ML17256A500

From kanterella
Revision as of 12:51, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Proposed Tech Spec 3.1.4 Re Max Coolant Activity
ML17256A500
Person / Time
Site: Ginna Constellation icon.png
Issue date: 02/18/1983
From:
ROCHESTER GAS & ELECTRIC CORP.
To:
Shared Package
ML17256A498 List:
References
NUDOCS 8302230367
Download: ML17256A500 (79)


Text

Attachment A1.ReplaceTechnical Specification pages3.1-21and3.1-24withtheenclosedrevisions.

8gOP2303b7 8300244PDRADOCKoPDRP IIlI'f 3.1.4MaximumCoolantActivitSecifications:

3.1.4.1Wheneverthereactoriscriticalorthereactorcoolantaveragetemperature isgreaterthan500F:0a~Thetotalspecificactivityofthereactorcoolantshallnotexceed84/E-pCi/gm,.

whereEistheaveragebetaandgammaenergiesperdisintegration inMev.b.TheI-131equivalent oftheiodineactivityinthereactorcoolantshallnotexceed1.0pCi/gm.c.TheI-131equivalent oftheiodineactivityonthesecondary sideofasteamgenerator shallnotexceedO.lpCi/gm.3.1.4.2Ifthelimitof3.1.4.l.a isexceeded, thenbesub-criticalwithreactorcoolantaveragetemperature lessthan500Fwithin8hours.a~IftheI-131equivalent activityinthereactorcoolantexceedsthelimitof3.1.4.l.b butislessthantheallowable limitshownonFigure3.1.4-1,operation maycontinueforupto168hoursprovidedthatthecumulative operating timeunderthesecircumstances doesnotexceed800hoursinanyconsecutive 12-monthperiod.IftheI-131equivalent activityinthereactorcoolantexceedsthelimitof3.1.4.l.b formorethan500hoursinanyconsecutive 6-monthperiod,3.1-21Amendment No.

Attachment BThepotential environmental consequences ofasteamgenerator tubefailureattheR.E.Ginnanuclearpowerplantwereevaluated inordertodemonstrate theStandardTechnical Specification limitonprimarycoolantactivityisacceptable.

Resultsofthedesignanalysisindicatethattheconservative siteboundaryandlowpopulation zoneexposurefromasteamgenerator tubefailurearewithin10CFR100limitations withStandardTechnical Specifica-tionlimitsoninitialcoolantactivity.

Therefore, theStandardTechnical Specification limitoncoolantactivityissufficient toensurethattheenvironmental consequences ofasteamgenerator tubefailurewillbewithinacceptable limits.

III)I.INTRODUCTION

'IPotential environmental consequences ofasteamgenerator tuberuptureeventattheR.E.Ginnanuclearpowerplanthavebeenevaluated toverifythatthestandardtechnical specification limitonprimarycoolantactivityisadeuateforGinna.Massreleaseswerecalculated usingthecomputercodeLOFTRANwithconservative assumptions ofbreaksize,condenser availability, andvariousoperatorresponsetimes.Theeffectofsteamgenerator overfillandsubsequent waterreliefthroughsecondary sidereliefvalveswasalsoaddressed.

Conservative assumptions concerning coolantactivity, meteorology, andpartitioning betweenliquidandvaporphaseswereappliedtothesemassreleases'o determine anupperboundonsiteboundaryandlowpopulation zonedoses.BestestimatemassreleasesduringtheJanuary25,1982tubefailureeventatGinnawerealsocalculated basedonanalysespresented inreference 2.Thesereleaseswereusedtoestimatepotential doseswhichcouldhaveresulted, iftheaccidenthadoccurredwithcoolantactivitylimitsestablished

.inthestandardtechnical specifications.

g2500200QzI1508+100II-z5080~~BLEACCEPTAOPERATION UNACCEPTABLE OPERATION 30."405060708090100PERCENTOFRATEDTHERMALPOlNERI-131FlGURE3-1.4-1Equivalent ReactorCoolantSpecificActivityLimitVersus,PercentofRatedThermalPower3.1-24Amendment No.

III9II.MASSRELEASES'assreleasesduringadesignbasissteamgenerator tuberuptureeventwerecalculated using,established FSARmethodology assumingvariousoperatorresponsetimes.ReleasesduringtheGinnaeventwerealsoestimated.

Contributions fromboththeintactandfaultedsteamgenerators wereevaluated aswellasflowtothecondenser andatmosphere.

Thesemassreleasesarepresented forvarioustimeperiodsduringtheaccident.

Theassumptions andmethodology whichwereusedtogeneratetheresultseredescribed inthefollowing sections.

II.lDesignBasisAccidentTheaccidentexaminedisthecompleteseverance ofasinglesteamgenerator tubeduringfullpoweroperation.

Thisisconsidered acondition IVevent,alimitingfault,andleadstoanincreaseinthecontamination ofthesecondary systemduetoleakageofradioactive coolantfromtheRCS.Discharge ofacti-vitytotheatmosphere mayoccurviathesteamgenerator safetyand/orpoweroperatedreliefvalves.Theconcentration ofcontaminants intheprimarysystemiscontinuously controlled tolimitsuchreleases.

II.1.1SequenceofEventsIfnormaloperation ofthevariousplantcontrolsystemsisassumed,thefol-lowingsequenceofeventsisinitiated byatuberupture:HA.Thesteamgenerator blowdownliquidmonitorand/orthecondenser airejectorradiation monitorwillalarm,indicating asharpincreaseinradioactivity inthesecondary system.B.Pressurizer lowpressureandlowlevelalarmsareactuatedandchargingpumpflowincreases inanattempttomaintainpressurizer level.Onthesecondary sidesteamflow/feedwater flowmismatchoccursasfeedwater flowtotheaffectedsteamgenerator isreducedtocompensate forbreakflowtothatunit.

~IC.Thedecreasein'CSpressureduetocontinued lossofreactorcoolantinventory leadstoareactortripsignalonlowpressurizer pressureor3'vertemperature delta-T.Plantcooldownfollowing reactortripleadstoarapiddecrease.

inpressurizer levelandasafetyinjection signal,initi-atedbylowpressurizer

pressure, followssoonafterreactortrip.Thesafetyinjection signalautomatically terminates normalfeedwater supplyandinitiates auxiliary feedwater addition.

D.Thereactortripautomatically tripstheturbineand,ifoffsitepowerisavailable, thesteamdumpvalvesopenpermitting steamdumptotheconden-ser.Intheeventofcoincident, stationblackout, asassumedintheresultspresented, thesteamdumpvalvesautomatically closetoprotectthecondenser.

