ML23066A327

From kanterella
Revision as of 09:30, 17 April 2023 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Draft Staff Assessment of Updated Seismic Hazard Information and Latest Understanding of Seismic Hazards at Vogtle Plant Site Following NRC Process for Ongoing Assessment of Natural Hazards Information
ML23066A327
Person / Time
Site: Vogtle  Southern Nuclear icon.png
Issue date: 03/31/2023
From: John Lamb
Plant Licensing Branch II
To: Brown R
Southern Nuclear Operating Co
References
Download: ML23066A327 (52)


Text

March 31, 2023 Mr. R. Keith Brown Regulatory Affairs Director Southern Nuclear Operating Co., Inc.

3535 Colonnade Parkway Birmingham, AL 35243

SUBJECT:

VOGTLE ELECTRIC GENERATING PLANT, UNITS 1 AND 2 - DRAFT STAFF ASSESSMENT OF UPDATED SEISMIC HAZARD INFORMATION AND LATEST UNDERSTANDING OF SEISMIC HAZARDS AT THE VOGTLE PLANT SITE FOLLOWING THE NRC PROCESS FOR THE ONGOING ASSESSMENT OF NATURAL HAZARDS INFORMATION

Dear Mr. Brown:

The purpose of this letter is to document the U.S. Nuclear Regulatory Commission (NRC) staff's latest understanding of seismic hazards at the Vogtle Electric Generating Plant (Vogtle), Units 1 and 2, following the process for the ongoing assessment of natural hazards information. The draft NRC staff assessment considers new seismic ground motion attenuation models for central and eastern North America and updated seismic site response methods. Enclosed for Southern Nuclear Operating Company is an information copy of the NRC staff's draft cover letter and draft assessment of the Vogtle Seismic Hazard Report.

The NRC staff plans to issue the cover letter and assessment of the Vogtle Seismic Hazard Report five working days from the date of this letter.

If you have any questions, please contact the senior project manager at (301) 415-3100 or via email at John.Lamb@nrc.gov.

Sincerely,

/RA/

John G. Lamb, Senior Project Manager Plant Licensing Brancjh II-1 Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation Docket Nos. 50-424 and 50-425

Enclosures:

1. Draft Cover Letter
2. Draft Vogtle 2022 Seismic Hazard Report cc: Listserv

ENCLOSURE 1 DRAFT COVER LETTER

SUBJECT:

VOGTLE ELECTRIC GENERATING PLANT, UNITS 1 AND 2 - STAFF ASSESSMENT OF UPDATED SEISMIC HAZARD INFORMATION AND LATEST UNDERSTANDING OF SEISMIC HAZARDS AT THE VOGTLE PLANT SITE FOLLOWING THE NRC PROCESS FOR THE ONGOING ASSESSMENT OF NATURAL HAZARDS INFORMATION

Mr. R. Keith Brown Regulatory Affairs Director Southern Nuclear Operating Co., Inc.

3535 Colonnade Parkway Birmingham, AL 35243

SUBJECT:

VOGTLE ELECTRIC GENERATING PLANT, UNITS 1 AND 2 - STAFF ASSESSMENT OF UPDATED SEISMIC HAZARD INFORMATION AND LATEST UNDERSTANDING OF SEISMIC HAZARDS AT THE VOGTLE PLANT SITE FOLLOWING THE NRC PROCESS FOR THE ONGOING ASSESSMENT OF NATURAL HAZARDS INFORMATION

Dear Mr. Brown:

The purpose of this letter is to document the U.S. Nuclear Regulatory Commission (NRC) staff's latest understanding of seismic hazards at the Vogtle Electric Generating Plant (Vogtle), Units 1 and 2, following the process for the ongoing assessment of natural hazards information. The NRC staff assessment considers new seismic ground motion attenuation models for central and eastern North America and updated seismic site response methods.

Based on its evaluation of updated seismic hazard curves for the Vogtle plant site, using the new ground motion models and updated site response methods, the NRC staff determined that no further regulatory evaluation of the Vogtle, Units 1 and 2, plant seismic risk is warranted at this time.

OVERVIEW The enclosed seismic hazard report provides the NRC staffs updated seismic hazard curves and response spectra for the Vogtle plant site that is based on the implementation of (1) a new seismic ground motion model for the central and eastern North America and (2) recent advances in site response analysis. The NRC staffs updated hazard curves and site amplification factors are included in the enclosed seismic hazard report. The NRC staff conducted a screening evaluation that compared the updated seismic hazard curves contained in the attached report with previous seismic hazard curves developed by the licensee for Vogtle, Units 1 and 2. Based on its comparison and evaluation of the updated seismic hazard curves in combination with an estimate of the Vogtle, Units 1 and 2, seismic capacity and available information on the consideration of seismic events in Vogtles approved risk-informed programs, the NRC staff has determined that no further regulatory evaluation of, or action to modify, the Vogtle, Units 1 and 2, plant seismic risk licensing basis is warranted.

R.K. Brown The NRC staff notes that Southern Nuclear Operating Company is responsible for considering the impact of this updated hazard on its plant-specific licensing basis including, approved risk-informed applications, and, if applicable, the approved program for maintaining the plant-specific seismic probabilistic risk assessment supporting such applications.

Although the NRC staff is taking no further action at this time, the control point seismic hazard curves developed by the NRC staff for this report may be considered in the context of potential future evaluations of the Vogtle plant site by the NRC staff (e.g., future license amendment requests) consistent with agency policy procedures (e.g., NRC Management Directive 8.4, Management of Backfitting, Forward Fitting, Issue Finality, and Information Requests).

If you have any questions, please contact me at (301) 415-3100 or via email at John.Lamb@nrc.gov.

Sincerely, John G. Lamb, Senior Project Manager Plant Licensing Branch II-1 Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation Docket Nos. 50-424 and 50-425

Enclosure:

Vogtle 2022 Seismic Hazard Report cc: Listserv

Package ML23006A109 Letter ML23006A091 Enclosure ML23006A093 NRR-106 OFFICE NRR/DORL/LPL2-1/PM NRR/DORL/LPL2-1/LA NRR/DRA/ APLC/BC NRR/DEX/EXHB/BC NAME JLamb KGoldstein SVasavada BHayes DATE 01/06/2023 01/09/2023 01/31/2023 02/01/2023 OFFICE OGC - NLO NRR/DORL/LPL2-1/BC NRR/DEX/DD NRR/DORL/LPL2-1/PM NAME DRoth MMarkley MSampson JLamb DATE 02/22/2023 02/24/2023 / /2023 / /2023 ENCLOSURE 2 DRAFT VOGTLE SEISMIC HAZARDS REPORT

Vogtle Seismic Hazard Report Overview This report provides the NRC staffs updated seismic hazard curves and response spectra for the Vogtle Electric Generating Plant (Vogtle) site that are based on the implementation of (1) a new seismic ground motion model for the central and eastern United States (CEUS) and (2) recent advances in site response analysis. The NRC staffs updated hazard curves and site amplification factors are included in an appendix to this report.

Background

In response to the March 11, 2011, Great East Japan Earthquake and tsunami, which triggered an accident at the Fukushima Dai-ichi nuclear power plant, the U.S. Nuclear Regulatory Commission (NRC) established the Near-Term Task Force (NTTF) to conduct a systematic and methodical review of NRC processes and regulations and determine whether the agency should make additional improvements to its regulatory system. In SECY-11-0093, Near-Term Report and Recommendations for Agency Actions Following the Events in Japan, dated July 12, 2011 (NRC, 2011), the NRC staff recommended a set of actions to clarify and strengthen the regulatory framework for protection against natural hazards. In particular, NTTF Recommendation 2.1 (NTTF R2.1) instructed the NRC staff to issue requests for information to all power reactor licensees pursuant to Title 10 of the Code of Federal Regulations 50.54(f)

(50.54(f) letter). Enclosure 1 to the 50.54(f) letter requested that addressees reevaluate the seismic hazards at their sites, using present day NRC requirements and guidance to perform a probabilistic seismic hazard analysis (PSHA) and develop a site-specific ground motion response spectrum (GMRS). To comply with the 50.54(f) request, the Nuclear Energy Institute submitted Electric Power Research Institute (EPRI) Report 1025287, Seismic Evaluation Guidance: Screening, Prioritization, and Implementation Details (SPID) for the Resolution of Fukushima NTTF Recommendation 2.1 Seismic, dated November 27, 2012 (EPRI, 2012).

Recipients of the 50.54(f) letter committed to following the SPID to develop seismic hazard and screening reports (SHSRs). By December 2017, the NRC staff had finished assessing the SHSRs for all operating U.S. nuclear power plants.

Under the process for the ongoing assessment of natural hazards information (POANHI),

described in SECY-16-0144, Proposed Resolution of Remaining Tier 2 and 3 Recommendations Resulting from the Fukushima Dai-ichi Accident, dated December 26, 2016 (NRC, 2016), the NRC staff continuously seeks out and integrates new natural hazards information for operating plants in the United States. The Office of Nuclear Reactor Regulations Office Instruction LIC-208, Process for the Ongoing Assessment of Natural Hazards Information, issued November 2019 (NRC, 2019), provides guidance to the staff on how to collect, integrate, and evaluate new information for consideration in its regulatory decision-making. This report presents the NRC staffs latest understanding of seismic hazards at the Vogtle site following the POANHI framework.

The Vogtle site is located in Georgia along the Savannah River within the Coastal Plain physiographic province and is founded on about 325 meters of soil (sand and clay) over sedimentary rock of Mesozoic age.

Motivation After evaluating the SHSR submittals, the NRC staff captured in NUREG/KM-0017, Seismic Hazards Evaluations for U.S. Nuclear Power Plants: Near-Term Task Force Recommendation 2.1 Results, issued December 2021 (Munson et al., 2021), the information used to develop the GMRS at each of the U.S. nuclear power plants. This includes a compilation and synthesis of (1) information provided by licensees in their SHSRs, (2) information collected by the NRC staff during its reviews of the SHSRs, and (3) information subsequently collected by the NRC staff from the scientific and engineering literature pertaining to several of the nuclear power plant sites. In addition, NUREG/KM-0017 includes updated approaches and relationships, relative to those recommended by the SPID, that the NRC staff used to perform its analyses.

After the development of NUREG/KM-0017, a new Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 ground motion model (GMM) for Eastern North America called NGA-East was published by Goulet et al. (2018). In addition, the NRC staff also participated in a SSHAC Level 2 study, documented in Research Information Letter (RIL) 2021--15, Documentation Report for SSHAC Level 2: Site Response, issued November 2021 (Rodriguez-Marek et al., 2021). This SSHAC Level 2 study implemented the SSHAC approach to performing site response analyses (SRAs). The SSHAC process, described most recently in NUREG-2213, Updated Implementation Guidelines for SSHAC Hazard Studies, issued October 2018 (Ake et al., 2018),

provides a structured and logical framework for the systematic evaluation of alternative data, models, and methods. This seismic hazard report for the Vogtle site incorporates the NGA-East GMM in place of the EPRI (2013) GMM and lessons learned from the SSHAC Level 2 SRA study (RIL 2021-15) into a PSHA to develop updated seismic hazard curves and a GMRS for the site.

Methods Reference Rock Hazard For the reference rock PSHA, the NRC staff used the distributed seismicity zones (DSZs) from the SSHAC Level 3 Central and Eastern United States Seismic Source Characterization for Nuclear Facilities (CEUS-SSC) model in NUREG-2115, Central and Eastern United States Seismic Source Characterization for Nuclear Facilities, issued January 2012 (NRC, 2012).

Specifically, the NRC staff selected the DSZs that are located within 500 kilometers of the site.

In addition to the nearby Charleston CEUS-SSC repeated large-magnitude earthquake (RLME) source, the NRC staff selected additional RLME sources that are within 1,000 kilometers of the site. To develop the reference rock seismic hazard curves for the site, the NRC staff used the NGA-East GMM (2018) to compute the median and logarithmic standard deviation of the spectral accelerations. Because the NGA-East GMM implements the rupture distance parameter, the NRC staff developed virtual rupture planes for each of the distributed source zones surrounding the site. For each virtual rupture, the NRC staff used the CEUS-SSC hazard input document (NRC, 2012) to specify the size of the rupture plane and the orientation of the rupture plane in terms of the strike and dip angles, dip direction, and rupture type (e.g., reverse and strike slip). In contrast, to develop the hazard curves for NUREG/KM-0017, the NRC staff used point source approximations for the CEUS-SSC and EPRI GMM (EPRI, 2013) combination.

Figure 1 shows the distribution of the virtual ruptures for one of the four alternative CEUS-SSC seismotectonic DSZ configurations along with the resulting 10-Hertz (Hz) mean hazard curves developed using the NGA-East GMM. In particular, Figure 1 shows the distribution of the surface projection of the updip segments of the virtual rupture planes for each of the five seismotectonic DSZs within 500 kilometers of the site. As expected, the Extended Continental

CrustAtlantic Margin (ECC-AM) source zone, which surrounds the site, is the largest contributor to the 10 Hz reference rock mean hazard curves at the 10-4 annual frequency of exceedance (AFE) level. Similarly, Figure 2 shows the distribution of the virtual ruptures for one of the three alternative CEUS-SSC maximum-magnitude DSZ configurations along with the resulting 10 Hz mean hazard curves developed using the NGA-East GMM. The Mesozoic-and-Younger ExtensionNarrow Configuration (MESE-N) source zone, which surrounds the site, is the largest contributor to the 10 Hz reference rock mean hazard curves at the 10-4 AFE level.

Figure 3 shows the RLME sources within 1,000 kilometers of the site, and their contribution to the 1 Hz reference rock mean hazard, from using the NGA-East GMM. The Charleston RLME source, which is closest to the site, is the largest contributor to the 1 Hz reference rock mean hazard curves at the 10-4 AFE level. Figure 4 shows the contribution from all of the DSZs relative to the RLMEs, as well as the total mean hazard for the 1 and 10 Hz mean reference rock hazard curves, from using the NGA-East GMM. For both the 1 and 10 Hz mean reference rock hazard curves, the RLME sources provide the largest contribution at the 10-4 AFE level.

Finally, Figure 5 shows the mean 1,000-, 10,000-, and 100,000-year return period mean reference rock uniform hazard response spectra (UHRS) for the Vogtle site from using the EPRI GMM (blue) and the NGA-East GMM (red). As shown in Figure 5, the spectral accelerations from using the NGA-East GMM are moderately higher than those from using the EPRI GMM, up to the spectral frequency of about 25 Hz.

Site Response Analysis SRAs, which are used to develop site adjustment (or amplification) factors , depend on several factors, including the site strata (material type, stiffness, and thickness) and their response to dynamic loading. Because this information is site specific, the ability to accurately model the site response depends on the quantity and quality of site-specific geologic and geotechnical data available, and on the interpretation and use of these data to develop input models for assessing amplification (or deamplification) of ground motions. The resulting are assessed for a wide range of input ground motions as part of understanding the changes in the soil and rock response as input ground motions increase.

The NRC staff followed the site response approach described in RIL 2021-15, which uses a logic tree for systematically identifying and propagating epistemic uncertainties in the SRA. As described in RIL 2021-15, to produce a truly probabilistic estimate of the seismic hazard at the control point elevation, it is necessary to estimate both the epistemic uncertainties and the aleatory variability of the soil and or rock dynamic response, and to propagate these through the SRA and the calculation of the site hazard curves.

