ONS-2018-016, Calculation 0079-0191-CALC-002, Induced Differential Voltage in Control Cables.

From kanterella
Revision as of 02:44, 6 July 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Calculation 0079-0191-CALC-002, Induced Differential Voltage in Control Cables.
ML18046A073
Person / Time
Site: Oconee  Duke Energy icon.png
Issue date: 02/12/2018
From:
Duke Energy Carolinas, MPR Associates
To:
Office of Nuclear Reactor Regulation
Shared Package
ML18046A090 List:
References
ONS-2018-016 0079-0191-CALC-002
Download: ML18046A073 (15)


Text

{{#Wiki_filter:m MPR Induced Differential Voltage in Control Cables Record No: 0079,.019l~CALC-002 Revision:: .O Prepared fo.r: Otohee 1, 2 & 3 I Name Rolf,l Stgna tu reJ Dat. Btfan Curran Preparer &1 E-sfgned by , Brian'Cumio . o n 2016-01-0818:14: 55 John cunnlngnarn Cheeker Ill !:-sign ed by: Michael Katahata on beh 9 1f of }Ohn CunniMham on 2016*0l*06 l8:16:3S John Cunningham Reviewer llJ E-sfgned* bY t-Mldiael Katatrara-0n behalf of

  • John Cunningham on 2-016.01-08' 18t15: 54 M i chael Katahara Approver &signed by: Mlctlael Katahara Ol1'2016-0Ul8 l8:17'°7 QA Stateme.nt
  • of Compffanc*

I Thi&-d0tument.l1a.S beert*prepared, reviewed, a n d approved ln ac.c~.rdai'lce: w i th the .Quality Assurance requlrementirotthe: M PR Standar d Quality Program , Crcat.ed: 2016-01*0818

17: 07 Project*T.;sk No. 0079lSl9*0191 Ml'R As$Qelates.

l11c. 3iO 1(1.ng St.

  • Alexalidrla, VA 22314 l703l 519*02-0Q r www.m pr , com mMPR MPR Associates, Inc. 320 King Street Alexandria

., VA .22314 RECORD OF REVISIONS. Revision Affected Pages Description 0 A U Initial Issue Calcuration No.: 0079-0191-CALC-002 Revision No x O Pag~No.: 2 MPR AsS<lciates , Inc. 320 King St r eet Ale:xandrtcJ , , , VA 22314 Table of Contents Calculation No~:: 0079-0 19!'-0ALC-00 2 Revi sion No;: O Page No:: 3 1.1 Back~ound ......*................. , .................................................... , ......... , .............. , ............... J 1.1 , Purpose .......................................................... ........... " ......................... ............... M , ******** 1 2.0 Summary of Results and Conclusion ., ................................ ~**********"******

              • "**********

1 .J .. O Methodology;. .................... ., ..... "".~-******** .. *******,."'********,--,.t--*****-.. , ............ ~********-:*.,***

                                      • ,*<<** 2' 3 .-l Acce , ptance C.r iteria .................

.............. , ................ ............ , .......................................... 2 4.U Assumptlons:. ,. ...*....*...*.. " ................... -....... r. ........................ ...................................... ... _ ...... ~.!*"** 2 4. I *uuvedfie d.Assumptions ................ -............. , ......................... ,.,.,~ .................. ........... ,. ..... 2 4,Z Verified ,A:ssumptiott ........................... , .. , ................ .................. ........................ , ............

2. 4;3 Limitatio$

........................................... ................... ....................................... ............... 2 5.0 Des~gn* Jnpum *. !' ............................................ ........................... .,,.. ........................ -...... .., ...... .,. .. , ......... , ... 3 5 .. 1 Efe ctri(?a.l r".'~~i.:~,..~ ....... 11 *....... 10 ........... ""'lt" ..... ,; ................ ............ *~*:;,,, ..... : *.* ; ** ., .... ****~ ~~***** ....... ,. ........ ~,. ............... .,..,.~*~* 't..;; .. -. .......* ,.,J 5.2 Geometry .................... **-**** ... , ............. .................... ..........

..... .......... .. . ...... . 3 6.0 -Calculations and Results ................ ,. ............. _ ..........................