Thesteamgenerator pressurerapidlyincreases resulting insteamdischarge totheatmosphere throughthesteamgenerator safetyand/orpoweroperatedreliefvalves.>~E.Theauxiliary feedwater andboratedsafetyinjection flowprovideaheatsinkwhichabsorbsdecayheatandattenuates steamingfromthesteamgene-rators.F.Safety.injection flowresultsinincreasing pressurizer watervolumeataratedependent upontheamountofauxiliary equipment operating.

RCSpressureeventually equilibrates atapressuregreaterthantheaffectedsteamgenerator pressurewheresafetyinjection flowmatchesbreakflow..Theoperatorisexpectedtodetermine thatasteamgenerator tuberupturehasoccurredandtoidentifyandisolatethefaultysteamgenerator onarestric-tedtimescaleinordertominimizecontamination ofthesecondary systemandensuretermination ofradioactive releasetotheatmosphere from'thefaultyunit.Sufficient indications andcontrolsareprovidedtoenabletheoperatortocompleterecoveryprocedures fromwithinthecontrolroom.Highradiation indications orrapidlyincreasing waterlevelinanysteamgenerator providesymptomsofthefaultedsteamgenerator whichensureidentification beforethewaterlevelincreases abovethenarrowrange.Forsmallertubefailures, I~~samplingofthesteamgenerators forhighradiation mayberequiredforpositiveidentification.

However,inthatcaseadditional timewouldbeavailable beforewaterlevelincreases outofnarrowrange.Onceidentified, thefaultedsteamgenerator isisolatedfromtheintactsteamgenerators tominimizeactivityreleasesandasanecessary steptowardestab-lishingapressuredifferential betweentheintactandfaultedsteamgenera-tors.TheMai'nSteamline Isolation Valves(MSIV)providethiscapability.

IntheeventofafailureoftheMISVforthefaultedsteamgenerator, theMSIVfortheintactsteamgenerator andtheturbinestop'alve ensurearedundant meansofisolation.

Auxiliary feedwater flowisterminated tothe'faulted unitinanattempttocontrolsteamgenerator inventory.

Thereactorcoolanttemperature isreducedtoestablish aminimumof50Fsubcooling marginattherupturedsteamgenerator pressurebydumpingsteamfromtheintactsteamgenerator.

Thisassuresthattheprimarysystemwillremainsubcooled

'following depressurization tothefaultedsteamgenerator pressureinsubsequent steps.Ifthecondenser isavailable, thenormalsteamdumpsystemisusedfo'rthiscooldown.

Isolation ofthefaultedsteamgenera-torensuresthatpressureinthatunitwillnotdecreasesignificantly.

Ifthecondenser isunavailable oriftheMSIVforthefaultedsteamgenerator fails,theatmospheric reliefvalveontheintactsteamgenerator providesanalternative meansofcoolingthereactorcoolantsystem.The~rimary pressureisreducedtoavalueequaltothefaultedsteamgenera-l+torpressureusingnormalpressurizer spray.Thisactionrestorespressurizer levelassafetyinjection flowinexcessofbreakflowreplacescondensed

'steaminthepressurizer, andmomentarily stopsprimary-to-secondary leakage.Ifnormalsprayisnotavailable, thepressurizer PORVsandauxiliary spraysystemprovideredundant meansofdepressurizing thereactorcoolantsystem.I~Termination ofsafetyinjection flowisrequiredtoensurethatbreakflowisnotreinitiated.

Previousoperatoractionsaredesignedtoestablish suffi-cientindications ofadequateprimarycoolantinventory andheatremovalsothatcorecoolingwillnotbecompromised asaresultofSItermination.

I1

'hissequenceofrecoveryactionsensuresearlytermination ofprimary-to-

.secondary leakagewithorwithoutoffsitepoweravailable.

Thetimerequiredtocompletetheseactionsareeventspecificsincesmallerbreaksmaybemoredifficult todetect.Intheseanalyses, operatoractiontimeshavebeentreatedparametrically, rangingfrom30minutestoamaximumof60minutestocompletethekeyrecoverysequence.

II.l.2MethodofAnalysisMassandenergybalancecalculations wereperformed usingLOFTRANtodetermine primary-to-secondary massleakageandtheamountofsteamventedfrom.eachofthesteamgenerators priortoterminating safetyinjection.

Inestimating themassreleasesduringrecovery, thefollowing assumptions weremade:A.Reactortripoccursautomatically asaresultoflowpressurizer pressureorovertemperature delta-T.Lossofoffsitepoweroccursatreactortrip.B.Following theinitiation ofthesafetyinjection signal,allsafetyinjec-tionpumpsareactuated.

Flowfromthenormalchargingpumpsisnotcon-sideredsinceitisautomatically terminated onasafetyinjection signal.C.Thesecondary sidepressureisassumedtobecontrolled atthesafetyvalvepressurefollowing reactortrip.Thisisconsistent withlossofoffsitepower.D.Auxiliary feedwater flowisassumedthrottled tomatchsteamflowinallsteamgenerators tocontrolsteamgenerator level.Minimumauxiliary feedwater capacityisassumed.Thisresultsinincreased steamingfromthesteamgenerators.

4E.Individual operatoractionsarenotexplicitly modeledintheanalysespresented.

However,itisassumedthattheoperatorcompletes therecoverysequenceonarestricted timescale.Thistimeistreatedpara-metrically.

~0F.Forcaseswheresteamgenerator overfilloccurs,waterrelieffromthefaultedsteamgenerator totheatmosphere isassumedequaltoanyaddi-tionalprimary-to-secondary leakageafteroverfilloccurs.Steam1ine volumeisnotconsidered incalculating thetimeofsteamgenerator over-fill1.Priortoreactortripsteamisassumedtobereleasedtothecondenser fromthefaultedandintactsteamgenerators.

Steamfromallsteamgenerators isdumpedtotheatmosphere afterreactortripsincethecondenser isunavailable asaresultofstationblackout.

Extendedsteamreleasecalculations, i.e.afterbreakflowhasbeentermina-ted,reflectexpectedoperatoractionsasdescribed intheWestinghouse OwnersGroup's'Emergency ResponseGuidelines

.Following isolation ofthefaultedsteamgenerator, itisassumedthatsteamisdumpedfromtheintactsteamgenerator toreducetheRCStemperature to50Fbelowno-loadTavg.Fromtwotoeighthoursaftertubefailure,theRCScoolanttemperature isreducedtoResidualHeatRemovalSystem(RHRS)operating conditions viaaddi-'ionalsteamingfromtheintactsteamgenerator.

