 10 + 1 6]flCstrs.avg Gb18 ifI10 +16InfcStrs.avg

< 1i<I0 +1 7dflncStrs.avg Gyb19 ifI10 +I 7 -flcStrs.avg < 1iI~ 0 + 1 8]lncStrs.avg G bo otherwise i

[12-(1 - v2)]0.25 1

Acm

  • 1.0090 + 0.3621 -k + 0.0565(xi)2 - 0.0082(kx) 3 + 0.0004(xi)4 - 8.326-10 6 (Xi) 5 Abm < -0.0063 + 0.0 9 19-k - 0.0168(Xi)2 - 0.0052(Xi)3 + 0.0008 (i) 4 - 2.9701. 10 (X)

Aeb

  • 0.0029 + 0.0707-Xi - 0.0197(x1 )2 + 0.0034(ki)3 - 0.0003 (xi) + 8.8052-10 (X;)5 Abb +- 0.9961 - 0.3806-Xi + 0.1239-(Xi)2 - 0.021 i.(xi)3 + 0.0017. (i.)4 - 4.9939. 10- 5 (Xi)5

Entergy Operations Inc.

Appendix D; Attachment 5 Engineering Report Central Engineering Programs Page 11 of 17 M-EP-2003-004-00

__ _KPMi Grnym.appld' (T l___0.5 Kpbm yb.appld (.i).)

KmembrnmOD

< (Aemi + Abm,) Kpmi KmembrnlDi (Aemr

- Abm,) Kpmi KbendoDl

+ (Aeb + Abb).Kpbi Kbendllj (Aebj - Abbj).Kpb, KAppOD.

l KmembrnODi + KbendOD KApplD. + KmembrnlD. + KbendlD I

II KWHI~-

m I.TC-i)0.5 KAppODi + KApplD Appi 2

Ks'H.Icnr.Strs i<- GCr.appld' (I4 ;) 0.5 Ka i - KAppJ

  • 1.099 Ka <

9.0 if K,< 9.0 Ka otherwise Dieni Co-(Ka - 9.0)1.16 Dlengrth. 4 Dlen.-CFinhrCblk if Kc, < 80.0 10 4 10 CFinhr-Cblk otherwise output(i 0) - i NCB; output 1(i) - 365-24 output(i,2) xi output (i,3)

I I0 output(i 4)

II output(i, 5) - KApp, output(j 6) <_ KAppODl output(i 7) - KAppllj outoi t.tn.

Entergy Operations Inc.

Appendix D; Attachment 5 Engineering Report Central Engineering Programs Page 12 of 17 M-EP-2003-004-00 output(; 9) v KmembrnlD output(; 10)

- KbendOD.

output(; I1) + KbendlD output(i 12) <- K WH output(i 13) + KUI-l.Icnr.Strs i(-i+

I I;

I i-I + Dlengrth. 1, NCB. v NCB.il + CbIk output I

Entergy Operations Inc.

Central Engineering Programs Appendix D; Attachment 5 Page 13 of 17 Engineering Report M-EP-2003-004-00 Recursive Loop For Edge Crack Model TWCEDGPWSCC

<-0 L1

<- ILII 4-Cblk Kvhe

  • 111m 6m all if Lj
  • L1 6m all, if Ll< L1j *l + IncrEdg 0 m afl 3 if Llo + IncrEdg < L1
  • L1 + 2-IncrEdg 6~m all if Llo + 2-]ncrEdg < LlI *l + 3 ]flCrEdg 0 m all5 if Lx+

3-1ncrEdg < L1 i *l + 4.IncrEdg Gm all if L10 + 4*lncrEdg < LI *L 1 0 + 5*IncrEdg Gm all if Lx+

5-1ncrEdg < LlI *l + 6 InCrEdg Gm all if Llo 6.IncrEdg < L1*s *l + 7*IncrEdg 0 m all9 if Lx+

