2CAN120904, Submittal of Cycle 21 Startup Report

From kanterella
Jump to navigation Jump to search
Submittal of Cycle 21 Startup Report
ML093441090
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 12/09/2009
From: David Bice
Entergy Operations
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
2CAN120904
Download: ML093441090 (26)


Text

Entergy Operations, Inc.

SEntergy 1448 S.R. 333 Russellville, AR 72802 Tel 479-858-4710 David B. Bice Acting Manager, Licensing Arkansas Nuclear One 2CAN120904 December 9, 2009 U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

SUBJECT:

ANO-2 Cycle 21 Startup Report Arkansas Nuclear One, Unit 2 Docket No. 50-368 License No. NPF-6

REFERENCE:

Entergy letter to the NRC, "ANO-2 Cycle 20 Startup Report," dated July 3, 2008 (2CAN070804)

Dear Sir or Madam:

The Arkansas Nuclear One, Unit 2 (ANO-2) Technical Requirement Manual (TRM)

Section 6.9.1.1 requires a summary report of plant startup and power escalation testing following modifications that may have significantly altered the nuclear, thermal, or hydraulic performance of the plant. Cycle 21 is the first cycle that contains a complete core of Westinghouse's Next Generation Fuel (NGF) design fuel assemblies. This fuel design raised the core pressure drop. ANO-2 submitted a startup report for Cycle 20 which was the first cycle this fuel design was introduced (Reference submittal).

The unit achieved criticality on September 25, 2009, following the twentieth refueling outage.

This letter contains no new commitments.

By means of this submittal, the reporting requirements of ANO-2 TRM 6.9.1.1 are fulfilled.

If you have any questions or require additional information, please contact me.

Sincerely, DBB/rwc

Attachment:

ANO-2 Cycle 21 Startup Report kiLt'

2CAN 120904 Page 2 of 2 cc: Mr. Elmo E. Collins Regional Administrator U. S. Nuclear Regulatory Commission Region IV 612 E. Lamar Blvd., Suite 400 Arlington, TX 76011-4125 NRC Senior Resident Inspector Arkansas Nuclear One P. 0. Box 310 London, AR 72847 U. S. Nuclear Regulatory Commission Attn: Mr. Kaly Kalyanam MS 0-8 B1 One White Flint North 11555 Rockville Pike Rockville, MD 20852

Attachment to 2CAN120904 ANO-2 Cycle 21 Startup Report

Attachment to 2CAN120904 Page 1 of 23 ANO-2 Cycle 21 Startup Report ABSTRACT This report summarizes the results of the startup physicstest program. Results of these activities verify the Cycle 21 nuclear design calculations and demonstrate adequate conservatism in core performance with respect to the Arkansas Nuclear One, Unit 2 (ANO-2)

Safety Analysis Report (SAR), Technical Specifications (TSs), Technical Requirements Manual (TRM), and the Cycle 21 Reload Safety Evaluation. Cycle 21 achieved initial criticality on September 25, 2009.

Attachment to 2CAN 120904 Page 2 of 23 TABLE OF CONTENTS Page 1.0 INT R O D UC TIO N ................................................................................................ 3 2.0 REACTOR CORE DESCRIPTION ...................................................................... 3 2.1 Loading Pattern and Assembly Burnup ................................................. 4 2.2 Incore Instrumentation (ICI) Locations ...................................... .............. 4 2.3 Verification of Core Loading .................................................................. 4 3.0 PRECRITICAL TESTS ....................................................................................... 5 3.1 Control Element Assembly (CEA) Drop Time Testing ............................. 5 4.0 LOW POWER PHYSICS TESTING .................................................................... 5 4 .1 In itia l C ritica lity ................................................................................. ..... 6 4.2 STAR Program HZP Critical Boron Concentration .................................. 6 4.3 STAR Program MTC Alternate Surveillance ............................. .6 5.0 POWER ASCENSION TESTING ....................................................................... 6 5.1 Reactor Coolant System (RCS) Flow Rate .............................................. 6 5.2 Core Power Distribution .......................................................................... 7 5.2.1 <30% Power Test Plateau Results ............................................. 7 5.2.2 68% Power Test Plateau Results ............................................. 7 5.2.3 100% Power Test Plateau Results ............................................. 9 5.3 Shape Annealing Matrix (SAM) and Boundary Point Power Correlation Coefficient (BPPCC) Measurement ...................... 9 5.4 Planar Radial Peaking Factor (RPF) Verification .................................... 10 5.5 Temperature Reactivity Coefficient ..................................................... 10 6.0 C O NC LUS IO NS ................................................................................................ 11 7 .0 R E F E R E NC E S .................................................................................................. 12 8.0 FIGURES Figure 1 C ycle 21 C ore Loading ................................................................................ 13 Figure 2 Integral Burnable Poison Shim and Enrichment Zoning Patterns for Batch AA (through AE) Fuel Assemblies ................................ 14 Figure 3 Cycle 21 Fuel Management Scheme .......................................................... 15 Figure 4 BOC Assembly Average Burnup and Initial Enrichment Distribution ........... 16 F igure 5 IC I Locations ............................................ .............................................. 17 Figure 6 GETARP Output for the <30% Power Plateau ............................................ . 18 Figure 7 GETARP Output for the 68% Power Plateau ......................... 20 Figure 8 GETARP Output for the 100% Power Plateau ............................................ 22

Attachment to 2CAN120904 Page 3 of 23

1.0 INTRODUCTION

This report summarizes the results of the ANO-2 Cycle 21 startup physics test program. The startup physics test program consisted of a series of tests performed at various stages, including prior to initial criticality, low power physics testing (LPPT), and during power ascension.

The objective of these tests were (a) to demonstrate that during reactor operation, the measured core physics parameters would be within the assumptions of the SAR accident analyses (Reference 7.1), within the limitations of the plant TSs (Reference 7.2), and within the limitations of the Cycle 21 reload safety evaluation (References 7.3 and 7.4), (b) to verify the nuclear design calculations, and (c) to provide the bases for validation of database and addressable constants in the core protection calculators (CPCs) and the core operating limit supervisory system (COLSS). Specifically, cycle independent shape annealing matrix (CISAM) elements installed in each channel of the CPCs are verified and the all rods out (ARO) planar radial peaking factor (RPF) is measured and conservatively adjusted in the CPCs and COLSS during power ascension.

Section 2 of this report provides a brief description of the reactor core. Section 3 discusses the pre-critical control element assembly (CEA) drop time test. In Section 4, initial criticality and the low power physics tests are presented. Section 5 describes the power ascension tests, which include a reactor coolant system (RCS) flow rate determination, core power distribution measurements, the CISAM verification, planar RPF verification, azimuthal power tilt verification, and a temperature coefficient measurement. The conclusions of this report are given in Section

6. Section 7 lists the references cited in this report.

2.0 REACTOR CORE DESCRIPTION The design of the ANO-2 Cycle 21 core includes the second batch (and first full core) of Westinghouse Next Generation Fuel (NGF) and is the fourth cycle of zirconium diboride (ZrB2) as an integral fuel burnable absorber (IFBA). The NGF fuel design incorporates the following changes relative to the previous (standard) fuel design:

  • A reduced cutback (non-IFBA coated) region at both the tops and bottoms of IFBA fuel rods and a reduced IFBA coating thickness where the coating is applied
  • Eliminated use of annular fuel pellets in non-IFBA fuel rods
  • Reduced fuel pellet and fuel rod cladding diameters to accommodate increased pressure drop of mixing vane grids
  • Slight increase in overall fuel rod length
  • Reduction in fuel rod initial fill gas pressures
  • A wholly re-designed grid cage including lower end fittings, guide tubes, upper end fitting flow plate and longer hold down springs

Attachment to 2CAN120904 Page 4 of 23

  • Use of Optimized ZIRLO material for fuel rod cladding and all but the top and bottom grid straps
  • An Inconel top grid, new mid-grids with I-Springs and intermediate flow mixing grids
  • Use of bulge joints to connect grid assemblies and guide tubes (vs. welding)
  • Attaching the lower Guardian grid to the lower end fitting with inserts (vs. welding)
  • Use of Stress-Relief Annealed (SRA) ZIRLO material for guide tubes
  • An anti-rotation joint between guide tubes and the upper nozzle The 89 new fuel assemblies designated as Batch AA (through AE) were loaded with fuel rod enrichments as high as 4.08 weight percent (w/o) U-235 and a nominal B-10 loading of 3.14 milligrams per inch (mg/in) in the ZrB2 IFBA rods. A special Batch AE assembly (one of the 89) with all fuel rods enriched to 1.80 w/o U-235 was manufactured to be the center assembly in the core. In addition, 88 Batch Z assemblies were loaded into the Cycle 21 core (Reference 7.3).

The NGF design changes have been explicitly modeled in Cycle 21 neutronics calculations and reload analyses (Reference 7.3).

2.1 Loadinq Pattern and Assembly Burnup Attached Figures 1 through 4, taken from the ANO-2 Cycle 21 Reload Analysis Report (RAR),

give the loading pattern and beginning of cycle (BOC) assembly average design burnups.

2.2 In-core Instrumentation (ICI) Locations The ICI design consists of 42 fixed ICI assemblies inserted into the center guide tube of 42 fuel assemblies. ICI locations are identified in Figure 5. Each ICI assembly contains 5 self-powered rhodium detectors and one core exit thermocouple (CET). All of the 42 ICI assemblies were replaced during 2R20 prior to the Cycle 21 startup. During power ascension, at least 208 of 210 possible detectors were operable.

2.3 Verification of Core Loading After the reactor core was loaded, core mapping was performed using an underwater television camera and monitor. This core mapping operation verified that the core was correctly loaded.