Furtherplantcooldowntocoldshutdowniscompleted withtheRHRS.Ifsteamgenerator overfilldoesnotoccur,thefaultedsteamgenerator isdepressurized byreleasing steam-fromthatsteamgenerator totheatmosphere.

Analternate cooldownmethod,suchasbackfillintotheRCS,isconsidered ifthefaultedsteamgenerator fillswithwater.Inthatcaseadditional steamingoccursfromtheintactsteamgenerator.

Theextendedsteamandfeedwater flowsaredetermined fromamass-andenergybalanceincluding decayheat,metal.heat,energyfromone~operating reactorcoolantpump,andsensibleenergyofthefluidintheRCSandsteamgenerators.

Thesequenceofeventsforthedesignbasisaccidentarepresented inTableII.1.2-1.Theprimary-to-secondary carryover andsteamandfeedwater flowsassociated witheachofthesteamgenerators areprovidedinTablesII.1.2-2andII.1.2-3forrecoverytimesof30and60minutes,respectively.

Sinceindividual operatoractionswerenotmodelled, thesystemresponseisthesameforbothcases.With30minute=operator actiontoterminate breakflow, III 0.~TABLEII.1.2-1DESIGNBASISACCIDENTSEl}UENCE OF'YENTSEventManual(0)Time(Sec)Automatic (A)30MinRecovery60MinRecovery'lTubeFailureReactorTripCondenser LostSISignalFeedwater Isolation AFMInitiation AFWThrottled toFaultedSGIsolation ofFaultedSGSteamDumpRCSDepressurization SGOverfillSITerminated BreakFlowTerminated RHRCoolingA==0I0027271271341871871800(1)1SOO<<)lsoo(1)1800(1)1800(1)2880027271271341871873600(1)3600(1)3600(1)28103600(1)3600(1)28800'I(1)Theseeventsarenotactuallymodeledbutareassumedtooccurwithinthetimeindicated.

~>ITABLEII.1.2-2MASSRELEASESDURINGADESIGNBASISSGTR:30MINUTERECOVERYFlow(ibm)0-TTRIPTimePeriodTTRIP-TTBRK TTBRK-22-TRHRRupturedSG:-Condenser

-Atmosphere

-Feedwater 278200.0326050.0326400.00.00.00.00.02148021480IntactSG:-Condenser

-Atmosphere

-Feedwater 273800.0371700.023050133700.01446502062000.0470000487600BreakFlow3325100648'.00.0TTRIP=27.0sec=TimeofreactortripTTBRK=1800sec=Timetoterminate breakflowTRHR=28800sec=Timetoestablish RHRcoolingI

'TABLEII.1.2-3MASSRELEASESDURINGADESIGNBASISSGTR:60MINUTERECOVERY, Flow(ibm)TimePeriod0-TTRIPTTRIP-TMSEP-TSGOF-TTBRK-22-TRHRTMSEPTSGOFTTBRK-Atmosphere

-Feedwater 0.032605RupturedSG:-Condenser 278200.00.00.00.03357048300.00.0431710.00.00.00.00.00.0IntactSG:-Condenser

-Atmosphere

-Feedwater 273800.0371700.02337013700'.0139013900.03903800.0679701296000.0501100518700BreakFlow332510774248070431710.00.0TTRIP=27.0sec=TimeofreactortripTMSEP=1930sec=TimetofillSGtomoistureseparators TSGOF=2810sec=TimetofillSG(w/osteamline volume)TTBRK=3600sec=Timetoterminate breakflowTRHR=28800sec=Timetoestablish RHRcooling

.0liquidlevelinfaultedsteamgenerator remainsbelowthebottomofthemois-tureseparator, FigureII.1.2-1.

Hence,forthiscase,partitioning betweenthevaporandliquidphaseseffectively reducesradiological releasesforthedurationoftheaccident.

Fordelayedrecovery, case2,themoisturesepara-torbeginstofloodat32minutes.Thefaulte'dsteamgenerator iscompletely filledby47minutes.Duringthistime,liquidentrainment withinthesteamflowwouldincreasesothattheeffectiveness ofpartitioning wouldbereduced.Beyond47minutes,i.e.steamgenerator

overfill, waterrelieffromthefaultedsteamgenerator

'isassumedequaltobreakflow.Thefollowing isalistoffiguresof.pertinent timedependent parameters:

FIGUREII.1.2-1FAULTEDSGWATERVOLUMEFIGUREII.1.2-2REACTORCOOLANTSYSTEMPRESSUREFIGUREII.1.2-3FAULTEDSGPRESSUREFIGUREII.1.2-4REACTORCOOLANTSYSTEMTEMPERATURE FIGUREII.l;2-5PRESSURIZER WATERVOLUMEFIGUREII.1.2-6FAULTEDSGSTEAMFLOWFIGUREII.1.2-7BREAKFLOWFIGUREII.1.2-8BREAKFLOWFLASHINGFRACTIONII.2GINNAEVENTAdetailedthermal-hydraulic analysisoftheGinnaeventisdescribed inreference 2.Theresultsofthatanalysisformthebasisforthecalculation ofthepotential environmental consequences.

ThegeneralsequenceofeventsduringtheGinnaaccident, TableII.2-1,wassimilartothedesignbasis10 7000.05000.0S.G.VOLUflEm4000.0IX~)3000.02000.0l000.00.0CDCDCDCDCDCDCDCDCDAJCDCDCDmTlMEtMlN)CDCDCDCDCDCD,CDleCDCDFIGUREII.1.2-1.

FAULTEDSTEA51GEHERATOR HATERVOLU)1E.11 2300.02250.02000.01750.01500.0ka.1250.01000.0750.00500.00300.00CDC)CDCDC)AJTlHC(MIN)CDCDCDCDCDIClCDCDCD~QFIGUREII.1.2-2.

REACTORCOOLANTSYSTdlPRESSURE.

12 l200.01000.0800.00600.00~440.000.0CDCDCDCDCDCDCDAJCDmTINK<MIN)CDCD0CDCDC)I/1CDCDCDFIGUREII.1.2-3.FAULTEDSTEAHGENERATOR PRESSURE.

13 700.00500.00F00.00Cl~300.00l~200.00XIf00.000.0C)CDCDCDAJCDCDCDmTtHE(HtN)C)C)C7CDCDCDCDCDlACDCDCDIOFIGUREII.12-4.REACTORCOOLANTAVERAGETEI1PERATURE 800.00600.00500.00mIau400.00Cl)300.00l200.00300.000;0ClClClClClClAJ-ClmTIME(HIM)ClFIGUREII.1.2-S.

PRESSURIZER HATERVOLUt'lE.