.... , ....................... ................... 7 6.i Electrostatib Co upling to the Control Cables .................................................. ...... ,v .... 7 6.20 , Magnetic.Coupling to the Co ntrol Gab-le Coild u e t ors , .............. u ........................ ........... 7 6.3 Magnetic Coupling to the , C6nt:ro l C able Aim.o r ............................. ........................... 10 6.4** Effect of Artnor ................................. , ...*..*............*........*.*... ,~ ..................... .............. ,.10 7 .. 0 References ., ............... Jlf ................................... --........................................ .................. ............... ,;-.,, ....... 12 mMPR MPR Assoc iates, Inc. 320 K ing Street Alex a ndri a , VA 22314 1.0 BACKGROUND AND PW~POSE 1.1 Background Calcula1ion No.: 0079-0 l 91-GALC-002 Revision NCY.: O Page No.: l Oconee Nuclear tation ( $) engineering perfonned testing on. a mock-up of medium-,.vo l tage cab les .in proximity to DC control cables., The purpQse ofthe testingwas to investigate the effects of a medium vo lt age line to ground s ho.rt circuit fault on nearby control cables. The te t involve d a parallel run of medium voltage and co n trol cable in a representative cable tray. The. length of the cable run was ap proximately 12 feet with the fault site located. in the middle of the 1-foot run of medium voltage cable. The fault test data indicates that a voltage was pre ent on the control cable during the testing. 0 ngineering r ports that.th voltage was present for. the pre-test circuit calibration as well as various test c-0nfiguration and the magnitude of the voltage was not dependent upon the epa ration between the.control cable and power cable. Based on the likelihood that t he measured voltage was , induced as a resu lt of 1he test cell configuratiQn (Le .. test.configuration noise)~ this caJcufation determines , the-voltage expected to be induced ,*ou*acontrof cable by a powex: , cable fa ult current u ing analytical methods rather than extrapolating th.e voltages measured during testing. 1.2 Purpose The purp0se of this calculation is to estimate the magnitude of the differential voltage :induced on a two conductor circuit as a re ult of a short circuit on a nearby parallel medium voltage pQwer cab le. The control cable is armored. and s hielded with the configura tion of interest being the armor grounded at both ends of the cable and the hieJd floating not grounded). This* calculation u es conservative geometrical arrangemeots of the cables that are *intended. to bound the , config uration o( concern for conee / Keo wee control and power cable routing. 2.0

SUMMARY

OF RESULTS AND CONCLUSION The differential voltage induced on a 300 foot length of unarmored, un hielded co*ntrol cable during a short circu i t event on a nearby medium voltage cab l e i approximately 12 volts. This differenti .al voltage reduce to less than one volt w h en shielding effects of the galvanized-steel interlocked armor a r e considered. The actual control c able at Oconee has both a tee l atmo.r jac ket and a copper shie ld, thus the differential vol t age induced i n it will be lower sti ll. 'The common mode voltage is between. both cables and ground and does not a ppear across the load tenninals, but from both load terminals to g r ound. It does not actuate the load but.instead it challenges the diet ctric strength*of th'e insu l ating mat erial at the load. The common mo d e voltage is calculated to be approximately 712 volts for unarmored, unshielded cab le~ and 1.4 volts for the armored cable. mMPR MPR As so ciates, Inc;. 320-K l n g ~treet Alexandria.VA 223 1 4 3.0 ME TH ODOLOGY Ca l culation N o:: 0079-0 t91-CAJ,C-002 Revi s ion No.:. Q Pag e No;;.. 2 this calculation considers electrostatic , (capacitive -and magnetic (inductive coupling modes. This calculation does not consider couplingthrough e l ectromagnetic radiation. Modeling of coupUng due to radiation.couplingjs .unnecessacyJqr this calc u lation. d u e*to the geometry of* interesti::rfcomparison tO' the.wa,velerigth orthe 60Hz shotrcirctrit

  • wav-eform.