Core mapping was performed by the reactor engineering organization. The core mapping operation included a comparison of the identification numbers on the fuel assemblies, CEA configuration, and fuel ,assembly orientation against the design configuration.

Attachment to 2CAN 120904 Page 5 of 23 3.0 PRECRITICAL TESTS 3.1 Control Element Assembly (CEA) Drop Time Testing This testing verifies that the drop time of all CEAs are in accordance with the surveillance requirements of ANO-2 TS 3.1.3.4. The method used by this test involves special control element assembly calculator (CEAC) software (CEA Drop Time Test, or CDTT software), which allows the measurement of all CEAs simultaneously. After the establishment of hot, full flow RCS conditions (i.e., greater than 525 OF with four reactor coolant pumps operating) and with the RCS boron concentration at a sufficient level to keep the reactor adequately shutdown during the test, all CEAs are withdrawn to the full out position. The CDTT software is then loaded into one of the CEAC channels and initiated. The software transmits a large penalty factor to each of the CPC channels, thereby initiating a reactor trip. The CDTT software records CEA positions every 50 milliseconds (msec) during the drop. Data output from the CDTT software is adjusted for holding coil delay time and used to verify that drop time limits are satisfied (Reference 7.10).

From a fully withdrawn position, TS 3.1.3.4 requires that the maximum individual CEA drop time and the average of all CEA drop times from when electrical power to the CEA drive mechanism is interrupted until the CEAs reach 90% inserted be:

Individual Limit _< 3.7 seconds Average Limit -< 3.2 seconds A 50 msec allowance is used for measurement uncertainty.

All CEAs passed the individual drop time limit of 3.65 seconds (TS limit minus 0.05 seconds).

The slowest drop time was 3.410 seconds (CEA #80). The average CEA drop time was 3.004 seconds, which passed the average limit of 3.15 seconds (TS average limit minus 0.05 seconds).

In addition, ANO-2 utilizes the CEA drop time testing data as a CEA coupling check. If measured and expected drop times differ by more than 0.1 seconds for a CEA, then an additional review of drop characteristics (i.e., slowdown in the dashpot region, presence or absence of "bounce") is performed to determine the condition of the CEA. Expected drop times are obtained from historical data. If CEAs remain suspect after this further review, additional CEA coupling data may be taken during low power physics testing by exercising the suspect CEAs individually and monitoring the reactivity trace behavior on a reactimeter. This provides a final confirmation that any suspect CEA is coupled. For Cycle 21, all CEAs were determined to be coupled based on meeting expected drop times or review of drop characteristics.

4.0 LOW POWER PHYSICS TESTING Prior to reactor startup, engineering evaluations and startup test controlling procedure pre-requisites verified the applicability requirements of Westinghouse Topical Report WCAP-1601 1-P-A, "Startup Test Activity Reduction Program", dated February 2005 (e.g., the STAR program) were satisfied. Based on meeting the requirements of this topical report, a reduced scope of

Attachment to 2CAN 120904 Page 6 of 23 startup testing was performed versus the traditional reactimeter based test program. The following presents the STAR test program results.

4.1 Initial Criticality ANO-2 normally withdraws CEAs to criticality. Shutdown Banks A and B are withdrawn and the RCS is then diluted to an estimated critical boron concentration corresponding to the desired critical CEA position. For Cycle 21, the estimated critical position was Group P at 126.9 inches withdrawn based on a measured RCS boron concentration of 1127.7 parts per million (ppm) prior to starting the approach to criticality. For Cycle 21, actual criticality was achieved with Group P at 133 inches withdrawn.

1 4.2 STAR Program HZP Critical Boron Concentration This test procedure specifies that the controlling group (Group P) position be recorded and all other CEAs are at their Upper Electrical Limit. As a pre-requisite, boron equilibrium is checked by obtaining three RCS boron samples and verifying each is within 10 ppm of the average. The residual worth of Group P is determined using the physics test predictions. The average RCS boron sample is corrected for the residual Group P worth to determine the ARO critical boron concentration (CBC). For Cycle 21, the ARO CBC was predicted to be 1168 ppm. The actual ARO CBC was 1141 ppm. The acceptance criteria require the actual and predicted ARO CBC values to be within either 50 ppm or the boron equivalent of 0.5 % Ak/k. Therefore, the 27 ppm difference for Cycle 21 was well within the acceptance criteria limit.

4.3 STAR Program MTC Alternate Surveillance When applying the STAR test program, the moderator temperature coefficient (MTC) of reactivity is calculated at HZP by adjusting the predicted MTC to account for the difference between actual boron concentration and the boron concentration associated with the test prediction. The resultant MTC at test conditions was -0.31 x 10-4 Ak/k/°F versus an upper (or positive) Core Operating Limits Report (COLR) limit of +0.5 x 10-4 Ak/k/°F. The MTC was extrapolated to the COLR figure Linear Break Point Power Level (LBPPL) and the 100% power level to insure compliance with the COLR. The resulting MTC (LBPPL) was -0.88 x 10-4 Ak/k/0 F versus an upper (or positive) COLR limit of +0.05 x 10-4 Ak/k/°F at the LBPPL. The extrapolated MTC(100) was -1.45 x 10-4 Ak/k/°F versus an upper (or positive) COLR limit of

-0.20 x 10. 4 Ak/k/°F and a negative COLR limit of -3.8 x 10-4 Ak/k/°F at 100% power. All values were within the limits of the COLR which meets the Alternate MTC Surveillance acceptance criteria.

5.0 POWER ASCENSION TESTING 5.1 Reactor Coolant System (RCS) Flow Rate At the 68% power test plateau, the RCS flow rate was determined by calorimetric methods at steady state conditions in accordance with ANO-2 TS Table 4.3-1, Item 10, Note 8. The acceptance criterion requires the measured RCS flow rate to be at least 103% of the design flow rate of 120.4 x 106 Ibm/hr to account for measurement uncertainties. The RCS flow rate determined calorimetrically was 104.26% of the design flow rate, which satisfies the acceptance

Attachment to 2CAN120904 Page 7of 23 criterion. The COLSS and CPC calculated RCS flow rates were verified to be conservative with respect to the calorimetric flow rate and the CPCs were verified conservative with respect to COLSS. No adjustments to CPC or COLSS calculated flow were made.

5.2 Core Power Distribution 5.2.1 < 30% Power Test Plateau Results Core power distribution data using fixed in-core neutron detectors is used to verify proper core loading and consistency between as-built and engineering design models. The first power distribution measurement is performed after the turbine is synchronized and prior to exceeding 30% power. The objective of this measurement is primarily to identify any fuel misloading that results in asymmetries or deviations from the reactor physics design. Because of the decreased signal-to-noise ratio at low powers and the absence of xenon stability requirements, radial and azimuthal symmetry criteria are emphasized, whereas pointwise absolute statistical acceptance criteria are relaxed. A core power distribution map at approximately 28%,power is given in Figure 6. The acceptance criteria at this test plateau follow:

a. For a predicted relative power density (RPD) < 0.9, the radial power distribution measured and predicted relative power density values shall agree within +/- 0.1 RPD units.
b. For a predicted RPD _>0.9, the radial power distribution measured and predicted RPD values shall agree within +/- 10%.
c. The power in each operable incore detector shall be within +/- 10% of the average power in its symmetric detector group.
d. The vector tilt shall be less than 3%.

The acceptance criterion stated in a, b, and c above was met for all 177 locations and all operable incore detectors (208 operable out of a possible 210). From Figure 6, the maximum

  • percent difference for a predicted RPD > 0.9 was -4.56% (predicted RPD of 1.091 versus measured RPD of 1.041). The largest percent difference for an operable in-core detector relative to the average power in its symmetric group was 4.42%. The vector tilt was measured to be 0.84%; therefore, the acceptance criterion stated in item d above was met.

5.2.2 68% Power Test Plateau Results At the intermediate power plateau of approximately 68% power, a core power distribution analysis is performed to again verify proper fuel loading and consistency with design predictions. The acceptance criteria at the intermediate power analysis follow:

a. The measured radial power distribution is compared to the predicted power distribution by calculating the root mean square (RMS) deviation from predictions of the RPD for each of the 177 fuel assemblies. This RMS error may not exceed 5%.

Attachment to 2CAN120904 Page 8 of 23

b. The measured radial power distribution is additionally compared to the predicted power distribution using a box-by-box comparison of the RPD for each of the 177 fuel assemblies. For a predicted RPD _> 0.9, the measured and predicted RPD values shall agree within +/- 10%.
c. For a predicted RPD < 0.9, the measured and predicted RPD values shall agree within

+/- 15%.

d. The measured axial power distribution is also compared to the predicted axial power distribution. The acceptance criterion states the RMS error between the measured axial power distribution and the predicted axial power distribution shall not exceed 5%.
e. The measured values of total planar RPF (Fxy), total integrated RPF (Fr), core average axial peak (F,), and 3-D power peak (Fq) are compared to predicted values. The acceptance criteria state that the measured values:

Fxy, Fr, and F, shall be within +/- 10% of the predicted values, and that COLSS and CPC constants shall be adjusted to appropriately reflect the measured values.

All of the acceptance criteria stated in a through e above was met at the 68% power plateau.

TABLE 5.2.2-1 PEAKING PARAMETER COMPARISON PARAMETER MEASURED PREDICTED  % DIFFERENCE*

Fxy 1.4288 1.426 0.1934 Fr 1.3885 1.388 0.0347 F, 1.0697 1.107 -3.3703 Fq 1.5108 1.544 -2.1,502

  • % Difference = %(M-P)/P obtained from GETARP output (Figure 7)

Calculated RMS values were:

,RADIAL = 1.3070 AXIAL = 4.7302 A RPD map for the 68% power test plateau is given in Figure 7. The maximum percent difference for a predicted RPD > 0.9 was -3.35% (predicted RPD of 1.102 versus measured RPD of 1.065).