0.17500.1500OQ0.12504.~0.1000CDI0.0750CDla0.05000.02500.0CDEDCDClCDTINE(MlN)OCDCDCDVlCDCDCDcOFIGUREII.1.2-6.

FAULTEDSTEAMGENERATOR STEANFLOW.16 150.00125.00r100.0015.000CD;L50.00025.0000.0'7ClC)CIAlTIME'M1N)

CDCDCDCDIf1FIGUREII.1.2-7.PRIl1ARY-TO-SECONDARY LEAKAGE.17

0.17500.15000.1250C)~0.10000.075040.0500~0.02500.0CDCDEDC)AJC7ClmTIME(M1N)C)"CDEDEDCDCDCDEDCDFIGUREII.1-2-8.

BREAKFLOWFLASHINGFRACTION.

18 III TABLEII.2-1GINNASEQUENCEOFEVENTSEventManual(0)Automatic (A)ActualTime(sec)Simulated TubeFailure.ReactorTripCondenser LostSISignalFeedwater Isolation AFWInitiated AFWThrottled toFaultedSGIsolation ofFaultedSGSteamDumpRCSDepressurization SGOverfillSITerminated BreakFlowTerminated RHRCooling00000.0001824500190192220410890770270043101080077580018245001981982394105305302700313043101080077580includessteamline volume19

'II eventdescribed insectionII.1.1.Breakflowinexcessofnormalchargingflowdepletedreactorcoolantinventory andeventually resultedinreactortriponlowpressurizer pressure.

Asafetyinjection signalfollowedsoonaftertrip.Normalfeedwater flowwasautomatically terminated onthesafetyinjection signalandauxiliary feedwater flowwasinitiated.

Thesteamdumpsystemoperatedtocontrolsteamgene-ratorpressurebelowthesafetyvalvesetpointandestablish no-loadreactorcoolanttemperature.

Auxiliary 4feedwater andsafetyinjection flowsabsorbeddecayheatandtemporarily stoppedsteamreleasesfromthesteamgenerators.

Emergency recoveryactionswerequicklyinitiated tomitigatetheconsequences oftheaccident.

Pre-tripsymptomsofthefaultedsteamgenerator, including steamflow/feed flowmismatchandsteamgenerator leveldeviation alarms,providedtentative indications ofthefaultedsteamgenerator whichwerecon-firmedsoonafterreactortripbyrapidlyincreasing steamgenerator levelandhighradiation indications.

Auxiliary feedwater flowwasreducedtothefaultedunitinanattempttocontrolinventory.

Isolation

-ofthefaultedsteamgenerator wascompleted within15minutesoftubefailurebyclosingtheassociated MSIV.Continued auxiliary feedwater flowtotheintactsteamgene-'atoreffectively reducedtheprimarysystemtemperature toestablish 50Fsubcooling margin.Normalspraywasunavailable sincereactorcoolantpumpsweremanuallytrippedsoonafterreactortripasdirectedbyemergency proce-dures.Consequently, onepressurizer PORYwasusedasanalternative meansofdepressurizing theprimarysystemtorestorepressurizer levelandreducebreakflow.Thiswascompleted within45minutes.Safetyinjection flowwassubsequently terminated after72minutes.Continued chargingflowandreini-tiationofsafetyinjection flowresultedinadditional primary-to-secondary leakageuntilapproximately 3hrsaftertubefailure.MassreleasesduringtheGinnaeventarepresented inTableII.2-2.LOFTRANresultsindicatethatthefaultedsteamgenerator andsteamline filledwithwaterafterapproximately 52minutes,FigureII.2-1.Beyondthistimewaterrelieffromthefaultedsteamgenerator wasassumedequaltoanyadditional primary-to-secondary leakage.Themeasuredprimaryandfaultedsteamgenera-torpressures andcalculated breakflowflashingfractionduringtheaccident20 TABLEII.2-2BEST-ESTIMATEMASSRELEASESDURINGGINNASGTREVENTFlow(1bm)TimePeriod0-TTRIPTTRIP-TNSEP-TSGOF*-22-TTBRKTTBRK-TNSEPTSGOF*TRHRFaultedSG:-Condenser

-Atmosphere

-Feedwater 1621001690000163400468000013044200105684.0~~0IntactSG:-Condenser

-Atmosphere

-Feedwater I1601002880002520014500I00.."023870171700523000,89700054743530080978387983292BreakFlow103005433099170130442105684TTRIP=182.0sec=TimeofreactortripTMSEP=1335sec=TimetofillSGtomoistureseparator TSGOF=2192sec=TimetofillSGTSGOF+.=3131sec=TimetofillSGandsteamline TTBRK=10200sec=Timetoterminate breakflowTRHR=77580sec=Timetoestablish RHRcooling21

'f000.06000.0S.G.ANDSTEAt'1LIilE VOLUflE5000.0S.G.VOLUtlEm4000.0I~~3000.02000.01000.00.'0OOOOOldllOOOC7OIllOOTlHE'MIN)

OC)V1AJC)OOaoO~~VlOQ)FIGUREII'-1.,CALCULATED FAULTEDSTEAflGENERATOR MATERVOLUHEDURINGTHEGINNAEVENT.22 2300.02250.02000.0~1750.01500.01250.0GGCGG1000.0.GGG750.00500.00300.00DOOl/IAJDDOOAJOOOI/iODDD~~IflOTlHE<MlN)FIGUREII.2-2.REACTORCOOLAHTSYSTEslPRESSUPEDURINGTHEGIHiNAEVEiAT.23 1200.0F000.0cc800.000.0CDCDCD'DCDltlAJCDCDCDleCDOCDCDCDCDCDCDAJCDCDCDlglCDOOO~~lAOTAHE(MIN)FIGUREII.2-3.FAULTEDSTEAhGENERATOR PRESSUREDURINGTHEGINNAEVENT.24 o.zoao0.55000$250~O.tNN0075000500002590088T1m<atmFIGUREII.2-4.CALCULATED BREAKFLOWFLASHI'AG FRACTIONDUR!NGTIIEGIHl<AEVEi<T.25

)

arepresented in,FiguresII.2-2thruII.2-4.Theseresultsshowthatapproxi-mately236,000ibmofmasswerereleasedafterthefaultedsteamgenerator andsteamline wascalculated tofillwithwater.Approximately 130,000ibmofthiswerereleasedinthefirst2hrs.Steamflowtocondenser wasterminated atapproximately 75minutes.Massreleaseswereterminated whentheRHRSwasplacedinserviceafter21.5hrs.26 lII III.ENVIRONMENTAL CONSE(}UENCES ANALYSISIntroductionFortheevaluation oftheradiological consequences ofasteamgenerator tuberupture,itisassumedthatthereactorhasbeenopertingwithasmallpercentofdefective fuelforsufficient timetoestablish equilibrium concentrations ofradionuclides inthereactorcoolant.Hence,radionuclides fromtheprimarycoolantenterthesteamgenerator, via'herupturedtube,andarereleasedtotheatmosphere throughthesteamgenerator safetyorpowerope'rated reliefvalves.Theradioactivity releasedtotheenvironment, duetoaSGTR,dependsuponprimaryandsecondary coolantactivity, iodinespikingeffects,primarytosecondary breakflow,timedependent breakflowflashingfractions, timedependent scrubbing offlashedactivity, partitioning oftheactivityfromthenonflashedfractionofthebreakf'1owbetweenthesteamgenerator 1iquidandsteamandthemassoffluiddischarged totheenvironment.