Site Exploration. As described in the NTTF R2.1 SHSR submitted by Southern Nuclear Operating Company (Pierce, 2014) and summarized in section 2.3.17 of NUREG/KM-0017, the field investigations for Vogtle consisted of the siting investigations for Vogtle Units 1 and 2, the investigation carried out for the sites independent spent fuel storage installation, and the investigations for the early site permit and combined license for Vogtle Units 3 and 4. These investigations involved numerous geophysical profiles, including crosshole methods and suspension compressional (P)-shear (S) velocity logging to a depth of 408 meters in the deepest borehole for Units 3 and 4. The geophysical investigations from the nearby Savannah River Site were used to determine the shear wave velocity ( ) for the deeper strata within the Dunbarton Basin.

Basecase Profiles. The Vogtle site consists of sedimentary deposits (primarily sands, silty sands, clayey sands, limestone, marl, and silt) overlying the Triassic-Jurassic sedimentary rock of the Dunbarton Basin, which is part of the South Georgia Rift Basin. Southern Nuclear

Operating Company stated in its NTTF R2.1 SHSR (Pierce, 2014) that the upper sand stratum and the Utley limestone were removed and replaced with 27 meters of compacted backfill within the powerblock areas. Based on the numerous geotechnical and geophysical investigations, Southern Nuclear Operating Company developed a best-estimate basecase profile for its SHSR that extends to a depth of about 671 meters below the control point elevation, which is at the top of the ground surface. The uppermost layers of the profile consist of approximately 27 meters of compacted fill, with a varying from about 180 meters per second (m/s) near the surface to about 350 m/s at its base. Below the compacted fill is about 20 meters of hard calcareous clay marl, referred to as the Blue Bluff Marl. The of the Blue Bluff Marl increases from about 490 m/s to 670 m/s. Beneath the Blue Bluff Marl are 274 meters of dense, coarse-to-fine sand with interbedded silty clay and clayey silt, referred to as the Lower Sand Stratum. The for the Lower Sand Stratum ranges from about 480 m/s to 840 m/s. The for the underlying Triassic-age Dunbarton Basin increases from about 1,340 m/s to about 2,630 m/s, with the reference rock of 3,000 m/s at a depth of about 671 meters.

As multiple geophysical field investigations have characterized the sedimentary strata beneath the Vogtle site, the NRC staff used Southern Nuclear Operating Companys layer thicknesses and for its best-estimate basecase profile.

To capture the uncertainty in its basecase profile, the NRC staff developed lower and upper profiles by multiplying its best-estimate basecase profile by scale factors of 0.82 and 1.21, respectively, which corresponds to an epistemic logarithmic standard deviation of 0.15. The weights for the lower, best-estimate, and upper basecase profiles are 0.3, 0.4, and 0.3, respectively. Figure 6 shows the lower, best-estimate, and upper basecase profiles used by the NRC staff. The lower epistemic value used by the NRC staff to determine the lower and upper basecase profiles is due to the results of the abundant geophysical and geotechnical profiling for the Vogtle site.

Site Kappa. To estimate the site kappa ( ), which captures the overall attenuation (i.e., intrinsic and scattering attenuation) of the geologic profile, the NRC staff used five empirical relationships: the four - models from Campbell (2009), where is the effective quality factor of shear waves, which captures both the frequency-independent component of intrinsic attenuation and small-scale scattering; and the - . - correlation model of Xu et al. (2020), where is the average shear-wave velocity over the top 30 meters of a profile, and . is the depth to the 2.5 kilometers per second horizon. For each of the four -

models, the NRC staff estimated a for each layer in the three basecase profiles, then used the estimated , , and layer thickness to determine a for each layer. Summing these values for each layer and adding the reference value of 6 milliseconds (msec) provides an estimate of the total . The NRC staff used a weight of 0.125 for each of the four - models and a weight of 0.5 for the - . - correlation model. Assuming a lognormal distribution for with a logarithmic standard deviation of 0.2 from Xu et al. (2020), the NRC staff developed a nine-point discrete distribution. This results in 45 values and associated weights for each of the three basecase profiles, which the NRC staff then resampled using the approach from Miller and Rice (1983) to reduce the distribution to five representative values and associated weights.

These five values and weights, which are listed in Table 1, range from 16 msec to 69 msec for the three basecase profiles.

Nonlinear Dynamic Properties. For the equivalent linear (EQL) SRA, nonlinearity is incorporated using strain-compatible site properties (i.e., shear modulus and damping ratio) for each layer. The strain-compatible properties model both the shear modulus reduction and the

increased damping that are expected as the intensity of shaking increases. To model the nonlinear response within the upper 323 meters of soil deposits, the NRC staff used the site-specific modulus reduction and damping (MRD) curves developed as part of the investigations for the early site permit, along with several additional published MRD curves (EPRI, 1993; Darendeli, 2001; Peninsular Range [Silva et al., 1997]; Vucetic and Dobry, 1991; Zhang et al., 2005), which are identified in Table 2. The NRC staff used a weight of 0.5 for the site-specific MRD curves and a weight of 0.125 for the other four generic curves. The NRC staff used multiple MRD curves to better capture the epistemic uncertainty in the nonlinear response of the soil to higher dynamic loading.

Table 2 provides the layer depths, lithologies, , unit weights, and dynamic properties for the NRC staffs three basecase profiles. It is important to note that the NRC staff has adjusted the critical damping ratio values in the lower layers of the three profiles, which are treated as having a linear response, so that the profile as a whole has the appropriate value. Figure 7, which shows tornado plots for the reference rock peak ground acceleration (PGA) value of 0.8g, shows the site response logic tree nodes that contribute to the variance of the . Each tornado plot in Figure 7 is associated with one of the four oscillator frequencies of 1, 5, 10, and 100 Hz. For the 1, 5, and 10 Hz frequencies, the epistemic uncertainty in the basecase contributes the most to the variance in the . At 100 Hz, the profile, , and the analysis method (described below) all appear to make similar minor contributions to the variance.

Input Motions. Input motions used for the SRA were generated as outcrop motions at the reference rock horizon, located at the bottom of the basecase profiles. The NRC staff used random vibration theory to generate the input motions after first developing an input Fourier amplitude spectrum (FAS) using seismological source theory (i.e., single-corner frequency Brune source spectrum). To develop the FAS, the NRC staff used the source and regional attenuation parameters recommended in the SPID for Eastern North American rock sites and then used random vibration theory to develop corresponding 5 percent damped acceleration response spectra. The NRC staff developed 12 input FAS assuming a magnitude () of 6.5 and 12 different source-to-site distances, as recommended in the SPID.

Analysis Methodology. To develop for the Vogtle site, the NRC staff used traditional EQL analysis and the recently developed kappa-corrected EQL analysis, which adjusts the high-frequency control point (i.e., top of profile) FAS from the EQL SRA to be consistent with the target value. In particular, the NRC staff used the kappa-corrected EQL analysis methodology (Xu and Rathje, 2021) with a minor modification in which the EQL control point FAS remains unmodified below a specified transition frequency, and then a slope equal to the target value is imposed at frequencies above the transition frequency (RIL 2021-15). To capture the uncertainty in the transition frequency value, the NRC staff selected three frequencies for which the FAS amplitude equals 5 percent, 11 percent, and 17 percent of its peak value, with weights of 0.2, 0.6, and 0.2, respectively.

To capture the spatial variability in site properties across the site, the NRC staff generated randomized profiles around the three basecase profiles using the Toro (1995) model, which quantifies the aleatory variability through a depth-dependent standard deviation of the natural log of the velocities. The logarithmic standard deviation values used by the NRC staff for the Vogtle site were based on site-specific data and are shown in Table 2. In addition to randomizing the profiles, the NRC staff also randomized the MRD curves following the logit function approach used in the SPID and described in RIL 2021-15.

For each terminal branch of the site response logic tree, the NRC staff developed 60 randomized profiles and then determined the by dividing the computed control point

response spectrum by the outcrop response spectrum for the reference condition. Next, the NRC staff computed a median and logarithmic standard deviation for the , using the 60 from the randomized profiles, for each terminal branch of the logic tree. To facilitate implementing the medians and logarithmic standard deviations into the PSHA seismic hazard integral, the NRC staff reduced the median s from the over 200 logic tree terminal branches to seven discrete fractiles and weights using the resampling procedure outlined by Miller and Rice (1983). As recommended by Rodriguez-Marek et al. (2021), to ensure that estimates of the SRA capture enough epistemic uncertainty in the median , the NRC staff implemented a minimum logarithmic standard deviation value of 0.15, which causes the seven median fractiles to spread apart if necessary.

Finally, because the logarithmic standard deviation for each spectral frequency does not vary significantly across the terminal branches of the logic tree, the NRC staff used a single mean value for each frequency. In addition, to avoid double-counting the aleatory variability already captured by the GMM, the NRC staff adjusted the logarithmic standard deviation to include only the portion of the standard deviation associated with the nonlinear site response.

Figure 8 shows the seven median values (top) and the average logarithmic standard deviation (bottom) as a function of input reference rock spectral acceleration for the 1 and 10 Hz spectral frequencies. As shown in Figure 8, the median range from about 1 to 3 before falling off with higher input spectral accelerations. The lower half of Figure 8 shows both the total and the nonlinear values of the logarithmic standard deviation, the latter of which are implemented into the PSHA hazard integral. Figure 9 shows the seven median values versus frequency at the 10-4 AFE spectral acceleration value for each of the 23 NGA-East GMM spectral frequencies as well for PGA, which is plotted at 200 Hz. Overall, the Vogtle site produces a broad peak from about 0.3 Hz to 10 Hz, which then falls off over the higher frequencies out to about 100 Hz.

Control Point Hazard and Ground Motion Response Spectra The NRC staff calculated the mean control point hazard for the Vogtle site using Convolution Approach 3 from NUREG/CR-6728, Technical Basis for Revision of Regulatory Guidance on Design Ground Motions: Hazard- and Risk-Consistent Ground Motion Spectra Guidelines, issued October 2001 (McGuire et al., 2001), which convolves the predetermined mean reference condition hazard with the . For each NGA-East GMM spectral frequency, the NRC staff convolved the mean reference condition hazard curve with the seven to determine the final mean control point hazard. Using the mean control point hazard curves, the NRC staff then determined the 10-4 and 10-5 UHRS in order to calculate the final GMRS, which are provided in Table 3. Figure 10 shows this final GMRS (red curve) compared to the GMRS (black curve) developed for NUREG/KM-0017 and the GMRS (blue curve) in Southern Nuclear Operating Companys SHSR (Pierce, 2014) and seismic probabilistic risk assessment (SPRA; Hutto, 2017). As shown in Figure 10, the final GMRS from this study is higher than the previous two GMRS for the low frequencies between 0.5 to 1.5 Hz and falls considerably below the previous GMRS above 5 Hz. The higher spectral accelerations for the lower frequencies are due to the NGA-East GMM, which predicts higher median ground motions for the lower spectral frequencies relative to the EPRI GMM (see Figure 5). Based on a sensitivity analysis, the NRC staff found that the lower spectral accelerations in the mid-to-upper frequencies between the updated GMRS developed by this study and the previous GMRS are due to the higher values estimated for the Vogtle site (see Table 1), compared to the lower values used in previous hazard evaluations.

Data Tables Appendix A provides the data tables for the Vogtle site. Tables A-1, A-2, and A-3 give the reference rock mean hazard curves for 23 spectral frequencies ranging from 0.1 to 100 Hz and for PGA. Tables A-4 through A-27 give the medians and logarithmic standard deviations for the 23 spectral frequencies and for PGA. Tables A-28, A-29, and A-30 give the control point hazard mean hazard curves for the 23 spectral frequencies and for PGA.

References Campbell, K.W. Estimates of Shear-Wave Q and 0 for Unconsolidated and Semiconsolidated Sediments in Eastern North America. Bulletin of the Seismological Society of America. Vol. 99, No. 4, pp. 2365-2392. August 2009.

Darendeli, M.B. Development of a New Family of Normalized Modulus Reduction and Material Damping Curves. PhD dissertation. University of Texas at Austin. 2001.

(repositories.lib.utexas.edu/bitstream/handle/2152/10396/darendelimb016.pdf).

Electric Power Research Institute (EPRI). Guidelines for Determining Design Basis Ground Motions, Vol. 1-5. EPRI TR-102293. Palo Alto, CA. 1993.

EPRI. EPRI (2004, 2006) Ground-Motion Model (GMM) Review Project: Final Report.

Palo Alto, CA. June 2013. ADAMS Accession No. ML13155A553.

EPRI. Seismic Evaluation Guidance: Screening, Prioritization and Implementation Details (SPID) for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic.

EPRI Report 1025287. Palo Alto, CA. November 27, 2012. ADAMS Accession No. ML12333A170.

Goulet, C.A., Y. Bozorgnia, N. Abrahamson, N. Kuehn, L. Al Atik, R. Youngs, R. Graves, and G. Atkinson. Central and Eastern North America Ground-Motion CharacterizationNGA-East Final Report. PEER Report 2018-08. Pacific Earthquake Engineering Research Center.

Berkeley, CA. 2018.

Hutto, J.J., Letter from Southern Nuclear Operating Company, Inc., to the NRC. Vogtle Electric Generating Plants Units 1 and 2 Fukushima Near-Term Task Force Recommendation 2.1:

Seismic Probabilistic Risk Assessment, March 27, 2017. ADAMS Accession No. ML17088A130.

Miller, A.C., III, and T.R. Rice. Discrete Approximations of Probability Distributions.

Management Science. Vol. 29, No. 3, pp. 352-362. 1983.

U.S. Nuclear Regulatory Commission (NRC). Near-Term Report and Recommendations for Agency Actions Following the Events in Japan. SECY-11-0093. Washington, DC.

July 12, 2011. ADAMS Accession No. ML11186A950.

NRC. Proposed Resolution of Remaining Tier 2 and 3 Recommendations Resulting from the Fukushima Dai-ichi Accident. SECY-16-0144. Washington, DC. December 29, 2016. ADAMS Accession No. ML16286A552.

NRC. Central and Eastern United States Seismic Source Characterization for Nuclear Facilities. NUREG-2115. Washington, DC. January 2012. ADAMS Accession No. ML12048A776.

NRC. Updated Implementation Guidelines for SSHAC Hazard Studies. Ake, J., C. Munson, J.

Stamatakos, M. Juckett, K. Coppersmith and J. Bommer. NUREG-2213. Washington, DC.

October 2018. ADAMS Accession No. ML18282A082.

NRC. Technical Basis for Revision of Regulatory Guidance on Design Ground Motions:

Hazard- and Risk-Consistent Ground Motion Spectra Guidelines. McGuire, R.K., W.J. Silva, and C.J. Costantino. NUREG/CR-6728. Washington, DC. October 2001. ADAMS Accession No. ML013100232.

NRC. Seismic Hazards Evaluations for U.S. Nuclear Power Plants: Near-Term Task Force Recommendation 2.1 Results. Munson, C., J. Ake, J. Stamatakos and M. Juckett.

NUREG/KM-0017. Washington, DC. December 2021. ADAMS Accession No. ML21344A126.