Attachment to 2CAN120904 Page 9 of 23 5.2.3 100% Power Test Plateau Results The final core power distribution analysis is performed with equilibrium xenon at approximately 100% power. At this plateau, axial and radial power distributions are compared to design predictions as a final verification that the core is operating in a manner consistent with its design within the associated design uncertainties. The acceptance criteria are the same as those for the intermediate power distribution analysis stated in 5.2.2.a through 5.2.2.e above. The acceptance criteria stated in 5.2.2.a through 5.2.2.e for the 100% power test plateau were met for Cycle-21.

TABLE 5.2.3-1 PEAKING PARAMETER COMPARISON PARAMETER MEASURED PREDICTED  % DIFFERENCE*

Fxy 1.4256 1.418 0.5334 Fr 1.3831 1.374 0.663 F, 1.094 1.097 -0.2716 Fq 1.5673 1.547 1.3135

  • % Difference = %(M-P)/P obtained from GETARP output (Figure 8)

Calculated RMS values were:

RADIAL = 0.7309 AXIAL = 1.4577 A relative power density (RPD) map for the 100% power test plateau is given in Figure 8. The maximum % difference for a predicted RPD > 0.9 was -2.19% (predicted RPD of 1.111 versus measured RPD of 1.087).

5.3 Shape Annealing Matrix (SAM) and Boundary Point Power Correlation Coefficient (BPPCC) Measurement The CPCs, part of the reactor protection system, use excore neutron flux detector signals to infer the axial distribution of reactor power. The algorithm that infers the core power distribution from the excore signals includes an adjustment for the non-uniform transportof neutrons between the core and the excore detectors. This adjustment is provided by the SAM. The ANO-2 TSs require measurement and installation of appropriate SAM elements and associated BPPCCs after each refueling or verification of cycle independent SAM (CISAM) elements for each channel of the CPCs prior to exceeding 70% power. For Cycle 21, a verification of the CISAM elements for each channel of the CPCs was performed.

Acceptance criteria for the CISAM validation require the following:

a. Evenly distributed measurement data from reload power ascension over a range between 30% and 70% power.

Attachment to 2CAN 120904 Page 10 of 23

b. A minimum of 20 snapshots composed of at least 15 ARO and at most 5 rodded cases.
c. An observed Axial Shape Index (ASI) change of greater than or equal to 0.065.
d. Axial shape RMS errors must be less than or equal to 7.5% with Axial Form Index and ASI errors less than or equal to 0.10 and 0.075 respectively.

CISAM validation results are provided in Table 5.3-1:

TABLE 5.3-1 CYCLE INDEPENDENT SHAPE ANNEALING MATRIX VALIDATION

SUMMARY

PARAMETER CH A CHB CHC CHD Number Cases 115 115 115 115 Number Rodded 0 0 0 0 ASI Range 0.1623 0.1623 0.1623 0.1623 RMS Error 1.9652 1.9737 2.0647 2.1994 ASI Error 0.0134 0.0224 0.0092 0.0192 Form Error 0.0432 0.0329 0.0456 0.0452 Review Status PASS PASS PASS PASS 5.4 Planar Radial Peaking Factor (RPF) Verification At the 68% power test plateau, the RPF for the ARO configuration was measured using in-core detector data and the CECOR computer code. The measured ARO FY was 1.4294. The planar RPF'multiplier corresponding to the ARO condition in CPCs (ARM1 addressable constant) and the similar addressable constant (AB1 (01)) in COLSS were appropriately and conservatively adjusted as a result of this measurement prior to the plant increasing power above 70%. Adjustments for other CEA configurations are no longer performed since conservative bounding values have been determined by reload analyses and are installed prior to startup.

For ANO-2, the CEA shadowing factors are not measured. The CPC database and addressable constants include allowances for using predicted CEA shadowing factors.

5.5 Temperature Reactivity Coefficient A moderator and isothermal temperature coefficient measurement was performed at approximately 100%. During the Isothermal Temperature Coefficient (ITC) and MTC measurement, turbine load is used to increase RCS average temperature, which decreases reactor power, and then to decrease RCS average temperature, which increases reactor power.

This manipulation yields a ratio of RCS temperature change to reactor power change. Using a

Attachment to 2CAN120904 Page 11 of 23 predicted power coefficient (PC) with the measured average ratio, an ITC is inferred. Using a predicted Fuel Temperature Coefficient (FTC) with the inferred ITC yields an MTC.

Acceptance criteria state that the difference between the predicted and inferred ITC shall be less than 0.3 x 10-4 Ak/k/0 F. MTC, extrapolated to 100%, 70%, the COLR linear breakpoint power level and 0% power must also be within COLR limits.

For Cycle 21, the ITC and MTC passed the acceptance criteria. The measured ITC was

-1.18 x I04 Ak/k/°F versus a predicted ITC of -1.37 x 10-4 Ak/k/0 F. The difference was 0.19 x 10-4 Ak/k/°F which is within the +/- 0.3 x 1 0 -4 acceptance criterion. Extrapolated MTC values were as follows:

Power Level Extrapolated MTC Value (Ak/k/0 F) 100% -1.05 x 10-4 70% -5.95 x 10-5 COLR Linear Breakpoint -2.95 x 10s Power Level (50%)

0% 1.30 x 10-5 All extrapolated MTC values remained within COLR limits.

The measured MTC was extrapolated to 100% and 0% power and predicted peak boron concentration for the cycle to verify the MTC remains within COLR and TS stated design limits.

The MTC extrapolated to 100% power and peak boron concentration was -7.94 x 10-5 Ak/k/°F.

The MTC extrapolated to 0% power and peak boron concentration was 3.03 x 10s Ak/k/°F.

Both values were within COLR and TS stated design limits.

Finally, the measured MTC was also extrapolated to 100% power and end of cycle conditions.

This extrapolation indicated that the limiting boron concentration for maintaining COLR compliance can not be physically achieved (i.e., negative boron concentration) during the cycle, providing assurance that that the COLR negative MTC limit of -3.8 x 10-4 Ak/k/°F will not be exceeded during Cycle 21.

6.0 CONCLUSION

S Based upon analysis of the startup physics test results, it is concluded that the measured core parameters verify the Cycle 21 nuclear design calculations and the proper loading of the core.

All test values were found to be -acceptable with respect to limits and requirements contained within the ANO-2 SAR, TSs, TRM and COLR.

The above test results demonstrate adequate conservatism in the Cycle 21 core performance with respect to the Cycle 21 reload safety evaluations and licensing basis.

Attachment to 2CAN 120904 Page 12 of 23

7.0 REFERENCES

7.1 ANO-2 Safety Analysis Report (SAR), Section 4.5, Startup Program and Section 15, Accident Analysis 7.2 ANO-2 Technical Specifications 7.3 ANO-2 Cycle 21 Reload Analysis Report (RAR), CALC-ANO2-NE-09-00001 7.4 ANO-2 Cycle 21 Core Operating Limits Report (COLR) 7.5 ANO-2 Procedure 2302.009, Change 026, Moderator Temperature Coefficient at Power, 11/10/2009 7.6 ANO-2 Procedure 2302.021, Change 026, Sequence for Low Power Physics Testing Following Refueling, 9/26/2009 7.7 ANO-2 Procedure 2302.022, Change 016, Initial Criticality Following Refueling, 9/25/2009 7.8 ANO-2 Procedure 2302.034, Change 020-00-0, Power Ascension Testing Controlling Procedure 7.9 ANO-2 Procedure 2302.039, Change 014, Core Power Distribution Following Refueling, 9/25/2009, 9/26/2009 and 9/30/2009 7.10 ANO-2 Procedure 2302.046, Change 011, CEA Drop Time Test, 9/24/2009 7.11 ANO-2 Procedure 2302.057, Change 005, RCS Calorimetric Flowrate Calibration Using RCSFLOW Program, 9/26/2009 and 9/28/2009 7.12 2CNA090902, "Arkansas Nuclear One, Unit No. 2 - Issuance of Amendment RE:

Technical Specification change to Modify Reactor Coolant System Flow Verification (TAC No. ME0125)," dated September 16, 2009.