Alloftheseparameters wereconservatively evaluated foradesignbasistubefailure,i.e.doubleendedruptureofasingletube,asdescribed inSectionII.l.ThemassreleasesduringtheGinnaeventwerealsoestimated inSectionII.2.Theenvironmental consequences attheseeventswerecalculated andarediscussed inthefo11owing sections.

III.1DESIGNBASESANALYTICAL ASSUMPTIONS, Themajorassumptions andparameters usedintheanalysisareitemizedinTableII.l-landaresummarized below.E27 SourceTermCalculations Theconcentrations ofnuclidesintheprimaryandsecondary system,priortotheaccidentaredetermined asfollows:a.Theiodineconcentrations inthereactorcoolantwillbe,baseduponpreaccident andaccidentinitiated iodinespikes.i.Preaccident Spike-Areactortransient hasoccuredpriortotheSGTRandhasraisedtheprimarycoolantiodineconcentration to60pCi/gramofDoseEquivalent I-131.ii.AccidentInitiated Spike-Thereactortriporprimarysystemdepressurization associated withtheSGTRcreatesaniodinespikeintheprimarysystemwhichincreases theiodinereleaseratefromthefueltotheprimarycoolanttoavalue500timesgreaterthanthereleaseratecorresponding tothemaximumequilibrium primarysystemiodineconcentration of1pCi/gram ofDoseEquivalent (D.E.)I-131.'Thedurationofthespikeisassumedtobe.4hours.Iodineappearance Iratesinthereactorcoolantarepresented inTableIII.1-2.Dosesare:Icalculated forbothcasesofspiking.b.Thenoblegasactivityinthereactorcoolantisbasedon1percent-fuel defects,asprovidedinTableIII.1-3.'ITheassumption of1percentfueldefectsforthecalculation ofnoblegasactivityisconservative, sinceluCi/gram D.E.I-131and1percentdefectscannotexistsimultaneously.

Iodineactivitybasedon1percentdefectswouldbegreaterthantwicetheStandardTechnical Specification.

limit.c.Thesecondary coolantactivityisbasedontheD.E.of0.1pCi/gramofI-131.d.Iodineattherupturepointisassumedtoconsistof99.9percentelemental and0.1percentorganiciodine.28 DoseCalculations Thefollowing assumptions andparameters areusedtocalculate theactivityreleasedandtheoffsitedosesfollowing aSGTR.a.Themassofreactorcoolantdischarged intothesecondary systemthroughtheruptureandthemassofsteamand/orwaterreleasedfromtheintactandfaultedsteamgenerators, totheenvironment ispresented inTablesII.1.2-2and3.b.Thetimedependent fractionofruptureflowthatflashestosteamandisimmediately releasedtotheenvironment isshowninFigureIII-l-l.c.Thetimedependent elemental iodineattenuation factorforretention ofatomizedprimarydropletsbythemoistureseparators anddryersandforscrubbing ofsteambubblesastheyrisefromtheleaksitetothewatersurfaceispresented inFigureIII.1-2.Retention oymoistureseparators andscrubbing areeffectedbydifferential pressure(dP)acrosstherupturedtubeandwaterlevel.Specifically forthefirst4minutesaPisassumedtobehigh(>1000psi)andwaterlevellow(justabovetopoftubebundle).Forthisperiod,neitherretention norscrubbing isassumedandtheoverallfactoris1.0.Fortimesgreaterthan4minutes,thedPdecreases to:approximately 300psiandremainsconstant.

Fortimesgreaterthan4butlessthan32minutes,retention bytheseparators isconstantandatamaximum.At32minutestheseparators begintofloodandat47minutesthegenerator isfilled.Retention bytheseparators decreases fromthemaximumat32minutestozeroat.47minutes.Scrubbing increases withrisingwaterlevel.d.The1gpmprimarytoseco'ndary leakisassumedtobesplitevenlybetweenthesteamgenerators.

29 e.Allnoblegasactivityin.thereactorcoolantwhichistransported tothesecondary systemviathetuberuptureandtheprimary-to-secondary leakageisassumedtobeimmediately releasedtotheenvironment.

f.Case1assumes30minuteoperatoractiontoterminate breakflow.TheliquidlevelinthefaultedSGremainsbelowthemoistureseparator.

Case2assumes60minuteoperatoraction.Themoistureseparator beginstofloodat32minutesandthegenerator isfilledat.47minutes.g.Theelemental iodinepartition factorbetweentheliquidandsteamoftheintactSGisassumedtobe100..Thetimedependent partition factorforthefaultedSGispresented inFigureIII.1-3.h.Offsitepowerislostfollowing reactortrip.i..Eighthoursaftertheaccident, theRHRsystemis'assumedtobeinopera'tion

'tocooldowntheplant.Thus,noadditional steamreleaseisassumed.j.Neitherradioactive decay,duringreleaseand.transport, norgrounddeposition ofactivitywasconsidered.

k.Short-term atmospheric dispersion factors(x/g's)foraccidentanalysisandbreathing ratesareprovidedinTable111.1-4.l.Decayconstants, averagebetaandgammaenergiesandthyroiddoseconversion factorsarepresented inTable111.1-5.30 0OFFSITETHYROIDDOSECALCULATION MODELOffsitethyroiddosesarecalculated usingtheequation:

whereDIA--gDCF.g(IAR)..(BR).(X/0).(IAR)integrated activityofisotopeireleased*

duringthetimeintervaljinCiand(BR).breathing rateduringtimeintervaljinmeter/secondoffsiteatmospheric dispersion factorduringtimeintervaljinsecond/meter (DCF),.thyroiddoseconversion factorviainhalation forisotopeiinrem/Cithyroiddoseviainhalation inremsOFFSITETOTAL-BODY DOSECALCULATIONAL MODELAssumingasemi-infinite cloudofbetaandgammaemitters, offsitetotal-body dosesarecalculated usingtheequation:

DTB=0.25+5g(IAR)(2/0)1j31 IIwhere(IAR)..ijIntegrated activityofisotopeireleased*

duringthejtimeintervalinCiand(x/g).offsiteatmospheric dispersion factorduringtimeintervaljinsecond/meter E.conservatively assumedtobe'hesumofthebeta.andgammaenergyfortheiisotopeinmev/dis.TBtotal-body doseinremsla*Nocreditistakenforclouddepletion bygrounddeposition andradioactive decayduringtransport totheexclusion areaboundaryortotheouterboundaryofthelo'w-population zone.ResultsThyroidandTotal-Body dosesattheSiteBoundaryandLowPopulation Zonearepresented inTableIII.1-6.Alldosesarewithintheguidelines of10CFR100.