7.IncrEdg < LI *L 1 0 + 8 IncrEdg Gm.a11 10 if L10 + S.InCrEdg < LsI *l + 9 IflCIEdg 6m all1 if Llo + 9.IncrEdg < LlI L10 + 10-lncrEdg 0m.a1112 if Lo+ IO.InCrEdg < LI

  • LI 0 + I IlnCrEdg Gm~a11 13 if L1 0 +/-

+lluncrEdg < LIj *L 1

+ I2-lncrEdg 6mal if Ll+

I2dflcrEdg <I

  • Li 0l + l3.lnCrEdg 6m all5 if Lo+ I3.InCrEdg < LI. *L 1

+ l4*IncrEdg 6mal if L10 + I4 IlncrEdg < LI.

L10 + I5-IncrEdg Gm.a1117 if Ll+ I5.IncrEdg < LI.

L10 + I6*IncrEdg Gm.a11 18 if Ll+ I6-]nCrEdg < L1j *l + I7*IncrEdg 6m all1 if L10 + I7.IncrEdg < L1j *l + l8*InCrEdg Gm all otherwise b

- liLStrs.Dist I

II

+/- LIj

Entergy Operations Inc.

Appendix D; Attachment 5 Engineering Report Central Engineering Programs Page 14 of 17 M-EP-2003-004-00

+-

0.99 i

1.0 otherwise Fa.b 4-1.12 - 0.231-(Z;) + 10.55.(Z.) - 21.72. (Z;)3 + 30.39.(Zi)4 Kedg.Crk-l-Gm. appldj f

i if (9m.appld-jfi ) < ° lcm appld'( 7r L 0.5 Fa otherwise KA. - Kedg.Crk. 1.099 Ka4 -

9.0 if KA*<9.0 KA otherwise Dien. 4 CO-(Kti - 9.0)

Dlengrth. 4-Dien,-CFinhrCblk if Ka

  • 80.0 4 10 t0 CFjnhrCblk otherwise output(i 0 ) 4 i NCB.

output(1i 1)

-36524 OutPutfi 2)

LI - L1 output(i 3) -- Dlengrth.

output(i 4) -- Kedg.Crk output(i 5) 4-Fa.b i4-i+ I L Ij LI j-I + Dlengrth 1_l NCB <- NCB il + Cbik output i := him I

I I

Entergy Operations Inc.

Central Engineering Programs Appendix D; Attachment 5 Page 15 of 17 Engineering Report M-EP-2003-004-00 ProPLength = 0.486 Flaw Length vs. Time 1.5 TWCPWC PWSC(j 3 )