NRC. Process for the Ongoing Assessment of Natural Hazards Information. Office of Nuclear Reactor Regulation (NRR) Office Instruction LIC-208. Washington, DC. November 2019.

ADAMS Accession No. ML19210C288.

Pierce, C.R. Letter from Southern Nuclear Operating Company, Inc., to the NRC. Vogtle Electric Generating PlantUnits 1 and 2: Seismic Hazard and Screening Report for CEUS Sites. March 31, 2014. ADAMS Accession No. ML14092A019.

Rodriguez-Marek, A., E. Rathje, J. Ake, C. Munson, S. Stovall, T. Weaver, K. Ulmer and M. Juckett. Documentation Report for SSHAC Level 2: Site Response. Research Information Letter (RIL) 2021-15. Washington, DC. November 2021. ADAMS Accession No. ML21323A056.

Silva, W.J. N. Abrahamson, G. Toro, and C. Costantino. Description and Validation of the Stochastic Ground Motion Model. Report submitted to Brookhaven National Laboratory, Associated Universities, Inc., Contract No. 770573. Upton, NY. 1997.

Toro, G. Probabilistic Models of Site Velocity Profiles for Generic and Site-Specific Ground-Motion Amplification Studies. Technical Report No. 779574. Brookhaven National Laboratory. Upton, NY. 1995.

Vucetic, M., and R. Dobry. Effect of Soil Plasticity on Cyclic Response. Journal of Geotechnical Engineering. Vol. 117, No. 1, pp.89-107. 1991.

Xu, B., E.M. Rathje, Y. Hashash, J. Stewart, K. Campbell, and W.J. Silva. 0 for Soil Sites:

Observations from KiK-net Sites and Their Use in Constraining Small-Strain Damping Profiles for Site Response Analysis. Earthquake Spectra. Vol. 36, No. 1, pp. 111-137. 2020.

Xu, B. and E.M. Rathje. The Effect of Soil Nonlinearity on High-Frequency Spectral Decay and Implications for Site Response Analysis. Earthquake Spectra. Vol. 37, Iss. 2, pp. 686-706.

2021.

Zhang, J., R.D. Andrus, and C.H. Juang. Normalized Shear Modulus and Material Damping Ratio Relationships. Journal of Geotechnical and Geoenvironmental Engineering. Vol. 131, No. 4, pp. 453-464. 2005.

Table 1 Site Kappa ( ) Values for Each Basecase Profile Profile Kappa Distribution Lower Range Best Estimate Upper Range k0 (s) Weight k0 (s) Weight k0 (s) Weight 0.030 0.101 0.022 0.101 0.016 0.101 0.038 0.244 0.029 0.244 0.022 0.244 0.045 0.309 0.036 0.309 0.029 0.309 0.054 0.244 0.046 0.244 0.039 0.244 0.069 0.101 0.057 0.101 0.052 0.101

10 Table 2 Layer Depths, Shear Wave Velocities ( ), Unit Weights, and Dynamic Properties for Vogtle VS (m/s) VS Unit Dynamic Properties Layer Depth LR BC UR Sigma Weight Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5

  1. (m) (0.3) (0.4) (0.3) (ln) (kN/m3) (0.5) (0.125) (0.125) (0.125) (0.125) 1 0.6 115 140 169 0.2 19.3 SB EPRI Soil Pen. Darendeli Zhang 2 1.2 147 179 216 0.2 19.3 SB EPRI Soil Pen. Darendeli Zhang 3 1.8 177 215 260 0.2 19.3 SB EPRI Soil Pen. Darendeli Zhang 4 3.0 187 227 275 0.2 19.3 SB EPRI Soil Pen. Darendeli Zhang 5 4.3 215 261 316 0.2 19.3 SB EPRI Soil Pen. Darendeli Zhang 6 5.5 235 284 345 0.2 19.3 SB EPRI Soil Pen. Darendeli Zhang 7 7.0 246 298 361 0.2 19.3 SB EPRI Soil Pen. Darendeli Zhang 8 8.8 258 313 379 0.2 19.3 DB EPRI Soil Pen. Darendeli Zhang 9 11.0 264 320 388 0.2 19.3 DB EPRI Soil Pen. Darendeli Zhang 10 13.1 276 335 406 0.2 19.3 DB EPRI Soil Pen. Darendeli Zhang 11 15.2 283 343 415 0.15 19.3 DB EPRI Soil Pen. Darendeli Zhang 12 16.8 294 356 432 0.15 19.3 DB EPRI Soil Pen. Darendeli Zhang 13 18.3 294 356 432 0.15 20.9 DB EPRI Soil Pen. Darendeli Zhang 14 21.3 305 369 447 0.15 20.9 DB EPRI Soil Pen. Darendeli Zhang 15 24.4 310 376 455 0.15 20.9 DB EPRI Soil Pen. Darendeli Zhang 16 26.8 316 383 465 0.15 20.9 DB EPRI Soil Pen. Darendeli Zhang 17 28.3 348 421 510 0.15 18.1 BBM HPI EPRI Clay V&D Darendeli Zhang 18 29.3 384 466 564 0.15 18.1 BBM HPI EPRI Clay V&D Darendeli Zhang 19 30.5 418 507 614 0.15 18.1 BBM HPI EPRI Clay V&D Darendeli Zhang 20 32.0 465 564 683 0.15 18.1 BBM HPI EPRI Clay V&D Darendeli Zhang 21 33.5 486 589 713 0.15 18.1 BBM HPI EPRI Clay V&D Darendeli Zhang 22 36.6 512 620 752 0.15 18.1 BBM HPI EPRI Clay V&D Darendeli Zhang 23 39.0 564 683 828 0.15 18.1 BBM LPI EPRI Clay V&D Darendeli Zhang 24 46.6 577 699 846 0.15 18.1 BBM LPI EPRI Clay V&D Darendeli Zhang 25 47.5 616 746 904 0.15 18.1 BBM LPI EPRI Clay V&D Darendeli Zhang 26 50.0 453 549 666 0.15 19.3 BBM LPI EPRI Clay V&D Darendeli Zhang

11 VS (m/s) VS Unit Dynamic Properties Layer Depth LR BC UR Sigma Weight Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 3

  1. (m) (0.3) (0.4) (0.3) (ln) (kN/m ) (0.5) (0.125) (0.125) (0.125) (0.125) 27 51.8 392 475 576 0.15 19.3 BBM LPI EPRI Clay V&D Darendeli Zhang 28 56.4 392 475 576 0.15 19.3 LS EPRI Soil Pen. Darendeli Zhang 29 59.4 392 475 576 0.15 19.3 LS EPRI Soil Pen. Darendeli Zhang 30 67.1 392 475 576 0.15 19.3 LS EPRI Soil Pen. Darendeli Zhang 31 71.9 442 536 649 0.15 20.1 LS EPRI Soil Pen. Darendeli Zhang 32 85.3 503 610 739 0.15 20.1 LS EPRI Soil Pen. Darendeli Zhang 33 88.4 484 587 711 0.15 20.1 LS EPRI Soil Pen. Darendeli Zhang 34 94.5 484 587 711 0.15 20.1 LC EPRI Clay V&D Darendeli Zhang 35 100.0 484 587 711 0.15 20.1 LC EPRI Clay V&D Darendeli Zhang 36 103.6 434 526 638 0.15 20.1 LC EPRI Clay V&D Darendeli Zhang 37 115.8 516 625 757 0.15 19.9 LC EPRI Clay V&D Darendeli Zhang 38 136.2 516 625 757 0.15 19.9 LS EPRI Soil Pen. Darendeli Zhang 39 148.1 591 716 868 0.15 19.9 LS EPRI Soil Pen. Darendeli Zhang 40 181.7 667 808 979 0.15 19.9 LS EPRI Soil Pen. Darendeli Zhang 41 246.0 717 869 1053 0.15 19.9 LS EPRI Soil Pen. Darendeli Zhang 42 264.3 722 875 1060 0.15 19.9 LS EPRI Soil Pen. Darendeli Zhang 43 322.5 682 826 1001 0.15 19.9 LS EPRI Soil Pen. Darendeli Zhang 44 337.7 1107 1341 1625 0.1 22.0 Linear Linear Linear Linear Linear 45 360.9 1421 1722 2087 0.1 22.0 Linear Linear Linear Linear Linear 46 395.0 1673 2027 2456 0.1 22.0 Linear Linear Linear Linear Linear 47 415.1 1912 2316 2807 0.1 22.0 Linear Linear Linear Linear Linear 48 415.7 1975 2393 2899 0.1 22.0 Linear Linear Linear Linear Linear 49 429.2 1975 2393 2900 0.1 22.0 Linear Linear Linear Linear Linear 50 452.3 2101 2545 3000 0.1 23.6 Linear Linear Linear Linear Linear 51 459.6 2104 2550 3000 0.1 23.6 Linear Linear Linear Linear Linear 52 490.1 2117 2565 3000 0.1 23.6 Linear Linear Linear Linear Linear 53 520.6 2130 2580 3000 0.1 23.6 Linear Linear Linear Linear Linear

12 VS (m/s) VS Unit Dynamic Properties Layer Depth LR BC UR Sigma Weight Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 3

  1. (m) (0.3) (0.4) (0.3) (ln) (kN/m ) (0.5) (0.125) (0.125) (0.125) (0.125) 54 545.0 2142 2596 3000 0.1 23.6 Linear Linear Linear Linear Linear 55 551.1 2149 2603 3000 0.1 23.6 Linear Linear Linear Linear Linear 56 566.3 2155 2611 3000 0.1 23.6 Linear Linear Linear Linear Linear 57 581.6 2159 2615 3000 0.1 23.6 Linear Linear Linear Linear Linear 58 612.0 2165 2623 3000 0.1 23.6 Linear Linear Linear Linear Linear 59 635.8 2171 2631 3000 0.1 23.6 Linear Linear Linear Linear Linear 60 644.3 2177 2638 3000 0.1 23.6 Linear Linear Linear Linear Linear 61 680.9 2181 2643 3000 0.1 23.6 Linear Linear Linear Linear Linear LR = lower range; BE = best estimate; UR = upper range; ln = natural log; Alt. = alternative; SB = backfill < 25 feet; DB = backfill

> 25 feet; BBM LPI = Blue Bluff Marl Low Plasticity Index (PI); BBM HPI = Blue Bluff Marl High PI; LS = Lower Sands; LC = Lower Clays; EPRI Soil = EPRI, 1993 soil; EPRI Clay = EPRI, 1993 clay; EPRI Rock = EPRI, 1993 rock; Pen. = Peninsular (Walling et al.,

2008); V&D = Vucetic and Dobry, 1991; Zhang = Zhang et al., 2005; Darendeli = Darendeli, 2001 For LR, BC, UR, and Alt.: values in parentheses refer to weights for SRA logic tree branches.

13 Table 3 UHRS and GMRS for Vogtle Frequency (Hz) UHRS 1E-4 (g) GMRS (g) UHRS 1E-5 (g) 0.100 0.014197 0.016900 0.033527 0.133 0.021433 0.026100 0.051850 0.200 0.039985 0.049000 0.097697 0.250 0.063257 0.078000 0.155666 0.333 0.124815 0.159100 0.320057 0.500 0.255914 0.284600 0.553461 0.667 0.307752 0.351700 0.688712 1.000 0.387387 0.426300 0.826790 1.333 0.480874 0.507400 0.973795 2.000 0.587484 0.590700 1.120028 2.500 0.671244 0.671200 1.237292 3.333 0.762415 0.762400 1.374975 4.000 0.780253 0.780300 1.403790 5.000 0.726091 0.726100 1.329869 6.667 0.669358 0.669400 1.145590 10.000 0.611856 0.611900 1.109271 13.333 0.520904 0.520900 0.941689 20.000 0.434481 0.434500 0.800744 25.000 0.378323 0.378300 0.697917 33.333 0.315539 0.315500 0.585253 40.000 0.289465 0.289500 0.540221 50.000 0.270690 0.270700 0.500234 100.000 0.267513 0.267500 0.485763 PGA 0.266968 0.276800 0.528842

14 Figure 1 Distribution of virtual ruptures (left) for CEUS-SSC Seismotectonic Configuration 1 DSZs, and associated mean 10 Hz reference rock hazard curves (right) for Vogtle

15 Figure 2 Distribution of virtual ruptures (left) for CEUS-SSC maximum-magnitude narrow-configuration DSZs, and associated mean 10 Hz reference rock hazard curves (right) for Vogtle

16 Figure 3 CEUS-SSC RLME sources (left), and associated mean 1 Hz reference rock hazard curves (right) for Vogtle

17 Figure 4 DSZ, RLME, and total mean reference rock hazard curves for 1 Hz (right) and 10 Hz (left) for Vogtle

18 Figure 5 1,000-, 10,000-, and 100,000-year return period mean reference rock UHRS for CEUS-SSC and EPRI GMM (blue curves) and CEUS-SSC and NGA-East GMM (red curves)

19 Figure 6 Complete (left) and upper 100 m (right) shear wave velocity (VS) basecase profiles for Vogtle; best-estimate basecase profile shown as solid blue line; lower and upper range basecase profiles shown as dotted red and purple lines, respectively

20 Figure 7 Tornado plots for site response logic tree nodes profile, , MRD curves, and the analysis method for 1, 5, 10, and 100 Hz spectral frequencies for an input motion with a PGA of 0.8g

21 Figure 8 Seven median SAFs (above) and mean log standard deviations of SAF (below) as functions of input acceleration for 1 Hz (left) and 10 Hz (right)