32 TABLEIII.1-1PARAMETERS USEDINEVALUATING THERADIOLOGICAL CONSEQUENCES OFA,STEAMGENERATOR TUBERUPTURE(SGTR)SourceDataa.Corepowerlevel,MWtb.Steamgenerator tubeleakage,gpmc.Reactorcoolantiodineactivity:hI1.AccidentInitiated Spike15201Initialactivigequaltothedoseequivalent of1.0pCi/gmofI-131withanassumediodinespikethatincreases therateofiodinereleaseintothereactorcoolantbyafactorof500.SeeTablesIII.1-2and3.2.Pre-Accident SpikeAnassumedpre-accident iodinespike,whichhasresultedinthedoseequivalent of60pCi/gmofI-131inthereactorcoolant.d.Reactorcoolantnoblegasactivity, bothcasesBasedon1-percent failedfuelasprovidedinTableIII.1-3.33 TABLEIII.1-1(Sheet2)e'.Secondary systeminitialactivityDoseequivalent ofO.lpCi/gmofI-131f.Reactorcoolantmass,gramsg.Steamgenerator mass(each),grams1.27x10.3.39x10h.OffsitepowerLostPrimary-to-secondary leakagedurationSpeciesofiodine99.9percentelemental 0.1percentorganicCase1-30minCase2-60minII.Atmospheric Dispersion FactorsSeeTableIII.1-4III.ActivityReleaseDataa.Faultedsteamgenerator 1.Reactorcoolantdischarged tosteamgenerator, lbs.SeeTableIII.1.2-2 or32.Flashedreactorcoolant,fractionSeeFigureIII.1-13.Iodineattenuation factorforflashedfractionofreactorcoolantSeeFigureIII.1-234 TABLEIII.1-1(Sheet3)4.Totalsteamrelease,lbsSeeTableIII.1.2-2 or35.IodinepartitionfactorforthenonflashedfractionofreactorcoolantthatmixeswiththeinitialiodineactivityinthesteamgeneratorSeeFigureIII.1-3,16.LocationoftuberuptureTopofBundleb.Intactsteamgenera'tor 1.Primary-to-secondary lca/age,lbs/hr1802.Flashedreactorcoolant,fraction03.Totalsteamrelease,lbsSeeTableIII.1.2-2 or34.Iodinepartition factor1005.Isolation time,hrs835 TABLEIII.1-2IODINEAPPEARANCE RATESINTHEREACTORCOOLANT{CURIES/SECOND)

FORADESIGNBASISSGTRI-1311-1321-133I-1341-135'quilibrium Appearance RatesduetoTechnical Specification-Fuel defects1.88x104.44x10.3.48x106.14,'104.68x10-3Appearance RatesduetoanIodineSpike-500X equilibriumrates0.942.221.743.072.34

TABLEIII.1-3REACTORCOOLANTIODINEANDNOBLEGASACTIVITYHuclide*IodineActivitybasedon1pCi/gramofDoseEquiv.I-131I-131I-132I-133I-134I-1350.785pCi/gram0.3441.010.2040.787NobleGasActivityBasedon1percentFuelDefectsXe-131mXe-133mXe-133Xe-135mXe-135Xe-138Kr-85mKr-85Kr-87Kr-881.8pCi/gram152400.417.980.4542.046.91.183.58*Secondary coolantiodineactivityisbasedonO.lpCi/gramofDoseEquivalent I-131andistherefore 10percentofthesevalues.37 TABLEIII.1-4SHORT-TERN ATMOSPHERIC DISPERSION FACTORSANDBREATHING RATESFORACCIDENTANALYSISTimeSiteBoundary~j(hours)x/g(Sec/m

)LowPopulation

~jZonex/g(Sec/m

)3Breathing

~jRate(m/Sec)0-24.8x1043.47x1040-83xl0~3.47x10

TABLEIII.1-5ISOTOPICDATADecayConstantIsotope(1/Hr)EY(Mev/dis)

E~(Hev/dis)DCFL81(R/ci)I-131I-132I-133I-134I-1350.003590.3010.0330.8000.1031.49(6)1.43(4)2.69(5)3.73(3)5.60(4)Xe-131mXe-133mXe-133Xe-135mXe-135Xe-1380.002450.01280.005482.670.07532.450.00290.0200.030.430.251.20.1650.2120.153:0.0990.320.66Kr-85mKr-85Kr-87Kr-880.1580.00000735 0.5470.2480.160.00230.7932.210.250.2511.33,0.2539 aITABLEIII.1-6RESULTSOFDESIGNBASISANALYSISDoses(Rem)Case1Case2r1.AccidentInitiated IodineSpikeSiteboundary0-2hr.)ThyroidTota1-body2.90.3191.50.5LowPopulation Zone(0-8hr)ThyroidTotal-body 0.190.025.70.032.Pre-Accident IodineSikeSiteboundary(0-2hr)ThyroidTotal-body 22.30.312730.5LowPopulation Zone(0-8hr)ThyroidTotal-body 1.40.0217.10.0340 0.08000.0600TIMEINTERVALIMIHUTES)0-l5I5-3030-5050-60060FRACTION0.0550.020O.OI0.0030.00.0400II0.0OOOOOOOOOONOOOPlOOO0oOOOtAOoOOOOooQOOtATIME(MIN)BREAKFLOWFlASHINGFRACTION.