This calculation uses the partial inductance approach for catcu J ating induced voltage on individual circuit e l ements. See IEEE Paper titled "Partial Inductance/ (Referenc.e 2), for* further discussion on tbe partial inductance drcu i f-solving-methodology., An estimate for the differential voltage.on the , two*conductofS'is de'1eloped. Nominal values , of the RMS'.sltort circuit curretttr(ise'}~ cabie length *(1 1), fault ]ocation (lr), ;5 eparation of the me~il)i:P voltage cabJe to control cable (d};tv-cc). and maxjmum separation of the control cable conductors ( ~c.ce) are used, but the methpdology is applicable to other lengths and configurations. 3; 1 A'l:c eptance C r iter i a There arena acceptance criteria for this calculation. 4.0 AS S U MPTIONS. 4.1 Unveri fi ed Assumpt i ons 1. None. 4.2 V:eri f l ed Assump tl o tis-L The-twist of the cont:rh.Fcable>conductor.s along the core:-of1he bund l e.is ignored. This is a conservative as umption as tlie twisting of the conductors wou.fd have the-effect of reducing the induce&voltage.

2. The thickness of the power cable insulation

.shield iSsnot.speciffed in the O:N~ procurement specification Referenc 6). A smaller'Value is conservative for this caJculati:on. therefore the.thickness will be assumed to be zero. 3. The-geometrical cross sectional arrangement oftbe control cable can reasonably be assumed to be-cii;cu l ar for U1e-purpose o:t'estimating r separatioo distance , between: cont r ol cabJe conductors. TI1is ass u mption is appropriate due to the steel armor that en.oirclesthe cab le and does not require furthe.r validation. 4.3 L i mita t ions , L The predominant frequency of interest is 60Hz. The. wavelength of a 60Hz signal is ignificantly longer: than. the geometry of interest Higher freque.ncy applicatio n s may :r equi r e additiona l analysi approaches and-consjderatibns.

  • MPR AssociateS'. Inc. 320 King Street Alexandria r VA 22314 Calculation Na.: ,, 0079-0191,..CALC-

.002 Revision No o: O PageNo.! 3 2. !his calcuJation does not coriside'iritdiated electtomagi;ietic coupling meclfanisms

5.0 , DE S IGN I NPU TS 6.1 El e ctric al L The cable run of interest is a 300 "foot length where medium voltage powercable!i' are routed near low voltage ,_control cab Tes. After the 300 foot length; the cable diverge in a manner where the mutua l inductance between t.he cables is negligib l e an.d therefore coupling between the cables-can 'be neglected Reference 3). 2. 'Ille-short circuit current js assumed to be l 6k
A peak ba ed on. input from Oco: rtee engineers (R-eferen~e 4 . ]nis value , is being.re,-evaluate4 by the $ite and they expe_c:t to conclude a lower value is more appropriate which woul.d make , the results in this , qalculation cons~rvatively high, and bounding._ 5.2* Geo m etry 11le total length of the power*a11d oontrolcables between Keowee* and Ocone'.e is appro1Citn:ately 2000 meters. However , the cables are only routed in near vicinity of each other for a distance of a pproxfruately 300 feet before the routing of tlte cables diverge away from each other (Segment #7 -see Reference l 0). The edge-to-edge
separation of the mediwn voltage and power cables along this 300 footlen~tl is conservatively set to 3
  • inches, which is th.e , minimum spacing ,.o'f two neighboring embedded-~abte. duets (see.Reference

-! I). Tbe edge-to-edg~ .separation of ilie medium voltage and power-cables along after the 300 foot length is arranged suchtharthe mutual inductance between the cables is negligib'le (Assumption 2 in eotion 4.1 , . The total length of the power and control c.ables , Lt, is , approximately 2000 meters (6562 feet). The eables are evaluate~ as thougjl they~re parallel for a length of.-?'tA;metets (300feef}. The edge , to edge separat i on , o.f the power and control cab1es;over the 300 foot. length d s eii,is7.6 cm 3 inches). See F igure 1. mMPR MPR Associates , Inc. 320 King*Street Alexandria , VA 2.2314 Figure.1. Cable Run Dimensions. Calculation N o ,; 0079-0191-CAtC-002 Revision No:: O Page No:: 4 Fi gure 2 i a configuration ketch of a typica l lrielded control cable with cabJe armor ,. cable hield multiple co1Jductor and multiple jacket/ insa]ation layers. Table 1 s ummarizes relevant co ntrol cable dimensions and properties. Ta ble 2 summarizes relevant power cable dimensions and properti es. -I mMPR MPR Associates, lno. 320 King. Street Alexandrl a r VA 22314 Om Ccmponent (1) Calculatton