22 Figure 9 Seven median SAFs as functions of spectral frequency for spectral accelerations at the 10-4 AFE level

Figure 10 GMRS for the Vogtle site Appendix AData Tables Table A-1 Reference Rock Total Mean Hazard Curves for F=0.100 to 1.000 Hz SA (g) F0.100Hz F0.133Hz F0.200Hz F0.250Hz F0.333Hz F0.500Hz F0.667Hz F1.000Hz 0.00100 3.37384E-03 4.16557E-03 5.23447E-03 6.04250E-03 7.28014E-03 1.09719E-02 1.44975E-02 2.15029E-02 0.00126 2.86414E-03 3.68675E-03 4.76151E-03 5.52032E-03 6.60793E-03 9.69580E-03 1.26348E-02 1.88094E-02 0.00158 2.43973E-03 3.27125E-03 4.33980E-03 5.05274E-03 6.00985E-03 8.59017E-03 1.10428E-02 1.64990E-02 0.00200 2.06440E-03 2.88818E-03 3.94023E-03 4.60778E-03 5.44440E-03 7.57241E-03 9.59761E-03 1.43938E-02 0.00251 1.60348E-03 2.39896E-03 3.46150E-03 4.13148E-03 4.93462E-03 6.78084E-03 8.43869E-03 1.24468E-02 0.00316 1.21036E-03 1.94624E-03 2.99454E-03 3.66261E-03 4.44201E-03 6.06200E-03 7.41473E-03 1.07389E-02 0.00398 8.37687E-04 1.46861E-03 2.47179E-03 3.13827E-03 3.92304E-03 5.41610E-03 6.53855E-03 9.25506E-03 0.00501 5.79492E-04 1.10750E-03 2.03903E-03 2.68758E-03 3.46356E-03 4.83896E-03 5.76686E-03 7.97886E-03 0.00631 3.43285E-04 7.18923E-04 1.48598E-03 2.07504E-03 2.84457E-03 4.18390E-03 5.00625E-03 6.85373E-03 0.00794 2.03784E-04 4.67488E-04 1.08431E-03 1.60376E-03 2.33804E-03 3.61962E-03 4.34842E-03 5.89084E-03 0.01000 1.20727E-04 3.03481E-04 7.90238E-04 1.23828E-03 1.92025E-03 3.12968E-03 3.77496E-03 5.06025E-03 0.01260 6.08061E-05 1.66124E-04 4.87442E-04 8.15145E-04 1.38086E-03 2.45753E-03 3.05621E-03 4.18655E-03 0.01580 3.10651E-05 9.20810E-05 3.03700E-04 5.41281E-04 9.99802E-04 1.93945E-03 2.48518E-03 3.47735E-03 0.02000 1.54337E-05 4.98026E-05 1.85534E-04 3.53360E-04 7.14248E-04 1.51559E-03 2.00354E-03 2.86610E-03 0.02510 7.20204E-06 2.46677E-05 1.02009E-04 2.07002E-04 4.61028E-04 1.07968E-03 1.49701E-03 2.23997E-03 0.03160 3.30077E-06 1.19315E-05 5.45172E-05 1.17759E-04 2.89421E-04 7.50301E-04 1.09469E-03 1.72025E-03 0.03980 1.47250E-06 5.49286E-06 2.71625E-05 6.20676E-05 1.68469E-04 4.86284E-04 7.53324E-04 1.25804E-03 0.05010 6.58156E-07 2.53288E-06 1.35468E-05 3.27355E-05 9.80903E-05 3.15165E-04 5.18368E-04 9.19948E-04 0.06310 2.92860E-07 1.13571E-06 6.23421E-06 1.55773E-05 5.06589E-05 1.80754E-04 3.18710E-04 6.10760E-04 0.07940 1.30737E-07 5.10873E-07 2.87789E-06 7.43451E-06 2.62321E-05 1.03897E-04 1.96335E-04 4.06152E-04 0.10000 5.81798E-08 2.29091E-07 1.32452E-06 3.53804E-06 1.35487E-05 5.95913E-05 1.20721E-04 2.69661E-04 0.12600 2.52251E-08 1.01946E-07 5.94037E-07 1.59641E-06 6.34187E-06 2.98671E-05 6.44443E-05 1.55646E-04 0.15800 1.11283E-08 4.61354E-08 2.70893E-07 7.32325E-07 3.01567E-06 1.51856E-05 3.48536E-05 9.08681E-05 0.20000 4.74516E-09 2.02014E-08 1.19565E-07 3.25231E-07 1.39036E-06 7.50682E-06 1.83744E-05 5.18763E-05 0.25100 1.98834E-09 8.78160E-09 5.38008E-08 1.47986E-07 6.45116E-07 3.55853E-06 9.06239E-06 2.70862E-05 0.31600 8.15454E-10 3.73498E-09 2.37490E-08 6.62926E-08 2.95816E-07 1.66270E-06 4.38830E-06 1.38134E-05

Table A-1 Reference Rock Total Mean Hazard Curves for F=0.100 to 1.000 Hz SA (g) F0.100Hz F0.133Hz F0.200Hz F0.250Hz F0.333Hz F0.500Hz F0.667Hz F1.000Hz 0.39800 3.23262E-10 1.53114E-09 1.01807E-08 2.91796E-08 1.34923E-07 7.65025E-07 2.06066E-06 6.69325E-06 0.50100 1.28363E-10 6.28715E-10 4.37088E-09 1.28629E-08 6.16328E-08 3.52606E-07 9.69257E-07 3.24777E-06 0.63100 4.77734E-11 2.43194E-10 1.76517E-09 5.34935E-09 2.69416E-08 1.59729E-07 4.46912E-07 1.51394E-06 0.79400 1.78504E-11 9.44277E-11 7.15450E-10 2.23247E-09 1.18160E-08 7.25857E-08 2.06704E-07 7.07878E-07 1.00000 6.64424E-12 3.65298E-11 2.88965E-10 9.28525E-10 5.16568E-09 3.28841E-08 9.53178E-08 3.30007E-07 1.26000 2.21589E-12 1.29320E-11 1.08424E-10 3.59033E-10 2.09111E-09 1.40708E-08 4.20494E-08 1.48290E-07 1.58000 7.56054E-13 4.67784E-12 4.15185E-11 1.41594E-10 8.62546E-10 6.12780E-09 1.88679E-08 6.77505E-08 2.00000 2.46684E-13 1.62206E-12 1.52766E-11 5.37221E-11 3.42923E-10 2.57799E-09 8.18879E-09 2.99619E-08 2.51000 7.42814E-14 5.29275E-13 5.41909E-12 1.97782E-11 1.32277E-10 1.05465E-09 3.46468E-09 1.30279E-08 3.16000 2.13841E-14 1.65782E-13 1.85806E-12 7.06313E-12 4.96255E-11 4.20397E-10 1.42993E-09 5.53672E-09 3.98000 5.57261E-15 4.74923E-14 5.94387E-13 2.37818E-12 1.76774E-11 1.59677E-10 5.63627E-10 2.25990E-09 5.01000 1.45463E-15 1.36261E-14 1.90418E-13 8.01927E-13 6.30662E-12 6.07412E-11 2.22484E-10 9.23745E-10 6.31000 3.16217E-16 3.28614E-15 5.24459E-14 2.36661E-13 2.01291E-12 2.09924E-11 8.00278E-11 3.47214E-10 7.94000 6.91622E-17 7.97021E-16 1.45196E-14 7.01840E-14 6.45411E-13 7.28592E-12 2.89040E-11 1.31021E-10 10.00000 1.50378E-17 1.92247E-16 3.99968E-15 2.07155E-14 2.06027E-13 2.51836E-12 1.03981E-11 4.92534E-11 Table A-2 Reference Rock Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 0.00100 2.62460E-02 3.09329E-02 3.22678E-02 3.34527E-02 3.36973E-02 3.40354E-02 3.40710E-02 3.35928E-02 0.00126 2.33900E-02 2.84021E-02 2.99590E-02 3.14077E-02 3.17388E-02 3.22158E-02 3.22922E-02 3.17458E-02 0.00158 2.08947E-02 2.61247E-02 2.78583E-02 2.95263E-02 2.99314E-02 3.05283E-02 3.06403E-02 3.00356E-02 0.00200 1.85783E-02 2.39465E-02 2.58267E-02 2.76865E-02 2.81581E-02 2.88646E-02 2.90095E-02 2.83522E-02 0.00251 1.61488E-02 2.12658E-02 2.31751E-02 2.51239E-02 2.56556E-02 2.64583E-02 2.66649E-02 2.60491E-02 0.00316 1.39693E-02 1.87463E-02 2.06345E-02 2.26199E-02 2.31957E-02 2.40711E-02 2.43367E-02 2.37806E-02 0.00398 1.19612E-02 1.61986E-02 1.79761E-02 1.99106E-02 2.05094E-02 2.14264E-02 2.17609E-02 2.13201E-02 0.00501 1.02450E-02 1.39990E-02 1.56611E-02 1.75255E-02 1.81334E-02 1.90711E-02 1.94565E-02 1.91138E-02 0.00631 8.70055E-03 1.17923E-02 1.32123E-02 1.48549E-02 1.54163E-02 1.63131E-02 1.67502E-02 1.65874E-02 0.00794 7.39378E-03 9.94027E-03 1.11539E-02 1.25996E-02 1.31148E-02 1.39628E-02 1.44290E-02 1.44031E-02 0.01000 6.27930E-03 8.37354E-03 9.41007E-03 1.06798E-02 1.11499E-02 1.19438E-02 1.24222E-02 1.24995E-02

Table A-2 Reference Rock Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 0.01260 5.19992E-03 6.85774E-03 7.67607E-03 8.67956E-03 9.06277E-03 9.73829E-03 1.02141E-02 1.04253E-02 0.01580 4.32297E-03 5.63966E-03 6.28813E-03 7.08439E-03 7.39811E-03 7.97378E-03 8.43274E-03 8.72810E-03 0.02000 3.56643E-03 4.60039E-03 5.10861E-03 5.73377E-03 5.98848E-03 6.47495E-03 6.90679E-03 7.25342E-03 0.02510 2.83314E-03 3.66596E-03 4.07732E-03 4.57108E-03 4.78908E-03 5.19867E-03 5.60926E-03 5.97317E-03 0.03160 2.21851E-03 2.89216E-03 3.23058E-03 3.62814E-03 3.81907E-03 4.16507E-03 4.54717E-03 4.90487E-03 0.03980 1.67098E-03 2.22736E-03 2.52226E-03 2.86604E-03 3.04710E-03 3.34614E-03 3.69824E-03 4.02400E-03 0.05010 1.25854E-03 1.71555E-03 1.96966E-03 2.26480E-03 2.43208E-03 2.68920E-03 3.00886E-03 3.30243E-03 0.06310 8.72259E-04 1.24290E-03 1.47115E-03 1.74352E-03 1.90273E-03 2.11913E-03 2.40625E-03 2.66590E-03 0.07940 6.05427E-04 9.01631E-04 1.10008E-03 1.34362E-03 1.49005E-03 1.67150E-03 1.92605E-03 2.15389E-03 0.10000 4.19625E-04 6.53250E-04 8.21683E-04 1.03440E-03 1.16577E-03 1.31720E-03 1.54035E-03 1.73878E-03 0.12600 2.53600E-04 4.16145E-04 5.45387E-04 7.17140E-04 8.26430E-04 9.39691E-04 1.12012E-03 1.29685E-03 0.15800 1.54873E-04 2.67594E-04 3.65091E-04 5.00984E-04 5.90067E-04 6.75091E-04 8.19939E-04 9.73155E-04 0.20000 9.26618E-05 1.68941E-04 2.40353E-04 3.44800E-04 4.15446E-04 4.78375E-04 5.92471E-04 7.21586E-04 0.25100 5.02393E-05 9.59501E-05 1.41770E-04 2.12353E-04 2.62239E-04 3.03895E-04 3.84631E-04 4.85553E-04 0.31600 2.65467E-05 5.29798E-05 8.11472E-05 1.26718E-04 1.60362E-04 1.87195E-04 2.42362E-04 3.17447E-04 0.39800 1.32050E-05 2.72474E-05 4.29147E-05 6.93624E-05 8.98021E-05 1.05892E-04 1.40583E-04 1.91405E-04 0.50100 6.57668E-06 1.40277E-05 2.27143E-05 3.79891E-05 5.03111E-05 5.99284E-05 8.15795E-05 1.15444E-04 0.63100 3.11081E-06 6.74874E-06 1.10734E-05 1.88029E-05 2.52450E-05 3.05187E-05 4.26769E-05 6.26992E-05 0.79400 1.47585E-06 3.25634E-06 5.41387E-06 9.33278E-06 1.27024E-05 1.55837E-05 2.23836E-05 3.41361E-05 1.00000 6.98148E-07 1.56677E-06 2.63953E-06 4.61969E-06 6.37432E-06 7.93672E-06 1.17105E-05 1.85412E-05 1.26000 3.18369E-07 7.26558E-07 1.24047E-06 2.19517E-06 3.06237E-06 3.87790E-06 5.88771E-06 9.62706E-06 1.58000 1.47568E-07 3.42346E-07 5.92178E-07 1.05933E-06 1.49379E-06 1.92313E-06 3.00274E-06 5.06710E-06 2.00000 6.62480E-08 1.56341E-07 2.74138E-07 4.95954E-07 7.07233E-07 9.26315E-07 1.48913E-06 2.59679E-06 2.51000 2.92917E-08 7.03674E-08 1.25561E-07 2.31130E-07 3.34590E-07 4.45730E-07 7.41496E-07 1.34277E-06 3.16000 1.26649E-08 3.09605E-08 5.62112E-08 1.05273E-07 1.54704E-07 2.09524E-07 3.60899E-07 6.80450E-07 3.98000 5.26386E-09 1.30689E-08 2.41120E-08 4.58941E-08 6.84127E-08 9.39849E-08 1.67689E-07 3.31562E-07 5.01000 2.19092E-09 5.52424E-09 1.03569E-08 2.00335E-08 3.02903E-08 4.22064E-08 7.79910E-08 1.61693E-07 6.31000 8.41204E-10 2.15518E-09 4.10428E-09 8.04817E-09 1.22957E-08 1.72807E-08 3.27626E-08 7.09363E-08 7.94000 3.24218E-10 8.43971E-10 1.63249E-09 3.24503E-09 5.00915E-09 7.10060E-09 1.38108E-08 3.12231E-08

Table A-2 Reference Rock Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 10.00000 1.24498E-10 3.29297E-10 6.47000E-10 1.30379E-09 2.03357E-09 2.90754E-09 5.80225E-09 1.36993E-08 Table A-3 Reference Rock Total Mean Hazard Curves for F=13.333 to 100.000 Hz and PGA SA(g) F13.333Hz F20.000Hz F25.000Hz F33.333Hz F40.000Hz F50.000Hz F100.000Hz PGA 0.00100 3.30931E-02 3.24380E-02 3.19093E-02 3.12333E-02 3.07918E-02 3.00893E-02 2.86434E-02 2.84019E-02 0.00126 3.11777E-02 3.04528E-02 2.98567E-02 2.90892E-02 2.85957E-02 2.78193E-02 2.62015E-02 2.59345E-02 0.00158 2.94096E-02 2.86266E-02 2.79748E-02 2.71323E-02 2.65971E-02 2.57624E-02 2.40121E-02 2.37262E-02 0.00200 2.76745E-02 2.68408E-02 2.61407E-02 2.52338E-02 2.46638E-02 2.37815E-02 2.19260E-02 2.16258E-02 0.00251 2.53936E-02 2.46030E-02 2.39119E-02 2.29980E-02 2.24250E-02 2.15351E-02 1.96313E-02 1.93031E-02 0.00316 2.31625E-02 2.24304E-02 2.17596E-02 2.08518E-02 2.02819E-02 1.93942E-02 1.74680E-02 1.71136E-02 0.00398 2.07812E-02 2.01541E-02 1.95294E-02 1.86506E-02 1.80921E-02 1.72175E-02 1.52920E-02 1.49007E-02 0.00501 1.86448E-02 1.81094E-02 1.75284E-02 1.66824E-02 1.61392E-02 1.52856E-02 1.33876E-02 1.29740E-02 0.00631 1.62471E-02 1.58456E-02 1.53238E-02 1.45200E-02 1.39904E-02 1.31694E-02 1.13408E-02 1.08839E-02 0.00794 1.41654E-02 1.38721E-02 1.34036E-02 1.26450E-02 1.21347E-02 1.13530E-02 9.61339E-03 9.13683E-03 0.01000 1.23439E-02 1.21382E-02 1.17180E-02 1.10061E-02 1.05192E-02 9.78142E-03 8.14384E-03 7.66501E-03 0.01260 1.03905E-02 1.02675E-02 9.90375E-03 9.26104E-03 8.81240E-03 8.14496E-03 6.67656E-03 6.15909E-03 0.01580 8.77756E-03 8.71541E-03 8.39968E-03 7.82063E-03 7.40970E-03 6.80812E-03 5.49627E-03 4.97156E-03 0.02000 7.36316E-03 7.34766E-03 7.07540E-03 6.55801E-03 6.18552E-03 5.64844E-03 4.48818E-03 3.97742E-03 0.02510 6.12278E-03 6.13657E-03 5.90932E-03 5.46487E-03 5.14321E-03 4.67380E-03 3.65945E-03 3.13172E-03 0.03160 5.07351E-03 5.10516E-03 4.91657E-03 4.53677E-03 4.26031E-03 3.85108E-03 2.96547E-03 2.44241E-03 0.03980 4.18889E-03 4.22536E-03 4.07067E-03 3.74892E-03 3.51274E-03 3.15488E-03 2.37501E-03 1.86363E-03 0.05010 3.45953E-03 3.49813E-03 3.37115E-03 3.09853E-03 2.89684E-03 2.58490E-03 1.90215E-03 1.42213E-03 0.06310 2.80087E-03 2.83403E-03 2.72692E-03 2.48697E-03 2.30799E-03 2.03586E-03 1.43578E-03 1.01627E-03 0.07940 2.26952E-03 2.29794E-03 2.20767E-03 1.99787E-03 1.84052E-03 1.60498E-03 1.08497E-03 7.27215E-04 0.10000 1.83747E-03 1.86173E-03 1.78583E-03 1.60359E-03 1.46643E-03 1.26412E-03 8.18986E-04 5.19697E-04 0.12600 1.37584E-03 1.40628E-03 1.34182E-03 1.18137E-03 1.06638E-03 9.05812E-04 5.51289E-04 3.35720E-04 0.15800 1.03640E-03 1.06845E-03 1.01421E-03 8.75863E-04 7.80612E-04 6.53573E-04 3.74154E-04 2.18848E-04 0.20000 7.71556E-04 8.02564E-04 7.57719E-04 6.41332E-04 5.64061E-04 4.65218E-04 2.49875E-04 1.40147E-04 0.25100 5.23861E-04 5.56042E-04 5.21543E-04 4.30689E-04 3.74766E-04 3.04666E-04 1.53969E-04 8.52938E-05