Attachment to 2CAN 120904 Page 13 of 23 FIGURE 1 Cycle 21 Core Loading FuelRods Nominal ZrB 2 Rods Shim Number of Number Sub- Number of per Assembly noment pr Shin Fuel Rods ofmbr Batch ID Assemblies (Excluding (Wt. %) Assembly (ZrB2) (Including Rods ZrB 2 Rods) ZrB2 Rods) 108 4.16 36 2.00x 2304 576 Zi 16 32 3.86 8 2.00x 640 128 48 3.56 4 2.00x 832 64 108 4.16 36 2.00x 2880 720 Z2 20 36 3.86 4 2.00x 800 80 1 24 3.56 28 2.00x 1040 560 88 4.16 56 2.00x 11,52 448 Z3 8 32 3.86 8 2.00x 320 64 16 3.56 36 2.00x 416 288 80 4.16 64 2.00x 6336 2816 Z4 44 24 3.86 16 2.00x 1760 704 8 3.56 44 2.00x 2288 1936 Total 88 20768 8384 76 4.08 28 2.00x 1664 448 AA 16 64 3.83 12 2.00x 1216 192 36 3.58 20 2.00x 896 320 64 4.08 40 2.00x 2080 800 AB 20 56 3.83 20 2.00x 1520 400 36 3.58 20 2.00x 1120 400 64 4.08 40 2.00x 4160 1600 AC 40 48 3.83 28 2.00x 3040 1120 12 3.58 44 2.00x 2240 1760 56 4.08 48 2.00x 1248 576 AD 12 48 3.83 28 2.00x 912 336 8 3.58 48 2.00x 672 576 0 0.00 0 0 0 0 AE 1 236 1.80 0 0 236 0 0 0.00 0 0 0 0 Total 89 21004 8528 Grand ZrB2 Total 177 41772 16912

Attachment to 2CAN 120904 Page 14 of 23 FIGURE 2 Integral Burnable Poison Shim and Enrichment Zoning Patterns for Batch AA (through AE) Fuel Assemblies X, D-1 -I >I I IX

  • x 5<X <3' I x x" .xx
  • f:* X ...:

X D<-- X X .* X AB (80 ZrB2 Pins)

AA (60 ZrB2 Pins)

PAT1I6381FB PAT 16391FB X I* X X .DK

  • X X' X- X *!* x - x- I-
  • X, xxx ". F I X, X x x I x D*_>i<D< < x AC (112 ZrB2 Pins) AD (124 ZrB2 Pins)

PATI 6411FB PAT16421FB High Enriched Fuel Rod

-4 Med Enriched Fuel Rod iLow Enriched Fuel Rod ZrB 2 Rod d High Enriched Med Enriched ZrB 2 Rod Low Enriched ZrB2 Rod AE (0 ZrB 2 Pins)

PAT1601ADU

Attachment to 2CAN120904 Page 15 of 23 FIGURE 3

.Cycle 21 Fuel Management Scheme A B C D E F G H J K L M N P R Z423 Z40 8 Z416 Z415 Z430 I 4 4.-f 1 G-6 K-5 H-3 L-6 F-7 I I

-T-t-U-4-4-4 08 ABlO AA 06 4 1432 J- 33 Z4 4 Z4 Z4 3838 Z420 Z4 20 AA03 AA 03 AB03 ADO3 AD 08 AB ABI0 AA06 FEED Z432 1-13 Z4 33 FEED M-7 F'-13 F- 13 PEED FEED FEED FEED FE ED FE ED FEED FEED K-13 J-4 f-f 2 M-7 9 AA 08 ABI6 AC03 Z105 AC 15 AA14 Z441 Z102 ACIS AB17 8

FE ED FEED H-5 I I 3 FEED FEED D-13 FE ED N-4 FEED FEED Z401 JAAI5 112 AC28I Z210 JAC29 Z2111 AC02 Z203 AC37 ZI 01 AA02 Z421


4 D-7 FEED P- 10 FEED J-2 FEED P-8 FEED G-2 FEED F- 14 FEED J-12 Z418 AB02 AC 08 Z103 AC23 Z209 AC 24 Z217 AC20 Z104 AC 21 AB20 Z426 5

N-6 FEED FE ED F-2 FEED C-11 FE ED L-3 FEED P-6 FE ED FEED C-6 Z439 AA16 AC14 Z2 12 AC17 Z444 AD02 Z306 ADO4 Z414 ACO Z2107 AC27 AA04 Z410

-6 G-10 FEED FEED B-9 FEED G-8 FEED H-5 FEED H-7 FEED P-9 FEED FEED X-7 Z402 AB04 Z108 AC13 Z202 ADO5 Z301 ADIO Z308 AD1i Z216 AC10 Z115 AB13 Z404

-7 F-5, FEED D-3 FEED C-5 FEED M-lI FEED E-12 FEED E-3 FEED C-4 FEED L-10 Z436 AB14 AC34 Z208 AC32 Z302 AD01 AE01 AD12 Z303 AC26 z219 AC40 AB1I Z435 2700 -8 C-8 FEED FEED H-2 FEED E-4 FEED FEED FEED L-12 FEED H-14 FEED FEED N-8 Z427 AB12 Z110 AC25 Z206 AD03 Z304 AD08 Z305 AD09 Z201 AC22 Z107 AB07 Z406

-9 E-6 FEED N-12 FEED L-13 FEED L-4 FEED D-5 FEED N-Il FEED M-13 FEED 1-11 Z440 AA11 AC31 Z204 AC09 Z407 AD06 Z307 AD07 Z428 AC36 Z213 AC07 AA12 Z424

- 10 F-9 FEED FEED B-7 FEED H-9 FEED D-l1 FEED J-6 FEED P-7 FEED FEED J-6 Z442 AB09 AC16 Z111 AC30 Z215 AC19 Z220 AC33 Z113 AC35 ABOI Z422 N-10 FEED FEED B-10 FEED E-13 FEED N-5 FEED K-14 FEED FEED C-10 Z431 AA09 7106 AC39 Z1218 jACO4 Z214 AC38 Z205 ACOS ZI16 AA10 Z1434 12 G-4 FEED K-2 FEED T-14 FEED B-8 FEED G-14 FEED B-6 FEED M-9 Z412 AAOS AB15 ACll Z109 AC 06 Z114 AC12 AB06 AA07 Z425 13 H-I1 FEED FEED FEED C-12 FEED M-3 FEED FEED FEED L-8 Z4 13 Z403 AAO1 AB05 AB 19 AB18 AA13 Z419 Z4 09 14 G- 12 F-3 FEED FEED FEED FEED FEED X-3 D- 9 Assembly Identifier Z417 Z437 1411 Z405 Z443 15 Previous CyCle Location Y- 9 E-10 H-1 F-il J-10 1800

Attachment to 2CAN 120904 Page 16 of 23 FIGURE 4 BOC Assembly Average Burnup and Initial Enrichment Distribution A

AE AD z23 AC z2 AC AB z4 o 0 23814 0 21544 0 0 24275 AD -A AD 2 AC Z1 AB 24 o 2f944 0 21794 0 17357 0 2 4&36 Z AD z4 AC z2 AC AA 24 2"914 0 2341 5 0 20933 0 0 24300 AC z2 AC 2i AC AB Z4 0 217,1 0 1i99 0 0 2" ]4, z2 AC Z2 AC Z1 AA Z4 21544 0 209L 0 0 1969, 0 24598 AC ZI AC AB AA 17094 0 0 0245 AB A8 A A Z4 Z4 W

0 0 0 23355 2459 z 4 Z& JZ 4 BATCH 24,275 2&335 '2-1324 i B ASSEMBLY BURNUP

Attachment to 2CAN 120904 Page 17 of 23 FIGURE 5 ICI Locations A B C D E F G H .1 K hi N P I I H I . I -

..... ..... I. .. . . .

-I -

.I.. . . . . . -I 0 0 0 0 0

............ ..... I. .... I.... 0 3 6 2

............ ..... 0 T0 jT 1-6 I - ~ __

_ 0I

.. . . .. . . . . - - 0 O -

.I.

I1 T 00 00 6 I7 0

00 0 0 0 ii 27 2 K 2 *0 0 0 0 -

i 1

12........................0 0 3t 1 L09J140 13 -..............- .. -

1.-f-I-K-1..... ... 0 0 0 0 41 43 44

- K - 4 - -4 - ---- 4 -

D2ETECTOR AXIAL LEVEL LOCATIONS: J = 1 BOTTOM OF CORE J = 3 MIDDLE OF CORE J=5 TOPOFCORE

Attachment to 2CAN120904 Page 18 of 23 FIGURE 6 GETARP Output for the <30% Power Plateau GGGGGGGGGG EEEEEEEEEE TTTTTTTTTTT AAAA RRRRRRRRR PPPPPPPPP 0GGGGGGGGG EEEEREEESE TTTTTTTTTTT AAAAAA RRRRRRRRRR PPPPPPPPPP GGG EEE TTT AAA AAA RRR ERR PPP PPP GGG GGGGG EEEREE TTT AAAAAAAAAA RRRRRRRRRR PPPPPPPPPP GGG GGGGG BREESE TTT AAAAAAAAAA RRRRRRRRR PPPPPPPPP GGG GGG SEE TTT AAA AAA RRR RRR PPP GGGGGGGGGG ESREEEEEEE TTT AAA AAA RRR RRR PPP GGGGGGGGGG EEEEEEEEEE TTT AAA AAA RRR RRR PPP (FPA)

A PROGRAM TO EXTRACT DATA FROM CECOR

SUMMARY

FILES FOR COMPARISON OF AXIAL AND RADIAL POWER DISTRIBUTIONS.

GETRNPO0 - GETARP FOR NT REVISION 1 MEASURED DATA EXTRACTED FROM: A3782WT.S01 PREDICTED DATA EXTRACTED FROM: A2PRED.029 RELATIVE RADIAL POWER DISTRIBUTION COMPARISON

+--- + +--------------------------------------+ -+

PREDICTED ;  ; .383 ; .503 .529 .505 .385 ; (MAS.-PREDICTED)

MEASURED  ; .412 ; .537 ; .564 ; .539 ; .412 ; . DIFFERENCE ----------------- X 100.0

%+ DIFFER  ;  ; 7.45 ; 6.79 p 6.67 p 6.64 ; 6.91 p PREDICTED

.383  ; .627 p .964 ; 1.072 ; 1.090 ; 1.081 ; .970 ; .628 ; .382

.406 .633 ; .963 p 1.061 ; 1.078 ; 1.069 ; .961 ; .618 ; .402 5.93  ; 1.04 ; -. 14 ; -1.05 ; -1.14 ; -1.15 ; -. 90 ; -1.59 ; 5.23

÷+.... ÷..... +- ----

..... +÷ .... -....---........-

÷..... + .....-.. + ......- +...-- +....