  • No~: 0079-0 l9l'-*ALC-002 Revision No.; O Page No.: 5 Figure 2. Cross Sectfon View*ofTypi ca l Ccmtrol Cable Tabl e 1. Parameters for. a Typical Keowee Control Csbte Parameter Rating Dimension.

References. Contr o t Conductor Olameta:r, D e 9AWG 0.131 .. Reference-5 Condu ctor Insulation Thickness. XLPE 0.0475" References Di.cc Equano (0.226"*0.131j/2 Shiel d Wtdth , D.n.ec Copper , Tape 0 , 005~ Reference*.!> Max IO'Shield, 010 -0.766" Reference 5, Equal to. o.775~* 0.002."'.0.005~ ..0.002" Steel. Amlor Thicl<ness , o_ Galvanized 0.025" Reference 5 , Minimum Slee! Tabte 2. Parameters for a Representative Ke o wee Power Cable Paramete r Rating Dimension References Power Conductor Diameter 750MCM 0.998" References

  • 6 and 7 Conductor Shield Thickness.

Ost)., -0.020"' Reference , 6. minimum Ml/ mMPR MPR Associates , Inc. 320 King Street Alexandria

.VA 22314
  • Calculation No.-: 0079-0191-CALC-OOZ Revision No ,; o. PageNo.:*6 Table , 2. Parameters for a Representative' Keoweec Power *able Parameter Rating* Dimension References
  • Cood , tJctor EPR~in$ulation
EPR 0.260 Reference 6 i minimum Thickness , 0 1-MV Insulation Shield Thickness.., O Mh Them,oset Un known Reference 6, Secifon 4.1 Compound Conservatively setto. 0.000" Shield/Armor Tape Thickness, Non-Magnetic 0.020" ReferenGe.6. minimum DMV 41* Bronze
  • CabltUacket Thickness, D J ac Hypi!lon 0;110~ Reference 6 , minimum 5.2.1 Power/ Control Cable Separation (dMV..cc)

TI1e edge" to edge separation of the power. and *control ca ble s, d sep,J s 7 : 6 cm (3 inches}~. Th lf edge to edge separation of the medium voltage cable: to the nearest contro 1 cable d Mv-cc is calculate d as follows~ d Mv-cc= 3.000+ 0.020 + .260'.t'!lf-0.000'1 + 0.020 1 , 1 + OJ. l O" ,+ 0.025 + 0.00 5'!*~ 0.0475:" d MV'-CC = 3 .488 11 5.2.2 Maximum Control Cable Conductor Se,par.ation Tlie magnitude of differential voltage induced* in a conttoJ cahJe pair: is a function o f the s eparation of the control cables and the current of the current source. The> maximum possible eparation of a conductor pair in the control cable bundle occurs when th.e conductors in the pair are diametricaJly opposed with the outermost edge of each of the conductors at opposite ends of t he bundle. S ee figure3 , The m~imum*s eparation of two conductors , d e-c .is ca.lculated as follow s: de e-cc= 0.766"., ( 2

  • 0.0475° ).-{2
  • 0.13'1"), = 0.409" mMPR MP R Ass o ciates, Inc. 320 King Street Alexan d ria, VA 22314 Fig ur e 3. Maximum C o ntrol Conduct o r Separation. 6.0 C A L C ULA TI ONS A N D RESUL T S Calculati o n N o.: 0079-0191-CALC-002 Re v ision No ,~ 0 Page No.: 7' ThefoUowing ections develop the approach.fore timating*the voltage induced on the conductors of a bundled control cable"pair with the cable armot grounded at both ends.and . .the ab.le shield.floating.