Table A-3 Reference Rock Total Mean Hazard Curves for F=13.333 to 100.000 Hz and PGA SA(g) F13.333Hz F20.000Hz F25.000Hz F33.333Hz F40.000Hz F50.000Hz F100.000Hz PGA 0.31600 3.46226E-04 3.75695E-04 3.50198E-04 2.82393E-04 2.43269E-04 1.94864E-04 9.29258E-05 5.12416E-05 0.39800 2.12303E-04 2.36798E-04 2.19671E-04 1.73676E-04 1.48525E-04 1.17161E-04 5.33956E-05 3.01210E-05 0.50100 1.30228E-04 1.49293E-04 1.37841E-04 1.06870E-04 9.07335E-05 7.04883E-05 3.07135E-05 1.77260E-05 0.63100 7.25609E-05 8.53557E-05 7.89403E-05 6.10900E-05 5.16704E-05 3.96903E-05 1.70712E-05 1.02580E-05 0.79400 4.05243E-05 4.89099E-05 4.53093E-05 3.49988E-05 2.94913E-05 2.24000E-05 9.51082E-06 5.94929E-06 1.00000 2.25811E-05 2.79653E-05 2.59500E-05 2.00076E-05 1.67957E-05 1.26138E-05 5.28668E-06 3.44307E-06 1.26000 1.20212E-05 1.51621E-05 1.41881E-05 1.10577E-05 9.26603E-06 6.90761E-06 2.85324E-06 1.88253E-06 1.58000 6.48390E-06 8.32564E-06 7.85514E-06 6.18702E-06 5.17551E-06 3.83037E-06 1.55974E-06 1.04228E-06 2.00000 3.40861E-06 4.45915E-06 4.24335E-06 3.37919E-06 2.82161E-06 2.07255E-06 8.31503E-07 5.63051E-07 2.51000 1.80268E-06 2.39450E-06 2.29319E-06 1.83150E-06 1.51857E-06 1.10177E-06 4.24552E-07 2.84266E-07 3.16000 9.35114E-07 1.26210E-06 1.21555E-06 9.71444E-07 7.98563E-07 5.71399E-07 2.10548E-07 1.39099E-07 3.98000 4.67342E-07 6.42025E-07 6.20134E-07 4.92007E-07 3.98957E-07 2.80188E-07 9.74242E-08 6.30727E-08 5.01000 2.33743E-07 3.26836E-07 3.16596E-07 2.49352E-07 1.99451E-07 1.37488E-07 4.51191E-08 2.86262E-08 6.31000 1.05232E-07 1.49973E-07 1.45304E-07 1.12872E-07 8.87994E-08 5.99880E-08 1.86305E-08 1.15970E-08 7.94000 4.75271E-08 6.90319E-08 6.68965E-08 5.12547E-08 3.96633E-08 2.62605E-08 7.72013E-09 4.71518E-09 10.00000 2.13990E-08 3.16792E-08 3.07056E-08 2.32032E-08 1.76606E-08 1.14589E-08 3.18813E-09 1.91042E-09 Table A-4 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.100 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.000374 1.0296 1.0509 1.0747 1.2262 1.4547 1.5068 1.5435 0.014417 0.000605 1.0339 1.0529 1.0786 1.2281 1.4567 1.5126 1.5519 0.014412 0.000769 1.0345 1.0556 1.0841 1.2314 1.4598 1.5179 1.5611 0.014437 0.001020 1.0341 1.0571 1.0880 1.2337 1.4618 1.5214 1.5667 0.014469 0.001393 1.0331 1.0578 1.0902 1.2353 1.4630 1.5230 1.5690 0.014506 0.001942 1.0329 1.0588 1.0914 1.2371 1.4651 1.5238 1.5691 0.014555 0.002624 1.0343 1.0610 1.0925 1.2392 1.4663 1.5270 1.5718 0.014660 0.003530 1.0377 1.0648 1.0954 1.2408 1.4685 1.5322 1.5810 0.015209 0.004766 1.0441 1.0713 1.1024 1.2440 1.4720 1.5343 1.6185 0.017715 0.006987 1.0558 1.0831 1.1182 1.2514 1.4674 1.5358 1.7176 0.023404

Table A-4 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.100 Hz 0.011085 1.0784 1.1039 1.1529 1.2729 1.4558 1.5497 1.8716 0.034666 0.017944 1.1836 1.1964 1.2692 1.3205 1.4464 1.4997 2.0470 0.052232 Table A-5 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.133 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.000644 1.0665 1.0857 1.1076 1.2638 1.5021 1.5573 1.5878 0.017234 0.001029 1.0714 1.0884 1.1122 1.2654 1.5104 1.5584 1.5944 0.017219 0.001295 1.0715 1.0905 1.1170 1.2680 1.5128 1.5629 1.6026 0.017221 0.001691 1.0710 1.0915 1.1204 1.2697 1.5143 1.5659 1.6075 0.017251 0.002286 1.0701 1.0921 1.1224 1.2710 1.5154 1.5673 1.6096 0.017309 0.003188 1.0703 1.0934 1.1239 1.2727 1.5177 1.5685 1.6103 0.017414 0.004347 1.0722 1.0960 1.1262 1.2751 1.5198 1.5711 1.6190 0.017594 0.005956 1.0769 1.1010 1.1310 1.2779 1.5221 1.5779 1.6362 0.018184 0.008219 1.0856 1.1094 1.1409 1.2827 1.5288 1.5816 1.6803 0.020651 0.012218 1.1026 1.1264 1.1580 1.2947 1.5272 1.5886 1.7869 0.026368 0.019459 1.1322 1.1554 1.2043 1.3239 1.5286 1.6153 1.9559 0.037825 0.031499 1.2106 1.2254 1.3136 1.3808 1.5599 1.6344 2.1476 0.054948 Table A-6 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.200 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.001447 1.2005 1.2158 1.2362 1.4056 1.6868 1.7364 1.7696 0.029078 0.002290 1.2045 1.2185 1.2412 1.4087 1.6932 1.7396 1.7777 0.029043 0.002853 1.2057 1.2209 1.2458 1.4119 1.6970 1.7442 1.7840 0.029045 0.003642 1.2061 1.2226 1.2496 1.4139 1.6994 1.7482 1.7890 0.029149 0.004833 1.2067 1.2242 1.2530 1.4159 1.7016 1.7518 1.7935 0.029369 0.006749 1.2093 1.2276 1.2572 1.4195 1.7062 1.7563 1.8012 0.029790 0.009386 1.2151 1.2338 1.2638 1.4253 1.7123 1.7629 1.8216 0.030426 0.013315 1.2256 1.2445 1.2737 1.4342 1.7215 1.7727 1.8582 0.031584 0.019080 1.2465 1.2649 1.2920 1.4503 1.7454 1.7854 1.9230 0.034838 0.028886 1.2635 1.2831 1.3144 1.4763 1.7835 1.8450 2.1216 0.042443

Table A-6 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.200 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.046193 1.2759 1.3008 1.3679 1.5298 1.8789 2.0102 2.6009 0.058288 0.074776 1.3118 1.3369 1.4915 1.6320 2.0811 2.2883 3.2054 0.080711 Table A-7 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.250 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.002093 1.3155 1.3308 1.3530 1.5536 1.9105 1.9669 2.0100 0.042285 0.003308 1.3197 1.3336 1.3586 1.5569 1.9190 1.9708 2.0174 0.042262 0.004120 1.3210 1.3358 1.3634 1.5606 1.9253 1.9778 2.0281 0.042330 0.005226 1.3206 1.3367 1.3668 1.5638 1.9323 1.9867 2.0406 0.042590 0.006882 1.3197 1.3373 1.3693 1.5678 1.9417 1.9982 2.0550 0.043067 0.009622 1.3201 1.3386 1.3724 1.5742 1.9579 2.0164 2.0842 0.043933 0.013517 1.3220 1.3414 1.3770 1.5837 1.9823 2.0438 2.1354 0.045219 0.019493 1.3258 1.3462 1.3815 1.5979 2.0203 2.0848 2.2271 0.047277 0.028424 1.3323 1.3534 1.3879 1.6199 2.0962 2.1578 2.4119 0.051930 0.043315 1.3422 1.3660 1.4149 1.6616 2.2070 2.3063 2.8343 0.061906 0.069342 1.3620 1.3936 1.4962 1.7499 2.3926 2.6448 3.6247 0.079787 0.112250 1.4154 1.4527 1.6938 1.9309 2.7375 3.1514 4.6626 0.103452 Table A-8 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.003130 1.4569 1.4815 1.5154 1.8870 2.6684 2.7945 2.9017 0.072185 0.004956 1.4621 1.4846 1.5225 1.8899 2.6685 2.8041 2.9087 0.071965 0.006197 1.4640 1.4868 1.5294 1.8946 2.6770 2.8161 2.9307 0.071985 0.007838 1.4641 1.4876 1.5352 1.9030 2.6920 2.8342 2.9589 0.072304 0.010270 1.4640 1.4900 1.5406 1.9107 2.7177 2.8613 2.9993 0.072896 0.014387 1.4663 1.4936 1.5491 1.9235 2.7616 2.9101 3.0650 0.073874 0.020431 1.4711 1.4996 1.5561 1.9449 2.8258 2.9739 3.1749 0.074822 0.029966 1.4796 1.5104 1.5668 1.9824 2.9342 3.0683 3.3466 0.075696 0.044493 1.4932 1.5280 1.5852 2.0328 3.0811 3.2285 3.6040 0.077388

Table A-8 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.068207 1.5136 1.5497 1.6419 2.1277 3.2849 3.4856 3.9085 0.083724 0.109270 1.5524 1.6023 1.7967 2.3180 3.4512 3.7254 3.9072 0.107710 0.176890 1.6505 1.7191 2.2018 2.7084 3.4266 3.6696 3.9059 0.139343 Table A-9 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.500 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.005131 1.9816 2.0524 2.1454 3.2882 3.6120 3.8646 3.9639 0.096989 0.008184 1.9880 2.0533 2.1569 3.2706 3.5729 3.8076 3.9164 0.095129 0.010361 1.9900 2.0552 2.1707 3.2642 3.5455 3.7590 3.8710 0.093666 0.013172 1.9902 2.0562 2.1861 3.2682 3.5238 3.7141 3.8168 0.092699 0.017280 1.9926 2.0602 2.2106 3.2768 3.4977 3.6665 3.7559 0.092427 0.024317 2.0026 2.0722 2.2291 3.3017 3.4717 3.6189 3.6968 0.093312 0.034951 2.0210 2.0937 2.2557 3.3272 3.4370 3.5527 3.6098 0.095105 0.052198 2.0506 2.1295 2.2962 3.2848 3.4046 3.4892 3.5733 0.098105 0.079010 2.0963 2.1921 2.3646 3.2547 3.3355 3.4544 3.5841 0.107670 0.121850 2.1629 2.2713 2.5335 3.0475 3.3691 3.4657 3.5524 0.128020 0.195340 2.2420 2.3932 2.5637 2.7969 3.3288 3.4958 3.5398 0.171200 0.316200 2.2568 2.4682 2.5822 2.7349 3.1449 3.2610 3.5270 0.230313 Table A-10 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.667 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.006821 2.3179 2.4494 2.5163 3.1169 3.3615 3.4663 3.5456 0.103680 0.010956 2.2874 2.4315 2.5122 3.1050 3.3445 3.4407 3.5237 0.101960 0.014042 2.2640 2.4132 2.5070 3.0915 3.3232 3.4226 3.5067 0.100650 0.018010 2.2478 2.3949 2.4993 3.0859 3.2950 3.4114 3.4830 0.099655 0.023762 2.2216 2.3746 2.4830 3.0898 3.2660 3.3614 3.4649 0.099013 0.033589 2.2001 2.3480 2.4679 3.0817 3.2313 3.3234 3.4382 0.099155 0.048599 2.1673 2.3143 2.4587 3.0491 3.1865 3.3021 3.4061 0.100340 0.073209 2.1093 2.3057 2.4495 3.0170 3.1422 3.2800 3.3938 0.103880