IO5OICJO30toZO3040TIME(MINUTESI 50ATTENUATION FACTORFORFLASHEOREACTOR.COOLANT42 1I t0050CCC)40a30II20IO030T1MElMlNUTES)NORMALLEVELTOBOTTOMOFMOlSTURESEP.S.G.F1LLEDFAULTEDS.G.PAR717I0NFACTORFORNONFLASHEDREACTORCOOLANT43 III.2BestEstimateAnalticalAssumptions Themajorassumptions andparameters usedintheanalysisareitemizedinlaoleIII.2-1andaresummarized below.SourceTermCalculations lheconcentrations ofnuclidesintheprimaryandsecondary system,priortotheaccidentaredetermined asfollows:a.Theiodineconcentrations inthe'eactor coolantwillbebaseduponpreaccident andaccidentinitiated iodinespikes.i.Preaccident Spike-Areactortransient hasoccurredpriortotheSGTRandhasraisedtheprimarycoolantiodineconcentration to8pCi/gramofDoseEquivalent I-131.(Thebasisforthespikingfactorsispresented inRef.9.)ii.AccidentInitiated Spike-Thereactortriporprimarysystemdepressurization associated withtheSGTRcreatesaniodinespikeintheprimarysystemwhichincreases theiodinereleaseratefromtheItueltotheprimarycoolanttoavalue30L~timesgreaterthanthereleaseratecorresponding tothemaximumequilibrium primarysystemiodineconcentration oflpCi/gram ofDoseEquivalent (O.E.)1-131.Thedurationofthespikeisassumedtobe4hours.Iodineappearance ratesinthereactorcoolantarepresented inTable2.Dosesarecalculated forbothcasesofspiking.b.Thenoblegasactivityinthereactorcoolantisbasedon1-percent fueldefects,asprovidedinTan)e3ofPartIII.l.c.Tnesecondary coolantactivityisbasedontheO.E.ofO.lwCi/gramofI-131.d.Iooineattherupturepointisassumed'toconsistof100percentelemental iodine.44 I

Theassumption ofI-percent fueldefectsforthecalculation ofnoblegasactivityisconservative sincelpCi/gram D.E.I-131andIpercentdefectscannotexistsimultaneously.

Iodineactivitybasedon1.percent defectswouldbegreaterthantwicetheTechnical Specification limit.DoseCalculations Thefollowing assumptions andparameters areusedtocalculate theactivityreleasedandtheoffsitedosesfollowing aSGTR.a.Themassofreactorcoolantdischarged intothesecondary systemthroughtheruptureandthemassofsteamand/orwaterreleasedfromtheintactandfaultedsteamgenerators, totheenvironment ispresented inTableIII.2-2.Ib.Thetimedependent fractionofruptureflowthatflashestosteamandisimmediately releasedtotheenvironment isshowninFigureII.I.2-1.

c.Thetimedependent elemental iodineattenuation factorforretention ofatomizedprimarydropletsbythemoistureseparators anddryersandforscrubbing ofsteambubblesastheyrisefromtheleaksitetothewatersurfaceispresented inFigureIII.2-2.Retention.

bymoistureseparators andscrubbung areeffectedbydifferential pressure(aP)acrosstherupturedtubeandwaterlevel.Specifically forthefirst5minutessPisassumedtobehigh(550psi)andwaterlevellow(topoftubebundle).Forthisperiod,retention andscrubbing areassumedandtheoverallfactoris1.45.Fortimesgreaterthan5minutestheaPdecreases toapproximately 450psiandisassumedconstantforthedurationoftheflashingperiod.Fortimesgreaterthan5butlessthan22minutes,retention bytheseparators isassumedconstantandatamaximum.At22minutestheseparators begintofloodandat52minutesthegenerator andsteamlinearefilled.Retention bytheseparators decreases fromthemaximumat5minutestozeroat36minutes.Scruobing increases withrisingwaterlevel.

I)III

~~d.TheIgpmprimarytosecondary leakisassumedtobesplitevenlybetweenthesteamgenerators.

e.Allnoblegasactivityinthereactorcoolantwhichistransported tothesecondary systemviathetuberuptureandtheprimary-to-secondary leakageisassumedtobeimmediately releasedtotheenvironment.

f.Themoistureseparator beginstofloodat22minutesandthegenerator andsteamlinearefilledat52minutes.g.Theelemental iodinepartition factorbetweentheliquidandsteamoftheintactSGisassumedtobe5000.Thetimedependent partition factorforthefaultedSGispresented inFigureIII.2-3.h.Offsitepowerisavailable.

i.21.5hoursaftertheaccident, theRHRsystemisassumedtobeinopera-tiontocooldowntheplant.Thus,noadditional steamreleaseisassumed.j.Neitherradioactive decay,duringreleaseandtransport, norgrounddeposition ofactivitywasconsidered.

k.Short-term aimospheric dispersion factors(X/g's)foraccidentanalysisandbreathing ratesareprovidedinTableIII.2-3.1.Decayconstants, averagebetaandgammaenergiesandthyroiddoseconver-sionfactorsarepresented inTable5ofPartIII.1.OffsiteThyroidandTotal-Body DoseCalculational ModelsSeePartIII.1ResultsThyroidandtotal-body dosesatthesiteboundaryandlowpopulation zonearepresented inTableIII.2-4.Alldosesarewithintheguidelines of10CFR100.

46 TABLEIII.2-1PARAMETERS USEDINTHEBESTESTIMATEEVALUATION THERADIOLOGICAL CONSE(}UENCES OFTHEGINNAEVENTI.SourceDataa.Corepowerlevel,tQt~b.Steamgenerator tubeleakage,gpmc.Reactorcoolantiodineactivig15201I1.AccidentInitiatedSpikeInitialactivityequaltothe.doseequivalent of1.0pCi/gmofI-131withanassumediodinespikethatincreases therateofiodinereleaseintothereactorcoolantbyafactorof30.SeeTablesIII.2-2,III.1-3.2.Pre-Accident SpikeAnassumedpre-accide'nt iodinespike,whichhasresultedinthedoseequivalent of8pCi/gmofI-131inthereactorcoolant.d.ReactorcoolantnoblegasactiviQBasedon1-percent failedfuelAsprovidedinTableIII.1-3ofSectionIII.le.Secondary systeminitialactivityf.Reactorcoolantmass,gramsg.Steamgenerator mass(each)gramsh.OffsitepowerDoseequivalent of.0.1pCi/gmofI-131.1.27x103.39x10Available 47 JI~VTABLEIII.2-1(Continued) i.Primary-to-secondary 1eakagedurationSpeciesofiodine185min100percentelemental II.Atmospheric Dispersion FactorsSeeTableIII.2-3III.ActivityReleaseDataa.Faultedsteamgenerator 1.Reactorcoolantdis-chargedtosteamgenerator, lbs.SeeTableII.2-22.Flashedreactorcoolant,fraction3.Iodineattenuation factorforflashedfractionof.:reactorcoolant4.Steamandwaterreleases, lbsI5.Iodinepartition factorforthenonflashedfractionofreactorcoolantthatmixeswiththeinitialiodineactivityinthesteamgenerator 6.LocationoftuberuptureSeeFigureIII.2-1SeeFigureIII.2-2SeeTableII.2-2SeeFigureIII.2-34inchesabovetubesheetb.,Intactsteamgenerator 1.Primary-to-secondary leakage,lbs/hr180 IlI