6 .. 1 El ec.trostat i c. C oupl i ng to the C ontrol Cables The cable armor being grounded at both ends precludes capacitive coupling from the nearby medium voltage cable to th low voltage control cables and to the low voltage control cable armor. ee GER-3205 (Reference

8) for additional infonnation. 6.2 M agne ti.c Coup/Ing to the Con tr ol Cable C ondu ct ors The predominant coupling mechanism is magnetic coupling to the low voltage control eables. The magnetic. field coupled betwee n the .MV conductor and the control cab.le is proportional to the mutual inductance between th.e MV cable and the L V conductors.

The mutual indu.ctance, Mp, between anytwo*conductors is.equal to: ({ HJ M J µo lr . I( i d 1 . lf,d) := -*Ir I -. + 1 + --l + -+ -p It

  • cl 2 2 f d. 'r (Reference
2) mMPR MPR Associates , Inc. 32 0 King Street Alexandria , VA 22314 W h erer = Permittivity
o
&fr ee s p ace, 41T*10'1: H/m C'alcutation

, No.,: 0079-0191:-CALC-002 Revision No.: O Page No.: µo Ir d = The length of the parallel current carrying con~u:ctO.fb"': = " The sep aration between .the two paralle.1 conductors,; The , len~h , ofthe control cable that i sJmm une to magn et i c cou plin g has a self partial inductance , Lp, which must be co n sidere d to comple te t he cable lo o p. Theo-self partial inductance, Lr, of a , cond uc tor fo a cond u c t o-r pair is equal to~ (Re:fufence2) Where: , length r = TJ 1e length of the cable. The radius ofth:e control cable conducto r. The cini u itres ultin g~o m the self and mutual partial .ipduc tan ces is shown in Figore 4,. with the fo 11 owing: values: Lp:._ce:1:a:= 1.,(lr , r9 wa) 4> _cq;a := 1p 1f.r9Awo) Lp _ CClh ,=~( 1t-1 r,l'?A wo) 4*:_CG:2 b?"" 11,(It-lc ,t5M: wG) M:MV_CCJ ; .... Mp(1 r ,<1Mv_cc) MM v_cci 1= Mp(1f.dror _cc+ 0 cc_cd Mcc1a::_CC2a ~= Mp(l;.dcCi_Cc) Mcc1b_CC2b := Mp(~ -1 r , dcc_cc) -4***.* Lp_c 1a= L9s6 1p ff -4 Lp _ cc 2 a--l.986x 'IO H -3 Lp _CCJl.>=, 5 . .304 10 H _3: L p _ ccztr s.so 4~: 10 R -4 MMV _C 1= L213>< .10 ff -4 MMv.:..cc2"" Ll93:.: lO H Mc;c1a~GC2a"" l , 605x ilf 4'Ff M -;3 lb CC2b= 4.Slx JO H -' mMPR MPR ASS()ciates , Inc. 32 0 KJng Stree t Alexa nd ria, VA 2'2314* ,~-Calculation .No.: 0079-0 I 91-*'ALC-00 2 ReVision No.: 0 PageNo.: 9 figµre 4'., Self afiil Mutual ParttaJ I nductance Circuit 6.2.,1 Common Mode Voltage, No Armor Shielding . The common mode voltage*in the controJ conductor circuit is the voltagejnduced due to the mutual partial inductance between the medium voltag¢ cable and the return leg of the contro l c able loop. The common mode voltage , without consideration of armor shielding. effects; V com mpn, , is calculated as follows: I V common! = 7195V 6.2.2 Differential Voltage , No Armor Shielding T he differential voltage at the load end of the control circuit is a. .function of the load current. the medium voltage, l1ort circuit urrent, an~the elf and mutual inductances hown in Figure 4. T he differential load voltage can be , calculated .as. L_____ __ mMPR MPR Associates, Inc. 320. King ~feet Alexandn~_NA 223.14 ... -Catculii<<on !'J<F 0079--0191 .. &A:I.:G:-002' ..RE'Msion No:t O , Pag~J\10;$ 1W Vtooo:-Di:fl 1 oontrokisc) _:;=l __ ,_**~_P_<<,_ c_-__ r._~*oo_-__ ii_*ttu __ l -J~-~CGla,, j:J_* c_ zJ __ oo_--ntrot*~:; J*--*_" i +J*o:t*f:l!" conicontrcit -: J*co*Mec1 1 1: ec2-#coritro l ** + i-©~Mfui:* CG t~c .... + lJ-fJl* Lp ct2lfoontrol