.472  ; .944 p 1.112 ; 1.161 p 1.284 ; 1.240 p 1.289 ; 1.163 ; 1.110 ; .942  ; .472

.498  ; .953 p 1.096 ; 1.136 ; 1.266 ; 1.208 p 1.266 ; 1.135 p 1.094 ; .955  ; .504 5.58 p 1.01 ; -1.41 ;-2.15 -1.43 ; -2.57 ; -1.75 ; -2.41 ; -1.45 1.38  ; 6.82

+-----. ---- +------------.--------------+.-.----..---.......-÷-.. .. .. .. . + .- ..-------

+--------+- +

.382 p .942 p 1.165 ; 1.225 ; 1.259 ; 1.272 ; 1.267 ; 1.276 ; 1.257 ; 1.220 ; 1.165  ; .944 ; .383

.408  ; .935  ; 1.160 p 1.214 ; 1.251 ; 1.264 ; 1.257 ; 1.257 p 1.248 ; 1.223 ; 1.171 p .956 ; .415 p 6.76; -. 70; -. 41 p-.87; -. 67; -. 65; -. 82 -1.50; -. 72; .24; .51; 1.30; 8.44;

+...--+- ..... +....................--+ - +-4÷.... ......

- ...... ÷ .....

+- ..... ..... ...---- +--..

.628 1.110  ; 1.220 p 1.302 ; 1.247 1.211 ; 1.207 ; 1.212 p 1.244 ; 1.302 ; 1.225 p 1.112 p .627

.660 p 1.103  ; 1.195 ; 1.286 ; 1.221 p 1.202 ; 1.182 ; 1.195 ; 1.216 ; 1.290 p 1.205  ; 1.114 ; .669 5.14  ; -. 65  ; -2.01 ; -1.23 ; -2.05 p -. 74 ; -2.09 ; -1.37 ; -2.22 ; -. 92 ; -1.64 p .15 p 6.63

+- +÷+--+÷ ++-- + + ÷ ÷÷÷----+ . --------- +

.385 p .970 p 1.163 p 1.257 ; 1.244 ; 1.153 p 1.094 p 1.074 ; 1.091 ; 1.153 p 1.247 ; 1.259 ; 1.161 ; .964 .383

-. 378 p .979 p 1.171 p 1.249 p 1.217 p 1.146 p 1.059 p 1.065 p 1.041 p 1.140 p 1.219 p 1.252 p 1.170 p .991 p .421

-1.79 p .93 p .72 p -. 62 p -2.20 p -. 61 p -3.23 p -. 84 p -4.56 p -1.17 p -2.24 p -. 58 p .78 p 2.81 ; 10.05

.505 p1.081 p 1.289 1.276 p1.212 p1.091 p 1.022 p1.016 p1.022 p1.094 p1.211 p1.272 p1.284 p1.072 p .5403

.535 p 1.083  ; 1.286 p 1.253 p 1.206 p 1.080 p 1.024 p 1.012 p 1.014 p 1.075 p 1.202 p 1.246 p 1.277 p 1.078 ; .545 5.96; .23  ; -. 26 -1.83; -. 48 ; -i.01  ; .21; -. 36; -. 75 -1.73; -. 76 -2.07p -. 58  ; .53 ;p8.34;

+-------+- +-+-------------------------------------------------+- - - - - - - .4.--- +---

.529 p-1.090 p 1.240 p-1.267 p 1.207 p 1.074 1.016 .875 p-1.016 p1.074 p -1.207 p1.267 p -1.240 p1.090 p.529

.570 p 1.095 p 1.232 p 1.260 p 1.190 p 1.078 p .993 p .904 p .977 1.069 1.185 p 1.253 p 1.215 p 1.087 p .567 p 7.79 p .45 p-.63 p-.52 p -1.45 p .34 p -2.22 p 3.27 p -3.87 p -. 43 p -1.79 p -1.13 p -2.01 p -. 27 p 7.17

.503 p 1.072 p 1.284 ; 1.272  ; 1.211 ; 1.094 p 1.022  ; 1.016 ; 1.022 ; 1.091 ; 1.212  ; 1.276 p 1.289  ; 1.081  ; .505 p

.546 p 1.079 p 1.284 ; 1.251  ; 1.205 ; 1.082 p1.025  ; 1.014 ; 1.016 ; 1.075 p 1.204  ; 1.249 ; 1.278  ; 1.076 p .532 8.60 p .61 p -. 02 ; -1.63  ; -. 46 ; -1.07  ; .26  ; -. 22 ; -. 55 ; -1.50 p -. 68  ; -2.15 ; -. 84 p -. 47 p 5.26

+- -. . 4.... ... ... .. +- .. ... - + -.... .. +.+..+-

.. ... .. --... + .... .+ ...-....... ... +. ... . ÷... ... +-

+. ....-- + - - - - --. +

.383 p .964 ; 1.161 p 1.259 ; 1.247,; 1.153 1.091 ; 1.074  ; 1.094 p 1.153 p 1.244  ; 1.257 ; 1.163  ; .970  ; .385

.422 p .994 ; 1.174 ; 1.255 ; 1.217 ; 1.147 1.057 ; 1.068  ; 1.048 ; 1.142 p 1.221  ; 1.250 p 1.173  ; .977 p .376 10.29  ; 3.07 p 1.13 p -. 34 p -2.44 ; -. 50 -3.09 ; -. 56  ; -4.20 ; -. 91 ; -1.88  ; -. 53 p .82  ; .71  ; -2.47 p .627 p 1.112 p 1.225  ; 1.302  ; 1.244 p 1.212  ; 1.207 ; 1.211  ; 1.247 ; 1.302  ; 1.220  ; 1.110  ; .628 p .671 p 1.119  ; 1.210  ; 1.294 p 1.226  ; 1.208  ; 1.187 ; 1.198  ; 1.220 p 1.288  ; 1.199  ; 1.109  ; .662 7.08  ; .67 p -1.20  ; -. 61  ; -1.46  ; -. 31  ; -1.69 ; -1.06  ; -2.18 ; -1.07  ; -1.69  ; -. 12  ; 5.43

.383  ; .944  ; 1.165  ; 1.220  ; 1.257 ; 1.276  ; 1.267 ; 1.272  ; 1.259 p 1.225 ; 1.165 p .942  ; .382

.418  ; .965  ; 1.179  ; 1.226  ; 1.261 p 1.277  ; 1.264 ; 1.256  ; 1.249 p 1.216 ; 1.166  ; .949  ; .412 p 9.15  ; 2.19  ; 1.18  ; .52 3; . .10  ; -. 25 ; -1.23  ; -. 80 p -. 71 ; .10  ; .78  ; 7.77

.472 p .942 p 1.110 p.1.163  ; 1.289  ; 1.240  ; 1.284  ; 1.161 p 1.112 p .944 p .472

.510 p .967 ; 1.11i  ; 1.153 p 1.286  ; 1.218  ; 1.268  ; 1.136 p 1.096  ; .956 p .502 7.95 p 2.69 ; .11 p -. 85  ; -. 27  ; -1.75 p -1.23  ; -2.13 ; -1.41  ; 1.30 p 6.45

.382 ; .628 ; .970  ; 1.081 p 1.090  ; 1.072  ; .964 ; .627  ; .383

.412 ; .646 ; .984  ; 1.090 p 1.090  ; 1.066  ; .963 ; .628  ; .405 7.91 ; 2.90 p 1.47

.88 ; -. 02  ;

-. 56  ; -. 09 ; .22 p 5.70

.385  ;.505 p.529 p.503  ;.383

.420  ; .548  ; .571 ; .540 ; .412 9.21  ; 8.57  ; 7.89 ; 7.44 ; 7.69

+ . . . . . . .- -------- -------.- -------.- --. .. . ..

Attachment to 2CAN120904 Page 19 of 23 FIGURE 6 (continued)

GETARP Output for the <30% Power Plateau RELATIVE AXIAL POWER DISTRIBUTION COMPARISON NODE PREDICTED MEAS. 5 DIFFERENCE 1 .4870 .5053 3.7622 2 .5830 .6030 3.4299 3 .6830 .6993 2.3895 4 .7250 .7389 1.9168 5 .7680 .7794 1.4795 6 .8030 .8134 1.2960 7 .8290 .8385 1.1447 8 .8500 .8593 1.0993 9 .8680 .8771 1.0469 10 .8830 .8923 1.0522 11 .8970 .9058 .9803 12 .9100 .9179 .8730 13 .9230 .9294 .6948 14 .9350 .9403 .5644 15 .9470 .9507 .3889 16 .9590 .9608 .1848 17 .9700 .9705 .0507 18 .9810 .9799 -. 1169 19 .9920 .9889 -. 3111 20 1.0040 .9978 -. 6219 21 1.0150 1.0065 -. 8396 22 1.0260 1.0153 -1.0455 23 1.0380 1.0241 -1.3387 24 1.0500 1.0336 -1.5586 25 1.0630 1.0452 -1.6750 26 1.0780 1.0596 -1.7069 27 1.0930 1.0742 -1.7241 28 1.1050 1.0860 -1.7186 29 1.1150 1.0958 -1.7196 30 1.1240 1.1049 -1.7035 31 1.1320 1.1137 -1.6194 32 1.1380 1.1221 -1.3939 33 1.1450 1.1304 -1.2772 34 1.1500 1.1383 -1.0196 35 1.1550 1.1457 -. 8038 36 1.1590 1.1525 -. 5568 37 1.1630 1.1584 -. 3962 38 1.1650 1.1631 -. 1638 39 1.1670 1.1662 -. 0712 40 1.1680 1.1672 -. 0679 41 1.1670 1.1660 -. 0893 42 1.1630 1.1614 -. 1418 43 1.1560 1.1529 -. 2715 44 1.1430 1.1394k -. 3183 45 1.1240 1.1201 -. 3474 46 1.0970 1.0937 -. 2977 47 1.0530 1.0543 .1216 48 .9970 1.0061 .9147 49 .9420 .9638 2.3097 50 .8110 .8629 6.3934 51 .6850 .7624 11.2940 PEARING PARAMETER COMPARISON PARAMETER MEAS. PREDICTED % DIFFERENCE FXY 1.4382 1.4430 -. 3309 %

FR 1.3980 1.4100 -. 8493 %

FZ 1.1672 1.1670 .0178 %

FQ 1.6332 1.6500 -1.0168 %

CALCULATED RMS VALUES RADIAL = 2.0961 AXIAL = 1.7256 MEASURED ASI = -. 0980 PREDICTED ASI = -. 1014 ACCEPTANCE CRITERIA REPORT EASURED FXY WAS WITNIN PLUS OR MINUS 10.000 OF TME PREDICTED VALUE.