Table A-10 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=0.667 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.111790 2.0474 2.2920 2.5050 2.9292 3.1051 3.3128 3.4626 0.115090 0.172930 2.0214 2.3152 2.4601 2.7362 3.0461 3.3449 3.5268 0.137880 0.277300 2.0056 2.2561 2.3603 2.5588 2.9966 3.2485 3.3683 0.193920 0.448890 1.9272 2.1060 2.2126 2.3939 2.7876 2.9818 3.2140 0.274608 Table A-11 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=1.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.009462 2.0985 2.1602 2.2242 2.4078 2.8661 3.1312 3.3718 0.103810 0.015366 2.0977 2.1622 2.2289 2.3944 2.8535 3.1231 3.3657 0.101760 0.020104 2.0894 2.1580 2.2309 2.3818 2.8432 3.1170 3.3693 0.099957 0.026218 2.0833 2.1539 2.2339 2.3644 2.8373 3.1080 3.3691 0.098189 0.035015 2.0853 2.1564 2.2301 2.3462 2.8290 3.0991 3.3762 0.097154 0.049887 2.0795 2.1562 2.2387 2.3197 2.8355 3.1132 3.3105 0.097531 0.072771 2.0713 2.1511 2.2414 2.3013 2.8307 3.1299 3.2397 0.100170 0.110510 2.0597 2.1447 2.2053 2.2831 2.7777 3.0919 3.2862 0.110390 0.170030 1.9926 2.1026 2.1674 2.2824 2.6075 3.0934 3.3003 0.131150 0.263830 1.7911 1.9487 2.1269 2.2830 2.5804 2.8823 3.0949 0.171790 0.423240 1.2738 1.9388 2.0348 2.1772 2.3080 2.4560 2.6076 0.244170 0.685130 1.2419 1.4368 1.7668 1.9624 2.1074 2.1767 2.1898 0.349386 Table A-12 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=1.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.011533 1.8622 1.9497 2.0743 2.9263 3.0659 3.2308 3.3327 0.106320 0.018882 1.8726 1.9530 2.0776 2.9087 3.0288 3.2122 3.3041 0.104690 0.025132 1.8703 1.9558 2.0796 2.8837 2.9974 3.1632 3.2783 0.103180 0.033251 1.8681 1.9589 2.0825 2.8118 2.9598 3.1014 3.2519 0.101760 0.044895 1.8675 1.9632 2.0888 2.7744 2.9086 3.0402 3.2229 0.101100 0.064392 1.8694 1.9711 2.1008 2.7051 2.8719 3.0074 3.1914 0.102730 0.094465 1.8709 1.9902 2.1230 2.6799 2.8281 2.9596 3.1310 0.107780

Table A-12 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=1.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.144030 1.8727 2.0047 2.1501 2.5810 2.7326 2.9316 3.0755 0.120390 0.222340 1.8303 1.9859 2.1167 2.4662 2.6424 2.9048 3.0858 0.145130 0.345600 1.5166 1.9305 2.0731 2.2252 2.4443 2.6897 2.9133 0.190160 0.554550 1.0271 1.6004 1.7715 2.0777 2.1626 2.2740 2.3666 0.264890 0.897680 0.9330 1.1280 1.2677 1.6652 1.9518 2.1564 1.9151 0.371266 Table A-13 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=2.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.014514 2.0100 2.2091 2.3003 2.7918 3.0613 3.5170 3.7353 0.126710 0.024044 2.0077 2.2030 2.2982 2.7507 3.0223 3.4225 3.6580 0.126750 0.032921 2.0012 2.1859 2.2880 2.7077 2.9838 3.3579 3.5871 0.127400 0.044610 1.9935 2.1686 2.2843 2.6511 2.9368 3.2825 3.4986 0.128620 0.061344 1.9867 2.1572 2.2810 2.5816 2.8476 3.1957 3.3626 0.131310 0.088954 1.9495 2.1197 2.2658 2.5126 2.7961 3.1402 3.2858 0.136920 0.131610 1.8721 2.0553 2.2281 2.4336 2.6498 3.0708 3.2507 0.145790 0.201590 1.7654 1.9921 2.1912 2.3312 2.5705 2.9767 3.1042 0.159430 0.312160 1.4534 1.9339 2.0840 2.2260 2.4806 2.6213 2.8139 0.184890 0.486300 1.1231 1.7613 1.9452 2.0271 2.1735 2.2651 2.5072 0.225110 0.780610 0.6721 1.1863 1.3825 1.7339 1.8344 2.0135 2.0738 0.280920 1.263600 0.6206 0.7759 0.9937 1.1823 1.4969 1.6768 1.7096 0.351947 Table A-14 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=2.500 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.016079 1.7240 1.9523 2.1851 2.9065 3.1189 3.2953 3.6048 0.139160 0.026809 1.7428 1.9485 2.1816 2.8720 3.0789 3.2510 3.5423 0.138810 0.037361 1.7359 1.9426 2.1784 2.8289 3.0439 3.2176 3.4796 0.139020 0.051385 1.7278 1.9309 2.1748 2.7820 3.0043 3.1880 3.3951 0.139240 0.071463 1.7184 1.9151 2.1740 2.7317 2.9530 3.1379 3.2940 0.139800 0.104330 1.7053 1.8983 2.1681 2.7124 2.8890 2.9893 3.2461 0.141260

Table A-14 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=2.500 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.155130 1.6889 1.8968 2.1437 2.5800 2.7995 2.8978 3.1702 0.146320 0.238150 1.6826 1.8806 2.1099 2.4143 2.5979 2.7485 3.0030 0.160000 0.369320 1.3652 1.8259 1.9865 2.1794 2.3495 2.4743 2.7505 0.184760 0.576060 0.8918 1.5095 1.7479 1.8877 2.0529 2.2472 2.3677 0.221880 0.924930 0.5503 0.9755 1.1733 1.5711 1.8076 1.9774 2.2026 0.266580 1.497200 0.4868 0.5999 0.7720 1.0508 1.3942 1.6716 2.0465 0.321296 Table A-15 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=3.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.017910 2.1486 2.3671 2.6924 2.8600 3.1766 3.4336 3.9545 0.147000 0.030112 2.1056 2.3255 2.6676 2.8295 3.1633 3.3842 3.8256 0.145890 0.043043 2.0867 2.2911 2.6104 2.8018 3.1308 3.3703 3.6883 0.145670 0.060468 2.0688 2.2697 2.5178 2.7528 3.0573 3.3346 3.6270 0.145580 0.085457 2.0054 2.2381 2.4212 2.7273 2.9512 3.2229 3.6100 0.146370 0.125940 1.8917 2.1773 2.4074 2.6435 2.8315 3.1443 3.5289 0.149850 0.188590 1.6538 2.1118 2.2856 2.5029 2.6966 2.9471 3.1576 0.158050 0.290420 1.3547 1.9281 2.1538 2.2984 2.4538 2.6755 2.8717 0.171800 0.451270 1.0023 1.5635 1.8450 2.0582 2.2829 2.4990 2.6260 0.189900 0.705190 0.6798 1.1478 1.3430 1.8051 1.9873 2.1489 2.3052 0.215710 1.132700 0.4825 0.7102 0.8332 1.3228 1.4863 1.7707 1.9771 0.249200 1.833500 0.3727 0.4562 0.5781 0.8059 1.0577 1.4488 1.6915 0.288568 Table A-16 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=4.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.018906 1.8334 2.1831 2.4161 2.6760 2.8132 3.1385 3.4438 0.148460 0.031962 1.8419 2.1629 2.3628 2.6405 2.7884 3.1064 3.4317 0.148860 0.046521 1.8217 2.1240 2.3286 2.5514 2.7411 3.0496 3.4235 0.150580 0.066342 1.8073 2.0897 2.3015 2.4967 2.7311 3.0083 3.3593 0.152110 0.094827 1.7480 2.0477 2.2377 2.4515 2.6932 2.9133 3.2513 0.154120

Table A-16 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=4.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.140680 1.6547 1.9657 2.1751 2.3579 2.6343 2.7974 3.0621 0.157210 0.211690 1.4749 1.7983 2.0980 2.2727 2.5220 2.6741 2.9075 0.162520 0.326740 1.1833 1.4927 1.8737 2.1274 2.3508 2.6229 2.7791 0.172060 0.508480 0.8614 1.2313 1.5052 1.9063 2.1479 2.3434 2.5648 0.186110 0.795670 0.6234 0.9086 1.0940 1.5487 1.7960 2.1312 2.3622 0.209640 1.278400 0.4142 0.5817 0.7003 1.0279 1.2338 1.7437 1.9224 0.241630 2.069400 0.3196 0.3978 0.5085 0.6658 0.8537 1.2827 1.5594 0.279125 Table A-17 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=5.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.019862 1.7015 1.9900 2.1740 2.3919 2.6254 2.8987 3.0281 0.147120 0.033808 1.6649 1.9736 2.1431 2.3549 2.5768 2.8522 3.0121 0.148670 0.050419 1.6232 1.9410 2.1065 2.2915 2.5287 2.8158 2.9835 0.152600 0.073358 1.5754 1.8972 2.0589 2.2459 2.5137 2.7476 2.9611 0.155980 0.106450 1.5270 1.8154 1.9926 2.1929 2.4596 2.6629 2.9338 0.159090 0.159330 1.4143 1.6797 1.8906 2.1084 2.3406 2.5954 2.8880 0.162910 0.241300 1.2090 1.4700 1.7675 1.9545 2.1828 2.4421 2.7721 0.167310 0.373650 0.9965 1.2667 1.5387 1.7782 2.0532 2.3650 2.6461 0.174010 0.582760 0.7270 1.0352 1.2571 1.4483 1.7966 2.2141 2.4727 0.188540 0.913690 0.5244 0.7518 0.8828 1.1566 1.4243 1.8446 2.1358 0.203540 1.468600 0.3535 0.4914 0.5988 0.8142 0.9656 1.4687 1.6019 0.227430 2.377300 0.2613 0.3458 0.4443 0.5532 0.7015 0.9759 1.1963 0.254545 Table A-18 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=6.667 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.020565 1.4973 1.7104 1.8639 2.1583 2.3457 2.4733 2.7693 0.146420 0.035332 1.5018 1.6699 1.8260 2.0814 2.3035 2.4202 2.6114 0.148210 0.054596 1.4305 1.6060 1.7884 2.0037 2.1948 2.3866 2.5725 0.154110 0.081799 1.3569 1.5373 1.7298 1.9464 2.0847 2.3415 2.5279 0.159070

Table A-18 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=6.667 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.121330 1.3018 1.4585 1.6417 1.8863 2.0308 2.2462 2.4180 0.163850 0.183950 1.1686 1.3571 1.5526 1.7282 1.9296 2.1528 2.3295 0.167860 0.281250 0.9916 1.2015 1.4177 1.5727 1.7880 2.0641 2.2244 0.170900 0.437770 0.7618 0.9962 1.2589 1.4226 1.6365 1.8979 2.0419 0.173570 0.685260 0.5811 0.7841 0.9546 1.1728 1.3917 1.6009 1.8306 0.180100 1.077700 0.4115 0.5730 0.6825 0.9329 1.1060 1.3295 1.5583 0.192030 1.733400 0.2767 0.3873 0.5079 0.6497 0.7672 1.0278 1.1832 0.212320 2.805900 0.2074 0.2838 0.3711 0.4600 0.5852 0.7527 0.8951 0.235071 Table A-19 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=10.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.020200 1.2414 1.4468 1.6156 1.8276 2.0650 2.4556 2.8047 0.132250 0.035192 1.1930 1.3917 1.5853 1.7580 2.0069 2.3810 2.7331 0.132930 0.057653 1.0869 1.2803 1.4839 1.6448 1.9573 2.3045 2.6606 0.140480 0.090694 0.9984 1.1944 1.3401 1.5517 1.8621 2.2100 2.5383 0.145390 0.139540 0.9185 1.1011 1.2432 1.4403 1.7633 2.0758 2.4242 0.148080 0.216130 0.8150 1.0153 1.1691 1.3576 1.6414 1.9123 2.2500 0.148260 0.335820 0.6887 0.8466 1.0432 1.2095 1.3957 1.7026 2.1159 0.148700 0.527800 0.5532 0.7065 0.8695 1.0225 1.2175 1.5694 1.9199 0.150410 0.832030 0.4112 0.5575 0.6734 0.8266 1.0544 1.3616 1.6529 0.156220 1.315900 0.3017 0.4125 0.5170 0.6405 0.7916 1.0769 1.2904 0.168360 2.119000 0.2081 0.2859 0.3878 0.4667 0.5866 0.7701 0.8938 0.192840 3.430200 0.1615 0.2230 0.2865 0.3592 0.4519 0.5615 0.6166 0.221210 Table A-20 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=13.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.018911 1.0923 1.2938 1.3882 1.6962 1.7900 2.1117 2.4919 0.106580 0.033283 1.0521 1.2169 1.3385 1.6353 1.7074 2.0515 2.4046 0.108730 0.057143 0.8951 1.0497 1.2100 1.4713 1.5894 1.9365 2.2764 0.118650

Table A-20 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=13.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.093607 0.7814 0.9502 1.1101 1.3311 1.5090 1.8538 2.1790 0.125710 0.148540 0.6940 0.8598 1.0251 1.2021 1.4343 1.7579 2.0388 0.129870 0.234280 0.6226 0.7799 0.9294 1.0606 1.3254 1.5787 1.8734 0.130710 0.369080 0.5336 0.6707 0.7892 0.9463 1.1518 1.4426 1.7151 0.131580 0.585370 0.4368 0.5566 0.6722 0.7904 0.9606 1.1900 1.5280 0.133250 0.928950 0.3406 0.4390 0.5412 0.6566 0.7839 1.0165 1.2917 0.138850 1.476800 0.2541 0.3373 0.4304 0.5165 0.6316 0.7885 1.0123 0.153800 2.380600 0.1824 0.2417 0.3208 0.3898 0.4879 0.6012 0.7343 0.183340 3.853700 0.1423 0.1924 0.2419 0.3043 0.3794 0.4889 0.5311 0.218892 Table A-21 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=20.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.016034 1.1051 1.2925 1.3444 1.5775 1.6845 2.0086 2.3794 0.079838 0.028572 1.0773 1.2177 1.2675 1.4995 1.5992 1.9459 2.3096 0.082192 0.052416 0.8541 0.9564 1.0623 1.2497 1.3953 1.7626 2.1445 0.089674 0.091524 0.6885 0.7761 0.8805 1.0560 1.2503 1.5986 1.9915 0.095589 0.152800 0.5786 0.6682 0.7678 0.9108 1.1180 1.4488 1.8397 0.099622 0.248440 0.5074 0.5997 0.6818 0.7875 0.9885 1.2617 1.6487 0.101180 0.400750 0.4289 0.5197 0.5904 0.6970 0.8559 1.0855 1.4518 0.103520 0.646150 0.3561 0.4343 0.5029 0.5926 0.7163 0.8887 1.2014 0.108480 1.038000 0.2873 0.3544 0.4181 0.4913 0.5843 0.7496 0.9712 0.119920 1.665300 0.2188 0.2795 0.3374 0.3972 0.4790 0.6065 0.7749 0.141650 2.689800 0.1594 0.2055 0.2616 0.3117 0.3827 0.4779 0.6153 0.176880 4.354200 0.1256 0.1619 0.2000 0.2463 0.3085 0.3955 0.4880 0.221099 Table A-22 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=25.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.014262 1.1833 1.3753 1.4296 1.6298 1.7773 1.9943 2.3296 0.075034 0.025505 1.1434 1.3070 1.3445 1.5448 1.6712 1.9095 2.2533 0.077199