  • -J:~MCCJa 6C2ifoontrot
      • j +j*m*~-:._ cc2olcon1;roL -J*(l}*Mtt.1b_0c2{/<X}ntrot

, , ++<u*MM-V.:.Cm~ Tiie-differ,¢.ntial foad'VoJfage.for.-0t1aiJ1!9~ed. un s bielde~ c:ontrofcable

. d~e , ~o , a sho.rt circ9jfevent JS! 6.3 Magnetic* Coupling to , th~. co.ntro l Cable Armor The control cable anno.r is grounded atbotb ends ot'.the..aQ
Uor. -Il:ds-*eon:fi;gw:atio n_ct:eates.a , fo-0p, of imprecise g;i;}gmetfy coilsisting,oflireamiQr and the statiort gr~und bus., 'I11t'self and.~litoal.

partial inductance o-f the-,armor and the: ground bus can be-: estimated usingth~: abnve;formulae.1 hµUhe'Calculatfon

  • 'ii(not necessary" as the voJtag,e 1nd~ce~: m the armorwm raprdty'coriducrno g~c;m nd. Coupli ng fr<;>1n the annor to* the-ccmductor.:will be a~econd or4er-effect*-and'ihus , significh:ntlt tower than: the val ues cafou:fate:d above; Th'is-approach is consiste.nt'with the approach , discussed
in GER ... 3205 , (Refe~nce.8-:}

~, 6.4 Effect of Armor 'flie control '<:abfe , anJJ.Or il gah:*anize,g;$tauil¢ss

  • s t~e1, , '\\'~!Ch acts a s a low rel~ctatice for the magnetic , flqx due to the shortcircuit/;mment in s the medjum; voltage cable; TI1e armor (sh ield), ' has_ the effect_ of diverting-the flux awa'Y,: from lliezlow. VQltage.cot1clucto1'.~

Rosa deri ves: th_e self and mutuallnduetance. of conductors b y, cafou1atmg .tbe total H : 6¢h;[ that collapses , upon , a conductor wlicna cutfon t;i.u~moved from , th:at ¢o nductor. (Refer.ence..9,}.

  • This ap proach includes.

anSroplicit assumption thatthe.medium, of t bat conductori.i;

tmiform:
  • Co nsideration ofthe eftect.ofaJow reluctance armor/s hield. upon.the workof:.Rosaas

.applied to the ONS.sce nario_;friflow:s .: -Tl1e-introduction

  • 0£ a lowitelucta:nee steeLarmorishield.inthe

,:flux fiel.d 'of a , conducto,r has-.tlittle to no effect on. t he J>ar_tial~elfinducfrtnce ! q_f.a coricfuctbi \ The s liield 1vHI'fi]!ve: a liJghet fl:~. density than the.surrounding -air bu t:does not change the behavior of tbeH field upott' remo.vat of tµe current Namely t:hattl1efie)d collapse.s

  • upon tliewire in the same mann_er~ ft~ouldiftliere werll:nQ shiel d ptt?sent f Sitnilariy
th
e *introduction of a-shield wilt haV<YttegligibieJmpairt.

orrthe:~ partfal *mutna.l i:ridilotance. be t.we en tw9 .cond11ctors

  • tha t are bo\Jiwitliin the same .s hield.--

mMPR MP R A ssoc i a te s , Inc. 320 Ki ng .St r ee t Alexan d ri a.VA 223:14 C a lculatio n No.; 0079-0191-CALC

ooz Re v i s ion No ,: O Page N o;: 11 TI1e introduction of?, low reluctance steel.armor/shie l d in the:flux field: ofa , conductor will.affect the partial mutual inductance between two conductors.