MEASURED FR WAS WITHIN PLUS OR MINUS 10.000 % OF TEE PREDICTED VALUE.

MEASURED FR WAS WITHIN PLUS OR MINUS 10.000 96 OF TEE PREDICTED VALUE.

MEASURED FQ WAS WITHIN PLUS OR MINUS 10.000 % OF TEE PREDICTED VALUE.

EMS ERROR ON AXIAL DISTRIBUTION WAS LESS TRAM OR %D.EQUAL TO 5.000 RMS ERROR ON RADIAL DISTRIBUTION WAS LESS THAN OR EQUAL TO 5.000 9.

ALL PREDICTED RADIAL POWERS LESS THAN 0.9 WERE WITHIN PLUS OR MINUS 15.000 % OF MEASURED.

ALL PREDICTED RADIAL POWERS GREATER THAN OR EQUAL TO 0.9 WERE WITHIN PLUS OR MINUS 10.000 % OF MEASURED.

      • ALL ACCEPTANCE CRITERIA WERE MET
  • Attachment to 2CAN120904 Page 20 of 23 FIGURE 7 GETARP Output for the 68% Power Plateau 0GGGGGGGGGG EEEEEEEEEE TTTTTTTTTTT AAAA RRRRRRRRR PPPPPPPPP GGGGGGGGGG EEEEEEEEEE TTTTTTTTTTT AAAAAA RRRRRRRRRR PPPPPPPPPP GGG EEE TTT AAA AAA RRR RRR PPP PPP GGG GGGGG EEEEEE TTT AAAAAAAAAA RRRRRRRRR PPPPPPPPPP GGG GGGGG EEEEEE TTT AAAAAAAAAA RRRRRRRRR PPPPPPPPP GGG GGG EEE TTT AAA AAA RRR RRR PPP GGGGGGGGGG EREREEEEE TTT AAA AAA RRR RRR PPP GGGGGGGGG0 EEEEEEEEEE TIT AAA AAA RRR RRR PPP (FPA)

A PROGRAM TO EXTRACT DATA FROM CECOR

SUMMARY

FILES FOR COMPARISON OF AXIAL AND RADIAL POWER DISTRIBUTIONS.

GETRNP01 - GETARP FOR UT REVISION 1 MEASURED DATA EXTRACTED FROM: a3783qs.sOl PREDICTED DATA EXTRACTED FROM: a2pred.068 RELATIVE RADIAL POWER DISTRIBUTION COMPARISON p PREDICTED ; .397 .518 .544 .520 .399 (MEAS.-PREDICTED)

MEASURED  ;  ; .410 p .535 ; .561 ; .536 p .411 ;  % DIFFERENCE----- X 100.0
DIFFER  ;; 3.33 p 3.20 ; 3.16 ; 3.10 ; 2.92 p PREDICTED

+ ------- - +---------------------------4 - - - -------

p .396  ; .639  ; .970 1.072  ; 1.0891.08.081 ; .975 p .640  ; .395

.407  ; .643  ; .965 p 1.059  ; 1.076 ; 1.067 ; .965  ; .630  ; .404 2.67  ; .56  ; -. 55 p -1.19  ; -1.23 ; -1.28 ; -1.08  ; -1.52  ; 2.23

+------- -- -+ - - + - - 4- - + - -

.485  ; .951 p 1.109 p 1.152 ; 1.267 ; 1.225  ; 1.272 ; 1.154  ; 1.107 p .948  ; .485

.497 .953  ; 1.096 ; 1.135 p 1:262 ; 1.205  ; 1.262 ; 1.134 1.095 p .955  ; .502

2.48 p .16  ; -1.20 ; -1.50 ; -. 38 p -1.62  ; -. 80 ; -1.75 p -1.12  ; .69  ; 3.61

÷*... - + ...-- + ... - . ..-- ..-- +---.... -..... ÷ ..... ÷ ..... - --

+- -- .. +..+---..+-+.

.... ÷ ...------- . -

p .395 p .948 1.157 p 1.212 p 1.243 ; 1.256 ; 1.251  ; 1.259 ; 1.241  ; 1.208  ; 1.157  ; .951 ; .396

.406 ; .937 ; 1.156  ; 1.203 p 1.244 ; 1.256 ; 1.251  ; 1.245 ; 1.241 p 1.213  ; 1.167  ; .956 ; .413 2.83 ; -1.11 p -. 09  ; -. 72 p .11 p .01 ; -. 01  ; -1.12 ; -. 01  ; .37  ; .84  ; .58 ; 4.22

+-...-- ...-- ...- +- ...- + ... - -.-------

-... +- ... --- 4.- .... .... +.....+ .... ..--------------..

+

.640 p 1.107 ; 1.208 p 1.284 p 1.235 ; 1.204 p 1.202  ; 1.204 p 1.232  ; 1.284  ; 1.212  ; 1.109 ; .639 p

.657 p 1.098 ; 1.191 p 1.279 1.221 ; 1.205 ; 1.187  ; 1.198 ; 1.217  ; 1.285  ; 1.201  ; 1.109 ; .663 2.58; -. 77 ; -1.44; -. 35 ;-1.11; .09 -1.26; -. 48 ;-1.24; .08; -. 91; .02; 3.81; S4.------

+-+------------------------------------------+----+ -- 4. - - -- + --------- 4-

.399 ; .975 p -1.154 p 1.232 p-1.241 1.152 ;-1.102 p1.085 p1.100; 1.152 ;1.235 p1.243 p1.152  ;-.970  ;.397

.389 p .977 p 1.160 p 1.241 ; 1.209 p 1.151 ; 1.078 p 1.081 p 1.064 p 1.146 ; 1.215 1.245 p 1.161 p .985 ; .417

-2.49; .18; .54; .00;-1.83 -. l;-2.16; -. 39;-3.25; -. 513; -1.59; .20; .76; 1.52 5.11;

+--- 4----------------------.-- +- + - 4. -------- -------------------- 4. - + ------- + - +

.520 ; 1.081 p 1.272 p 1.259 ; 1.204 p 1.100 p 1.043 ; 1.046 1.043 ; 1.102 p 1.204 p 1.256 ; 1.267  ; 1.072 .518
.534 ; 1.078 p 1.277 p 1.248 ; 1.205 p 1.091 p 1.046 ; 1.035 p 1.036 p 1.086  ; 1.202 ; 1.243 ; 1.271  ; 1.073 p .540
2.75; -. 32; .36; -. 89; .12; -. 84; .28 ;-1.04; -. 68 ;-1.45; -. 16 -1.05; .29; .11; 4.33;

- +...-.....................................-4.......................-------+ -.. +.........------ ÷ + 4...

.544 ; 1.089 ; 1.225 p 1.251 p 1.202 p 1.085 p 1.046 ; .923 p 1.046 p 1.085 p 1.202 p 1.251 ; 1.225 p 1.089 p .544

.566 ; 1.088 p 1.220 p 1.255 p 1.193 p 1.093 ; 1.035 p .931 p 1.014  ; 1.082 p 1.187 p 1.248 p 1.210 p 1.081  ; .562

4.01; -. 09; -. 44; .29; -. 76; .73 ;-1.05; .89 -3.07; -. 26 -1.25; -. 22 -1.24 -. 75  ; 3.38;
  • - - 4.- +-----------------------------------------------------4. - + - + - . - 4. - + - - + - + - 4

.51 8 p1.072 ;1.267 ;1.256 p1.204 p1.102 ;1.043 p1.046 p1.043 ;1.100 ;1.204 p1.259 ;1.272 p1.081% .520

.542  ; 1.075  ; 1.275  ; 1.247 p 1.206 1.095 ;

1 1.048  ; 1.036 p 1.036  ; 1.083  ; 1.201 p 1.23 .269  ; 1.066 p .530 4.61  ; .24 p .65  ; -. 70 p .19 p -. 66 ; .47 p -. 94 p ,.69 p -1.54  ; -. 26 p -1.27 ; -. 22 ; -1.37 p 1.84

.397 p .970  ; 1.152  ; 1.243 p 1.235  ; 1.152  ; 1.100 p 1.085 p 1.102  ; 1.152 ; 1.232 ; 1.241 ; 1.154  ; .975 p .399

.418  ; .987  ; 1.163  ; 1.248 p 1.213 p 1.155  ; 1.081  ; 1.084 p 1.065 p 1.144 ; 1.209 p 1.240 ; 1.160  ; .972 p .386  ;

5.31; 1.71; .92; .38  ;-1.79; .26  ;-1.70; -. 14 -3.35; -. 66 ;-1.84; -. 09; .49; -. 26 ;-3.26;

.639  ; 1.109  ; 1.212 p 1.284  ; 1.232 ; 1.204  ; 1.202 p 1.204 p 1.235  ; 1.284 p 1.208  ; 1.107 ; .640