Table A-22 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=25.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.048104 0.8966 0.9974 1.0585 1.2372 1.3369 1.6386 2.0369 0.083518 0.086996 0.7009 0.7721 0.8641 1.0034 1.1442 1.4300 1.8249 0.088836 0.149780 0.5700 0.6354 0.7165 0.8328 0.9895 1.2559 1.6394 0.092991 0.248220 0.4867 0.5558 0.6278 0.7115 0.8653 1.1129 1.4532 0.095469 0.406510 0.4118 0.4789 0.5407 0.6112 0.7498 0.9483 1.2468 0.098705 0.662730 0.3376 0.4032 0.4562 0.5285 0.6310 0.7716 1.0289 0.104260 1.073400 0.2728 0.3339 0.3823 0.4440 0.5150 0.6476 0.8556 0.116490 1.732700 0.2089 0.2597 0.3105 0.3614 0.4279 0.5423 0.6665 0.139070 2.802400 0.1528 0.1951 0.2412 0.2854 0.3438 0.4289 0.5598 0.174440 4.536400 0.1205 0.1516 0.1898 0.2268 0.2774 0.3590 0.4699 0.218895 Table A-23 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=33.333 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.012248 1.3072 1.5044 1.6060 1.8027 1.9891 2.1028 2.4139 0.071810 0.021866 1.2704 1.4349 1.5049 1.7069 1.8678 2.0173 2.3174 0.073547 0.041669 0.9918 1.1183 1.1637 1.3336 1.4320 1.6536 1.9616 0.078205 0.078128 0.7603 0.8328 0.8958 1.0254 1.1148 1.3583 1.6891 0.082369 0.139880 0.5985 0.6522 0.7209 0.8152 0.9285 1.1370 1.4562 0.085774 0.237930 0.4973 0.5428 0.6160 0.6779 0.7960 0.9687 1.2629 0.088252 0.398130 0.4125 0.4636 0.5179 0.5725 0.6779 0.8228 1.0743 0.091828 0.659690 0.3343 0.3895 0.4355 0.4915 0.5691 0.6750 0.8948 0.097722 1.081700 0.2640 0.3174 0.3677 0.4078 0.4688 0.5689 0.7440 0.109740 1.761800 0.2037 0.2493 0.2923 0.3368 0.3848 0.4813 0.6015 0.130880 2.855000 0.1494 0.1881 0.2261 0.2666 0.3162 0.3854 0.4904 0.165970 4.621600 0.1183 0.1449 0.1795 0.2131 0.2629 0.3206 0.4000 0.210357 Table A-24 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=40.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.011283 1.3783 1.5909 1.7244 1.9198 2.1459 2.2172 2.5305 0.071304

Table A-24 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=40.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.020050 1.3427 1.5213 1.6139 1.8242 2.0203 2.1330 2.4351 0.072939 0.037684 1.0830 1.2243 1.2708 1.4350 1.5526 1.7345 2.0054 0.077060 0.071393 0.8246 0.9038 0.9641 1.0892 1.1732 1.3792 1.6809 0.080651 0.130500 0.6356 0.6913 0.7561 0.8461 0.9389 1.1225 1.4132 0.083665 0.225600 0.5214 0.5652 0.6374 0.6969 0.7925 0.9471 1.2129 0.086071 0.382860 0.4266 0.4720 0.5280 0.5765 0.6690 0.7915 1.0271 0.089569 0.641470 0.3400 0.3933 0.4387 0.4875 0.5592 0.6584 0.8551 0.095359 1.060800 0.2673 0.3191 0.3681 0.4065 0.4597 0.5470 0.6986 0.107120 1.738900 0.2037 0.2489 0.2908 0.3338 0.3778 0.4604 0.5596 0.127890 2.821700 0.1512 0.1874 0.2260 0.2638 0.3093 0.3713 0.4621 0.162710 4.567700 0.1197 0.1450 0.1795 0.2093 0.2543 0.3109 0.3820 0.206762 Table A-25 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=50.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.010462 1.4603 1.6890 1.8482 2.0575 2.2839 2.3687 2.6753 0.071069 0.018464 1.4296 1.6242 1.7357 1.9514 2.1772 2.2817 2.5773 0.072638 0.033540 1.1793 1.3452 1.4039 1.5919 1.7325 1.8965 2.1559 0.076494 0.063036 0.9247 1.0188 1.0823 1.2115 1.3113 1.4894 1.7350 0.079785 0.116930 0.7038 0.7669 0.8311 0.9270 1.0055 1.1714 1.4218 0.082599 0.205470 0.5698 0.6171 0.6869 0.7537 0.8407 0.9743 1.2004 0.085061 0.354360 0.4591 0.5051 0.5652 0.6127 0.6976 0.8038 1.0061 0.088663 0.601820 0.3607 0.4165 0.4632 0.5116 0.5765 0.6665 0.8327 0.094559 1.006000 0.2815 0.3341 0.3817 0.4235 0.4725 0.5502 0.6885 0.106320 1.662500 0.2119 0.2601 0.2997 0.3438 0.3891 0.4605 0.5513 0.126920 2.702600 0.1578 0.1950 0.2347 0.2721 0.3183 0.3720 0.4519 0.161320 4.374800 0.1250 0.1507 0.1847 0.2170 0.2616 0.3129 0.3711 0.204614

Table A-26 Site Adjustment Factor Medians and Logarithmic Standard Deviation for F=100.000 Hz SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.009464 1.5939 1.8444 2.0335 2.2619 2.5018 2.5950 2.9156 0.070909 0.016487 1.5801 1.7964 1.9301 2.1736 2.4146 2.5339 2.8392 0.072453 0.027389 1.4024 1.6100 1.6944 1.9217 2.1107 2.2619 2.5514 0.076268 0.046471 1.2208 1.3598 1.4458 1.6246 1.7631 1.9648 2.1842 0.079507 0.080508 1.0157 1.1059 1.1987 1.3277 1.4259 1.6189 1.8275 0.082248 0.138650 0.8415 0.9112 1.0076 1.1026 1.2061 1.3581 1.5563 0.084668 0.239320 0.6763 0.7442 0.8311 0.8999 0.9987 1.1307 1.3006 0.088261 0.411280 0.5263 0.6055 0.6731 0.7395 0.8190 0.9301 1.0768 0.094080 0.698630 0.4049 0.4776 0.5433 0.6021 0.6666 0.7606 0.8858 0.105450 1.172500 0.3023 0.3679 0.4238 0.4802 0.5375 0.6219 0.7233 0.125560 1.912900 0.2231 0.2752 0.3283 0.3809 0.4324 0.5041 0.5804 0.159690 3.096600 0.1768 0.2118 0.2553 0.3028 0.3591 0.4148 0.4674 0.202321 Table A-27 Site Adjustment Factor Medians and Logarithmic Standard Deviation for PGA SA (g) SAF-M1 SAF-M2 SAF-M3 SAF-M4 SAF-M5 SAF-M6 SAF-M7 LNSTDEV 0.009337 1.6118 1.8655 2.0601 2.2911 2.5284 2.6275 2.9522 0.119600 0.016224 1.6031 1.8224 1.9607 2.2076 2.4500 2.5716 2.8828 0.118027 0.026327 1.4541 1.6702 1.7602 1.9958 2.1934 2.3464 2.6441 0.124829 0.042833 1.3194 1.4727 1.5657 1.7613 1.9133 2.1269 2.3575 0.137322 0.069979 1.1636 1.2682 1.3772 1.5285 1.6413 1.8606 2.0845 0.145677 0.114444 1.0200 1.1043 1.2200 1.3352 1.4567 1.6363 1.8601 0.153686 0.187600 0.8633 0.9493 1.0589 1.1474 1.2698 1.4365 1.6291 0.161486 0.307924 0.7030 0.8080 0.8988 0.9859 1.0895 1.2310 1.4078 0.170164 0.504877 0.5603 0.6604 0.7518 0.8291 0.9211 1.0471 1.2126 0.186773 0.826150 0.4285 0.5220 0.5988 0.6796 0.7616 0.8746 1.0261 0.211627 1.340724 0.3189 0.3931 0.4665 0.5431 0.6152 0.7167 0.8167 0.237979 2.170321 0.2523 0.3019 0.3636 0.4318 0.5109 0.5907 0.6507 0.267400

Table A-28 Control Point Total Mean Hazard Curves for F=0.100 to 1.000 Hz SA(g) F0.100Hz F0.133Hz F0.200Hz F0.250Hz F0.333Hz F0.500Hz F0.667Hz F1.000Hz 0.00100 3.24023E-03 4.01192E-03 5.04691E-03 5.82756E-03 7.02538E-03 1.05992E-02 1.40222E-02 2.08732E-02 0.00130 3.13107E-03 3.90939E-03 5.04691E-03 5.82756E-03 7.02538E-03 1.05992E-02 1.40222E-02 2.08732E-02 0.00160 2.85686E-03 3.72170E-03 4.75791E-03 5.71475E-03 7.02538E-03 1.05992E-02 1.40222E-02 2.08732E-02 0.00200 2.37519E-03 3.28450E-03 4.42904E-03 5.42381E-03 6.69207E-03 1.05992E-02 1.40222E-02 2.08732E-02 0.00250 1.97379E-03 2.88773E-03 4.04740E-03 4.91815E-03 6.28104E-03 1.02682E-02 1.40222E-02 2.02789E-02 0.00320 1.55785E-03 2.45213E-03 3.62213E-03 4.47947E-03 5.82640E-03 9.90727E-03 1.35384E-02 1.87715E-02 0.00400 1.16340E-03 1.99533E-03 3.16872E-03 4.02901E-03 5.31540E-03 9.34722E-03 1.21132E-02 1.64543E-02 0.00500 8.25549E-04 1.55531E-03 2.70238E-03 3.55899E-03 4.79771E-03 8.34651E-03 1.04834E-02 1.41365E-02 0.00630 5.71394E-04 1.15623E-03 2.22312E-03 3.08418E-03 4.30265E-03 7.44916E-03 9.15538E-03 1.24485E-02 0.00790 3.58276E-04 8.03980E-04 1.75634E-03 2.58199E-03 3.80567E-03 6.62041E-03 8.02189E-03 1.05607E-02 0.01000 2.23402E-04 5.26980E-04 1.37775E-03 2.05695E-03 3.28528E-03 5.80924E-03 7.05866E-03 9.10253E-03 0.01260 1.35754E-04 3.36647E-04 1.00823E-03 1.60819E-03 2.80304E-03 5.16721E-03 6.20707E-03 7.83980E-03 0.01580 7.60428E-05 2.15028E-04 7.04161E-04 1.25004E-03 2.31510E-03 4.57832E-03 5.45641E-03 6.74533E-03 0.02000 4.00806E-05 1.19174E-04 4.58973E-04 8.83016E-04 1.81946E-03 3.97464E-03 4.64959E-03 5.80105E-03 0.02510 2.21582E-05 6.70107E-05 2.96756E-04 6.38961E-04 1.41398E-03 3.39646E-03 4.10544E-03 4.94023E-03 0.03160 1.19348E-05 3.81693E-05 1.78683E-04 4.33960E-04 1.05343E-03 2.85694E-03 3.46305E-03 4.13834E-03 0.03980 5.98943E-06 2.09909E-05 1.01144E-04 2.98051E-04 7.34986E-04 2.35465E-03 2.78744E-03 3.43682E-03 0.05010 2.87805E-06 1.11052E-05 5.75107E-05 1.79291E-04 5.03143E-04 1.83214E-03 2.23691E-03 2.80519E-03 0.06310 1.38058E-06 5.49018E-06 3.02465E-05 1.00629E-04 3.44481E-04 1.40137E-03 1.75257E-03 2.22027E-03 0.07940 6.77055E-07 2.65047E-06 1.64626E-05 5.62556E-05 2.48089E-04 1.02730E-03 1.31972E-03 1.70084E-03 0.10000 3.34958E-07 1.27856E-06 9.45520E-06 3.05604E-05 1.48240E-04 7.11437E-04 9.51587E-04 1.26496E-03 0.12600 1.64389E-07 6.26232E-07 5.53770E-06 1.61546E-05 9.83365E-05 4.72289E-04 6.60521E-04 9.09244E-04 0.15800 8.15666E-08 3.15246E-07 2.83540E-06 9.66800E-06 5.52943E-05 2.99160E-04 4.38807E-04 6.23838E-04 0.20000 3.92575E-08 1.51921E-07 1.44907E-06 5.80728E-06 3.67062E-05 1.82733E-04 2.48792E-04 4.17032E-04 0.25100 1.94135E-08 7.41441E-08 8.20055E-07 3.10382E-06 1.90953E-05 1.05457E-04 1.56612E-04 2.69999E-04 0.31600 9.51172E-09 3.61766E-08 4.33864E-07 1.77190E-06 1.03623E-05 5.61072E-05 9.43455E-05 1.64417E-04 0.39800 4.64212E-09 1.75778E-08 2.27246E-07 1.03174E-06 5.44371E-06 2.84404E-05 5.17718E-05 9.36150E-05 0.50100 2.24110E-09 8.45308E-09 1.25037E-07 5.49224E-07 2.76247E-06 1.35641E-05 2.65204E-05 4.97571E-05 0.63100 1.07376E-09 4.05120E-09 6.62429E-08 3.16709E-07 1.38208E-06 6.69410E-06 1.32221E-05 2.52419E-05

Table A-28 Control Point Total Mean Hazard Curves for F=0.100 to 1.000 Hz SA(g) F0.100Hz F0.133Hz F0.200Hz F0.250Hz F0.333Hz F0.500Hz F0.667Hz F1.000Hz 0.79400 5.11540E-10 1.90510E-09 3.49788E-08 1.78218E-07 6.98933E-07 3.27463E-06 6.35074E-06 1.16050E-05 1.00000 2.39986E-10 8.84339E-10 1.90050E-08 9.72128E-08 3.50275E-07 1.53582E-06 2.96237E-06 4.96764E-06 1.26000 1.11368E-10 4.05422E-10 1.00162E-08 5.57200E-08 1.77655E-07 7.22057E-07 1.36941E-06 2.13740E-06 1.58000 5.19681E-11 1.86671E-10 5.34480E-09 3.11556E-08 9.22608E-08 3.47110E-07 6.45629E-07 9.69434E-07 2.00000 2.32124E-11 8.24110E-11 2.79920E-09 1.71278E-08 4.68817E-08 1.62936E-07 2.98063E-07 4.37479E-07 2.51000 1.05566E-11 3.70224E-11 1.48212E-09 9.70983E-09 2.44743E-08 7.90798E-08 1.42828E-07 2.07655E-07 3.16000 4.69174E-12 1.61675E-11 7.73589E-10 5.36511E-09 1.26821E-08 3.81618E-08 6.82650E-08 9.92714E-08 3.98000 2.05243E-12 6.98002E-12 4.03671E-10 2.97692E-09 6.58480E-09 1.84267E-08 3.27709E-08 4.80712E-08 5.01000 8.85525E-13 2.98775E-12 2.09147E-10 1.64301E-09 3.43424E-09 8.90696E-09 1.58180E-08 2.35797E-08 6.31000 3.74851E-13 1.25165E-12 1.07229E-10 9.00924E-10 1.78563E-09 4.28860E-09 7.63882E-09 1.16534E-08 7.94000 1.56352E-13 5.14344E-13 5.49623E-11 4.93767E-10 9.27124E-10 2.06611E-09 3.70417E-09 5.81864E-09 10.00000 6.37298E-14 2.07952E-13 2.80603E-11 2.67098E-10 4.78831E-10 9.90029E-10 1.79138E-09 2.91354E-09 Table A-29 Control Point Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 0.00100 2.55679E-02 3.02733E-02 3.16302E-02 3.28429E-02 3.30977E-02 3.34530E-02 3.34953E-02 3.30163E-02 0.00130 2.55679E-02 3.02733E-02 3.16302E-02 3.28429E-02 3.30977E-02 3.34530E-02 3.34953E-02 3.30163E-02 0.00160 2.55679E-02 3.02733E-02 3.16302E-02 3.28429E-02 3.30977E-02 3.34530E-02 3.34953E-02 3.30163E-02 0.00200 2.54792E-02 3.02733E-02 3.15576E-02 3.28429E-02 3.30360E-02 3.34530E-02 3.33665E-02 3.25300E-02 0.00250 2.45452E-02 2.99974E-02 3.07916E-02 3.28429E-02 3.29561E-02 3.31793E-02 3.27565E-02 3.17451E-02 0.00320 2.36842E-02 2.89911E-02 3.00646E-02 3.23033E-02 3.22656E-02 3.21961E-02 3.15983E-02 3.02926E-02 0.00400 2.13144E-02 2.71137E-02 2.81040E-02 3.08648E-02 3.03418E-02 3.03010E-02 3.01471E-02 2.84226E-02 0.00500 1.90855E-02 2.50455E-02 2.59668E-02 2.90550E-02 2.85475E-02 2.84846E-02 2.82835E-02 2.63251E-02 0.00630 1.67872E-02 2.24201E-02 2.36577E-02 2.69448E-02 2.64316E-02 2.63319E-02 2.56259E-02 2.41034E-02 0.00790 1.46028E-02 1.99486E-02 2.12080E-02 2.43450E-02 2.40324E-02 2.39246E-02 2.23717E-02 2.18027E-02 0.01000 1.24252E-02 1.74864E-02 1.87021E-02 2.17170E-02 2.15183E-02 2.09103E-02 1.99471E-02 1.91720E-02 0.01260 1.04154E-02 1.46492E-02 1.62651E-02 1.91864E-02 1.90123E-02 1.84015E-02 1.75046E-02 1.63913E-02 0.01580 8.88225E-03 1.23944E-02 1.39863E-02 1.66917E-02 1.65293E-02 1.59002E-02 1.51661E-02 1.42609E-02 0.02000 7.54327E-03 1.04783E-02 1.18760E-02 1.43038E-02 1.37034E-02 1.36046E-02 1.28530E-02 1.21471E-02