< TWCEDGPNVWC 5

~~~~(j,2) 0.5 Comparison for crack growth between Edge Crack and Current Model. The edge crack model provides a constant crack growth rate equal to the asymptotic growth rate of about 05.

inch/year. The edge crack model produces a SIF much greater than the asymptotic value of 90 ksi* inAO.5 or 80 Mpa*mAO.5. This is because the "a/b" ratio (crack-length/plate-height) is significantly greater than the validity limit of 0.6.

In order to meet the "a/b" ratio validity limit of 0.6 the crack length, for the assumed plate height cannot be greater than 1.073 inches, which is lower than the blind zone length of 1.544 inches.

As shown in attachment 3 of this appendix, assuming a longer plate height produces SICF that can be lower than the membrane component SICF. Therefore, the SICF for the modeled edge crack configuration is considered incorrect because the validity regime is violated (since a/b ratio is in excess of 0.6).

-0.5 0 1

2 3

4 5

TWCPNN SCC I)

Operating Time {years)

Entergy Model


Edge Crack Model I

Entergy Operations Inc.

Central Engineering Programs Appendix D; Attachment 5 Page 16 of 17 Engineering Report M-EP-2003-004-00 Ct U0 Ca)

The SIF for the current model is always higher than the conventional model. Hence the estimated crack growth produced by the current model will be higher than that produced by the conventional model. Hence the current model is shown to be more conservative than the conventional model.

The SIF for the edge crack is very high owing to the large SICF produce by a large a/b ratio, which is beyond the validity limit for the determination of the SICF (discussed in the previous figure).

o 1

2 3

4 Operating Time (Years}

OD SIF - Entergy Model ID SIF - Entergy Model SIF Conventional approach {Constant Stress Model}

SIF Conventional approach ( Increasing Stress Model)

Entergy Model - Average used for Flaw Growth Edge Crack

Entergy Operations Inc.

Central Engineering Programs Appendix D; Attachment 5 Page 17of 17 Engineering Report M-EP-2003-004-00 Axum Plot for the ID and OD Stress distribution along nozzle length used in the comparison H oop Stress P lot 60 40 2

e 2 0 5II 0

-2 0

-40 0.0 0.5 1.0 1.5 2.0 2.5 3.0 D istance from N ozzle B ottorn

{inch}

Axum plot showing the comparison for the SIF between the Current and Conventional Models.

200 -

150 -

a 1 0 0 -

IL 50 -

0 -

C urrent Model (Entergy)

Conventional model (Industry)

I I

I 0

2 Operating Time {years) 3 4

CQ1Y2

Entergy Operations Inc.

Central Enginenng Programs Appendix D; Attachment 6 Page 1 of 9 Enginering Report M-EP-2003-004-oo Evaluation of Curve fit for Stress Profile Generation along the Tube Axis In this worksheet the effect of data set selection for curve fitting, using a third order polynomial is evaluated. The data table below is form a data set used in the CEDM analyses. This data set is imported directly from the Excel spreadsheet provided by Dominion Engineering for the CEDM. The evaluation considers the full data set and a limited data set spanning the region of interest.

The purpose of this evaluation is to demonstrate the need for the proper selection of a subset of nodal stress data (in the region of interest) to ensure the accuracy of the analysis.

Data set imported from Excel spreadsheet.

AllData :=

-34

-".N

1'

i

'  'ZI, I i-';'

1 I 0,,

I Z-

','.,ff I 2"

I 

3 ".1 1,

1;.,",14- -

I 5 --

0 0

19.02 9.58 3.37

-2.08

-7.96 i1 1.35 4.88

-0.01

-3.32

-6.54

-9.39

2 !

2.43 4.12

-0.78

-2.08

-2.21

-2.99

'3, 3.29 11.59 9.74 9.09 5.5 1.99 A4 3.99 15.7 11.01 11.9 12.48 10.55 5

4.54 1

3.69 8.87 18.84 26.6

'6; 4.99

-19.25

-7.47 4.61 28 35.85 j7 5.16

-28.8

-16.47 1.4 28.03 40.15 8 -

5.33

-31.34

-20.97