-'TABLEIII.2-1(Continued)

.~2.Flashedreactorcoolantfraction3.Totalsteamrelease,lbs4.Iodinepartition factor5.Isolation time,hrs0SeeTableII.2-2500021.55c.Condenser 1.Iodinepartition factor-,-5000 IIIII TABLEIII.2-2IODINEAPPEARANCE RATESINTHE-REACTORCOOLANT(CURI'ES/SECOND)

I-131I-132I-133I-134I-135Equi1ibriumAppearance RatesduetoTechnical Specification FuelDefects1.88x104.44x103.48,x104.68x10Appearance RatesduetoanIodineSpike-30X equilibriumpates5.64x101.33x101.04x101.84x101.4x10 TABLEIII.2-3SHORT-TERM ATMOSPHERIC DISPERSION FACTORSANDBREATHING RATESFORACCIDENTANALYSESTime(hours)SiteBoundary[6jx/Q(Sec/m)LowPopulation L6jZonex/Q(Sec/m)BreathingRate(m/sec)0-20-84.8x103x.103.47x103.47x108-243x101.75x10\Note:x/Q'sare10percentoftheR.G.1.145values.51 TABLEIII.2-4IRESULTSOFGINNAEVENTANALYSESl.AccidentInitiated IodineSpikeDoses(Rem)Siteboundary(0-2hr)ThyroidTota1-body2.90.5LowPopulation Zone(0-8hr)ThyroidTotal-body 1.40.0482.PreAccidentSpikeSiteboundary(0-2hr)'hyroidTotal-body 8.50.5LowPopulation Zone(0-8hr)ThyroidTotal-body1.50.048.52 EAUGURE:III.2-10.2000O.I750O.I500O.I250TIMEINTERVAL(IAlNUTE5)0-65"I7>l7FRACTIONO.IG0.0290.0O.IOOOO00.07500.05004.0.02501IIII0.0OeOMOOOIAO'OOlAOOlACOTIME(MINIBREAKFlQWFLASHINGFRACTI0NFORTHEGINNAEYENT53 1098SC)~I04OI-l4I0IOIS20TIME(MINUTES) 2530ATTENUATION FACTORFORFLASHEDREACTORCOOLANTFORTHEGINNAEVENT54 t4A 5000a:IOOOOaf-.F-~tooIII,iIIItIIIIIIIItIII,IIIIItI0IOZO305060'-TlMEIMlNUTE5)FAULTEDS.G.PARTlTION FACTORFOR'HEGINNAEVENT55 l~

t)IV.SUMMARYANDCONCLUSIONS Thepotential environmental consequences ofasteamgenerator tubefailureattheR.E.Ginnanuclearpowerplantwereevaluated inordertodemonstrate thattheStandardTechnical Specifications limitonprimarycoolantactivityisacceptable.

Themassreleasesduringadesignbasisevent,i.e.adouble'ndedruptureofasingletube,wereconservatively calculated usingthecom-puterco'deLOFTRAN.Fortheseanalyses, thesequenceofrecoveryactionsinitiated bythetubefailurewereassumedtobecompleted onarestricted timescale.-Twocaseswereconsidered:

a)30minuterecovery, andb)60minuterecovery.

Theeffectofsteamgenerator overfillonradiological'eleases wasalsoconsidered.

Massreleasesduringthedesignbasiseventwereusedwithconservative assumptions ofcoolantactivity, meteorology, andattenuation toestimateanupperboundofsiteboundaryandlowpopulation zoneexposures.

ThemassreleasesfromtheJanuary25,1982steamgenerator tubefailureatGinnawerealsocalculated fromresultspresented inreference 2.ThesereleaseswereusedwiththeStandardTechnical Specification limitoninitialcoolantactivityandamorerealistic meteorology toevaluatepotential dosesonamorerealistic basis.Resultsofthedesignbasisanalysesindicatethattheconservative siteboundaryandlowpopulation zoneexposures fromasteamgenerator tubefailure'rewithin10CFR100limitations w'iththeStandardTechnical Specification limitoninitialcoolantactivity.

Estimates ofthepotential radiological releasesfromamorerealistic eventwiththesameinitialcoolantactivitydemonstrate thatthedesignbasisanalysisisveryconservative.

Conse-quently,theStandardTechnical Specification limitoncoolantactivityaresufficient toensurethattheenvironmental consequences ofasteamgenerator tubefailureattheR.E.Ginnaplantwillbewithinacceptable limits.56 vliIREFERENCES 1.L.A.Campbell, "LOFTRANCODEDESCRIPTION",

WCAP-7878 Rev.3,'anuary (1977).2.E.C.Volpenhein, "ANALYSIS OFPLANTRESPONSEDURINGJANUARY26,1982STEAMGENERATOR TUBEFAILUREATTHER.E.GIHNANUCLEARPOWERPLANT",Westinghouse ElectricCo.,October(1982).3.WESTINGHOUSE OWNERSGROUPEMERGENCY RESPONSEGUIDELINES SEMINAR,September 1.981.4.NRCStandardReviewPlan15.6-3,Rev.2,"Radiological Consequences ofaSteamGenerator TubeFailure",

July,1981.5.NRCNUREG-0409, "IodineBehaviorinaPWRCoolingSystemFollowing aPostulated SteamGenerator TubeRuptureAccident",

Postma,A.K.,Tam,P.S.,Jan.1978.r6.NRCRegulatory Guide1.145,"Atmospheric Dispersion ModelsforPotential AccidentConsequence Assessments atNuclearPowerPlants",August,1979.7.--HRCRegulatory-Guide1.4,Rev.2,"Assumptions UsedforEvaluating thePotential Radiological Consequences ofaLOCAforPressurized WaterReactors",

June1974.8.NRCRegulatory Guide1.109,Rev.1,"Calculation ofAnnualDosestoManFromRoutineReleasesofReactorEffluents forthePurposeofEvaluating Compliance with10CFRPart50AppendixI",Oct.1977.9.Lutz,R.J.,"IodineandCesionSpikingSourceTermsforAccidentAnalysis,"

WCAP-9964, Rev.1,July1981.57 I~Nb