Table A-29 Control Point Total Mean Hazard Curves for F=1.333 to 10.000 Hz SA(g) F1.333Hz F2.000Hz F2.500Hz F3.333Hz F4.000Hz F5.000Hz F6.667Hz F10.000Hz 0.02510 6.37713E-03 8.79438E-03 9.95794E-03 1.21174E-02 1.15732E-02 1.14944E-02 1.08164E-02 1.02912E-02 0.03160 5.35234E-03 7.30842E-03 8.00351E-03 1.01408E-02 9.62406E-03 9.29380E-03 8.95999E-03 8.62983E-03 0.03980 4.44318E-03 6.01815E-03 6.52120E-03 8.35417E-03 7.86419E-03 7.65433E-03 7.13453E-03 6.95556E-03 0.05010 3.64962E-03 4.91340E-03 5.29933E-03 6.80214E-03 6.18648E-03 6.13997E-03 5.81752E-03 5.74113E-03 0.06310 2.94617E-03 3.96229E-03 4.26600E-03 5.41745E-03 4.97475E-03 4.94425E-03 4.72531E-03 4.55968E-03 0.07940 2.27724E-03 3.13658E-03 3.39412E-03 4.31447E-03 3.97643E-03 3.96867E-03 3.83822E-03 3.63658E-03 0.10000 1.70489E-03 2.42988E-03 2.66871E-03 3.27590E-03 3.17302E-03 3.18347E-03 3.04036E-03 2.82275E-03 0.12600 1.26805E-03 1.86275E-03 2.07217E-03 2.58202E-03 2.52482E-03 2.52090E-03 2.32836E-03 2.17064E-03 0.15800 9.13900E-04 1.39428E-03 1.58541E-03 1.99701E-03 1.94659E-03 1.99466E-03 1.85342E-03 1.69109E-03 0.20000 6.33290E-04 1.01925E-03 1.12786E-03 1.47385E-03 1.47687E-03 1.47941E-03 1.42670E-03 1.25588E-03 0.25100 4.37919E-04 6.37178E-04 8.25795E-04 1.11853E-03 1.08959E-03 1.05972E-03 9.94809E-04 9.02515E-04 0.31600 2.74805E-04 4.22605E-04 5.79921E-04 8.20294E-04 7.89202E-04 7.40023E-04 6.35941E-04 6.13667E-04 0.39800 1.64664E-04 2.65190E-04 3.85479E-04 5.34529E-04 5.37656E-04 5.04584E-04 4.19614E-04 3.30212E-04 0.50100 8.97530E-05 1.59619E-04 2.23562E-04 3.25045E-04 3.40399E-04 2.92553E-04 2.42596E-04 1.84681E-04 0.63100 4.54437E-05 8.10721E-05 1.22242E-04 1.80376E-04 1.87626E-04 1.56345E-04 1.24492E-04 9.09778E-05 0.79400 2.10122E-05 3.93267E-05 5.79515E-05 8.81118E-05 9.49550E-05 7.52279E-05 5.30504E-05 4.21472E-05 1.00000 9.07922E-06 1.62389E-05 2.42996E-05 3.85459E-05 4.29652E-05 3.29883E-05 2.00255E-05 1.58551E-05 1.26000 3.68955E-06 6.04312E-06 9.26969E-06 1.52479E-05 1.66751E-05 1.29416E-05 6.14872E-06 5.67638E-06 1.58000 1.54176E-06 2.20122E-06 3.49172E-06 5.10966E-06 5.71482E-06 4.38915E-06 1.79854E-06 1.50668E-06 2.00000 6.51227E-07 7.54165E-07 1.23374E-06 1.42639E-06 1.73576E-06 1.24331E-06 4.28857E-07 2.54181E-07 2.51000 2.96403E-07 2.71440E-07 4.49508E-07 4.29841E-07 5.14139E-07 2.78372E-07 9.40483E-08 4.28240E-08 3.16000 1.37828E-07 9.96087E-08 1.65561E-07 1.37243E-07 1.39506E-07 4.71111E-08 1.90374E-08 6.63127E-09 3.98000 6.54664E-08 3.76358E-08 6.32442E-08 4.58415E-08 3.74809E-08 8.01791E-09 3.50379E-09 8.10291E-10 5.01000 3.16926E-08 1.45500E-08 2.49588E-08 1.56122E-08 1.03894E-08 1.45220E-09 5.46535E-10 6.63845E-11 6.31000 1.55305E-08 5.67564E-09 1.00039E-08 5.28353E-09 2.90516E-09 2.54199E-10 6.46792E-11 3.12827E-12 7.94000 7.71608E-09 2.22981E-09 4.05581E-09 1.76220E-09 8.06953E-10 3.91196E-11 5.17597E-12 7.84788E-14 10.00000 3.85379E-09 8.70379E-10 1.63981E-09 5.62738E-10 2.13422E-10 4.65117E-12 2.39378E-13 9.55974E-16

Table A-30 Control Point Total Mean Hazard Curves for F=13.333 to 100.000 Hz and PGA SA(g) F13.333Hz F20.000Hz F25.000Hz F33.333Hz F40.000Hz F50.000Hz F100.000Hz PGA 0.00100 3.25143E-02 3.18513E-02 3.13177E-02 3.06353E-02 3.01899E-02 2.94838E-02 2.80258E-02 2.96356E-02 0.00130 3.25143E-02 3.18513E-02 3.13177E-02 3.06353E-02 3.01899E-02 2.94838E-02 2.80258E-02 2.96356E-02 0.00160 3.24542E-02 3.17087E-02 3.12534E-02 3.06353E-02 3.01899E-02 2.94838E-02 2.80258E-02 2.96356E-02 0.00200 3.20108E-02 3.12323E-02 3.10113E-02 3.04819E-02 3.00329E-02 2.93219E-02 2.79497E-02 2.95002E-02 0.00250 3.09823E-02 2.98311E-02 2.99133E-02 2.94839E-02 2.92901E-02 2.88119E-02 2.76640E-02 2.90333E-02 0.00320 2.88546E-02 2.80161E-02 2.74989E-02 2.77631E-02 2.75417E-02 2.68452E-02 2.59765E-02 2.62763E-02 0.00400 2.64793E-02 2.58260E-02 2.55646E-02 2.51353E-02 2.56360E-02 2.48029E-02 2.37374E-02 2.39174E-02 0.00500 2.40506E-02 2.32065E-02 2.31891E-02 2.30641E-02 2.33320E-02 2.27459E-02 2.16123E-02 2.15039E-02 0.00630 2.18334E-02 2.07335E-02 2.09742E-02 2.09292E-02 2.06771E-02 2.06312E-02 1.88535E-02 1.87208E-02 0.00790 1.95935E-02 1.86015E-02 1.88405E-02 1.88263E-02 1.82715E-02 1.85157E-02 1.67181E-02 1.64683E-02 0.01000 1.73779E-02 1.65023E-02 1.58555E-02 1.63216E-02 1.62372E-02 1.60612E-02 1.46690E-02 1.43591E-02 0.01260 1.48418E-02 1.45090E-02 1.39136E-02 1.40938E-02 1.42457E-02 1.34275E-02 1.27099E-02 1.23439E-02 0.01580 1.28854E-02 1.25341E-02 1.21062E-02 1.22655E-02 1.19888E-02 1.15889E-02 1.08636E-02 1.04494E-02 0.02000 1.10401E-02 1.07855E-02 1.04084E-02 1.04724E-02 1.00945E-02 9.93630E-03 9.14757E-03 8.74274E-03 0.02510 9.35862E-03 8.85080E-03 8.84544E-03 8.31573E-03 8.54950E-03 8.39568E-03 7.10294E-03 7.23401E-03 0.03160 7.72125E-03 7.30942E-03 7.12180E-03 6.93507E-03 7.12406E-03 6.69502E-03 5.85636E-03 5.34875E-03 0.03980 6.38260E-03 5.71632E-03 5.51753E-03 5.68527E-03 5.68355E-03 5.26544E-03 4.79740E-03 4.28106E-03 0.05010 5.25148E-03 4.47218E-03 4.30444E-03 4.15870E-03 4.03887E-03 4.06501E-03 3.53929E-03 3.17718E-03 0.06310 4.02229E-03 3.51130E-03 3.26075E-03 3.03897E-03 2.95866E-03 2.86210E-03 2.68158E-03 2.29235E-03 0.07940 3.20783E-03 2.69774E-03 2.45589E-03 2.13357E-03 2.04017E-03 1.98033E-03 1.90556E-03 1.59657E-03 0.10000 2.39289E-03 2.05924E-03 1.73136E-03 1.47200E-03 1.36906E-03 1.27494E-03 1.25761E-03 1.05533E-03 0.12600 1.90742E-03 1.48615E-03 1.23300E-03 9.74115E-04 8.71230E-04 7.92623E-04 8.07024E-04 6.66917E-04 0.15800 1.39589E-03 1.05204E-03 8.34270E-04 6.19955E-04 5.40490E-04 4.75746E-04 4.71502E-04 4.05864E-04 0.20000 9.81472E-04 6.93791E-04 5.24712E-04 3.58173E-04 2.97293E-04 2.55996E-04 2.54986E-04 2.25685E-04 0.25100 6.93167E-04 4.37378E-04 3.14661E-04 1.96377E-04 1.58318E-04 1.28821E-04 1.24507E-04 1.20649E-04 0.31600 4.25014E-04 2.54394E-04 1.72737E-04 9.95700E-05 7.53801E-05 5.95113E-05 5.63806E-05 5.98585E-05 0.39800 2.24240E-04 1.33687E-04 8.57301E-05 4.45310E-05 3.36276E-05 2.51206E-05 2.28160E-05 2.77198E-05 0.50100 1.13991E-04 6.24003E-05 3.75382E-05 1.86635E-05 1.36424E-05 9.93855E-06 8.79982E-06 1.22332E-05 0.63100 5.24947E-05 2.64899E-05 1.51622E-05 7.39243E-06 5.27250E-06 3.76319E-06 3.21304E-06 5.17751E-06

Table A-30 Control Point Total Mean Hazard Curves for F=13.333 to 100.000 Hz and PGA SA(g) F13.333Hz F20.000Hz F25.000Hz F33.333Hz F40.000Hz F50.000Hz F100.000Hz PGA 0.79400 2.09014E-05 1.03946E-05 5.87062E-06 2.86124E-06 1.95535E-06 1.37255E-06 1.14563E-06 2.11260E-06 1.00000 7.71329E-06 3.61735E-06 2.09446E-06 1.03243E-06 6.85183E-07 4.73936E-07 3.95846E-07 8.20368E-07 1.26000 2.42702E-06 1.18149E-06 6.98048E-07 3.60484E-07 2.37744E-07 1.61932E-07 1.33696E-07 3.03468E-07 1.58000 6.62937E-07 3.94304E-07 2.51037E-07 1.25929E-07 8.20273E-08 5.45271E-08 4.43353E-08 1.09655E-07 2.00000 1.63542E-07 1.24931E-07 8.56536E-08 3.94231E-08 2.51391E-08 1.61723E-08 1.31913E-08 3.58109E-08 2.51000 4.27560E-08 3.90290E-08 2.85859E-08 1.14442E-08 7.11388E-09 4.38579E-09 3.75240E-09 1.13684E-08 3.16000 1.02160E-08 1.06871E-08 8.45160E-09 2.70086E-09 1.62564E-09 9.41096E-10 9.08982E-10 3.26652E-09 3.98000 2.05859E-09 2.40701E-09 2.10412E-09 4.80242E-10 2.75922E-10 1.45505E-10 1.75420E-10 8.34324E-10 5.01000 3.11901E-10 4.09119E-10 4.08129E-10 5.89098E-11 3.15501E-11 1.46513E-11 2.48449E-11 1.81254E-10 6.31000 3.07649E-11 4.73809E-11 5.55650E-11 4.50699E-12 2.18598E-12 8.68548E-13 2.36512E-12 3.13109E-11 7.94000 1.79223E-12 3.51331E-12 4.90402E-12 2.02866E-13 8.66844E-14 2.89781E-14 1.45019E-13 4.11152E-12 10.00000 5.57687E-14 1.54520E-13 2.54962E-13 4.94715E-15 1.81540E-15 5.07090E-16 5.37834E-15 3.85651E-13

ML23066A327 NRR-106 OFFICE NRR/DORL/LPL2-1/PM NRR/DORL/LPL2-1/LA NRR/DORL/LA NRR/DEX/EXHB/BC KGoldstein BHayes NAME JLamb (PBlechman for) SLent DATE 03/06/2023 03/08/2023 03/08/2023 03/06/2023 OFFICE NRR/DORL/LPL2-1/BC NRR/DEX/DD NRR/DORL/DD OGC - NLO NAME MMarkley MSampson JHeisserer AGhosh Naber DATE 03/08/2023 03/09/2023 03/13/2023 03/13/2023 OFFICE NRR/DD NRR/DD NRR/D NRR/DORL/LPL2-1/PM NAME AKock MKing AVeil JLamb DATE 03/21/2023 03/21/2023 03/29/2023 03/31/2023