-0.5 28.53 38.49 j9 5.5

-32.98

-22.94

-2.56 28.32 38 10 5.68

-34.3

-23.31

-2.31 25.93 41.38

,11 5.85

-35.44

-22.61

-1.59 23.03 31.35 12 6.02

-33.28

-18.55

-0.38 19.78 39.55 13 6.2

-27.73

-13.19 2.94 18.4 35.15 14 6.37

-18.45

-7.65 5.99 18.87 29.93 15 6.54

-6.28

-1.9 9.27 20.26 23.73 16 6.72 5.11 4.63 13.32 22.66 23.44 17 6.89 15.03 11.24 16.3 22.16 22.62

.18 7.06 25.53 19.11 20.22 23.17 20.07

. (0)

AxlLen:= AM=

IDAII:= AllData MidWall:= AID=

ODAII:= AllData 5

Entergy Operations Inc.

Central Enginering Programs Appendix D; Attachment 6 Page 2 of 9 Enginering Report M-EP-2003-004-00 Data:

0 1.348 2.427 3.292 3.985 4.54 4.985 15.158 19.022 4.884 4.116 11.593 15.695 0.999

-19.249

-28.802 9.579

-0.011

-0.784 9.74 11.005 3.689

-7.467

-16.466 3.372

-3.322

-2.075 9.093 11.902 8.873 4.613 1.395

-2.08

-6.536

-2.213 5.504 12.478 18.835 28.003 28.031

-7.96 )

-9.387

-2.987 1.989 10.549 26.599 35.847 40.149)

Selected subset from the data table above ALen:= Data (1)

IDlim= Data (3)

MW~im= Data (5)

ODlim= Data Regression for the full data set RIDAII := regress(AxlLenlDA11,3)

RMWAII:= regress(AxlLen,MidWall,3)

RODAII:= regress(AxlLen,ODAII,3)

Regression for selected data set RlDdata:= regress(ALen,IlDjjm,3)

RMNVdata:= regress(ALen, MWVlim, 3)

RODdata:= regress(ALenODjim,3)

Bottom:= 0 Top:= 7.0 WB:= 4 Dist:= Top - Bottom Dist Incr :=

20 D:= WB - Bottom Incrl :=-

20

Entergy Operations Inc.

Central Enginenng Programs Appendix D; Attachment 6 Page 3 of 9 Enginering Report M-EP-2003-004-00 L0 := 0 - Incr Len := 0 - Incrl i:= I..20 L i:= Li-I + Incr Len. := Len.i 1 + Incri Determination of Stresses at three locations across wall thickness, using the full data set IDall= RIDA113 + RIDA114L.+ RIDAII (Li)2 + RIDAII. (Li) 3 MWall RMWAII + RMWAII *L.+ RMWAII (L) 2 + RMWAIl -(Li)3 i

3 41i 5 \\I6~'

ODall := RODAI1 + RODAII.L.+ RODAI5 (L )i + RODAII (Li)3 Determination of Stresses at three locations across wall thickness, using the selected data set lDdata:= RlDdata + RlDdata Len. + RlDdata (LenA + RlDdata *(Leni)3 dat 3 dt 4

dt 5 ~j dt 6

MWdatai:= RMWVdata + RMWdata Len. + RMWdata (Len.)2+

M data -(Len3 ODdata = RODdata + RODdata -Len. + R+Ddata (Leni)2+ R°Ddata -(Len03 i

~3 4

56

Entergy Operations Inc.

Central Enginering Programs Appendix D; Attachment 6 Page 4 of 9 Enginering Report M-EP-2003-004-00 Graphical Display of Results Distribution Full Nodal Stress Data 60 40 0

0 20 0

Nodal stress data plotted for the ID and the OD distribution. This plot is based on the full data set.

-20 V

-40 D 0

2 4

6 Axial Length (inch) 8 ID Distribution

~OD distribution Full Data: @ ID Location 40 20 ID Stress Distribution:-

Comparison of regression fit versus the full data set. The third-order polynomial does not provide an accurate fit. The trend in the data is captured.

0 C-0 0

-20

- 0 2

4 6

Axial Eleveation from Bottom (inch)

ID Regression using All Data

. - ID All Nodal Data 8

Entergy Operations Inc.

Central Enginefing Programs Appendix D; Attachment 6 Page 5 of 9 Enginering Report M-EP-2003-004-00 co C-C C

OD Stress Distribution:-

Comparison of regression fit versus the full data set. The third-order polynomial does not provide an accurate fit. The trend in the data is captured.

-20 0 2

4 6

Axial Elevation from Bottom (inch)

OD Regression Using All data OD All Nodal Data MidWall - Regression vs Nodal Data 8

25 20 CA 0_

To 0

15 10l Mid-Wall Stress Distribution:-

Comparison of regression fit versus the full data set. The third-order polynomial does not provide an accurate fit. The trend in the data is captured.

5 0

-5 0 2

4 6

Axial elevation from Bottom (ksi}

Mid-Wall Regression using All data

  • ... Mid-Wall All Nodal Data 8

Entergy Operations Inc.