Once again .the-shield bas a higbe.r flux. density ~an the u rrounding. air. However wl1en current is removed from the primacy conductor the. rumor/s hield will divert flux away from the econdazy , conductor thereby r ed u cing the magnitude*offlux that,cQ.Jfapses upo, n the secondary c t.~tiducfo r. IPR Cafoulation0 0 79 ,.:0191~CALC-003, (Reference

12) estimates the effectiveness of the steel armor to shield conductors from external fields. The calculation de t ermines that the armor re duces the fieid internaJ to the annor by a factor of approx i mately 9So/&' (i.e. the field .internal. to th e shield is*approximately 2% of what it woul d be if the shield were-not p r esent). 6.4.1 C o mmon Mode Voltage:, With Armor S h ielding The common mode voltage-in the control conductorcircu.it is the vo l tage induced due.to the mutua l partial inductance between the mediwn voltage cable* and the return Jeg of the control ca ble loop. TI1e common mode voJtag~ with consideration of armor s hielding eff ects; V s b ie.lded;JXlll1mO n, i s calculated as follows~ . 2 SE:.--* -100 shietdtd_comr:u,n~""'

SE* I V<:omm on l 6.4.2 D i fferential'Voltage No Armor Sh i eld i ng Thecontmon mode' voltage lo the control conducto r circuit is thevoltage induced due to (th:e mutua l -partial inducUl,llce betwee n the. medium voltage cable and the .return leg of t he i;ontrol cable loop-. 'The common mod.e voltage :with consideration of armor s hielding effectsc, V s hit ldlid i, Load.:;.Ditr, js -calculated as follows: mMPR MPR Associates , Inc , 320 King S t reet A l exandri~i-VA 22314' 7 .0 REFERENe'ES Calcula t i on No~: , 0079-019l;C'AI:.Cw002 R ev ision No;:. o Pa ge No:: 12 1. IBEE 51 8-1 9 82 1 EEE Gu i de for th/e Insta ll ation of Elec tri cal Equipment to Mi11.im,ize Electrica l .N.oiselnputs to Controllers from &temal Sources; 2. Article by C l a)'forf R: Paul, PartJal'lnductance.

1 IE.EB .EMC Society Magazine, ~2 Ql0. 3. E mail from Bernard A. Norwood ONS) to Michael K atahar a (MPR), Re
QUESTION ALE RT-Oconee Control Cable Anafysis. Tuesday December 29, 2015 3:3 8P M .. 4. E mail from .Bernard:: A. Norwood (ONS) to MichaelKatah

_ara (MP R , Re,'. Oconee-induced: Voltage Update. Wednesda y December30;-20l5, l:57PM'. , 5. Rockbestos Prod uc t peci6cation Drawing,. VC9AWG Clas.s lE JOOOV Hypalon ln:ner' .Jacket GSJA PV C Outer Jacket Nuc lear 'afetJl Related, Duke EnergyCorporaiton; Keowee Cable Upgrade. -Dated 5/09/20 0 1. 6. Oconee Nuclea r Specification Number OSS--1 39:00.-0 0-00lO , Keowee Underg round'. Replacement Medium Voltage Single Conductor /!owe,: Cable. Revised January ~" 2002. 7. Amold" Thomas and Mercier~ David C., Sauthwit:e Power *able Manuai~ Fourth:Editio n~ 8~ General Electdc: -C~E R-3205, TJteory , ofSJii:eldi'ng andGroUJ1ding of Control Cables Reduce Surges. Oc tob er 5 1973'. 9. Ro a, Edward, B, Bulle ti n of the National Bureau of Standards, Volu me 4 Nu mber 2, t h e Self and Mutual Inductances , of Linear Co nductors. l (}, , Oconee Nu clear: St~ltibn drawing:0-398-A l-l 07 , Revision 1 "FS W Duetbank. Segme n t #7 , Plan & Elevation.

11. Oconee Nucle ar Station drawing 0-398-Al-200B Revi ion O " PSW Ductban~ Ducthank Rei nforcement S ection s B & C." 12~ MPRCalcufa:tion 0079-0191-CALC-003. Finite Eleme'nt Analysi.flo

, Calcula t e Sh'ielding ' Effectivenes

s. Revisio n 0. -}}