.666  ; 1.115  ; 1.207  ; 1.290  ; 1.229 p 1.214 p 1.192 p 1.199 p 1.217  ; 1.278 ; 1.192  ; 1.103 ; .657 4.23; .52; -. 43; .48; -. 28; .86; -. 80; -. 38 -1.46; -. 44 ;-1.29; -. 38; 2.69;

.396 p .951 p 1.157  ; 1.208  ; 1.241 p 1.259  ; 1.251 p 1.256 p 1.243 p 1.212 ; 1.157  ; .948  ; .395 p

.416  ; .966 p 1.176; 1.218 p 1.258  ; 1.273  ; 1.260 ; 1.246 p 1.240  ; 1.202 ; 1.160  ; .951  ; .410 p 5.00 p 1.61 p 1.61 p .80  ; 1.34 p 1.15  ; .72 p -. 78 ; -. 25  ; -. 82 ; .25  ; .31  ; 3.69

.485 p .948  ; 1.107  ; 1.154 p 1.272 p 1.225 ; 1.267 ; 1.152  ; 1.109 ; .951  ; .485

.508 p .967  ; 1.112  ; 1.154 p 1.285  ; 1.217 ; 1.264 ; 1.133 p 1.094 ; .954  ; .501 4.80  ; 2.04  ; .49  ; .02  ; 1.00  ; -. 68 ; -. 27 ; -1.62  ; -1.38 ; .29  ; 3.22

.395  ; .640 ; .975 p 1.081  ; 1.089 ; 1.072 ; .970  ; .639 ; .396

.413  ; .656 ; .988 p 1.091  ; 1.089 ; 1.063 p .964  ; .637 p .405 p 4.67  ; 2.49 ; 1.35 p .95  ; -. 04 p -. 82 p -. 62 p -. 36 p 2.29

.399 p .520 p .544  ; .518 p .397

420 p .546  ; .568  ; .537  ; .411 p 5.22  ; 5.09  ;-4.4; 3.75  ;÷3.45

Attachment to 2CAN 120904 Page 21 of 23 FIGURE 7 (continued)

GETARP Output for the 68% Power Plateau RELATIVE AXIAL POWER DISTRIBUTION COMPARISON NODE PREDICTED MEAS. t DIFFERENCE 1 .5630 .6134 8.9596 2 .6680 .7298 9.2478 3 .7780 .8434 8.4063 4 .8190 .8876 8.3725 5 .8610 .9319 8.2315 6 .8950 .9674 8.0940 7 .9180 .9913 7.9834 8 .9350 1.0091 7.9241 9 .9490 1.0222 7.7149 10 .9600 1.0314 7.4373 11 .9700 1.0377 6.9801 12 .9780 1.0417 6.5095 13 .9860 1.0442 5.8992 14 .9930 1.0455 5.2837 15 1.0010 1.0459 4.4865 16 1.0080 1.0458 3.7532 17 1.0140 1.0454 3.0925 18 1.0210 1.0447 2.3172 19 1.0270 1.0439 1.6485 20 1.0340 1.0433 .9039 21 1.0400 1.0431 .2941 22 1.0460 1.0433 -. 2615 23 1.0530 1.0439 -. 8657 24 1.0590 1.0455 -1.2731 25 1.0670 1.0494 -1.6502 26 1.0770 1.0562 -1.9339 27 1.0870 1.0630 -2.2062 28 1.0930 1.0670 -2.3776 29 1.0980 1.0688 -2.6617 30 1.1010 1.0695 -2.8623 31 1.1040 1.0697 -3.1077 32 1.1060 1.0693 -3.3219 33 1.1070 1.0683 -3.4916 34 1.1080 1.0669 -3.7076 35 1.1070 1.0650 -3.7964 36 1.1070 1.0625 -4.0207 37 1.1050 1.0593 -4.1390 38 1.1030 1.0553 -4.3255 39 1.0990 1.0503 -4.4342 40 1.0950 1.0439 -4.6628 41 1.0890 1.0362 -4.8493 42 1.0810 1.0261 -5.0754 43 1.0700 1.0134 -5.2932 44 1.0550 .9969 -5.5055 45 1.0330 .9761 -5.5037 46 1.0050 .9499 -5.4832 47 .9630 .9129 -5.1984 48 .9110 .8691 -4.6021 49 .8620 .8307 -3.6274 50 - .7500 .7424 -1.0189 51 .6420 .6548 1.9966 PEAKING PARAMETER COMPARISON PARAMETER HEAS. PREDICTED  % DIFFERENCE FXY 1.4288 1.4260 .1934 %

FR 1.3885 1.3880 .0347 %

FZ 1.0697 1.1070 -3.3703 %

FQ 1.5108 1.5440 -2.1502 %

CALCULATED EMS VALUES RADIAL = 1.3070 AXIAL = 4.7302 MEASURED ASI = -. 0035 PREDICTED ASI = -. 0442 ACCEPTANCE CRITERIA REPORT HEASURED FXY WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

HEASUR-D FR WAS WITNIN PLUS OR MINUS

-- 10.000 OF THE PREDICTED VALUE.

MEASURED FZ WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MEASURED FQ WAS WITHIN PLUS OR MINUS 10.000 % OF THE PREDICTED VALUE.

MS ERROR ON AXIAL DISTRIBUTION. WAS LESS THAN OR EQUAL TO 5.000V.

RMS ERROR ON RADIAL DISTRIBUTION WAS LESS THAN OR EQUAL TO 5.000 6.

ALL PREDICTED RADIAL POWERS LESS THAN 0.9 WERE WITHIN PLUS OR MINUS 15.000 % OF MEASURED.

ALL PREDICTED RADIAL POWERS GREATER THAN OR EQUAL TO 0.9 WERE WITHIN PLUS OR MINUS 10.000 % OF MEASURED.

      • ALL ACCEPTANCE CRITERIA WERE MET
  • Attachment to 2CAN120904 Page 22 of 23 FIGURE 8 GETARP Output for the 100% Power Plateau GGGGGGGCG EEEEEEEEEE TTTTTTTTTTT AAAA RRRRRRRRE PPPPPPPPP GGGGGGGGGG EEEEEEEEEE TTTTTTTTTTT AAAAAA RRRRRRRRRR PPPPPPPPPP GGG EEE TTT AAA AAA RRR RRR PPP PPP GGG GGGGG EEEEEE TTT AAAAAAAAAA RRRRRRRRRR PPPPPPPPPP GGG GGGGG EEEEEE TTT AAAAAAAAAA RERRRRRR P.PPPPPPPP GGG GGG EEE TTT AAA AAA RRR RPR PPP GGGGGGGGGG EEEEEEEEEE TTT AAA AAA RRR RRR PPP GGGGGGGGGG EEEEEEEEEE TTT AAA AAA RRR RRR PPP (FPA)

A PROGRAM TO EXTRACT DATA FROM CECOR

SUMMARY

FILES FOR COMPARISON OF AXIAL AND RADIAL POWER DISTRIBUTIONS.

GET*NP01 - GETARP FOR NT REVISION 1 MEASURED DATA EXTRACTED FROM: A3786NX.s02 PREDICTED DATA EXTRACTED FROM: a2pred.100.eqxe RELATIVE RADIAL POWER DISTRIBUTION COMPARISON PREDICTED ; .405 .526 .552 .528 .406 (MEAS.-PREDICTED)

MEASURED  ;  ; .406 p .528  ; .555  ; .529  ; .406  ; 6 DIFFERENCE ----------------- X 100.0 Z DIFFER  ;  ; .29  ; .46  ; .46  ; .28  ; .12  ; PREDICTED p .403  ; .645  ; .971  ; 1.069  ; 1.085  ; 1.077 ; .976  ; .646 .402

.404  ; .646  ; .964  ; 1.056  ; 1.073  ; 1.062 ; .964  ; .635  ; .402

.29  ; .09  ; -. 74  ; -1.24  ; -1.08  ; -1.37 ; -1.24 p -1.65  ; .02

.492 ; .952 p 1.105 ; 1.146 1.256  ; 1.216  ; 1.260  ; 1.147  ; 1.103  ; .949 p .492

.492 ; .948 ; 1.096 ; 1.138  ; 1.257  ; 1.208  ; 1.257  ; 1.137  ; 1.095  ; .950 ; .498

- -. 07; -. 47; -. 79; -. 72; .06; -. 66; -. 27; -. 86; -. 70; .12; 1.18 ;

÷ .... +.....+ .... .... ÷.....÷ .... ..... ÷..... 4. .... -.-.-.- +.....+ .... ..----------------

+-....