Central Enginering Programs Appendix D; Attachment 6 Page 6 of 9 Enginering Report M-EP-2003-004-00 ID - Selected Data Set ID Stress Distribution (Selected Data Set):-

Comparison of regression fit versus the selected data set. The third-order polynomial provides an accurate fit.

ZC 2

-10

-20 0

1 2

3 4

Axial Elevation from Bottom (inch}

ID Regression using Selected Data ID Selected Nodal Data 5

Mid-Wall - Selected Data Set 15 10 Mid-Wall Stress Distribution (Selected Data Set):-

Comparison of regression fit versus the selected data set. The third-order polynomial provides an accurate fit.

U V-C_

C,

.)

5 0

-5

-to 0

1 2

3 4

Elevation from Bottom (inch)

Mid-Wall Regression Selected Data Set Mid-Wall Selected Data Set 5

6

Entergy Operations Inc.

Central Enginering Programs Appendix D; Attachment 6 Page 7 of 9 Enginering Report M-EP-2003-004-00 OD - Selected Data Set OD Stress Distribution (Selected Data Set):-

Comparison of regression fit versus the selected data set. The third-order polynomial provides an accurate fit.

L-0C

-10 L.

0 1

2 3

4 5

Elevation from Bottom (inch)

OD Regression using selected data Set

..OD Selected Data Set 6

Conclusion :- By selecting the data judiciously, in the region of interest, facilitates an accurate regression fit of the data.

Entergy Operations Inc.

Central Enginering Programs 20 -

15

\\

I Appendix D; Attachment 6 Page 8 of 9 Enginering Report M-EP-2003-004-00 2

3 Axial Distance from Nozzle Bottom {inch}

I 2

3 Axial Distance from Nozzle Bottom {inch)

Entergy Operations Inc.

Central Enginering Programs 40-30

-20 2I 0

-10 Appendix D; Attachment 6 Page 9 of 9 Enginering Report M-EP-2003-004-00 2

3 Distance from Nozle Bottom (inch)

Col"

ENCLOSURE 5 CNRO-2003-00038 LICENSEE-IDENTIFIED COMMITMENTS

LICENSEE-IDENTIFIED COMMITMENTS TYPE (Check one)

SCHEDULED ONE-TIME CONTINUING COMPLETION COMMITMENT ACTION COMPLIANCE DATE

1. The final results of the inspections will be X

60 days after included in the 60-day report submitted to startup from the the NRC in accordance with Section IV.E next refueling of the Order.

outage

2. If the NRC staff finds that the crack-growth X

Within 30 days after formula in MRP-55 is unacceptable, the NRC informs Entergy shall revise its analysis that Entergy of an NRC-justifies relaxation of the Order within 30 approved crack-days after the NRC informs Entergy of an growth formula.

NRC-approved crack-growth formula.

3.

If Entergy's revised analysis (#2, above)

X Within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> shows that the crack growth acceptance from completing the criteria are exceeded prior to the end of revised analysis in Operating Cycle 13 following the

  1. 2, above.

upcoming refueling outage), Entergy will, within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />, submit to the NRC written justification for continued operation.

4. If the revised analysis (#2, above) shows X

Within 30 days from that the crack growth acceptance criteria completing the are exceeded during the subsequent revised analysis in operating cycle, Entergy shall, within 30

  1. 2, above.

days, submit the revised analysis for NRC review.

5. If the revised analysis (#2, above) shows X

Within 30 days from that the crack growth acceptance criteria completing the are not exceeded during either Operating revised analysis in Cycle 13 or the subsequent operating

  1. 2, above.

cycle, Entergy shall, within 30 days, submit a letter to the NRC confirming that its analysis has been revised.

6. Any future crack-growth analyses X

N/A performed for Operating Cycle 13 and future cycles for RPV head penetrations will be based on an acceptable crack growth rate formula.

Page 1 of 1