.402  ; .949 ; 1.150 1.203 ; 1.233  ; 1.248  ; 1.242 ; 1.251  ; 1.231  ; 1.199  ; 1.150 ; .952 ; .403

.402 ; .934  ; 1.147 ; 1.199  ; 1.239 p 1.258  ; 1.248  ; 1.249 ; 1.236  ; 1.207  ; 1.158 ; .955  ; .409

-. 08 ;-1.60; -. 23; -. 30; .50: .78; .51; -. 19; .41; .65; .73; .31; 1.42;

.646  ; 1.103 p 1.199  ; 1.274 p 1.231  ; 1.202  ; 1.202  ; 1.202 ; 1.228  ; 1.274  ; 1.203 ; 1.105  ; .645 p .650 p 1.096 p 1.192 p 1.275 ; 1.228 p 1.208 ; 1.198 ; 1.203 ; 1.225 p 1.280 ; 1.203 p 1.108 ; .657

.62; -. 61; -. 56; .09; -. 21; .53; -. 30; .07; -. 28; .50; .03; .28; 1.80;

+----------+ - - +- 4.---------------------------------------+- 4-------+- + - + - + - + - +-

.406 p .976  ; 1.147 p 1.231  ; 1.228 p 1.154 p 1.111  ; 1.095  ; 1.108 ; 1.154 p 1.231  ; 1.233 ; 1.146 p .971 p .405

  • .394  ; .973 1.156  ; 1.236 p 1.216 p 1.157 p 1.100 ; 1.094 p 1.088 ; 1.153 ; 1.222 ; 1.242 ; 1.158: .978  ; .411

-2.84  ; -. 35  ; .82  ; .37  ; -. 94  ; .22 p -1.03 ; -. 10 ; -1.84 ; -. 06 p -. 74 ; .70 ; 1.09 p .72  ; 1.54

.528; 1.077;-1.260  ;  ;

-1.251 -1.202 r-1.108 1.059

;÷1.070  ;-1.059;-1.111 p-1.202;-1.248 1.2556 ;1.069  ; .526

.529  ; 1.070 ; 1.266 ; 1.250 ; 1.206 ; 1.105 ; 1.063 ; 1.059 ; 1.054 ; 1.104 p 1.207  ; 1.249 ; 1.265 ; 1.067 ; .533

.19; -. 66; .46; -. 09; .34; -. 23; .33 ;-1.07; -. 43; -. 65; .41; .11; .68; -. 19; 1.35;

.552 ;1.085 1.216 p1.242 ;1.202 ;1.095 p1.070 ;.961 ;1.070 ;1.095 ;1.202 ;1.242 ;1.216 ;1.085  ;.552

.557  ; 1.080 ; 1.214 ; 1.248 ; 1.200 ; 1.103 ; 1.068 ; .953  ; 1.049 ; 1.097  ; 1.204 ; 1.250 ; 1.214 ; 1.078 ; .556

.95; -. 43; -. 15; .47; -. 15; .71; -. 15; -. 80  ;-1.93; .20; .16; .60; -. 20; -. 61; .77;

.52.... ; 1......069 1.25... p 1.248..  ; 1.202.. ÷ 1...... p 1.059..  ; 1.07. ÷ 1.0. 1.1. 1.2.  ; 1.2 . p 1.2 . 1.0 . p .5

.523  ; 1.069 ; 1.256 ; 1.248 ; 1.202 ; 1.111 ; 1.059

  • i53: 1.0065 ;1.263 1247 ;1.204 1 1107 ;1.062 ; 1 1 1.070 1058  ; 1.059 1053 1  ; 1101 1.108 1  ; 1.202 ; 1250
1.23036 1.251 1  ; 1.260 ;10362
1.264  ; 1.077 ; 526

.526 1.25; -. 40; .55; -. 08; .14; -. 38; .31;-1.11; - -8 .04; .35;-1.37; -. 35;

.405  ; .971  ; 1.146  ; 1.233  ; 1.231  ; 1.154  ; 1.108  ; 1.095  ; 1.111 ; 1.154 ; 1.228 ; 1.231 ; 1.147 ; .976  ; .406

.411  ; .976  ; 1.157 ; 1.238 ; 1.212 ; 1.155 ; 1.09 .094  ; 1.087 ; 1.151 ; 1.216 ; 1.237 ; 1.159 ; .971  ; .392 1.38 ; .56 ; .97 ; .41 ; -1.53 ; .12  ; -. 89 ; -. 14 ; -2.19 ; -. 24 ; -. 94 ; .52 ; 1.06 p -. 50 ; -5.42 p .645  ; 1.105 ; 1.203 ; 1.274 ; 1.228 ; 1.202 ; 1.202 ; 1.202 ; 1.231 ; 1.274 ; 1.199 ; 1.103 ; .646

.656  ; 1.108 ; 1.203 ; 1.279 ; 1.229 ; 1.210 ; 1.200 ; 1.202 1.226 ; 1.276 ; 1.197 ; 1.104 ; .652 1.74; .30 ; .02; .39; .07; .70; -. 21; .03; -. 44; .19; -. 17; .05; 1.00;

.403  ; .952  ; 1.150  ; 1.199  ; 1.231  ; 1.251  ; 1.242  ; 1.248 ; 1.233  ; 1.203  ; 1.150 ; .949  ; .402

.409  ; .957  ; 1.161  ; 1.208  ; 1.244  ; 1.263  ; 1.252  ; 1.249 ; 1.237 p 1.203  ; 1.154 ; .950  ; .406

1.50; .56  ; .96; .73; 1.08; .97; .78; 709; .32; .02; .39; .06; 1.03;

÷... ..- ÷.....+-....

+--- - +- .... +.--.... +.....+ .... +--...----

- + ..... ..... .....-------- +- ..... +

.492 ; .949  ; 1.103 ; 1.147 p 1.260  ; 1.216  ; 1.256  ; 1.146 ; 1.105  ; .952  ; .492

.500 ; .958  ; 1.108 ; 1.150 ; 1.270  ; 1.214  ; 1.257  ; 1.137 p 1.097  ; .951  ; .496 1.66 ; .93  ; .44 ; .28 ; .80  ; -. 14  ; .06  ; -. 77 ; -. 74  ; - .09  ; .89

.402 ; .646  ; .976  ; 1.077  ; 1.085  ; 1.069 ; .971  ; .645  ; .403

.410 p .658  ; .981  ; 1.078  ; 1.081  ; 1.058 ; .963 p .641  ; .404 1.90 p 1.91  ; .56  ; .14  ; -. 33  ; -1.01 ; -. 82 p -. 65  ; .14

.406  ; .528 p .552  ; .526  ; .405

.413  ; .536 ; .559  ; .530  ; .406 1.73 p 1.59 ; 1.23  ; .78  ; .32

Attachment to 2CAN 120904 Page 23 of 23 FIGURE 8 (continued)

GETARP Output for the 100% Power Plateau RELATIVE AXIAL POWER DISTRIBUTION COMPARISON NODE PREDICTED MEAS.  % DIFFEREN( E 1 .6720 .6476 -3.6310 2 .7910 .7722 -2.3830 3 .9150 .8936 -2.3335 4 . 9580 .9412 -1.7532 5 1.0020 .9885 -1.3514 6 1.0370 1.0260 -1.0650 7 1.0580 1.0505 -. 7068 8 1.0720 1.0682 -. 3541 9 1.0820 1.0805 -. 1402 10 1.0890 1.0882 -. 0746 11 1.0930 1.0925 -. 0460 12 1.0950 1.0940 -. 0895 13 1.0970 1.0938 -. 2938 14 1.0970 1.0921 -. 4468 15 1.0970 1.0894 -. 6912 16 1.0970 1.0862 -. 9884 17 1.0960 1.0825 -1.2310 18 1.0940 1.0787 -1.3986 19 1.0920 1.0750 -1.5600 20 1.0900 1.0715 -1.6972 21 1.0880 1.0685 -1.7968 22 1.0850 1.0660 -1.7516 23 1.0820 1.0640 -1.6627 24 1.0790 1.0630 -1.4788 25 1.0780 1.0643 -1.2736 26 1.0780 1.0683 -. 9020 27 1.0780 1.0721 -. 5465 28 1.0750 1.0728 -. 2079 29 1.0700 1.0708 .0781 30 1.0630 1.0675 .4219 31 1.0570 1.0632 .5907 32 1.0500 1.0580 .7612 33 1.0420 1.0519 .9516 34 1.0340 1.0450 1.0671 35 1.0250 1.0374 1.2115 36 1.0160 1.0291 1.2930 37 1.0060 1.0201 1.4007 38 .9970 1.0104 1.3417 39 .9860 .9998 1.4003 40 .9750 .9882 1.3563 41 .9630 .9756 1.3072 42 .9490 .9611 1.2781 43 .9330 .9445 1.2332 44 .9130 .9249 1.2983 45 .8900 .9016 1.3016 46 .8600 .8736 1.5852 47 .8200 .8362 1.9775 48 .7720 .7928 2.6975 49 .7300 .7547 3.3892 50 .6400 .6715 4.9212 51 .5540 .5894 6.3889 PEAKING PARAMETER COMPARISON PARAMETER MEAS. PREDICTED % DIFFERENCE FXY 1.4256 1.4180 .5334 %

FR 1.3831 1.3740 .6630 %

FZ 1.0940 1.0970 -. 2716 %

FQ 1.5673 1.5470 1.3135 %

CALCULATED RMS VALUES RADIAL = .7309 AXIAL = 1.4577 MEASURED ASI = .0379 PREDICTED ASI = .0501 ACCEPTANCE CRITERIA REPORT MEASURED FXY WAS WITEIN PLUS OR MINUS 10.000 96 0 MEASURED FE WAS WITHIN PLUS OR MINUS 10.000 % 01" THE PREDICTED VALUE.

MEASURED FR WAS WITHIN PLUS OR MINUS 10.000 % 0O STHE PREDICTED VALUE.

MEASURED FQ WAS WITHIN PLUS OR MINUS 10.000 % 01" THE PREDICTED VALUE.

EMS EREOR ON AXIAL DISTRIBUTION WAS LESS TEAK OR E0" THE PREDICTED VALUE.

RMS ERROR ON RADIAL DISTRIBUTION QUAL TO 5.000 %.

WAS LESS THAR OR 1 EQUAL TO 5.000 %.

ALL PREDICTED RADIAL POWERS LESS THAN 0.9 WERE WITHIN PLUS OR MINUS 15.000 % OF MEASURED.

ALL PREDICTED RADIALPOWERS GREATER THAN OR EQUAL TO 0.9 WERE WITHIN PLUS OR MINUS 10.000 % OF MEASURED.

-*6 ALL ACCEPTANCE CRITERIA WERE MET ***